WorldWideScience

Sample records for antiviral drug design

  1. Flexibility as a Strategy in Nucleoside Antiviral Drug Design.

    Science.gov (United States)

    Peters, H L; Ku, T C; Seley-Radtke, K L

    2015-01-01

    As far back as Melville Wolfrom's acyclic sugar synthesis in the 1960's, synthesis of flexible nucleoside analogues have been an area of interest. This concept, however, went against years of enzyme-substrate binding theory. Hence, acyclic methodology in antiviral drug design did not take off until the discovery and subsequent FDA approval of such analogues as Acyclovir and Tenofovir. More recently, the observation that flexible nucleosides could overcome drug resistance spawned a renewed interest in the field of nucleoside drug design. The next generation of flexible nucleosides shifted the focus from the sugar moiety to the nucleobase. With analogues such as Seley-Radtke "fleximers", and Herdewijn's C5 substituted 2'-deoxyuridines, the area of base flexibility has seen great expansion. More recently, the marriage of these methodologies with acyclic sugars has resulted in a series of acyclic flex-base nucleosides with a wide range of antiviral properties, including some of the first to exhibit anti-coronavirus activity. Various flexible nucleosides and their corresponding nucleobases will be compared in this review.

  2. Design Features of Drug-Drug Interaction Trials Between Antivirals and Oral Contraceptives.

    Science.gov (United States)

    Ayala, Ruben C; Arya, Vikram; Younis, Islam R

    2016-05-01

    The aim of this work was to explore the major design features of drug-drug interaction trials between antiviral medications (AVs) and oral contraceptives (OCs). Information on these trials (n = 27) was collected from approved drug labels and clinical pharmacology reviews conducted by the U.S. Food and Drug Administration. The primary objective of all trials was to evaluate changes in OC exposure following the coadministration of AVs. In addition, an evaluation of potential pharmacodynamic interaction was performed in 10 of these trials. Twenty-two trials were open label with a fixed-sequence design, and 5 trials used a double-blind crossover design. The trials were conducted using one, two, or three 28-day ovulatory cycles in 10, 8, and 9 trials, respectively. Only 1 trial enrolled HIV-infected women. The median number of women in a trial was 20 (range, 12 to 52). Norethindrone/ethinyl estradiol (EE) combination was the most commonly used OC (n = 16, 59%) followed by norgestimate/EE (n = 9, 33%). Labeling recommendations were based on exposure changes in 25 cases and on safety observations in the trial in 2 cases. In conclusion, a wide variety of trial designs was used, and there is no preferred design. The answer to the exposure question can be achieved using multiple designs.

  3. Antiviral Drug Research Proposal Activity

    Directory of Open Access Journals (Sweden)

    Lisa Injaian

    2011-03-01

    Full Text Available The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an "expert" in one aspect of the project. The Antiviral Drug Research Proposal (ADRP culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity.

  4. Antiviral Drugs: Seasonal Flu

    Centers for Disease Control (CDC) Podcasts

    2010-09-29

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used for seasonal flu.  Created: 9/29/2010 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2010.

  5. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes.

    Science.gov (United States)

    Yu, Debin; Zhao, Mingzhi; Dong, Liwei; Zhao, Lu; Zou, Mingwei; Sun, Hetong; Zhang, Mengying; Liu, Hongyu; Zou, Zhihua

    2016-01-01

    Type III interferons (IFNs) (also called IFN-λ: IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4) are critical players in the defense against viral infection of mucosal epithelial cells, where the activity of type I IFNs is weak, and unlike type I IFNs that are associated with severe and diverse side effects, type III IFNs cause minimal side effects due to the highly restricted expression of their receptors, and thus appear to be promising agents for the treatment and prevention of respiratory and gastrointestinal viral infection. However, the antiviral potency of natural type III IFNs is weak compared to type I and, although IFN-λ3 possesses the highest bioactivity among the type III IFNs, IFN-λ1, instead of IFN-λ3, is being developed as a therapeutic drug due to the difficulty to express IFN-λ3 in the prokaryotic expression system. Here, to develop optimal IFN-λ molecules with improved drug attributes, we designed a series of IFN-λ analogs by replacing critical amino acids of IFN-λ1 with the IFN-λ3 counterparts, and vice versa. Four of the designed analogs were successfully expressed in Escherichia coli with high yield and were easily purified from inclusion bodies. Interestingly, all four analogs showed potent activity in inducing the expression of the antiviral genes MxA and OAS and two of them, analog-6 and -7, displayed an unexpected high potency that is higher than that of type I IFN (IFN-α2a) in activating the IFN-stimulated response element (ISRE)-luciferase reporter. Importantly, both analog-6 and -7 effectively inhibited replication of hepatitis C virus in Huh-7.5.1 cells, with an IC50 that is comparable to that of IFN-α2a; and consistent with the roles of IFN-λ in mucosal epithelia, both analogs potently inhibited replication of H3N2 influenza A virus in A549 cells. Together, these studies identified two IFN-λ analogs as candidates to be developed as novel antiviral biologics.

  6. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes

    Directory of Open Access Journals (Sweden)

    Yu D

    2016-01-01

    Full Text Available Debin Yu,1 Mingzhi Zhao,2 Liwei Dong,1 Lu Zhao,1 Mingwei Zou,3 Hetong Sun,4 Mengying Zhang,4 Hongyu Liu,4 Zhihua Zou1 1National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 2State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China; 3Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA; 4Prosit Sole Biotechnology, Co., Ltd., Beijing, People’s Republic of China Abstract: Type III interferons (IFNs (also called IFN-λ: IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4 are critical players in the defense against viral infection of mucosal epithelial cells, where the activity of type I IFNs is weak, and unlike type I IFNs that are associated with severe and diverse side effects, type III IFNs cause minimal side effects due to the highly restricted expression of their receptors, and thus appear to be promising agents for the treatment and prevention of respiratory and gastrointestinal viral infection. However, the antiviral potency of natural type III IFNs is weak compared to type I and, although IFN-λ3 possesses the highest bioactivity among the type III IFNs, IFN-λ1, instead of IFN-λ3, is being developed as a therapeutic drug due to the difficulty to express IFN-λ3 in the prokaryotic expression system. Here, to develop optimal IFN-λ molecules with improved drug attributes, we designed a series of IFN-λ analogs by replacing critical amino acids of IFN-λ1 with the IFN-λ3 counterparts, and vice versa. Four of the designed analogs were successfully expressed in Escherichia coli with high yield and were easily purified from inclusion bodies. Interestingly, all four analogs showed potent activity in inducing the

  7. Emerging antiviral drugs.

    Science.gov (United States)

    De Clercq, Erik

    2008-09-01

    Foremost among the newly described antiviral agents that may be developed into drugs are, for the treatment of human papilloma virus (HPV) infections, cPrPMEDAP; for the treatment of herpes simplex virus (HSV) infections, BAY 57-1293; for the treatment of varicella-zoster virus (VZV) infections, FV-100 (prodrug of Cf 1743); for the treatment of cytomegalovirus (CMV) infections, maribavir; for the treatment of poxvirus infections, ST-246; for the treatment of hepatitis B virus (HBV) infections, tenofovir disoproxil fumarate (TDF) (which in the meantime has already been approved in the EU); for the treatment of various DNA virus infections, the hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE) prodrugs of cidofovir; for the treatment of orthomyxovirus infections (i.e., influenza), peramivir; for the treatment of hepacivirus infections (i.e., hepatitis C), the protease inhibitors telaprevir and boceprevir, the nucleoside RNA replicase inhibitors (NRRIs) PSI-6130 and R1479, and various non-nucleoside RNA replicase inhibitors (NNRRIs); for the treatment of human immunodeficiency virus (HIV) infections, integrase inhibitors (INIs) such as elvitegravir, nucleoside reverse transcriptase inhibitors (NRTIs) such as apricitabine, non-nucleoside reverse transcriptase inhibitors (NNRTIs) such as rilpivirine and dapivirine; and for the treatment of both HCV and HIV infections, cyclosporin A derivatives such as the non-immunosuppressive Debio-025.

  8. [Renal toxicity of antiviral drugs].

    Science.gov (United States)

    Frasca', Giovanni M; Balestra, Emilio; Tavio, Marcello; Morroni, Manrico; Manarini, Gloria; Brigante, Fabiana

    2012-01-01

    Highly effective and powerful antiviral drugs have been introduced into clinical practice in recent years which are associated with an increased incidence of nephrotoxicity. The need of combining several drugs, the fragility of the patients treated, and the high susceptibility of the kidney are all factors contributing to renal injury. Many pathogenetic mechanisms are involved in the nephrotoxicity of antiviral drugs, including drug interaction with transport proteins in the tubular cell; direct cytotoxicity due to a high intracellular drug concentration; mitochondrial injury; and intrarenal obstruction or stone formation due to the low solubility of drugs at a normal urinary pH. As a result, various clinical pictures may be observed in patients treated with antiviral drugs, ranging from tubular dysfunction (Fanconi syndrome, renal tubular acidosis, nephrogenic diabetes insipidus) to acute renal failure (induced by tubular necrosis or crystal nephropathy) and kidney stones. Careful attention should be paid to prevent renal toxicity by evaluating the glomerular filtration rate before therapy and adjusting the drug dosage accordingly, avoiding the combination with other nephrotoxic drugs, and monitoring renal parameters on a regular basis while treating patients.

  9. Influenza Round Table: Antiviral Drugs

    Centers for Disease Control (CDC) Podcasts

    2009-11-04

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used.  Created: 11/4/2009 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 11/4/2009.

  10. What You Should Know about Flu Antiviral Drugs

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Past Newsletters What You Should Know About Flu Antiviral Drugs Language: ... that can be used to treat flu illness. What are antiviral drugs? Antiviral drugs are prescription medicines ( ...

  11. De novo computer-aided design of novel antiviral agents.

    Science.gov (United States)

    Massarotti, Alberto; Coluccia, Antonio; Sorba, Giovanni; Silvestri, Romano; Brancale, Andrea

    2012-01-01

    Computer-aided drug design techniques have become an integral part of the drug discovery process. In particular, de novo methodologies can be useful to identify putative ligands for a specific target relying only on the structural information of the target itself. Here we discuss the basic de novo approaches available and their application in antiviral drug design.:

  12. Bell's Palsy: Treatment with Steroids and Antiviral Drugs

    Science.gov (United States)

    ... PATIENTS and their FAMILIES BELL’S PALSY: TREATMENT WITH STEROIDS AND ANTIVIRAL DRUGS This information sheet is provided to help you understand the role of steroids and antiviral drugs for treating Bell’s palsy. Neurologists ...

  13. Application of "hydrogen bonding interaction" in new drug development: design, synthesis, antiviral activity, and SARs of thiourea derivatives.

    Science.gov (United States)

    Lu, Aidang; Wang, Ziwen; Zhou, Zhenghong; Chen, Jianxin; Wang, Qingmin

    2015-02-11

    A series of simple thiourea derivatives were designed based on the structure of natural product harmine and lead compound and synthesized from amines in one step. The antiviral activity of these thiourea derivatives was evaluated. Most of them exhibited significantly higher anti-TMV activity than commercial plant virucides ribavirin, harmine, and lead compound. The hydrogen bond was found to be important but not the more the better. The optimal compound (R,R)-20 showed the best anti-TMV activity in vitro and in vivo (in vitro activity, 75%/500 μg/mL and 39%/100 μg/mL; inactivation activity, 71%/500 μg/mL and 35%/100 μg/mL; curative activity, 73%/500 μg/mL and 37%/100 μg/mL; protection activity, 69%/500 μg/mL and 33%/100 μg/mL), which is significantly higher than that of Ningnanmycin. The systematic study provides strong evidence that these simple thiourea derivatives could become potential TMV inhibitors.

  14. In silico study of rotavirus VP7 surface accessible conserved regions for antiviral drug/vaccine design.

    Directory of Open Access Journals (Sweden)

    Ambarnil Ghosh

    Full Text Available BACKGROUND: Rotaviral diarrhoea kills about half a million children annually in developing countries and accounts for one third of diarrhea related hospitalizations. Drugs and vaccines against the rotavirus are handicapped, as in all viral diseases, by the rapid mutational changes that take place in the DNA and protein sequences rendering most of these ineffective. As of now only two vaccines are licensed and approved by the WHO (World Health Organization, but display reduced efficiencies in the underdeveloped countries where the disease is more prevalent. We approached this issue by trying to identify regions of surface exposed conserved segments on the surface glycoproteins of the virion, which may then be targeted by specific peptide vaccines. We had developed a bioinformatics protocol for these kinds of problems with reference to the influenza neuraminidase protein, which we have refined and expanded to analyze the rotavirus issue. RESULTS: Our analysis of 433 VP7 (Viral Protein 7 from rotavirus surface protein sequences across 17 subtypes encompassing mammalian hosts using a 20D Graphical Representation and Numerical Characterization method, identified four possible highly conserved peptide segments. Solvent accessibility prediction servers were used to identify that these are predominantly surface situated. These regions analyzed through selected epitope prediction servers for their epitopic properties towards possible T-cell and B-cell activation showed good results as epitopic candidates (only dry lab confirmation. CONCLUSIONS: The main reasons for the development of alternative vaccine strategies for the rotavirus are the failure of current vaccines and high production costs that inhibit their application in developing countries. We expect that it would be possible to use the protein surface exposed regions identified in our study as targets for peptide vaccines and drug designs for stable immunity against divergent strains of the

  15. HIV/HCV Antiviral Drug Interactions in the Era of Direct-acting Antivirals

    Science.gov (United States)

    Rice, Donald P.; Faragon, John J.; Banks, Sarah; Chirch, Lisa M.

    2016-01-01

    Abstract Therapy for human immunodeficiency virus (HIV) and chronic hepatitis C has evolved over the past decade, resulting in better control of infection and clinical outcomes; however, drug-drug interactions remain a significant hazard. Joint recommendations from the American Association for the Study of Liver Diseases and the Infectious Diseases Society of America regarding drug-drug interactions between HIV antiretroviral agents and direct-acting antiviral agents for treatment of hepatitis C virus (HCV) infection are reviewed here. This review is oriented to facilitate appropriate selection of an antiviral therapy regimen for HCV infection based on the choice of antiretroviral therapy being administered and, if necessary, switching antiretroviral regimens. PMID:27777891

  16. Hepatitis C Virus and Antiviral Drug Resistance

    Science.gov (United States)

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-01-01

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens. PMID:27784846

  17. 75 FR 16151 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-31

    ... HUMAN SERVICES Food and Drug Administration Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to...

  18. 78 FR 57166 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-09-17

    ... HUMAN SERVICES Food and Drug Administration Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to...

  19. 76 FR 62418 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-07

    ... HUMAN SERVICES Food and Drug Administration Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to...

  20. Antiviral drug resistance of herpes simplex virus

    NARCIS (Netherlands)

    Stranska, Ruzena

    2004-01-01

    Infections with herpes simplex virus (HSV) usually have an asymptomatic or benign course. However, severe infections do occur, particularly in HIV/AIDS patients or transplant recipients, and may be life-threatening unless adequate antiviral therapy is given. Since its introduction in the early 1980

  1. Antiviral drugs for viruses other than human immunodeficiency virus.

    Science.gov (United States)

    Razonable, Raymund R

    2011-10-01

    Most viral diseases, with the exception of those caused by human immunodeficiency virus, are self-limited illnesses that do not require specific antiviral therapy. The currently available antiviral drugs target 3 main groups of viruses: herpes, hepatitis, and influenza viruses. With the exception of the antisense molecule fomivirsen, all antiherpes drugs inhibit viral replication by serving as competitive substrates for viral DNA polymerase. Drugs for the treatment of influenza inhibit the ion channel M(2) protein or the enzyme neuraminidase. Combination therapy with Interferon-α and ribavirin remains the backbone treatment for chronic hepatitis C; the addition of serine protease inhibitors improves the treatment outcome of patients infected with hepatitis C virus genotype 1. Chronic hepatitis B can be treated with interferon or a combination of nucleos(t)ide analogues. Notably, almost all the nucleos(t) ide analogues for the treatment of chronic hepatitis B possess anti-human immunodeficiency virus properties, and they inhibit replication of hepatitis B virus by serving as competitive substrates for its DNA polymerase. Some antiviral drugs possess multiple potential clinical applications, such as ribavirin for the treatment of chronic hepatitis C and respiratory syncytial virus and cidofovir for the treatment of cytomegalovirus and other DNA viruses. Drug resistance is an emerging threat to the clinical utility of antiviral drugs. The major mechanisms for drug resistance are mutations in the viral DNA polymerase gene or in genes that encode for the viral kinases required for the activation of certain drugs such as acyclovir and ganciclovir. Widespread antiviral resistance has limited the clinical utility of M(2) inhibitors for the prevention and treatment of influenza infections. This article provides an overview of clinically available antiviral drugs for the primary care physician, with a special focus on pharmacology, clinical uses, and adverse effects.

  2. INVESTMENT IN ANTIVIRAL DRUGS : A REAL OPTIONS APPROACH

    NARCIS (Netherlands)

    Attema, Arthur E.; Lugner, Anna K.; Feenstra, Talitha L.

    2010-01-01

    Real options analysis is a promising approach to model investment under uncertainty. We employ this approach to value stockpiling of antiviral drugs as a precautionary measure against a possible influenza pandemic. Modifications of the real options approach to include risk attitude and deviations fr

  3. H1N1 Flu and Antiviral Drugs

    Centers for Disease Control (CDC) Podcasts

    2009-05-02

    This podcast discusses the use of antiviral drugs for treating and preventing the H1N1 flu virus.  Created: 5/2/2009 by Coordinating Center for Infectious Diseases, National Center for Immunization and Respiratory Diseases, Influenza Division (CCID/NCIRD/ID).   Date Released: 5/2/2009.

  4. Flu Resistance to Antiviral Drug in North Carolina

    Centers for Disease Control (CDC) Podcasts

    2011-12-19

    Dr. Katrina Sleeman, Associate Service Fellow at CDC, discusses resistance to an antiviral flu drug in North Carolina.  Created: 12/19/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/19/2011.

  5. Indian marine bivalves: Potential source of antiviral drugs

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Ansari, Z.A.; Ingole, B.S.; Bichurina, M.A.; Sovetova, M.; Boikov, Y.A.

    in large quantities by traditional methods and sold live in the market for human consumption. The economically important sp e cies of marine bivalves are green mussel ( Perna viridis ), e s tuarine oyster ( Crassostrea madrasensis ), giant oyster... in developing an effecti ve drug has been the unique characteristics of antigenic variation of virus resulting in the emergence of new variant virus strains 14 . There are a number of antiviral drugs introduced in the market such as tricyclic sy m- metric...

  6. Antiviral drug discovery against SARS-CoV.

    Science.gov (United States)

    Wu, Yu-Shan; Lin, Wen-Hsing; Hsu, John T-A; Hsieh, Hsing-Pang

    2006-01-01

    Severe Acute Respiratory Syndrome (SARS) is a life-threatening infectious disease caused by SARS-CoV. In the 2003 outbreak, it infected more than 8,000 people worldwide and claimed the lives of more than 900 victims. The high mortality rate resulted, at least in part, from the absence of definitive treatment protocols or therapeutic agents. Although the virus spreading has been contained, due preparedness and planning, including the successful development of antiviral drugs against SARS-CoV, is necessary for possible reappearance of SARS. In this review, we have discussed currently available strategies for antiviral drug discovery and how these technologies have been utilized to identify potential antiviral agents for the inhibition of SARS-CoV replication. Moreover, progress in the drug development based on different molecular targets is also summarized, including 1) Compounds that block the S protein-ACE2-mediated viral entry; 2) Compounds targeting SARS-CoV M(pro); 3) Compounds targeting papain-like protease 2 (PLP2); 4) Compounds targeting SARS-CoV RdRp; 5) Compounds targeting SARS-CoV helicase; 6) Active compounds with unspecified targets; and 7) Research on siRNA. This review aims to provide a comprehensive account of drug discovery on SARS. The experiences with the SARS outbreak and drug discovery would certainly be an important lesson for the drug development for any new viral outbreaks that may emerge in the future.

  7. Curious discoveries in antiviral drug development: the role of serendipity.

    Science.gov (United States)

    De Clercq, Erik

    2015-07-01

    Antiviral drug development has often followed a curious meandrous route, guided by serendipity rather than rationality. This will be illustrated by ten examples. The polyanionic compounds (i) polyethylene alanine (PEA) and (ii) suramin were designed as an antiviral agent (PEA) or known as an antitrypanosomal agent (suramin), before they emerged as, respectively, a depilatory agent, or reverse transcriptase inhibitor. The 2',3'-dideoxynucleosides (ddNs analogues) (iii) have been (and are still) used in the "Sanger" DNA sequencing technique, although they are now commercialized as nucleoside reverse transcriptase inhibitors (NRTIs) in the treatment of HIV infections. (E)-5-(2-Bromovinyl)-2'-deoxyuridine (iv) was discovered as a selective anti-herpes simplex virus compound and is now primarily used for the treatment of varicella-zoster virus infections. The prototype of the acyclic nucleoside phosphonates (ANPs), (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA], (v) was never commercialized, although it gave rise to several marketed products (cidofovir, adefovir, and tenofovir). 1-[2-(Hydroxyethoxy)methyl]-6-(phenylthio)thymine (vi) and TIBO (tetrahydroimidazo[4,5,1-jk][1,4-benzodiazepin-2(1H)]-one and -thione) (vii) paved the way to a number of compounds (i.e., nevirapine, delavirdine, etravirine, and rilpivirine), which are now collectively called non-NRTIs. The bicyclam AMD3100 (viii) was originally described as an anti-HIV agent before it became later marketed as a stem cell mobilizer. The S-adenosylhomocysteine hydrolase inhibitors (ix), while active against a broad range of (-)RNA viruses and poxviruses may be particularly effective against Ebola virus, and for (x) the O-ANP derivatives, the potential application range encompasses virtually all DNA viruses.

  8. Anti-Viral Drugs for Human Adenoviruses

    Directory of Open Access Journals (Sweden)

    Chor Wing Sing

    2010-10-01

    Full Text Available There are many stages in the development of a new drug for viral infection and such processes are even further complicated for adenovirus by the fact that there are at least 51 serotypes, forming six distinct groups (A–F, with different degree of infectivity. This review attempts to address the importance of developing pharmaceuticals for adenovirus and also review recent development in drug discovery for adenovirus, including newer strategies such as microRNA approaches. Different drug screening strategies will also be discussed.

  9. Behavior of antibiotics and antiviral drugs in sewage treatment plants and risk associated with their widespread use under pandemic condition

    OpenAIRE

    Ghosh, Gopal Chandra

    2009-01-01

    The concern for pharmaceutically active compounds (PhACs) as contaminants in the environment and the need to assess their environmental risk have greatly increased since the early nineties. Among PhACs, antibiotics and antiviral drugs are of important concern due to their role in growing antibiotic and antiviral drugs resistance among pathogenic bacteria and influenza viruses, respectively. Besides resistance issue, the compounds may upset sensitive ecosystems as they are designed to be highl...

  10. 5th Antiviral Drug Discovery and Development Summit.

    Science.gov (United States)

    Blair, Wade; Perros, Manos

    2004-08-01

    The 5th Antiviral Drug Discovery and Development Summit provided an up-to-date snapshot of the ongoing developments in the area. The topics covered ranged from updates on recently launched drugs (Kaletra), Fuzeon) and new investigational inhibitors (T-1249, Reverset, UK-427857, L-870810, PA-457, remofovir, VX-950), to the discovery of new antiviral targets and advances in technologies that may provide the substrate for the next generation of therapeutics. It is apparent from the range of presentations that much of today's efforts are focused on developing new classes of HIV inhibitors (gp41, integrase), while there is also considerable progress in hepatitis C, where a number of inhibitors have or should reach proof-of-concept studies in the coming months. Here we provide the highlights of this meeting, with particular emphasis on the new developments in HIV and hepatitis C virus.

  11. Antiviral Drug- and Multidrug Resistance in Cytomegalovirus Infected SCT Patients

    Directory of Open Access Journals (Sweden)

    Katharina Göhring

    2015-01-01

    Full Text Available In pediatric and adult patients after stem cell transplantation (SCT disseminated infections caused by human cytomegalovirus (HCMV can cause life threatening diseases. For treatment, the three antivirals ganciclovir (GCV, foscarnet (PFA and cidofovir (CDV are approved and most frequently used. Resistance to all of these antiviral drugs may induce a severe problem in this patient cohort. Responsible for resistance phenomena are mutations in the HCMV phosphotransferase-gene (UL97 and the polymerase-gene (UL54. Most frequently mutations in the UL97-gene are associated with resistance to GCV. Resistance against all three drugs is associated to mutations in the UL54-gene. Monitoring of drug resistance by genotyping is mostly done by PCR-based Sanger sequencing. For phenotyping with cell culture the isolation of HCMV is a prerequisite. The development of multidrug resistance with mutation in both genes is rare, but it is often associated with a fatal outcome. The manifestation of multidrug resistance is mostly associated with combined UL97/UL54-mutations. Normally, mutations in the UL97 gene occur initially followed by UL54 mutation after therapy switch. The appearance of UL54-mutation alone without any detection of UL97-mutation is rare. Interestingly, in a number of patients the UL97 mutation could be detected in specific compartments exclusively and not in blood.

  12. In vitro comparison of antiviral drugs against feline herpesvirus 1

    Directory of Open Access Journals (Sweden)

    Garré B

    2006-04-01

    Full Text Available Abstract Background Feline herpesvirus 1 (FHV-1 is a common cause of respiratory and ocular disease in cats. Especially in young kittens that have not yet reached the age of vaccination, but already lost maternal immunity, severe disease may occur. Therefore, there is a need for an effective antiviral treatment. In the present study, the efficacy of six antiviral drugs, i.e. acyclovir, ganciclovir, cidofovir, foscarnet, adefovir and 9-(2-phosphonylmethoxyethyl-2, 6-diaminopurine (PMEDAP, against FHV-1 was compared in Crandell-Rees feline kidney (CRFK cells using reduction in plaque number and plaque size as parameters. Results The capacity to reduce the number of plaques was most pronounced for ganciclovir, PMEDAP and cidofovir. IC50 (NUMBER values were 3.2 μg/ml (12.5 μM, 4.8 μg/ml (14.3 μM and 6 μg/ml (21.5 μM, respectively. Adefovir and foscarnet were intermediately efficient with an IC50 (NUMBER of 20 μg/ml (73.2 μM and 27 μg/ml (140.6 μM, respectively. Acyclovir was least efficient (IC50 (NUMBER of 56 μg/ml or 248.7 μM. All antiviral drugs were able to significantly reduce plaque size when compared with the untreated control. As observed for the reduction in plaque number, ganciclovir, PMEDAP and cidofovir were most potent in reducing plaque size. IC50 (SIZE values were 0.4 μg/ml (1.7 μM, 0.9 μg/ml (2.7 μM and 0.2 μg/ml (0.7 μM, respectively. Adefovir and foscarnet were intermediately potent, with an IC50 (SIZE of 4 μg/ml (14.6 μM and 7 μg/ml (36.4 μM, respectively. Acyclovir was least potent (IC50 (SIZE of 15 μg/ml or 66.6 μM. The results demonstrate that the IC50 (SIZE values were notably lower than the IC50 (NUMBER values. The most remarkable effect was observed for cidofovir and ganciclovir. None of the products were toxic for CRFK cells at antiviral concentrations. Conclusion In conclusion, measuring reduction in plaque number and plaque size are two valuable and complementary means of assessing the efficacy of

  13. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication

    Science.gov (United States)

    Sacramento, Carolina Q.; de Melo, Gabrielle R.; de Freitas, Caroline S.; Rocha, Natasha; Hoelz, Lucas Villas Bôas; Miranda, Milene; Fintelman-Rodrigues, Natalia; Marttorelli, Andressa; Ferreira, André C.; Barbosa-Lima, Giselle; Abrantes, Juliana L.; Vieira, Yasmine Rangel; Bastos, Mônica M.; de Mello Volotão, Eduardo; Nunes, Estevão Portela; Tschoeke, Diogo A.; Leomil, Luciana; Loiola, Erick Correia; Trindade, Pablo; Rehen, Stevens K.; Bozza, Fernando A.; Bozza, Patrícia T.; Boechat, Nubia; Thompson, Fabiano L.; de Filippis, Ana M. B.; Brüning, Karin; Souza, Thiago Moreno L.

    2017-01-01

    Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV. PMID:28098253

  14. Stockpiling anti-viral drugs for a pandemic: the role of Manufacturer Reserve Programs.

    Science.gov (United States)

    Harrington, Joseph E; Hsu, Edbert B

    2010-05-01

    To promote stockpiling of anti-viral drugs by non-government organizations such as hospitals, drug manufacturers have introduced Manufacturer Reserve Programs which, for an annual fee, provide the right to buy in the event of a severe outbreak of influenza. We show that these programs enhance drug manufacturer profits but could either increase or decrease the amount of pre-pandemic stockpiling of anti-viral drugs.

  15. The Range of Application of Domestic Antiviral Drug in Рediatrics

    Directory of Open Access Journals (Sweden)

    O. V. Shamsheva

    2015-01-01

    Full Text Available The article presents the results of studies of the effectiveness and safety of domestic antiviral drug Аrbidol in children. Arbidol demonstrated antiviral activity not only against influenza viruses, and other respiratory viruses (respiratory syncytial virus, parainfluenza, rhinovirus, coronavirus, rotavirus, and others.

  16. Detection of the antiviral drug oseltamivir in aquatic environments.

    Directory of Open Access Journals (Sweden)

    Hanna Söderström

    Full Text Available Oseltamivir (Tamiflu is the most important antiviral drug available and a cornerstone in the defence against a future influenza pandemic. Recent publications have shown that the active metabolite, oseltamivir carboxylate (OC, is not degraded in sewage treatment plants and is also persistent in aquatic environments. This implies that OC will be present in aquatic environments in areas where oseltamivir is prescribed to patients for therapeutic use. The country where oseltamivir is used most is Japan, where it is used to treat seasonal flu. We measured the levels of OC in water samples from the Yodo River system in the Kyoto and Osaka prefectures, Japan, taken before and during the flu-season 2007/8. No OC was detected before the flu-season but 2-58 ng L(-1 was detected in the samples taken during the flu season. This study shows, for the first time, that low levels of oseltamivir can be found in the aquatic environment. Therefore the natural reservoir of influenza virus, dabbling ducks, is exposed to oseltamivir, which could promote the evolution of viral resistance.

  17. Effect of combinations of antiviral drugs on herpes simplex encephalitis

    Directory of Open Access Journals (Sweden)

    Bryan M Gebhardt

    2009-12-01

    Full Text Available Bryan M Gebhardt1, Federico Focher2, Richard Eberle3, Andrzej Manikowski4, George E Wright41LSU Eye Center, Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, USA; 2Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy; 3Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA; 4GLSynthesis Inc., Worcester, MA, USAAbstract: 2-Phenylamino-6-oxo-9-(4-hydroxybutylpurine (HBPG is a thymidine kinase inhibitor that prevents encephalitic death in mice caused by herpes simplex virus (HSV types 1 and 2, although its potency is somewhat less than that of acyclovir (ACV. The present study was undertaken to determine the effect of combinations of HBPG and either ACV, phosphonoformate (PFA, or cidofovir (CDF against HSV encephalitis. BALB/c mice were given ocular infections with HSV-1 or HSV-2, and treated twice daily intraperitoneally for five days with HBPG, alone or in combination with ACV, PFA, or CDF. Animals were observed daily for up to 30 days, and the day of death of each was recorded. All of the combinations showed additivity, and the combination of HBPG + ACV appeared to be synergistic, ie, protected more mice against HSV-1 encephalitis compared with each drug given alone. Delay of treatment with HBPG for up to two days was still effective in preventing HSV-2 encephalitis. The combination of the thymidine kinase inhibitor HBPG and the antiherpes drug ACV may have synergistic activity against HSV encephalitis. The development of a potent and safe combination therapy for the prevention and/or treatment of HSV infection of the central nervous system can improve the outcome of this infection in humans.Keywords: antivirals, herpetic encephalitis

  18. SOME ASPECTS OF THE MARKETING STUDIES FOR THE PHARMACEUTICAL MARKET OF ANTIVIRAL DRUGS

    Directory of Open Access Journals (Sweden)

    A. G. Salnikova

    2015-01-01

    Full Text Available Antiviral drugs are widely used in medicinal practice. They suppress the originator and stimulate the protection of an organism. The drugs are used for the treatment of flu and ARVI, herpetic infections, virus hepatitis, HIV-infection. Contemporary pharmaceutical market is represented by a wide range of antiviral drugs. Marketing studies are conducted to develop strategies, used for the enhancement of pharmacy organization activity efficiency. Conduction of the marketing researches of pharmaceutical market is the purpose of this study. We have used State Registry of Drugs, State Record of Drugs, List of vital drugs, questionnaires of pharmaceutical workers during our work. Historical, sociological, mathematical methods, and a method of expert evaluation were used in the paper. As the result of the study we have made the following conclusions. We have studied and generalized the literature data about classification and application of antiviral drugs, marketing, competition. The assortment of antiviral drugs on the pharmaceutical market of the Russian Federation was also studied. We have conducted an analysis for the obtainment of the information about antiviral drugs by pharmaceutical workers. We have determined the competitiveness of antiviral drugs, and on the basis of the research conducted we have submitted an offer for pharmaceutical organizations to form the range of antiviral drugs.

  19. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides

    Directory of Open Access Journals (Sweden)

    Kelly eMulder

    2013-10-01

    Full Text Available Cationic antimicrobial peptides (AMPs and host defense peptides (HDPs show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their bio-chemical features, selectivity against extra targets and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the development of production and nano-delivery systems for both classes of cationic peptides and perspectives on improving them will be considered.

  20. Photolysis of three antiviral drugs acyclovir, zidovudine and lamivudine in surface freshwater and seawater.

    Science.gov (United States)

    Zhou, Chengzhi; Chen, Jingwen; Xie, Qing; Wei, Xiaoxuan; Zhang, Ya-nan; Fu, Zhiqiang

    2015-11-01

    Photodegradation is an important elimination process for many pharmaceuticals in surface waters. In this study, photodegradation of three antiviral drugs, acyclovir, zidovudine, and lamivudine, was investigated in pure water, freshwater, and seawater under the irradiation of simulated sunlight. Results showed that zidovudine was easily transformed via direct photolysis, while acyclovir and lamivudine were mainly transformed via indirect photolysis. We found that in freshwater, nitrate enhanced the photodegradation of the three antiviral drugs, bicarbonate promoted the photodegradation of acyclovir, and dissolved organic matter (DOM) accelerated the photolysis of acyclovir and lamivudine. In seawater, the photolysis of acyclovir was not susceptible to Cl(-), Br(-) and ionic strength; however, the photolysis of zidovudine was inhibited by Cl(-) and Br(-), and the photolysis of lamivudine was enhanced by Cl(-), Br(-) and ionic strength. Second-order reaction rate constants for the three antiviral drugs with (1)O2 (k1O2) and OH (kOH) were also measured. These results are important for fate and ecological risk assessment of the antiviral drugs in natural waters.

  1. [Preliminary screening for antiviral AIDS drugs. VI. Report for fiscal year 1993].

    Science.gov (United States)

    Ushijima, H; Takahashi, K; Kunisada, T; Moritugu, Y; Kobayashi, N; Noguchi, Y; Matsuyama, M; Akiyoshi, K; Noro, S; Sawada, H; Sakurada, N; Yamada, A; Ishizaki, T; Kamimura, N; Yoshida, Y; Ono, T; Ohtomo, N; Morishita, T; Kobayashi, S; Miyake, T; Ishiwara, Y; Suzuki, R; Saito, T; Etoh, S; Mise, K

    1996-01-01

    Preliminary screening of antiviral AIDS drugs has been carried out using three different in vitro assay systems. Among 138 samples tested, two were found to inhibit the growth of HIV in vitro. Neither of the positive samples has hopeful signs, as the ranges of effective doses of the samples are very narrow.

  2. [Preliminary screening for antiviral AIDS drugs. VII. Report for fiscal year 1994].

    Science.gov (United States)

    Ohmuki, N; Kazama, K; Sadamasu, T; Sekine, H; Ohta, K; Kudoh, Y; Kobayashi, N; Noguchi, Y; Matsuyama, M; Akiyoshi, K; Noro, S; Sawada, H; Kimura, H; Yamada, A; Ishizaki, T; Kamimura, N; Yoshida, Y; Ono, T; Tachibana, N; Morishita, T; Kobayashi, S; Miyake, T; Ishiwara, Y; Ishikawa, N; Moritugu, Y

    1996-01-01

    Preliminary screening of antiviral AIDS drugs has been carried out using three different in vitro assay systems. Among 246 samples of different origin tested, six were shown to inhibit the growth of HIV in vitro. Two of the positive samples have hopeful signs, as the ranges of effective doses are wider than those of most of positive samples which had been found by us.

  3. Phyllanthus species versus antiviral drugs for chronic hepatitis B virus infection

    DEFF Research Database (Denmark)

    Yun, Xia; Luo, Hui; Liu, Jian Ping

    2013-01-01

    Phyllanthus species for patients with chronic hepatitis B virus (HBV) infection have been assessed in clinical trials, but no consensus regarding their usefulness exists. When compared with placebo or no intervention, we were unable to identify convincing evidence that phyllanthus species...... are beneficial in patients with chronic hepatitis B. Some randomised clinical trials have compared phyllanthus species versus antiviral drugs....

  4. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoguang [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Department of Medical Microbiology, Harbin Medical University, Harbin 150086 (China); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Qian, Hua [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Miyamoto, Fusako [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Naito, Takeshi [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Kawaji, Kumi [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Kajiwara, Kazumi [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); JST Innovation Plaza Kyoto, Japan Science and Technology Agency, Nishigyo-ku, Kyoto 615-8245 (Japan); Hattori, Toshio [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Matsuoka, Masao [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.

  5. Caulerpin as a potential antiviral drug against herpes simplex virus type 1

    Directory of Open Access Journals (Sweden)

    Nathália Regina Porto Vieira Macedo

    2012-08-01

    Full Text Available About 80% of the human adult population is infected with HSV-1. Although there are many anti-HSV-1 drugs available (acyclovir, ganciclovir, valaciclovir, foscarnet, their continuous use promotes the selection of resistant strains, mainly in ACV patients. In addition to resistance, the drugs also have toxicity, particularly when administration is prolonged. The study of new molecules isolated from green algae with potential antiviral activity represents a good opportunity for the development of antiviral drugs. Caulerpin, the major product from the marine algae Caulerpa Lamouroux (Caulerpales, is known for its biological activities such as antioxidant, antifungal, acetylcholinesterase inhibitor (AChE and antibacterial activity. In this work, we show that caulerpin could be an alternative to acyclovir as an anti-HSV-1 drug that inhibits the alpha and beta phases of the replication cycle.

  6. Synthesis and biological activity of hydroxycinnamoyl containing antiviral drugs

    Directory of Open Access Journals (Sweden)

    Chochkova Maya G.

    2014-01-01

    Full Text Available Seven N-hydroxycinnamoyl amides were synthesized by EDC/HOBt coupling of the corresponding substituted cinnamic acids (p-coumaric-, ferulic-, sinapic- and caffeic acids with influenza antivirals (amantadine, rimantadine and oseltamivir. DPPH (1,1-diphenyl-2-picrylhydrazyl scavenging abilities and the inhibitory effect on mushroom tyrosinase activity (using L-tyrosine as the substrate were investigated in vitro. Amongst the synthesized compounds, N-[(E-3-(3’,4’-dihydroxyphenyl-2-propenoyl]oseltamivir (1 and N-[(E-3-(3’,4’-dihydroxyphenyl-2-propenoyl]rimantadine (4, containing catechol moiety, exhibited the most potent DPPH radical-scavenging activity. Amide (1 displayed also tyrosinase inhibitory effect toward L-tyrosine as the substrate (~50%. Due to its biological activities revealed so far compound (1 can be considered as a promising candidate for a cosmetic ingredient. The synthesized compounds were also investigated for their in vitro inhibitory activity against the replication of influenza virus A (H3N2.

  7. The chemical bases of the various AIDS epidemics: recreational drugs, anti-viral chemotherapy and malnutrition.

    Science.gov (United States)

    Duesberg, Peter; Koehnlein, Claus; Rasnick, David

    2003-06-01

    In 1981 a new epidemic of about two-dozen heterogeneous diseases began to strike non-randomly growing numbers of male homosexuals and mostly male intravenous drug users in the US and Europe. Assuming immunodeficiency as the common denominator the US Centers for Disease Control (CDC) termed the epidemic, AIDS, for acquired immunodeficiency syndrome. From 1981-1984 leading researchers including those from the CDC proposed that recreational drug use was the cause of AIDS, because of exact correlations and of drug-specific diseases. However, in 1984 US government researchers proposed that a virus, now termed human immunodeficiency virus (HIV), is the cause of the non-random epidemics of the US and Europe but also of a new, sexually random epidemic in Africa. The virus-AIDS hypothesis was instantly accepted, but it is burdened with numerous paradoxes, none of which could be resolved by 2003: Why is there no HIV in most AIDS patients, only antibodies against it? Why would HIV take 10 years from infection to AIDS? Why is AIDS not self-limiting via antiviral immunity? Why is there no vaccine against AIDS? Why is AIDS in the US and Europe not random like other viral epidemics? Why did AIDS not rise and then decline exponentially owing to antiviral immunity like all other viral epidemics? Why is AIDS not contagious? Why would only HIV carriers get AIDS who use either recreational or anti-HIV drugs or are subject to malnutrition? Why is the mortality of HIV-antibody-positives treated with anti-HIV drugs 7-9%, but that of all (mostly untreated) HIV-positives globally is only 1.4%? Here we propose that AIDS is a collection of chemical epidemics, caused by recreational drugs, anti-HIV drugs, and malnutrition. According to this hypothesis AIDS is not contagious, not immunogenic, not treatable by vaccines or antiviral drugs, and HIV is just a passenger virus. The hypothesis explains why AIDS epidemics strike non-randomly if caused by drugs and randomly if caused by malnutrition

  8. The chemical bases of the various AIDS epidemics: recreational drugs, anti-viral chemotherapy and malnutrition

    Indian Academy of Sciences (India)

    Peter Duesberg; Claus Koehnlein; David Rasnick

    2003-06-01

    In 1981 a new epidemic of about two-dozen heterogeneous diseases began to strike non-randomly growing numbers of male homosexuals and mostly male intravenous drug users in the US and Europe. Assuming immunodeficiency as the common denominator the US Centers for Disease Control (CDC) termed the epidemic, AIDS, for acquired immunodeficiency syndrome. From 1981–1984 leading researchers including those from the CDC proposed that recreational drug use was the cause of AIDS, because of exact correlations and of drug-specific diseases. However, in 1984 US government researchers proposed that a virus, now termed human immunodeficiency virus (HIV), is the cause of the non-random epidemics of the US and Europe but also of a new, sexually random epidemic in Africa. The virus-AIDS hypothesis was instantly accepted, but it is burdened with numerous paradoxes, none of which could be resolved by 2003: Why is there no HIV in most AIDS patients, only antibodies against it? Why would HIV take 10 years from infection to AIDS? Why is AIDS not self-limiting via antiviral immunity? Why is there no vaccine against AIDS? Why is AIDS in the US and Europe not random like other viral epidemics? Why did AIDS not rise and then decline exponentially owing to antiviral immunity like all other viral epidemics? Why is AIDS not contagious? Why would only HIV carriers get AIDS who use either recreational or anti-HIV drugs or are subject to malnutrition? Why is the mortality of HIV-antibody-positives treated with anti-HIV drugs 7–9%, but that of all (mostly untreated) HIV-positives globally is only 1.4%? Here we propose that AIDS is a collection of chemical epidemics, caused by recreational drugs, anti-HIV drugs, and malnutrition. According to this hypothesis AIDS is not contagious, not immunogenic, not treatable by vaccines or antiviral drugs, and HIV is just a passenger virus. The hypothesis explains why AIDS epidemics strike non-randomly if caused by drugs and randomly if caused by

  9. A Survey of Antiviral Drugs for Bioweapons: Review

    Science.gov (United States)

    2005-01-01

    treatment was started 15 h before viral challenge (Neumann-Haefelin et al., 1975). Cidofovir The group of drugs known as acyclic nucleoside phosphonates...mice at a dose of 5–100 mg/kg/day. (S)-HPMPC ( cidofovir ) has an activity spectrum similar to (S)-HPMPA, however it is less toxic, so it has surpassed its... cidofovir is effective against over 30 different strains of variola virus with IC50s below 30 µg/ml. Cidofovir has been licensed (as Vistide) for treating

  10. [Preliminary screening for antiviral AIDS drugs. VIII. Report for fiscal year 1995].

    Science.gov (United States)

    Morishita, T; Kobayashi, S; Sato, K; Sakae, K; Ishikawa, N; Kobayashi, N; Noguchi, Y; Akiyoshi, K; Suga, T; Ogawa, A; Noro, S; Sawada, H; Kimura, H; Yamada, A; Ishizaki, T; Kamimura, N; Iwashima, A; Ono, T; Tachibana, N; Sekine, H; Ohnuki, N; Kazama, K; Sadamasu, K; Ohta, K; Mise, K

    1997-01-01

    Preliminary screening of antiviral AIDS drugs has been carried out using three different in vitro assay systems. Among 96 samples of different origin tested, two were shown to inhibit the growth of HIV in vitro. One of the positive samples (plant origin) has hopeful signs, as the ranges of effective doses are wider than those of most of positive samples which had been found by us.

  11. Rational drug design.

    Science.gov (United States)

    Mandal, Soma; Moudgil, Mee'nal; Mandal, Sanat K

    2009-12-25

    In this article, current knowledge of drug design is reviewed and an approach of rational drug design is presented. The process of drug development is challenging, expensive, and time consuming, although this process has been accelerated due to the development of computational tools and methodologies. The current target based drug design approach is incomplete because most of the drugs developed by structure guided approaches have been shown to have serious toxic side effects. Otherwise these drugs would have been an ideal choice for the treatment of diseases. Hence, rational drug design would require a multidisciplinary approach. In this regard, incorporation of gene expression technology and bioinformatics tools would be indispensable in the structure based drug design. Global gene expression data and analysis of such data using bioinformatics tools will have numerous benefits such as efficiency, cost effectiveness, time saving, and will provide strategies for combination therapy in addition to overcoming toxic side effects. As a result of incorporation of gene expression data, partial benefit of the structure based drug design is slowly emerging and rapidly changing the approach of the drug development process. To achieve the full benefit of developing a successful drug, multidisciplinary approaches (approaches such as computational chemistry and gene expression analysis, as discussed in this article) would be necessary. In the future, there is adequate room for the development of more sophisticated methodologies.

  12. The anti-obesity drug orlistat reveals anti-viral activity.

    Science.gov (United States)

    Ammer, Elisabeth; Nietzsche, Sandor; Rien, Christian; Kühnl, Alexander; Mader, Theresa; Heller, Regine; Sauerbrei, Andreas; Henke, Andreas

    2015-12-01

    The administration of drugs to inhibit metabolic pathways not only reduces the risk of obesity-induced diseases in humans but may also hamper the replication of different viral pathogens. In order to investigate the value of the US Food and Drug Administration-approved anti-obesity drug orlistat in view of its anti-viral activity against different human-pathogenic viruses, several anti-viral studies, electron microscopy analyses as well as fatty acid uptake experiments were performed. The results indicate that administrations of non-cytotoxic concentrations of orlistat reduced the replication of coxsackievirus B3 (CVB3) in different cell types significantly. Moreover, orlistat revealed cell protective effects and modified the formation of multi-layered structures in CVB3-infected cells, which are necessary for viral replication. Lowering fatty acid uptake from the extracellular environment by phloretin administrations had only marginal impact on CVB3 replication. Finally, orlistat reduced also the replication of varicella-zoster virus moderately but had no significant influence on the replication of influenza A viruses. The data support further experiments into the value of orlistat as an inhibitor of the fatty acid synthase to develop new anti-viral compounds, which are based on the modulation of cellular metabolic pathways.

  13. Amorphous polymeric binary blend pH-responsive nanoparticles for dissolution enhancement of antiviral drug

    Directory of Open Access Journals (Sweden)

    Deep R. Naik

    2016-09-01

    Full Text Available The aim of this study was to develop and optimize a nanoparticulate carrier based on polymeric blends of cellulose acetate butyrate (CAB and poly(vinyl pyrrolidone (PVP to enhance dissolution profile of an antiviral drug. These nanoparticles are studied by means of X-ray powder diffraction, FTIR and DSC while the morphology evaluated using SEM analysis. Drug-loaded nanoparticles were produced in spherical shape with sizes and encapsulation efficiency ranging from 322 to 434 nm and 50% to 70% respectively. The effects of different CAB/PVP ratios, concentration of drug and emulsifier on the nanoparticle size, drug encapsulation and in vitro release were studied in detail. In vitro release along with mechanism and kinetics were studied in different pHs indicating that the release of drug from nanoparticles was pH-responsive. All the nanoparticles displayed a slowed release pattern with the reduced burst release. The mechanism and kinetics of the drug delivery system was also systematically studied using various models such as zero order, first order, Higuchi model and Korsmeyer–Peppas. The results indicate that the new CAB/PVP nanoparticles have a promising potential to serve as an antiviral controlled delivery system.

  14. Design, Synthesis and Biological Evaluation of Novel Phosphorylated Abacavir Derivatives as Antiviral Agents Against Newcastle Disease Virus Infection in Chicken.

    Science.gov (United States)

    K A, Suresh; Venkata Subbaiah, Kadiam C; Lavanya, Rayapu; Chandrasekhar, Kuruva; Chamarti, Naga Raju; Kumar, M Suresh; Wudayagiri, Rajendra; Valluru, Lokanatha

    2016-09-01

    Newcastle disease virus is the most devastating virus in poultry industry. It can eradicate the entire poultry flocks once infected. This study is aimed to investigate the antiviral efficacy of novel phosphorylated analogues of the drug abacavir (ABC) against Newcastle disease virus (NDV). About 16 analogues of ABC were designed and docking was performed against fusion protein of NDV. Three compounds were identified and selected for synthesis and biological evaluation based on binding affinity and docking scores. The compounds were synthesized and characterized by IR, (1)H, (13)C, (31)P and CHN analysis and mass spectra. These compounds were tested for antiviral efficacy against NDV-infected DF-1 cells. Compound ABC-1 had shown potent antiviral activity as evidenced by significant reduction in plaque units and cytopathic effect. Therefore, ABC-1 was selected to test for NDV-infected chicken survival rate. Effective dose50 concentrations were determined for ABC-1. Antioxidant enzyme levels in brain, liver and lung tissues were estimated. Superoxide dismutase and catalase were significantly raised and lipid peroxidation and HA titer levels were decreased upon treatment with 2 mg/kg body weight ABC-1. Histopathological modifications were also restored in the ABC-1-treated group. These findings demonstrated ABC-1 as a potential antiviral agent against NDV in chicken.

  15. Synaptic transmission and the susceptibility of HIV infection to anti-viral drugs

    Science.gov (United States)

    Komarova, Natalia L.; Levy, David N.; Wodarz, Dominik

    2013-07-01

    Cell-to-cell viral transmission via virological synapses has been argued to reduce susceptibility of the virus population to anti-viral drugs through multiple infection of cells, contributing to low-level viral persistence during therapy. Using a mathematical framework, we examine the role of synaptic transmission in treatment susceptibility. A key factor is the relative probability of individual virions to infect a cell during free-virus and synaptic transmission, a currently unknown quantity. If this infection probability is higher for free-virus transmission, then treatment susceptibility is lowest if one virus is transferred per synapse, and multiple infection of cells increases susceptibility. In the opposite case, treatment susceptibility is minimized for an intermediate number of virions transferred per synapse. Hence, multiple infection via synapses does not simply lower treatment susceptibility. Without further experimental investigations, one cannot conclude that synaptic transmission provides an additional mechanism for the virus to persist at low levels during anti-viral therapy.

  16. Letermovir and inhibitors of the terminase complex: a promising new class of investigational antiviral drugs against human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Melendez DP

    2015-08-01

    Full Text Available Dante P Melendez,1,2 Raymund R Razonable1,2 1Division of Infectious Diseases, 2William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA Abstract: Infection with cytomegalovirus is prevalent in immunosuppressed patients. In solid organ transplant and hematopoietic stem cell transplant recipients, cytomegalovirus infection is associated with high morbidity and preventable mortality. Prevention and treatment of cytomegalovirus with currently approved antiviral drugs is often associated with side effects that sometimes preclude their use. Moreover, cytomegalovirus has developed mutations that confer resistance to standard antiviral drugs. During the last decade, there have been calls to develop novel antiviral drugs that could provide better options for prevention and treatment of cytomegalovirus. Letermovir (AIC246 is a highly specific antiviral drug that is currently undergoing clinical development for the management of cytomegalovirus infection. It acts by inhibiting the viral terminase complex. Letermovir is highly potent in vitro and in vivo against cytomegalovirus. Because of a distinct mechanism of action, it does not exhibit cross-resistance with other antiviral drugs. It is predicted to be active against strains that are resistant to ganciclovir, foscarnet, and cidofovir. To date, early-phase clinical trials suggest a very low incidence of adverse effects. Herein, we present a comprehensive review on letermovir, from its postulated novel mechanism of action to the results of most recent clinical studies. Keywords: cytomegalovirus, letermovir, AIC246, terminase, antivirals, transplantation 

  17. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  18. Optimal Control of Hepatitis C Antiviral Treatment Programme Delivery for Prevention amongst a Population of Injecting Drug Users

    OpenAIRE

    Martin, Natasha K.; Pitcher, Ashley B.; Vickerman, Peter; Vassall, Anna; Hickman, Matthew

    2011-01-01

    In most developed countries, HCV is primarily transmitted by injecting drug users (IDUs). HCV antiviral treatment is effective, and deemed cost-effective for those with no re-infection risk. However, few active IDUs are currently treated. Previous modelling studies have shown antiviral treatment for active IDUs could reduce HCV prevalence, and there is emerging interest in developing targeted IDU treatment programmes. However, the optimal timing and scale-up of treatment is unknown, given the...

  19. Optimal Control of Hepatitis C Antiviral Treatment Programme Delivery for Prevention amongst a Population of Injecting Drug Users

    OpenAIRE

    Martin, NK; Pitcher, AB; Vickerman, P.; Vassall, A; Hickman, M

    2011-01-01

    : In most developed countries, HCV is primarily transmitted by injecting drug users (IDUs). HCV antiviral treatment is effective, and deemed cost-effective for those with no re-infection risk. However, few active IDUs are currently treated. Previous modelling studies have shown antiviral treatment for active IDUs could reduce HCV prevalence, and there is emerging interest in developing targeted IDU treatment programmes. However, the optimal timing and scale-up of treatment is unknown, given t...

  20. The Use of Antiviral Drugs for Influenza: Recommended Guidelines for Practitioners

    Directory of Open Access Journals (Sweden)

    Upton D Allen

    2006-01-01

    Full Text Available The present document outlines current guidelines and supporting literature relating to the use of antiviral drugs for chemoprophylaxis and influenza illness therapy in paediatric and adult settings. The focus is on the management of influenza in interpandemic periods. Where appropriate, the areas in need of additional research are identified. It will be necessary to update aspects of these guidelines as new information emerges. The recommendations that follow represent the results of a joint effort supported by the Canadian Paediatric Society and the Association of Medical Microbiology and Infectious Disease Canada.

  1. Drug-class specific impact of antivirals on the reproductive capacity of HIV.

    Directory of Open Access Journals (Sweden)

    Max von Kleist

    2010-03-01

    Full Text Available Predictive markers linking drug efficacy to clinical outcome are a key component in the drug discovery and development process. In HIV infection, two different measures, viral load decay and phenotypic assays, are used to assess drug efficacy in vivo and in vitro. For the newly introduced class of integrase inhibitors, a huge discrepancy between these two measures of efficacy was observed. Hence, a thorough understanding of the relation between these two measures of drug efficacy is imperative for guiding future drug discovery and development activities in HIV. In this article, we developed a novel viral dynamics model, which allows for a mechanistic integration of the mode of action of all approved drugs and drugs in late clinical trials. Subsequently, we established a link between in vivo and in vitro measures of drug efficacy, and extract important determinants of drug efficacy in vivo. The analysis is based on a new quantity-the reproductive capacity-that represents in mathematical terms the in vivo analog of the read-out of a phenotypic assay. Our results suggest a drug-class specific impact of antivirals on the total amount of viral replication. Moreover, we showed that the (drug-target half life, dominated by immune-system related clearance processes, is a key characteristic that affects both the emergence of resistance as well as the in vitro-in vivo correlation of efficacy measures in HIV treatment. We found that protease- and maturation inhibitors, due to their target half-life, decrease the total amount of viral replication and the emergence of resistance most efficiently.

  2. A method for evaluating antiviral drug susceptibility of Epstein-Barr virus

    Directory of Open Access Journals (Sweden)

    Charlotte A Romain

    2010-01-01

    Full Text Available Charlotte A Romain1, Henry H Balfour Jr1,2, Heather E Vezina1,3, Carol J Holman11Department of Laboratory Medicine and Pathology, 2Department of Pediatrics, 3Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USAAbstract: We developed an in vitro Epstein-Barr virus (EBV drug susceptibility assay using P3HR1 cells or lymphoblastoid cells from subjects with infectious mononucleosis, which were grown in the presence of various concentrations of acyclovir (ACV, ganciclovir (GCV or R-9-[4-hydroxy-2-(hydroxymethylbutyl]guanine (H2G and 12-O-tetradecanoyl-phorbol-13-acetate (TPA. On day 7, total cellular DNA was extracted and EBV DNA was detected using an in-house quantitative real-time polymerase chain reaction (PCR method. All three drugs had in vitro activity against EBV in both the laboratory standard producer cell line P3HR1 and in subject-derived lymphoblastoid cell lines. The median 50% inhibitory concentrations (IC50s in P3HR1 cells were: ACV, 3.4 μM; GCV, 2.6 μM; and H2G, 2.7 μM and in 3 subject-derived cells were: ACV, 2.5 μM; GCV, 1.7 μM; and H2G, 1.9 μM. Our assay can be used to screen candidate anti-EBV drugs. Because we can measure the IC50 of patients’ strains of EBV, this assay may also be useful for monitoring viral resistance especially in immunocompomised hosts receiving antiviral drugs for prevention or treatment of EBV diseases.Keywords: Epstein-Barr virus, ganciclovir, acyclovir, valomaciclovir, H2G, antivirals

  3. Antiviral drug susceptibilities of seasonal human influenza viruses in Lebanon, 2008-09 season.

    Science.gov (United States)

    Zaraket, Hassan; Saito, Reiko; Wakim, Rima; Tabet, Carelle; Medlej, Fouad; Reda, Mariam; Baranovich, Tatiana; Suzuki, Yasushi; Dapat, Clyde; Caperig-Dapat, Isolde; Dbaibo, Ghassan S; Suzuki, Hiroshi

    2010-07-01

    The emergence of antiviral drug-resistant strains of the influenza virus in addition to the rapid spread of the recent pandemic A(H1N1) 2009 virus highlight the importance of surveillance of influenza in identifying new variants as they appear. In this study, genetic characteristics and antiviral susceptibility patterns of influenza samples collected in Lebanon during the 2008-09 season were investigated. Forty influenza virus samples were isolated from 89 nasopharyngeal swabs obtained from patients with influenza-like illness. Of these samples, 33 (82.5%) were A(H3N2), 3 (7.5%) were A(H1N1), and 4 (10%) were B. All the H3N2 viruses were resistant to amantadine but were sensitive to oseltamivir and zanamivir; while all the H1N1 viruses were resistant to oseltamivir (possessed H275Y mutation, N1 numbering, in their NA) but were sensitive to amantadine and zanamivir. In the case of influenza B, both Victoria and Yamagata lineages were identified (three and one isolates each, respectively) and they showed decreased susceptibility to oseltamivir and zanamivir when compared to influenza A viruses. Influenza circulation patterns in Lebanon were very similar to those in Europe during the same season. Continued surveillance is important to fully elucidate influenza patterns in Lebanon and the Middle East in general, especially in light of the current influenza pandemic.

  4. The Use of Antiviral Drugs for Influenza: Guidance for Practitioners 2012/2013

    Directory of Open Access Journals (Sweden)

    Fred Y Aoki

    2012-01-01

    Seasonal influenza in 2012/2013 is predicted to be caused by two human influenza A and one influenza B strain, all of which are anticipated to remain generally susceptible to oseltamivir.The predicted strains are A/California/7/2009 (H1N1 pdm09-like, A/Victoria/361/2011 (H3N2-like and B/Wisconsin/1/2010-like (Yamagata lineage. All are included in the seasonal influenza vaccine and are susceptible to oseltamivir.Swine-variant H3N2v, which has rarely caused infection in humans exposed to infected swine within the past year in the United States, is susceptible to oseltamivir. It is not included in the current seasonal influenza vaccine.It is still considered that initiation of antiviral therapy more than 36 h to 48 h after onset of symptoms is beneficial in patients hospitalized with complicated influenza and severe illness.Oseltamivir continues to be recommended for the treatment of influenza in pregnant women.The use of antiviral drugs among measures to control outbreaks of influenza in closed facilities such as correctional institutions is now included in the present document.

  5. AVCpred: an integrated web server for prediction and design of antiviral compounds.

    Science.gov (United States)

    Qureshi, Abid; Kaur, Gazaldeep; Kumar, Manoj

    2017-01-01

    Viral infections constantly jeopardize the global public health due to lack of effective antiviral therapeutics. Therefore, there is an imperative need to speed up the drug discovery process to identify novel and efficient drug candidates. In this study, we have developed quantitative structure-activity relationship (QSAR)-based models for predicting antiviral compounds (AVCs) against deadly viruses like human immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B virus (HBV), human herpesvirus (HHV) and 26 others using publicly available experimental data from the ChEMBL bioactivity database. Support vector machine (SVM) models achieved a maximum Pearson correlation coefficient of 0.72, 0.74, 0.66, 0.68, and 0.71 in regression mode and a maximum Matthew's correlation coefficient 0.91, 0.93, 0.70, 0.89, and 0.71, respectively, in classification mode during 10-fold cross-validation. Furthermore, similar performance was observed on the independent validation sets. We have integrated these models in the AVCpred web server, freely available at http://crdd.osdd.net/servers/avcpred. In addition, the datasets are provided in a searchable format. We hope this web server will assist researchers in the identification of potential antiviral agents. It would also save time and cost by prioritizing new drugs against viruses before their synthesis and experimental testing.

  6. Synthesis and Antiviral Evaluation of 6-(Trifluoromethylbenzyl) and 6-(Fluorobenzyl) Analogues of HIV Drugs Emivirine and GCA-186

    DEFF Research Database (Denmark)

    El-Brollosy, Nasser R.; Sørensen, Esben R.; Pedersen, Erik Bjerreg.;

    2008-01-01

    The present study describes the synthesis and antiviral evaluation of a series of novel 6-(3-trifluoromethylbenzyl) and 6-(fluorobenzyl) analogues of the HIV drugs emivirine and GCA-186. The objective was to investigate whether the fluoro or trifluoromethyl substituents could lead to an improved ...

  7. Turning an antiviral into an anticancer drug: nanoparticle delivery of acyclovir monophosphate.

    Science.gov (United States)

    Yao, Jing; Zhang, Yuan; Ramishetti, Srinivas; Wang, Yuhua; Huang, Leaf

    2013-09-28

    Anti-herpes simplex virus (HSV) drug acyclovir (ACV) is phosphorylated by the viral thymidine kinase (TK), but not the cellular TK. Phosphorylated ACV inhibits cellular DNA synthesis and kills the infected cells. We hypothesize that ACV monophosphate (ACVP), which is an activated metabolite of ACV, should be efficient in killing cells independent of HSV-TK. If so, ACVP should be a cytotoxic agent if properly delivered to the cancer cells. The Lipid/Calcium/Phosphate (LCP) nanoparticles (NPs) with a membrane/core structure were used to encapsulate ACVP to facilitate the targeted delivery of ACVP to the tumor. The LCP NPs showed entrapment efficiency of ~70%, the nano-scaled particle size and positive zeta potential. Moreover, ACVP-loaded LCP NPs (A-LCP NPs) exhibited concentration-dependent cytotoxicity against H460 cells and increased S-phase arrest. More importantly, a significant reduction of the tumor volume over 4 days following administration (pACV and ACVP) and blank LCP NPs showed little or no therapeutic effect. It was also found that the high efficacy of A-LCP NPs was associated with the ability to induce dramatic apoptosis of the tumor cells, as well as significantly inhibit tumor cell proliferation and cell cycle progression. In conclusion, with the help of LCP NPs, monophosphorylation modification of ACV can successfully modify an HSV-TK-dependent antiviral drug into an anti-tumor drug.

  8. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors.

    Science.gov (United States)

    Chauvin, Benoit; Drouot, Sylvain; Barrail-Tran, Aurélie; Taburet, Anne-Marie

    2013-10-01

    The HMG-CoA reductase inhibitors are a class of drugs also known as statins. These drugs are effective and widely prescribed for the treatment of hypercholesterolemia and prevention of cardiovascular morbidity and mortality. Seven statins are currently available: atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin. Although these drugs are generally well tolerated, skeletal muscle abnormalities from myalgia to severe lethal rhabdomyolysis can occur. Factors that increase statin concentrations such as drug-drug interactions can increase the risk of these adverse events. Drug-drug interactions are dependent on statins' pharmacokinetic profile: simvastatin, lovastatin and atorvastatin are metabolized through cytochrome P450 (CYP) 3A, while the metabolism of the other statins is independent of this CYP. All statins are substrate of organic anion transporter polypeptide 1B1, an uptake transporter expressed in hepatocyte membrane that may also explain some drug-drug interactions. Many HIV-infected patients have dyslipidemia and comorbidities that may require statin treatment. HIV-protease inhibitors (HIV PIs) are part of recommended antiretroviral treatment in combination with two reverse transcriptase inhibitors. All HIV PIs except nelfinavir are coadministered with a low dose of ritonavir, a potent CYP3A inhibitor to improve their pharmacokinetic properties. Cobicistat is a new potent CYP3A inhibitor that is combined with elvitegravir and will be combined with HIV-PIs in the future. The HCV-PIs boceprevir and telaprevir are both, to different extents, inhibitors of CYP3A. This review summarizes the pharmacokinetic properties of statins and PIs with emphasis on their metabolic pathways explaining clinically important drug-drug interactions. Simvastatin and lovastatin metabolized through CYP3A have the highest potency for drug-drug interaction with potent CYP3A inhibitors such as ritonavir- or cobicistat-boosted HIV-PI or the

  9. Thieno[2,3-b]pyridine derivatives: a new class of antiviral drugs against Mayaro virus.

    Science.gov (United States)

    Amorim, Raquel; de Meneses, Marcelo Damião Ferreira; Borges, Julio Cesar; da Silva Pinheiro, Luiz Carlos; Caldas, Lucio Ayres; Cirne-Santos, Claudio Cesar; de Mello, Marcos Vinícius Palmeira; de Souza, Alessandra Mendonça Teles; Castro, Helena Carla; de Palmer Paixão, Izabel Christina Nunes; Campos, Renata de Mendonça; Bergmann, Ingrid E; Malirat, Viviana; Bernardino, Alice Maria Rolim; Rebello, Moacyr Alcoforado; Ferreira, Davis Fernandes

    2017-02-17

    Mayaro virus (MAYV) is an arthropod-borne virus and a member of the family Togaviridae, genus Alphavirus. Its infection leads to an acute illness accompanied by long-lasting arthralgia. To date, there are no antiviral drugs or vaccines against infection with MAYV and resources for the prevention or treatment of other alphaviruses are very limited. MAYV has served as a model to study the antiviral potential of several substances on alphavirus replication. In this work we evaluated the antiviral effect of seven new derivatives of thieno[2,3-b]pyridine against MAYV replication in a mammalian cell line. All derivatives were able to reduce viral production effectively at concentrations that were non-toxic for Vero cells. Molecular modeling assays predicted low toxicity risk and good oral bioavailability of the substances in humans. One of the molecules, selected for further study, demonstrated a strong anti-MAYV effect at early stages of replication, as it protected pre-treated cells and also during the late stages, affecting virus morphogenesis. This study is the first to demonstrate the antiviral effect of thienopyridine derivatives on MAYV replication in vitro, suggesting the potential application of these substances as antiviral molecules against alphaviruses. Additional in vivo research will be needed to expand the putative therapeutic applications.

  10. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis

    Science.gov (United States)

    Zhao, Junfei; Sheng, Jinsong; Rubin, Donald H.

    2016-01-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics. PMID:27632082

  11. Modeling of the human rhinovirus C capsid suggests possible causes for antiviral drug resistance.

    Science.gov (United States)

    Basta, Holly A; Ashraf, Shamaila; Sgro, Jean-Yves; Bochkov, Yury A; Gern, James E; Palmenberg, Ann C

    2014-01-05

    Human rhinoviruses of the RV-C species are recently discovered pathogens with greater clinical significance than isolates in the RV-A+B species. The RV-C cannot be propagated in typical culture systems; so much of the virology is necessarily derivative, relying on comparative genomics, relative to the better studied RV-A+B. We developed a bioinformatics-based structural model for a C15 isolate. The model showed the VP1-3 capsid proteins retain their fundamental cores relative to the RV-A+B, but conserved, internal RV-C residues affect the shape and charge of the VP1 hydrophobic pocket that confers antiviral drug susceptibility. When predictions of the model were tested in organ cultures or ALI systems with recombinant C15 virus, there was a resistance to capsid-binding drugs, including pleconaril, BTA-188, WIN56291, WIN52035 and WIN52084. Unique to all RV-C, the model predicts conserved amino acids within the pocket and capsid surface pore leading to the pocket may correlate with this activity.

  12. Inclusion complex of the antiviral drug acyclovir with cyclodextrin in aqueous solution and in solid phase

    Directory of Open Access Journals (Sweden)

    Carlos von Plessing Rossel

    2000-12-01

    Full Text Available Complexation between acyclovir (ACV, an antiviral drug used for the treatment of herpes simplex virus infection, and beta-cyclodextrin (beta-CD was studied in solution and in solid states. Complexation in solution was evaluated using solubility studies and nuclear magnetic resonance spectroscopy (¹H-NMR. In the solid state, X-ray diffraction, differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA and dissolution studies were used. Solubility studies suggested the existence of a 1:1 complex between ACV and beta-CD. ¹H-NMR spectroscopy studies showed that the complex formed occurs with a stoichiometry ratio of 1:1. Powder X-ray diffraction indicated that ACV exists in a semicrystalline state in the complexed form with beta-CD. DSC studies showed the existence of a complex of ACV with beta-CD. The TGA studies confirmed the DSC results of the complex. Solubility of ACV in solid complexes was studied by the dissolution method and it was found to be much more soluble than the uncomplexed drug.

  13. Sensitivity of a ribavirin resistant mutant of hepatitis C virus to other antiviral drugs.

    Directory of Open Access Journals (Sweden)

    Kathleen B Mihalik

    Full Text Available BACKGROUND: While ribavirin mono-therapy regimens have minimal effect on patients with chronic hepatitis C virus (HCV infections, they can be efficacious when combined with interferon. Clinical studies show that interferon-free combination therapies containing ribavirin are also efficacious, suggesting that an interferon-free therapy could be adopted in the near future. However, generation of drug resistant mutants and cross resistance to other drugs could impair the efficacy of the treatment. Therefore, understanding the mechanism of HCV resistance to ribavirin and cross resistance to other antiviral drugs could be of major importance. METHODS: We tested the ability of a J6/JFH1 derived HCV ribavirin resistant mutant to grow in tissue cultured Huh7D cells in the presence of the mutagen 5-Fluorouracil and the nucleoside analog 2'-C-Methylcytidine. Virus replication was assessed by detecting HCV antigens by immunofluorescence and by titrating virus present in the supernatants. Recovered viruses were amplified by RT-PCR and sequenced. RESULTS: The sensitivity of HCV-RR relative to parental J6/JFH1 to the tested drugs varied. HCV-RR was more resistant than J6/JFH1 to 5-Fluorouracil but was not more resistant than J6/JFH1 to 2'-C-Methylcytidine. Growth of HCV-RR in 5-Fluorouracil allowed the selection of an HCV-RR derived mutant resistant to 5-Fluorouracil (HCV-5FU. HCV-5FU grows to moderate levels in the presence of high concentrations of 5-Fluorouracil and to parental levels in the absence of the drug. Sequence of its genome shows that HCV-5FU accumulated multiple synonymous and non-synonymous mutations. CONCLUSIONS: These results indicate that determinants of resistance to ribavirin could also confer resistance to other anti-HCV drugs, shedding light toward understanding the mechanism of action of ribavirin and highlighting the importance of combination drug selection for HCV treatment. The results also show that it is possible to select a 5

  14. Drug Design and Emotion

    Science.gov (United States)

    Folkers, Gerd; Wittwer, Amrei

    2007-11-01

    "Geteiltes Leid ist halbes Leid." The old German proverb reflects the fact that sharing a bad emotion or feeling with someone else may lower the psychological strain of the person experiencing sorrow, mourning or anger. On the other hand the person showing empathy will take literally a load from its counterpart, up to physiological reaction of the peripheral and central nervous pain system. Though subjective, mental and physical states can be shared. Visual perception of suffering may be important but also narrative description plays a role, all our senses are mixing in. It is hypothetized that literature, art and humanities allow this overlap. A change of mental states can lead to empirically observable effects as it is the case for the effect of role identity or placebo on pain perception. Antidepressants and other therapeutics are another choice to change the mental and bodily states. Their development follows today's notion of "rationality" in the design of therapeutics and is characterized solely by an atomic resolution approach to understand drug activity. Since emotional states and physiological states are entangled, given the difficulty of a physical description of emotion, the future rational drug design should encompass mental states as well.

  15. High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery.

    Directory of Open Access Journals (Sweden)

    Dhara A Patel

    Full Text Available Most of current strategies for antiviral therapeutics target the virus specifically and directly, but an alternative approach to drug discovery might be to enhance the immune response to a broad range of viruses. Based on clinical observation in humans and successful genetic strategies in experimental models, we reasoned that an improved interferon (IFN signaling system might better protect against viral infection. Here we aimed to identify small molecular weight compounds that might mimic this beneficial effect and improve antiviral defense. Accordingly, we developed a cell-based high-throughput screening (HTS assay to identify small molecules that enhance the IFN signaling pathway components. The assay is based on a phenotypic screen for increased IFN-stimulated response element (ISRE activity in a fully automated and robust format (Z'>0.7. Application of this assay system to a library of 2240 compounds (including 2160 already approved or approvable drugs led to the identification of 64 compounds with significant ISRE activity. From these, we chose the anthracycline antibiotic, idarubicin, for further validation and mechanism based on activity in the sub-µM range. We found that idarubicin action to increase ISRE activity was manifest by other members of this drug class and was independent of cytotoxic or topoisomerase inhibitory effects as well as endogenous IFN signaling or production. We also observed that this compound conferred a consequent increase in IFN-stimulated gene (ISG expression and a significant antiviral effect using a similar dose-range in a cell-culture system inoculated with encephalomyocarditis virus (EMCV. The antiviral effect was also found at compound concentrations below the ones observed for cytotoxicity. Taken together, our results provide proof of concept for using activators of components of the IFN signaling pathway to improve IFN efficacy and antiviral immune defense as well as a validated HTS approach to identify

  16. Application of electrolysis for inactivation of an antiviral drug that is one of possible selection pressure to drug-resistant influenza viruses.

    Science.gov (United States)

    Kobayashi, Toyohide; Hirose, Jun; Wu, Hong; Sano, Kouichi; Katsumata, Takahiro; Tsujibo, Hiroshi; Nakano, Takashi

    2013-12-01

    The recent development of antiviral drugs has led to concern that the release of the chemicals in surface water due to expanded medical use could induce drug-resistant mutant viruses in zoonosis. Many researchers have noted that the appearance of an oseltamivir (Tamiflu(®))-resistant avian influenza mutant virus, which may spread to humans, could be induced by oseltamivir contamination of surface water. Although past studies have reported electrolysis as a possible method for degradation of antineoplastics and antibacterials in water, the validity of the method for treatment of antiviral drugs is unknown. In this study, electrolysis was used to degrade an antiviral prodrug, oseltamivir, and a stable active form, oseltamivir carboxylate, and the degradation process was monitored with HPLC-UV and the neuraminidase inhibitory assay. HPLC-UV-detectable oseltamivir and oseltamivir carboxylate were decomposed by electrolysis within 60 min, and inhibitory activity of neuraminidase decreased below the detection limit of the assay used. Cytotoxic and genotoxic activity were not detected in electrolyzed fluid. These results indicate that electrolysis is a possible treatment for inactivation of the antiviral drug oseltamivir.

  17. Structure-based drug design to overcome drug resistance: challenges and opportunities.

    Science.gov (United States)

    Ferreira, Rafaela S; Andricopulo, Adriano D

    2014-01-01

    Drug resistance is a common concern for the development of novel antiviral, antimicrobial and anticancer therapies. To overcome this problem, several strategies have been developed, many of which involving the theme of this review, the use of structure-based drug design (SBDD) approaches. These include the successful design of new compounds that target resistant mutant proteins, as well as the development of drugs that target multiple proteins involved in specific biochemical pathways. Finally, drug resistance can also be considered in the early stages of drug discovery, through the use of strategies to delay the development of resistance. The purpose of this brief review is to underline the usefulness of SBDD approaches based on case studies, highlighting present challenges and opportunities in drug design.

  18. Aciclovir + hydrocortisone. Herpes labialis: a topical antiviral drug perhaps, but not a steroid.

    Science.gov (United States)

    2011-09-01

    Management of episodes of herpes labialis (cold sores) in otherwise healthy individuals is mainly based on hygiene measures intended to avoid transmitting the virus. At best, topical treatment with aciclovir, an antiviral drug, simply reduces the duration of the episode. A cream containing 5% aciclovir and 1% hydrocortisone has been authorised in France for symptomatic treatment of herpes labialis in adults and adolescents 12 years of age and older. In a double-blind randomised trial comparing the combination versus topical aciclovir alone in 1443 adults, the cream did not significantly reduce the number of patients whose lesions became ulcerated, or the duration of the episode. In another comparative double-blind randomised trial in 107 immunocompromised patients, the efficacy of the aciclovir and hydrocortisone combination did not differ from that of aciclovir alone. Whatever the mode of administration, corticosteroids might aggravate infections. In clinical trials involving immunocompetent adults or adolescents, most adverse effects associated with the hydrocortisone + aciclovir combination were local and mild. Hypersensitivity reactions are possible, however. This combination should be avoided during pregnancy, given the mild nature of herpes labialis and concerns over the risks of corticosteroids for the unborn child. In practice, there is no firm evidence that the aciclovir + hydrocortisone combination is more effective than aciclovir alone. Given the inherent risks associated with hydrocortisone, it is better to recommend simple hygiene measures and, possibly, aciclovir alone.

  19. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Wilson, Ian A.

    2016-12-21

    The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ~16 Å from the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.

  20. The antiviral drug acyclovir is a slow-binding inhibitor of (D)-amino acid oxidase.

    Science.gov (United States)

    Katane, Masumi; Matsuda, Satsuki; Saitoh, Yasuaki; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi

    2013-08-20

    d-Amino acid oxidase (DAO) is a degradative enzyme that is stereospecific for d-amino acids, including d-serine and d-alanine, which are believed to be coagonists of the N-methyl-d-aspartate (NMDA) receptor. To identify a new class of DAO inhibitor(s) that can be used to elucidate the molecular details of the active site environment of DAO, manifold biologically active compounds of microbial origin and pre-existing drugs were screened for their ability to inhibit DAO activity, and several compounds were identified as candidates. One of these compounds, acyclovir (ACV), a well-known antiviral drug used for the treatment of herpesvirus infections, was characterized and evaluated as a novel DAO inhibitor in vitro. Analysis showed that ACV acts on DAO as a reversible slow-binding inhibitor, and interestingly, the time required to achieve equilibrium between DAO, ACV, and the DAO/ACV complex was highly dependent on temperature. The binding mechanism of ACV to DAO was investigated in detail by several approaches, including kinetic analysis, structural modeling of DAO complexed with ACV, and site-specific mutagenesis of an active site residue postulated to be involved in the binding of ACV. The results confirm that ACV is a novel, active site-directed inhibitor of DAO that can be a valuable tool for investigating the structure-function relationships of DAO, including the molecular details of the active site environment of DAO. In particular, it appears that ACV can serve as an active site probe to study the structural basis of temperature-induced conformational changes of DAO.

  1. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  2. Recent advances in antiviral therapy.

    OpenAIRE

    Kinchington, D

    1999-01-01

    In the early 1980s many institutions in Britain were seriously considering whether there was a need for specialist departments of virology. The arrival of HIV changed that perception and since then virology and antiviral chemotherapy have become two very active areas of bio-medical research. Cloning and sequencing have provided tools to identify viral enzymes and have brought the day of the "designer drug" nearer to reality. At the other end of the spectrum of drug discovery, huge numbers of ...

  3. Substituted 3-Benzylcoumarins as Allosteric MEK1 Inhibitors: Design, Synthesis and Biological Evaluation as Antiviral Agents

    Directory of Open Access Journals (Sweden)

    Ping Xu

    2013-05-01

    Full Text Available In order to find novel antiviral agents, a series of allosteric MEK1 inhibitors were designed and synthesized. Based on docking results, multiple optimizations were made on the coumarin scaffold. Some of the derivatives showed excellent MEK1 binding affinity in the appropriate enzymatic assays and displayed obvious inhibitory effects on the ERK pathway in a cellular assay. These compounds also significantly inhibited virus (EV71 replication in HEK293 and RD cells. Several compounds showed potential as agents for the treatment of viral infective diseases, with the most potent compound 18 showing an IC50 value of 54.57 nM in the MEK1 binding assay.

  4. Antiviral Information Management System (AIMS): a prototype for operational innovation in drug development.

    Science.gov (United States)

    Jadhav, Pravin R; Neal, Lauren; Florian, Jeff; Chen, Ying; Naeger, Lisa; Robertson, Sarah; Soon, Guoxing; Birnkrant, Debra

    2010-09-01

    This article presents a prototype for an operational innovation in knowledge management (KM). These operational innovations are geared toward managing knowledge efficiently and accessing all available information by embracing advances in bioinformatics and allied fields. The specific components of the proposed KM system are (1) a database to archive hepatitis C virus (HCV) treatment data in a structured format and retrieve information in a query-capable manner and (2) an automated analysis tool to inform trial design elements for HCV drug development. The proposed framework is intended to benefit drug development by increasing efficiency of dose selection and improving the consistency of advice from US Food and Drug Administration (FDA). It is also hoped that the framework will encourage collaboration among FDA, industry, and academic scientists to guide the HCV drug development process using model-based quantitative analysis techniques.

  5. Experimental and computational studies on the effects of valganciclovir as an antiviral drug on calf thymus DNA.

    Science.gov (United States)

    Shahabadi, Nahid; Pourfoulad, Mehdi; Moghadam, Neda Hosseinpour

    2017-01-02

    DNA-binding properties of an antiviral drug, valganciclovir (valcyte) was studied by using emission, absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, and computational studies. The drug bound to calf thymus DNA (ct-DNA) in a groove-binding mode. The calculated binding constant of UV-vis, Ka, is comparable to groove-binding drugs. Competitive fluorimetric studies with Hoechst 33258 showed that valcyte could displace the DNA-bound Hoechst 33258. The drug could not displace intercalated methylene blue from DNA double helix. Furthermore, the induced detectable changes in the CD spectrum of ct-DNA as well as changes in its viscosity confirm the groove-binding mode. In addition, an integrated molecular docking was employed to further investigate the binding interactions between valcyte and calf thymus DNA.

  6. Ophthalmic antiviral chemotherapy : An overview

    Directory of Open Access Journals (Sweden)

    Athmanathan Sreedharan

    1997-01-01

    Full Text Available Antiviral drug development has been slow due to many factors. One such factor is the difficulty to block the viral replication in the cell without adversely affecting the host cell metabolic activity. Most of the antiviral compounds are analogs of purines and pyramidines. Currently available antiviral drugs mainly inhibit viral nucleic acid synthesis, hence act only on actively replicating viruses. This article presents an overview of some of the commonly used antiviral agents in clinical ophthalmology.

  7. Rational drug design paradigms: the odyssey for designing better drugs.

    Science.gov (United States)

    Kellici, Tahsin; Ntountaniotis, Dimitrios; Vrontaki, Eleni; Liapakis, George; Moutevelis-Minakakis, Panagiota; Kokotos, George; Hadjikakou, Sotiris; Tzakos, Andreas G; Afantitis, Antreas; Melagraki, Georgia; Bryant, Sharon; Langer, Thierry; Di Marzo, Vincenzo; Mavromoustakos, Thomas

    2015-01-01

    Due to the time and effort requirements for the development of a new drug, and the high attrition rates associated with this developmental process, there is an intense effort by academic and industrial researchers to find novel ways for more effective drug development schemes. The first step in the discovery process of a new drug is the identification of the lead compound. The modern research tendency is to avoid the synthesis of new molecules based on chemical intuition, which is time and cost consuming, and instead to apply in silico rational drug design. This approach reduces the consumables and human personnel involved in the initial steps of the drug design. In this review real examples from our research activity aiming to discover new leads will be given for various dire warnings diseases. There is no recipe to follow for discovering new leads. The strategy to be followed depends on the knowledge of the studied system and the experience of the researchers. The described examples constitute successful and unsuccessful efforts and reflect the reality which medicinal chemists have to face in drug design and development. The drug stability is also discussed in both organic molecules and metallotherapeutics. This is an important issue in drug discovery as drug metabolism in the body can lead to various toxic and undesired molecules.

  8. Marine natural seaweed products as potential antiviral drugs against Bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    Ana Maria Viana Pinto

    2012-08-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an etiologic agent that causes important economic losses in the world. It is endemic in cattle herds in most parts of the world. The purpose of this study was to evaluate the in vitro cytotoxic effect and antiviral properties of several marine natural products obtained from seaweeds: the indole alkaloid caulerpin (CAV, 1 and three diterpenes: 6-hydroxydichotoma-3,14-diene-1,17-dial (DA, 2, 10,18-diacetoxy-8-hydroxy-2,6-dolabelladiene (DB1, 3 and 8,10,18-trihydroxy-2,6-dolabelladiene (DB3, 4. The screening to evaluate the cytotoxicity of compounds did not show toxic effects to MDBK cells. The antiviral activity of the compounds was measured by the inhibition of the cytopathic effect on infected cells by plaque assay (PA and EC50 values were calculated for CAV (EC=2,0± 5.8, DA (EC 2,8± 7.7, DB1 (EC 2,0±9.7, and DB3 (EC 2,3±7.4. Acyclovir (EC50 322± 5.9 was used in all experiments as the control standard. Although the results of the antiviral activity suggest that all compounds are promising as antiviral agents against BVDV, the Selectivity Index suggests that DB1 is the safest of the compounds tested.

  9. Profile and behavior of antiviral drugs in aquatic environments of the Pearl River Delta, China.

    Science.gov (United States)

    Peng, Xianzhi; Wang, Chunwei; Zhang, Kun; Wang, Zhifang; Huang, Qiuxin; Yu, Yiyi; Ou, Weihui

    2014-01-01

    Occurrence and behavior of six antiviral pharmaceuticals (acyclovir, ganciclovir, oseltamivir, ribavirin, stavudine and zidovudine) and one active metabolite oseltamivir carboxylate were investigated in wastewater, landfill leachate, river water, reservoir and well water in the vicinity of municipal landfills in the Pearl River Delta, China. Acyclovir was the only antiviral detected in the wastewater at 177-406 (mean=238) and 114-205 (mean=154) ng L(-1) in the influent and final effluent, respectively. Aerobic biodegradation appeared to be the main process for the elimination of acyclovir in the wastewater. Acyclovir was also the only antiviral quantitatively detected in the Pearl River and its tributaries, with a maximum concentration up to 113 ng L(-1). Treated wastewater was a major source of acyclovir in the rivers. The highest concentration of acyclovir was observed in winter in the river water and the dilution effect by precipitation was suggested to be the dominant factor impacting the seasonal pattern of acyclovir in the rivers. No antivirals were quantitatively detected in the well water whereas acyclovir was frequently detected in the reservoirs at a maximal concentration of 33.6 ng L(-1) in the vicinity of the municipal landfills. However, source identification and fate of acyclovir in the reservoirs pend on further research.

  10. Virus-encoded chemokine receptors--putative novel antiviral drug targets

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M

    2005-01-01

    as such a paramount role in the antiviral immune responses. It is therefore not surprising that viruses have found ways to exploit and subvert the chemokine system by means of molecular mimicry. By ancient acts of molecular piracy and by induction and suppression of endogenous genes, viruses have utilized chemokines...

  11. Design, synthesis and biological evaluation of novel aminothiazoles as antiviral compounds acting against human rhinovirus.

    Science.gov (United States)

    Décor, Anne; Grand-Maître, Chantal; Hucke, Oliver; O'Meara, Jeff; Kuhn, Cyrille; Constantineau-Forget, Léa; Brochu, Christian; Malenfant, Eric; Bertrand-Laperle, Mégan; Bordeleau, Josée; Ghiro, Elise; Pesant, Marc; Fazal, Gulrez; Gorys, Vida; Little, Michael; Boucher, Colette; Bordeleau, Sylvain; Turcotte, Pascal; Guo, Tim; Garneau, Michel; Spickler, Catherine; Gauthier, Annick

    2013-07-01

    We describe here the design, synthesis and biological evaluation of antiviral compounds acting against human rhinovirus (HRV). A series of aminothiazoles demonstrated pan-activity against the HRV genotypes screened and productive structure-activity relationships. A comprehensive investigational library was designed and performed allowing the identification of potent compounds with lower molecular weight and improved ADME profile. 31d-1, 31d-2, 31f showed good exposures in CD-1 mice. The mechanism of action was discovered to be a host target: the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIß). The identification of the pan-HRV active compound 31f combined with a structurally distinct literature compound T-00127-HEV1 allowed the assessment of target related tolerability of inhibiting this kinase for a short period of time in order to prevent HRV replication.

  12. the denver tube Combined with antiviral drugs In the treatment of HBV-related Cirrhosis with Refractory ascites:a Report of three Cases

    Institute of Scientific and Technical Information of China (English)

    Xiao-jin Wang; Li-qin Shi; Qing-chun Fu; Liu-da Ni; Feng Zhou; Jin-wei Chen; Cheng-wei Chen

    2014-01-01

    Treatment of nucleos(t)ide antiviral drugs for decompensated HBV-related cirrhosis can signiifcantly improve the prognosis. But those patients with refractory ascites possibly deteriorate due to the complications of ascites before any beneift from anti-viral drugs could be observed. Therefore, it is important to ifnd a way to help the patients with HBV-related cirrhosis and refractory ascites to receive the full beneifts from antiviral therapy. Peritoneovenous shunt (PVS) using Denver tube enables ascites to continuously bypass into systemic circulation, thereby reducing ascites and albumin input and improving quality of life. We report herein 3 cases of decompensated HBV-related cirrhosis with refractory ascites, PVS using Denver tube was combined with lamivudine for antiviral treatment before and after. Then, ascites was alleviated significantly or disapeared and viral responsed well. All patients achieved a satisfactory long-term survival from 6.7 to 14.7 years. It was suggested that the Denver shunt could be used as an adjuvant method to antiviral drugs for decompensated HBV-related cirrhosis with refractory ascites to help the patients reap the full beneifts and maximize efifcacy of antiviral treatment.

  13. Modelling Hepatitis B Virus Antiviral Therapy and Drug Resistant Mutant Strains

    Science.gov (United States)

    Bernal, Julie; Dix, Trevor; Allison, Lloyd; Bartholomeusz, Angeline; Yuen, Lilly

    Despite the existence of vaccines, the Hepatitis B virus (HBV) is still a serious global health concern. HBV targets liver cells. It has an unusual replication process involving an RNA pre-genome that the reverse transcriptase domain of the viral polymerase protein translates into viral DNA. The reverse transcription process is error prone and together with the high replication rates of the virus, allows the virus to exist as a heterogeneous population of mutants, known as a quasispecies, that can adapt and become resistant to antiviral therapy. This study presents an individual-based model of HBV inside an artificial liver, and associated blood serum, undergoing antiviral therapy. This model aims to provide insights into the evolution of the HBV quasispecies and the individual contribution of HBV mutations in the outcome of therapy.

  14. Drug–drug interactions during antiviral therapy for chronic hepatitis C

    OpenAIRE

    Kiser, Jennifer J.; Burton, James R.; Everson, Gregory T.

    2013-01-01

    The emergence of direct-acting antiviral agents (DAAs) for HCV infection represents a major advance in treatment. The NS3 protease inhibitors, boceprevir and telaprevir, were the first DAAs to receive regulatory approval. When combined with PEG-IFN and ribavirin, these agents increase rates of sustained virologic response in HCV genotype 1 to ~70%. However, this treatment regimen is associated with several toxicities. In addition, both boceprevir and telaprevir are substrates for and inhibito...

  15. Reduction of CCR5 with low-dose rapamycin enhances the antiviral activity of vicriviroc against both sensitive and drug-resistant HIV-1

    OpenAIRE

    2008-01-01

    Vicriviroc (VCV) is a chemokine (C-C motif) receptor 5 (CCR5) antagonist with potent anti-HIV activity that currently is being evaluated in phase III clinical trials. In the present study, donor CCR5 density (CCR5 receptors/CD4 lymphocytes) inversely correlated with VCV antiviral activity (Spearman's correlation test; r = 0.746, P = 0.0034). Low doses of the transplant drug rapamycin (RAPA) reduced CCR5 density and enhanced VCV antiviral activity. In drug interaction studies, the RAPA/VCV com...

  16. The relationship between rational drug design and drug side effects.

    Science.gov (United States)

    Wang, Juan; Li, Zhi-xin; Qiu, Cheng-xiang; Wang, Dong; Cui, Qing-hua

    2012-05-01

    Previous analysis of systems pharmacology has revealed a tendency of rational drug design in the pharmaceutical industry. The targets of new drugs tend to be close with the corresponding disease genes in the biological networks. However, it remains unclear whether the rational drug design introduces disadvantages, i.e. side effects. Therefore, it is important to dissect the relationship between rational drug design and drug side effects. Based on a recently released drug side effect database, SIDER, here we analyzed the relationship between drug side effects and the rational drug design. We revealed that the incidence drug side effect is significantly associated with the network distance of drug targets and diseases genes. Drugs with the distances of three or four have the smallest incidence of side effects, whereas drugs with the distances of more than four or smaller than three show significantly greater incidence of side effects. Furthermore, protein drugs and small molecule drugs show significant differences. Drugs hitting membrane targets and drugs hitting cytoplasm targets also show differences. Failure drugs because of severe side effects show smaller network distances than approved drugs. These results suggest that researchers should be prudent on rationalizing the drug design. Too small distances between drug targets and diseases genes may not always be advantageous for rational design for drug discovery.

  17. Prevention and Treatment of KSHV-associated Diseases with Antiviral Drugs

    Institute of Scientific and Technical Information of China (English)

    Ren-rong TIAN; Qing-jiao LIAO; Xulin CHEN

    2008-01-01

    s Kaposi's sarcoma-associated herpesvirus (KSHV) was first identified as the etiologic agent of Kaposi's sarcoma (KS) in 1994.KSHV infection is necessary,but not sufficient for the development of Kaposi sarcoma (KS),primary effusion lymphoma (PEL),and multicentric Castleman disease (MCD).Advances in the prevention and treatment of KSHV-associated Diseases have been achieved,even though current treatment options are ineffective,or toxic to many affected persons.The identification of new targets for potential future therapies and the randomized trial to evaluate the efficacy of new antivirals are required.

  18. Optimal design and validation of antiviral siRNA for targeting hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Jie FU; Zhong-ming TANG; Xin GAO; Fan ZHAO; Hui ZHONG; Mao-rong WEN; Xiao SUN; Hai-feng SONG; Xiao-hong QIAN

    2008-01-01

    Aim: Optimal design of antiviral short-interfering RNA (siRNA) targeting highly divergent hepatitis B virus (HBV) was validated by quantitative structure-activity relationship (QSAR) analysis. Methods: The potency of 23 synthetic siRNAs targeting 23 sites throughout HBV pregenomic RNA were evaluated at 10 nmol/L by determining the inhibition on the expression of S/P/pregenomic mRNA and hepatitis B surface antigen (HBsAg) quantitatively in HepG2.2.15 cells. Genotype homology within HBV genomes was identified through plentiful computational analysis and the multiple linear regression analysis was made to validate the relationship between the functional siRNAs and primary characteristics. Based on the preliminary results, relationships between different determined endpoints [S/P mRNA, HBsAg, C/P mRNA, hepatitis B e antigen (HBeAg) and viral DNA load] and siRNA efficacy evaluation were investigated. Results: Genotype homology, open reading frame (ORF) S/E X and C had tight correlation with the ability of siRNAs on inhibiting the expression of S/P/Pregenomic mRNA and HBsAg (P<0.01), of which, ORF C was negatively correlated with the siRNA potency (P<0.05). Further study showed that siRNA potency evaluation was influenced by different determined endpoints. P-target siRNAs showed significant inhibition on the S mRNA and HBsAg expression. S-target siRNAs inhibited the expression of S mRNA and HBsAg strongly. X-target siRNAs played active roles in inhibiting all 5 determined endpoints. C-target siRNAs blocked the expression of C mRNA, HBeAg and viral DNA load significantly. Conclusion: The antiviral potency of siRNA was relevant to its primary characteristics and determined endpoints were important for siRNA efficacy evaluation for complex genome with overlapping ORF, which was helpful for siRNA optimal design.

  19. 75 FR 20429 - Amended Authorizations of Emergency Use of Certain Antiviral Drugs Zanamivir and Oseltamivir...

    Science.gov (United States)

    2010-04-19

    ... time. Emergence of resistance mutations could decrease drug effectiveness. Other factors (for example... Committee on Immunization Practices. Influenza viruses change over time. Emergence of resistance mutations could decrease drug effectiveness. Other factors (for example, changes in viral virulence) might...

  20. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bruno S. Pascoalino

    2016-10-01

    Full Text Available Background The recent epidemics of Zika virus (ZIKV implicated it as the cause of serious and potentially lethal congenital conditions such microcephaly and other central nervous system defects, as well as the development of the Guillain-Barré syndrome in otherwise healthy patients. Recent findings showed that anti-Dengue antibodies are capable of amplifying ZIKV infection by a mechanism similar to antibody-dependent enhancement, increasing the severity of the disease. This scenario becomes potentially catastrophic when the global burden of Dengue and the advent of the newly approved anti-Dengue vaccines in the near future are taken into account. Thus, antiviral chemotherapy should be pursued as a priority strategy to control the spread of the virus and prevent the complications associated with Zika. Methods Here we describe a fast and reliable cell-based, high-content screening assay for discovery of anti-ZIKV compounds. This methodology has been used to screen the National Institute of Health Clinical Collection compound library, a small collection of FDA-approved drugs. Results and conclusion From 725 FDA-approved compounds triaged, 29 (4% were found to have anti-Zika virus activity, of which 22 had confirmed (76% of confirmation by dose-response curves. Five candidates presented selective activity against ZIKV infection and replication in a human cell line. These hits have abroad spectrum of chemotypes and therapeutic uses, offering valuable opportunities for selection of leads for antiviral drug discovery.

  1. Boron-Based Drug Design.

    Science.gov (United States)

    Ban, Hyun Seung; Nakamura, Hiroyuki

    2015-06-01

    The use of the element boron, which is not generally observed in a living body, possesses a high potential for the discovery of new biological activity in pharmaceutical drug design. In this account, we describe our recent developments in boron-based drug design, including boronic acid containing protein tyrosine kinase inhibitors, proteasome inhibitors, and tubulin polymerization inhibitors, and ortho-carborane-containing proteasome activators, hypoxia-inducible factor 1 inhibitors, and topoisomerase inhibitors. Furthermore, we applied a closo-dodecaborate as a water-soluble moiety as well as a boron-10 source for the design of boron carriers in boron neutron capture therapy, such as boronated porphyrins and boron lipids for a liposomal boron delivery system.

  2. High-throughput screening normalized to biological response: application to antiviral drug discovery.

    Science.gov (United States)

    Patel, Dhara A; Patel, Anand C; Nolan, William C; Huang, Guangming; Romero, Arthur G; Charlton, Nichole; Agapov, Eugene; Zhang, Yong; Holtzman, Michael J

    2014-01-01

    The process of conducting cell-based phenotypic screens can result in data sets from small libraries or portions of large libraries, making accurate hit picking from multiple data sets important for efficient drug discovery. Here, we describe a screen design and data analysis approach that allow for normalization not only between quadrants and plates but also between screens or batches in a robust, quantitative fashion, enabling hit selection from multiple data sets. We independently screened the MicroSource Spectrum and NCI Diversity Set II libraries using a cell-based phenotypic high-throughput screening (HTS) assay that uses an interferon-stimulated response element (ISRE)-driven luciferase-reporter assay to identify interferon (IFN) signal enhancers. Inclusion of a per-plate, per-quadrant IFN dose-response standard curve enabled conversion of ISRE activity to effective IFN concentrations. We identified 45 hits based on a combined z score ≥2.5 from the two libraries, and 25 of 35 available hits were validated in a compound concentration-response assay when tested using fresh compound. The results provide a basis for further analysis of chemical structure in relation to biological function. Together, the results establish an HTS method that can be extended to screening for any class of compounds that influence a quantifiable biological response for which a standard is available.

  3. Rationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity

    OpenAIRE

    Rebeca Bocanegra; María Nevot; Rosa Doménech; Inmaculada López; Olga Abián; Alicia Rodríguez-Huete; Cavasotto, Claudio N.; Adrián Velázquez-Campoy; Javier Gómez; Miguel Ángel Martínez; José Luis Neira; Mateu, Mauricio G.

    2011-01-01

    Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces in...

  4. Crystal Structures, Thermal Analysis, and Dissolution Behavior of New Solid Forms of the Antiviral Drug Arbidol with Dicarboxylic Acids

    Directory of Open Access Journals (Sweden)

    Alex N. Manin

    2015-12-01

    Full Text Available Salts of the antiviral drug arbidol (umifenovir (Arb with maleate (Mlc and fumarate (Fum anions have been obtained, and their crystal structures have been described. The crystal structure of arbidol maleate has been redetermined by single crystal X-ray diffraction at 180K. A new arbidol cocrystal in zwitterion form with succinic acid (Suc has also been found and characterized. The arbidol zwitterion was not previously seen in any of the drug crystal forms, and the [Arb + Suc] cocrystal seems to be the first found instance. Analysis of the conformational preferences of the arbidol molecule in the crystal structures has shown that it adopts two types of conformations, namely “open” and “closed” ones. Thermal stability of the arbidol salts and cocrystal have been analyzed by means of differential scanning calorimetry, thermogravimetric, and mass-spectrometry analysis. The dissolution study of the arbidol salts and cocrystal performed in aqueous buffer solutions with pH 1.2 and 6.8 has shown that both the salts and the cocrystal dissolve incongruently to form an arbidol hydrochloride monohydrate at pH 1.2 and an arbidol base at pH 6.8, respectively. The cocrystal reaches the highest solubility level in both pH 1.2 and pH 6.8 solutions.

  5. Bioanalysis of new designer drugs.

    Science.gov (United States)

    Wohlfarth, Ariane; Weinmann, Wolfgang

    2010-05-01

    Since the late 1990s the illicit drug market has undergone considerable change: along with the traditional drugs of abuse that still dominate, more than 100 psychotropic substances designed to bypass controlled substances legislation have appeared and led to intoxications and fatalities. Starting from the huge class of phenylalkylamines, containing many subgroups, the spectrum of structures has grown from tryptamines, piperazines, phenylcyclohexyl derivates and pyrrolidinophenones to synthetic cannabinoids and the first synthetic cocaine. Due to the small prevalence and high number of unknown substances, the detection of new designer drugs is a challenge for clinical and forensic toxicologists. Standard screening procedures might fail because a recently discovered or yet unknown substance has not been incorporated in the library used. Nevertheless, many metabolism studies, case reports, screening methods and substance-profiling papers concentrating on single compounds have been published. This review provides an overview of the developed bioanalytical and analytical methods, the matrices used, sample-preparation procedures, concentration of analytes in case of intoxication and also gives a résumé of immunoassay experiences. Additionally, six screening methods for biological matrices with a larger spectrum of analytes are described in more detail.

  6. Combined Antiviral Therapy Using Designed Molecular Scaffolds Targeting Two Distinct Viral Functions, HIV-1 Genome Integration and Capsid Assembly.

    Science.gov (United States)

    Khamaikawin, Wannisa; Saoin, Somphot; Nangola, Sawitree; Chupradit, Koollawat; Sakkhachornphop, Supachai; Hadpech, Sudarat; Onlamoon, Nattawat; Ansari, Aftab A; Byrareddy, Siddappa N; Boulanger, Pierre; Hong, Saw-See; Torbett, Bruce E; Tayapiwatana, Chatchai

    2015-08-25

    Designed molecular scaffolds have been proposed as alternative therapeutic agents against HIV-1. The ankyrin repeat protein (Ank(GAG)1D4) and the zinc finger protein (2LTRZFP) have recently been characterized as intracellular antivirals, but these molecules, used individually, do not completely block HIV-1 replication and propagation. The capsid-binder Ank(GAG)1D4, which inhibits HIV-1 assembly, does not prevent the genome integration of newly incoming viruses. 2LTRZFP, designed to target the 2-LTR-circle junction of HIV-1 cDNA and block HIV-1 integration, would have no antiviral effect on HIV-1-infected cells. However, simultaneous expression of these two molecules should combine the advantage of preventive and curative treatments. To test this hypothesis, the genes encoding the N-myristoylated Myr(+)Ank(GAG)1D4 protein and the 2LTRZFP were introduced into human T-cells, using a third-generation lentiviral vector. SupT1 cells stably expressing 2LTRZFP alone or with Myr(+)Ank(GAG)1D4 showed a complete resistance to HIV-1 in viral challenge. Administration of the Myr(+)Ank(GAG)1D4 vector to HIV-1-preinfected SupT1 cells resulted in a significant antiviral effect. Resistance to viral infection was also observed in primary human CD4+ T-cells stably expressing Myr(+)Ank(GAG)1D4, and challenged with HIV-1, SIVmac, or SHIV. Our data suggest that our two anti-HIV-1 molecular scaffold prototypes are promising antiviral agents for anti-HIV-1 gene therapy.

  7. Carbonic anhydrase inhibitors drug design.

    Science.gov (United States)

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported.

  8. Quantifying antiviral activity optimizes drug combinations against hepatitis C virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Yoshiki [School of Medicine, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan; Nakajim, Syo [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Ohash, Hirofumi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Tanaka, Yasuhito [Department of Virology and Liver Unit, Nagoya City University Graduate School of Medicinal Sciences, Nagoya, Japan; Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Perelson, Alan S. [Los Alamos National Laboratory; Iwami, Shingo [Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan: PRESTO, JST, Saitama, Japan: CREST, JST, Saitama, Japan; Watashi, Koichi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J

    2016-03-21

    Cell culture study combing a mathematical model and computer simulation quantifies the anti-hepatitis C virus drug efficacy at any concentrations and any combinations in preclinical settings, and can obtain rich basic evidences for selecting optimal treatments prior to costly clinical trials.

  9. A computational chemistry perspective on the current status and future direction of hepatitis B antiviral drug discovery.

    Science.gov (United States)

    Morgnanesi, Dante; Heinrichs, Eric J; Mele, Anthony R; Wilkinson, Sean; Zhou, Suzanne; Kulp, John L

    2015-11-01

    Computational chemical biology, applied to research on hepatitis B virus (HBV), has two major branches: bioinformatics (statistical models) and first-principle methods (molecular physics). While bioinformatics focuses on statistical tools and biological databases, molecular physics uses mathematics and chemical theory to study the interactions of biomolecules. Three computational techniques most commonly used in HBV research are homology modeling, molecular docking, and molecular dynamics. Homology modeling is a computational simulation to predict protein structure and has been used to construct conformers of the viral polymerase (reverse transcriptase domain and RNase H domain) and the HBV X protein. Molecular docking is used to predict the most likely orientation of a ligand when it is bound to a protein, as well as determining an energy score of the docked conformation. Molecular dynamics is a simulation that analyzes biomolecule motions and determines conformation and stability patterns. All of these modeling techniques have aided in the understanding of resistance mutations on HBV non-nucleos(t)ide reverse-transcriptase inhibitor binding. Finally, bioinformatics can be used to study the DNA and RNA protein sequences of viruses to both analyze drug resistance and to genotype the viral genomes. Overall, with these techniques, and others, computational chemical biology is becoming more and more necessary in hepatitis B research. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."

  10. Photocatalytic degradation of the antiviral drug Tamiflu by UV-A/TiO2: Kinetics and mechanisms.

    Science.gov (United States)

    Wang, Wen-Long; Wu, Qian-Yuan; Wang, Zheng-Ming; Hu, Hong-Ying; Negishi, Nobuaki; Torimura, Masaki

    2015-07-01

    The photocatalytic degradation of the antiviral drug Tamiflu (oseltamivir phosphate, OP) by TiO2 - P25, ST-01 and ATO was investigated in aqueous solution under ultraviolet (UV-A) irradiation. The photocatalysis of OP is well described by pseudo-first-order kinetics with r2>98.0% for all cases. The kinetic constant of P25 with 80% anatase and 20% rutile (0.040 min(-1)) is 4 and 10 times higher than that of ATO and ST-01 with 100% purity of anatase, respectively. We examined the effects of the catalyst loading and initial OP concentration on the photodegradation of OP, and used potassium iodine, isopropanol, and calcium fluorine as radical quenchers to evaluate the contributions of the hydroxyl radical (OH) and photo hole (h+) in the photodegradation. Results confirmed that 80% of the contribution came from the OH species. Although more than 95% of the OP (21 μM) was removed after 80 min of UV-A irradiation with 20 and 100 mg L(-1) P25, the removal efficiencies of total organic carbon (TOC) were only 45.6% and 67.0%, respectively, after 360 min UV-A irradiation. Based on an intermediate analysis by HPLC coupled with a triple quadrupole spectrometer and an ion trap mass spectrometer, typical intermediate species such as hydration derivatives, hydroxyl substitutes and keto-derivatives were identified and possible degradation pathways of OP by P25 were proposed.

  11. DNA interaction studies of a platinum (II) complex containing an antiviral drug, ribavirin: the effect of metal on DNA binding.

    Science.gov (United States)

    Shahabadi, Nahid; Mirzaei kalar, Zeinab; Moghadam, Neda Hosseinpour

    2012-10-01

    The water-soluble Pt (II) complex, [PtCl (DMSO)(N(4)N(7)-ribavirin)]· H(2)O (ribavirin is an antiviral drug) has been synthesized and characterized by physico-chemical and spectroscopic methods. The binding interactions of this complex with calf thymus DNA (CT-DNA) were investigated using fluorimetry, spectrophotometry, circular dichroism and viscosimetry. The complex binds to CT-DNA in an intercalative mode. The calculated binding constant, K(b), was 7.2×10(5) M(-1). In fluorimetric studies, the enthalpy (ΔH0) changes of the reaction between the Pt (II) complex with CT-DNA showed hydrophobic interaction. In addition, CD study showed stabilization of the right-handed B form of CT-DNA. All these results prove that the complex interacts with CT-DNA via intercalative mode of binding. In comparison with the previous study of the DNA interaction with ribavirin, these results show that platinum complex has greater affinity to CT-DNA.

  12. Optimal control of hepatitis C antiviral treatment programme delivery for prevention amongst a population of injecting drug users.

    Directory of Open Access Journals (Sweden)

    Natasha K Martin

    Full Text Available In most developed countries, HCV is primarily transmitted by injecting drug users (IDUs. HCV antiviral treatment is effective, and deemed cost-effective for those with no re-infection risk. However, few active IDUs are currently treated. Previous modelling studies have shown antiviral treatment for active IDUs could reduce HCV prevalence, and there is emerging interest in developing targeted IDU treatment programmes. However, the optimal timing and scale-up of treatment is unknown, given the real-world constraints commonly existing for health programmes. We explore how the optimal programme is affected by a variety of policy objectives, budget constraints, and prevalence settings. We develop a model of HCV transmission and treatment amongst active IDUs, determine the optimal treatment programme strategy over 10 years for two baseline chronic HCV prevalence scenarios (30% and 45%, a range of maximum annual budgets (£50,000-300,000 per 1,000 IDUs, and a variety of objectives: minimising health service costs and health utility losses; minimising prevalence at 10 years; minimising health service costs and health utility losses with a final time prevalence target; minimising health service costs with a final time prevalence target but neglecting health utility losses. The largest programme allowed for a given budget is the programme which minimises both prevalence at 10 years, and HCV health utility loss and heath service costs, with higher budgets resulting in greater cost-effectiveness (measured by cost per QALY gained compared to no treatment. However, if the objective is to achieve a 20% relative prevalence reduction at 10 years, while minimising both health service costs and losses in health utility, the optimal treatment strategy is an immediate expansion of coverage over 5-8 years, and is less cost-effective. By contrast, if the objective is only to minimise costs to the health service while attaining the 20% prevalence reduction, the

  13. The antiviral drug valacyclovir successfully suppresses salivary gland hypertrophy virus (SGHV in laboratory colonies of Glossina pallidipes.

    Directory of Open Access Journals (Sweden)

    Adly M M Abd-Alla

    Full Text Available Many species of tsetse flies are infected with a virus that causes salivary gland hypertrophy (SGH symptoms associated with a reduced fecundity and fertility. A high prevalence of SGH has been correlated with the collapse of two laboratory colonies of Glossina pallidipes and colony maintenance problems in a mass rearing facility in Ethiopia. Mass-production of G. pallidipes is crucial for programs of tsetse control including the sterile insect technique (SIT, and therefore requires a management strategy for this virus. Based on the homology of DNA polymerase between salivary gland hypertrophy virus and herpes viruses at the amino acid level, two antiviral drugs, valacyclovir and acyclovir, classically used against herpes viruses were selected and tested for their toxicity on tsetse flies and their impact on virus replication. While long term per os administration of acyclovir resulted in a significant reduction of productivity of the colonies, no negative effect was observed in colonies fed with valacyclovir-treated blood. Furthermore, treatment of a tsetse colony with valacyclovir for 83 weeks resulted in a significant reduction of viral loads and consequently suppression of SGH symptoms. The combination of initial selection of SGHV-negative flies by non-destructive PCR, a clean feeding system, and valacyclovir treatment resulted in a colony that was free of SGH syndromes in 33 weeks. This is the first report of the use of a drug to control a viral infection in an insect and of the demonstration that valacyclovir can be used to suppress SGH in colonies of G. pallidipes.

  14. Potential for Drug-Drug Interactions between Antiretrovirals and HCV Direct Acting Antivirals in a Large Cohort of HIV/HCV Coinfected Patients.

    Directory of Open Access Journals (Sweden)

    Isabelle Poizot-Martin

    Full Text Available Development of direct acting antivirals (DAA offers new benefits for patients with chronic hepatitis C. The combination of these drugs with antiretroviral treatment (cART is a real challenge in HIV/HCV coinfected patients. The aim of this study was to describe potential drug-drug interactions between DAAs and antiretroviral drugs in a cohort of HIV/HCV coinfected patients.Cross-sectional study of all HIV/HCV coinfected patients attending at least one visit in 2012 in the multicenter French Dat'AIDS cohort. A simulation of drug-drug interactions between antiretroviral treatment and DAAs available in 2015 was performed.Of 16,634 HIV-infected patients, 2,511 had detectable anti-HCV antibodies, of whom 1,196 had a detectable HCV-RNA and were not receiving HCV treatment at the time of analysis. 97.1% of these patients were receiving cART and 81.2% had a plasma HIV RNA <50 copies/mL. cART included combinations of nucleoside reverse transcriptase inhibitors with a boosted protease inhibitor in 43.6%, a non-nucleoside reverse transcriptase inhibitor in 17.3%, an integrase inhibitor in 15.4% and various combinations or antiretroviral drugs in 23.7% of patients. A previous treatment against HCV had been administered in 64.4% of patients. Contraindicated associations/potential interactions were expected between cART and respectively sofosbuvir (0.2%/0%, sofosbuvir/ledipasvir (0.2%/67.6%, daclatasvir (0%/49.4%, ombitasvir/boosted paritaprevir (with or without dasabuvir (34.4%/52.2% and simeprevir (78.8%/0%.Significant potential drug-drug interactions are expected between cART and the currently available DAAs in the majority of HIV/HCV coinfected patients. Sofosbuvir/ledipasvir and sofosbuvir/daclatasvir with or without ribavirin appeared the most suitable combinations in our population. A close collaboration between hepatologists and HIV/AIDS specialists appears necessary for the management of HCV treatment concomitantly to cART.

  15. Structures of HIV Protease Guide Inhibitor Design to Overcome Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Irene T.; Kovalevsky, Andrey Y.; Harrison, Robert W. (GSU)

    2008-06-03

    The HIV/AIDS infection continues to be a major epidemic worldwide despite the initial promise of antiviral drugs. Current therapy includes a combination of drugs that inhibit two of the virally-encoded enzymes, the reverse transcriptase and the protease. The first generation of HIV protease inhibitors that have been in clinical use for treatment of AIDS since 1995 was developed with the aid of structural analysis of protease-inhibitor complexes. These drugs were successful in improving the life span of HIV-infected people. Subsequently, the rapid emergence of drug resistance has necessitated the design of new inhibitors that target mutant proteases. This second generation of antiviral protease inhibitors has been developed with the aid of data from medicinal chemistry, kinetics, and X-ray crystallographic analysis. Traditional computational methods such as molecular mechanics and dynamics can be supplemented with intelligent data mining approaches. One approach, based on similarities to the protease interactions with substrates, is to incorporate additional interactions with main chain atoms that cannot easily be eliminated by mutations. Our structural and inhibition data for darunavir have helped to understand its antiviral activity and effectiveness on drug resistant HIV and demonstrate the success of this approach.

  16. Broad-spectrum antiviral agents

    Directory of Open Access Journals (Sweden)

    Jun-Da eZhu

    2015-05-01

    Full Text Available Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents.

  17. Anti-diabetic drugs, insulin and metformin, have no direct interaction with hepatitis C virus infection or anti-viral interferon response

    Directory of Open Access Journals (Sweden)

    Mohamad S. Hakim

    2014-01-01

    Full Text Available Hepatitis C virus (HCV infection is associated with insulin resistance (IR and type 2 diabetes (T2D. Chronic HCV patients with IR and T2D appear to have a decreased response to the standard pegylated-interferon-alpha and ribavirin (PEG-IFN/RBV anti-viral therapy. Insulin and metformin are anti-diabetic drugs regularly used in the clinic. A previous in vitro study has shown a negative effect of insulin on interferon signaling. In the clinic, adding metformin to PEG-IFN/RBV therapy was reported to increase the response rate in chronic HCV patients and it has been suggested this effect derives from an improved anti-viral action of interferon. The goal of this study was to further investigate the molecular insight of insulin and metformin interaction with HCV infection and the anti-viral action of interferon. We used two cell culture models of HCV infection. One is a sub-genomic model that assays viral replication through luciferase reporter gene expression. The other one is a full-length infectious model derived from the JFH1 genotype 2a isolate. We found that both insulin and metformin do not affect HCV infection. Insulin and metformin also do not influence the anti-viral potency of interferon. In addition, there is no direct interaction between these two drugs and interferon signaling. Our results do not confirm the previous laboratory observation that insulin interferes with interferon signaling and suggest that classical nutritional signaling through mTOR may be not involved in HCV replication. If metformin indeed can increase the response rate to interferon therapy in patients, our data indicate that this could be mediated via an indirect mechanisms.

  18. Reduction of CCR5 with low-dose rapamycin enhances the antiviral activity of vicriviroc against both sensitive and drug-resistant HIV-1.

    Science.gov (United States)

    Heredia, Alonso; Latinovic, Olga; Gallo, Robert C; Melikyan, Gregory; Reitz, Marv; Le, Nhut; Redfield, Robert R

    2008-12-23

    Vicriviroc (VCV) is a chemokine (C-C motif) receptor 5 (CCR5) antagonist with potent anti-HIV activity that currently is being evaluated in phase III clinical trials. In the present study, donor CCR5 density (CCR5 receptors/CD4 lymphocytes) inversely correlated with VCV antiviral activity (Spearman's correlation test; r = 0.746, P = 0.0034). Low doses of the transplant drug rapamycin (RAPA) reduced CCR5 density and enhanced VCV antiviral activity. In drug interaction studies, the RAPA/VCV combination had considerable antiviral synergy (combination indexes of 0.1-0.04) in both multicycle and single-cycle infection of lymphocytes. The synergy between RAPA and VCV translated into dose reduction indexes of 8- to 41-fold reductions for RAPA and 19- to 658-fold reductions for VCV. RAPA enhanced VCV antiviral activity against both B and non-B clade isolates, potently suppressing clade G viruses with reported reduced sensitivities to VCV and to the licensed CCR5 antagonist maraviroc. Importantly, RAPA reduction of CCR5 density in lymphocytes sensitized VCV-resistant strains to VCV, inhibiting virus production by approximately 90%. We further demonstrated the role of CCR5 density on VCV activity against resistant virus in donor lymphocytes and in cell lines expressing varying CCR5 densities. Together, these results suggest that low doses of RAPA may increase the durability of VCV-containing regimens in patients by enhancing VCV viral suppression, by allowing the use of lower doses of VCV with reduced potential for toxicity, and by controlling emerging VCV-resistant variants.

  19. Computer Aided Drug Design: Success and Limitations.

    Science.gov (United States)

    Baig, Mohammad Hassan; Ahmad, Khurshid; Roy, Sudeep; Ashraf, Jalaluddin Mohammad; Adil, Mohd; Siddiqui, Mohammad Haris; Khan, Saif; Kamal, Mohammad Amjad; Provazník, Ivo; Choi, Inho

    2016-01-01

    Over the last few decades, computer-aided drug design has emerged as a powerful technique playing a crucial role in the development of new drug molecules. Structure-based drug design and ligand-based drug design are two methods commonly used in computer-aided drug design. In this article, we discuss the theory behind both methods, as well as their successful applications and limitations. To accomplish this, we reviewed structure based and ligand based virtual screening processes. Molecular dynamics simulation, which has become one of the most influential tool for prediction of the conformation of small molecules and changes in their conformation within the biological target, has also been taken into account. Finally, we discuss the principles and concepts of molecular docking, pharmacophores and other methods used in computer-aided drug design.

  20. Towards structure-based protein drug design.

    Science.gov (United States)

    Zhang, Changsheng; Lai, Luhua

    2011-10-01

    Structure-based drug design for chemical molecules has been widely used in drug discovery in the last 30 years. Many successful applications have been reported, especially in the field of virtual screening based on molecular docking. Recently, there has been much progress in fragment-based as well as de novo drug discovery. As many protein-protein interactions can be used as key targets for drug design, one of the solutions is to design protein drugs based directly on the protein complexes or the target structure. Compared with protein-ligand interactions, protein-protein interactions are more complicated and present more challenges for design. Over the last decade, both sampling efficiency and scoring accuracy of protein-protein docking have increased significantly. We have developed several strategies for structure-based protein drug design. A grafting strategy for key interaction residues has been developed and successfully applied in designing erythropoietin receptor-binding proteins. Similarly to small-molecule design, we also tested de novo protein-binder design and a virtual screen of protein binders using protein-protein docking calculations. In comparison with the development of structure-based small-molecule drug design, we believe that structure-based protein drug design has come of age.

  1. Rationally designed interfacial peptides are efficient in vitro inhibitors of HIV-1 capsid assembly with antiviral activity.

    Directory of Open Access Journals (Sweden)

    Rebeca Bocanegra

    Full Text Available Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8 were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization, or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid

  2. Targeted delivery of macromolecular drugs: asialoglycoprotein receptor (ASGPR) expression by selected hepatoma cell lines used in antiviral drug development.

    Science.gov (United States)

    Li, Yan; Huang, Guifang; Diakur, James; Wiebe, Leonard I

    2008-10-01

    The asialoglycoprotein receptor (ASGPR), an endocytotic cell surface receptor expressed by hepatocytes, is triggered by triantennary binding to galactose residues of macromolecules such as asialoorosomucoid (ASOR). The capacity of this receptor to import large molecules across the cellular plasma membrane makes it an enticing target for receptor-mediated drug delivery to hepatocytes and hepatoma cells via ASGPR-mediated endocytosis. This study describes the preparation and characterization of (125)I-ASOR, and its utility in the assessment of ASGPR expression by HepG2, HepAD38 and Huh5-2 human hepatoma cell lines. ASOR was prepared from human orosomucoid, using acid hydrolysis to remove sialic acid residues, then radioiodinated using iodogen. (125)I-ASOR was purified by gel column chromatography and characterized by SDS-PAGE electrophoresis. The ASOR yield by acid hydrolysis was 75%, with approximately 87 % of the sialic acid residues removed. Electrophoresis and gel chromatography demonstrated substantial differences in (125)I-ASOR quality depending on the method of radioiodination. ASGPR densities per cell were estimated at 76,000 (HepG2), 17,000 (HepAD38) and 3,000 (Huh-5-2). (125)I-ASOR binding to ASGPR on HepG2 cells was confirmed through galactose- and EDTA- challenge studies. It is concluded that (125)I-ASOR is a facilely-prepared, stable assay reagent for ASGPR expression if appropriately prepared, and that HepG2 cells, but not HepAD38 or Huh-5-2 cells, are suitable for studies exploiting the endocytotic ASGPR.

  3. P1-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors with Potent Antiviral Activity against Drug-Resistant Viruses

    Energy Technology Data Exchange (ETDEWEB)

    DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju; Flosi, William J.; Klein, Larry L.; Dekhtyar, Tatyana; Stoll, Vincent; Mamo, Mulugeta; Molla, Akhteruzzaman; Kempf, Dale J. (Abbott)

    2013-03-07

    Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistant mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.

  4. Smallpox Antiviral Drug

    Science.gov (United States)

    2007-01-01

    strategies is essential. ACKNOWLEDGMENTS We thank Robert Jordan, Sean Amberg, and Tove’ Bolken for critical reviews of the manuscript. REFERENCES...part II. Adverse events. Clin Infect Dis 37:251–271. Ghosn J, Chaix ML, Peytavin G, Rey E, Bresson JL, Goujard C, Katlama C, Viard JP, Treluyer JM

  5. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...... the examples of polymer therapeutics being applied as an antiviral treatment are few and far in-between. This work aims to explore antiviral therapeutics, specifically in context of hepatitis virus C (HCV) and HIV. The current treatment of hepatitis C consists of a combination of drugs, of which ribavirin....... Curiously, the therapeutic window of ribavirin was vastly improved in several of these polymers suggesting altered pharmacodynamics. The applicability of liver-targeting sugar moieties is likewise tested in a similarly methodical approach. The same technique of synthesis was applied with zidovudine to make...

  6. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices.

    Science.gov (United States)

    Terzopoulou, Zoi; Papageorgiou, Myrsini; Kyzas, George Z; Bikiaris, Dimitrios N; Lambropoulou, Dimitra A

    2016-03-24

    In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPMEf) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Qmax) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPMEf. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1-13.6 and 33.3-43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects.

  7. Computer-Aided Drug Design Methods.

    Science.gov (United States)

    Yu, Wenbo; MacKerell, Alexander D

    2017-01-01

    Computational approaches are useful tools to interpret and guide experiments to expedite the antibiotic drug design process. Structure-based drug design (SBDD) and ligand-based drug design (LBDD) are the two general types of computer-aided drug design (CADD) approaches in existence. SBDD methods analyze macromolecular target 3-dimensional structural information, typically of proteins or RNA, to identify key sites and interactions that are important for their respective biological functions. Such information can then be utilized to design antibiotic drugs that can compete with essential interactions involving the target and thus interrupt the biological pathways essential for survival of the microorganism(s). LBDD methods focus on known antibiotic ligands for a target to establish a relationship between their physiochemical properties and antibiotic activities, referred to as a structure-activity relationship (SAR), information that can be used for optimization of known drugs or guide the design of new drugs with improved activity. In this chapter, standard CADD protocols for both SBDD and LBDD will be presented with a special focus on methodologies and targets routinely studied in our laboratory for antibiotic drug discoveries.

  8. Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus.

    Science.gov (United States)

    Bassetto, Marcella; De Burghgraeve, Tine; Delang, Leen; Massarotti, Alberto; Coluccia, Antonio; Zonta, Nicola; Gatti, Valerio; Colombano, Giampiero; Sorba, Giovanni; Silvestri, Romano; Tron, Gian Cesare; Neyts, Johan; Leyssen, Pieter; Brancale, Andrea

    2013-04-01

    Chikungunya virus (CHIKV) is an Arbovirus that is transmitted to humans primarily by the mosquito species Aedes aegypti. Infection with this pathogen is often associated with fever, rash and arthralgia. Neither a vaccine nor an antiviral drug is available for the prevention or treatment of this disease. Albeit considered a tropical pathogen, adaptation of the virus to the mosquito species Aedes albopictus, which is also very common in temperate zones, has resulted in recent outbreaks in Europe and the US. In the present study, we report on the discovery of a novel series of compounds that inhibit CHIKV replication in the low μM range. In particular, we initially performed a virtual screening simulation of ∼5 million compounds on the CHIKV nsP2, the viral protease, after which we investigated and explored the Structure-Activity Relationships of the hit identified in silico. Overall, a series of 26 compounds, including the original hit, was evaluated in a virus-cell-based CPE reduction assay. The study of such selective inhibitors will contribute to a better understanding of the CHIKV replication cycle and may represents a first step towards the development of a clinical candidate drug for the treatment of this disease.

  9. Thermodynamic Studies for Drug Design and Screening

    Science.gov (United States)

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  10. Designer drugs: a medicinal chemistry perspective.

    Science.gov (United States)

    Carroll, F Ivy; Lewin, Anita H; Mascarella, S Wayne; Seltzman, Herbert H; Reddy, P Anantha

    2012-02-01

    There are numerous medicinal chemistry reports in the literature describing the pharmacological properties of thousands of narcotics, stimulants, hallucinogens, sedative-hypnotic drugs, cannabinoids, and other psychoactive substances as well as synthetic methods for their preparations. This information, while essential for the advancement of science, has been used by clandestine chemists to manufacture and market an endless variety of analogs of so-called designer drugs. In this review, we describe how clandestine chemists used the principles of medicinal chemistry to design molecules, referred to as designer drugs, that elicit the effects of opioids, amphetamine and analogs, cannabinoids, and phencyclidine analogs while circumventing the law.

  11. Strategies for Drug Design-A Review

    Directory of Open Access Journals (Sweden)

    Deepa Sreedhar

    2013-01-01

    Full Text Available Drugs are essential for human survival. Drug molecules can bind the active site of the target proteins and there by disrupt the action of the target protein. A number of approaches are currently available to design drugs which make use of optimization algorithms that give quick result. Optimization algorithms help to select the best solution (drug molecule from the set of alternatives. This article discusses and compares six approaches for designing drugs that can reduce the time and cost of the early drug discovery process. Each of these approaches uses different optimization techniques. The approaches discussed here are based on Genetic Algorithm, its variants, Particle Swarm Optimization and Multiobjective Simulated Annealing.

  12. Drug-Drug Interaction between the Direct-Acting Antiviral Regimen of Ombitasvir-Paritaprevir-Ritonavir plus Dasabuvir and the HIV Antiretroviral Agent Dolutegravir or Abacavir plus Lamivudine.

    Science.gov (United States)

    Khatri, Amit; Trinh, Roger; Zhao, Weihan; Podsadecki, Thomas; Menon, Rajeev

    2016-10-01

    The direct-acting antiviral regimen of 25 mg ombitasvir-150 mg paritaprevir-100 mg ritonavir once daily (QD) plus 250 mg dasabuvir twice daily (BID) is approved for the treatment of hepatitis C virus genotype 1 infection, including patients coinfected with human immunodeficiency virus. This study was performed to evaluate the pharmacokinetic, safety, and tolerability effects of coadministering the regimen of 3 direct-acting antivirals with two antiretroviral therapies (dolutegravir or abacavir plus lamivudine). Healthy volunteers (n = 24) enrolled in this phase I, single-center, open-label, multiple-dose study received 50 mg dolutegravir QD for 7 days or 300 mg abacavir plus 300 mg lamivudine QD for 4 days, the 3-direct-acting-antiviral regimen for 14 days, followed by the 3-direct-acting-antiviral regimen with dolutegravir or abacavir plus lamivudine for 10 days. Pharmacokinetic parameters were calculated to compare combination therapy with 3-direct-acting-antiviral or antiretroviral therapy alone, and safety/tolerability were assessed throughout the study. Coadministration of the 3-direct-acting-antiviral regimen increased the geometric mean maximum plasma concentration (Cmax) and the area under the curve (AUC) of dolutegravir by 22% (central value ratio [90% confidence intervals], 1.219 [1.153, 1.288]) and 38% (1.380 [1.295, 1.469]), respectively. Abacavir geometric mean Cmax and AUC values decreased by 13% (0.873 [0.777, 0.979]) and 6% (0.943 [0.901, 0.986]), while those for lamivudine decreased by 22% (0.778 [0.719, 0.842]) and 12% (0.876 [0.821, 0.934]). For the 3-direct-acting-antiviral regimen, geometric mean Cmax and AUC during coadministration were within 18% of measurements made during administration of the 3-direct-acting-antiviral regimen alone, although trough concentrations for paritaprevir were 34% (0.664 [0.585, 0.754]) and 27% (0.729 [0.627, 0.847]) lower with dolutegravir and abacavir-lamivudine, respectively. All study treatments were generally

  13. Antiviral drug valacyclovir treatment combined with a clean feeding system enhances the suppression of salivary gland hypertrophy in laboratory colonies of Glossina pallidipes

    Science.gov (United States)

    2014-01-01

    Background Hytrosaviridae cause salivary gland hypertrophy (SGH) syndrome in some infected tsetse flies (Diptera: Glossinidae). Infected male and female G. pallidipes with SGH have a reduced fecundity and fertility. Due to the deleterious impact of the virus on G. pallidipes colonies, adding the antiviral drug valacyclovir to the blood diet and changing the feeding regime to a clean feeding system (each fly receives for each feeding a fresh clean blood meal) have been investigated to develop virus management strategies. Although both approaches used alone successfully reduced the virus load and the SGH prevalence in small experimental groups, considerable time was needed to obtain the desired SGH reduction and both systems were only demonstrated with colonies that had a low initial virus prevalence (SGH ≤ 10%). As problems with SGH are often only recognized once the incidence is already high, it was necessary to demonstrate that this combination would also work for high prevalence colonies. Findings Combining both methods at colony level successfully suppressed the SGH in G. pallidipes colonies that had a high initial virus prevalence (average SGH of 24%). Six months after starting the combined treatment SGH symptoms were eliminated from the treated colony, in contrast to 28 months required to obtain the same results using clean feeding alone and 21 months using antiviral drug alone. Conclusions Combining valacyclovir treatment with the clean feeding system provides faster control of SGH in tsetse than either method alone and is effective even when the initial SGH prevalence is high. PMID:24886248

  14. Drug or tool, design or serendipity?

    NARCIS (Netherlands)

    Verlinde, Christophe L.M.J.; Dijkstra, Bauke W.

    1995-01-01

    Iterative protein structure-based ligand design has led to a 'selective' inhibitor of human non-pancreatic secretory phospholipase A2 which provides a new tool for probing metabolic pathways and may lead to a useful drug.

  15. DRUG OR TOOL, DESIGN OR SERENDIPITY

    NARCIS (Netherlands)

    VERLINDE, CLMJ; DIJKSTRA, BW

    1995-01-01

    Iterative protein structure-based ligand design has led to a 'selective' inhibitor of human nonpancreatic secretory phospholipase A(2) which provides a new tool for probing metabolic pathways and may lead to a useful drug.

  16. Efficacy of combined antiviral therapy with pegylated interferon α-2a and ribavirin for chronic hepatitis C infection in intravenous drug users

    Directory of Open Access Journals (Sweden)

    Ružić Maja

    2010-01-01

    Full Text Available Introduction. Hepatitis C Virus infection represents not just a medical, but also a socio-economic problem. It is estimated that among 170 million infected, 60% belongs to the category of intravenous drug users (IDUs. Objective. The aim of this paper was to compare the response to the combined therapy of pegylated interferon alfa 2a and ribavirin, in the group of patients with HCV infection who were intravenous drug users (IDUs and in patients who were identified in the other way of transmission of HCV. Also to identify the influence of the therapy on diseases of addiction, during the course of HCV infection and on the effects of the combined therapy of pegylated interferon alfa 2a and ribavirin. Methods. We conducted a retrospective-prospective study, on 60 patients, treated with combined antiviral therapy-pegylated interferon alfa 2a and ribavirin. 30 patients were from the group of IDUs, and 30 patients from other epidemiological groups. Results. There were significant differences between the age of the patients (30.2±7.1 vs. 39.3±11.2 years; p=0.002, but no significant difference in the duration of the HCV infection between the two groups of patients (8.9±7.4 vs. 13.1±7.0 years; p>0.05. A large number of the patients in the group of IDUs had a problem with the abstinence of the drug abuse. In this group, there was the influence of alcohol (30% and other substances with potential hepatotoxicity: marihuana (23.3% and psycho-active drugs (73.6%. Staging of the liver fibrosis was not influenced by those two parameters and was similar in both groups (p>0.05. The genotype 3a was dominant in intravenous drug users (50.0% and genotype 1b in the control group of the patients (76.6%. In both groups, SVR was achieved at a higher percentage (86% vs. 70.00%; p>0.05, but among the intravenous drug users the relapses of HCV infection were at a lower percentage (3.3% vs. 20.0%; p=0.044. Side effects were noticed in solitary cases in both of the examined

  17. Designing hydrogels for controlled drug delivery

    Science.gov (United States)

    Li, Jianyu; Mooney, David J.

    2016-12-01

    Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform on which various physiochemical interactions with the encapsulated drugs occur to control drug release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.

  18. Designer Drugs: A Synthetic Catastrophe

    Directory of Open Access Journals (Sweden)

    James Fratantonio

    2015-08-01

    Full Text Available Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are "Not for Human Consumption", therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance use disorder treatment centers. Urine Drug Testing is utilized as a clinical diagnostic tool in substance use disorder treatment centers, and the furious pace at which new synthetic stimulants are introduced to the black market are making the detection via urine increasingly difficult. This article will discuss the prevalence, pharmacology and difficulty developing laboratory assays to detect synthetic stimulants.

  19. Designer Drugs: A Synthetic Catastrophe.

    Science.gov (United States)

    Fratantonio, James; Andrade, Lawrence; Febo, Marcelo

    Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are "Not for Human Consumption", therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance use disorder treatment centers. Urine Drug Testing is utilized as a clinical diagnostic tool in substance use disorder treatment centers, and the furious pace at which new synthetic stimulants are introduced to the black market are making the detection via urine increasingly difficult. This article will discuss the prevalence, pharmacology and difficulty developing laboratory assays to detect synthetic stimulants.

  20. 丙型肝炎直接抗病毒药物的代谢及药物相互作用%Metabolism and drug interactions of direct-acting antiviral agents for hepatitis C

    Institute of Scientific and Technical Information of China (English)

    周双男; 张敏

    2016-01-01

    直接抗病毒药物(direct-acting antiviral agents,DAAs)的抗HCV疗效显著,但须关注DAAs的不良反应、安全性检测以及与其他药物的相互作用.本文对DAAs的代谢及其与其他药物的相互作用进行综述.%Direct-acting antiviral agents (DAAs) are highly effective in patients with hepatitis C. However, the adverse reactions, safety and drug interactions of the DAAs should be paid much attention. This review focuses on the metabolism and drug interactions of DAAs.

  1. Protein Structure Network-based Drug Design.

    Science.gov (United States)

    Liang, Zhongjie; Hu, Guang

    2016-01-01

    Although structure-based drug design (SBDD) has become an indispensable tool in drug discovery for a long time, it continues to pose major challenges to date. With the advancement of "omics" techniques, systems biology has enriched SBDD into a new era, called polypharmacology, in which multi-targets drug or drug combination is designed to fight complex diseases. As a preliminary tool in systems biology, protein structure networks (PSNs) treat a protein as a set of residues linked by edges corresponding to the intramolecular interactions existing in folded structures between the residues. The PSN offers a computationally efficient tool to study the structure and function of proteins, and thus may facilitate structurebased drug design. Herein, we provide an overview of recent advances in PSNs, from predicting functionally important residues, to charactering protein-protein interactions and allosteric communication paths. Furthermore, we discuss potential pharmacological applications of PSN concepts and tools, and highlight the application to two families of drug targets, GPCRs and Hsp90. Although the application of PSNs as a framework for computer-aided drug discovery has been limited to date, we put forward the potential utility value in the near future and propose the PSNs could also serve as a new tool for polypharmacology research.

  2. Use of antiviral drugs to reduce household transmission of pandemic (H1N1) 2009, United Kingdom.

    Science.gov (United States)

    Pebody, Richard G; Harris, Ross; Kafatos, George; Chamberland, Mary; Campbell, Colin; Nguyen-Van-Tam, Jonathan S; McLean, Estelle; Andrews, Nick; White, Peter J; Wynne-Evans, Edward; Green, Jon; Ellis, Joanna; Wreghitt, Tim; Bracebridge, Sam; Ihekweazu, Chikwe; Oliver, Isabel; Smith, Gillian; Hawkins, Colin; Salmon, Roland; Smyth, Bryan; McMenamin, Jim; Zambon, Maria; Phin, Nick; Watson, John M

    2011-06-01

    The United Kingdom implemented a containment strategy for pandemic (H1N1) 2009 through administering antiviral agents (AVs) to patients and their close contacts. This observational household cohort study describes the effect of AVs on household transmission. We followed 285 confirmed primary cases in 259 households with 761 contacts. At 2 weeks, the confirmed secondary attack rate (SAR) was 8.1% (62/761) and significantly higher in persons 50 years of age (18.9% vs. 1.2%, psecondary case-patients, 45 had not received AV prophylaxis. The effectiveness of AV prophylaxis in preventing infection was 92%.

  3. Bispidine-amino acid conjugates act as a novel scaffold for the design of antivirals that block Japanese encephalitis virus replication.

    Directory of Open Access Journals (Sweden)

    V Haridas

    Full Text Available BACKGROUND: Japanese encephalitis virus (JEV is a major cause of viral encephalitis in South and South-East Asia. Lack of antivirals and non-availability of affordable vaccines in these endemic areas are a major setback in combating JEV and other closely related viruses such as West Nile virus and dengue virus. Protein secondary structure mimetics are excellent candidates for inhibiting the protein-protein interactions and therefore serve as an attractive tool in drug development. We synthesized derivatives containing the backbone of naturally occurring lupin alkaloid, sparteine, which act as protein secondary structure mimetics and show that these compounds exhibit antiviral properties. METHODOLOGY/PRINCIPAL FINDINGS: In this study we have identified 3,7-diazabicyclo[3.3.1]nonane, commonly called bispidine, as a privileged scaffold to synthesize effective antiviral agents. We have synthesized derivatives of bispidine conjugated with amino acids and found that hydrophobic amino acid residues showed antiviral properties against JEV. We identified a tryptophan derivative, Bisp-W, which at 5 µM concentration inhibited JEV infection in neuroblastoma cells by more than 100-fold. Viral inhibition was at a stage post-entry and prior to viral protein translation possibly at viral RNA replication. We show that similar concentration of Bisp-W was capable of inhibiting viral infection of two other encephalitic viruses namely, West Nile virus and Chandipura virus. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that the amino-acid conjugates of 3,7-diazabicyclo[3.3.1]nonane can serve as a molecular scaffold for development of potent antivirals against encephalitic viruses. Our findings will provide a novel platform to develop effective inhibitors of JEV and perhaps other RNA viruses causing encephalitis.

  4. Study on the interaction of antiviral drug 'Tenofovir' with human serum albumin by spectral and molecular modeling methods

    Science.gov (United States)

    Shahabadi, Nahid; Hadidi, Saba; Feizi, Foroozan

    2015-03-01

    This study was designed to examine the interaction of Tenofovir (Ten) with human serum albumin (HSA) under physiological conditions. The binding of drugs with human serum albumin is a crucial factor influencing the distribution and bioactivity of drugs in the body. To understand the action mechanisms between Ten and HSA, the binding of Ten with HSA was investigated by a combined experimental and computational approach. UV-vis results confirmed that Ten interacted with HSA to form a ground-state complex and values of the Stern-Volmer quenching constant indicate the presence of a static component in the quenching mechanism. As indicated by the thermodynamic parameters (positive ΔH and ΔS values), hydrophobic interaction plays a major role in the Ten-HSA complex. Through the site marker competitive experiment, Ten was confirmed to be located in site I of HSA. Furthermore, UV-vis absorption spectra, synchronous fluorescence spectrum and CD data were used to investigate the structural change of HSA molecules with addition of Ten, the results indicate that the secondary structure of HSA molecules was changed in the presence of Ten. The experimental results were in agreement with the results obtained via molecular docking study.

  5. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Terzopoulou, Zoi [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki (Greece); Papageorgiou, Myrsini [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24, Thessaloniki (Greece); Kyzas, George Z.; Bikiaris, Dimitrios N. [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki (Greece); Lambropoulou, Dimitra A., E-mail: dlambro@chem.auth.gr [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24, Thessaloniki (Greece)

    2016-03-24

    In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPME{sub f}) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Q{sub max}) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPME{sub f}. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1–13.6 and 33.3–43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects. - Highlights: • Preparation of a novel SPME MIP fiber with remarkable recognition properties. • Selective removal and extraction of abacavir from environmental & biological media. • Detailed adsorbent characterization and adsorption studies. • Successful application of

  6. Targeted proteins for diabetes drug design

    Science.gov (United States)

    Doan Trang Nguyen, Ngoc; Thi Le, Ly

    2012-03-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people.

  7. Diversity of Pharmacological Properties in Chinese and European Medicinal Plants: Cytotoxicity, Antiviral and Antitrypanosomal Screening of 82 Herbal Drugs

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2011-09-01

    Full Text Available In an extensive screening, the antiviral, antitrypanosomal and anticancer properties of extracts from 82 plants used in traditional Chinese medicine and European phytomedicine were determined. Several promising plants that were highly effective against hepatitis B virus (HBV, bovine viral diarrhoea virus (BVDV—a flavivirus used here as a surrogate in vitro model of hepatitis C virus, trypanosomes (Trypanosoma brucei brucei and several cancer cell lines were identified. Six aqueous extracts from Celosia cristata, Ophioglossum vulgatum, Houttuynia cordata, Selaginella tamariscina, Alpinia galanga and Alpinia oxyphylla showed significant antiviral effects against BVDV without toxic effects on host embryonic bovine trachea (EBTr cells, while Evodia lepta, Hedyotis diffusa and Glycyrrhiza spp. demonstrated promising activities against the HBV without toxic effects on host human hepatoblastoma cells transfected with HBV-DNA (HepG2 2.2.15 cells. Seven organic extracts from Alpinia oxyphylla, Coptis chinensis, Kadsura longipedunculata, Arctium lappa, Panax ginseng, Panax notoginseng and Saposhnikovia divaricata inhibited T. b. brucei. Moreover, among fifteen water extracts that combined high antiproliferative activity (IC50 0.5–20 µg/mL and low acute in vitro toxicity (0–10% reduction in cell viability at IC50, Coptis chinensis presented the best beneficial characteristics. In conclusion, traditional herbal medicine from Europe and China still has a potential for new therapeutic targets and therapeutic applications.

  8. Defining Patient Centric Pharmaceutical Drug Product Design.

    Science.gov (United States)

    Stegemann, Sven; Ternik, Robert L; Onder, Graziano; Khan, Mansoor A; van Riet-Nales, Diana A

    2016-09-01

    The term "patient centered," "patient centric," or "patient centricity" is increasingly used in the scientific literature in a wide variety of contexts. Generally, patient centric medicines are recognized as an essential contributor to healthy aging and the overall patient's quality of life and life expectancy. Besides the selection of the appropriate type of drug substance and strength for a particular indication in a particular patient, due attention must be paid that the pharmaceutical drug product design is also adequately addressing the particular patient's needs, i.e., assuring adequate patient adherence and the anticipate drug safety and effectiveness. Relevant pharmaceutical design aspects may e.g., involve the selection of the route of administration, the tablet size and shape, the ease of opening the package, the ability to read the user instruction, or the ability to follow the recommended (in-use) storage conditions. Currently, a harmonized definition on patient centric drug development/design has not yet been established. To stimulate scientific research and discussions and the consistent interpretation of test results, it is essential that such a definition is established. We have developed a first draft definition through various rounds of discussions within an interdisciplinary AAPS focus group of experts. This publication summarizes the outcomes and is intended to stimulate further discussions with all stakeholders towards a common definition of patient centric pharmaceutical drug product design that is useable across all disciplines involved.

  9. Designer drugs 2015: assessment and management.

    Science.gov (United States)

    Weaver, Michael F; Hopper, John A; Gunderson, Erik W

    2015-01-01

    Recent designer drugs, also known as "legal highs," include substituted cathinones (e.g., mephedrone, methylone, and methylenedioxypyrovalerone, often referred to as "bath salts"); synthetic cannabinoids (SCs; e.g., Spice); and synthetic hallucinogens (25I-NBOMe, or N-bomb). Compound availability has evolved rapidly to evade legal regulation and detection by routine drug testing. Young adults are the primary users, but trends are changing rapidly; use has become popular among members of the military. Acute toxicity is common and often manifests with a constellation of psychiatric and medical effects, which may be severe (e.g., anxiety, agitation, psychosis, and tachycardia), and multiple deaths have been reported with each of these types of designer drugs. Clinicians should keep designer drugs in mind when evaluating substance use in young adults or in anyone presenting with acute neuropsychiatric complaints. Treatment of acute intoxication involves supportive care targeting manifesting signs and symptoms. Long-term treatment of designer drug use disorder can be challenging and is complicated by a lack of evidence to guide treatment.

  10. Development of a novel Dengue-1 virus replicon system expressing secretory Gaussia luciferase for analysis of viral replication and discovery of antiviral drugs.

    Science.gov (United States)

    Kato, Fumihiro; Kobayashi, Takeshi; Tajima, Shigeru; Takasaki, Tomohiko; Miura, Tomoyuki; Igarashi, Tatsuhiko; Hishiki, Takayuki

    2014-01-01

    Replicon systems have been used for high-throughput screening of anti-dengue virus (anti-DENV) inhibitors and for understanding mechanisms of viral replication. In the present study, we constructed novel DENV-1 replicons encoding Gaussia luciferase that was secreted into the culture medium. Two types of constructs were generated: RNA-based and DNA-based. Each type was translated in an internal ribosome entry site (IRES)-dependent or IRES-independent manner. Among these constructs, the DNA-based replicon employing IRES-dependent translation (DGL2) produced the highest titer. Luciferase levels in the culture medium revealed that the DGL2 replicon was inhibited by ribavirin (a well-known DENV inhibitor) at levels similar to those measured for drug inhibition of multi-round DENV-1 infection. These results indicate that the DNA-based IRES-driven DENV-1 replicon may facilitate studies on viral replication and antiviral compound discovery.

  11. Design, Characterization, and Optimization of Controlled Drug Delivery System Containing Antibiotic Drug/s

    Science.gov (United States)

    Shelate, Pragna; Dave, Divyang

    2016-01-01

    The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients. PMID:27610247

  12. Machine learning techniques and drug design.

    Science.gov (United States)

    Gertrudes, J C; Maltarollo, V G; Silva, R A; Oliveira, P R; Honório, K M; da Silva, A B F

    2012-01-01

    The interest in the application of machine learning techniques (MLT) as drug design tools is growing in the last decades. The reason for this is related to the fact that the drug design is very complex and requires the use of hybrid techniques. A brief review of some MLT such as self-organizing maps, multilayer perceptron, bayesian neural networks, counter-propagation neural network and support vector machines is described in this paper. A comparison between the performance of the described methods and some classical statistical methods (such as partial least squares and multiple linear regression) shows that MLT have significant advantages. Nowadays, the number of studies in medicinal chemistry that employ these techniques has considerably increased, in particular the use of support vector machines. The state of the art and the future trends of MLT applications encompass the use of these techniques to construct more reliable QSAR models. The models obtained from MLT can be used in virtual screening studies as well as filters to develop/discovery new chemicals. An important challenge in the drug design field is the prediction of pharmacokinetic and toxicity properties, which can avoid failures in the clinical phases. Therefore, this review provides a critical point of view on the main MLT and shows their potential ability as a valuable tool in drug design.

  13. Rational drug design applied to myeloperoxidase inhibition.

    Science.gov (United States)

    Van Antwerpen, P; Zouaoui Boudjeltia, K

    2015-06-01

    Rational drug design is a general approach using protein-structure technique in which the discovery of a ligand can be driven either by chance, screening, or rational theory. Myeloperoxidase (MPO) was rapidly identified as a therapeutical target because of its involvement in chronic inflammatory syndromes. In this context, the research of MPO inhibitors was intensified and development of new chemical entities was rationally driven by the research of ligands that enter into the MPO catalytic pocket. Actually, as soon as crystallography data of MPO have become available and its structure was virtually designed, the rational drug design has been applied to this peroxidase. Pharmaceutical industries and academic laboratories apply rational drug design on MPO by either optimizing known inhibitors or searching new molecules by high-throughput virtual screening. By these ways, they were able to find efficient MPO inhibitors and understand their interactions with the enzyme. During this quest of MPO inhibition, it appears that Glu268 is a crucial residue in order to optimize ligand-target interaction. This amino acid should be carefully considered by medicinal chemist when they design inhibitors interfering with MPO activity.

  14. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine.

    Science.gov (United States)

    Müller, Fabian; König, Jörg; Hoier, Eva; Mandery, Kathrin; Fromm, Martin F

    2013-09-15

    The antiviral lamivudine is cleared predominantly by the kidney with a relevant contribution of renal tubular secretion. It is not clear which drug transporters mediate lamivudine renal secretion. Our aim was to investigate lamivudine as substrate of the renal drug transporters organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins MATE1 and MATE2-K. Uptake experiments were performed in OCT2, MATE1, or MATE2-K single-transfected human embryonic kidney 293 (HEK) cells. Transcellular transport experiments were performed in OCT2 and/or MATE1 single- or double-transfected Madin-Darby canine kidney II (MDCK) cells grown on transwell filters. Lamivudine uptake was significantly increased in HEK-OCT2, HEK-MATE1, and HEK-MATE2-K cells compared to control cells. In transcellular experiments, OCT2 located in the basolateral membrane had no effect on transcellular lamivudine transport. MATE1 located in the apical membrane decreased intracellular concentrations and increased transcellular transport of lamivudine from the basal to the apical compartment. MATE1- or MATE2-K-mediated transport was increased by an oppositely directed pH gradient. Several simultaneously administered drugs inhibited OCT2- or MATE2-K-mediated lamivudine uptake. The strongest inhibitors were carvedilol for OCT2 and trimethoprim for MATE2-K (inhibition by 96.3 and 83.7% at 15 μM, respectively, ptransport in OCT2-MATE1 double-transfected cells was inhibited by trimethoprim with an IC₅₀ value of 6.9 μM. Lamivudine is a substrate of renal drug transporters OCT2, MATE1, and MATE2-K. Concomitant administration of drugs that inhibit these transporters could decrease renal clearance of lamivudine.

  15. Acid-base characterization, coordination properties towards copper(II) ions and DNA interaction studies of ribavirin, an antiviral drug.

    Science.gov (United States)

    Nagaj, Justyna; Starosta, Radosław; Jeżowska-Bojczuk, Małgorzata

    2015-01-01

    We have studied processes of copper(II) ion binding by ribavirin, an antiviral agent used in treating hepatitis C, which is accompanied usually by an increased copper level in the serum and liver tissue. Protonation equilibria and Cu(II) binding were investigated using the UV-visible, EPR and NMR spectroscopic techniques as well as the DFT (density functional theory) calculations. The spectroscopic data suggest that the first complex is formed in the water solution at pH as low as 0.5. In this compound Cu(II) ion is bound to one of the nitrogen atoms from the triazole ring. Above pH6.0, the metal ion is surrounded by two nitrogen and two oxygen atoms from two ligand molecules. The DFT calculations allowed to determine the exact structure of this complex. We found that in the lowest energy isomer two molecules of the ligand coordinate via O and N4 atoms in trans positions. The hypothetical oxidative properties of the investigated system were also examined. It proved not to generate plasmid DNA scission products. However, the calf thymus (CT)-DNA binding studies showed that it reacts with ribavirin and its cupric complex. Moreover, the interaction with the complex is much more efficient.

  16. Counting on natural products for drug design

    Science.gov (United States)

    Rodrigues, Tiago; Reker, Daniel; Schneider, Petra; Schneider, Gisbert

    2016-06-01

    Natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal chemistry and drug discovery. Recently, there has been a revitalization of interest in the inclusion of these chemotypes in compound collections for screening and achieving selective target modulation. Here we discuss natural-product-inspired drug discovery with a focus on recent advances in the design of synthetically tractable small molecules that mimic nature's chemistry. We highlight the potential of innovative computational tools in processing structurally complex natural products to predict their macromolecular targets and attempt to forecast the role that natural-product-derived fragments and fragment-like natural products will play in next-generation drug discovery.

  17. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1–6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Lize Cuypers

    2015-09-01

    Full Text Available Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1–6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity and an additional 24% as pan-genotypic conserved (≥95%. Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%–0.46% and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15, 33% (3/9, and 14% (2/14 of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%. NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may

  18. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1–6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance

    Science.gov (United States)

    Cuypers, Lize; Li, Guangdi; Libin, Pieter; Piampongsant, Supinya; Vandamme, Anne-Mieke; Theys, Kristof

    2015-01-01

    Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV) infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1–6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity) and an additional 24% as pan-genotypic conserved (≥95%). Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%–0.46%) and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15), 33% (3/9), and 14% (2/14) of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%). NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may need to be

  19. HCV Drug Resistance Challenges in Japan: The Role of Pre-Existing Variants and Emerging Resistant Strains in Direct Acting Antiviral Therapy

    Directory of Open Access Journals (Sweden)

    Kazuaki Chayama

    2015-10-01

    Full Text Available Sustained virological response (SVR rates have increased dramatically following the approval of direct acting antiviral (DAA therapies. While individual DAAs have a low barrier to resistance, most patients can be successfully treated using DAA combination therapy. However, DAAs are vulnerable to drug resistance, and resistance-associated variants (RAVs may occur naturally prior to DAA therapy or may emerge following drug exposure. While most RAVs are quickly lost in the absence of DAAs, compensatory mutations may reinforce fitness. However, the presence of RAVs does not necessarily preclude successful treatment. Although developments in hepatitis C virus (HCV therapy in Asia have largely paralleled those in the United States, Japan’s July 2014 approval of asunaprevir plus daclatasvir combination therapy as the first all-oral interferon-free therapy was not repeated in the United States. Instead, two different combination therapies were approved: sofosbuvir/ledipasvir and paritaprevir/ritonavir/ombitasvir/dasabuvir. This divergence in treatment approaches may lead to differences in resistance challenges faced by Japan and the US. However, the recent approval of sofosbuvir plus ledipasvir in Japan and the recent submissions of petitions for approval of paritaprevir/ritonavir plus ombitasvir suggest a trend towards a new consensus on emerging DAA regimens.

  20. In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A(H1N1) viruses.

    Science.gov (United States)

    Sleeman, Katrina; Mishin, Vasiliy P; Deyde, Varough M; Furuta, Yousuke; Klimov, Alexander I; Gubareva, Larisa V

    2010-06-01

    Favipiravir (T-705) has previously been shown to have a potent antiviral effect against influenza virus and some other RNA viruses in both cell culture and in animal models. Currently, favipiravir is undergoing clinical evaluation for the treatment of influenza A and B virus infections. In this study, favipiravir was evaluated in vitro for its ability to inhibit the replication of a representative panel of seasonal influenza viruses, the 2009 A(H1N1) strains, and animal viruses with pandemic (pdm) potential (swine triple reassortants, H2N2, H4N2, avian H7N2, and avian H5N1), including viruses which are resistant to the currently licensed anti-influenza drugs. All viruses were tested in a plaque reduction assay with MDCK cells, and a subset was also tested in both yield reduction and focus inhibition (FI) assays. For the majority of viruses tested, favipiravir significantly inhibited plaque formation at 3.2 muM (0.5 microg/ml) (50% effective concentrations [EC(50)s] of 0.19 to 22.48 muM and 0.03 to 3.53 microg/ml), and for all viruses, with the exception of a single dually resistant 2009 A(H1N1) virus, complete inhibition of plaque formation was seen at 3.2 muM (0.5 microg/ml). Due to the 2009 pandemic and increased drug resistance in circulating seasonal influenza viruses, there is an urgent need for new drugs which target influenza. This study demonstrates that favipiravir inhibits in vitro replication of a wide range of influenza viruses, including those resistant to currently available drugs.

  1. Drug design from the cryptic inhibitor envelope.

    Science.gov (United States)

    Lee, Chul-Jin; Liang, Xiaofei; Wu, Qinglin; Najeeb, Javaria; Zhao, Jinshi; Gopalaswamy, Ramesh; Titecat, Marie; Sebbane, Florent; Lemaitre, Nadine; Toone, Eric J; Zhou, Pei

    2016-02-25

    Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC--an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target--access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics.

  2. Exploiting protein intrinsic flexibility in drug design.

    Science.gov (United States)

    Lukman, Suryani; Verma, Chandra S; Fuentes, Gloria

    2014-01-01

    Molecular recognition in biological systems relies on the existence of specific attractive interactions between two partner molecules. Structure-based drug design seeks to identify and optimize such interactions between ligands and their protein targets. The approach followed in medicinal chemistry follows a combination of careful analysis of structural data together with experimental and/or theoretical studies on the system. This chapter focuses on the fact that a protein is not fully characterized by a single structure, but by an ensemble of states, some of them represent "hidden conformations" with cryptic binding sites. We highlight case studies where both experimental and computational methods have been used to mutually drive each other in an attempt to improve the success of the drug design approaches.Advances in both experimental techniques and computational methods have greatly improved our physico-chemical understanding of the functional mechanisms in biomolecules and opened a debate about the interplay between molecular structure and biomolecular function. The beautiful static pictures of protein structures may have led to neglecting the intrinsic protein flexibility, however we are entering a new era where more sophisticated methods are used to exploit this ability of macromolecules, and this will definitely lead to the inclusion of the notion in the pharmaceutical field of drug design.

  3. Antimicrobial peptides as model molecules for the development of novel antiviral agents in aquaculture.

    Science.gov (United States)

    Falco, A; Ortega-Villaizan, M; Chico, V; Brocal, I; Perez, L; Coll, J M; Estepa, A

    2009-09-01

    Antimicrobial peptides (AMPs) are one of the components of the non-specific immune system that operate first lines of protection in many animal species including fish. They exert broad-spectrum antimicrobial activity, apart from many other potential roles in innate immunity, and represent a promising class of antiviral agents. Recent advances in understanding the mechanisms of their antiviral action(s) indicate that they have a dual role in antiviral defence, acting not only directly on the virion but also on the host cell. Despite the acute problems of viral diseases and restrictions in using chemicals in aquaculture, few but successful attempts to assess the antiviral activities of fish AMPs have been reported. This review focuses on the antiviral activities and mechanisms of action of some AMPs, and their potential relevance in the aquaculture industry, one of the most important sources of fishery products in the near future. It is a matter of notable concern to understand whether the AMPs can be used as model molecules for designing antiviral drugs that might help to solve the problems with viruses in the fish farming industry worldwide. In addition, because fish rely more heavily on their innate immune defences than mammals, they might constitute a potential rich source of antiviral compounds for fighting against mammalian viral infections.

  4. Anti-viral drug treatment along with immune activator IL-2: a control-based mathematical approach for HIV infection

    Science.gov (United States)

    Nath Chatterjee, Amar; Roy, Priti Kumar

    2012-02-01

    Recent development in antiretroviral treatment against HIV can help AIDS patients to fight against HIV. But the question that whether the disease is to be partially or totally eradicated from HIV infected individuals still remains unsolved. Usually, the most effective treatment for the disease is HAART which can only control the disease progression. But as the immune system becomes weak, the patients can not fight against other diseases. Immune cells are activated and proliferated by IL-2 after the identification of antigen. IL-2 production is impaired in HIV positive patients and intermitted administration of immune activator IL-2 together with HAART which is a more effective treatment to fight against the disease. Thus, its expediency is essential and is yet to be explored. In this article we anticipated a mathematical model of the effect of IL-2 together with RTIs therapy in HIV positive patients. Our analytical as well as numerical study shows that the optimal schedule of treatment for best result is to be obtained by systematic drug therapy. But at the last stage of treatment, the infection level raises again due to minimisation of drug dosage. Thus we study the perfect adherence of the drugs and found out if RTIs are taken with sufficient interval then for fixed interval of IL-2 therapy, certain amount of drug dosages may be able to sustain the immune system at pre-infection stage and the infected CD4+T cells are going towards extinction.

  5. TARGETING OF ANTIVIRAL DRUGS TO LYMPHOCYTES-T4 - ANTI-HIV ACTIVITY OF NEOGLYCOPROTEIN AZTMP CONJUGATES INVITRO

    NARCIS (Netherlands)

    MOLEMA, G; JANSEN, RW; PAUWELS, R; DECLERCQ, E; MEIJER, DKF

    1990-01-01

    The delivery of the anti-HIV agent 3'-azido-3'-deoxythymidine (AZT), in its 5'-monophosphate form, (in)to human T-lymphocyte MT-4 cells in vitro through covalent coupling to neoglycoproteins was investigated. In vivo application of this drug targeting concept may lead to increased efficacy and/or di

  6. Structure Based Drug Design for HIM Protease: From Molecular Modeling to Cheminformatics

    Energy Technology Data Exchange (ETDEWEB)

    Volarath, Patra; Weber, Irene T.; Harrison, Robert W. (GSU)

    2008-06-06

    Significant progress over the past decade in virtual representations of molecules and their physicochemical properties has produced new drugs from virtual screening of the structures of single protein molecules by conventional modeling methods. The development of clinical antiviral drugs from structural data for HIV protease has been a major success in structure based drug design. Techniques for virtual screening involve the ranking of the affinity of potential ligands for the target site on a protein. Two main alternatives have been developed: modeling of the target protein with a series of related ligand molecules, and docking molecules from a database to the target protein site. The computational speed and prediction accuracy will depend on the representation of the molecular structure and chemistry, the search or simulation algorithm, and the scoring function to rank the ligands. Moreover, the general challenges in modern computational drug design arise from the profusion of data, including whole genomes of DNA, protein structures, chemical libraries, affinity and pharmacological data. Therefore, software tools are being developed to manage and integrate diverse data, and extract and visualize meaningful relationships. Current areas of research include the development of searchable chemical databases, which requires new algorithms to represent molecules and search for structurally or chemically similar molecules, and the incorporation of machine learning techniques for data mining to improve the accuracy of predictions. Examples will be presented for the virtual screening of drugs that target HIV protease.

  7. Study on the interaction of the antiviral drug, zidovudine with DNA using neutral red (NR) and methylene blue (MB) dyes

    Energy Technology Data Exchange (ETDEWEB)

    Shahabadi, Nahid, E-mail: nahidshahabadi@yahoo.com [Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Moghadam, Neda Hossein pour [Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2013-02-15

    The interaction between the drug, zidovudine and calf thymus DNA (CT-DNA) in physiological buffer (pH 7.4) was investigated using neutral red (NR) and methylene blue (MB) dyes as a spectral probes by UV-vis absorption and fluorescence spectroscopy, as well as circular dichroism (CD) spectroscopy. The experimental results showed that the conformational changes in DNA helix induced by zidovudine are the reason for the fluorescence quenching of the DNA-NR system. In addition, by increasing zidovudine to DNA-MB solution, the fluorescence has no change. From the experimental results, it was found that zidovudine can cause structural changes on CT-DNA and bind with DNA via groove binding mode. At the same time, the paper proved that conformational changes of DNA can also lead to the fluorescence decrease of DNA-probe systems. - Highlights: Black-Right-Pointing-Pointer Search for new molecular structures which exhibit effective antitumor activities among popular drugs. Black-Right-Pointing-Pointer The DRUG can bind to DNA via groove binding mode. Black-Right-Pointing-Pointer Several spectroscopic techniques have been used in this research.

  8. Adsorption removal of antiviral drug oseltamivir and its metabolite oseltamivir carboxylate by carbon nanotubes: Effects of carbon nanotube properties and media.

    Science.gov (United States)

    Wang, Wen-Long; Wu, Qian-Yuan; Wang, Zheng-Ming; Niu, Li-Xia; Wang, Chao; Sun, Ming-Chao; Hu, Hong-Ying

    2015-10-01

    This investigation evaluated the adsorption behavior of the antiviral drugs of oseltamivir (OE) and its metabolites (i.e., oseltamivir carboxylate (OC)) on three types of carbon nanotubes (CNTs) including single-walled CNT (SWCNT), multi-walled CNT (MWCNT), and carboxylated SWCNT (SWCNT-COOH). CNTs can efficiently remove more than 90% of the OE and OC from aqueous solution when the initial concentration was lower than 10(-4) mmol/L. The Polanyi-Manes model depicted the adsorption isotherms of OE and OC on CNTs better than the Langmuir and Freundlich models. The properties of OE/OC and the characteristics of CNTs, particularly the oxygen functional groups (e.g., SWCNT-COOH) played important roles during the adsorption processes. OE showed a higher adsorption affinity than OC. By comparing the different adsorbates adsorption on each CNT and each adsorbate adsorption on different CNTs, the adsorption mechanisms of hydrophobic interaction, electrostatic interaction, van der Waals force, and H-bonding were proposed as the contributing factors for OE and OC adsorption on CNTs. Particularly, for verifying the contribution of electrostatic interaction, the changes of adsorption partition efficiency (Kd) of OE and OC on CNTs were evaluated by varying pH from 2 to 11 and the importance of isoelectric point (pHIEP) of CNTs on OE and OC adsorption was addressed.

  9. Potent Antiviral HIV-1 Protease Inhibitor GRL-02031 Adapts to the Structures of Drug Resistant Mutants with Its P1;#8242;-Pyrrolidinone Ring

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Chung E.; Yu, XiaXia; Zhang, Ying; Tie, Yunfeng; Wang, Yuan-Fang; Yashchuk, Sofiya; Ghosh, Arun K.; Harrison, Robert W.; Weber, Irene T. (GSU); (Purdue); (GSI); (CDC)

    2012-11-14

    GRL-02031 (1) is an HIV-1 protease (PR) inhibitor containing a novel P1' (R)-aminomethyl-2-pyrrolidinone group. Crystal structures at resolutions of 1.25-1.55 {angstrom} were analyzed for complexes of 1 with the PR containing major drug resistant mutations, PR{sub I47V}, PR{sub L76V}, PR{sub V82A}, and PR{sub N88D}. Mutations of I47V and V82A alter residues in the inhibitor-binding site, while L76V and N88D are distal mutations having no direct contact with the inhibitor. Substitution of a smaller amino acid in PR{sub I47V} and PR{sub L76V} and the altered charge of PR{sub N88D} are associated with significant local structural changes compared to the wild-type PR{sub WT}, while substitution of alanine in PR{sub V82A} increases the size of the S1' subsite. The P1' pyrrolidinone group of 1 accommodates to these local changes by assuming two different conformations. Overall, the conformation and interactions of 1 with PR mutants resemble those of PR{sub WT} with similar inhibition constants in good agreement with the antiviral potency on multidrug resistant HIV-1.

  10. Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: kinetics and identification of oxidation products.

    Science.gov (United States)

    Prasse, Carsten; Wagner, Manfred; Schulz, Ralf; Ternes, Thomas A

    2012-02-21

    The oxidation of the antiviral drug acyclovir (ACV) and its main biotransformation product carboxy-acyclovir (carboxy-ACV) by ozone was investigated. Both compounds have recently been detected in surface water, and carboxy-ACV has also been detected in drinking water. The experiments revealed a strong pH dependence of the oxidation of ACV and carboxy-ACV with reaction rate constants increasing by 4 orders of magnitude between the protonated, positively charged form (k(ox,PH(+)), ∼2.5 × 10(2) M(-1) s(-1)) and the deprotonated, negatively charged form (k(ox,P(-)), 3.4 × 10(6) M(-1) s(-1)). At pH 8 a single oxidation product was formed which was identified via LC-LTQ-Orbitrap MS and NMR as N-(4-carbamoyl-2-imino-5-oxoimidazolidin)formamido-N-methoxyacetic acid (COFA). Using Vibrio fischeri , an acute bacterial toxicity was found for COFA while carboxy-ACV revealed no toxic effects. Ozonation experiments with guanine and guanosine at pH 8 led to the formation of the respective 2-imino-5-oxoimidazolidines, confirming that guanine derivatives such as carboxy-ACV are undergoing the same reactions during ozonation. Furthermore, COFA was detected in finished drinking water of a German waterworks after ozonation and subsequent activated carbon treatment.

  11. Vaccinia virus lacking the deoxyuridine triphosphatase gene (F2L replicates well in vitro and in vivo, but is hypersensitive to the antiviral drug (N-methanocarbathymidine

    Directory of Open Access Journals (Sweden)

    Moyer Richard W

    2008-03-01

    Full Text Available Abstract Background The vaccinia virus (VV F2L gene encodes a functional deoxyuridine triphosphatase (dUTPase that catalyzes the conversion of dUTP to dUMP and is thought to minimize the incorporation of deoxyuridine residues into the viral genome. Previous studies with with a complex, multigene deletion in this virus suggested that the gene was not required for viral replication, but the impact of deleting this gene alone has not been determined in vitro or in vivo. Although the crystal structure for this enzyme has been determined, its potential as a target for antiviral therapy is unclear. Results The F2L gene was replaced with GFP in the WR strain of VV to assess its effect on viral replication. The resulting virus replicated well in cell culture and its replication kinetics were almost indistinguishable from those of the wt virus and attained similar titers. The virus also appeared to be as pathogenic as the WR strain suggesting that it also replicated well in mice. Cells infected with the dUTPase mutant would be predicted to affect pyrimidine deoxynucleotide pools and might be expected to exhibit altered susceptibility to pyrimidine analogs. The antiviral activity of cidofovir and four thymidine analogs were evaluated both in the mutant and the parent strain of this virus. The dUTPase knockout remained fully susceptible to cidofovir and idoxuridine, but was hypersensitive to the drug (N-methanocarbathymidine, suggesting that pyrimidine metabolism was altered in cells infected with the mutant virus. The absence of dUTPase should reduce cellular dUMP pools and may result in a reduced conversion to dTMP by thymidylate synthetase or an increased reliance on the salvage of thymidine by the viral thymidine kinase. Conclusion We confirmed that F2L was not required for replication in cell culture and determined that it does not play a significant role on virulence of the virus in intranasally infected mice. The recombinant virus is hypersensitive

  12. Self-interest versus group-interest in antiviral control.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    Full Text Available Antiviral agents have been hailed to hold considerable promise for the treatment and prevention of emerging viral diseases like H5N1 avian influenza and SARS. However, antiviral drugs are not completely harmless, and the conditions under which individuals are willing to participate in a large-scale antiviral drug treatment program are as yet unknown. We provide population dynamical and game theoretical analyses of large-scale prophylactic antiviral treatment programs. Throughout we compare the antiviral control strategy that is optimal from the public health perspective with the control strategy that would evolve if individuals make their own, rational decisions. To this end we investigate the conditions under which a large-scale antiviral control program can prevent an epidemic, and we analyze at what point in an unfolding epidemic the risk of infection starts to outweigh the cost of antiviral treatment. This enables investigation of how the optimal control strategy is moulded by the efficacy of antiviral drugs, the risk of mortality by antiviral prophylaxis, and the transmissibility of the pathogen. Our analyses show that there can be a strong incentive for an individual to take less antiviral drugs than is optimal from the public health perspective. In particular, when public health asks for early and aggressive control to prevent or curb an emerging pathogen, for the individual antiviral drug treatment is attractive only when the risk of infection has become non-negligible. It is even possible that from a public health perspective a situation in which everybody takes antiviral drugs is optimal, while the process of individual choice leads to a situation where nobody is willing to take antiviral drugs.

  13. Phytosterols and anabolic agents versus designer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Brabander, H.F. de [Ghent University, Faculty of Veterinary Medicine, Research group of Veterinary Public Health and Zoonoses, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820 Merelbeke (Belgium)]. E-mail: Hubert.DeBrabander@UGent.be; Verheyden, K. [Ghent University, Faculty of Veterinary Medicine, Research group of Veterinary Public Health and Zoonoses, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820 Merelbeke (Belgium); Mortier, V. [Ghent University, Faculty of Veterinary Medicine, Research group of Veterinary Public Health and Zoonoses, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820 Merelbeke (Belgium); Le Bizec, B. [LABERCA, Ecole Nationale Veterinaire de Nantes, BP 50707, F-44087 Nantes Cedex 03 (France); Verbeke, W. [Ghent University, Department of Agricultural Economics, Coupure links 653, B-9000 Ghent (Belgium); Courtheyn, D. [Federal Feed and Food Laboratory, Braemkasteelstraat 59, B-9050 Ghentbruges (Belgium); Noppe, H. [Ghent University, Faculty of Veterinary Medicine, Research group of Veterinary Public Health and Zoonoses, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820 Merelbeke (Belgium)

    2007-03-14

    Cholesterol is a well-known component in fats of animal origin and it also is the precursor of natural hormones. Phytosterols appear in plants and only differ slightly in structure from cholesterol. An important difference however is the low absorption in the gut of phytosterols and their saturated derivatives, the phytostanols. As a result, there is time for all kind of reactions in faecal material inside and outside of the gut. Determination of the abuse of natural hormones may be based on gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Abuse of natural hormones changes the {sup 13}C/{sup 12}C ratio of some metabolites during a relatively long time. The formation of (natural) hormones in the gut may interfere with this method. Designer drugs are mainly known from sports doping. In animal fattening, designer drugs may be used as well. Small changes in the structure of (natural) hormones may lead to a new group of substances asking for new strategies for their detection and the constatation of their abuse.

  14. Conformational Analysis, Molecular Structure and Solid State Simulation of the Antiviral Drug Acyclovir (Zovirax Using Density Functional Theory Methods

    Directory of Open Access Journals (Sweden)

    Margarita Clara Alvarez-Ros

    2014-06-01

    Full Text Available The five tautomers of the drug acyclovir (ACV were determined and optimised at the MP2 and B3LYP quantum chemical levels of theory. The stability of the tautomers was correlated with different parameters. On the most stable tautomer N1 was carried out a comprehensive conformational analysis, and the whole conformational parameters (R, β, Φ, φ1, φ2, φ3, φ4, φ5 were studied as well as the NBO Natural atomic charges. The calculations were carried out with full relaxation of all geometrical parameters. The search located at least 78 stable structures within 8.5 kcal/mol electronic energy range of the global minimum, and classified in two groups according to the positive or negative value of the torsional angle j1. In the nitrogen atoms and in the O2' and O5' oxygen atoms of the most stable conformer appear a higher reactivity than in the natural nucleoside deoxyguanosine. The solid state was simulated through a dimer and tetramer forms and the structural parameters were compared with the X-ray crystal data available. Several general conclusions were emphasized.

  15. [Drug design ideas and methods of Chinese herb prescriptions].

    Science.gov (United States)

    Ren, Jun-guo; Liu, Jian-xun

    2015-09-01

    The new drug of Chinese herbal prescription, which is the best carrier for the syndrome differentiation and treatment of Chinese medicine and is the main form of the new drug research and development, plays a very important role in the new drug research and development. Although there are many sources of the prescriptions, whether it can become a new drug, the necessity, rationality and science of the prescriptions are the key to develop the new drug. In this article, aiming at the key issues in prescriptions design, the source, classification, composition design of new drug of Chinese herbal prescriptions are discussed, and provide a useful reference for research and development of new drugs.

  16. Structure-based drug design and modern medicine

    Directory of Open Access Journals (Sweden)

    Vijayakrishnan R

    2009-01-01

    Full Text Available Drug discovery has evolved through various stages into more rational and evidence-based drug designing. Compared to conventional methods which were time consuming and less logical, new drug designing based on structure is rational, evidence based, faster and more scientific in nature. In the era of modern medicine, where newer insights into molecular level of disease processes are available, it is very essential that drug designing be based on molecular mechanism of pathologic processes. Structure-based drug designing has made tremendous contributions in the field of cancer chemotherapy, drug resistant infections, neurological diseases, to mention a few. New drug discovery methods are furthered by developments in the technology especially computers, bioassay techniques and calibrated instruments. Computational structure-based drug designing opens the door to novel treatments in modern medicine.

  17. A quantitative measurement of antiviral activity of anti-human immunodeficiency virus type 1 drugs against simian immunodeficiency virus infection: dose-response curve slope strongly influences class-specific inhibitory potential.

    Science.gov (United States)

    Deng, Kai; Zink, M Christine; Clements, Janice E; Siliciano, Robert F

    2012-10-01

    Simian immunodeficiency virus (SIV) infection in macaques is so far the best animal model for human immunodeficiency virus type 1 (HIV-1) studies, but suppressing viral replication in infected animals remains challenging. Using a novel single-round infectivity assay, we quantitated the antiviral activities of antiretroviral drugs against SIV. Our results emphasize the importance of the dose-response curve slope in determining the inhibitory potential of antiretroviral drugs and provide useful information for regimen selection in treating SIV-infected animals in models of therapy and virus eradication.

  18. Influenza A(H1N1)pdm09 resistance and cross-decreased susceptibility to oseltamivir and zanamivir antiviral drugs.

    Science.gov (United States)

    Correia, Vanessa; Santos, Luis A; Gíria, Marta; Almeida-Santos, Maria M; Rebelo-de-Andrade, Helena

    2015-01-01

    Neuraminidase inhibitors (NAIs) oseltamivir and zanamivir are currently the only effective antiviral drugs available worldwide for the management of influenza. The potential development of resistance is continually threatening their use, rationalizing and highlighting the need for a close and sustained evaluation of virus susceptibility. This study aimed to analyze and characterize the phenotypic and genotypic NAIs susceptibility profiles of A(H1N1)pdm09 viruses circulating in Portugal from 2009 to 2010/2011. A total of 144 cases of A(H1N1)pdm09 virus infection from community and hospitalized patients were studied, including three suspected cases of clinical resistance to oseltamivir. Oseltamivir resistance was confirmed for two of the suspected cases. Neuraminidase (NA) H275Y resistant marker was found in viruses from both cases but for one it was only present in 26.2% of virus population, raising questions about the minimal percentage of resistant virus that should be considered relevant. Cross-decreased susceptibility to oseltamivir and zanamivir (2-4 IC50 fold-change) was detected on viruses from two potentially linked community patients from 2009. Both viruses harbored the NA I223V mutation. NA Y155H mutation was found in 18 statistical non-outlier viruses from 2009, having no impact on virus susceptibility. The mutations at NA N369K and V241I may have contributed to the significantly higher baseline IC50 value obtained to oseltamivir for 2010/2011 viruses, compared to viruses from the pandemic period. These results may contribute to a better understanding of the relationship between phenotype and genotype, which is currently challenging, and to the global assessment of A(H1N1)pdm09 virus susceptibility profile and baseline level to NAIs.

  19. Comparative study of infantile diarrhea Ning combined with antiviral drug and single use of antiviral drugs in the treatment of diarrhea in children%小儿腹泻宁联合抗病毒药物与单用抗病毒药物治疗小儿腹泻的对比研究

    Institute of Scientific and Technical Information of China (English)

    舒航

    2015-01-01

    Objective To explore the comparative study of infantile diarrhea Ning combined with antiviral drug and single use of antiviral drugs in the treatment of diarrhea in children.Methods 100 cases of infantile diarrhea in children from 2013 May -2014 year in June to pediatric clinic of our hospital, all patients were randomly divided into observation group and control group with 50 cases in each group. The clinical efficacy of the two groups of children with stool, recovery time, vomiting, time and the temperature recovery time and adverse reaction were compared.ResultsThe clinical total effective rate of observation group was 94.00%, significantly higher than the control group 82.00%, two groups, the difference was statistically significant (P<0.05). Stool observation group with recovery time, vomiting, time and the temperature recovery time was significantly lower than the control group, the two groups, the difference was statistically significant (P<0.05). Two groups of children with severe adverse reaction hadn. occurred.Conclusion Diarrhea in children with infantile diarrhea Ning combined with antiviral drug treatment, can significantly improve the clinical efficacy, shorten the recovery time of clinical symptoms.%目的 探讨小儿腹泻宁联合抗病毒药物治疗小儿腹泻与单用抗病毒药物治疗的不同疗效.方法 选取2013年5月~2014年6月来我院儿科就诊的小儿腹泻患儿100例,所有患儿随机分为观察组及对照组各50例.对两组患儿的临床疗效,大便性状恢复时间,呕吐时间及体温恢复时间及不良反应情况进行比较.结果 观察组的临床总有效率为94.00%,明显高于对照组的82.00%,两组比较,差异有统计学意义(P<0.05).观察组患儿的大便性状恢复,体温恢复及呕吐的时间显著低于对照组,两组比较,差异有统计学意义(P<0.05).两组患儿治疗期间皆无严重不良反应发生.结论 小儿腹泻宁联合抗病毒药物治疗小儿腹泻临床疗效

  20. Antiviral potential of lactic acid bacteria and their bacteriocins.

    Science.gov (United States)

    Al Kassaa, I; Hober, D; Hamze, M; Chihib, N E; Drider, D

    2014-12-01

    Emerging resistance to antiviral agents is a growing public health concern worldwide as it was reported for respiratory, sexually transmitted and enteric viruses. Therefore, there is a growing demand for new, unconventional antiviral agents which may serve as an alternative to the currently used drugs. Meanwhile, published literature continues shedding the light on the potency of lactic acid bacteria (LAB) and their bacteriocins as antiviral agents. Health-promoting LAB probiotics may exert their antiviral activity by (1) direct probiotic-virus interaction; (2) production of antiviral inhibitory metabolites; and/or (3) via stimulation of the immune system. The aim of this review was to highlight the antiviral activity of LAB and substances they produce with antiviral activity.

  1. Antiviral Strategies for Pandemic and Seasonal Influenza

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2010-08-01

    Full Text Available While vaccines are the primary public health response to seasonal and pandemic flu, short of a universal vaccine there are inherent limitations to this approach. Antiviral drugs provide valuable alternative options for treatment and prophylaxis of influenza. Here, we will review drugs and drug candidates against influenza with an emphasis on the recent progress of a host-targeting entry-blocker drug candidate, DAS181, a sialidase fusion protein.

  2. Molecular Rift: Virtual Reality for Drug Designers.

    Science.gov (United States)

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  3. STABLE DRUG DESIGNING BY MINIMIZING DRUG PROTEIN INTERACTION ENERGY USING PSO

    Directory of Open Access Journals (Sweden)

    Anupam Ghosh

    2015-07-01

    Full Text Available Each and every biological function in living organism happens as a result of protein-protein interactions. The diseases are no exception to this. Identifying one or more proteins for a particular disease and then designing a suitable chemical compound (known as drug to destroy these proteins has been an interesting topic of research in bio-informatics. In previous methods, drugs were designed using only seven chemical components and were represented as a fixedlength tree. But in reality, a drug contains many chemical groups collectively known as pharmacophore. Moreover, the chemical length of the drug cannot be determined before designing the drug.

  4. An Educational Design To Teach Drug Information Across the Curriculum.

    Science.gov (United States)

    Gora-Harper, Mary Lea; Brandt, Barbara F.

    1997-01-01

    Describes design and implementation of a model for teaching drug information across the pharmacy curriculum. Program components include teaching/reinforcing drug information knowledge and skills; outlining practice-based outcomes for drug information; and impressing on students that such skills are routinely needed in pharmacy practice. Early…

  5. In silico design of fragment-based drug targeting host processing α-glucosidase i for dengue fever

    Science.gov (United States)

    Toepak, E. P.; Tambunan, U. S. F.

    2017-02-01

    Dengue is a major health problem in the tropical and sub-tropical regions. The development of antiviral that targeting dengue’s host enzyme can be more effective and efficient treatment than the viral enzyme. Host enzyme processing α-glucosidase I has an important role in the maturation process of dengue virus envelope glycoprotein. The inhibition of processing α-glucosidase I can become a promising target for dengue fever treatment. The antiviral approach using in silico fragment-based drug design can generate drug candidates with high binding affinity. In this research, 198.621 compounds were obtained from ZINC15 Biogenic Database. These compounds were screened to find the favorable fragments according to Rules of Three and pharmacological properties. The screening fragments were docked into the active site of processing α-glucosidase I. The potential fragment candidates from the molecular docking simulation were linked with castanospermine (CAST) to generate ligands with a better binding affinity. The Analysis of ligand - enzyme interaction showed ligands with code LRS 22, 28, and 47 have the better binding free energy than the standard ligand. Ligand LRS 28 (N-2-4-methyl-5-((1S,3S,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyoctahydroindolizin-3-yl) pentyl) indolin-1-yl) propionamide) itself among the other ligands has the lowest binding free energy. Pharmacological properties prediction also showed the ligands LRS 22, 28, and 47 can be promising as the dengue fever drug candidates.

  6. Organic carbamates in drug design and medicinal chemistry.

    Science.gov (United States)

    Ghosh, Arun K; Brindisi, Margherita

    2015-04-09

    The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug-target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.

  7. Role of computer-aided drug design in modern drug discovery.

    Science.gov (United States)

    Macalino, Stephani Joy Y; Gosu, Vijayakumar; Hong, Sunhye; Choi, Sun

    2015-09-01

    Drug discovery utilizes chemical biology and computational drug design approaches for the efficient identification and optimization of lead compounds. Chemical biology is mostly involved in the elucidation of the biological function of a target and the mechanism of action of a chemical modulator. On the other hand, computer-aided drug design makes use of the structural knowledge of either the target (structure-based) or known ligands with bioactivity (ligand-based) to facilitate the determination of promising candidate drugs. Various virtual screening techniques are now being used by both pharmaceutical companies and academic research groups to reduce the cost and time required for the discovery of a potent drug. Despite the rapid advances in these methods, continuous improvements are critical for future drug discovery tools. Advantages presented by structure-based and ligand-based drug design suggest that their complementary use, as well as their integration with experimental routines, has a powerful impact on rational drug design. In this article, we give an overview of the current computational drug design and their application in integrated rational drug development to aid in the progress of drug discovery research.

  8. "Not for human consumption": a review of emerging designer drugs.

    Science.gov (United States)

    Musselman, Megan E; Hampton, Jeremy P

    2014-07-01

    Synthetic, or "designer" drugs, are created by manipulating the chemical structures of other psychoactive drugs so that the resulting product is structurally similar but not identical to illegal psychoactive drugs. Originally developed in the 1960s as a way to evade existing drug laws, the use of designer drugs has increased dramatically over the past few years. These drugs are deceptively packaged as "research chemicals," "incense," "bath salts," or "plant food," among other names, with labels that may contain warnings such as "not for human consumption" or "not for sale to minors." The clinical effects of most new designer drugs can be described as either hallucinogenic, stimulant, or opioid-like. They may also have a combination of these effects due to designer side-chain substitutions. The easy accessibility and rapid emergence of new designer drugs have created challenges for health care providers when treating patients presenting with acute toxicity from these substances, many of which can produce significant and/or life-threatening adverse effects. Moreover, the health care provider has no way to verify the contents and/or potency of the agent ingested because it can vary between packages and distributors. Therefore, a thorough knowledge of the available designer drugs, common signs and symptoms of toxicity associated with these agents, and potential effective treatment modalities are essential to appropriately manage these patients.

  9. Multiscale Modeling in the Clinic: Drug Design and Development

    Energy Technology Data Exchange (ETDEWEB)

    Clancy, Colleen E.; An, Gary; Cannon, William R.; Liu, Yaling; May, Elebeoba E.; Ortoleva, Peter; Popel, Aleksander S.; Sluka, James P.; Su, Jing; Vicini, Paolo; Zhou, Xiaobo; Eckmann, David M.

    2016-02-17

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.

  10. Target based drug design - a reality in virtual sphere.

    Science.gov (United States)

    Verma, Saroj; Prabhakar, Yenamandra S

    2015-01-01

    The target based drug design approaches are a series of computational procedures, including visualization tools, to support the decision systems of drug design/discovery process. In the essence of biological targets shaping the potential lead/drug molecules, this review presents a comprehensive position of different components of target based drug design which include target identification, protein modeling, molecular dynamics simulations, binding/catalytic sites identification, docking, virtual screening, fragment based strategies, substructure treatment of targets in tackling drug resistance, in silico ADMET, structural vaccinology, etc along with the key issues involved therein and some well investigated case studies. The concepts and working of these procedures are critically discussed to arouse interest and to advance the drug research.

  11. Multiscale Modeling in the Clinic: Drug Design and Development.

    Science.gov (United States)

    Clancy, Colleen E; An, Gary; Cannon, William R; Liu, Yaling; May, Elebeoba E; Ortoleva, Peter; Popel, Aleksander S; Sluka, James P; Su, Jing; Vicini, Paolo; Zhou, Xiaobo; Eckmann, David M

    2016-09-01

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multiscale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multiscale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multiscale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical and computational techniques employed for multiscale modeling approaches used in pharmacometric and systems pharmacology models in drug development and present several examples illustrating the current state-of-the-art models for (1) excitable systems and applications in cardiac disease; (2) stem cell driven complex biosystems; (3) nanoparticle delivery, with applications to angiogenesis and cancer therapy; (4) host-pathogen interactions and their use in metabolic disorders, inflammation and sepsis; and (5) computer-aided design of nanomedical systems. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multiscale models.

  12. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  13. The Antiviral Activity of Approved and Novel Drugs against HIV-1 Mutations Evaluated under the Consideration of Dose-Response Curve Slope.

    Directory of Open Access Journals (Sweden)

    Shuai Chang

    Full Text Available This study was designed to identify common HIV-1 mutation complexes affecting the slope of inhibition curve, and to propose a new parameter incorporating both the IC50 and the slope to evaluate phenotypic resistance.Utilizing site-directed mutagenesis, we constructed 22 HIV-1 common mutation complexes. IC50 and slope of 10 representative approved drugs and a novel agent against these mutations were measured to determine the resistance phenotypes. The values of new parameter incorporating both the IC50 and the slope of the inhibition curve were calculated, and the correlations between parameters were assessed.Depending on the class of drug, there were intrinsic differences in how the resistance mutations affected the drug parameters. All of the mutations resulted in large increases in the IC50s of nucleoside reverse transcriptase inhibitors. The effects of the mutations on the slope were the most apparent when examining their effects on the inhibition of non-nucleoside reverse transcriptase inhibitors and protease inhibitors. For example, some mutations, such as V82A, had no effect on IC50, but reduced the slope. We proposed a new concept, termed IIPatoxic, on the basis of IC50, slope and the maximum limiting concentrations of the drug. The IIPatoxic values of 10 approved drugs and 1 novel agent were calculated, and were closely related to the IIPmax values (r > 0.95, p < 0.001.This study confirms that resistance mutations cannot be accurately assessed by IC50 alone, because it tends to underestimate the degree of resistance. The slope parameter is of very importance in the measurement of drug resistance and the effect can be applied to more complex patterns of resistance. This is the most apparent when testing the effects of the mutations on protease inhibitors activity. We also propose a new index, IIPatoxic, which incorporates both the IC50 and the slope. This new index could complement current IIP indices, thereby enabling predict the

  14. In Vitro Antiviral Activity of Favipiravir (T-705) against Drug-Resistant Influenza and 2009 A(H1N1) Viruses▿

    OpenAIRE

    Sleeman, Katrina; Mishin, Vasiliy P.; Deyde, Varough M.; Furuta, Yousuke; Klimov, Alexander I.; Gubareva, Larisa V.

    2010-01-01

    Favipiravir (T-705) has previously been shown to have a potent antiviral effect against influenza virus and some other RNA viruses in both cell culture and in animal models. Currently, favipiravir is undergoing clinical evaluation for the treatment of influenza A and B virus infections. In this study, favipiravir was evaluated in vitro for its ability to inhibit the replication of a representative panel of seasonal influenza viruses, the 2009 A(H1N1) strains, and animal viruses with pandemic ...

  15. Self-interest versus group-interest in antiviral control

    NARCIS (Netherlands)

    Boven, M. van; Klinkenberg, D.; Pen, I.; Weissing, F.J.; Heesterbeek, J.A.P.

    2008-01-01

    Antiviral agents have been hailed to hold considerable promise for the treatment and prevention of emerging viral diseases like H5N1 avian influenza and SARS. However, antiviral drugs are not completely harmless, and the conditions under which individuals are willing to participate in a large-scale

  16. Hemozoin Formation as a Target for Antimalarial Drug Design

    Science.gov (United States)

    2005-02-01

    AD Award Number: DAMD17-03-1-0030 TITLE: Hemozoin Formation as a Target for Antimalarial Drug Design PRINCIPAL INVESTIGATOR: Michael K. Riscoe, Ph.D...Formation as a Target for Antimalarial Drug Design DAMD17-03-1-0030 6. A UTHOR(S) Michael K. Riscoe, Ph.D. 7. PERFORMING ORGANIZA TION NAME(S) AND ADDRESS...Report: by Principal Investigator - Michael K. Riscoe, Ph.D. DAMD1 7-03-1-0030: "Hemozoin Formation as a Target for Antimalarial Drug Design " INTRODUCTION

  17. Drug Guru: a computer software program for drug design using medicinal chemistry rules.

    Science.gov (United States)

    Stewart, Kent D; Shiroda, Melisa; James, Craig A

    2006-10-15

    Drug Guru (drug generation using rules) is a new web-based computer software program for medicinal chemists that applies a set of transformations, that is, rules, to an input structure. The transformations correspond to medicinal chemistry design rules-of-thumb taken from the historical lore of drug discovery programs. The output of the program is a list of target analogs that can be evaluated for possible future synthesis. A discussion of the features of the program is followed by an example of the software applied to sildenafil (Viagra) in generating ideas for target analogs for phosphodiesterase inhibition. Comparison with other computer-assisted drug design software is given.

  18. Interactive evolutionary algorithms and data mining for drug design

    NARCIS (Netherlands)

    Lameijer, Eric Marcel Wubbo

    2010-01-01

    One of the main problems of drug design is that it is quite hard to discover compounds that have all the required properties to become a drug (efficacy against the disease, good biological availability, low toxicity). This thesis describes the use of data mining and interactive evolutionary algorith

  19. Virtual screening and its integration with modern drug design technologies.

    Science.gov (United States)

    Guido, Rafael V C; Oliva, Glaucius; Andricopulo, Adriano D

    2008-01-01

    Drug discovery is a highly complex and costly process, which demands integrated efforts in several relevant aspects involving innovation, knowledge, information, technologies, expertise, R&D investments and management skills. The shift from traditional to genomics- and proteomics-based drug research has fundamentally transformed key R&D strategies in the pharmaceutical industry addressed to the design of new chemical entities as drug candidates against a variety of biological targets. Therefore, drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. The combination of available knowledge of several 3D protein structures with hundreds of thousands of small-molecules have attracted the attention of scientists from all over the world for the application of structure- and ligand-based drug design approaches. In this context, virtual screening technologies have largely enhanced the impact of computational methods applied to chemistry and biology and the goal of applying such methods is to reduce large compound databases and to select a limited number of promising candidates for drug design. This review provides a perspective of the utility of virtual screening in drug design and its integration with other important drug discovery technologies such as high-throughput screening (HTS) and QSAR, highlighting the present challenges, limitations, and future perspectives in medicinal chemistry.

  20. Interactive evolutionary algorithms and data mining for drug design

    OpenAIRE

    Lameijer, Eric Marcel Wubbo

    2010-01-01

    One of the main problems of drug design is that it is quite hard to discover compounds that have all the required properties to become a drug (efficacy against the disease, good biological availability, low toxicity). This thesis describes the use of data mining and interactive evolutionary algorithms to design novel classes of molecules. Using data mining, we split a 250,000 compound database into ring systems, substituents and linkers. We then counted the occurrence of the different fragmen...

  1. Hepatitis C Drugs: The End of the Pegylated Interferon Era and the Emergence of All-Oral, Interferon-Free Antiviral Regimens: A Concise Review

    Directory of Open Access Journals (Sweden)

    Alan Hoi Lun Yau

    2014-01-01

    Full Text Available Between 2001 and 2011, the standard of care for chronic hepatitis C virus (HCV infection was a combination of pegylated interferon (PEGIFN and ribavirin (RBV. In May 2011, boceprevir and telaprevir, two first-generation NS3/4A protease inhibitors, were approved in combination with PEG-IFN and RBV for 24 to 48 weeks in hepatitis C virus genotype 1 infections. In December 2013, simeprevir, a second-generation NS3/4A protease inhibitor, was approved for use with PEG-IFN and RBV for 12 weeks in genotype 1, while sofosbuvir, a NS5B nucleotide polymerase inhibitor, was approved for use with PEG-IFN and RBV for 12 weeks in genotypes 1 and 4, as well as with RBV alone for 12 weeks in genotype 2 and for 24 weeks in genotype 3. Sofosbuvir combined with simeprevir or an NS5A replication complex inhibitor (ledipasvir or daclatasvir with or without RBV for 12 weeks in genotype 1 resulted in a sustained virological response >90%, irrespective of previous treatment history or presence of cirrhosis. Similarly impressive sustained virological response rates have been shown with ABT-450/r (ritonavir-boosted NS3/4A protease inhibitor-based regimens in combination with other direct-acting antiviral agent(s with or without RBV for 12 weeks in genotype 1. The optimal all-oral interferon-free antiviral regimen likely entails a combination of an NS5B nucleotide polymerase inhibitor with either a second-generation NS3/4A protease inhibitor or an NS5A replication complex inhibitor with or without RBV. Further research is needed to determine the role of resistance testing, clarify the optimal follow-up duration post-treatment, and evaluate the antiviral efficacy and safety in difficult-to-cure patient populations.

  2. Editorial: in silico drug design and medicinal chemistry).

    Science.gov (United States)

    Singla, Rajeev K

    2015-01-01

    Medicinal chemistry is not limited to molecules, their structures and design but also highly cohesive to pharmacological activities. The potency of a molecule varies by its structure. Hence structural activity relationship is the sub-branch which deals with the estimation of ability of a molecule in depicting any pharmacological activity. In silico drug design is a novel technique which is employed in designing a molecule by using computer aided software’s and bringing a superior and potent molecule. In recent years, in silico drug design has been merged with medicinal chemistry especially by the techniques like ligand based strategy to isolate the required structures. By such strategic techniques, there are high chances of delivering high throughput screening which involves of screening large number of molecules in a very less time. Involvement of such techniques would be a boon for development of new drug entity as it can aid in development of newer, safe, effective and potent drug molecules. Hence, the present issue is aimed to emphasize the cohesion between in silico drug design and it significance in medicinal chemistry. The articles which would be published will mainly focus on the role of in silico drug design techniques in the development of molecules to target various disease and disorders. Molecules can from natural/ synthetic/semi synthetic origin. Articles will be a treasure box consisting of employment of computational methods for unprecedented molecules. The issue will be sure an endorsement for international readership and researchers.

  3. PARP1 Inhibitors: antitumor drug design.

    Science.gov (United States)

    Malyuchenko, N V; Kotova, E Yu; Kulaeva, O I; Kirpichnikov, M P; Studitskiy, V M

    2015-01-01

    The poly (ADP-ribose) polymerase 1 (PARP1) enzyme is one of the promising molecular targets for the discovery of antitumor drugs. PARP1 is a common nuclear protein (1-2 million molecules per cell) serving as a "sensor" for DNA strand breaks. Increased PARP1 expression is sometimes observed in melanomas, breast cancer, lung cancer, and other neoplastic diseases. The PARP1 expression level is a prognostic indicator and is associated with a poor survival prognosis. There is evidence that high PARP1 expression and treatment-resistance of tumors are correlated. PARP1 inhibitors are promising antitumor agents, since they act as chemo- and radiosensitizers in the conventional therapy of malignant tumors. Furthermore, PARP1 inhibitors can be used as independent, effective drugs against tumors with broken DNA repair mechanisms. Currently, third-generation PARP1 inhibitors are being developed, many of which are undergoing Phase II clinical trials. In this review, we focus on the properties and features of the PARP1 inhibitors identified in preclinical and clinical trials. We also describe some problems associated with the application of PARP1 inhibitors. The possibility of developing new PARP1 inhibitors aimed at DNA binding and transcriptional activity rather than the catalytic domain of the protein is discussed.

  4. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes.

    Science.gov (United States)

    Matthews, D A; Dragovich, P S; Webber, S E; Fuhrman, S A; Patick, A K; Zalman, L S; Hendrickson, T F; Love, R A; Prins, T J; Marakovits, J T; Zhou, R; Tikhe, J; Ford, C E; Meador, J W; Ferre, R A; Brown, E L; Binford, S L; Brothers, M A; DeLisle, D M; Worland, S T

    1999-09-28

    Human rhinoviruses, the most important etiologic agents of the common cold, are messenger-active single-stranded monocistronic RNA viruses that have evolved a highly complex cascade of proteolytic processing events to control viral gene expression and replication. Most maturation cleavages within the precursor polyprotein are mediated by rhinovirus 3C protease (or its immediate precursor, 3CD), a cysteine protease with a trypsin-like polypeptide fold. High-resolution crystal structures of the enzyme from three viral serotypes have been used for the design and elaboration of 3C protease inhibitors representing different structural and chemical classes. Inhibitors having alpha,beta-unsaturated carbonyl groups combined with peptidyl-binding elements specific for 3C protease undergo a Michael reaction mediated by nucleophilic addition of the enzyme's catalytic Cys-147, resulting in covalent-bond formation and irreversible inactivation of the viral protease. Direct inhibition of 3C proteolytic activity in virally infected cells treated with these compounds can be inferred from dose-dependent accumulations of viral precursor polyproteins as determined by SDS/PAGE analysis of radiolabeled proteins. Cocrystal-structure-assisted optimization of 3C-protease-directed Michael acceptors has yielded molecules having extremely rapid in vitro inactivation of the viral protease, potent antiviral activity against multiple rhinovirus serotypes and low cellular toxicity. Recently, one compound in this series, AG7088, has entered clinical trials.

  5. Membrane-Protein Crystallography and Potentiality for Drug Design

    Science.gov (United States)

    Yamashita, Atsuko

    Structure-based drug design for membrane proteins is far behind that for soluble proteins due to difficulty in crystallographic structure determination, despite the fact that about 60% of FDA-approved drugs target membrane proteins located at the cell surface. Stable homologs for a membrane protein of interest, such as prokaryotic neurotransmitter transporter homolog LeuT, might enable cooperative analyses by crystallography and functional assays, provide useful information for functional mechanisms, and thus serve as important probes for drug design based on mechanisms as well as structures.

  6. CNS drug design: balancing physicochemical properties for optimal brain exposure.

    Science.gov (United States)

    Rankovic, Zoran

    2015-03-26

    The human brain is a uniquely complex organ, which has evolved a sophisticated protection system to prevent injury from external insults and toxins. Designing molecules that can overcome this protection system and achieve optimal concentration at the desired therapeutic target in the brain is a specific and major challenge for medicinal chemists working in CNS drug discovery. Analogous to the now widely accepted rule of 5 in the design of oral drugs, the physicochemical properties required for optimal brain exposure have been extensively studied in an attempt to similarly define the attributes of successful CNS drugs and drug candidates. This body of work is systematically reviewed here, with a particular emphasis on the interplay between the most critical physicochemical and pharmacokinetic parameters of CNS drugs as well as their impact on medicinal chemistry strategies toward molecules with optimal brain exposure. A summary of modern CNS pharmacokinetic concepts and methods is also provided.

  7. Design and optimization of floating drug delivery system of acyclovir

    Directory of Open Access Journals (Sweden)

    Kharia A

    2010-01-01

    Full Text Available The purpose of the present work was to design and optimize floating drug delivery systems of acyclovir using psyllium husk and hydroxypropylmethylcellulose K4M as the polymers and sodium bicarbonate as a gas generating agent. The tablets were prepared by wet granulation method. A 32 full factorial design was used for optimization of drug release profile. The amount of psyllium husk (X1 and hydroxypropylmethylcellulose K4M (X2 were selected as independent variables. The times required for 50% (t 50% and 70% (t 70% drug dissolution were selected as dependent variables. All the designed nine batches of formulations were evaluated for hardness, friability, weight variation, drug content uniformity, swelling index, in vitro buoyancy, and in vitro drug release profile. All formulations had floating lag time below 3 min and constantly floated on dissolution medium for more than 24 h. Validity of the developed polynomial equation was verified by designing two check point formulations (C1 and C2. The closeness of predicted and observed values for t 50% and t 70% indicates validity of derived equations for the dependent variables. These studies indicated that the proper balance between psyllium husk and hydroxypropylmethylcellulose K4M can produce a drug dissolution profile similar to the predicted dissolution profile. The optimized formulations followed Higuchi′s kinetics while the drug release mechanism was found to be anomalous type, controlled by diffusion through the swollen matrix.

  8. [Computational chemistry in structure-based drug design].

    Science.gov (United States)

    Cao, Ran; Li, Wei; Sun, Han-Zi; Zhou, Yu; Huang, Niu

    2013-07-01

    Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.

  9. A Modified P1 Moiety Enhances in vitro Antiviral Activity against Various Multi-Drug-Resistant HIV-1 Variants and in vitro CNS Penetration Properties of a Novel Nonpeptidic Protease Inhibitor, GRL-10413

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Masayuki; Salcedo-Gómez, Pedro Miguel; Zhao, Rui; Yedidi, Ravikiran S.; Das, Debananda; Bulut, Haydar; Delino, Nicole S.; Sheri, Venkata Reddy; Ghosh, Arun K.; Mitsuya, Hiroaki (Kumamoto); (NIH); (Purdue)

    2016-09-12

    We here report that GRL-10413, a novel non-peptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (EC50: 0.00035 - 0.0018 μM) with minimal cytotoxicity (CC50: 35.7 μM). GRL-10413 blocked the infectivity and replication of HIV-1NL4-3variants selected by up to 5 μM concentrations of atazanavir, lopinavir, or amprenavir (EC50: 0.0021 - 0.0023 μM). GRL-10413 also maintained its strong antiviral activity against multi-drug-resistant clinical HIV-1 variants isolated from patients, who no longer responded to various antiviral regimens after long-term antiretroviral therapy. The development of resistance against GRL-10413 was significantly delayed compared to that of APV. In addition, GRL-10413 showed a favorable central nervous system (CNS) penetration property as assessed with anin vitroblood brain barrier (BBB) reconstruction system. Analysis of the crystal structure of HIV-1 protease in complex with GRL-10413 demonstrated that the modified P1 moiety of GRL-10413 has a greater hydrophobic surface area and makes greater van der Waals contacts with active-site amino acids of protease than in the case of darunavir. Moreover, the chlorine substituent in the P1 moiety interacts with protease in two distinct configurations. The present data demonstrate that GRL-10413 has desirable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants with favorable CNS-penetration capability and that the newly modified P1-moiety may confer desirable features in designing novel anti-HIV-1 PIs.

  10. Design and Construction of Shrimp Antiviral DNA Vaccines Expressing Long and Short Hairpins for Protection by RNA Interference.

    Science.gov (United States)

    Chaudhari, Aparna; Pathakota, Gireesh-Babu; Annam, Pavan-Kumar

    2016-01-01

    DNA vaccines present the aquaculture industry with an effective and economically viable method of controlling viral pathogens that drastically affect productivity. Since specific immune response is rudimentary in invertebrates, the presence of RNA interference (RNAi) pathway in shrimps provides a promising new approach to vaccination. Plasmid DNA vaccines that express short or long double stranded RNA in vivo have shown protection against viral diseases. The design, construction and considerations for preparing such vaccines are discussed.

  11. Design of an Implantable Device for Ocular Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Lee

    2012-01-01

    Full Text Available Ocular diseases, such as, glaucoma, age-related macular degeneration (AMD, diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting million of adults in USA and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This study focuses on the design, simulation, and development of an implantable ocular drug delivery device consisting of micro-/nanochannels embedded between top and bottom covers with a drug reservoir made from polydimethylsiloxane (PDMS which is silicon-based organic and biodegradable polymer. Several simulations were carried out with six different micro-channel configurations in order to see the feasibility for ocular drug delivery applications. Based on the results obtained, channel design of osmotic I and osmotic II satisfied the diffusion rates required for ocular drug delivery. Finally, a prototype illustrating the three components of the drug delivery design is presented. In the future, the device will be tested for its functionality and diffusion characteristics.

  12. Physics and Its Interfaces with Medicinal Chemistry and Drug Design

    Science.gov (United States)

    Santos, Ricardo N.; Andricopulo, Adriano D.

    2013-08-01

    Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

  13. A Bright Future for Evolutionary Methods in Drug Design.

    Science.gov (United States)

    Le, Tu C; Winkler, David A

    2015-08-01

    Most medicinal chemists understand that chemical space is extremely large, essentially infinite. Although high-throughput experimental methods allow exploration of drug-like space more rapidly, they are still insufficient to fully exploit the opportunities that such large chemical space offers. Evolutionary methods can synergistically blend automated synthesis and characterization methods with computational design to identify promising regions of chemical space more efficiently. We describe how evolutionary methods are implemented, and provide examples of published drug development research in which these methods have generated molecules with increased efficacy. We anticipate that evolutionary methods will play an important role in future drug discovery.

  14. 21 CFR 316.30 - Annual reports of holder of orphan-drug designation.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Annual reports of holder of orphan-drug designation. 316.30 Section 316.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... of holder of orphan-drug designation. Within 14 months after the date on which a drug was...

  15. Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study.

    Science.gov (United States)

    Berry, Michael; Fielding, Burtram C; Gamieldien, Junaid

    2015-12-15

    Human coronaviruses represent a significant disease burden; however, there is currently no antiviral strategy to combat infection. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) less than 10 years later demonstrates the potential of coronaviruses to cross species boundaries and further highlights the importance of identifying novel lead compounds with broad spectrum activity. The coronavirus 3CL(pro) provides a highly validated drug target and as there is a high degree of sequence homology and conservation in main chain architecture the design of broad spectrum inhibitors is viable. The ZINC drugs-now library was screened in a consensus high-throughput pharmacophore modeling and molecular docking approach by Vina, Glide, GOLD and MM-GBSA. Molecular dynamics further confirmed results obtained from structure-based techniques. A highly defined hit-list of 19 compounds was identified by the structure-based drug design methodologies. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds is bioactive is excellent. Additionally, the compounds segregate into 15 significantly dissimilar (p < 0.05) clusters based on shape and features, which represent valuable scaffolds that can be used as a basis for future anti-coronaviral inhibitor discovery experiments. Importantly though, the enriched subset of 19 compounds identified from the larger library has to be validated experimentally.

  16. An introduction to quantum chemical methods applied to drug design.

    Science.gov (United States)

    Stenta, Marco; Dal Peraro, Matteo

    2011-06-01

    The advent of molecular medicine allowed identifying the malfunctioning of subcellular processes as the source of many diseases. Since then, drugs are not only discovered, but actually designed to fulfill a precise task. Modern computational techniques, based on molecular modeling, play a relevant role both in target identification and drug lead development. By flanking and integrating standard experimental techniques, modeling has proven itself as a powerful tool across the drug design process. The success of computational methods depends on a balance between cost (computation time) and accuracy. Thus, the integration of innovative theories and more powerful hardware architectures allows molecular modeling to be used as a reliable tool for rationalizing the results of experiments and accelerating the development of new drug design strategies. We present an overview of the most common quantum chemistry computational approaches, providing for each one a general theoretical introduction to highlight limitations and strong points. We then discuss recent developments in software and hardware resources, which have allowed state-of-the-art of computational quantum chemistry to be applied to drug development.

  17. Addressing metabolic activation as an integral component of drug design.

    Science.gov (United States)

    Doss, George A; Baillie, Thomas A

    2006-01-01

    Formation of reactive intermediates by metabolism of xenobiotics represents a potential liability in drug discovery and development. Although it is difficult, if not impossible, to predict toxicities of drug candidates accurately, it is prudent to try to minimize bioactivation liabilities as early as possible in the stage of drug discovery and lead optimization. Measurement of covalent binding to liver microsomal proteins in the presence and the absence of NADPH, as well as the use of trapping agents such as glutathione or cyanide ions to provide structural information on reactive intermediates, have been used routinely to screen drug candidates. These in vitro experiments are often supplemented with in vivo covalent binding data in rats. The resulting data are not only used to eliminate potentially risky compounds, but, more importantly, they provide invaluable information to direct the Medicinal Chemistry group efforts to design analogs with less propensity to undergo bioactivation. Select case histories are presented in which this approach was successfully applied at Merck.

  18. In vitro evaluation of marine-microorganism extracts for anti-viral activity

    OpenAIRE

    Yasuhara-Bell Jarred; Yang Yongbo; Barlow Russell; Trapido-Rosenthal Hank; Lu Yuanan

    2010-01-01

    Abstract Viral-induced infectious diseases represent a major health threat and their control remains an unachieved goal, due in part to the limited availability of effective anti-viral drugs and measures. The use of natural products in drug manufacturing is an ancient and well-established practice. Marine organisms are known producers of pharmacological and anti-viral agents. In this study, a total of 20 extracts from marine microorganisms were evaluated for their antiviral activity. These ex...

  19. Antiviral lead compounds from marine sponges

    KAUST Repository

    Sagar, Sunil

    2010-10-11

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. 2010 by the authors; licensee MDPI.

  20. Drug design and discovery: translational biomedical science varies among countries.

    Science.gov (United States)

    Weaver, Ian N; Weaver, Donald F

    2013-10-01

    Drug design and discovery is an innovation process that translates the outcomes of fundamental biomedical research into therapeutics that are ultimately made available to people with medical disorders in many countries throughout the world. To identify which nations succeed, exceed, or fail at the drug design/discovery endeavor--more specifically, which countries, within the context of their national size and wealth, are "pulling their weight" when it comes to developing medications targeting the myriad of diseases that afflict humankind--we compiled and analyzed a comprehensive survey of all new drugs (small molecular entities and biologics) approved annually throughout the world over the 20-year period from 1991 to 2010. Based upon this analysis, we have devised prediction algorithms to ascertain which countries are successful (or not) in contributing to the worldwide need for effective new therapeutics.

  1. The significance of chirality in drug design and development.

    Science.gov (United States)

    Brooks, W H; Guida, W C; Daniel, K G

    2011-01-01

    Proteins are often enantioselective towards their binding partners. When designing small molecules to interact with these targets, one should consider stereoselectivity. As considerations for exploring structure space evolve, chirality is increasingly important. Binding affinity for a chiral drug can differ for diastereomers and between enantiomers. For the virtual screening and computational design stage of drug development, this problem can be compounded by incomplete stereochemical information in structure libraries leading to a "coin toss" as to whether or not the "ideal" chiral structure is present. Creating every stereoisomer for each chiral compound in a structure library leads to an exponential increase in the number of structures resulting in potentially unmanageable file sizes and screening times. Therefore, only key chiral structures, enantiomeric pairs based on relative stereochemistry need be included, and lead to a compromise between exploration of chemical space and maintaining manageable libraries. In clinical environments, enantiomers of chiral drugs can have reduced, no, or even deleterious effects. This underscores the need to avoid mixtures of compounds and focus on chiral synthesis. Governmental regulations emphasizing the need to monitor chirality in drug development have increased. The United States Food and Drug Administration issued guidelines and policies in 1992 concerning the development of chiral compounds. These guidelines require that absolute stereochemistry be known for compounds with chiral centers and that this information should be established early in drug development in order that the analysis can be considered valid. From exploration of structure space to governmental regulations it is clear that the question of chirality in drug design is of vital importance.

  2. A Prospective Method to Guide Small Molecule Drug Design

    Science.gov (United States)

    Johnson, Alan T.

    2015-01-01

    At present, small molecule drug design follows a retrospective path when considering what analogs are to be made around a current hit or lead molecule with the focus often on identifying a compound with higher intrinsic potency. What this approach overlooks is the simultaneous need to also improve the physicochemical (PC) and pharmacokinetic (PK)…

  3. Drug Design, Development, and Delivery: An Interdisciplinary Course on Pharmaceuticals

    Science.gov (United States)

    Prausnitz, Mark R.; Bommarius, Andreas S.

    2011-01-01

    We developed a new interdisciplinary course on pharmaceuticals to address needs of undergraduate and graduate students in chemical engineering and other departments. This course introduces drug design, development, and delivery in an integrated fashion that provides scientific depth in context with broader impacts in business, policy, and ethics.…

  4. On p53 revival using system oriented drug dosage design.

    Science.gov (United States)

    Haseeb, Muhammad; Azam, Shumaila; Bhatti, A I; Azam, Rizwan; Ullah, Mukhtar; Fazal, Sahar

    2017-02-21

    We propose a new paradigm in the drug design for the revival of the p53 pathway in cancer cells. It is shown that the current strategy of using small molecule based Mdm2 inhibitors is not enough to adequately revive p53 in cancerous cells, especially when it comes to the extracting pulsating behavior of p53. This fact has come to notice when a novel method for the drug dosage design is introduced using system oriented concepts. As a test case, small molecule drug Mdm2 repressor Nutlin 3a is considered. The proposed method determines the dose of Nutlin to revive p53 pathway functionality. For this purpose, PBK dynamics of Nutlin have also been integrated with p53 pathway model. The p53 pathway is the focus of researchers for the last thirty years for its pivotal role as a frontline cancer suppressant protein due to its effect on cell cycle checkpoints and cell apoptosis in response to a DNA strand break. That is the reason for finding p53 being absent in more than 50% of tumor cancers. Various drugs have been proposed to revive p53 in cancer cells. Small molecule based drugs are at the foremost and are the subject of advanced clinical trials. The dosage design of these drugs is an important issue. We use control systems concepts to develop the drug dosage so that the cancer cells can be treated in appropriate time. We investigate by using a computational model how p53 protein responds to drug Nutlin 3a, an agent that interferes with the MDM2-mediated p53 regulation. The proposed integrated model describes in some detail the regulation network of p53 including the negative feedback loop mediated by MDM2 and the positive feedback loop mediated by Mdm2 mRNA as well as the reversible represses of MDM2 caused by Nutlin. The reported PBK dynamics of Nutlin 3a are also incorporated to see the full effect. It has been reported that p53 response to stresses in two ways. Either it has a sustained (constant) p53 response, or there are oscillations in p53 concentration. The

  5. The evolution of drug design at Merck Research Laboratories

    Science.gov (United States)

    Brown, Frank K.; Sherer, Edward C.; Johnson, Scott A.; Holloway, M. Katharine; Sherborne, Bradley S.

    2016-11-01

    On October 5, 1981, Fortune magazine published a cover article entitled the "Next Industrial Revolution: Designing Drugs by Computer at Merck". With a 40+ year investment, we have been in the drug design business longer than most. During its history, the Merck drug design group has had several names, but it has always been in the "design" business, with the ultimate goal to provide an actionable hypothesis that could be tested experimentally. Often the result was a small molecule but it could just as easily be a peptide, biologic, predictive model, reaction, process, etc. To this end, the concept of design is now front and center in all aspects of discovery, safety assessment and early clinical development. At present, the Merck design group includes computational chemistry, protein structure determination, and cheminformatics. By bringing these groups together under one umbrella, we were able to align activities and capabilities across multiple research sites and departments. This alignment from 2010 to 2016 resulted in an 80% expansion in the size of the department, reflecting the increase in impact due to a significant emphasis across the organization to "design first" along the entire drug discovery path from lead identification (LID) to first in human (FIH) dosing. One of the major advantages of this alignment has been the ability to access all of the data and create an adaptive approach to the overall LID to FIH pathway for any modality, significantly increasing the quality of candidates and their probability of success. In this perspective, we will discuss how we crafted a new strategy, defined the appropriate phenotype for group members, developed the right skillsets, and identified metrics for success in order to drive continuous improvement. We will not focus on the tactical implementation, only giving specific examples as appropriate.

  6. Biological characteristics of dengue virus and potential targets for drug design

    Institute of Scientific and Technical Information of China (English)

    Rui-feng Qi; Ling Zhang; Cheng-wu Chi

    2008-01-01

    Dengue infection is a major cause of morbidity in tropical and subtropical regions, bringing nearly 40% of the world population at risk and causing more than 20,000 deaths per year. But there is neither a vaccine for dengue disease nor antiviral drugs to treat the infection. In recent years, dengue infection has been particularly prevalent in India, Southeast Asia, Brazil, and Guangdong Province, China. In this article, we present a brief summary of the biological characteristics of dengue virus and associated flaviviruses, and outline the progress on studies of vaccines and drugs based on potential targets of the dengue virus.

  7. Exploiting Genetic Interference for Antiviral Therapy.

    Science.gov (United States)

    Tanner, Elizabeth J; Kirkegaard, Karla A; Weinberger, Leor S

    2016-05-01

    Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings.

  8. Antiviral chemotherapy in veterinary medicine: current applications and perspectives.

    Science.gov (United States)

    Dal Pozzo, F; Thiry, E

    2014-12-01

    The current situation in the use of antiviral drugs in veterinary medicine is characterised by a novel and optimistic approach.Viruses of veterinary importance are still used as animal models in the developmentof human therapeutics, but there is growing interest in many of these viruses in the identification of antiviral molecules for use in both livestock and companion animals. The use of antiviral drugs in livestock animals is envisaged for the treatment or control of disease on a large scale (mass treatment), whereas in companion animals an individual approach is favoured. An overview of the most recent examples of research in the use of antivirals in veterinary medicine is presented, with particular emphasis on their in vivo applications.

  9. Computer Aided Drug Design for Multi-Target Drug Design: SAR /QSAR, Molecular Docking and Pharmacophore Methods.

    Science.gov (United States)

    Abdolmaleki, Azizeh; Ghasemi, Jahan B; Ghasemi, Fatemeh

    2017-01-01

    Multi-target drugs against particular multiple targets get better protection, resistance profiles and curative influence by cooperative rules of a key beneficial target with resistance behavior and compensatory elements. Computational techniques can assist us in the efforts to design novel drugs (ligands) with a preferred bioactivity outline and alternative bioactive molecules at an early stage. A number of in silico methods have been explored extensively in order to facilitate the investigation of individual target agents and to propose a selective drug. A different, progressively more significant field which is used to predict the bioactivity of chemical compounds is the data mining method. Some of the previously mentioned methods have been investigated for multi-target drug design (MTDD) to find drug leads interact simultaneously with multiple targets. Several cheminformatics methods and structure-based approaches try to extract information from units working cooperatively in a biomolecular system to fulfill their task. To dominate the difficulties of the experimental specification of ligand-target structures, rational methods, namely molecular docking, SAR and QSAR are vital substitutes to obtain knowledge for each structure in atomic insight. These procedures are logically successful for the prediction of binding affinity and have shown promising potential in facilitating MTDD. Here, we review some of the important features of the multi-target therapeutics discoveries using the computational approach, highlighting the SAR, QSAR, docking and pharmacophore methods to discover interactions between drug-target that could be leveraged for curative benefits. A summary of each, followed by examples of its applications in drug design has been provided. Computational efficiency of each method has been represented according to its main strengths and limitations.

  10. Application of quality by design in the current drug development

    Directory of Open Access Journals (Sweden)

    Lan Zhang

    2017-01-01

    Full Text Available Quality by Test was the only way to guarantee quality of drug products before FDA launched current Good Manufacturing Practice. To clearly understand the manufacture processes, FDA generalized Quality by Design (QbD in the field of pharmacy, which is based on the thorough understanding of how materials and process parameters affect the quality profile of final products. The application of QbD in drug formulation and process design is based on a good understanding of the sources of variability and the manufacture process. In this paper, the basic knowledge of QbD, the elements of QbD, steps and tools for QbD implementation in pharmaceutics field, including risk assessment, design of experiment, and process analytical technology (PAT, are introduced briefly. Moreover, the concrete applications of QbD in various pharmaceutical related unit operations are summarized and presented.

  11. DESIGN OF GASTRO RETENTIVE DRUG DELIVERY SYSTEM OF DILTIAZEM HYDROCHLORIDE

    Directory of Open Access Journals (Sweden)

    L. K. Omray

    2014-02-01

    Full Text Available Gastro retentive drug delivery system of diltiazem hydrochloride was designed and evaluated for its effectiveness for the management of mild to moderate hypertension. Gastro retentive drug delivery system were prepared using polyvinyl alcohol and sodium carboxy methyl cellulose as the polymers and sodium bicarbonate as a gas generating agent for the reduction of floating lag time. Gastro retentive drug delivery system tablets were prepared by wet granulation method by compression in tablet compression machine. Formulations DL1, DL2, DL3, DL4 and DL5 were developed which differed in the ratio of polyvinyl alcohol and sodium carboxy methyl cellulose polymers. All the formulations were evaluated for hardness, weight variation, friability, drug content, swelling index, buoyancy studies and in vitro drug release study. In vitro drug release study was performed using United State Pharmacopoeia 23 type 2 dissolution test apparatus employing paddle stirrer at 50 r/pm. Dissolution medium was 900 ml of 0.1N hydrochloric acid at 37ºC ± 3ºC. Formulations DL3 was found to be better as compared to other formulation.

  12. Utilization of Antiviral Drugs in 24 Hospitals of Wuhan Area during the Period of 2007-2010%武汉地区24家医院2007-2010年抗病毒药利用分析

    Institute of Scientific and Technical Information of China (English)

    任秀华; 刘东; 方淑贤

    2012-01-01

    目的:分析武汉地区24家医院抗病毒药的利用情况及趋势.方法:采用回顾性方法,对武汉地区24家医院2007-2010年抗病毒药的销售金额、用药频度(DDDs)和日均费用(DDC)等进行统计、分析.结果:4年来该地区医院抗病毒药总销售金额呈逐年上升趋势,居前5位的药物均为核苷类抗病毒药,约占总销售额的90%;阿德福韦酯、拉米夫定的DDDs较高,一直居前2位;金刚烷胺的DDC最低(约0.13元/日),其次是三氮唑核苷(低于5元/日);销售金额排序列前20位的制药企业中,前4位全部是进口企业或合资企业.结论:抗病毒药品种相对较少,主要为核苷类抗病毒药,国内企业生产的抗病毒药所占份额较小,因此应加强抗病毒药的研发,增强国有抗病毒药的国际竞争力.%OBJECTIVE: To evaluate the status quo and developmental trend of the utilization of antiviral drugs in 24 hospitals of Wuhan area from 2007 to 2010. METHODS: Using retrospective method, utilization of antiviral drugs was analyzed statistically in respect of consumption sum,DDDs and DDC, etc. RESULTS: Over the 4 years, the total consumption sum of antiviral drugs in Wuhan area increased year by year. The top 5 drugs were all nucleoside antiviral, accounting for about 90% of total consumptions. The DDDs of adefovir dipivoxil and lamivudine were higher than that of any others. In addition, the DDC of amantadine was the lowest about (about 0.13 yuan /day), followed by ribavirin( less than 5 yuan/day). Among the top 20 pharmaceutical companies in the list of consumption sum, the top 4 were all import enterprises or joint ventures. CONCLUSION: There are a few species of antiviral drugs relatively, mainly including nucleoside antiviral drugs. Moreover, the amount of antiviral drugs produced by domestic companies shares very small proportion. Therefore, the development of antiviral drugs should be strengthened and the international competitiveness of state

  13. Virtual Screening and Structure Generation Applied to Drug Design

    Institute of Scientific and Technical Information of China (English)

    FAN B.T.; CHEN H. F.; XIE L.; YUAN S. G.; A. PANAYE; J-P. DOUCET

    2004-01-01

    The methods of computer-aided drug design can be divided into two categories according to whether or not the structures of receptors are known1, corresponding to two principal strategies:(1) searching the bio-active ligands against virtual combinatorial libraries and calculating the affinity energy between ligand and receptor by docking ; (2) QSAR and 3D-structure data-mining.3D-QSAR method is now applied widely to drug discovery, but this method is generally limited to refine the structures of known bio-active compounds. During the process of drug design, we have usually the prejudice that certain groups or structural fragments will play or not important roles on the activity. This will sometimes be misleading, and prevent us from obtaining expected results.The method of generating firstly diverse structures, then screening out the promising structures by means of a computational method or QSAR model, is an efficient way for drug discovery. We developed an efficient virtual and rational drag design method. It combines virtual bioactive compound generation using genetic algorithms with 3D-QSAR model and docking. Using this method can generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study on a set of anti-tumor drugs, colchicine analogs2. With the constraints of pharmacophore obtained determined by DISCO, 97 virtual bioactive compounds were generated,and their anti-tumor activities were predicted by CoMFA. 8 structures with high activity were selected and screened by 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity (see fig.1). This drug design method could also avoid the conflict between the insufficiency of active structures and the great quantity of compounds needed for high-throughput screening. This method has been also applied to anti-HIV drug design.We have developed equally another approach of virtual

  14. From laptop to benchtop to bedside: Structure-based Drug Design on Protein Targets

    OpenAIRE

    Chen, Lu; Morrow, John K.; Tran, Hoang T.; Phatak, Sharangdhar S.; Du-Cuny, Lei; Zhang, Shuxing

    2012-01-01

    As an important aspect of computer-aided drug design, structure-based drug design brought a new horizon to pharmaceutical development. This in silico method permeates all aspects of drug discovery today, including lead identification, lead optimization, ADMET prediction and drug repurposing. Structure-based drug design has resulted in fruitful successes drug discovery targeting protein-ligand and protein-protein interactions. Meanwhile, challenges, noted by low accuracy and combinatoric issue...

  15. The Prevalence and Trends of Antiviral Medication Use during Pregnancy in the U.S. A population-based study of 664,297 deliveries in 2001-2007

    Science.gov (United States)

    Avalos, Lyndsay A.; Chen, Hong; Yang, Chunmei; Andrade, Susan E.; Cooper, William O.; Cheetham, Craig T.; Davis, Robert L.; Dublin, Sascha; Hammad, Tarek A.; Kaplan, Sigal; Pawloski, Pamala A.; Raebel, Marsha A.; Scott, Pamela E.; Smith, David H.; Toh, Sengwee; Li, De-Kun

    2013-01-01

    Objectives To evaluate the prevalence, trends, timing and duration of exposure to antiviral medications during pregnancy within a US cohort of pregnant women and to evaluate the proportion of deliveries with a viral infection diagnosis among women given antiviral medication during pregnancy. Methods Live-born deliveries between 2001 and 2007, to women aged 15 to 45 years, were included from the Medication Exposure in Pregnancy Risk Evaluation Program (MEPREP), a collaborative research program between the U.S. Food and Drug Administration and eleven health plans. They were evaluated for prevalence, timing, duration, and temporal trends of exposure to antiviral medications during pregnancy. We also calculated the proportion of deliveries with a viral infection diagnosis among those exposed to antiviral medications. Results Among 664,297 live births, the overall prevalence of antiviral exposure during pregnancy was 4% (n=25,155). Between 2001 and 2007, antiviral medication exposure during pregnancy doubled from 2.5% to 5%. The most commonly used antiviral medication was acyclovir, with 3% of the deliveries being exposed and most of the exposure occurring after the 1st trimester. Most deliveries exposed to antiviral medications were exposed for less than 30 days (2% of all live births). Forty percent of the women delivering an infant exposed to antiviral medications had a herpes diagnosis. Conclusions Our findings highlight the increased prevalence of women delivering an infant exposed to antiviral medications over time. These findings support the need for large, well-designed studies to assess the safety and effectiveness of these medications during pregnancy. PMID:23420306

  16. Molecular docking and structure-based drug design strategies.

    Science.gov (United States)

    Ferreira, Leonardo G; Dos Santos, Ricardo N; Oliva, Glaucius; Andricopulo, Adriano D

    2015-07-22

    Pharmaceutical research has successfully incorporated a wealth of molecular modeling methods, within a variety of drug discovery programs, to study complex biological and chemical systems. The integration of computational and experimental strategies has been of great value in the identification and development of novel promising compounds. Broadly used in modern drug design, molecular docking methods explore the ligand conformations adopted within the binding sites of macromolecular targets. This approach also estimates the ligand-receptor binding free energy by evaluating critical phenomena involved in the intermolecular recognition process. Today, as a variety of docking algorithms are available, an understanding of the advantages and limitations of each method is of fundamental importance in the development of effective strategies and the generation of relevant results. The purpose of this review is to examine current molecular docking strategies used in drug discovery and medicinal chemistry, exploring the advances in the field and the role played by the integration of structure- and ligand-based methods.

  17. Molecular drug targets and structure based drug design: A holistic approach

    OpenAIRE

    Singh, Shailza; Malik, Balwant Kumar; Sharma, Durlabh Kumar

    2006-01-01

    Access to the complete human genome sequence as well as to the complete sequences of pathogenic organisms provides information that can result in an avalanche of therapeutic targets. Structure-based design is one of the first techniques to be used in drug design. Structure based design refers specifically to finding and complementing the 3D structure (binding and/or active site) of a target molecule such as a receptor protein. The aim of this review is to give an outline of studies in the fie...

  18. Computer-aided drug design at Boehringer Ingelheim

    Science.gov (United States)

    Muegge, Ingo; Bergner, Andreas; Kriegl, Jan M.

    2016-09-01

    Computer-Aided Drug Design (CADD) is an integral part of the drug discovery endeavor at Boehringer Ingelheim (BI). CADD contributes to the evaluation of new therapeutic concepts, identifies small molecule starting points for drug discovery, and develops strategies for optimizing hit and lead compounds. The CADD scientists at BI benefit from the global use and development of both software platforms and computational services. A number of computational techniques developed in-house have significantly changed the way early drug discovery is carried out at BI. In particular, virtual screening in vast chemical spaces, which can be accessed by combinatorial chemistry, has added a new option for the identification of hits in many projects. Recently, a new framework has been implemented allowing fast, interactive predictions of relevant on and off target endpoints and other optimization parameters. In addition to the introduction of this new framework at BI, CADD has been focusing on the enablement of medicinal chemists to independently perform an increasing amount of molecular modeling and design work. This is made possible through the deployment of MOE as a global modeling platform, allowing computational and medicinal chemists to freely share ideas and modeling results. Furthermore, a central communication layer called the computational chemistry framework provides broad access to predictive models and other computational services.

  19. Establishment of a robust hepatitis C virus replicon cell line over-expressing P-glycoprotein that facilitates analysis of P-gp drug transporter effects on inhibitor antiviral activity.

    Science.gov (United States)

    Hernandez, Dennis; Falk, Paul; Yu, Fei; Zhai, Guangzhi; Quan, Yong; Faria, Teresa; Cao, Kai; Scola, Paul; McPhee, Fiona

    2013-01-01

    P-glycoprotein (P-gp) is an active efflux pump affecting the pharmacokinetic (PK) profiles of drugs that are P-gp substrates. The Caco-2 bi-directional assay is widely used to identify drug-P-gp interactions in vitro. For molecules exhibiting non-classical drug properties however, ambiguous results limit its use in lead optimization. The goal of this study was to develop a robust cell-based assay system to directly measure the role of P-gp-driven efflux in reducing the potency of hepatitis C virus (HCV) replication inhibitors. Vinblastine (Vin) was employed to select for a Vin-resistant HCV replicon (313-11) from the parental cell line (377-2). The 313-11 cell line was >50-fold resistant to Vin and over-expressed P-gp, as determined by Western immunoblots. Increased expression of P-gp was mediated by up-regulation of the MDR1 transcript. The reduced potency of different classes of HCV replication inhibitors in the 313-11 P-gp cell line was restored in the presence of known P-gp inhibitors. Addition of the P-gp inhibitor, tariquidar, increased the uptake of a radiolabeled HCV replication inhibitor by 14-fold in the 313-11 replicon cell line. Finally, a positive correlation was demonstrated between potency in the 313-11 replicon and the bi-directional Caco-2 efflux ratio for a panel of HCV protease inhibitors. In conclusion, a robust P-gp HCV replicon cell-based assay has been developed to measure the effect of the P-gp efflux pump on the potency of different classes of HCV replication inhibitors. This system establishes a direct correlation between antiviral activity and the effect of P-gp efflux in a single cell line.

  20. Drug: D07507 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available C code: J05AR01 Therapeutic category of drugs in Japan [BR:br08301] 6 Agents against pathologic organisms and parasites 62 Chemothera...peutics 625 Antivirals 6250 Antivirals D07507 Zidovudine

  1. Revisiting de novo drug design: receptor based pharmacophore screening.

    Science.gov (United States)

    Amaravadhi, Harikishore; Baek, Kwanghee; Yoon, Ho Sup

    2014-01-01

    De novo drug design methods such as receptor or protein based pharmacophore modeling present a unique opportunity to generate novel ligands by employing the potential binding sites even when no explicit ligand information is known for a particular target. Recent developments in molecular modeling programs have enhanced the ability of early programs such as LUDI or Pocket that not only identify the key interactions or hot spots at the suspected binding site, but also and convert these hot spots into three-dimensional search queries and virtual screening of the property filtered synthetic libraries. Together with molecular docking studies and consensus scoring schemes they would enrich the lead identification processes. In this review, we discuss the ligand and receptor based de novo drug design approaches with selected examples.

  2. Quantitative modeling of selective lysosomal targeting for drug design

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rosania, G.; Horobin, R.W.;

    2008-01-01

    Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick–Nernst–Planck equation. The cell model considers....... This demonstrates that the cell model can be a useful tool for the design of effective lysosome-targeting drugs with minimal off-target interactions....

  3. Evaluation of the in vitro skin permeation of antiviral drugs from penciclovir 1% cream and acyclovir 5% cream used to treat herpes simplex virus infection

    Directory of Open Access Journals (Sweden)

    Bader Marlene

    2009-04-01

    Full Text Available Abstract Background Herpes simplex virus infection (HSV is a common and ubiquitous infection of the skin which causes mucocutaneous lesions called cold sores (herpes labialis or fever blisters. It is estimated that approximately 80% of the population worldwide are carriers of the Herpes simplex virus, approximately 40% suffer from recurrent recurrent infections. This study evaluates the in vitro skin permeation and penetration of penciclovir and acyclovir from commercialized creams for the treatment of herpes labialis (cold sores, using non viable excised human abdominal skin samples, which were exposed to 5 mg/cm2 of acyclovir 5% cream or penciclovir 1% cream. Methods After 24 h of cream application, excess cream was washed off and layers of stratum corneum were removed by successive tape stripping. Amounts of active ingredients having penetrated through the skin were measured, as well as the amounts in the washed-off cream, in skin strips and creams remaining in the skin. Molecular modelling was used to evaluate physico-chemical differences between the drugs. Western blot analysis enabled to determine whether the marker of basal cells keratin 5 could be detected in the various tape strips. Results Application of penciclovir 1% cream yielded higher concentration of drug in the deeper layers of the epidermis as well as a higher drug flux through the skin. Molecular modelling showed two higher hydrophobic moieties for acyclovir. Presence of the basal cell marker keratin 5 was underscored in the deeper tape strips from the skin, giving evidence that both drugs can reach their target cells. Conclusion Penciclovir 1% cream has the tendency to facilitate the diffusion of the drug through the stratum corneum into the deeper epidermis layers, in which it could reach the target basal cells at effective therapeutical concentration. The small difference in the surface properties between both molecules might also contribute to favour the passage of

  4. Analysis and prediction of highly effective antiviral peptides based on random forests.

    Directory of Open Access Journals (Sweden)

    Kuan Y Chang

    Full Text Available The goal of this study was to examine and predict antiviral peptides. Although antiviral peptides hold great potential in antiviral drug discovery, little is done in antiviral peptide prediction. In this study, we demonstrate that a physicochemical model using random forests outperform in distinguishing antiviral peptides. On the experimental benchmark, our physicochemical model aided with aggregation and secondary structural features reaches 90% accuracy and 0.79 Matthew's correlation coefficient, which exceeds the previous models. The results suggest that aggregation could be an important feature for identifying antiviral peptides. In addition, our analysis reveals the characteristics of the antiviral peptides such as the importance of lysine and the abundance of α-helical secondary structures.

  5. Emerging paradigms in anti-infective drug design.

    Science.gov (United States)

    Barrett, Michael P; Croft, Simon L

    2014-01-01

    The need for new drugs to treat microbial infections is pressing. The great progress made in the middle part of the twentieth Century was followed by a period of relative inactivity as the medical needs relating to infectious disease in the wealthier nations receded. Growing realisation that anti-infectives are needed in many parts of the world, to treat neglected diseases as well as to combat the burgeoning risk of resistance to existing drugs, has galvanised a new wave of research into anti-microbial drugs. The transfer of knowledge from the Pharmaceutical industry relating to the importance of understanding how to target drugs successfully within the body, and improved understanding of how pathogens interact with their hosts, is driving a series of new paradigms in anti-infective drug design. Here we provide an overview of those processes as an introduction to a series of articles from experts in this area that emerged from a meeting entitled "Emerging Paradigms in Anti-Infective Drug Design" held in London on the 17th and 18th September 2012. The symposium was organised jointly by British Society for Parasitology (BSP) and the Biological & Medicinal Chemistry sector of the Royal Society of Chemistry (RSC) and held at the London School of Hygiene & Tropical Medicine. The symposium set out to cover all aspects of the identification of new therapeutic modalities for the treatment of neglected and tropical diseases. We aimed to bring together leading scientists from all the disciplines working in this field and cover the pharmacology, medicinal chemistry and drug delivery of potential new medicines. Sessions were held on: "Target diseases and targets for drugs", "Target based medicinal chemistry", "Bioavailability and chemistry", "Targeting intracellular microbes", "Alternative approaches and models", and "New anti-infectives - how do we get there?" This symposium was organised by Simon Croft (LSHTM) and Mike Barrett (University of Glasgow) for the BSP, and David

  6. Drug: D02267 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D02267 Drug Foscarnet sodium hydrate (JAN); Trisodium phosphonoformate hexahydrate;...Chemotherapeutics 625 Antivirals 6250 Antivirals D02267 Foscarnet sodium hydrate (JAN) Anatomical Therapeuti...SE J05A DIRECT ACTING ANTIVIRALS J05AD Phosphonic acid derivatives J05AD01 Foscarnet D02267 Foscar...net sodium hydrate (JAN) USP drug classification [BR:br08302] Antivirals Anti-cytomegalovirus (CMV) Agents Foscar...net D02267 Foscarnet sodium hydrate (JAN) Antiherpetic Agents Foscarnet D02267 Foscarn

  7. Combined Analysis of the Prevalence of Drug-Resistant Hepatitis B Virus in Antiviral Therapy-Experienced Patients in Europe (CAPRE)

    DEFF Research Database (Denmark)

    Hermans, Lucas Etienne; Svicher, Valentina; Pas, Suzan Diepstraten;

    2016-01-01

    BACKGROUND: European guidelines recommend treatment of chronic hepatitis B virus infection (CHB) with the nucleos(t)ide analogs (NAs) entecavir or tenofovir. However, many European CHB patients have been exposed to other NAs, which are associated with therapy failure and resistance. The CAPRE stu...... and adefovir on development of drug resistance and cross-resistance. Continued use of these NAs needs to be reconsidered at a pan-European level....

  8. Design, synthesis, characterization and drug release kinetics of PAMAM dendrimer based drug formulations

    Science.gov (United States)

    Kurtoglu, Yunus Emre

    The drug release characteristics of G4-polyamidoamine (PAMAM) dendrimer-ibuprofen conjugates with ester, amide, and peptide linkers were investigated, in addition to a linear PEG-ibuprofen conjugate to understand the effect of architecture and linker on drug release. Ibuprofen was directly conjugated to NH2 -terminated dendrimer by an amide bond and OH-terminated dendrimer by an ester bond. A tetra-peptide linked dendrimer conjugate and a linear mPEG-ibuprofen conjugate were also studied for comparison to direct linked dendrimer conjugates. It is demonstrated that the 3-D nanoscale architecture of PAMAM dendrimer-drug conjugates, along with linking chemistry govern the drug release mechanisms as well as kinetics. Understanding these structural effects on their drug release characteristics is crucial for design of dendrimer conjugates with high efficacy such as poly(amidoamine) dendrimer-N-Acetylcysteine conjugates with disulfide linkages. N-Acetylcysteine (NAC) is an anti-inflammatory agent with significant potential for clinical use in the treatment of neuroinflammation, stroke and cerebral palsy. A poly(amidoamine) dendrimer-NAC conjugate that contains a disulfide linkage was synthesized and evaluated for its release kinetics in the presence of glutathione (GSH), Cysteine (Cys), and bovine serum albumin (BSA) at both physiological and lysosomal pH. FITC-labeled conjugates showed that they enter cells rapidly and localize in the cytoplasm of lipopolysaccharide (LPS)-activated microglial cells. The efficacy of the dendrimer-NAC conjugate was measured in activated microglial cells using reactive oxygen species (ROS) assays. The conjugates showed an order of magnitude increase in anti-oxidant activity compared to free drug. When combined with intrinsic and ligand-based targeting with dendrimers, these types of GSH sensitive nanodevices can lead to improved drug release profiles and in vivo efficacy.

  9. Evolution and Spread of Influenza Virus and Progress on Antiviral Drugs and Vaccines%流感病毒的演变传播及抗病毒药物和疫苗的研究进展

    Institute of Scientific and Technical Information of China (English)

    陈执中

    2009-01-01

    The influenza virus is an infectious virus in mankind. After the storm of influenza across the world in 1918, that is nightmare incessantly now. In this article, the evolution and spread of itinerary map of influenza virus are reviewed. Additionally, the progress on unique 'cap-snatching' mechanism, antiviral drugs and vaccines are also introduced. The applications of neuraminidase inhibitors and the developments of new influenza vaccines will open up broad prospects for the prevention and therapy of influenza.%流感病毒是引起人类流感的传染性病毒.1918年流感风暴席卷全球,至今仍为挥之不去的梦魇.本文综述了流感病毒的演变,在世界的传播路线和流感病毒"劫持"人体细胞的新机制,以及抗流感病毒新药和新型流感疫苗的研究进展.神经氨酸苷酶抑制剂的应用和新型流感疫苗的研制成功将为预防和治疗流感开拓广阔的前景.

  10. Liposomal Drug Products: A Quality by Design Approach

    Science.gov (United States)

    Xu, Xiaoming

    Quality by Design (QbD) principles has been applied to the development of two liposomal formulations, containing a hydrophilic small molecule therapeutic (Tenofovir) and a protein therapeutic (superoxide dismutase). The goal of the research is to provide critical information on 1) how to reduce the preparation variability in liposome formulations, and 2) how to increase drug encapsulation inside liposomes to reduce manufacturing cost. Most notably, an improved liposome preparation method was developed which increased the encapsulation efficiency of hydrophilic molecules. In particular, this method allows for very high encapsulation efficiency. For example, encapsulation efficiencies of up to 50% have been achieved, whereas previously only 20% or less have been reported. Another significant outcome from this research is a first principle mathematical model to predict the encapsulation efficiency of hydrophilic drugs in unilamellar liposomes. This mathematical model will be useful in: formulation development to rapidly achieve optimized formulations; comparison of drug encapsulation efficiencies of liposomes prepared using different methods; and assisting in the development of suitable process analytical technologies to achieve real-time monitoring and control of drug encapsulation during manufacturing. A novel two-stage reverse dialysis in vitro release testing method has also been developed for passively targeted liposomes, which uses the first stage to mimic the circulation of liposomes in the body and the second stage to imitate the drug release process at the target. The developed in vitro release testing method can be used to distinguish formulations with varied compositions for quality control testing purposes. This developed method may pave the way to the development of more biorelevant quality control testing methods for liposomal drug products in the future. The QbD case studies performed in this research are examples of how this approach can be used to

  11. Perspective of Use of Antiviral Peptides against Influenza Virus

    Directory of Open Access Journals (Sweden)

    Sylvie Skalickova

    2015-10-01

    Full Text Available The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.

  12. Nanotechnology-based intelligent drug design for cancer metastasis treatment.

    Science.gov (United States)

    Gao, Yu; Xie, Jingjing; Chen, Haijun; Gu, Songen; Zhao, Rongli; Shao, Jingwei; Jia, Lee

    2014-01-01

    Traditional chemotherapy used today at clinics is mainly inherited from the thinking and designs made four decades ago when the Cancer War was declared. The potency of those chemotherapy drugs on in-vitro cancer cells is clearly demonstrated at even nanomolar levels. However, due to their non-specific effects in the body on normal tissues, these drugs cause toxicity, deteriorate patient's life quality, weaken the host immunosurveillance system, and result in an irreversible damage to human's own recovery power. Owing to their unique physical and biological properties, nanotechnology-based chemotherapies seem to have an ability to specifically and safely reach tumor foci with enhanced efficacy and low toxicity. Herein, we comprehensively examine the current nanotechnology-based pharmaceutical platforms and strategies for intelligent design of new nanomedicines based on targeted drug delivery system (TDDS) for cancer metastasis treatment, analyze the pros and cons of nanomedicines versus traditional chemotherapy, and evaluate the importance that nanomaterials can bring in to significantly improve cancer metastasis treatment.

  13. FORMULATION AND DEVELOPMENT OF TOPICAL NIOSOMAL GEL OF BCS CLASS - III ANTI-VIRAL DRUG FOR BETTER EFFICACY AS HERPES TREATMENT

    Directory of Open Access Journals (Sweden)

    Modi Kushal A.

    2012-03-01

    Full Text Available The objective of present research work was to formulate niosomal gel of ACV and to evaluate it for enhancements of skin permeation and skin retention characteristics. ACV niosomes were prepared by classical thin layer hydration method. The niosomal vesicles were separated by centrifugation method and further evaluated for percentage drug entrapment (PDE and vesicle mean geometric diameter. The separated niosomal vesicles were incorporated into the Carbopol® 971 gel base. The niosomal gel was further evaluated for skin retention characteristics, in vitro diffusion study and stability studies at accelerated and non-accelerated conditions. The batch F12 was considered as optimized batch as it showed minimum geometric mean diameter of vesicles (1.23 ± 0.19 μm and maximum PDE (58.71 ± 0.89 %. The in vitro diffusion study using human cadaver skin (HCS showed 1.57 times higher flux as compared to conventional ACV gel. The skin retention study reveals that the percentage drug retained was 4.92 times higher as compared to conventional ACV gel. The stability studies at 2-8 °C showed PDE 94.23% after 12 weeks whereas at accelerated condition it was found to be 90.11%.

  14. Ribonuclease, deoxyribonuclease, and antiviral activity of Escherichia coli-expressed Bougainvillea xbuttiana antiviral protein 1.

    Science.gov (United States)

    Choudhary, N L; Yadav, O P; Lodha, M L

    2008-03-01

    A full-length cDNA encoding ribosome-inactivating/antiviral protein from the leaves of Bougainvillea xbuttiana was recently isolated. The coding region of cDNA was cloned and expressed in Escherichia coli, and the protein product was designated as BBAP1 (Bougainvillea xbuttiana antiviral protein 1). BBAP1 showed ribonuclease activity against Torula yeast RNA. It also exhibited depurination activity against supercoiled pBlueScript SK+ plasmid DNA in a concentration dependent manner, and was found to convert nicked circular DNA into linear form only at higher concentration. On bioassay, BBAP1 exhibited antiviral activity against sunnhemp rosette virus infecting Cyamopsis tetragonoloba leaves in which 95% inhibition of local lesion formation was observed.

  15. GPCR structures in drug design, emerging opportunities with new structures.

    Science.gov (United States)

    Tautermann, Christofer S

    2014-09-01

    In recent years, GPCR targets from diverse regions of phylogenetic space have been determined. This effort has culminated this year in the determination of representatives of all major classes of GPCRs (A, B, C, and F). Although much of the now well established knowledge on GPCR structures has been known for some years, the new high-resolution structures allow structural insight into the causes of ligand efficacy, biased signaling, and allosteric modulation. In this digest the structural basis for GPCR signaling in the light of the new structures is reviewed and the use of the new non-class A GPCRs for drug design is discussed.

  16. Considerations of Protein Subpockets in Fragment-Based Drug Design.

    Science.gov (United States)

    Bartolowits, Matthew; Davisson, V Jo

    2016-01-01

    While the fragment-based drug design approach continues to gain importance, gaps in the tools and methods available in the identification and accurate utilization of protein subpockets have limited the scope. The importance of these features of small molecule-protein recognition is highlighted with several examples. A generalized solution for the identification of subpockets and corresponding chemical fragments remains elusive, but there are numerous advancements in methods that can be used in combination to address subpockets. Finally, additional examples of approaches that consider the relative importance of small-molecule co-dependence of protein conformations are highlighted to emphasize an increased significance of subpockets, especially at protein interfaces.

  17. Evaluation of microporous polycaprolactone matrices for controlled delivery of antiviral microbicides to the female genital tract.

    Science.gov (United States)

    Asvadi, Naghme Hajarol; Dang, Nhung T T; Davis-Poynter, Nicholas; Coombes, Allan G A

    2013-12-01

    Acyclovir (ACV) as a model antiviral microbicide, was incorporated in controlled-release polycaprolactone (PCL) matrices designed for application as intra-vaginal ring inserts (IVRs). Microporous materials incorporating acyclovir up to a level of ~10 % w/w were produced by rapidly cooling suspensions of drug powder in PCL solution followed by solvent extraction from the hardened matrices. Around 21, 50 and 78 % of the drug content was gradually released from matrices over 30 days in simulated vaginal fluid at 37 °C, corresponding to drug loadings of 5.9, 7.0 and 9.6 % w/w. The release behaviour of matrices having the lowest drug loading followed a zero order model, whereas, the release kinetics of 7.0 and 9.6 % ACV-loaded PCL matrices could be described effectively by the Higuchi model, suggesting that Fickian diffusion is controlling drug release. Corresponding values of the diffusion co-efficient for ACV in the PCL matrices of 3.16 × 10(-9) and 1.07 × 10(-8) cm(2)/s were calculated. Plaque reduction assays provided an IC50 value of 1.09 μg/mL for acyclovir against HSV-2 and confirmed the antiviral activity of released acyclovir against HSV-2 replication in primate kidney cells (Vero) at levels ~70 % that of non-formulated acyclovir at day 30. Estimated minimum in vivo acyclovir concentrations produced by a PCL IVR (19 μg/mL) exceeded by a factor of 20 the IC50 value against HSV-2 and the reported ACV vaginal concentrations in women (0.5-1.0 μg/mL) following oral administration. These findings recommend further investigations of PCL matrices for vaginal delivery of antiviral agents in the treatment and prevention of sexually transmitted infections such as AIDS.

  18. Low energy nanoemulsification to design veterinary controlled drug delivery devices

    Directory of Open Access Journals (Sweden)

    Thierry F Vandamme

    2010-10-01

    Full Text Available Thierry F Vandamme, Nicolas Anton, University of Strasbourg, Faculty of Pharmacy, Illkirch Cedex, France; UMR CNRS 7199, Laboratoire de Conception et Application de Molécules Bioactives, équipe de Pharmacie Biogalénique, Illkirch Cedex, France,  This work is selected as Controlled Release Society Outstanding Veterinary Paper Award 2010Abstract: The unique properties of nanomaterials related to structural stability and quantum-scale reactive properties open up a world of possibilities that could be exploited to design and to target drug delivery or create truly microscale biological sensors for veterinary applications. We developed cost-saving and solvent-free nanoemulsions. Formulated with a low-energy method, these nanoemulsions can find application in the delivery of controlled amounts of drugs into the beverage of breeding animals (such as poultry, cattle, pigs or be used for the controlled release of injectable poorly water-soluble drugs.Keywords: nanoemulsion, nanomedicine, low-energy emulsification, veterinary, ketoprofen, sulfamethazine

  19. In silico ADME/T modelling for rational drug design.

    Science.gov (United States)

    Wang, Yulan; Xing, Jing; Xu, Yuan; Zhou, Nannan; Peng, Jianlong; Xiong, Zhaoping; Liu, Xian; Luo, Xiaomin; Luo, Cheng; Chen, Kaixian; Zheng, Mingyue; Jiang, Hualiang

    2015-11-01

    In recent decades, in silico absorption, distribution, metabolism, excretion (ADME), and toxicity (T) modelling as a tool for rational drug design has received considerable attention from pharmaceutical scientists, and various ADME/T-related prediction models have been reported. The high-throughput and low-cost nature of these models permits a more streamlined drug development process in which the identification of hits or their structural optimization can be guided based on a parallel investigation of bioavailability and safety, along with activity. However, the effectiveness of these tools is highly dependent on their capacity to cope with needs at different stages, e.g. their use in candidate selection has been limited due to their lack of the required predictability. For some events or endpoints involving more complex mechanisms, the current in silico approaches still need further improvement. In this review, we will briefly introduce the development of in silico models for some physicochemical parameters, ADME properties and toxicity evaluation, with an emphasis on the modelling approaches thereof, their application in drug discovery, and the potential merits or deficiencies of these models. Finally, the outlook for future ADME/T modelling based on big data analysis and systems sciences will be discussed.

  20. Targeting Plasmodium Metabolism to Improve Antimalarial Drug Design.

    Science.gov (United States)

    Avitia-Domínguez, Claudia; Sierra-Campos, Erick; Betancourt-Conde, Irene; Aguirre-Raudry, Miriam; Vázquez-Raygoza, Alejandra; Luevano-De la Cruz, Artemisa; Favela-Candia, Alejandro; Sarabia-Sanchez, Marie; Ríos-Soto, Lluvia; Méndez-Hernández, Edna; Cisneros-Martínez, Jorge; Palacio-Gastélum, Marcelo Gómez; Valdez-Solana, Mónica; Hernández-Rivera, Jessica; De Lira-Sánchez, Jaime; Campos-Almazán, Mara; Téllez-Valencia, Alfredo

    2016-01-01

    Malaria is one of the main infectious diseases in tropical developing countries and represents high morbidity and mortality rates nowadays. The principal etiological agent P. falciparum is transmitted through the bite of the female Anopheles mosquito. The issue has escalated due to the emergence of resistant strains to most of the antimalarials used for the treatment including Chloroquine, Sulfadoxine-Pyrimethamine, and recently Artemisinin derivatives, which has led to diminished effectiveness and by consequence increased the severity of epidemic outbreaks. Due to the lack of effective compounds to treat these drug-resistant strains, the discovery or development of novel anti-malaria drugs is important. In this context, one strategy has been to find inhibitors of enzymes, which play an important role for parasite survival. Today, promising results have been obtained in this regard, involving the entire P. falciparum metabolism. These inhibitors could serve as leads in the search of a new chemotherapy against malaria. This review focuses on the achievements in recent years with regard to inhibition of enzymes used as targets for drug design against malaria.

  1. Carboxylic acid (bio)isosteres in drug design.

    Science.gov (United States)

    Ballatore, Carlo; Huryn, Donna M; Smith, Amos B

    2013-03-01

    The carboxylic acid functional group can be an important constituent of a pharmacophore, however, the presence of this moiety can also be responsible for significant drawbacks, including metabolic instability, toxicity, as well as limited passive diffusion across biological membranes. To avoid some of these shortcomings while retaining the desired attributes of the carboxylic acid moiety, medicinal chemists often investigate the use of carboxylic acid (bio)isosteres. The same type of strategy can also be effective for a variety other purposes, for example, to increase the selectivity of a biologically active compound or to create new intellectual property. Several carboxylic acid isosteres have been reported, however, the outcome of any isosteric replacement cannot be readily predicted as this strategy is generally found to be dependent upon the particular context (i.e., the characteristic properties of the drug and the drug-target). As a result, screening of a panel of isosteres is typically required. In this context, the discovery and development of novel carboxylic acid surrogates that could complement the existing palette of isosteres remains an important area of research. The goal of this Minireview is to provide an overview of the most commonly employed carboxylic acid (bio)isosteres and to present representative examples demonstrating the use and utility of each isostere in drug design.

  2. Design attributes of long-circulating polymeric drug delivery vehicles.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Nicolas, Julien; Couvreur, Patrick

    2015-11-01

    Following systemic administration polymeric drug delivery vehicles allow for a controlled and targeted release of the encapsulated medication at the desired site of action. For an elevated and organ specific accumulation of their cargo, nanocarriers need to avoid opsonization, activation of the complement system and uptake by macrophages of the mononuclear phagocyte system. In this respect, camouflaged vehicles revealed a delayed elimination from systemic circulation and an improved target organ deposition. For instance, a steric shielding of the carrier surface by poly(ethylene glycol) substantially decreased interactions with the biological environment. However, recent studies disclosed possible deficits of this approach, where most notably, poly(ethylene glycol)-modified drug delivery vehicles caused significant immune responses. At present, identification of novel potential carrier coating strategies facilitating negligible immune reactions is an emerging field of interest in drug delivery research. Moreover, physical carrier properties including geometry and elasticity seem to be very promising design attributes to surpass numerous biological barriers, in order to improve the efficacy of the delivered medication.

  3. Molecular Docking and Structure-Based Drug Design Strategies

    Directory of Open Access Journals (Sweden)

    Leonardo G. Ferreira

    2015-07-01

    Full Text Available Pharmaceutical research has successfully incorporated a wealth of molecular modeling methods, within a variety of drug discovery programs, to study complex biological and chemical systems. The integration of computational and experimental strategies has been of great value in the identification and development of novel promising compounds. Broadly used in modern drug design, molecular docking methods explore the ligand conformations adopted within the binding sites of macromolecular targets. This approach also estimates the ligand-receptor binding free energy by evaluating critical phenomena involved in the intermolecular recognition process. Today, as a variety of docking algorithms are available, an understanding of the advantages and limitations of each method is of fundamental importance in the development of effective strategies and the generation of relevant results. The purpose of this review is to examine current molecular docking strategies used in drug discovery and medicinal chemistry, exploring the advances in the field and the role played by the integration of structure- and ligand-based methods.

  4. Combining docking and molecular dynamic simulations in drug design.

    Science.gov (United States)

    Alonso, Hernán; Bliznyuk, Andrey A; Gready, Jill E

    2006-09-01

    A rational approach is needed to maximize the chances of finding new drugs, and to exploit the opportunities of potential new drug targets emerging from genomic and proteomic initiatives, and from the large libraries of small compounds now readily available through combinatorial chemistry. Despite a shaky early history, computer-aided drug design techniques can now be effective in reducing costs and speeding up drug discovery. This happy outcome results from development of more accurate and reliable algorithms, use of more thoughtfully planned strategies to apply them, and greatly increased computer power to allow studies with the necessary reliability to be performed. Our review focuses on applications and protocols, with the main emphasis on critical analysis of recent studies where docking calculations and molecular dynamics (MD) simulations were combined to dock small molecules into protein receptors. We highlight successes to demonstrate what is possible now, but also point out drawbacks and future directions. The review is structured to lead the reader from the simpler to more compute-intensive methods. Thus, while inexpensive and fast docking algorithms can be used to scan large compound libraries and reduce their size, more accurate but expensive MD simulations can be applied when a few selected ligand candidates remain. MD simulations can be used: during the preparation of the protein receptor before docking, to optimize its structure and account for protein flexibility; for the refinement of docked complexes, to include solvent effects and account for induced fit; to calculate binding free energies, to provide an accurate ranking of the potential ligands; and in the latest developments, during the docking process itself to find the binding site and correctly dock the ligand a priori.

  5. ANTI-VIRAL ACTIVITY OF GLYCIRRHETINIC AND GLYCIRRHIZIC ACIDS

    Directory of Open Access Journals (Sweden)

    V. V. Zarubaev

    2016-01-01

    Full Text Available Influenza is a highly contagious human disease. In the course of use of antiviral drugs drug-resistant strains of the virus are formed, resulting in reduced efficiency of the chemotherapy. The review describes the biological activity of glycirrhetinic (GLA and glycirrhizic (GA acids in terms of their use as a therapeutic agent for viral infections. So, these compounds are against a broad spectrum of viruses, including herpes, corona-, alphaand flaviviruses, human immunodeficiency virus, vaccinia virus, poliovirus type I, vesicular stomatitis virus and influenza A virus. These data indicate that anti-viral effect of these compounds is due to several types of activity — direct antiviral effects, effects on cellular proand anti-viral and immunomodulating pathways, in particular by activation of innate immunity system. GA interferes with early steps of the viral reproductive cycle such as virus binding to its receptor, the absorption of the virus by endocytosis or virus decapsidation in the cytoplasm. This is due to the effect of GA-induced reduction of membrane fluidity. Thus, one mechanism for the antiviral activity of GA is that GA molecule increases the rigidity of cellular and viral membranes after incorporation in there. This results in increasing of energy threshold required for the formation of negative curvature at the fusion zones, as well as difficult lateral migration of the virus-receptor complexes. In addition, glycyrrhizin prevents interaction of viral nucleoprotein with cellular protein HMGB1, which is necessary for the viral life cycle. Glycyrrhizin also inhibits the induction of oxidative stress during influenza infection, exhibiting antioxidant properties, which leads to a reduction of virus-induced production of cytokines/chemokines, without affecting the replication of the virus. A wide spectrum of biological activity and effect on various aspects of the viral pathogenesis substantiate the effect of GA and GLA as a component

  6. Benzothiazoles: how relevant in cancer drug design strategy?

    Science.gov (United States)

    Singh, Meenakshi; Singh, Sushil K

    2014-01-01

    Heterocyclic compounds, analogs and derivatives have attracted attention due to their diverse biological and pharmacological properties. Benzoheterocycles such as benzothiazoles, benzimidazoles and benzoxazoles are constituents of many bioactive heterocyclic compounds, having wider range of applications. They have been extensively studied for their biological activities, and can serve as unique and versatile scaffolds for drug design. The benzothiazole, in the family of heterocyclic compounds has assumed special significance in synthetic chemistry, pharmaceutical chemistry as well as in clinical applications because of its anti-tumor properties. This review is organized in the following ways. It begins with brief introduction on the chemical diversity of synthetic analogs of benzothiazole. After this, drug design strategy and mechanisms of action through its diverse biological targets in which benzothiazole and its derivatives display their anticancer activity are discussed. It ends with the metabolism pattern of benzothiazole and its analogs. Analysis of the structure-activity relationships (SAR), quantitative structure-activity relationships (QSAR) as well as on docking studies of this family of compounds highlights the potential that may lead to the development of novel anticancer agents. Such relationships will definitely create lot of interest among the researchers to synthesize optimized variety of benzothiazole derivatives and to screen them for their anticancer activity.

  7. Drug design for ever, from hype to hope

    Science.gov (United States)

    Seddon, G.; Lounnas, V.; McGuire, R.; van den Bergh, T.; Bywater, R. P.; Oliveira, L.; Vriend, G.

    2012-01-01

    In its first 25 years JCAMD has been disseminating a large number of techniques aimed at finding better medicines faster. These include genetic algorithms, COMFA, QSAR, structure based techniques, homology modelling, high throughput screening, combichem, and dozens more that were a hype in their time and that now are just a useful addition to the drug-designers toolbox. Despite massive efforts throughout academic and industrial drug design research departments, the number of FDA-approved new molecular entities per year stagnates, and the pharmaceutical industry is reorganising accordingly. The recent spate of industrial consolidations and the concomitant move towards outsourcing of research activities requires better integration of all activities along the chain from bench to bedside. The next 25 years will undoubtedly show a series of translational science activities that are aimed at a better communication between all parties involved, from quantum chemistry to bedside and from academia to industry. This will above all include understanding the underlying biological problem and optimal use of all available data.

  8. Antiviral immunity in amphibians.

    Science.gov (United States)

    Chen, Guangchun; Robert, Jacques

    2011-11-01

    Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission.

  9. Autodisplay of an archaeal γ-lactamase on the cell surface of Escherichia coli using Xcc_Est as an anchoring scaffold and its application for preparation of the enantiopure antiviral drug intermediate (-) vince lactam.

    Science.gov (United States)

    Wang, Jianjun; Zhao, Guogang; Zhang, Zhiwei; Liang, Qiulin; Min, Cong; Wu, Sheng

    2014-08-01

    At present, autotransporter protein mediated surface display has opened a new dimension in the development of whole-cell biocatalysts. Here, we report the identification of a novel autotransporter Xcc_Est from Xanthomonas campestris pv campestris 8004 by bioinformatic analysis and application of Xcc_Est as an anchoring motif for surface display of γ-lactamase (Gla) from thermophilic archaeon Sulfolobus solfataricus P2 in Escherichia coli. The localization of γ-lactamase in the cell envelope was monitored by Western blot, activity assay and flow cytometry analysis. Either the full-length or truncated Xcc_Est could efficiently transport γ-lactamase to the cell surface. Compared with the free enzyme, the displayed γ-lactamase exhibited optimum temperature of 30 °C other than 90 °C, with a substantial decrease of 60 °C. Under the preparation system, the engineered E. coli with autodisplayed γ-lactamase converted 100 g racemic vince lactam to produce 49.2 g (-) vince lactam at 30 °C within 4 h. By using chiral HPLC, the ee value of the produced (-) vince lactam was determined to be 99.5 %. The whole-cell biocatalyst exhibited excellent stability under the operational conditions. Our results indicate that the E. coli with surface displayed γ-lactamase is an efficient and economical whole cell biocatalyst for preparing the antiviral drug intermediate (-) vince lactam at mild temperature, eliminating expensive energy cost performed at high temperature.

  10. Atividade de três drogas antivirais sobre os herpesvírus bovino tipos 1, 2 e 5 em cultivo celular Activity of three antiviral drugs against bovine herpesviruses 1, 2 and 5 in cell culture

    Directory of Open Access Journals (Sweden)

    Renata Dezengrini

    2010-10-01

    Full Text Available A atividade de três fármacos antivirais (Aciclovir [ACV], Ganciclovir [GCV] e Foscarnet [PFA] foi testada in vitro frente aos herpesvírus bovino tipos 1 (BoHV-1, 2 (BoHV-2 e 5 (BoHV-5. Para isso, utilizou-se o teste de reducao de placas virais em cultivo celular, testando-se diferentes concentracoes dos farmacos frente a 100 doses infectantes para 50% dos cultivos celulares (DICC50 dos respectivos virus. Pelo teste de MTT (3-(4,5-Dimethylthiazol- 2-yl-2,5-diphenyltetrazolium bromide, verificou-se que concentracoes inferiores a 200ƒÊg/mL dos tres antivirais resultaram em indices de viabilidade de celulas MDBK e Hep2 superiores a 80%. Com base na concentracao citotoxica para 50% das celulas (CC50 e na concentracao dos farmacos efetiva para inibir em 50% o numero de placas virais (EC50, calculou-se o indice de seletividade (IS dos antivirais para os tres herpesvirus. Assim, o ACV demonstrou ser moderadamente ativo frente ao BoHV-1 (EC50: 112,9ƒÊg/mL e IS: 4,5, ao BoHV-2 (EC50: 114,2 ƒÊg/mL e IS: 4,5 e BoHV-5 (EC50: 96,9ƒÊg/mL e IS: 5,3. O GCV apresentou atividade moderada frente ao BoHV-2 (EC50: 33,5ƒÊg/mL e IS: 16,6 e, em menor grau, contra o BoHV-5 (EC50: 123,2ƒÊg/mL e IS: 4,5, sendo ineficaz frente ao BoHV-1 (EC50: 335,8ƒÊg/mL e IS: 1,7. O PFA apresentou atividade antiviral mais pronunciada, sendo o unico farmaco que, na concentracao de 100ƒÊg/mL, inibiu completamente a producao de placas pelos tres virus testados. O PFA foi o mais efetivo in vitro frente ao BoHV-1 (EC50: 29,5ƒÊg/mL e IS: 42,2, ao BoHV-2 (EC50: 45,2ƒÊg/mL e IS: 27,6 e ao BoHV-5 (EC50: 7,8ƒÊg/mL e IS: 160,6. Portanto, os resultados obtidos indicam que o PFA pode se constituir em um candidato para terapia experimental de infeccoes pelos herpesvirus de bovinos in vivo.The activity of three anti-herpetic drugs (Acyclovir [ACV], Gancyclovir [GCV] and Foscarnet [PFA] was tested against bovine herpesvirus 1 (BoHV-1, 2 (BoHV-2 and 5 (BoHV-5 in vitro using the

  11. Application of Absorption Modeling in Rational Design of Drug Product Under Quality-by-Design Paradigm.

    Science.gov (United States)

    Kesisoglou, Filippos; Mitra, Amitava

    2015-09-01

    Physiologically based absorption models can be an important tool in understanding product performance and hence implementation of Quality by Design (QbD) in drug product development. In this report, we show several case studies to demonstrate the potential application of absorption modeling in rational design of drug product under the QbD paradigm. The examples include application of absorption modeling—(1) prior to first-in-human studies to guide development of a formulation with minimal sensitivity to higher gastric pH and hence reduced interaction when co-administered with PPIs and/or H2RAs, (2) design of a controlled release formulation with optimal release rate to meet trough plasma concentrations and enable QD dosing, (3) understanding the impact of API particle size distribution on tablet bioavailability and guide formulation design in late-stage development, (4) assess impact of API phase change on product performance to guide specification setting, and (5) investigate the effect of dissolution rate changes on formulation bioperformance and enable appropriate specification setting. These case studies are meant to highlight the utility of physiologically based absorption modeling in gaining a thorough understanding of the product performance and the critical factors impacting performance to drive design of a robust drug product that would deliver the optimal benefit to the patients.

  12. Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development

    Directory of Open Access Journals (Sweden)

    R Pignatello

    2011-01-01

    Full Text Available Contact with many different biological membranes goes along the destiny of a drug after its systemic administration. From the circulating macrophage cells to the vessel endothelium, to more complex absorption barriers, the interaction of a biomolecule with these membranes largely affects its rate and time of biodistribution in the body and at the target sites. Therefore, investigating the phenomena occurring on the cell membranes, as well as their different interaction with drugs in the physiological or pathological conditions, is important to exploit the molecular basis of many diseases and to identify new potential therapeutic strategies. Of course, the complexity of the structure and functions of biological and cell membranes, has pushed researchers toward the proposition and validation of simpler two- and three-dimensional membrane models, whose utility and drawbacks will be discussed. This review also describes the analytical methods used to look at the interactions among bioactive compounds with biological membrane models, with a particular accent on the calorimetric techniques. These studies can be considered as a powerful tool for medicinal chemistry and pharmaceutical technology, in the steps of designing new drugs and optimizing the activity and safety profile of compounds already used in the therapy.

  13. Antiviral effect of HPMPC (Cidofovir®), entrapped in cationic liposomes: in vitro study on MDBK cell and BHV-1 virus.

    Science.gov (United States)

    Korvasová, Zina; Drašar, Lukáš; Mašek, Josef; Turánek Knotigová, Pavlína; Kulich, Pavel; Matiašovic, Ján; Kovařčík, Kamil; Bartheldyová, Eliška; Koudelka, Štěpán; Škrabalová, Michaela; Miller, Andrew D; Holý, Antonín; Ledvina, Miroslav; Turánek, Jaroslav

    2012-06-10

    We designed and synthesised a series of new cationic lipids based on spermine linked to various hydrophobic anchors. These lipids could be potentially useful for the preparation of stable cationic liposomes intended for the construction of drug targeting systems applicable in the field of anticancer/antiviral therapy, vaccine carriers, and vectors for the gene therapy. Low in vitro toxicity was found for these compounds, especially for LD1, in several cell lines. The delivery of both a fluorescence marker (calcein) and antiviral drugs into cells has been achieved owing to a large extent of internalization of cationic liposomes (labelled by Lyssamine-Rhodamine PE or fluorescein-PE) as demonstrated by fluorescent microscopy and quantified by flow cytometry. The bovine herpes virus type 1 (BHV-1) virus infection in vitro model using MDBK cells was employed to study the effect of the established antiviral drug HPMPC (Cidofovir®) developed by Prof. A. Holý. Inhibition of BHV-1 virus replication was studied by quantitative RT-PCR and confirmed by both Hoffman modulation contrast microscopy and transmission electron microscopy. We found that in vitro antiviral activity of HPMPC was significantly improved by formulation in cationic liposomes, which decreased the viral replication by about 2 orders of magnitude.

  14. Drug: D10469 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 9 D10469.gif Treatment of hepatitis C [DS:H00413] Therapeutic category: 6250 Macrocyclic antivirus Direct-ac...tics 625 Antivirals 6250 Antivirals D10469 Simeprevir sodium (JAN) USP drug classification [BR:br08302] Antivirals Anti-hepatitis

  15. 77 FR 74195 - Draft Guidance for Industry and Food and Drug Administration Staff; Design Considerations for...

    Science.gov (United States)

    2012-12-13

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry and Food and Drug Administration Staff; Design Considerations for Devices Intended for Home Use; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing...

  16. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    Directory of Open Access Journals (Sweden)

    Akram Astani

    2011-01-01

    Full Text Available Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1 in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.

  17. Click Chemistry in Peptide-Based Drug Design

    Directory of Open Access Journals (Sweden)

    Irwin Chaiken

    2013-08-01

    Full Text Available Click chemistry is an efficient and chemoselective synthetic method for coupling molecular fragments under mild reaction conditions. Since the advent in 2001 of methods to improve stereochemical conservation, the click chemistry approach has been broadly used to construct diverse chemotypes in both chemical and biological fields. In this review, we discuss the application of click chemistry in peptide-based drug design. We highlight how triazoles formed by click reactions have been used for mimicking peptide and disulfide bonds, building secondary structural components of peptides, linking functional groups together, and bioconjugation. The progress made in this field opens the way for synthetic approaches to convert peptides with promising functional leads into structure-minimized and more stable forms.

  18. Click chemistry in peptide-based drug design.

    Science.gov (United States)

    Li, Huiyuan; Aneja, Rachna; Chaiken, Irwin

    2013-08-16

    Click chemistry is an efficient and chemoselective synthetic method for coupling molecular fragments under mild reaction conditions. Since the advent in 2001 of methods to improve stereochemical conservation, the click chemistry approach has been broadly used to construct diverse chemotypes in both chemical and biological fields. In this review, we discuss the application of click chemistry in peptide-based drug design. We highlight how triazoles formed by click reactions have been used for mimicking peptide and disulfide bonds, building secondary structural components of peptides, linking functional groups together, and bioconjugation. The progress made in this field opens the way for synthetic approaches to convert peptides with promising functional leads into structure-minimized and more stable forms.

  19. Structure-based drug design identifies novel LPA3 antagonists.

    Science.gov (United States)

    Fells, James I; Tsukahara, Ryoko; Liu, Jianxiong; Tigyi, Gabor; Parrill, Abby L

    2009-11-01

    Compound 5 ([5-(3-nitrophenoxy)-1,3-dioxo-1,3-dihydro-2-isoindol-2-yl]acetic acid) was identified as a weak selective LPA(3) antagonist (IC(50)=4504 nM) in a virtual screening effort to optimize a dual LPA(2 and 3) antagonist. Structure-based drug design techniques were used to prioritize similarity search matches of compound 5. This strategy rapidly identified 10 novel antagonists. The two most efficacious compounds identified inhibit activation of the LPA(3) receptor by 200 nM LPA with IC(50) values of 752 nM and 2992 nM. These compounds additionally define changes to our previously reported pharmacophore that will improve its ability to identify more potent and selective LPA(3) receptor antagonists. The results of the combined computational and experimental screening are reported.

  20. Computational design of nanoparticle drug delivery systems for selective targeting.

    Science.gov (United States)

    Duncan, Gregg A; Bevan, Michael A

    2015-10-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.

  1. DDGrid: a grid computing system for drug discovery and design

    Institute of Scientific and Technical Information of China (English)

    Chen Shudong; Zhang Liang; Ma Fanyuan; Shen Jianhua

    2005-01-01

    This paper presents DDGrid, a novel Grid computing system for drug discovery and design. By utilizing the idle resources donated by the clusters that scatter over the Internet, DDGrid can implement efficient data-intensive biologic applications. The high-level resource management framework with a Grid-P2P hybrid architecture is described. With P2P technologies, some problems which are inevitable in the master-slave model can be avoided, such as single point of failure or performance bottleneck. Then an agent-based resource scheduling algorithm is presented. With this scheduling algorithm, the idle computational resources are dynamically scheduled according to the real-time working load on each execution node. Thus DDGrid can hold an excellent load balance state. Furthermore, the framework is introduced into the practical protein molecules docking applications. Solid experimental results show the load balance and robustness of the proposed system, which can greatly speed up the process of protein molecules docking.

  2. Integrated Teaching of Structure-Based Drug Design and Biopharmaceutics: A Computer-Based Approach

    Science.gov (United States)

    Sutch, Brian T.; Romero, Rebecca M.; Neamati, Nouri; Haworth, Ian S.

    2012-01-01

    Rational drug design requires expertise in structural biology, medicinal chemistry, physiology, and related fields. In teaching structure-based drug design, it is important to develop an understanding of the need for early recognition of molecules with "drug-like" properties as a key component. That is, it is not merely sufficient to teach…

  3. Alzheimer's disease drug development based on Computer-Aided Drug Design.

    Science.gov (United States)

    Zeng, Huahui; Wu, Xiangxiang

    2016-10-04

    Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by the excessive deposition of amyloids in the brain. The pathological features mainly include the extracellular amyloid plaques and intracellular neurofibrillary tangles, which are the production of amyloid precursor protein (APP) processed by the α-, β- and γ-secretases. Based on the amyloid cascade hypotheses of AD, a large number of amyloid-β agents and secretase inhibitors against AD have been recently developed by using computational methods. This review article describes pathophysiology of AD and the structure of the Aβ plaques, β- and γ-secretases, and discusses the recent advances in the development of the amyloid agents for AD therapy and diagnosis by using Computer-Aided Drug Design approach.

  4. Minimizing the risk of chemically reactive metabolite formation of new drug candidates: implications for preclinical drug design.

    Science.gov (United States)

    Brink, Andreas; Pähler, Axel; Funk, Christoph; Schuler, Franz; Schadt, Simone

    2016-11-27

    Many pharmaceutical companies aim to reduce reactive metabolite formation by chemical modification at early stages of drug discovery. A practice often applied is the detection of stable trapping products of electrophilic intermediates with nucleophilic trapping reagents to guide rational structure-based drug design. This contribution delineates this strategy to minimize the potential for reactive metabolite formation of clinical candidates during preclinical drug optimization, exemplified by the experience at Roche over the past decade. For the majority of research programs it was possible to proceed with compounds optimized for reduced covalent binding potential. Such optimized candidates are expected to have a higher likelihood of succeeding throughout the development processes, resulting in safer drugs.

  5. Progress in the development of poliovirus antiviral agents and their essential role in reducing risks that threaten eradication.

    Science.gov (United States)

    McKinlay, Mark A; Collett, Marc S; Hincks, Jeffrey R; Oberste, M Steven; Pallansch, Mark A; Okayasu, Hiromasa; Sutter, Roland W; Modlin, John F; Dowdle, Walter R

    2014-11-01

    Chronic prolonged excretion of vaccine-derived polioviruses by immunodeficient persons (iVDPV) presents a personal risk of poliomyelitis to the patient as well as a programmatic risk of delayed global eradication. Poliovirus antiviral drugs offer the only mitigation of these risks. Antiviral agents may also have a potential role in the management of accidental exposures and in certain outbreak scenarios. Efforts to discover and develop poliovirus antiviral agents have been ongoing in earnest since the formation in 2007 of the Poliovirus Antivirals Initiative. The most advanced antiviral, pocapavir (V-073), is a capsid inhibitor that has recently demonstrated activity in an oral poliovirus vaccine human challenge model. Additional antiviral candidates with differing mechanisms of action continue to be profiled and evaluated preclinically with the goal of having 2 antivirals available for use in combination to treat iVDPV excreters.

  6. Advanced drug delivery systems: Nanotechnology of health design A review

    Directory of Open Access Journals (Sweden)

    Javad Safari

    2014-04-01

    Full Text Available Nanotechnology has finally and firmly entered the realm of drug delivery. Performances of intelligent drug delivery systems are continuously improved with the purpose to maximize therapeutic activity and to minimize undesirable side-effects. This review describes the advanced drug delivery systems based on micelles, polymeric nanoparticles, and dendrimers. Polymeric carbon nanotubes and many others demonstrate a broad variety of useful properties. This review emphasizes the main requirements for developing new nanotech-nology-based drug delivery systems.

  7. Emerging pathogens: Dynamics, mutation and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Perelson, A.S.; Goldstein, B.; Korber, B.T. [and others

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  8. Structural Studies on Intact Clostridium botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design

    Science.gov (United States)

    2008-02-01

    Clostridium botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design PRINCIPAL INVESTIGATOR: Subramanyam Swaminathan...Inhibitors Leading to Drug Design 5b. GRANT NUMBER DAMD17-02-2-0011 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Subramanyam Swaminathan, Ph.D. 5d...on Intact Clostridium botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design Annual Report for the Period ending January 2008

  9. Molecular Modeling in Drug Design for the Development of Organophosphorous Antidotes/Prophylactics

    Science.gov (United States)

    1986-05-01

    5012 61102A 1102BS11 EB 025 11. TITLE (Include Security Classification) Molecular Modeling in Drug Design for the Development of Organophosphorous...t ....................................., ’ i.° AD MOLECULAR MODELING IN DRUG DESIGN FOR THE DEVELOPMENT OF ORGANOPHOSPHOROUS ANTIDOTES...Reed, W.J. Murray, E.B. Roche and L.N. Donelsmith, Gen. Pharmac., 12, 177-185 (1981). 5. L.B.Kier, "Molecular Orbital Theory in Drug Design ", Academic

  10. John F. Enders lecture 2006: antivirals for influenza.

    Science.gov (United States)

    Ong, Adrian K; Hayden, Frederick G

    2007-07-15

    The long history of influenza drug development has both contributed practical advances in antiviral chemotherapy and improved the understanding of influenza pathogenesis and epidemiology. The role played by these antivirals continues to grow with the dual threats of seasonal and pandemic influenza. The neuraminidase inhibitors are proven effective for the chemoprophylaxis and treatment of influenza A and B, although early therapy is essential for disease mitigation. Studies of topically applied zanamivir have demonstrated the importance of viral replication in the lower respiratory tract, even in uncomplicated influenza. Antiviral resistance, especially to the M2 ion channel inhibitors, sometimes limits clinical utility. Oseltamivir-resistant variants may emerge during treatment but have not yet circulated widely and are usually less fit than wild-type virus; most retain susceptibility to zanamivir. The transmission fitness cost of these resistant variants is drug-, neuraminidase subtype-, and mutation-specific. Continued vigilance in drug resistance surveillance is imperative, as is research into the development of new agents that will provide the potential for alternative and combination antiviral therapy.

  11. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin

    Directory of Open Access Journals (Sweden)

    Romina Croci

    2016-01-01

    Full Text Available RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity. To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221. In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery.

  12. Host Cell Factors as Antiviral Targets in Arenavirus Infection

    Directory of Open Access Journals (Sweden)

    Elsa B. Damonte

    2012-09-01

    Full Text Available Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.

  13. Host cell factors as antiviral targets in arenavirus infection.

    Science.gov (United States)

    Linero, Florencia N; Sepúlveda, Claudia S; Giovannoni, Federico; Castilla, Viviana; García, Cybele C; Scolaro, Luis A; Damonte, Elsa B

    2012-09-01

    Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.

  14. Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro.

    Directory of Open Access Journals (Sweden)

    Akram Astani

    2014-06-01

    Full Text Available Essential oils are complex mixtures containing compounds of several different functional- group classes. Depending on the structure, we can distinguish monoterpenes, phenylpropanes, and other components. Here in this study two monoterpene compounds of essential oils, i.e. β-pinene and limonene were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1 in vitro.All antiviral assays were performed using RC-37 cells. Cytotoxicity was determined in a neutral red assay, antiviral assays were performed with HSV-1 strain KOS. The mode of antiviral action was evaluated at different periods during the viral replication cycle. Acyclovir was used as positive antiviral control.Beta-pinenene and limonenen reduced viral infectivity by 100 %. The mode of antiviral action has been determined, only moderate antiviral effects were revealed by monoterpenes when these drugs were added to host cells prior infection or after entry of HSV into cells. However, both monoterpenes exhibited high anti-HSV-1 activity by direct interaction with free virus particles. Both tested drugs interacted with HSV-1 in a dose-dependent manner thereby inactivating viral infection.These results suggest that monoterpenes in essential oils exhibit antiherpetic activity in the early phase of viral multiplication and might be used as potential antiviral agents.

  15. Peptide-based proteasome inhibitors in anticancer drug design.

    Science.gov (United States)

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents.

  16. Novel cycloalkylthiophene-imine derivatives bearing benzothiazole scaffold: synthesis, characterization and antiviral activity evaluation.

    Science.gov (United States)

    Ke, Shaoyong; Wei, Yanhong; Yang, Ziwen; Wang, Kaimei; Liang, Ying; Shi, Liqiao

    2013-09-15

    A series of novel cycloalkylthiophene-imine derivatives containing benzothiazole unit were designed, synthesized and evaluated for their anti-viral activities. The bio-evaluation results indicated that some of the target compounds (such as 5g, 5i, 5u) exhibited good to moderate antiviral effect on CVB5, ADV7 and EV71 viruses, however, these compounds did not have inhibition activity against H1N1 virus. Especially, the compounds 4c and 4d also exhibited high antiviral activities, which provide a new and efficient approach to evolve novel multi-functional antiviral agents by rational integration of active pharmacophores.

  17. User-centered design improves the usability of drug-drug interaction alerts: Experimental comparison of interfaces.

    Science.gov (United States)

    Luna, Daniel R; Rizzato Lede, Daniel A; Otero, Carlos M; Risk, Marcelo R; González Bernaldo de Quirós, Fernán

    2017-02-01

    Clinical Decision Support Systems can alert health professionals about drug interactions when they prescribe medications. The Hospital Italiano de Buenos Aires in Argentina developed an electronic health record with drug-drug interaction alerts, using traditional software engineering techniques and requirements. Despite enhancing the drug-drug interaction knowledge database, the alert override rate of this system was very high. We redesigned the alert system using user-centered design (UCD) and participatory design techniques to enhance the drug-drug interaction alert interface. This paper describes the methodology of our UCD. We used crossover method with realistic, clinical vignettes to compare usability of the standard and new software versions in terms of efficiency, effectiveness, and user satisfaction. Our study showed that, compared to the traditional alert system, the UCD alert system was more efficient (alerts faster resolution), more effective (tasks completed with fewer errors), and more satisfying. These results indicate that UCD techniques that follow ISO 9241-210 can generate more usable alerts than traditional design.

  18. "Herbal incense": designer drug blends as cannabimimetics and their assessment by drug discrimination and other in vivo bioassays.

    Science.gov (United States)

    Järbe, Torbjörn U C; Gifford, Roger S

    2014-02-27

    Recently, synthetic cannabinoids originally designed for testing in the laboratory only have found use recreationally in designer herbal blends, originally called "Spice". The myriad of compounds found are for the most part potent full agonists of the cannabinoid receptor 1, producing effects similar to tetrahydrocannabinol (THC) and marijuana. Drug discrimination of these compounds offers a specific behavioral test that can help determine whether these new synthetic compounds share a similar "subjective high" with the effects of marijuana/THC. By utilization of drug discrimination and other behavioral techniques, a better understanding of these new "designer" cannabinoids may be reached to assist in treating both the acute and chronic effects of these drugs. The paper provides a brief exposé of modern cannabinoid research as a backdrop to the recreational use of designer herbal blend cannabimimetics.

  19. Advanced drug delivery systems: Nanotechnology of health design A review

    OpenAIRE

    Javad Safari; Zohre Zarnegar

    2014-01-01

    Nanotechnology has finally and firmly entered the realm of drug delivery. Performances of intelligent drug delivery systems are continuously improved with the purpose to maximize therapeutic activity and to minimize undesirable side-effects. This review describes the advanced drug delivery systems based on micelles, polymeric nanoparticles, and dendrimers. Polymeric carbon nanotubes and many others demonstrate a broad variety of useful properties. This review emphasizes the main requirements ...

  20. Using Free Computational Resources to Illustrate the Drug Design Process in an Undergraduate Medicinal Chemistry Course

    Science.gov (United States)

    Rodrigues, Ricardo P.; Andrade, Saulo F.; Mantoani, Susimaire P.; Eifler-Lima, Vera L.; Silva, Vinicius B.; Kawano, Daniel F.

    2015-01-01

    Advances in, and dissemination of, computer technologies in the field of drug research now enable the use of molecular modeling tools to teach important concepts of drug design to chemistry and pharmacy students. A series of computer laboratories is described to introduce undergraduate students to commonly adopted "in silico" drug design…

  1. Intriguing possibilities and beneficial aspects of transporter-conscious drug design.

    Science.gov (United States)

    Tashima, Toshihiko

    2015-08-01

    It has been revealed that many types of drugs interact with transporter proteins within an organism. Transporter proteins absorb or excrete materials, including drugs and nutrients, across the cell membrane. Some hydrophobic drugs are excreted from the cell as xenobiotics by ATP-binding cassette (ABC) transporters. However, solute carrier (SLC) transporters are tissue-specifically expressed and have substrate specificities. Thus, transporter-conscious drug design is an excellent method of delivering drugs to pharmaceutical target organs and provides advantages in absorption, distribution, excretion, and toxicity of drugs (ADMET) due to transport systems. In fact, based on this strategy, the bioavailability of prodrugs designed as peptide transporter 1 (PEPT1) substrates was better than that of the corresponding parent compounds due to the transport system in the small intestine. Furthermore, in central nervous system (CNS) drug developing, drug delivery into brain across the blood-brain barrier (BBB) is a serious problem. However, this problem can be also solved by the use of the transport systems at the BBB. Therefore, transporter-consciously designed drugs not only may effectively elicit activity but also may control adverse side effects caused by off-targets and drug-drug interactions and, consequently, may show good performance in clinical trials. In this review, I introduce possibilities and advantages of transporter-conscious drug designs.

  2. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    Science.gov (United States)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  3. Antiviral treatment for Bell's palsy (idiopathic facial paralysis

    Directory of Open Access Journals (Sweden)

    Ildiko Gagyor

    Full Text Available ABSTRACTBACKGROUND: Corticosteroids are widely used in the treatment of idiopathic facial paralysis (Bell's palsy, but the effectiveness of additional treatment with an antiviral agent is uncertain. Significant morbidity can be associated with severe cases of Bell's palsy.OBJECTIVES: To assess the effects of antiviral treatments alone or in combination with any other therapy for Bell's palsy.METHODS:Search methods:On 7 October 2014 we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS, DARE, NHS EED, and HTA. We also reviewed the bibliographies of the identified trials and contacted trial authors and known experts in the field and relevant drug companies to identify additional published or unpublished data. We searched clinical trials registries for ongoing studies.Selection criteria:We considered randomised controlled trials or quasi-randomised controlled trials of antivirals with and without corticosteroids versus control therapies for the treatment of Bell's palsy.We excluded trials that had a high risk of bias in several domains.Data collection and analysis:Pairs of authors independently assessed trials for relevance, eligibility, and risk of bias, using standard Cochrane procedures.MAIN RESULTS: Eleven trials, including 2883 participants, met the inclusion criteria and are included in the final analysis. We added four studies to the previous review for this update. Some of the trials were small, and a number were at high or unclear risk of bias. Other trials did not meet current best standards in allocation concealment and blinding. Incomplete recovery:We found no significant benefit from adding antivirals to corticosteroids in comparison with corticosteroids alone for people with Bell's palsy (risk ratio (RR 0.69, 95% confidence interval (CI 0.47 to 1.02, n = 1715. For people with severe Bell's palsy (House Brackmann scores of 5 and 6 or the equivalent in other scales, we found a

  4. Determination of designer drug cross-reactivity on five commercial immunoassay screening kits.

    Science.gov (United States)

    Regester, Laura E; Chmiel, Jeffrey D; Holler, Justin M; Vorce, Shawn P; Levine, Barry; Bosy, Thomas Z

    2015-03-01

    The detection of new designer drugs is often a difficult issue in forensic urine drug testing as immunoassays are the primary screening methodology for drugs of abuse in many of these laboratories. Cross-reactivity of compounds with immunoassay kits can either aid or complicate the detection of a variety of drug and drug metabolites. For instance, emerging designer drugs that share structural similarities to amphetamines and phencyclidine (PCP) have the potential to cross-react with assays designed to detect these compounds. This study evaluates the cross-reactivity of five commercially available immunoassay reagent kits for 94 designer drugs on a Roche/Hitachi Modular P automated screening instrument. The compounds used in this study are grouped by structural class as follows: 2,5-dimethoxyamphetamines, 2C (2,5-dimethoxyphenethylamines), β-keto amphetamines, substituted amphetamines, piperazines, α-pyrrolidinopropiophenones, tryptamines and PCP analogs. A drug concentration of 100 µg/mL was used to determine cross-reactivity for each assay and resulted in the following positive rates: Microgenics DRI(®) Ecstasy enzyme assay (19%), Microgenics DRI(®) Phencyclidine enzyme assay (20%), Lin-Zhi Methamphetamine enzyme immunoassay (39%), Siemens/Syva(®) EMIT(®)II Plus Amphetamines assay (43%) and CEDIA(®) DAU Amphetamine/Ecstasy assay (57%). Of the 94 designer drugs tested, 14% produced a negative response for all five kits. No designer drug used in this study generated a positive result for all five immunoassay kits.

  5. Viral Ancestors of Antiviral Systems

    Directory of Open Access Journals (Sweden)

    Luis P. Villarreal

    2011-10-01

    Full Text Available All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  6. Viral ancestors of antiviral systems.

    Science.gov (United States)

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  7. Rational drug design approach for overcoming drug resistance: application to pyrimethamine resistance in malaria.

    Science.gov (United States)

    McKie, J H; Douglas, K T; Chan, C; Roser, S A; Yates, R; Read, M; Hyde, J E; Dascombe, M J; Yuthavong, Y; Sirawaraporn, W

    1998-04-23

    Pyrimethamine acts by selectively inhibiting malarial dihydrofolate reductase-thymidylate synthase (DHFR-TS). Resistance in the most important human parasite, Plasmodium falciparum, initially results from an S108N mutation in the DHFR domain, with additional mutation (most commonly C59R or N51I or both) imparting much greater resistance. From a homology model of the 3-D structure of DHFR-TS, rational drug design techniques have been used to design and subsequently synthesize inhibitors able to overcome malarial pyrimethamine resistance. Compared to pyrimethamine (Ki 1.5 nM) with purified recombinant DHFR fromP. falciparum, the Ki value of the m-methoxy analogue of pyrimethamine was 1.07 nM, but against the DHFR bearing the double mutation (C59R + S108N), the Ki values for pyrimethamine and the m-methoxy analogue were 71.7 and 14.0 nM, respectively. The m-chloro analogue of pyrimethamine was a stronger inhibitor of both wild-type DHFR (with Ki 0.30 nM) and the doubly mutant (C59R +S108N) purified enzyme (with Ki 2.40 nM). Growth of parasite cultures of P. falciparum in vitro was also strongly inhibited by these compounds with 50% inhibition of growth occurring at 3.7 microM for the m-methoxy and 0.6 microM for the m-chloro compounds with the K1 parasite line bearing the double mutation (S108N + C59R), compared to 10.2 microM for pyrimethamine. These inhibitors were also found in preliminary studies to retain antimalarial activity in vivo in P. berghei-infected mice.

  8. Paediatric Drug Development and Formulation Design-a European Perspective

    NARCIS (Netherlands)

    Nales, D.A.; Kozarewicz, Piotr; Aylward, Brian; de Vries, Rutger; Egberts, Toine C G; Rademaker, Carin M A; Schobben, Alfred F A M

    2016-01-01

    The availability of licensed paediatric drugs is lagging behind those for adults, and there is a lack of safe formulations in suitable doses that children are able and willing to take. As a consequence, children are commonly treated with off-label or unlicensed drugs. As off-label and unlicensed dru

  9. Marine Antibody–Drug Conjugates: Design Strategies and Research Progress

    Science.gov (United States)

    Wang, Yu-Jie; Li, Yu-Yan; Liu, Xiao-Yu; Lu, Xiao-Ling; Cao, Xin; Jiao, Bing-Hua

    2017-01-01

    Antibody–drug conjugates (ADCs), constructed with monoclonal antibodies (mAbs), linkers, and natural cytotoxins, are innovative drugs developed for oncotherapy. Owing to the distinctive advantages of both chemotherapy drugs and antibody drugs, ADCs have obtained enormous success during the past several years. The development of highly specific antibodies, novel marine toxins’ applications, and innovative linker technologies all accelerate the rapid R&D of ADCs. Meanwhile, some challenges remain to be solved for future ADCs. For instance, varieties of site-specific conjugation have been proposed for solving the inhomogeneity of DARs (Drug Antibody Ratios). In this review, the usages of various natural toxins, especially marine cytotoxins, and the development strategies for ADCs in the past decade are summarized. Representative ADCs with marine cytotoxins in the pipeline are introduced and characterized with their new features, while perspective comments for future ADCs are proposed. PMID:28098746

  10. Drug: D07441 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D07441 Drug Amantadine (INN) C10H17N 151.1361 151.2487 D07441.gif Antiviral, Antiparkinson...synapse Transporter: SLC22A2 [HSA:6582] map07044 Antiviral agents map07057 Antiparkinson...inson Agents Antiparkinson Agents, Other Amantadine D07441 Amantadine (INN) Antivir...ntane derivatives N04BB01 Amantadine D07441 Amantadine (INN) USP drug classification [BR:br08302] Antipark

  11. The effect size, study design, and development experience in commercially sponsored studies for new drug applications in approved drugs

    OpenAIRE

    Fukunaga, Satoshi; Kusama, Makiko; Ono, Shunsuke

    2014-01-01

    Pharmaceutical companies incorporate different features into the trials for new drug applications (NDAs) to render them efficient, making use of their experience. The objective of this analysis was to examine the associations between outcome and features related to study design and clinical development experience in commercially sponsored clinical trials. We collected data of phase 2 and phase 3 trials of all the drugs that obtained approval for depression, schizophrenia, asthma, hypertension...

  12. Mannich bases in medicinal chemistry and drug design.

    Science.gov (United States)

    Roman, Gheorghe

    2015-01-07

    The biological activity of Mannich bases, a structurally heterogeneous class of chemical compounds that are generated from various substrates through the introduction of an aminomethyl function by means of the Mannich reaction, is surveyed, with emphasis on the relationship between structure and biological activity. The review covers extensively the literature reports that have disclosed Mannich bases as anticancer and cytotoxic agents, or compounds with potential antibacterial and antifungal activity in the last decade. The most relevant studies on the activity of Mannich bases as antimycobacterial agents, antimalarials, or antiviral candidates have been included as well. The review contains also a thorough coverage of anticonvulsant, anti-inflammatory, analgesic and antioxidant activities of Mannich bases. In addition, several minor biological activities of Mannich bases, such as their ability to regulate blood pressure or inhibit platelet aggregation, their antiparasitic and anti-ulcer effects, as well as their use as agents for the treatment of mental disorders have been presented. The review gives in the end a brief overview of the potential of Mannich bases as inhibitors of various enzymes or ligands for several receptors.

  13. Mining the Information for Structure Based Drug Designing by Relational Database Management Notion

    OpenAIRE

    R. Balajee; Dhanarajan, M. S.

    2009-01-01

    Structure based drug design is a technique that is used in the initial stages of a drug discovery program. The role of various computational methods in the characterization of the chemical properties and behavior of molecular systems is discussed. The field of bioinformatics has become a major part of the drug discovery pipeline playing a key role for validating drug targets. By integrating data from many inter-related yet heterogeneous resources, informatics can help in our understanding of ...

  14. Spectroscopic investigation of herpes simplex viruses infected cells and their response to antiviral therapy

    Science.gov (United States)

    Erukhimovitch, Vitaly; Talyshinsky, Marina; Souprun, Yelena; Huleihel, Mahmoud

    2006-07-01

    In the present study, we used microscopic Fourier transform infrared spectroscopy (FTIR) to evaluate the antiviral activity of known antiviral agents against herpes viruses. The antiviral activity of Caffeic acid phenethyl ester (CAPE) (which is an active compound of propolis) against herpes simplex type 1 and 2 was examined in cell culture. The advantage of microscopic FTIR spectroscopy over conventional FTIR spectroscopy is that it facilitates inspection of restricted regions of cell culture or tissue. Our results showed significant spectral differences at early stages of infection between infected and non-infected cells, and between infected cells treated with the used antiviral agent and those not treated. In infected cells, there was a considerable increase in phosphate levels. Our results show that treatment with used antiviral agent considerably abolish the spectral changes induced by the viral infection. In addition, it is possible to track by FTIR microscopy method the deferential effect of various doses of the drug.

  15. Design Project on Controlled-Release Drug Delivery Devices: Implementation, Management, and Learning Experiences

    Science.gov (United States)

    Xu, Qingxing; Liang, Youyun; Tong, Yen Wah; Wang, Chi-Hwa

    2010-01-01

    A design project that focuses on the subject of controlled-release drug delivery devices is presented for use in an undergraduate course on mass transfer. The purpose of the project is to introduce students to the various technologies used in the fabrication of drug delivery systems and provide a practical design exercise for understanding the…

  16. Multi-Step Usage of in Vivo Models During Rational Drug Design and Discovery

    OpenAIRE

    Williams, Charles H.; Hong, Charles C.

    2011-01-01

    In this article we propose a systematic development method for rational drug design while reviewing paradigms in industry, emerging techniques and technologies in the field. Although the process of drug development today has been accelerated by emergence of computational methodologies, it is a herculean challenge requiring exorbitant resources; and often fails to yield clinically viable results. The current paradigm of target based drug design is often misguided and tends to yield compounds t...

  17. Design and Evaluation of Gastro retentive Drug Delivery System of Anti Ulcer Drug

    OpenAIRE

    Patil, J. S.

    2014-01-01

    Floating matrix tablets of Lansoprezol were developed to prolong gastric residence time, leading to sustained action of the drug. Tablets were prepared by wet granulation technique, using hydroxypropylmethyl-cellulose as a polymer in two different grades, HPMC K4M and HPMC K15M. Tablets were evaluated for their physical characteristics, viz., hardness, thickness, friability, mass variation, drug content and floating properties. Further, tablets were studied for in vitro drug release character...

  18. Crystallization processes in pharmaceutical technology and drug delivery design

    Science.gov (United States)

    Shekunov, B. Yu; York, P.

    2000-04-01

    Crystallization is a major technological process for particle formation in pharmaceutical industry and, in addition, plays an important role in defining the stability and drug release properties of the final dosage forms. Industrial and regulatory aspects of crystallization are briefly reviewed with reference to solid-state properties of pharmaceuticals. Crystallization, incorporating wider definition to include precipitation and solid-state transitions, is considered in terms of preparation of materials for direct compression, formation of amorphous, solvated and polymorphic forms, chiral separation of drugs, production of materials for inhalation drug delivery and injections. Finally, recent developments in supercritical fluid particle technology is considered in relationship to the areas discussed.

  19. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics.

    Science.gov (United States)

    Goyanes, Alvaro; Wang, Jie; Buanz, Asma; Martínez-Pacheco, Ramón; Telford, Richard; Gaisford, Simon; Basit, Abdul W

    2015-11-02

    Three dimensional printing (3D printing) was used to fabricate novel oral drug delivery devices with specialized design configurations. Each device was loaded with multiple actives, with the intent of applying this process to the production of personalized medicines tailored at the point of dispensing or use. A filament extruder was used to obtain drug-loaded--paracetamol (acetaminophen) or caffeine--filaments of poly(vinyl alcohol) with characteristics suitable for use in fused-deposition modeling 3D printing. A multinozzle 3D printer enabled fabrication of capsule-shaped solid devices containing the drug with different internal structures. The design configurations included a multilayer device, with each layer containing drug, whose identity was different to the drug in the adjacent layers, and a two-compartment device comprising a caplet embedded within a larger caplet (DuoCaplet), with each compartment containing a different drug. Raman spectroscopy was used to collect 2-dimensional hyper spectral arrays across the entire surface of the devices. Processing of the arrays using direct classical least-squares component matching to produce false color representations of distribution of the drugs was used. This clearly showed a definitive separation between the drug layers of paracetamol and caffeine. Drug release tests in biorelevant bicarbonate media showed unique drug release profiles dependent on the macrostructure of the devices. In the case of the multilayer devices, release of both paracetamol and caffeine was simultaneous and independent of drug solubility. With the DuoCaplet design, it was possible to engineer either rapid drug release or delayed release by selecting the site of incorporation of the drug in the device; the lag-time for release from the internal compartment was dependent on the characteristics of the external layer. The study confirms the potential of 3D printing to fabricate multiple-drug containing devices with specialized design

  20. Antiviral activities of peptide-based covalent inhibitors of the Enterovirus 71 3C protease

    Science.gov (United States)

    Tan, Yong Wah; Ang, Melgious Jin Yan; Lau, Qiu Ying; Poulsen, Anders; Ng, Fui Mee; Then, Siew Wen; Peng, Jianhe; Hill, Jeffrey; Hong, Wan Jin; Chia, Cheng San Brian; Chu, Justin Jang Hann

    2016-01-01

    Hand, Foot and Mouth Disease is a highly contagious disease caused by a range of human enteroviruses. Outbreaks occur regularly, especially in the Asia-Pacific region, putting a burden on public healthcare systems. Currently, there is no antiviral for treating this infectious disease and the only vaccines are limited to circulation in China, presenting an unmet medical need that needs to be filled urgently. The human enterovirus 3 C protease has been deemed a plausible drug target due to its essential roles in viral replication. In this study, we designed and synthesized 10 analogues of the Rhinovirus 3 C protease inhibitor, Rupintrivir, and tested their 3 C protease inhibitory activities followed by a cellular assay using human enterovirus 71 (EV71)-infected human RD cells. Our results revealed that a peptide-based compound containing a trifluoromethyl moiety to be the most potent analogue, with an EC50 of 65 nM, suggesting its potential as a lead for antiviral drug discovery. PMID:27645381

  1. Design and evaluation of transdermal drug delivery system of gliclazide

    Directory of Open Access Journals (Sweden)

    Shinde Anilkumar

    2010-01-01

    Full Text Available Transdermal systems are ideally suited for diseases that demand chronic treatment. Hence, an anti-diabetic agent of both therapeutic and prophylactic usage has been subjected to transdermal investigation. Gliclazide, a second-generation hypoglycemic agent, faces problems like its poor solubility, poor oral bioavailability with large individual variation and extensive metabolism. In the present work, transdermal matrix-type patches were prepared by film casting techniques on mercury using polymers like HPMC, Eudragit RL-100, and chitosan. Also an attempt was made to increase the permeation rate of drug by preparing an inclusion complex with hydroxypropyl β-cyclodextrin (HP β-CD. The possibility of a synergistic effect of chemical penetration enhancers (CPE (propylene glycol and oleic acid on the transdermal transport of the drug was also studied. Folding endurance was found to be high in patches containing higher amount of the Eudragit. There was increase in tensile strength with an increase in Eudragit in the polymer blend. In vitro drug release profile indicates that the drug release is sustained with increasing the amount of Eudragit in patches. The patches containing inclusion complex of drug showed higher permeation flux compared with patches containing plain drug. The result of the synergistic effect indicates that the HP β- CD in conjunction with other CPE showed a higher permeation flux.

  2. The future of antiviral immunotoxins

    DEFF Research Database (Denmark)

    Spiess, K.; Høy Jakobsen, Mette; Kledal, Thomas N;

    2016-01-01

    There is a constant need for new therapeutic interventions in a wide range of infectious diseases. Over the past few years, the immunotoxins have entered the stage as promising antiviral treatments. Immunotoxins have been extensively explored in cancer treatment and have achieved FDA approval...

  3. Antiviral Effect Assay of Aqueous Extract of Echium Amoenum-L against HSV-1

    Directory of Open Access Journals (Sweden)

    Malihe Farahani

    2013-08-01

    Full Text Available Background: Medicinal plants have been used for different diseases in past. There is an increasing need for substances with antiviral activity since the treatment of viral infections with the available antiviral drugs often leads to the problem of viral resistance. Therefore in the present study Echium amoenum L plant with ethnomedical background was screened for antiviral activity against HSV-1 in different times. Materials and Methods: Flower part of Echium amoenum L plant collected from Iran was extracted with different methods to obtain crude aqueous extract. This extract was screened for its cytotoxicity against Hep II cell line by CPE assay. Antiviral properties of the plant extract were determined by cytopathic effect inhibition assay.Results: Echium amoenum L extract exhibited significant antiviral activity at non toxic concentrations to the cell line used. Findings indicated that plant extract has the most antiviral activity when it used an hour after virus inoculation.Conclusion: Echium amoenum L plant had not toxic effect at highest concentrations to the cell lines used and showed the most antiviral activity when it used an hour after virus inoculation. Further research is needed to elucidate the active constituents of this plant which may be useful in the development of new and effective antiviral agents.

  4. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors

    Directory of Open Access Journals (Sweden)

    Lucianna Helene Santos

    2015-11-01

    Full Text Available Reverse transcriptase (RT is a multifunctional enzyme in the human immunodeficiency virus (HIV-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.

  5. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors.

    Science.gov (United States)

    Santos, Lucianna Helene; Ferreira, Rafaela Salgado; Caffarena, Ernesto Raúl

    2015-11-01

    Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.

  6. Mechanisms of virus resistance and antiviral activity of snake venoms

    Directory of Open Access Journals (Sweden)

    JVR Rivero

    2011-01-01

    Full Text Available Viruses depend on cell metabolism for their own propagation. The need to foster an intimate relationship with the host has resulted in the development of various strategies designed to help virus escape from the defense mechanisms present in the host. Over millions of years, the unremitting battle between pathogens and their hosts has led to changes in evolution of the immune system. Snake venoms are biological resources that have antiviral activity, hence substances of significant pharmacological value. The biodiversity in Brazil with respect to snakes is one of the richest on the planet; nevertheless, studies on the antiviral activity of venom from Brazilian snakes are scarce. The antiviral properties of snake venom appear as new promising therapeutic alternative against the defense mechanisms developed by viruses. In the current study, scientific papers published in recent years on the antiviral activity of venom from various species of snakes were reviewed. The objective of this review is to discuss the mechanisms of resistance developed by viruses and the components of snake venoms that present antiviral activity, particularly, enzymes, amino acids, peptides and proteins.

  7. Antiviral defense in shrimp: from innate immunity to viral infection.

    Science.gov (United States)

    Wang, Pei-Hui; Huang, Tianzhi; Zhang, Xiaobo; He, Jian-Guo

    2014-08-01

    The culture of penaeid shrimp is rapidly developing as a major business endeavor worldwide. However, viral diseases have caused huge economic loss in penaeid shrimp culture industries. Knowledge of shrimp innate immunity and antiviral responses has made important progress in recent years, allowing the design of better strategies for the prevention and control of shrimp diseases. In this study, we have updated information on shrimp antiviral immunity and interactions between shrimp hosts and viral pathogens. Current knowledge and recent progress in immune signaling pathways (e.g., Toll/IMD-NF-κB and JAK-STAT signaling pathways), RNAi, phagocytosis, and apoptosis in shrimp antiviral immunity are discussed. The mechanism of viral infection in shrimp hosts and the interactions between viruses and shrimp innate immune systems are also analyzed.

  8. New tuberculostatic agents targeting nucleic acid biosynthesis: drug design using QSAR approaches.

    Science.gov (United States)

    Bueno, Renata V; Braga, Rodolpho C; Segretti, Natanael D; Ferreira, Elizabeth I; Trossini, Gustavo H G; Andrade, Carolina H

    2014-01-01

    Worldwide, tuberculosis (TB) is the leading cause of death among curable infectious diseases. The emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) TB is a growing global health concern and there is an urgent need for new anti-TB drugs. Enzymes involved in DNA and ATP biosynthesis are potential targets for tuberculostatic drug design, since these enzymes are essential for Mycobacterium tuberculosis growth. This review presents the current progress and applications of structure-activity relationship analysis for the discovery of innovative tuberculostatic agents as inhibitors of ribonucleotide reductase, DNA gyrase, ATP synthase, and thymidylate kinase enzymes, highlighting present challenges and new opportunities in TB drug design.

  9. The effect size, study design, and development experience in commercially sponsored studies for new drug applications in approved drugs.

    Science.gov (United States)

    Fukunaga, Satoshi; Kusama, Makiko; Ono, Shunsuke

    2014-01-01

    Pharmaceutical companies incorporate different features into the trials for new drug applications (NDAs) to render them efficient, making use of their experience. The objective of this analysis was to examine the associations between outcome and features related to study design and clinical development experience in commercially sponsored clinical trials. We collected data of phase 2 and phase 3 trials of all the drugs that obtained approval for depression, schizophrenia, asthma, hypertension, and diabetes in Japan from 1970 to 2011. In total, 145 trials from 90 test drugs were eligible for our study. We calculated the effect size, the standard mean of differences between test drug and comparator therapeutic effects, as the objective variable for use in our analysis. A linear mixed effect model with nested and crossed random effects was used in the analysis including variety of therapeutic area, test drugs and clinical trials. The analysis showed that trial features including sample size, subjective endpoints and active comparator of the same mode of action were negatively associated with effect size. In addition, sponsors' domestic clinical development experience with similar drugs seemed to have a positive association, but prior development experience in foreign countries did not. The accumulation of skills and knowledge within sponsors, and accumulated experience in domestic professionals who implement clinical trials under study contracts with sponsors would be of great importance for yielding clear outcomes. This study provides additional evidence with respect to possible sizes and directions of the influence of study design features that must be considered when planning and implementing trials for new drug applications, and when retrospectively comparing outcomes from trials with different designs and environments.

  10. Platinum anticancer drugs. From serendipity to rational design.

    Science.gov (United States)

    Monneret, C

    2011-11-01

    The discovery of cis-platin was serendipitous. In 1965, Rosenberg was looking into the effects of an electric field on the growth of Escherichia coli bacteria. He noticed that bacteria ceased to divide when placed in an electric field but what Rosenberg also observed was a 300-fold increase in the size of the bacteria. He attributed this to the fact that somehow the platinum-conducting plates were inducing cell growth but inhibiting cell division. It was later deduced that the platinum species responsible for this was cis-platin. Rosenberg hypothesized that if cis-platin could inhibit bacterial cell division it could also stop tumor cell growth. This conjecture has proven correct and has led to the introduction of cis-platin in cancer therapy. Indeed, in 1978, six years after clinical trials conducted by the NCI and Bristol-Myers-Squibb, the U.S. Food and Drug Administration (FDA) approved cis-platin under the name of Platinol(®) for treating patients with metastatic testicular or ovarian cancer in combination with other drugs but also for treating bladder cancer. Bristol-Myers Squibb also licensed carboplatin, a second-generation platinum drug with fewer side effects, in 1979. Carboplatin entered the U.S. market as Paraplatin(®) in 1989 for initial treatment of advanced ovarian cancer in established combination with other approved chemotherapeutic agents. Numerous platin derivatives have been further developed with more or less success and the third derivative to be approved in 1994 was oxaliplatin under the name of Eloxatin(®). It was the first platin-based drug to be active against metastatic colorectal cancer in combination with fluorouracil and folinic acid. The two others platin-based drugs to be approved were nedaplatin (Aqupla(®)) in Japan and lobaplatin in China, respectively. More recently, a strategy to overcome resistance due to interaction with thiol-containing molecules led to the synthesis of picoplatin in which one of the amines linked to Pt

  11. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    Science.gov (United States)

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  12. Pharmaceutical equivalence by design for generic drugs: modified-release products.

    Science.gov (United States)

    Raw, André Sirota; Lionberger, Robert; Yu, Lawrence X

    2011-07-01

    The Office of Generic Drugs has ensured the high quality of generic products based upon two requirements: pharmaceutical equivalence and bioequivalence to the reference listed drug (RLD). This paradigm has been used with success toward ensuring quality generic drug products that provide the same therapeutic benefit as the RLD. Drug products have increased in design complexity; as a result, approaches to ensure therapeutic equivalence must evolve to provide assurance of quality generic drug products. The Food and Drug Administration quality by design initiative (QbD) provides an enhanced evaluation approach by introducing the concept of a quality target product profile (QTPP). The QTPP introduces, within the context of the current regulatory framework, the quality concept of "pharmaceutical equivalence by design." This article illustrates through several examples how this QbD element in the evaluation of modified-release drug products enhances the current framework to ensure generic drug product equivalence. It achieves this by complementing the traditional paradigm, "equivalence by testing," where product equivalence is based upon inferences from a limited bioequivalence study, to one that also considers whether the drug product was developed to be an equivalent to the RLD, using appropriate quality surrogates that target "pharmaceutical equivalence by design."

  13. Substrate Binding Mode and Its Implication on Drug Design for Botulinum Neurotoxin A

    Science.gov (United States)

    2008-09-26

    Substrate Binding Mode and Its Implication on Drug Design for Botulinum Neurotoxin A Desigan Kumaran1, Richa Rawat1, S. Ashraf Ahmed2, Subramanyam...Swaminathan S (2008) Substrate Binding Mode and Its Implication on Drug Design for Botulinum Neurotoxin A. PLoS Pathog 4(9): e1000165. doi:10.1371/journal.ppat...COVERED - 4. TITLE AND SUBTITLE Substrate binding mode and its implication on drug design for botulinum neurotoxin A. PLoS Pathogen 4:e100165 5a

  14. Beyond THC: the new generation of cannabinoid designer drugs

    Directory of Open Access Journals (Sweden)

    Liana eFattore

    2011-09-01

    Full Text Available Synthetic cannabinoids are functionally similar to delta9-tetrahydrocannabinol (THC, the psychoactive principle of cannabis, and bind to the same cannabinoid receptors in the brain and peripheral organs. From 2008, synthetic cannabinoids were detected in herbal smoking mixtures sold on websites and in head shops under the brand name of Spice Gold, Yucatan Fire, Aroma, and others. Although these products (also known as Spice drugs or legal highs do not contain tobacco or cannabis, when smoked they produce effects similar to THC. Intoxication, withdrawal, psychosis and death have been recently reported after consumption, posing difficult social, political and health challenges. More than 140 different Spice products have been identified to date. The ability to induce strong cannabis-like psychoactive effects, along with the fact that they are readily available on the Internet, still legal in many countries, marketed as natural safe substances, and undetectable by conventional drug screening tests, has rendered these drugs very popular and particularly appealing to young and drug-naïve individuals seeking new experiences. An escalating number of compounds with cannabinoid receptor activity are currently being found as ingredients of Spice, of which almost nothing is known in terms of pharmacology, toxicology and safety. Since legislation started to control the synthetic cannabinoids identified in these herbal mixtures, many new analogs have appeared on the market. New cannabimimetic compounds are likely to be synthesized in the near future to replace banned synthetic cannabinoids, leading to a dog chasing its tail situation. Spice smokers are exposed to drugs that are extremely variable in composition and potency, and are at risk of serious, if not lethal, outcomes. Social and health professionals should maintain a high degree of alertness for Spice use and its possible psychiatric effects in vulnerable people.

  15. Drug: D00333 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D00333 Drug Ganciclovir (JAN/USP/INN); Cytovene (TN); Vitrasert (TN) C9H13N5O4 255....ic organisms and parasites 62 Chemotherapeutics 625 Antivirals 6250 Antivirals D00333 Ganciclovir (JAN/USP/I...ucleotides excl. reverse transcriptase inhibitors J05AB06 Ganciclovir D00333 Ganciclovir (JAN/USP/INN) S SEN...SORY ORGANS S01 OPHTHALMOLOGICALS S01A ANTIINFECTIVES S01AD Antivirals S01AD09 Ganciclovir D00333 Ganciclovi...r (JAN/USP/INN) USP drug classification [BR:br08302] Antivirals Anti-cytomegalovirus (CMV) Agents Ganciclo

  16. Drug: D03256 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D03256 Drug Valganciclovir hydrochloride (JAN/USAN); Valcyte (TN) C14H22N6O5. HCl 3...90.1418 390.8226 D03256.gif Antiviral [DS:H00368] Therapeutic category: 6250 ATC code: J05AB14 prodrug, active substance: Ganciclo...ms and parasites 62 Chemotherapeutics 625 Antivirals 6250 Antivirals D03256 Valganciclovir hydrochloride (JA...nd nucleotides excl. reverse transcriptase inhibitors J05AB14 Valganciclovir D03256 Valganciclovir hydrochlo...ride (JAN/USAN) USP drug classification [BR:br08302] Antivirals Anti-cytomegalovirus (CMV) Agents Valganciclovir D03256 Valganciclo

  17. Drug: D08306 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08306 Drug Oseltamivir (INN); Agucort (TN) C16H28N2O4 312.2049 312.4045 D08306.gif...apeutic Chemical (ATC) classification [BR:br08303] J ANTIINFECTIVES FOR SYSTEMIC ...USE J05 ANTIVIRALS FOR SYSTEMIC USE J05A DIRECT ACTING ANTIVIRALS J05AH Neuraminidase inhibitors J05AH02 Oseltamivir D0830...6 Oseltamivir (INN) USP drug classification [BR:br08302] Antivirals Anti-influenza Agents Oseltamivir D0830...6 Oseltamivir (INN) Antiinfectives [BR:br08307] Antivirals Anti-infl

  18. From G Protein-coupled Receptor Structure Resolution to Rational Drug Design.

    Science.gov (United States)

    Jazayeri, Ali; Dias, Joao M; Marshall, Fiona H

    2015-08-07

    A number of recent technical solutions have led to significant advances in G protein-coupled receptor (GPCR) structural biology. Apart from a detailed mechanistic view of receptor activation, the new structures have revealed novel ligand binding sites. Together, these insights provide avenues for rational drug design to modulate the activities of these important drug targets. The application of structural data to GPCR drug discovery ushers in an exciting era with the potential to improve existing drugs and discover new ones. In this review, we focus on technical solutions that have accelerated GPCR crystallography as well as some of the salient findings from structures that are relevant to drug discovery. Finally, we outline some of the approaches used in GPCR structure based drug design.

  19. Chemokine receptors as new molecular targets for antiviral therapy.

    Science.gov (United States)

    Santoro, F; Vassena, L; Lusso, P

    2004-04-01

    Extraordinary advancements have been made over the past decade in our understanding of the molecular mechanism of human immunodeficiency virus (HIV) entry into cells. The external HIV envelope glycoprotein, gp120, sequentially interacts with two cellular receptor molecules, the CD4 glycoprotein and a chemokine receptor, such as CCR5 or CXCR4, leading to the activation of the fusogenic domain of the transmembrane viral glycoprotein, gp41, which changes its conformation to create a hairpin structure that eventually triggers fusion between the viral and cellular membranes. Each of these discrete steps in the viral entry process represents a potential target for new antiviral agents. Current efforts to develop safe and effective HlV entry inhibitors are focused on naturally occurring proteins (e.g., chemokines, antibodies), engineered or modified derivatives of natural proteins (e.g., multimerized soluble CD4, gp41--or chemokine--derived synthetic peptides), as well as small synthetic compounds obtained either by high-throughput screening of large compound libraries or by structure-guided rational design. The recent introduction in therapy of the first fusion inhibitor, the gp41-derived synthetic peptide T20, heralds a new era in the treatment of AIDS, which will hopefully lead to more effective multi-drug regimens with reduced adverse effects for the patients.

  20. Rational, computer-enabled peptide drug design: principles, methods, applications and future directions.

    Science.gov (United States)

    Diller, David J; Swanson, Jon; Bayden, Alexander S; Jarosinski, Mark; Audie, Joseph

    2015-01-01

    Peptides provide promising templates for developing drugs to occupy a middle space between small molecules and antibodies and for targeting 'undruggable' intracellular protein-protein interactions. Importantly, rational or in cerebro design, especially when coupled with validated in silico tools, can be used to efficiently explore chemical space and identify islands of 'drug-like' peptides to satisfy diverse drug discovery program objectives. Here, we consider the underlying principles of and recent advances in rational, computer-enabled peptide drug design. In particular, we consider the impact of basic physicochemical properties, potency and ADME/Tox opportunities and challenges, and recently developed computational tools for enabling rational peptide drug design. Key principles and practices are spotlighted by recent case studies. We close with a hypothetical future case study.

  1. Evaluation of commercial multi-drug oral fluid devices to identify 39 new amphetamine-designer drugs.

    Science.gov (United States)

    Nieddu, Maria; Burrai, Lucia; Trignano, Claudia; Boatto, Gianpiero

    2014-03-01

    Recently, the diffusion on the black market of new psychoactive substances not controlled and often sold as 'legal highs', is exponentially increasing in Europe. Generally, the first analysis for these drugs involves an immunoassay screening in urine or plasma. Actually, there is growing interest in the use of oral fluid (OF) as alternative specimen over conventional biological fluids for drug testing, because of the significant advantages, as a non-invasive collection under direct observation without undue embarrassment or invasion of privacy, and a good correlation with plasma analytical data. Few assays have been developed for detection of new psychoactive compounds in biological samples, so it is important to investigate how they may or may not react in pre-existing commercial immunoassays. In this paper, two different multi-drugs oral fluid screen devices (OFDs) (Screen® Multi-Drug OFD and GIMA One Step Multi-Line Screen Test OFD) were evaluated to determine the cross-reactivity of thirty-nine new amphetamine designer drugs, including twelve substances officially recognized as illicit by italian legislation. Cross-reactivity towards most drugs analyzed was <1 in assays targeting amphetamine (AMP) or methamphetamine (MET). Only two (p-methoxyamphetamine and p-methoxymethamphetamine) of all tested amphetamines gave a positive result.

  2. Effects of nerve block combined with antiviral drug on patients with herpes zoster pain and sleep quality%神经阻滞联合抗病毒药物对带状疱疹患者疼痛及睡眠质量影响

    Institute of Scientific and Technical Information of China (English)

    陈慧

    2015-01-01

    Objective To explore the nerve block combined with antiviral drug on patients with herpes zoster treatment effect,and provide the basis for clinical pain relief and improve the quality of sleep.Methods The 90 cases of herpes zoster patients in our hospital in the Department of Dermatology for treatment,30 cases were randomly divided into a,B,C 30 cases 30 cases,group A with simple antiviral therapy,group B with antiviral joint pain relieving antiphlogistic drug therapy,group C treated with nerve block combined with antiviral therapy,recording three groups of visual score (VAS) and sleep quality score (QS),analysis and improvement in three groups of pain and sleep quality.Results The pain scores before and after treatment,in group A had no obvious change for the better,after 2 weeks,will be obviously significant differences (t =4.329,5.424,P < 0.05),C B two groups in 1 weeks after treatment there were significant differences (P < 0.05).In sleep quality,sleep quality has not improved significantly in group A (P >0.05),after 1 weeks,the sleep quality improvement (P < 0.05) before and after treatment in the two groups of ethylene and propylene,there was significant difference (P < 0.05),ethylene propylene no obvious differences between the two groups (P > 0.05).Conclusions The nerve block combined with antiviral drug with good pain relief and improve the role of sleep in patients with herpes zoster,can be used in clinical treatment.%目的 探究神经阻滞联合抗病毒药物对带状疱疹患者治疗效果,为临床疼痛缓解和改善睡眠质量提供依据.方法 选用来我院神经内科就诊带状疱疹患者90例,随机分为甲30例、乙30例、丙30例,甲组采用单纯抗病毒治疗,乙组采用抗病毒联合镇痛消炎药治疗,丙组采用神经阻滞联合抗病毒治疗,记录三组视觉评分(VAS)和睡眠质量评分(QS),分析三组疼痛和睡眠质量改善情况.结果 疼痛评分上,甲组治疗前后未见明显好转,2

  3. Design, development and optimization of selfmicroemulsifying drug delivery system of an anti-obesity drug

    Directory of Open Access Journals (Sweden)

    Jagruti Desai

    2012-01-01

    Full Text Available The aim of the present work was to formulate a self-microemulsifying drug delivery system (SMEDDS containing orlistat. The oil, surfactant and co-surfactant were decided based on the solubility studies. Pseudoternary phase diagrams were plotted, microemulsification area was determined and different formulations were prepared. Particle size, zeta potential, dispersibility test and thermodynamic stability studies were measured. In-vitro dissolution test of thermodynamically stable formulations OS-B and OS-C were carried and results were compared with those of plain drug and suspension formulation. Stability studies performed indicated that formulation OS-C remained stable over 12 months period. Thus this investigation concluded that hydrophobic drugs like orlistat can be delivered effectively through the formulation of SMEDDS.

  4. Computational drug designing of fungal pigments as potential aromatase inhibitors

    Directory of Open Access Journals (Sweden)

    Nighat Fatima

    2014-12-01

    Full Text Available The existing aromatase inhibitors produced unwelcome effects impose the discovery of novel drugs with privileged selectivity, a reduced amount of toxicity and humanizing potency. In this study, we illuminate the binding mode of polyketide azaphilanoid pigments monascin, ankaflavin, monascorubrin and monascorubramine isolated from Monascus fungus to the aromatase by molecular docking. The 3-dimensional structure of aromatase enzyme (PDB: 4KQ8 was obtained from the Protein Data Bank. PatchDock docking software was used to analyze structural complexes of the aromatase with monascus pigments. Comparatively, the AutoGrid model presented the most briskly constructive binding mode of monascin to aromatase. Docked energies in kcal/mol are: monascin;-13.2; monascorubramine:-12.8, monascorubrin:-12.3; ankaflavin: -10.5. These outcomes exposed these ligands could be potential drugs to treat hormone dependent breast cancer.

  5. Bioequivalence study designs for generic solid oral anticancer drug products: scientific and regulatory considerations.

    Science.gov (United States)

    Kaur, Paramjeet; Chaurasia, Chandra S; Davit, Barbara M; Conner, Dale P

    2013-12-01

    The demonstration of bioequivalence (BE) between the test and reference products is an integral part of generic drug approval process. A sound BE study design is pivotal to the successful demonstration of BE of generic drugs to their corresponding reference listed drug product. Generally, BE of systemically acting oral dosage forms is demonstrated in a crossover, single-dose in vivo study in healthy subjects. The determination of BE of solid oral anticancer drug products is associated with its own unique challenges due to the serious safety risks involved. Unlike typical BE study in healthy subjects, the safety issues often necessitate conducting BE studies in cancer patients. Such BE studies of an anticancer drug should be conducted without disturbing the patients' therapeutic dosing regimen. Attributes such as drug permeability and solubility, pharmacokinetics, dosing regimen, and approved therapeutic indication(s) are considered in the BE study design of solid anticancer drug products. To streamline the drug approval process, the Division of Bioequivalence posts the Bioequivalence Recommendations for Specific Products guidances on the FDA public website. The objective of this article is to illustrate the scientific and regulatory considerations in the design of BE studies for generic solid oral anticancer drug products through examples.

  6. A Statistical Perspective on the Design of Drug-Court Studies

    Science.gov (United States)

    Merrall, Elizabeth L. C.; Bird, Sheila M.

    2009-01-01

    Recent meta-analyses of drug-court studies recognized the poor methodological quality of the evaluations, with only a few being randomized. This article critiques the design of the randomized studies from a statistical perspective. Learning points are identified for future drug-court studies and are applicable to evaluations both of other…

  7. Drug treatments for subjective tinnitus: serendipitous discovery versus rational drug design.

    Science.gov (United States)

    Smith, Paul F; Darlington, Cynthia L

    2005-07-01

    Progress has been made in understanding the neural basis of subjective tinnitus (ST); however, this has not, as yet, translated into many new drug treatments. One reason for this is that realistic behavioral models of ST in animals have been developed only recently, and are still not widely used. Nonetheless, some significant pharmacological advances have been made. At present, there is evidence to support the efficacy of transtympanic gentamicin administration in the treatment of tinnitus associated with Meniere's disease; there is also some evidence to support the efficacy of intratympanic steroid and lidocaine application in the management of ST. Although benzodiazepines and anti-epileptic drugs appear to be effective in many cases of this condition, there is concern about their adverse side effect profile. Based on well-controlled clinical trials, vasodilators such as misoprostol, and histamine receptor ligands should be further investigated. Finally, given the evidence that ST is a form of sensory epilepsy, new antiepileptic drugs should be tested for potential efficacy as they are developed; such drugs may include novel N-methyl-D-aspartate receptor antagonists, as well as cannabinoids.

  8. Improving Protocol Design Feasibility to Drive Drug Development Economics and Performance

    OpenAIRE

    2014-01-01

    Protocol design complexity has increased substantially during the past decade and this in turn has adversely impacted drug development economics and performance. This article reviews the results of two major Tufts Center for the Study of Drug Development studies quantifying the direct cost of conducting less essential and unnecessary protocol procedures and of implementing amendments to protocol designs. Indirect costs including personnel time, work load and cycle time delays associated with ...

  9. Improving Protocol Design Feasibility to Drive Drug Development Economics and Performance

    OpenAIRE

    2014-01-01

    Protocol design complexity has increased substantially during the past decade and this in turn has adversely impacted drug development economics and performance. This article reviews the results of two major Tufts Center for the Study of Drug Development studies quantifying the direct cost of conducting less essential and unnecessary protocol procedures and of implementing amendments to protocol designs. Indirect costs including personnel time, work load and cycle time delays associated with...

  10. 75 FR 8968 - Draft Guidance for Industry on Adaptive Design Clinical Trials for Drugs and Biologics; Availability

    Science.gov (United States)

    2010-02-26

    ... current thinking on adaptive design clinical trials for drugs and biologics. It does not create or confer... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Adaptive Design Clinical... entitled ``Adaptive Design Clinical Trials for Drugs and Biologics.'' The draft guidance provides...

  11. Antiviral therapy for hepatitis B virus associated hepatic failure

    Institute of Scientific and Technical Information of China (English)

    Yu-Ming Wang; Ying-Zi Tang

    2009-01-01

    BACKGROUND: Chronic hepatitis B virus (HBV) infection remains a major global health issue, and the prognosis of patients with HBV-associated fulminant hepatic failure is extremely poor. The application of antiviral therapies has led to signiifcant improvements in patient outcomes. This article aimed to review the current strategies in antiviral treatment of HBV-associated fulminant hepatic failure. DATA SOURCES: Literature search was conducted using PubMed on the related subjects. Part of the data was from the most recent work of the authors' laboratory. RESULTS: Hepatitis B immunoglobulin in prevention of recurrent HBV infection after orthotopic liver transplantation (OLT) has been proven effective. However, its cost is high, and signiifcant side effects have been found to induce viral mutations. Lamivudine has a potent suppression for HBV replication and an excellent safety proifle in decompensated cirrhotic patients, but its major drawback is the high rate of drug-resistance. Adefovir is effective for lamivudine-resistance strains in the post-OLT situation, and its drug-resistance rate is relatively low. Combination therapies such as hepatitis B immunoglobulin combined with lamivudine and lamivudine combined with adefovir have been widely adopted for prophylaxis against HBV recurrence of infection after OLT. Entecavir, telbivudine, tenofovir and other newer agents have been widely used in antiviral therapy. CONCLUSIONS: The prognosis of HBV-associated ful-minant hepatic failure is being transformed by developments in antiviral therapy. However, it should be noticed that HBV is controlled but never eliminated, and drug-resistance still remains a major issue. Hopefully, newer strategies may help to solve these problems.

  12. TRPV1: A Target for Rational Drug Design

    Directory of Open Access Journals (Sweden)

    Vincenzo Carnevale

    2016-08-01

    Full Text Available Transient Receptor Potential Vanilloid 1 (TRPV1 is a non-selective, Ca2+ permeable cation channel activated by noxious heat, and chemical ligands, such as capsaicin and resiniferatoxin (RTX. Many compounds have been developed that either activate or inhibit TRPV1, but none of them are in routine clinical practice. This review will discuss the rationale for antagonists and agonists of TRPV1 for pain relief and other conditions, and strategies to develop new, better drugs to target this ion channel, using the newly available high-resolution structures.

  13. Improving Protocol Design Feasibility to Drive Drug Development Economics and Performance

    Directory of Open Access Journals (Sweden)

    Kenneth Getz

    2014-05-01

    Full Text Available Protocol design complexity has increased substantially during the past decade and this in turn has adversely impacted drug development economics and performance. This article reviews the results of two major Tufts Center for the Study of Drug Development studies quantifying the direct cost of conducting less essential and unnecessary protocol procedures and of implementing amendments to protocol designs. Indirect costs including personnel time, work load and cycle time delays associated with complex protocol designs are also discussed. The author concludes with an overview of steps that research sponsors are taking to improve protocol design feasibility.

  14. West Nile Virus Drug Discovery

    Directory of Open Access Journals (Sweden)

    Siew Pheng Lim

    2013-12-01

    Full Text Available The outbreak of West Nile virus (WNV in 1999 in the USA, and its continued spread throughout the Americas, parts of Europe, the Middle East and Africa, underscored the need for WNV antiviral development. Here, we review the current status of WNV drug discovery. A number of approaches have been used to search for inhibitors of WNV, including viral infection-based screening, enzyme-based screening, structure-based virtual screening, structure-based rationale design, and antibody-based therapy. These efforts have yielded inhibitors of viral or cellular factors that are critical for viral replication. For small molecule inhibitors, no promising preclinical candidate has been developed; most of the inhibitors could not even be advanced to the stage of hit-to-lead optimization due to their poor drug-like properties. However, several inhibitors developed for related members of the family Flaviviridae, such as dengue virus and hepatitis C virus, exhibited cross-inhibition of WNV, suggesting the possibility to re-purpose these antivirals for WNV treatment. Most promisingly, therapeutic antibodies have shown excellent efficacy in mouse model; one of such antibodies has been advanced into clinical trial. The knowledge accumulated during the past fifteen years has provided better rationale for the ongoing WNV and other flavivirus antiviral development.

  15. Antifungal and antiviral products of marine organisms.

    Science.gov (United States)

    Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong; Ye, Xiu Juan; Xia, Jiang; Ng, Tzi Bun

    2014-04-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of

  16. Application of the design of experiments in optimization of drug layering of pellets with an insight into drug polymer interactions.

    Science.gov (United States)

    Kovacevic, Jovana; Ibric, Svetlana; Djuris, Jelena; Kleinebudde, Peter

    2016-06-15

    This study consists of two experimental designs. Within the first one, suitable technique for application of model drug onto inactive pellets was evaluated and formulation and process parameters with greatest impact to process efficency and useful yield were determined. Results of experiments showed that formulation characteristics were the ones with the greatest impact on coating efficiency and that suspension layering technique was significantly better for drug application onto inactive pellets in comparison to solution layering during which pronounced agglomeration of pellets occurred. Analysis of drug-polymer interactions by differential scanning calorimetry was performed to explain the results of experiments. The reason for agglomeration of pellets during solution layering was formation of low Tg amorphous form of model drug. The second set of experiments was performed according to central composite design experimental plan in order to optimize level of binder and concentration of solids in the coating liquid which were found to have greatest positive impact on process efficiency and useful yield in the screening study. Statistically significant models were obtained by response surface methodology and it was possible to use them to define optimal levels of excipients in the formulation.

  17. Pleiotropic effects of statins: new therapeutic targets in drug design.

    Science.gov (United States)

    Bedi, Onkar; Dhawan, Veena; Sharma, P L; Kumar, Puneet

    2016-07-01

    The HMG Co-enzyme inhibitors and new lipid-modifying agents expand their new therapeutic target options in the field of medical profession. Statins have been described as the most effective class of drugs to reduce serum cholesterol levels. Since the discovery of the first statin nearly 30 years ago, these drugs have become the main therapeutic approach to lower cholesterol levels. The present scientific research demonstrates numerous non-lipid modifiable effects of statins termed as pleiotropic effects of statins, which could be beneficial for the treatment of various devastating disorders. The most important positive effects of statins are anti-inflammatory, anti-proliferative, antioxidant, immunomodulatory, neuroprotective, anti-diabetes, and antithrombotic, improving endothelial dysfunction and attenuating vascular remodeling besides many others which are discussed under the scope of this review. In particular, inhibition of Rho and its downstream target, Rho-associated coiled-coil-containing protein kinase (ROCK), and their agonistic action on peroxisome proliferator-activated receptors (PPARs) can be viewed as the principle mechanisms underlying the pleiotropic effects of statins. With gradually increasing knowledge of new therapeutic targets of statins, their use has also been advocated in chronic inflammatory disorders for example rheumatoid arthritis (RA) and in systemic lupus erythematosus (SLE). In the scope of review, we highlight statins and their pleiotropic effects with reference to their harmful and beneficial effects as a novel approach for their use in the treatment of devastating disorders. Graphical abstract Pleiotropic effect of statins.

  18. Computer-Aided Drug Design of Bioactive Natural Products.

    Science.gov (United States)

    Prachayasittikul, Veda; Worachartcheewan, Apilak; Shoombuatong, Watshara; Songtawee, Napat; Simeon, Saw; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    Natural products have been an integral part of sustaining civilizations because of their medicinal properties. Past discoveries of bioactive natural products have relied on serendipity, and these compounds serve as inspiration for the generation of analogs with desired physicochemical properties. Bioactive natural products with therapeutic potential are abundantly available in nature and some of them are beyond exploration by conventional methods. The effectiveness of computational approaches as versatile tools for facilitating drug discovery and development has been recognized for decades, without exception, in the case of natural products. In the post-genomic era, scientists are bombarded with data produced by advanced technologies. Thus, rendering these data into knowledge that is interpretable and meaningful becomes an essential issue. In this regard, computational approaches utilize the existing data to generate knowledge that provides valuable understanding for addressing current problems and guiding the further research and development of new natural-derived drugs. Furthermore, several medicinal plants have been continuously used in many traditional medicine systems since antiquity throughout the world, and their mechanisms have not yet been elucidated. Therefore, the utilization of computational approaches and advanced synthetic techniques would yield great benefit to improving the world's health population and well-being.

  19. General issues and precautions in the design for clinical trials of investigational new drugs.

    Science.gov (United States)

    Hu, Liang-ping; Bao, Xiao-lei

    2011-02-01

    The general problems existing in the clinical trials of investigational new drugs involve some key aspects such as the guiding principles, research designs, quality controls and statistical analyses. This paper explores the eight general issues in the clinical trials of investigational new drugs and presents precautionary measures with high operability. Research on the clinical trials of investigational new drugs is a complex project, which should be carried out strictly according to the policies, laws, criteria and operating rules set by related agencies. The neglect of research designs and data analyses will lead clinical trials to failure.

  20. Rational use of plasma protein and tissue binding data in drug design.

    Science.gov (United States)

    Liu, Xingrong; Wright, Matthew; Hop, Cornelis E C A

    2014-10-23

    It is a commonly accepted assumption that only unbound drug molecules are available to interact with their targets. Therefore, one of the objectives in drug design is to optimize the compound structure to increase in vivo unbound drug concentration. In this review, theoretical analyses and experimental observations are presented to illustrate that low plasma protein binding does not necessarily lead to high in vivo unbound plasma concentration. Similarly, low brain tissue binding does not lead to high in vivo unbound brain tissue concentration. Instead, low intrinsic clearance leads to high in vivo unbound plasma concentration, and low efflux transport activity at the blood-brain barrier leads to high unbound brain concentration. Plasma protein and brain tissue binding are very important parameters in understanding pharmacokinetics, pharmacodynamics, and toxicities of drugs, but these parameters should not be targeted for optimization in drug design.

  1. Diffusion-Based Design of Multi-Layered Ophthalmic Lenses for Controlled Drug Release.

    Science.gov (United States)

    Pimenta, Andreia F R; Serro, Ana Paula; Paradiso, Patrizia; Saramago, Benilde; Colaço, Rogério

    2016-01-01

    The study of ocular drug delivery systems has been one of the most covered topics in drug delivery research. One potential drug carrier solution is the use of materials that are already commercially available in ophthalmic lenses for the correction of refractive errors. In this study, we present a diffusion-based mathematical model in which the parameters can be adjusted based on experimental results obtained under controlled conditions. The model allows for the design of multi-layered therapeutic ophthalmic lenses for controlled drug delivery. We show that the proper combination of materials with adequate drug diffusion coefficients, thicknesses and interfacial transport characteristics allows for the control of the delivery of drugs from multi-layered ophthalmic lenses, such that drug bursts can be minimized, and the release time can be maximized. As far as we know, this combination of a mathematical modelling approach with experimental validation of non-constant activity source lamellar structures, made of layers of different materials, accounting for the interface resistance to the drug diffusion, is a novel approach to the design of drug loaded multi-layered contact lenses.

  2. Drug: D10518 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D10518 Drug Valaciclovir hydrochloride hydrate (JAN); Valaciclovir (TN) C13H20N6O4.... HCl. xH2O D10518.gif Antiviral [DS:H00365] Therapeutic category: 6250 ATC code: J05AB11 prodrug, active substance: Aciclo...ganisms and parasites 62 Chemotherapeutics 625 Antivirals 6250 Antivirals D10518 Valaciclovir hydrochloride ...ides and nucleotides excl. reverse transcriptase inhibitors J05AB11 Valaciclovir D10518 Valaciclovir hydroch

  3. The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design.

    Science.gov (United States)

    Cozza, Giorgio

    2017-02-20

    Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by "trial and error testing". In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising.

  4. [In Silico Drug Design Using an Evolutionary Algorithm and Compound Database].

    Science.gov (United States)

    Kawai, Kentaro; Takahashi, Yoshimasa

    2016-01-01

      Computational drug design plays an important role in the discovery of new drugs. Recently, we proposed an algorithm for designing new drug-like molecules utilizing the structure of a known active molecule. To design molecules, three types of fragments (ring, linker, and side-chain fragments) were defined as building blocks, and a fragment library was prepared from molecules listed in G protein-coupled receptor (GPCR)-SARfari database. An evolutionary algorithm which executes evolutionary operations, such as crossover, mutation, and selection, was implemented to evolve the molecules. As a case study, some GPCRs were selected for computational experiments in which we tried to design ligands from simple seed fragments using the Tanimoto coefficient as a fitness function. The results showed that the algorithm could be used successfully to design new molecules with structural similarity, scaffold variety, and chemical validity. In addition, a docking study revealed that these designed molecules also exhibited shape complementarity with the binding site of the target protein. Therefore, this is expected to become a powerful tool for designing new drug-like molecules in drug discovery projects.

  5. Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus.

    Science.gov (United States)

    Saudi, Milind; Zmurko, Joanna; Kaptein, Suzanne; Rozenski, Jef; Gadakh, Bharat; Chaltin, Patrick; Marchand, Arnaud; Neyts, Johan; Van Aerschot, Arthur

    2016-10-04

    High-throughput screening of a subset of the CD3 chemical library (Centre for Drug Design and Discovery; KU Leuven) provided us with a lead compound 1, displaying low micromolar potency against dengue virus and yellow fever virus. Within a project aimed at discovering new inhibitors of flaviviruses, substitution of its central imidazole ring led to synthesis of variably substituted pyrazine dicarboxylamides and phthalic diamides, which were evaluated in cell-based assays for cytotoxicity and antiviral activity against the dengue virus (DENV) and yellow fever virus (YFV). Fourteen compounds inhibited DENV replication (EC50 ranging between 0.5 and 3.4 μM), with compounds 6b and 6d being the most potent inhibitors (EC50 0.5 μM) with selectivity indices (SI) > 235. Compound 7a likewise exhibited anti-DENV activity with an EC50 of 0.5 μM and an SI of >235. In addition, good antiviral activity of seven compounds in the series was also noted against the YFV with EC50 values ranging between 0.4 and 3.3 μM, with compound 6n being the most potent for this series with an EC50 0.4 μM and a selectivity index of >34. Finally, reversal of one of the central amide bonds as in series 13 proved deleterious to the inhibitory activity.

  6. Unsteady jet in designing innovative drug delivery system

    Science.gov (United States)

    Wang, Cong; Mazur, Paul; Cosse, Julia; Rider, Stephanie; Gharib, Morteza

    2014-11-01

    Micro-needle injections, a promising pain-free drug delivery method, is constrained by its limited penetration depth. This deficiency can be overcome by implementing fast unsteady jet that can penetrate sub-dermally. The development of a faster liquid jet would increase the penetration depth and delivery volume of micro-needles. In this preliminary work, the nonlinear transient behavior of an elastic tube balloon in providing fast discharge is analyzed. A physical model that combines the Mooney Rivlin Material model and Young-Lapalce's Law was developed and used to investigate the fast discharging dynamic phenomenon. A proof of concept prototype was constructed to demonstrate the feasibility of a simple thumb-sized delivery system to generate liquid jet with desired speed in the range of 5-10 m/s. This work is supported by ZCUBE Corporation.

  7. The Open Form Inducer Approach for Structure-Based Drug Design

    Science.gov (United States)

    Inaoka, Daniel Ken; Iida, Maiko; Tabuchi, Toshiyuki; Honma, Teruki; Lee, Nayoung; Hashimoto, Satoshi; Matsuoka, Shigeru; Kuranaga, Takefumi; Sato, Kazuhito; Shiba, Tomoo; Sakamoto, Kimitoshi; Balogun, Emmanuel Oluwadare; Suzuki, Shigeo; Nara, Takeshi; da Rocha, Josmar Rodrigues; Montanari, Carlos Alberto; Tanaka, Akiko; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu

    2016-01-01

    Many open form (OF) structures of drug targets were obtained a posteriori by analysis of co-crystals with inhibitors. Therefore, obtaining the OF structure of a drug target a priori will accelerate development of potent inhibitors. In addition to its small active site, Trypanosoma cruzi dihydroorotate dehydrogenase (TcDHODH) is fully functional in its monomeric form, making drug design approaches targeting the active site and protein-protein interactions unrealistic. Therefore, a novel a priori approach was developed to determination the TcDHODH active site in OF. This approach consists of generating an "OF inducer" (predicted in silico) to bind the target and cause steric repulsion with flexible regions proximal to the active site that force it open. We provide the first proof-of-concept of this approach by predicting and crystallizing TcDHODH in complex with an OF inducer, thereby obtaining the OF a priori with its subsequent use in designing potent and selective inhibitors. Fourteen co-crystal structures of TcDHODH with the designed inhibitors are presented herein. This approach has potential to encourage drug design against diseases where the molecular targets are such difficult proteins possessing small AS volume. This approach can be extended to study open/close conformation of proteins in general, the identification of allosteric pockets and inhibitors for other drug targets where conventional drug design approaches are not applicable, as well as the effective exploitation of the increasing number of protein structures deposited in Protein Data Bank. PMID:27893848

  8. Development and characterization of hepatitis C virus genotype 1-7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Scheel, Troels K H; Jensen, Tanja B

    2009-01-01

    Six major hepatitis C virus (HCV) genotypes and numerous subtypes have been described, and recently a seventh major genotype was discovered. Genotypes show significant molecular and clinical differences, such as differential response to combination therapy with interferon-alpha and ribavirin...... against the putative coreceptors CD81 and scavenger receptor class B type I in a dose-dependent manner. Finally, neutralizing antibodies in selected chronic phase HCV sera had differential effects against genotype 1-7 viruses. Conclusion: We completed and characterized a panel of JFH1-based cell culture...... systems of all seven major HCV genotypes and important subtypes and used these viruses in comparative studies of antivirals, HCV receptor interaction, and neutralizing antibodies....

  9. ANTIVIRAL POTENTIAL OF MEDICINAL PLANTS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Ruwali Pushpa

    2013-06-01

    Full Text Available The term ‘Antiviral agents’ has been defined in very broad terms as substances other than a virus or virus containing vaccine or specific antibody which can produce either a protective or therapeutic effect to the clear detectable advantage of the virus infected host. The herbal medicine has a long traditional use and the major advantage over other medicines is their wide therapeutic window with rare side effects. There are some disadvantages of synthetic drugs like narrow therapeutic window and more importantly the various adverse side effects which occur quite frequently. Due to these disadvantages and other limitations, there is an increasing trend in the field of research for discovering new and noble drugs based on various herbal formulations. This review attempts to address the importance of developing therapeutic herbal formulations from various medicinal plants using the knowledge based on traditional system of medicines, the Ayurveda. Although natural products have been used by civilization since ancient times, only in recent decades has there been growing research into alternative therapies and the therapeutics use of natural products, especially those derived from plants. Plants synthesize and preserve a variety of biochemical products, many of which are extractable and used for various scientific investigations. Therefore, medicinal plants proved to be a major resort for the treatment of diseases and sicknesses by traditional healers in many societies.

  10. Antiviral activity of lanatoside C against dengue virus infection.

    Science.gov (United States)

    Cheung, Yan Yi; Chen, Karen Caiyun; Chen, Huixin; Seng, Eng Khuan; Chu, Justin Jang Hann

    2014-11-01

    Dengue infection poses a serious threat globally due to its recent rapid spread and rise in incidence. Currently, there is no approved vaccine or effective antiviral drug for dengue virus infection. In response to the urgent need for the development of an effective antiviral for dengue virus, the US Drug Collection library was screened in this study to identify compounds with anti-dengue activities. Lanatoside C, an FDA approved cardiac glycoside was identified as a candidate anti-dengue compound. Our data revealed that lanatoside C has an IC50 of 0.19μM for dengue virus infection in HuH-7 cells. Dose-dependent reduction in dengue viral RNA and viral proteins synthesis were also observed upon treatment with increasing concentrations of lanatoside C. Time of addition study indicated that lanatoside C inhibits the early processes of the dengue virus replication cycle. Furthermore, lanatoside C can effectively inhibit all four serotypes of dengue virus, flavivirus Kunjin, alphavirus Chikungunya and Sindbis virus as well as the human enterovirus 71. These findings suggest that lanatoside C possesses broad spectrum antiviral activity against several groups of positive-sense RNA viruses.

  11. Hepatotoxicity of piperazine designer drugs: up-regulation of key enzymes of cholesterol and lipid biosynthesis.

    Science.gov (United States)

    Arbo, Marcelo Dutra; Melega, Simone; Stöber, Regina; Schug, Markus; Rempel, Eugen; Rahnenführer, Jörg; Godoy, Patricio; Reif, Raymond; Cadenas, Cristina; de Lourdes Bastos, Maria; Carmo, Helena; Hengstler, Jan G

    2016-12-01

    The piperazine derivatives most frequently consumed for recreational purposes are 1-benzylpiperazine, 1-(3,4-methylenedioxybenzyl) piperazine, 1-(3-trifluoromethylphenyl) piperazine and 1-(4-methoxyphenyl) piperazine. Generally, they are consumed as capsules, tablets or pills but also in powder or liquid forms. Currently, the precise mechanism by which piperazine designer drugs induce hepatotoxicity and whether they act by a common pathway is unclear. To answer this question, we performed a gene array study with rat hepatocytes incubated with the four designer drugs. Non-cytotoxic concentrations were chosen that neither induce a decrease in reduced glutathione or ATP depletion. Analysis of the gene array data showed a large overlap of gene expression alterations induced by the four drugs. This 'piperazine designer drug consensus signature' included 101 up-regulated and 309 down-regulated probe sets (p cholesterol biosynthesis represented a dominant overrepresented motif. Key enzymes of cholesterol biosynthesis up-regulated by all four piperazine drugs include sterol C4-methyloxidase, isopentyl-diphosphate-Δ-isomerase, Cyp51A1, squalene epoxidase and farnesyl diphosphate synthase. Additionally, glycoprotein transmembrane nmb, which participates in cell adhesion processes, and fatty acid desaturase 1, an enzyme that regulates unsaturation of fatty acids, were also up-regulated by the four piperazine designer drugs. Regarding the down-regulated probe sets, only one gene was common to all four piperazine derivatives, the betaine-homocysteine-S-methyltransferase 2. Analysis of transcription factor binding sites of the 'piperazine designer drug consensus signature' identified the sterol regulatory element binding protein (SREBP-1) as strongly overrepresented in the up-regulated genes. SREBP transcription factors are known to regulate multiple genes of cholesterol metabolism. In conclusion, the present study shows that piperazine designer drugs act by up-regulating key

  12. In vitro evaluation of marine-microorganism extracts for anti-viral activity

    Directory of Open Access Journals (Sweden)

    Yasuhara-Bell Jarred

    2010-08-01

    Full Text Available Abstract Viral-induced infectious diseases represent a major health threat and their control remains an unachieved goal, due in part to the limited availability of effective anti-viral drugs and measures. The use of natural products in drug manufacturing is an ancient and well-established practice. Marine organisms are known producers of pharmacological and anti-viral agents. In this study, a total of 20 extracts from marine microorganisms were evaluated for their antiviral activity. These extracts were tested against two mammalian viruses, herpes simplex virus (HSV-1 and vesicular stomatitis virus (VSV, using Vero cells as the cell culture system, and two marine virus counterparts, channel catfish virus (CCV and snakehead rhabdovirus (SHRV, in their respective cell cultures (CCO and EPC. Evaluation of these extracts demonstrated that some possess antiviral potential. In sum, extracts 162M(4, 258M(1, 298M(4, 313(2, 331M(2, 367M(1 and 397(1 appear to be effective broad-spectrum antivirals with potential uses as prophylactic agents to prevent infection, as evident by their highly inhibitive effects against both virus types. Extract 313(2 shows the most potential in that it showed significantly high inhibition across all tested viruses. The samples tested in this study were crude extracts; therefore the development of antiviral application of the few potential extracts is dependent on future studies focused on the isolation of the active elements contained in these extracts.

  13. In vitro evaluation of marine-microorganism extracts for anti-viral activity.

    Science.gov (United States)

    Yasuhara-Bell, Jarred; Yang, Yongbo; Barlow, Russell; Trapido-Rosenthal, Hank; Lu, Yuanan

    2010-08-07

    Viral-induced infectious diseases represent a major health threat and their control remains an unachieved goal, due in part to the limited availability of effective anti-viral drugs and measures. The use of natural products in drug manufacturing is an ancient and well-established practice. Marine organisms are known producers of pharmacological and anti-viral agents. In this study, a total of 20 extracts from marine microorganisms were evaluated for their antiviral activity. These extracts were tested against two mammalian viruses, herpes simplex virus (HSV-1) and vesicular stomatitis virus (VSV), using Vero cells as the cell culture system, and two marine virus counterparts, channel catfish virus (CCV) and snakehead rhabdovirus (SHRV), in their respective cell cultures (CCO and EPC). Evaluation of these extracts demonstrated that some possess antiviral potential. In sum, extracts 162M(4), 258M(1), 298M(4), 313(2), 331M(2), 367M(1) and 397(1) appear to be effective broad-spectrum antivirals with potential uses as prophylactic agents to prevent infection, as evident by their highly inhibitive effects against both virus types. Extract 313(2) shows the most potential in that it showed significantly high inhibition across all tested viruses. The samples tested in this study were crude extracts; therefore the development of antiviral application of the few potential extracts is dependent on future studies focused on the isolation of the active elements contained in these extracts.

  14. Historical Perspectives in the Development of Antiviral Agents Against Poxviruses

    Directory of Open Access Journals (Sweden)

    Erik De Clercq

    2010-06-01

    Full Text Available The poxvirus vaccinia virus (VV served as the model virus for which the first antivirals, the thiosemicarbazones, were identified. This dates back to 1950; and, although there is at present no single antiviral drug specifically licensed for the chemotherapy or -prophylaxis of poxvirus infections, numerous candidate compounds have been described over the past 50 years. These compounds include interferon and inducers thereof (i.e., polyacrylic acid, 5-substituted 2’-deoxyuridines (i.e., idoxuridine, IMP dehydrogenase inhibitors, S-adenosylhomocysteine hydrolase inhibitors, acyclic nucleoside phosphonates (such as cidofovir and alkoxyalkyl prodrugs thereof (such as CMX001, viral egress inhibitors (such as tecovirimat, and cellular kinase inhibitors (such as imatinib.

  15. Naturally surveilled space: the design of a male drug rehabilitation center

    Science.gov (United States)

    Permana, A. R.; Aryanti, T.; Rahmanullah, F.

    2016-04-01

    The increase of drug addicts in Indonesia has not been supported by adequate facilities, both quantitatively and qualitatively. Despite being treated in a rehabilitation center, drug addicts may still use drugs surreptitiously and put themselves in danger. Architectural design may contribute to this either positively or negatively. This article elaborates a therapeutic design of a male rehabilitation center in the borderland of Bandung city, Indonesia. Employing the notion of natural surveillance, the rehabilitation center is designed to allow continual control over attendees without them feeling suppressed. The center design uses the behavioral approach to consider both attendees’ physical and psychological comforts, as well as their security. Building masses are designed in a way that forms an inward orientation and are laid out circularly according to the therapy processes that attendees must undertake. Moreover, rooms are planned differently in response to attendees’ unique conditions and restrictive physical requirements, such as their restriction on lighting and requirement of water for treatment. The landscape uses shady trees and vegetations as natural borders to demarcate the private zone, where attendees live, from the public area, where visitors may enter. The design is intended to provide a model for a responsive drug rehabilitation center that facilitates drug addicts’ recovery.

  16. Rational Design of Proteasome Inhibitors as Antimalarial Drugs.

    Science.gov (United States)

    Le Chapelain, Camille; Groll, Michael

    2016-05-23

    One life, two strategies: Crucial structural differences between the human and the Plasmodium falciparum proteasomes were recently identified. A combination of cryo-EM and functional characterization enabled the design of a selective antimalarial proteasome inhibitor that shows low toxicity in the host. When used with artemisinin, this ligand offers a new approach for the efficient treatment of malaria at all stages of the parasite lifecycle.

  17. Interfacing materials science and biology for drug carrier design.

    Science.gov (United States)

    Such, Georgina K; Yan, Yan; Johnston, Angus P R; Gunawan, Sylvia T; Caruso, Frank

    2015-04-08

    Over the last ten years, there has been considerable research interest in the development of polymeric carriers for biomedicine. Such delivery systems have the potential to significantly reduce side effects and increase the bioavailability of poorly soluble therapeutics. The design of carriers has relied on harnessing specific variations in biological conditions, such as pH or redox potential, and more recently, by incorporating specific peptide cleavage sites for enzymatic hydrolysis. Although much progress has been made in this field, the specificity of polymeric carriers is still limited when compared with their biological counterparts. To synthesize the next generation of carriers, it is important to consider the biological rationale for materials design. This requires a detailed understanding of the cellular microenvironments and how these can be harnessed for specific applications. In this review, several important physiological cues in the cellular microenvironments are outlined, with a focus on changes in pH, redox potential, and the types of enzymes present in specific regions. Furthermore, recent studies that use such biologically inspired triggers to design polymeric carriers are highlighted, focusing on applications in the field of therapeutic delivery.

  18. "New drug" designations for new therapeutic entities: new active substance, new chemical entity, new biological entity, new molecular entity.

    Science.gov (United States)

    Branch, Sarah K; Agranat, Israel

    2014-11-13

    This Perspective addresses ambiguities in designations of "new drugs" intended as new therapeutic entities (NTEs). Designation of an NTE as a new drug is significant, as it may confer regulatory exclusivity, an important incentive for development of novel compounds. Such designations differ between jurisdictions according to their drug laws and drug regulations. Chemical, biological, and innovative drugs are addressed in turn. The terms new chemical entity (NCE), new molecular entity (NME), new active substance (NAS), and new biological entity (NBE) as applied in worldwide jurisdictions are clarified. Differences between them are explored through case studies showing why new drugs have different periods of exclusivity in different jurisdictions or none at all. Finally, this Perspective recommends that in future, for the purpose of new drug compilations, NME is used for a new chemical drug, NBE for a new biological drug, and the combined designation NTE should refer to either an NME or an NBE.

  19. Multi-Step Usage of in Vivo Models During Rational Drug Design and Discovery

    Directory of Open Access Journals (Sweden)

    Charles H. Williams

    2011-04-01

    Full Text Available In this article we propose a systematic development method for rational drug design while reviewing paradigms in industry, emerging techniques and technologies in the field. Although the process of drug development today has been accelerated by emergence of computational methodologies, it is a herculean challenge requiring exorbitant resources; and often fails to yield clinically viable results. The current paradigm of target based drug design is often misguided and tends to yield compounds that have poor absorption, distribution, metabolism, and excretion, toxicology (ADMET properties. Therefore, an in vivo organism based approach allowing for a multidisciplinary inquiry into potent and selective molecules is an excellent place to begin rational drug design. We will review how organisms like the zebrafish and Caenorhabditis elegans can not only be starting points, but can be used at various steps of the drug development process from target identification to pre-clinical trial models. This systems biology based approach paired with the power of computational biology; genetics and developmental biology provide a methodological framework to avoid the pitfalls of traditional target based drug design.

  20. Multi-step usage of in vivo models during rational drug design and discovery.

    Science.gov (United States)

    Williams, Charles H; Hong, Charles C

    2011-01-01

    In this article we propose a systematic development method for rational drug design while reviewing paradigms in industry, emerging techniques and technologies in the field. Although the process of drug development today has been accelerated by emergence of computational methodologies, it is a herculean challenge requiring exorbitant resources; and often fails to yield clinically viable results. The current paradigm of target based drug design is often misguided and tends to yield compounds that have poor absorption, distribution, metabolism, and excretion, toxicology (ADMET) properties. Therefore, an in vivo organism based approach allowing for a multidisciplinary inquiry into potent and selective molecules is an excellent place to begin rational drug design. We will review how organisms like the zebrafish and Caenorhabditis elegans can not only be starting points, but can be used at various steps of the drug development process from target identification to pre-clinical trial models. This systems biology based approach paired with the power of computational biology; genetics and developmental biology provide a methodological framework to avoid the pitfalls of traditional target based drug design.

  1. Efficient Suppression of Hepatitis C Virus Replication by Combination Treatment with miR-122 Antagonism and Direct-acting Antivirals in Cell Culture Systems

    OpenAIRE

    Fanwei Liu; Tetsuro Shimakami; Kazuhisa Murai; Takayoshi Shirasaki; Masaya Funaki; Masao Honda; Seishi Murakami; Minkyung Yi; Hong Tang; Shuichi Kaneko

    2016-01-01

    Direct-acting antivirals (DAAs) against Hepatitis C virus (HCV) show effective antiviral activity with few side effects. However, the selection of DAA-resistance mutants is a growing problem that needs to be resolved. In contrast, miR-122 antagonism shows extensive antiviral effects among all HCV genotypes and a high barrier to drug resistance. In the present study, we evaluated three DAAs (simeprevir, daclatasvir, and sofosbuvir) in combination with anti-miR-122 treatment against HCV genotyp...

  2. 77 FR 52744 - Food and Drug Administration/European Medicines Agency Orphan Product Designation and Grant Workshop

    Science.gov (United States)

    2012-08-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Food and Drug Administration/European Medicines Agency Orphan Product Designation and Grant Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of meeting. The Food and Drug Administration's...

  3. Recent Advances in Drug Design and Drug Discovery for Androgen- Dependent Diseases.

    Science.gov (United States)

    Cabeza, Marisa; Sánchez-Márquez, Araceli; Garrido, Mariana; Silva, Aylín; Bratoeff, Eugene

    2016-01-01

    This article summarizes the importance of different targets such as 5α-reductase, 17β-HSD, CYP17A, androgen receptor and protein kinase A for the treatment of prostate cancer and benign prostatic hyperplasia. It is a well known fact that dihydrotestosterone (DHT) is associated with the development of androgen-dependent afflictions. At the present time, several research groups are attempting to develop new steroidal and non-steroidal molecules with the purpose of inhibiting the synthesis and biological response of DHT. This review also discusses the most recent studies reported in the literature that describe the therapeutic potential of novel compounds, as well as the new drugs, principally inhibitors of 5α-reductase.

  4. Affinity-Based Screening Technology and HCV Drug Discovery

    Institute of Scientific and Technical Information of China (English)

    LI Bin

    2003-01-01

    @@ NS5A is one of the non-structural gene products encoded by Hepatitis C virus (HCV) and related viruses that are essential for viral replication. The amino acid sequence of NS5A is conserved between different HCV genotypes and the primary amino acid sequence of NS5A is unique to HCV and closely related viruses. Importantly, NS5A is unrelated to any human protein. This indicates that drugs designed to block the actions of NS5A could inhibit the replication of HCV without showing toxic side effects in human host cells, thus making NS5A inhibitors ideal anti-viral drugs. However, there are presently no functional assays for this essential viral protein. Therefore, conventional high throughput screening (HTS) approaches can not be used to discover antiviral drugs against NS5A.

  5. Broad-spectrum antiviral therapeutics.

    Directory of Open Access Journals (Sweden)

    Todd H Rider

    Full Text Available Currently there are relatively few antiviral therapeutics, and most which do exist are highly pathogen-specific or have other disadvantages. We have developed a new broad-spectrum antiviral approach, dubbed Double-stranded RNA (dsRNA Activated Caspase Oligomerizer (DRACO that selectively induces apoptosis in cells containing viral dsRNA, rapidly killing infected cells without harming uninfected cells. We have created DRACOs and shown that they are nontoxic in 11 mammalian cell types and effective against 15 different viruses, including dengue flavivirus, Amapari and Tacaribe arenaviruses, Guama bunyavirus, and H1N1 influenza. We have also demonstrated that DRACOs can rescue mice challenged with H1N1 influenza. DRACOs have the potential to be effective therapeutics or prophylactics for numerous clinical and priority viruses, due to the broad-spectrum sensitivity of the dsRNA detection domain, the potent activity of the apoptosis induction domain, and the novel direct linkage between the two which viruses have never encountered.

  6. Molecular docking as a popular tool in drug design, an in silico travel.

    Science.gov (United States)

    de Ruyck, Jerome; Brysbaert, Guillaume; Blossey, Ralf; Lensink, Marc F

    2016-01-01

    New molecular modeling approaches, driven by rapidly improving computational platforms, have allowed many success stories for the use of computer-assisted drug design in the discovery of new mechanism-or structure-based drugs. In this overview, we highlight three aspects of the use of molecular docking. First, we discuss the combination of molecular and quantum mechanics to investigate an unusual enzymatic mechanism of a flavoprotein. Second, we present recent advances in anti-infectious agents' synthesis driven by structural insights. At the end, we focus on larger biological complexes made by protein-protein interactions and discuss their relevance in drug design. This review provides information on how these large systems, even in the presence of the solvent, can be investigated with the outlook of drug discovery.

  7. Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery.

    Science.gov (United States)

    Islam, Md Mirazul; Mohamed, Zahurin

    2015-01-01

    The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery.

  8. Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery

    Directory of Open Access Journals (Sweden)

    Md. Mirazul Islam

    2015-01-01

    Full Text Available The blood-brain barrier (BBB is a dynamic and highly selective permeable interface between central nervous system (CNS and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery.

  9. State-of-the-art technology in modern computer-aided drug design.

    Science.gov (United States)

    Dalkas, Georgios A; Vlachakis, Dimitrios; Tsagkrasoulis, Dimosthenis; Kastania, Anastasia; Kossida, Sophia

    2013-11-01

    The quest for small drug-like compounds that selectively inhibit the function of biological targets has always been a major focus in the pharmaceutical industry and in academia as well. High-throughput screening of compound libraries requires time, cost and resources. Therefore, the use of alternative methods is necessary for facilitating lead discovery. Computational techniques that dock small molecules into macromolecular targets and predict the affinity and activity of the small molecule are widely used in drug design and discovery, and have become an integral part of the industrial and academic research. In this review, we present an overview of some state-of-the-art technologies in modern drug design that have been developed for expediting the search for novel drug candidates.

  10. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Supriya Baikar

    2010-01-01

    Full Text Available A large number of secondary metabolites like alkaloids, terpenoids, polyphenols and quinones are produced by the plants. These metabolites can be utilized as natural medicines for the reason that they inhibit the activity of DNA topoisomerase which are the clinical targets for anticancer drugs. DNA topoisomerases are the cellular enzymes that change the topological state of DNA through the breaking and rejoining of DNA strands. Synthetic drugs as inhibitors of topoisomerases have been developed and used in the clinical trials but severe side effects are a serious problem for them therefore, there is a need for the development of novel plant-derived natural drugs and their analogs which may serve as appropriate inhibitors with respect to drug designing. The theme for this review is how secondary metabolites or natural products inactivate the action of DNA topoisomerases and open new avenues towards isolation and characterization of compounds for the development of novel drugs with anticancer potential.

  11. Mining the Information for Structure Based Drug Designing by Relational Database Management Notion

    Directory of Open Access Journals (Sweden)

    R. Balajee

    2009-01-01

    Full Text Available Structure based drug design is a technique that is used in the initial stages of a drug discovery program. The role of various computational methods in the characterization of the chemical properties and behavior of molecular systems is discussed. The field of bioinformatics has become a major part of the drug discovery pipeline playing a key role for validating drug targets. By integrating data from many inter-related yet heterogeneous resources, informatics can help in our understanding of complex biological processes and help improve drug discovery. The determination of the three dimensional properties of small molecules and macromolecular receptor structures is a core activity in the efforts towards a better understanding of structure-activity relationships.

  12. Сost-effectiveness of the second wave of protease inhibitors in the treatment of chronic hepatitis C (genotype 1 in patients not previously treated with antiviral drugs, and for relapsed disease

    Directory of Open Access Journals (Sweden)

    A. V. Rudakova

    2016-01-01

    Full Text Available The protease inhibitors (PI actively using for the treatment of chronic hepatitis C (CHC.The aim of this analysis was to evaluate the cost-effectiveness of narlaprevir and simeprevir in the CHC (genotype 1 therapy in treatment-naïve patients and relapses.Material and methods. Analysis of the cost-effectiveness of simeprevir and narlaprevir was conducted from the perspective of the health care system and base on QUEST-1, QUEST-2, ASPIRE and PIONEER clinical trials. The relative risk of achieving SVR 24 compared to the peg-INF + RBV therapy was used in the model. Treatment discontinuation in patients receiving narlaprevir assumed in the absence of a SVR after 12 weeks and in patients receiving simeprevir in the SVR absence after 4 weeks. The cost of narlaprevir was calculate based on estimated registration price in case of EDL (essential pharmaceutical list approved by MOH inclusion, including VAT (10% and 10% as trade margin. Costs of other antiviral products were in line with the results of 2015 average auctions prices.Results. In the base case costs on antiviral products with narlaprevir as first-line therapy are lower compared with simeprevir by 12,2% (950,6 and 1083,0 thousand RUR, respectively, and the cost per patient with SVR 24 by 7,8%. In patients group after relapse costs on antiviral products with narlaprevir as first-line therapy will decrease compared with simeprevir by 4,3% (971,3 and 1014,7 thousand RUR, respectively, and the cost per patient with SVR 24 by 25,0%. The sensitivity analysis demonstrated a high reliability of obtained results. Thus, assuming equal clinical effectiveness of narlaprevir and simeprevir, costs of treatment naive patients will be 10.6% lower for narlaprevir group compared to simeprevir group (953,0 and 1066,0 thousand rur, respectively, and by 12,9% for the treatment of relapses (957,9 and 1100,0 thousand RUR, respectively.Conclusions. With comparable clinical efficacy and

  13. Drug: D04008 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 2O 295.1281 295.2945 D04008.gif Antiviral used in the treatment of hepatitis B infections [DS:H00412] Therap...ntecavir D04008 Entecavir hydrate (JAN); Entecavir (USAN) USP drug classification [BR:br08302] Antivirals Anti-hepatitis

  14. Drug: D03690 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D03690 Drug Desciclovir (USAN/INN) C8H11N5O2 209.0913 209.2052 D03690.gif Antiviral...08307] Antivirals Anti-HSV agent DNA polymerase inhibitor Purine analogue Desciclovir D03690 Desciclovir (US

  15. Drug: D08775 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08775 Mixture, Drug Abacavir sulfate - lamivudine mixt; Epzicom (TN) Abacavir sulf...emotherapeutics 625 Antivirals 6250 Antivirals D08775 Abacavir sulfate - lamivudi...ns, combinations J05AR02 Lamivudine and abacavir D08775 Abacavir sulfate - lamivu... Transcriptase Inhibitors (NRTI)v Abacavir and Lamivudine D08775 Abacavir sulfate - lamivudine mixt PubChem: 96025458 ...

  16. Optimization of Influenza Antiviral Response in Texas

    Science.gov (United States)

    2015-03-01

    the population-proportionate antiviral release schedule worked comparably the xvi TAVRS antiviral release schedule. However, in response to a...12/1/05- 1254_article Lee, N., Chan, P. K., Choi, K. W., Lui , G., Wong, B., Cockram, C. S. …Sung, J.J. (2007). Factors associated with early

  17. Drug: D02764 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available OTHERAPEUTICS FOR DERMATOLOGICAL USE D06B CHEMOTHERAPEUTICS FOR TOPICAL USE D06BB Antivirals D06BB03 Aciclov...NTIINFECTIVES S01AD Antivirals S01AD03 Aciclovir D02764 Acyclovir sodium (USAN) USP drug classification [BR:...Antiinfectives [BR:br08307] Antivirals Anti-HSV agent DNA polymerase inhibitor Purine analogue Aciclovir [AT...ECT ACTING ANTIVIRALS J05AB Nucleosides and nucleotides excl. reverse transcripta...se inhibitors J05AB01 Aciclovir D02764 Acyclovir sodium (USAN) S SENSORY ORGANS S01 OPHTHALMOLOGICALS S01A A

  18. Designer drugs: aspectos analíticos e biológicos

    Directory of Open Access Journals (Sweden)

    Rachel Bulcão

    2012-01-01

    Full Text Available In the recent years, analytical toxicologists have been facing difficulties in detecting designer drugs due to the chemical modifications on the existing structures and the speed in which they are released into the market, requiring the development and improvement of specific and appropriate analytical methods. This work is a review of the literature which summarizes the characteristics of the drugs and the analytical validated methods using conventional and unconventional matrices currently used for correct identification and quantification of the following classes of emerging drugs of abuse: derivatives of opiates, amphetamines, tryptamines, piperazines and cannabinoids.

  19. Drug-excipient compatibility testing using a high-throughput approach and statistical design.

    Science.gov (United States)

    Wyttenbach, Nicole; Birringer, Christian; Alsenz, Jochem; Kuentz, Martin

    2005-01-01

    The aim of our research was to develop a miniaturized high throughput drug-excipient compatibility test. Experiments were planned and evaluated using statistical experimental design. Binary mixtures of a drug, acetylsalicylic acid, or fluoxetine hydrochloride, and of excipients commonly used in solid dosage forms were prepared at a ratio of approximately 1:100 in 96-well microtiter plates. Samples were exposed to different temperature (40 degrees C/ 50 degrees C) and humidity (10%/75%) for different time (1 week/4 weeks), and chemical drug degradation was analyzed using a fast gradient high pressure liquid chromatography (HPLC). Categorical statistical design was applied to identify the effects and interactions of time, temperature, humidity, and excipient on drug degradation. Acetylsalicylic acid was least stable in the presence of magnesium stearate, dibasic calcium phosphate, or sodium starch glycolate. Fluoxetine hydrochloride exhibited a marked degradation only with lactose. Factor-interaction plots revealed that the relative humidity had the strongest effect on the drug excipient blends tested. In conclusion, the developed technique enables fast drug-excipient compatibility testing and identification of interactions. Since only 0.1 mg of drug is needed per data point, fast rational preselection of the pharmaceutical additives can be performed early in solid dosage form development.

  20. LIPOSOMAL ENCAPSULATION TECHNOLOGY A NOVEL DRUG DELIVERY SYSTEM DESIGNED FOR AYURVEDIC DRUG PREPARATION

    Directory of Open Access Journals (Sweden)

    M. Hemanth kumar

    2011-10-01

    Full Text Available Liposomal Encapsulation Technology (LET is the newest delivery method used by medical researchers to transfer drugs that act as healing promoters to the definite body organs. This form of delivery system offers targeted delivery of vital compounds to the body. It has been in existence since the early 70’s. Liposomal Encapsulation Technology is a state of the art method of producing sub-microscopic bubbles called liposomes, which encapsulate various substances. These phospholipids or “liposomes” form a barrier around their contents that is resistant to enzymes in the mouth and stomach, digestive juices, alkaline solutions, bile salts, and intestinal flora, found in the human body as well as free radicals. The contents of the liposomes are therefore shielded from degradation and oxidation. This protective phospholipid shield or barrier remains unharmed until the contents of the liposome are delivered right to the target organ, gland, or system where the contents will be utilized. Natural extracts are generally degraded because of oxidation and other chemical reactions before they delivered to the target site. Our research has shown liposomal encapsulated ayurvedic preparations have shown more stability and also more efficiency when compared to traditional preparations. Size of liposomes were measured around 85-200 nm.

  1. Designing a software for drug management in special situations at a hospital’s drug administration service

    Directory of Open Access Journals (Sweden)

    Marina Sánchez Cuervo

    2015-01-01

    Full Text Available Objective: to describe the features of a computer program for management of drugs in special situations (off-label and compassionate use in a Department of Hospital Pharmacy (PD. To describe the methodology followed for its implementation in the Medical Services. To evaluate their use after 2 years of practice. Method: the design was carried out by pharmacists of the PD. The stages of the process were: selection of a software development company, establishment of a working group, selection of a development platform, design of an interactive Viewer, definition of functionality and data processing, creation of databases, connection, installation and configuration, application testing and improvements development. A directed sequential strategy was used for implementation in the Medical Services. The program’s utility and experience of use were evaluated after 2 years. Results: a multidisciplinary working group was formed and developed Pk_Usos®. The program works in web environment with a common viewer for all users enabling real time checking of the request files’ status and that adapts to the management of medications in special situations procedure. Pk_Usos® was introduced first in the Oncology Department, with 15 oncologists as users of the program. 343 patients had 384 treatment requests managed, of which 363 are authorized throughout two years. Conclusions: PK_Usos® is the first software designed for the management of drugs in special situations in the PD. It is a dynamic and efficient tool for all professionals involved in the process by optimization of times

  2. Ethics and Nanopharmacy: Value Sensitive Design of New Drugs.

    Science.gov (United States)

    Timmermans, Job; Zhao, Yinghuan; van den Hoven, Jeroen

    2011-12-01

    Although applications are being developed and have reached the market, nanopharmacy to date is generally still conceived as an emerging technology. Its concept is ill-defined. Nanopharmacy can also be construed as a converging technology, which combines features of multiple technologies, ranging from nanotechnology to medicine and ICT. It is still debated whether its features give rise to new ethical issues or that issues associated with nanopharma are merely an extension of existing issues in the underlying fields. We argue here that, regardless of the alleged newness of the ethical issues involved, developments occasioned by technological advances affect the roles played by stakeholders in the field of nanopharmacy to such an extent that this calls for a different approach to responsible innovation in this field. Specific features associated with nanopharmacy itself and features introduced to the associated converging technologies- bring about a shift in the roles of stakeholders that call for a different approach to responsibility. We suggest that Value Sensitive Design is a suitable framework to involve stakeholders in addressing moral issues responsibly at an early stage of development of new nanopharmaceuticals.

  3. 生物信息学与药物设计%Bioinformatics and drug design

    Institute of Scientific and Technical Information of China (English)

    胡俊; 梁学友; 杨建红

    2014-01-01

    As an interdisciplinary course with integrated theoretical methods of biology, mathematics, physics, information science and computer science, bioinformatics provides new approaches for drug design. The articles reviewed application of bioinformatics in drug design with reference to the current status and development of drug design.%生物信息学是综合运用生物学、数学、物理学、信息科学以及计算机科学等学科的理论方法而形成的交叉学科,它为药物设计提供了新的方法。本文结合药物设计的现状与发展对生物信息学在药物设计中的应用进行综述。

  4. Prospects of Applying Enhanced Semi-Empirical QM Methods for 2101 Virtual Drug Design.

    Science.gov (United States)

    Yilmazer, Nusret Duygu; Korth, Martin

    2016-01-01

    The last five years have seen a renaissance of semiempirical quantum mechanical (SQM) methods in the field of virtual drug design, largely due to the increased accuracy of so-called enhanced SQM approaches. These methods make use of additional terms for treating dispersion (D) and hydrogen bond (H) interactions with an accuracy comparable to dispersion-corrected density functional theory (DFT-D). DFT-D in turn was shown to provide an accuracy comparable to the most sophisticated QM approaches when it comes to non-covalent intermolecular forces, which usually dominate the protein/ligand interactions that are central to virtual drug design. Enhanced SQM methods thus offer a very promising way to improve upon the current state of the art in the field of virtual drug design.

  5. COMPUTATIONAL MODELING AND DRUG DESIGNING OF LIPOPROTEIN LIPASE (LPL INVOLVED IN ISCHEMIC STROKE

    Directory of Open Access Journals (Sweden)

    Maryam Torabizadeh

    2012-12-01

    Full Text Available Homology modeling and flexible docking of Lipoprotein Lipase has been studied in silico approach. Blast result was found to have similarity with Lipoprotein Lipase of 83% identity with 1LPA. Active site of LPL protein was identified by CASTP. Large potential drugs were designed for identifying molecules that can likely bind to protein target of interest. The different drug derivatives designed were used for docking with the generated structure, among the 10 derivatives designed, 3rd derivative showed highest docking result. The drug derivatives were docked to the protein by hydrogen bonding interactions and these interactions play an important role in the binding studies. Our investigations may be helpful for further studies.

  6. Antiviral activity of ovotransferrin derived peptides.

    Science.gov (United States)

    Giansanti, Francesco; Massucci, M Teresa; Giardi, M Federica; Nozza, Fabrizio; Pulsinelli, Emy; Nicolini, Claudio; Botti, Dario; Antonini, Giovanni

    2005-05-27

    Ovotransferrin and lactoferrin are iron-binding proteins with antiviral and antibacterial activities related to natural immunity, showing marked sequence and structural homologies. The antiviral activity of two hen ovotransferrin fragments DQKDEYELL (hOtrf(219-227)) and KDLLFK (hOtrf(269-301) and hOtrf(633-638)) towards Marek's disease virus infection of chicken embryo fibroblasts is reported here. These fragments have sequence homology with two bovine lactoferrin fragments with antiviral activity towards herpes simplex virus, suggesting that these fragments could have a role for the exploitation of the antiviral activity of the intact proteins towards herpes viruses. NMR analysis showed that these peptides, chemically synthetized, did not possess any favourite conformation in solution, indicating that both the aminoacid sequence and the conformation they display in the intact protein are essential for the antiviral activity.

  7. A new strategy in drug design of Chinese medicine: theory, method and techniques.

    Science.gov (United States)

    Yang, Hong-Jun; Shen, Dan; Xu, Hai-Yu; Lu, Peng

    2012-11-01

    The research and development (R&D) process of Chinese medicine, with one notable feature, clinical application based, is significantly different from which of chemical and biological medicine, from laboratory research to clinics. Besides, compound prescription is another character. Therefore, according to different R&D theories between Chinese and Western medicine, we put forward a new strategy in drug design of Chinese medicine, which focuses on "combination-activity relationship (CAR)", taking prescription discovery, component identification and formula optimization as three key points to identify the drugs of high efficacy and low toxicity. The method of drug design of Chinese medicine includes: new prescription discovery based on clinical data and literature information, component identification based on computing and experimental research, as well as formula optimization based on system modeling. This paper puts forward the concept, research framework and techniques of drug design of Chinese medicine, which embodies the R&D model of Chinese medicine, hoping to support the drug design of Chinese medicine theoretically and technologically.

  8. Design and Implementation of an Interdisciplinary Elective Course in Drug Discovery, Development, and Commercialization

    Directory of Open Access Journals (Sweden)

    Williams S. Ettouati, Pharm.D.

    2013-01-01

    Full Text Available Objective: To describe the design and implementation of an elective course in drug discovery, development, and commercialization for pharmacy, medical, biomedical graduate, business, and law students. Case Study: This course included didactic lectures, student group discussions, a longitudinal assignment, and a question and answer panel session. A 9-item instrument using a 5-point response scale was used for course evaluation. The longitudinal assignment was the creation and presentation of a product lifecycle strategic plan (PLSP. Respondents rated ‘agree’ and ‘strongly agree’ in the course providing useful information on drug discovery (39% and 53%, drug development (39% and 60%, and drug commercialization (33% and 60%. The majority of student-reported overall understanding of the drug discovery and drug development process was rated ‘very good’ (49% and 46%, while the drug commercialization process was rated ‘good’ (46%. Conclusions: An elective course on drug discovery, development, and commercialization included enrollment of students with diverse educational training. The course provided useful information and improved overall student understanding.

  9. Update On Emerging Antivirals For The Management Of Herpes Simplex Virus Infections: A Patenting Perspective

    OpenAIRE

    Vadlapudi, Aswani D.; Vadlapatla, Ramya K.; Mitra, Ashim K.

    2013-01-01

    Herpes simplex virus (HSV) infections can be treated efficiently by the application of antiviral drugs. The herpes family of viruses is responsible for causing a wide variety of diseases in humans. The standard therapy for the management of such infections includes acyclovir (ACV) and penciclovir (PCV) with their respective prodrugs valaciclovir and famciclovir. Though effective, long term prophylaxis with the current drugs leads to development of drug-resistant viral isolates, particularly i...

  10. Optimal drug cocktail design: methods for targeting molecular ensembles and insights from theoretical model systems.

    Science.gov (United States)

    Radhakrishnan, Mala L; Tidor, Bruce

    2008-05-01

    Drug resistance is a significant obstacle in the effective treatment of diseases with rapidly mutating targets, such as AIDS, malaria, and certain forms of cancer. Such targets are remarkably efficient at exploring the space of functional mutants and at evolving to evade drug binding while still maintaining their biological role. To overcome this challenge, drug regimens must be active against potential target variants. Such a goal may be accomplished by one drug molecule that recognizes multiple variants or by a drug "cocktail"--a small collection of drug molecules that collectively binds all desired variants. Ideally, one wants the smallest cocktail possible due to the potential for increased toxicity with each additional drug. Therefore, the task of designing a regimen for multiple target variants can be framed as an optimization problem--find the smallest collection of molecules that together "covers" the relevant target variants. In this work, we formulate and apply this optimization framework to theoretical model target ensembles. These results are analyzed to develop an understanding of how the physical properties of a target ensemble relate to the properties of the optimal cocktail. We focus on electrostatic variation within target ensembles, as it is one important mechanism by which drug resistance is achieved. Using integer programming, we systematically designed optimal cocktails to cover model target ensembles. We found that certain drug molecules covered much larger regions of target space than others, a phenomenon explained by theory grounded in continuum electrostatics. Molecules within optimal cocktails were often dissimilar, such that each drug was responsible for binding variants with a certain electrostatic property in common. On average, the number of molecules in the optimal cocktails correlated with the number of variants, the differences in the variants' electrostatic properties at the binding interface, and the level of binding affinity

  11. Structural studies on ligand–DNA systems: A robust approach in drug design

    Indian Academy of Sciences (India)

    Surat Kumar; Prateek Pandya; Kumud Pandav; Surendra P Gupta; Arun Chopra

    2012-07-01

    Molecular docking, molecular mechanics, molecular dynamics and relaxation matrix simulation protocols have been extensively used to generate the structural details of ligand–receptor complexes in order to understand the binding interactions between the two entities. Experimental methods like NMR spectroscopy and X-ray crystallography are known to provide structural information about ligand–receptor complexes. In addition, fluorescence spectroscopy, circular dichroism (CD) spectroscopy and molecular docking have also been utilized to decode the phenomenon of the ligand–DNA interactions, with good correlation between experimental and computational results. The DNA binding affinity was demonstrated by analysing fluorescence spectral data. Structural rigidity of DNA upon ligand binding was identified by CD spectroscopy. Docking is carried out using the DNA-Dock program which results in the binding affinity data along with structural information like interatomic distances and H-bonding, etc. The complete structural analyses of various drug–DNA complexes have afforded results that indicate a specific DNA binding pattern of these ligands. It also exhibited that certain structural features of ligands can make a ligand to be AT- or GC-specific. It was also demonstrated that changing specificity from AT base pairs to GC base pairs further improved the DNA topoisomerase inhibiting activity in certain ligands. Thus, a specific molecular recognition signature encrypted in the structure of ligand can be decoded and can be effectively employed in designing more potent antiviral and antitumour agents.

  12. Expression of herpes simplex virus type 1 recombinant thymidine kinase and its application to a rapid antiviral sensitivity assay.

    Science.gov (United States)

    Shiota, Tomoyuki; Lixin, Wang; Takayama-Ito, Mutsuyo; Iizuka, Itoe; Ogata, Momoko; Tsuji, Masanori; Nishimura, Hidekazu; Taniguchi, Shuichi; Morikawa, Shigeru; Kurane, Ichiro; Mizuguchi, Masashi; Saijo, Masayuki

    2011-08-01

    Antiviral-resistant herpesvirus infection has become a great concern for immunocompromised patients. Herpes simplex virus type 1 (HSV-1) infections are treated with viral thymidine kinase (vTK)-associated drugs such as acyclovir (ACV), and most ACV-resistance (ACV(r)) is due to mutations in the vTK. The standard drug sensitivity test is usually carried out by the plaque reduction assay-based method, which requires over 10 days. To shorten the time required, a novel system was developed by the concept, in which 293T cells transiently expressing recombinant vTK derived from the test sample by transfection of the cells with an expression vector were infected with vTK-deficient and ACV(r) HSV-1 (TAR), and then cultured in a maintenance medium with or without designated concentrations of ACV, ganciclovir (GCV) and brivudine (BVdU). The replication of TAR was strongly inhibited by ACV, GCV and BVdU in 293T cells expressing recombinant vTK of the ACV-sensitive HSV-1, whereas replication was not or slightly inhibited in cells expressing the recombinant vTK of highly resistant or intermediately resistant HSV-1, respectively. An inverse correlation was demonstrated in the 50% effective concentrations (EC(50)s) and inhibitory effects of these compounds on the replication of TAR among ACV(s) and ACV(r) HSV-1 clones. These results indicate that the EC(50)s of the vTK-associated drugs including ACV can be assumed by measuring the inhibitory effect of drugs in 293T cells expressing recombinant vTK of the target virus. The newly developed antiviral sensitivity assay system for HSV-1 makes it possible to estimate EC(50) for vTK-associated drugs, when whole vTK gene is available for use by gene amplification directly from lesion's samples or from virus isolates.

  13. Antiviral Perspectives for Chikungunya Virus

    Directory of Open Access Journals (Sweden)

    Deepti Parashar

    2014-01-01

    Full Text Available Chikungunya virus (CHIKV is a mosquito-borne pathogen that has a major health impact in humans and causes acute febrile illness in humans accompanied by joint pains and, in many cases, persistent arthralgia lasting for weeks to years. CHIKV reemerged in 2005-2006 in several parts of the Indian Ocean islands and India after a gap of 32 years, causing millions of cases. The re-emergence of CHIKV has also resulted in numerous outbreaks in several countries in the eastern hemisphere, with a threat to further expand in the near future. However, there is no vaccine against CHIKV infection licensed for human use, and therapy for CHIKV infection is still mainly limited to supportive care as antiviral agents are yet in different stages of testing or development. In this review we explore the different perspectives for chikungunya treatment and the effectiveness of these treatment regimens and discuss the scope for future directions.

  14. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  15. The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family

    NARCIS (Netherlands)

    van der Linden, Lonneke; Vives-Adrián, Laia; Selisko, Barbara; Ferrer-Orta, Cristina; Liu, Xinran; Lanke, Kjerstin; Ulferts, Rachel; De Palma, Armando M; Tanchis, Federica; Goris, Nesya; Lefebvre, David; De Clercq, Kris; Leyssen, Pieter; Lacroix, Céline; Pürstinger, Gerhard; Coutard, Bruno; Canard, Bruno; Boehr, David D; Arnold, Jamie J; Cameron, Craig E; Verdaguer, Nuria; Neyts, Johan; van Kuppeveld, Frank J M

    2015-01-01

    The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-b

  16. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods.

    Science.gov (United States)

    Moitessier, Nicolas; Pottel, Joshua; Therrien, Eric; Englebienne, Pablo; Liu, Zhaomin; Tomberg, Anna; Corbeil, Christopher R

    2016-09-20

    Computational methods for docking small molecules to proteins are prominent in drug discovery. There are hundreds, if not thousands, of documented examples-and several pertinent cases within our research program. Fifteen years ago, our first docking-guided drug design project yielded nanomolar metalloproteinase inhibitors and illustrated the potential of structure-based drug design. Subsequent applications of docking programs to the design of integrin antagonists, BACE-1 inhibitors, and aminoglycosides binding to bacterial RNA demonstrated that available docking programs needed significant improvement. At that time, docking programs primarily considered flexible ligands and rigid proteins. We demonstrated that accounting for protein flexibility, employing displaceable water molecules, and using ligand-based pharmacophores improved the docking accuracy of existing methods-enabling the design of bioactive molecules. The success prompted the development of our own program, Fitted, implementing all of these aspects. The primary motivation has always been to respond to the needs of drug design studies; the majority of the concepts behind the evolution of Fitted are rooted in medicinal chemistry projects and collaborations. Several examples follow: (1) Searching for HDAC inhibitors led us to develop methods considering drug-zinc coordination and its effect on the pKa of surrounding residues. (2) Targeting covalent prolyl oligopeptidase (POP) inhibitors prompted an update to Fitted to identify reactive groups and form bonds with a given residue (e.g., a catalytic residue) when the geometry allows it. Fitted-the first fully automated covalent docking program-was successfully applied to the discovery of four new classes of covalent POP inhibitors. As a result, efficient stereoselective syntheses of a few screening hits were prioritized rather than synthesizing large chemical libraries-yielding nanomolar inhibitors. (3) In order to study the metabolism of POP inhibitors by

  17. EVALUATION OF HEPATITIS B SURFACE ANTIGEN POSITIVITY IN ANTENATAL WOMEN AND ROLE OF ANTIVIRAL THERAPY

    Directory of Open Access Journals (Sweden)

    Jhansi Rani

    2015-03-01

    Full Text Available BACKGROUND : Hepatitis B infection is a major global health problem . AIM : of the study is to identify the antenatal women who are HBsAg positive and to evaluate their viremic status to prevent vertical transmission from mother to foetus and role of antiviral therapy in pregnancy. STUDY DESIGN : I s two centres prospective cohort study. All the pregnant women who attended the antenatal OPD in Government Victoria hospital/ Andhra Medical C ollege , Visakhapatnam between February 2013 and September 2014 were evaluated. METHODS AND MATERIAL : HBs Ag screening was done using Rapid Stick test to all the pregnant women attending the OPD. 6400 members were screened. 100 subjects were HBsAg positive and confirmed by using ELISA technique. Evaluation for HBeAg and HBV viral load is done in all subjects. If HBV DNA is > 10 5 log copies/ml and Alanine transaminase (ALT is > 2 ULN or HBV DNA is >10 8 log copies/ml will be offered telbivudine therapy. RESULTS: Of the 6400 members screened , 100(1.5% were HBsAg positive. Of them , 10% were HBe Ag positive and 2% had HBV DNA > 10 5 log copies/ml. These patients were treated with drug , telbivudine in their third trimester. The HBV DNA level at the time of delivery is below 10 5 log copies/ml. The babies of these patients were checked for HBsAg and HBV DNA at birth and at 7th month which were negative and also for anti HBS at 7th month. CONCLUSIONS : The present study shows that HBsAg positive antenatal women are not prone for maternal and foetal complications. HBeAg positive individuals with high viremia need to be treated with antiviral drugs during the last trimester of pregnancy in order to prevent vertical transmission.

  18. Molecular Thermodynamic Modeling and Design of Microencapsulation Systems for Drug Delivery

    DEFF Research Database (Denmark)

    Abildskov, Jens; O’Connell, John P.

    2011-01-01

    is based on fundamental thermodynamic relations and group contributions to properties of pure species (solvent, active ingredient and polymer) and their mixtures. The method is intended for pharmaceuticals with complex molecular structures, for which limited experimental information is known. Case studies......A systematic design strategy is given for computer-aided design of microparticle drug-delivery systems produced by solvent evaporation. In particular, design of solvents, polymer material, and external phase composition are considered for the case when the active ingredient is known. The procedure...... of solvent design are given....

  19. Perspectives on Inhibiting β-Amyloid Aggregation through Structure-Based Drug Design.

    Science.gov (United States)

    Mishra, Pankaj; Ayyannan, Senthil R; Panda, Gautam

    2015-09-01

    Targeting β-amyloid (Aβ) remains the most desired strategy in Alzheimer's disease (AD) drug discovery research. Many peptides that specifically target Aβ aggregates are known, encompassing efforts from both industrial and academic research settings. However, in clinical terms, not much success has been gained with peptide research; in turn, small drug-like molecules are already globally recognized as showing promise as an alternate approach. Aβ aggregation inhibitors are the most important part of the multifunctional drug design regimen for treating AD. Unfortunately, rational drug design approaches with small molecules are still in the initial stages. Herein we highlight, update, and elaborate on the structural anatomy of Aβ and known Aβ aggregation inhibitors in hopes of helping to optimize their use in structure-based drug design approaches toward inhibitors with greater specificity. Furthermore, we present the first review of efforts to target a previously uncharacterized region of acetylcholinesterase: the N-terminal 7-20 sub-region, which was experimentally elucidated to participate in Aβ aggregation and deposition.

  20. Molecular docking as a popular tool in drug design, an in silico travel

    Directory of Open Access Journals (Sweden)

    de Ruyck J

    2016-06-01

    Full Text Available Jerome de Ruyck, Guillaume Brysbaert, Ralf Blossey, Marc F Lensink University Lille, CNRS UMR8576 UGSF, Lille, FranceAbstract: New molecular modeling approaches, driven by rapidly improving computational platforms, have allowed many success stories for the use of computer-assisted drug design in the discovery of new mechanism- or structure-based drugs. In this overview, we highlight three aspects of the use of molecular docking. First, we discuss the combination of molecular and quantum mechanics to investigate an unusual enzymatic mechanism of a flavoprotein. Second, we present recent advances in anti-infectious agents' synthesis driven by structural insights. At the end, we focus on larger biological complexes made by protein–protein interactions and discuss their relevance in drug design. This review provides information on how these large systems, even in the presence of the solvent, can be investigated with the outlook of drug discovery.Keywords: structure-based drug design, protein–protein docking, quaternary structure prediction, residue interaction networks, RINs, water position

  1. Multimodal system designed to reduce errors in recording and administration of drugs in anaesthesia: prospective randomised clinical evaluation

    OpenAIRE

    Merry, Alan F.; Craig S. Webster; HANNAM Jacqueline; Mitchell, Simon J.; Henderson, Robert; Reid, Papaarangi; Edwards, Kylie-Ellen; Jardim, Anisoara; Pak, Nick; Cooper, Jeremy; Hopley, Lara; Frampton, Chris; Short, Timothy G

    2011-01-01

    Objective To clinically evaluate a new patented multimodal system (SAFERSleep) designed to reduce errors in the recording and administration of drugs in anaesthesia. Design Prospective randomised open label clinical trial. Setting Five designated operating theatres in a major tertiary referral hospital. Participants Eighty nine consenting anaesthetists managing 1075 cases in which there were 10 764 drug administrations. Intervention Use of the new system (which includes customised drug trays ...

  2. Review cyclic peptides on a merry-go-round; towards drug design.

    Science.gov (United States)

    Tapeinou, Anthi; Matsoukas, Minos-Timotheos; Simal, Carmen; Tselios, Theodore

    2015-09-01

    Peptides and proteins are attractive initial leads for the rational design of bioactive molecules. Several natural cyclic peptides have recently emerged as templates for drug design due to their resistance to chemical or enzymatic hydrolysis and high selectivity to receptors. The development of practical protocols that mimic the power of nature's strategies remains paramount for the advancement of novel peptide-based drugs. The de novo design of peptide mimetics (nonpeptide molecules or cyclic peptides) for the synthesis of linear or cyclic peptides has enhanced the progress of therapeutics and diverse areas of science and technology. In the case of metabolically unstable peptide ligands, the rational design and synthesis of cyclic peptide analogues has turned into an alternative approach for improved biological activity.

  3. Frequency of Natural Resistance within NS5a Replication Complex Domain in Hepatitis C Genotypes 1a, 1b: Possible Implication of Subtype-Specific Resistance Selection in Multiple Direct Acting Antivirals Drugs Combination Treatment

    Directory of Open Access Journals (Sweden)

    Sabrina Bagaglio

    2016-03-01

    Full Text Available Different HCV subtypes may naturally harbor different resistance selection to anti-NS5a inhibitors. 2761 sequences retrieved from the Los Alamos HCV database were analyzed in the NS5a domain 1, the target of NS5a inhibitors. The NS5a resistance-associated polymorphisms (RAPs were more frequently detected in HCV G1b compared to G1a. The prevalence of polymorphisms associated with cross-resistance to compounds in clinical use (daclatasvir, DCV, ledipasvir, LDV, ombitasvir, and OMV or scheduled to come into clinical use in the near future (IDX719, elbasvir, and ELV was higher in G1b compared to G1a (37/1552 (2.4% in 1b sequences and 15/1209 (1.2% in 1a isolates, p = 0.040. Interestingly, on the basis of the genotype-specific resistance pattern, 95 (6.1% G1b sequences had L31M RAP to DCV/IDX719, while 6 sequences of G1a (0.5% harbored L31M RAP, conferring resistance to DCV/LDV/IDX719/ELV (p < 0.0001. Finally, 28 (2.3% G1a and none of G1b isolates harbored M28V RAP to OMV (p < 0.0001. In conclusion, the pattern of subtype-specific resistance selection in the naturally occurring strains may guide the treatment option in association with direct acting antivirals (DAAs targeting different regions, particularly in patients that are difficult to cure, such as those with advanced liver disease or individuals who have failed previous DAAs.

  4. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.

    Science.gov (United States)

    Nguyen, Nam-Trung; Shaegh, Seyed Ali Mousavi; Kashaninejad, Navid; Phan, Dinh-Tuan

    2013-11-01

    Lab-on-a-chip technology is an emerging field evolving from the recent advances of micro- and nanotechnologies. The technology allows the integration of various components into a single microdevice. Microfluidics, the science and engineering of fluid flow in microscale, is the enabling underlying concept for lab-on-a-chip technology. The present paper reviews the design, fabrication and characterization of drug delivery systems based on this amazing technology. The systems are categorized and discussed according to the scales at which the drug is administered. Starting with the fundamentals on scaling laws of mass transfer and basic fabrication techniques, the paper reviews and discusses drug delivery devices for cellular, tissue and organism levels. At the cellular level, a concentration gradient generator integrated with a cell culture platform is the main drug delivery scheme of interest. At the tissue level, the synthesis of smart particles as drug carriers using lab-on-a-chip technology is the main focus of recent developments. At the organism level, microneedles and implantable devices with fluid-handling components are the main drug delivery systems. For drug delivery to a small organism that can fit into a microchip, devices similar to those of cellular level can be used.

  5. Designs of drug-combination phase I trials in oncology: a systematic review of the literature

    OpenAIRE

    Riviere, Marie-karelle; Le Tourneau, C.; Paoletti, X.; Dubois, F.; Zohar, Sarah

    2015-01-01

    International audience; Background Combining several anticancer agents can increase the overall antitumor action, but at the same time, it can also increase the overall observed toxicity. Adaptive dose-escalation designs for drug combinations have recently emerged as an attractive alternative to algorithm-based designs, and they seem more effective in combination recommendations. These methods are not used in practice currently. Our aim is to describe international scientific practices in the...

  6. Multi-target drug design approaches for multifactorial diseases: from neurodegenerative to cardiovascular applications.

    Science.gov (United States)

    Katselou, M G; Matralis, A N; Kourounakis, A P

    2014-01-01

    In multi-target drug design (MTD) medicinal chemistry aims to integrate multiple pharmacophores into a single drug molecule in order to make it active on several molecular biological mechanisms simultaneously. Given the fact that most diseases are multifactorial in nature, MTD is being pursued with increasing intensity, which has resulted in improved outcomes in disease models and several compounds have entered clinical trials. In a wide range of examples we illustrate how various functionalities have been combined within single structures and how this has affected their (pre)clinical outcome. This review describes the successful application of MTD for disorders such as neurodegenerative, cardiovascular, diabetes, metabolic and inflammatory diseases, especially focusing on the field of atherosclerosis where multi-target strategies are a promising alternative to the classical "one target-one drug" design approach.

  7. Impact of the emergence of designer drugs upon sports doping testing.

    Science.gov (United States)

    Teale, P; Scarth, J; Hudson, S

    2012-01-01

    Historically, dope-testing methods have been developed to target specific and known threats to the integrity of sport. Traditionally, the source of new analytical targets for which testing was required were derived almost exclusively from the pharmaceutical industry. More recently, the emergence of designer drugs, such as tetrahydrogestrinone that are specifically intended to evade detection, or novel chemicals intended to circumvent laws controlling the sale and distribution of recreational drugs, such as anabolic steroids, stimulants and cannabinoids, have become a significant issue. In this review, we shall consider the emergence of designer drugs and the response of dope-testing laboratories to these new threats, in particular developments in analytical methods, instrumentation and research intended to detect their abuse, and we consider the likely future impact of these approaches.

  8. Antiviral therapy and prophylaxis of acute respiratory infections

    Directory of Open Access Journals (Sweden)

    L. V. Osidak

    2012-01-01

    Full Text Available Thearticle presents the results of years of studies (including biochemical and immunological of the effectiveness of application and prophylaxis (in relation to nosocomial infections and the safety of antiviral chemical preparation Arbidol in 694 children with influenza and influenza-like illness, including the coronavirus infection (43 children and combined lesions of respiratory tract (150, indicating the possible inclusion of the drug in the complex therapy for children with the listed diseases, regardless of the severity and nature of their course. The studies were conducted according to the regulated standard of test conditions and randomized clinical trials.

  9. Mechanisms of Hepatitis C Viral Resistance to Direct Acting Antivirals

    Directory of Open Access Journals (Sweden)

    Asma Ahmed

    2015-12-01

    Full Text Available There has been a remarkable transformation in the treatment of chronic hepatitis C in recent years with the development of direct acting antiviral agents targeting virus encoded proteins important for viral replication including NS3/4A, NS5A and NS5B. These agents have shown high sustained viral response (SVR rates of more than 90% in phase 2 and phase 3 clinical trials; however, this is slightly lower in real-life cohorts. Hepatitis C virus resistant variants are seen in most patients who do not achieve SVR due to selection and outgrowth of resistant hepatitis C virus variants within a given host. These resistance associated mutations depend on the class of direct-acting antiviral drugs used and also vary between hepatitis C virus genotypes and subtypes. The understanding of these mutations has a clear clinical implication in terms of choice and combination of drugs used. In this review, we describe mechanism of action of currently available drugs and summarize clinically relevant resistance data.

  10. Drug: D06478 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D06478 Drug Darunavir ethanolate (JAN); Prezista (TN) C27H37N3O7S. C2H6O 593.2771 5...BR:br08301] 6 Agents against pathologic organisms and parasites 62 Chemotherapeutics 625 Antivirals 6250 Antivirals D06478 Daruna...ING ANTIVIRALS J05AE Protease inhibitors J05AE10 Darunavir D06478 Darunavir ethanolate (JAN) USP drug classification [BR:br08302] Antivirals Anti-HIV Agents, Protease Inhibitors Darunavir D06478 Darunavir ethanolate ...08307] Antivirals Anti-HIV agent Protease inhibitor (PIs) Nonpeptidic Daruna...vir [ATC:J05AE10] D06478 Darunavir ethanolate (JAN) CAS: 635728-49-3 PubChem: 47208134

  11. Drug: D00317 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D00317 Drug Famciclovir (JAN/USAN/INN); Famvir (TN) C14H19N5O4 321.1437 321.3318 D0...0317.gif Antiviral [DS:H00365] Therapeutic category: 6250 ATC code: J05AB09 S01AD07 Prodrug, active substance: Penciclo...otherapeutics 625 Antivirals 6250 Antivirals D00317 Famciclovir (JAN/USAN/INN) Anatomical Therapeutic Chemic...ptase inhibitors J05AB09 Famciclovir D00317 Famciclovir (JAN/USAN/INN) S SENSORY ORGANS S01 OPHTHALMOLOGICAL...S S01A ANTIINFECTIVES S01AD Antivirals S01AD07 Famciclovir D00317 Famciclovir (JAN/USAN/INN) USP drug classification [BR:br08302] Antivirals Antiherpetic Agents Famciclovir D00317 Famciclovir (JAN/USAN/INN) Antiinfec

  12. Using the [beta][subscript 2]-Adrenoceptor for Structure-Based Drug Design

    Science.gov (United States)

    Manallack, David T.; Chalmers, David K.; Yuriev, Elizabeth

    2010-01-01

    The topics of molecular modeling and drug design are studied in a medicinal chemistry course. The recently reported structures of several G protein-coupled receptors (GPCR) with bound ligands have been used to develop a simple computer-based experiment employing molecular-modeling software. Knowledge of the specific interactions between a ligand…

  13. Molecular Docking of Enzyme Inhibitors: A Computational Tool for Structure-Based Drug Design

    Science.gov (United States)

    Rudnitskaya, Aleksandra; Torok, Bela; Torok, Marianna

    2010-01-01

    Molecular docking is a frequently used method in structure-based rational drug design. It is used for evaluating the complex formation of small ligands with large biomolecules, predicting the strength of the bonding forces and finding the best geometrical arrangements. The major goal of this advanced undergraduate biochemistry laboratory exercise…

  14. Preparation, characterization and in vitro antiviral activity evaluation of foscarnet-chitosan nanoparticles.

    Science.gov (United States)

    Russo, E; Gaglianone, N; Baldassari, S; Parodi, B; Cafaggi, S; Zibana, C; Donalisio, M; Cagno, V; Lembo, D; Caviglioli, G

    2014-06-01

    A new nanoparticulate system for foscarnet delivery was prepared and evaluated. Nanoparticles were obtained by ionotropic gelation of chitosan induced by foscarnet itself, acting as an ionotropic agent in a manner similar to tripolyphosphate anion. A Doehlert design allowed finding the suitable experimental conditions. Nanoparticles were between 200 and 300nm in diameter (around 450nm after redispersion). Nanoparticle size increased after 5h, but no size increase was observed after 48h when nanoparticles were crosslinked with glutaraldehyde. Zeta potential values of noncrosslinked and crosslinked nanoparticles were between 20 and 25mV, while drug loading of noncrosslinked nanoparticles was about 40% w/w (55% w/w for crosslinked nanoparticles). Nanoparticle yield was around 25% w/w. Crosslinked nanoparticles showed a controlled drug release. Foscarnet released from nanoparticles maintained the antiviral activity of the free drug when tested in vitro against lung fibroblasts (HELF) cells infected with HCMV strain AD-169. Moreover, nanoparticles showed no toxicity on non-infected HELF cells. These nanoparticles may represent a delivery system that could improve the therapeutic effect of foscarnet.

  15. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy.

    Science.gov (United States)

    Lembo, David; Swaminathan, Shankar; Donalisio, Manuela; Civra, Andrea; Pastero, Linda; Aquilano, Dino; Vavia, Pradeep; Trotta, Francesco; Cavalli, Roberta

    2013-02-25

    Cyclodextrin-based nanosponges (NS) are solid nanoparticles, obtained from the cross-linking of cyclodextrins that have been proposed as delivery systems for many types of drugs. Various NS derivatives are currently under investigation in order that their properties might be tuned for different applications. In this work, new carboxylated cyclodextrin-based nanosponges (Carb-NS) carrying carboxylic groups within their structure were purposely designed as novel Acyclovir carriers. TEM measurements revealed their spherical shape and size of about 400 nm. The behaviour of Carb-NS, with respect to the incorporation and delivery of Acyclovir, was compared to that of NS, previously investigated as a drug carrier. DSC, XRPD and FTIR analyses were used to investigate the two NS formulations. The results confirm the incorporation of the drug into the NS structure and NS-Acyclovir interactions. The Acyclovir loading into Carb-NS was higher than that obtained using NS, reaching about 70% (w/w). In vitro release studies showed the release kinetics of Acyclovir from Carb-NS to be prolonged in comparison with those observed with NS, with no initial burst effect. The NS uptake into cells was evaluated using fluorescent Carb-NS and revealed the nanoparticle internalisation. Enhanced antiviral activity against a clinical isolate of HSV-1 was obtained using Acyclovir loaded in Carb-NS.

  16. Finding a better drug for epilepsy: preclinical screening strategies and experimental trial design.

    Science.gov (United States)

    Simonato, Michele; Löscher, Wolfgang; Cole, Andrew J; Dudek, F Edward; Engel, Jerome; Kaminski, Rafal M; Loeb, Jeffrey A; Scharfman, Helen; Staley, Kevin J; Velíšek, Libor; Klitgaard, Henrik

    2012-11-01

    The antiepileptic drugs (AEDs) introduced during the past two decades have provided several benefits: they offered new treatment options for symptomatic treatment of seizures, improved ease of use and tolerability, and lowered risk for hypersensitivity reactions and detrimental drug-drug interactions. These drugs, however, neither attenuated the problem of drug-refractory epilepsy nor proved capable of preventing or curing the disease. Therefore, new preclinical screening strategies are needed to identify AEDs that target these unmet medical needs. New therapies may derive from novel targets identified on the basis of existing hypotheses for drug-refractory epilepsy and the biology of epileptogenesis; from research on genetics, transcriptomics, and epigenetics; and from mechanisms relevant for other therapy areas. Novel targets should be explored using new preclinical screening strategies, and new technologies should be used to develop medium- to high-throughput screening models. In vivo testing of novel drugs should be performed in models mimicking relevant aspects of drug refractory epilepsy and/or epileptogenesis. To minimize the high attrition rate associated with drug development, which arises mainly from a failure to demonstrate sufficient clinical efficacy of new treatments, it is important to define integrated strategies for preclinical screening and experimental trial design. An important tool will be the discovery and implementation of relevant biomarkers that will facilitate a continuum of proof-of-concept approaches during early clinical testing to rapidly confirm or reject preclinical findings, and thereby lower the risk of the overall development effort. In this review, we overview some of the issues related to these topics and provide examples of new approaches that we hope will be more successful than those used in the past.

  17. Cytotoxic, Virucidal, and Antiviral Activity of South American Plant and Algae Extracts

    Directory of Open Access Journals (Sweden)

    Paula Faral-Tello

    2012-01-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection has a prevalence of 70% in the human population. Treatment is based on acyclovir, valacyclovir, and foscarnet, three drugs that share the same mechanism of action and of which resistant strains have been isolated from patients. In this aspect, innovative drug therapies are required. Natural products offer unlimited opportunities for the discovery of antiviral compounds. In this study, 28 extracts corresponding to 24 plant species and 4 alga species were assayed in vitro to detect antiviral activity against HSV-1. Six of the methanolic extracts inactivated viral particles by direct interaction and 14 presented antiviral activity when incubated with cells already infected. Most interesting antiviral activity values obtained are those of Limonium brasiliense, Psidium guajava, and Phyllanthus niruri, which inhibit HSV-1 replication in vitro with 50% effective concentration (EC50 values of 185, 118, and 60 μg/mL, respectively. For these extracts toxicity values were calculated and therefore selectivity indexes (SI obtained. Further characterization of the bioactive components of antiviral plants will pave the way for the discovery of new compounds against HSV-1.

  18. The feasibility of an efficient drug design method with high-performance computers.

    Science.gov (United States)

    Yamashita, Takefumi; Ueda, Akihiko; Mitsui, Takashi; Tomonaga, Atsushi; Matsumoto, Shunji; Kodama, Tatsuhiko; Fujitani, Hideaki

    2015-01-01

    In this study, we propose a supercomputer-assisted drug design approach involving all-atom molecular dynamics (MD)-based binding free energy prediction after the traditional design/selection step. Because this prediction is more accurate than the empirical binding affinity scoring of the traditional approach, the compounds selected by the MD-based prediction should be better drug candidates. In this study, we discuss the applicability of the new approach using two examples. Although the MD-based binding free energy prediction has a huge computational cost, it is feasible with the latest 10 petaflop-scale computer. The supercomputer-assisted drug design approach also involves two important feedback procedures: The first feedback is generated from the MD-based binding free energy prediction step to the drug design step. While the experimental feedback usually provides binding affinities of tens of compounds at one time, the supercomputer allows us to simultaneously obtain the binding free energies of hundreds of compounds. Because the number of calculated binding free energies is sufficiently large, the compounds can be classified into different categories whose properties will aid in the design of the next generation of drug candidates. The second feedback, which occurs from the experiments to the MD simulations, is important to validate the simulation parameters. To demonstrate this, we compare the binding free energies calculated with various force fields to the experimental ones. The results indicate that the prediction will not be very successful, if we use an inaccurate force field. By improving/validating such simulation parameters, the next prediction can be made more accurate.

  19. Design of Drug Delivery Methods for the Brain and Central Nervous System

    Science.gov (United States)

    Lueshen, Eric

    Due to the impermeability of the blood-brain barrier (BBB) to macromolecules delivered systemically, drug delivery to the brain and central nervous system (CNS) is quite difficult and has become an area of intense research. Techniques such as convection-enhanced intraparenchymal delivery and intrathecal magnetic drug targeting offer a means of circumventing the blood-brain barrier for targeted delivery of therapeutics. This dissertation focuses on three aspects of drug delivery: pharmacokinetics, convection-enhanced delivery, and intrathecal magnetic drug targeting. Classical pharmacokinetics mainly uses black-box curve fitting techniques without biochemical or biological basis. This dissertation advances the state-of-the-art of pharmacokinetics and pharmacodynamics by incorporating first principles and biochemical/biotransport mechanisms in the prediction of drug fate in vivo. A whole body physiologically-based pharmacokinetics (PBPK) modeling framework is engineered which creates multiscale mathematical models for entire organisms composed of organs, tissues, and a detailed vasculature network to predict drug bioaccumulation and to rigorously determine kinetic parameters. These models can be specialized to account for species, weight, gender, age, and pathology. Systematic individual therapy design using the proposed mechanistic PBPK modeling framework is also a possibility. Biochemical, anatomical, and physiological scaling laws are also developed to accurately project drug kinetics in humans from small animal experiments. Our promising results demonstrate that the whole-body mechanistic PBPK modeling approach not only elucidates drug mechanisms from a biochemical standpoint, but offers better scaling precision. Better models can substantially accelerate the introduction of drug leads to clinical trials and eventually to the market by offering more understanding of the drug mechanisms, aiding in therapy design, and serving as an accurate dosing tool. Convection

  20. Drug: D02748 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available (generical recombination) (JAN); Peginterferon alfa-2b (INN) USP drug classification [BR:br08302] Antivirals Anti-hepatitis...(JAN); Peginterferon alfa-2b (INN) Anti-hepatitis C (HCV) Agents Peginterferon Al

  1. A new roadmap for biopharmaceutical drug product development: Integrating development, validation, and quality by design.

    Science.gov (United States)

    Martin-Moe, Sheryl; Lim, Fredric J; Wong, Rita L; Sreedhara, Alavattam; Sundaram, Jagannathan; Sane, Samir U

    2011-08-01

    Quality by design (QbD) is a science- and risk-based approach to drug product development. Although pharmaceutical companies have historically used many of the same principles during development, this knowledge was not always formally captured or proactively submitted to regulators. In recent years, the US Food and Drug Administration has also recognized the need for more controls in the drug manufacturing processes, especially for biological therapeutics, and it has recently launched an initiative for Pharmaceutical Quality for the 21st Century to modernize pharmaceutical manufacturing and improve product quality. In the biopharmaceutical world, the QbD efforts have been mainly focused on active pharmaceutical ingredient processes with little emphasis on drug product development. We present a systematic approach to biopharmaceutical drug product development using a monoclonal antibody as an example. The approach presented herein leverages scientific understanding of products and processes, risk assessments, and rational experimental design to deliver processes that are consistent with QbD philosophy without excessive incremental effort. Data generated using these approaches will not only strengthen data packages to support specifications and manufacturing ranges but hopefully simplify implementation of postapproval changes. We anticipate that this approach will positively impact cost for companies, regulatory agencies, and patients, alike.

  2. 78 FR 51732 - The Food and Drug Administration/European Medicines Agency Orphan Product Designation and Grant...

    Science.gov (United States)

    2013-08-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration The Food and Drug Administration/European Medicines Agency Orphan Product Designation and Grant Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop. The Food and...

  3. Media milling process optimization for manufacture of drug nanoparticles using design of experiments (DOE).

    Science.gov (United States)

    Nekkanti, Vijaykumar; Marwah, Ashwani; Pillai, Raviraj

    2015-01-01

    Design of experiments (DOE), a component of Quality by Design (QbD), is systematic and simultaneous evaluation of process variables to develop a product with predetermined quality attributes. This article presents a case study to understand the effects of process variables in a bead milling process used for manufacture of drug nanoparticles. Experiments were designed and results were computed according to a 3-factor, 3-level face-centered central composite design (CCD). The factors investigated were motor speed, pump speed and bead volume. Responses analyzed for evaluating these effects and interactions were milling time, particle size and process yield. Process validation batches were executed using the optimum process conditions obtained from software Design-Expert® to evaluate both the repeatability and reproducibility of bead milling technique. Milling time was optimized to <5 h to obtain the desired particle size (d90 < 400 nm). The desirability function used to optimize the response variables and observed responses were in agreement with experimental values. These results demonstrated the reliability of selected model for manufacture of drug nanoparticles with predictable quality attributes. The optimization of bead milling process variables by applying DOE resulted in considerable decrease in milling time to achieve the desired particle size. The study indicates the applicability of DOE approach to optimize critical process parameters in the manufacture of drug nanoparticles.

  4. Rational design of dendrimer/lipid nanoassemblies in drug delivery for cancer chemotherapy

    Science.gov (United States)

    Sun, Qihang

    Nanocarriers can minimize the side effects and improve therapeutic efficacy of anticancer drugs. Although some success has been achieved via active or passive drug delivery to tumor cells, the known nanocarriers are far from satisfying therapeutic efficacy expectations. This is because they usually fail in one of the four crucial requirements, that is, to retain drug in blood circulation but release it reliably in tumor cells and to be stealthy in transport in circulation and tumor tissue but sticky upon arrival at the tumor cell. Therefore, the goal of this work is to fabricate nanoassemblies of dendrimers and lipids to address all these challenges. Particularly, nanoassemblies designed and prepared in this work are illustrated to improve the tumor tissue penetration. Examples of dendrimers synthesized in this work are water-insoluble, pH-dependent water-insoluble and water-soluble biodegradable polyester dendrimers. These dendrimers are shown to be encapsulated by commonly used fusogenic and long-circulating lipids to form reliable nanoassemblies. The dendrimer/lipid nanocarriers are used to demonstrate a cascade drug delivery. They are expected to be stable in circulation, due to their appropriately large size, but to release the drug-loaded dendrimers in tumor tissue. The released dendrimers carrying drugs are much smaller and hence expected to have a much deeper penetration throughout the tumor tissue.

  5. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  6. Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations.

    Science.gov (United States)

    Singh, Pankaj Kumar; Negi, Arvind; Gupta, Pawan Kumar; Chauhan, Monika; Kumar, Raj

    2016-08-01

    Toxicity is a common drawback of newly designed chemotherapeutic agents. With the exception of pharmacophore-induced toxicity (lack of selectivity at higher concentrations of a drug), the toxicity due to chemotherapeutic agents is based on the toxicophore moiety present in the drug. To date, methodologies implemented to determine toxicophores may be broadly classified into biological, bioanalytical and computational approaches. The biological approach involves analysis of bioactivated metabolites, whereas the computational approach involves a QSAR-based method, mapping techniques, an inverse docking technique and a few toxicophore identification/estimation tools. Being one of the major steps in drug discovery process, toxicophore identification has proven to be an essential screening step in drug design and development. The paper is first of its kind, attempting to cover and compare different methodologies employed in predicting and determining toxicophores with an emphasis on their scope and limitations. Such information may prove vital in the appropriate selection of methodology and can be used as screening technology by researchers to discover the toxicophoric potentials of their designed and synthesized moieties. Additionally, it can be utilized in the manipulation of molecules containing toxicophores in such a manner that their toxicities might be eliminated or removed.

  7. Application of Multivariate Linear and Nonlinear Calibration and Classification Methods in Drug Design.

    Science.gov (United States)

    Abdolmaleki, Azizeh; Ghasemi, Jahan B; Shiri, Fereshteh; Pirhadi, Somayeh

    2015-01-01

    Data manipulation and maximum efficient extraction of useful information need a range of searching, modeling, mathematical, and statistical approaches. Hence, an adequate multivariate characterization is the first necessary step in investigation and the results are interpreted after multivariate analysis. Multivariate data analysis is capable of not only large dataset management but also interpret them surely and rapidly. Application of chemometrics and cheminformatics methods may be useful for design and discovery of new drug compounds. In this review, we present a variety of information sources on chemometrics, which we consider useful in different fields of drug design. This review describes exploratory analysis (PCA), classification and multivariate calibration (PCR, PLS) methods to data analysis. It summarizes the main facts of linear and nonlinear multivariate data analysis in drug discovery and provides an introduction to manipulation of data in this field. It handles the fundamental aspects of basic concepts of multivariate methods, principles of projections (PCA and PLS) and introduces the popular modeling and classification techniques. Enough theory behind these methods, more particularly concerning the chemometrics tools is included for those with little experience in multivariate data analysis techniques such as PCA, PLS, SIMCA, etc. We describe each method by avoiding unnecessary equations, and details of calculation algorithms. It provides a synopsis of the method followed by cases of applications in drug design (i.e., QSAR) and some of the features for each method.

  8. Computational medicinal chemistry for rational drug design: Identification of novel chemical structures with potential anti-tuberculosis activity.

    Science.gov (United States)

    Koseki, Yuji; Aoki, Shunsuke

    2014-01-01

    Tuberculosis (TB) is caused by the bacterium Mycobacterium tuberculosis and is a common infectious disease with high mortality and morbidity. The increasing prevalence of drug-resistant strains of TB presents a major public health problem. Due to the lack of effective drugs to treat these drug-resistant strains, the discovery or development of novel anti-TB drugs is important. Computer-aided drug design has become an established strategy for the identification of novel active chemicals through a combination of several drug design tools. In this review, we summarise the current chemotherapy for TB, describe attractive target proteins for the development of antibiotics against TB, and detail several computational drug design strategies that may contribute to the further identification of active chemicals for the treatment of not only TB but also other diseases.

  9. Crystals of Human Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    Science.gov (United States)

    Carter, Daniel C. (Inventor)

    1994-01-01

    This invention pertains to crystals of serum albumin and processes for growing them. The purpose of the invention is to provide crystals of serum albumin which can be studied to determine binding sites for drugs. Form 2 crystals grow in the monoclinic space P2(sub 1), and possesses the following unit cell constraints: a = 58.9 +/- 7, b = 88.3 +/- 7, c = 60.7 +/- 7, Beta = 101.0 +/- 2 degrees. One advantage of the invention is that it will allow rational drug design

  10. Drug: D10081 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ease inhibitor [CPD:C18290 C18291] ko05160 Hepatitis C USP drug classification [BR:br08302] Antivirals Anti-hepatitis...D10081 Drug Simeprevir (JAN/USAN); Olysio (TN) C38H47N5O7S2 749.2917 749.9391 D10081.gif Treatment of hepati...tis C [DS:H00413] Macrocyclic antivirus Direct-acting antiviral (DAA) NS3/NS4A prot

  11. Drug: D07896 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available nhibitors J05AF10 Entecavir D07896 Entecavir (INN) USP drug classification [BR:br08302] Antivirals Anti-hepatitis...atitis B infection [DS:H00412] ATC code: J05AF10 Nucleoside reverse transcriptase i...D07896 Drug Entecavir (INN) C12H15N5O3 277.1175 277.2792 D07896.gif Antiviral agent used in treatment of hep

  12. Drug: D02737 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D02737 Drug Palivizumab (genetical recombination) (JAN); Palivizumab (INN); Synagis... parasites 62 Chemotherapeutics 625 Antivirals 6250 Antivirals D02737 Palivizumab (genetica...pecific immunoglobulins J06BB16 Palivizumab D02737 Palivizumab (genetical recombi...tein monoclonal antibody Palivizumab [ATC:J06BB16] D02737 Palivizumab (genetical recombination) (JAN); Palivizumab (INN) CAS: 188039-54-5 PubChem: 47205815 DrugBank: DB00110 ...

  13. Clinical Implications of Antiviral Resistance in Influenza

    OpenAIRE

    Li, Timothy C. M.; Chan, Martin C. W.; Nelson Lee

    2015-01-01

    Influenza is a major cause of severe respiratory infections leading to excessive hospitalizations and deaths globally; annual epidemics, pandemics, and sporadic/endemic avian virus infections occur as a result of rapid, continuous evolution of influenza viruses. Emergence of antiviral resistance is of great clinical and public health concern. Currently available antiviral treatments include four neuraminidase inhibitors (oseltamivir, zanamivir, peramivir, laninamivir), M2-inibitors (amantadin...

  14. Drug: D00579 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D00579 Drug Foscarnet sodium (USAN/INN); Foscavir (TN) CO5P. 3Na 191.9176 191.9508 ...d derivatives J05AD01 Foscarnet D00579 Foscarnet sodium (USAN/INN) USP drug classification [BR:br08302] Anti...virals Anti-cytomegalovirus (CMV) Agents Foscarnet D00579 Foscarnet sodium (USAN/INN) Antiherpetic Agents Foscarnet D00579 Foscar... Anti-CMV agent DNA polymerase inhibitor Phosphonic acid derivatives Foscarnet [ATC:J05AD01] D00579 Foscarne...05 ANTIVIRALS FOR SYSTEMIC USE J05A DIRECT ACTING ANTIVIRALS J05AD Phosphonic aci

  15. Drug: D05407 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D05407 Drug Penciclovir (USAN/INN); Denavir (TN) C10H15N5O3 253.1175 253.2578 D0540...TICS FOR TOPICAL USE D06BB Antivirals D06BB06 Penciclovir D05407 Penciclovir (USAN/INN) J ANTIINFECTIVES FOR...s excl. reverse transcriptase inhibitors J05AB13 Penciclovir D05407 Penciclovir (...USAN/INN) USP drug classification [BR:br08302] Antivirals Antiherpetic Agents Penciclovir D05407 Penciclovir... (USAN/INN) Antiinfectives [BR:br08307] Antivirals Anti-HSV agent DNA polymerase inhibitor Purine analogue Penciclo

  16. Drug: D02495 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D02495 Drug Valganciclovir (INN) C14H22N6O5 354.1652 354.3617 D02495.gif Antiviral ...[DS:H00368] ATC code: J05AB14 prodrug, active substance: Ganciclovir [DR:D00333] DNA polymerase inhibitor [E...NTIVIRALS J05AB Nucleosides and nucleotides excl. reverse transcriptase inhibitors J05AB14 Valganciclovir D02495 Valganciclo...vir (INN) USP drug classification [BR:br08302] Antivirals Anti-cytomegalovirus (CMV) Agents Valganciclo...vir D02495 Valganciclovir (INN) Antiinfectives [BR:br08307] Antivirals

  17. Drug: D02124 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D02124 Drug Penciclovir sodium (USAN); Denavir (TN) C10H14N5O3. Na 275.0994 275.239...LOGICAL USE D06B CHEMOTHERAPEUTICS FOR TOPICAL USE D06BB Antivirals D06BB06 Penciclovir D02124 Penciclovir s... J05AB Nucleosides and nucleotides excl. reverse transcriptase inhibitors J05AB13 Penciclo...vir D02124 Penciclovir sodium (USAN) USP drug classification [BR:br08302] Antivirals Antiherpetic Agents Penciclo...vir D02124 Penciclovir sodium (USAN) Antiinfectives [BR:br08307] Antivirals Anti-HSV agent DNA

  18. Drug: D04301 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D04301 Drug Ganciclovir sodium (USAN); Cytovene IV (TN) C9H12N5O4. Na 277.0787 277....DIRECT ACTING ANTIVIRALS J05AB Nucleosides and nucleotides excl. reverse transcriptase inhibitors J05AB06 Ganciclovir D04301 Ganciclo...lovir D04301 Ganciclovir sodium (USAN) USP drug classifi...cation [BR:br08302] Antivirals Anti-cytomegalovirus (CMV) Agents Ganciclovir D04301 Ganciclovir sodium (USAN...) Antiinfectives [BR:br08307] Antivirals Anti-CMV agent DNA polymerase inhibitor Purine analogue Ganciclovir

  19. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors

    OpenAIRE

    Furlong, Michael; Seong, Jae Young

    2017-01-01

    Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provi...

  20. Medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and invention of boron tracedrugs as innovative future-architectural drugs.

    Science.gov (United States)

    Hori, Hitoshi; Uto, Yoshihiro; Nakata, Eiji

    2010-09-01

    We describe herein for the first time our medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and boron tracedrugs as newly emerging drug classes. A new area of antineoplastic drugs and treatments has recently focused on neoplastic cells of the tumor environment/microenvironment involving accessory cells. This tumor hypoxic environment is now considered as a major factor that influences not only the response to antineoplastic therapies but also the potential for malignant progression and metastasis. We review our medicinal electronomics bricolage design of hypoxia-targeting drugs, antiangiogenic hypoxic cell radiosensitizers, sugar-hybrid hypoxic cell radiosensitizers, and hypoxia-targeting 10B delivery agents, in which we design drug candidates based on their electronic structures obtained by molecular orbital calculations, not based solely on pharmacophore development. These drugs include an antiangiogenic hypoxic cell radiosensitizer TX-2036, a sugar-hybrid hypoxic cell radiosensitizer TX-2244, new hypoxia-targeting indoleamine 2,3-dioxygenase (IDO) inhibitors, and a hypoxia-targeting BNCT agent, BSH (sodium borocaptate-10B)-hypoxic cytotoxin tirapazamine (TPZ) hybrid drug TX-2100. We then discuss the concept of boron tracedrugs as a new drug class having broad potential in many areas.

  1. Design and characterisation of matrix tablets of highly water soluble drug

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi Prakya

    2012-04-01

    Full Text Available Tramadol HCL is a centrally acting opioid analgesic. Although the drug has a higher plasma half life, the steady state plasma concentration is not achieved with frequent dosing of q.i.d at 6 hour intervals. Therefore, the objective of the present work was to formulate a 100mg strength Tramadol matrix tablets to extend the drug release and thus decrease the dosing frequency and achieve steady state plasma concentration. Initially, preformulation studies were carried out to rule out any incompatibility between the drug and the chosen polymer(s after exposing physical mixtures of the drug and the polymer(s to 40 and deg;C/75% RH for three months. A suitable method was developed for drug estimation at 271nm by a UV double beam spectrophotometer. Next, various batches of tablets were designed using different polymers such as Ethylcellulose, Carnauba wax, HPMC-K100M, Carbopol-974P and Kollidon-SR. Direct compression technique was used except for the formulation containing carnauba wax for which melt granulation was done followed by compression. Formulations F-1 to F-15 contained single polymers in increasing concentrations in drug:polymer ratios of 1:1, 1:2 and 1:3 where it was observed that the drug release extended with increasing polymer concentrations. Carbopol-974P extended drug release better followed by HPMC-K100M and Carnauba wax compared to other polymers. A combination of these polymers was also used at various ratios to get formulations F-16 to F-20 and observed that the polymer combinations controlled drug release better. The type of fillers like lactose and microcrystalline cellulose had no effect on the physiochemical characters as well as on the drug release profiles. The in vitro release data from the best formulation fitted well in Higuchi as well as Peppas model, the and #8216;n and #8217; value, which confirmed that the release mechanism shifted from initial dissolution to later extended diffusion in which both diffusion and erosion

  2. Application of quality by design to the process development of botanical drug products: a case study.

    Science.gov (United States)

    Zhang, Lei; Yan, Binjun; Gong, Xingchu; Yu, Lawrence X; Qu, Haibin

    2013-03-01

    This paper was designed to assess the value of quality by design (QbD) to improve the manufacturing process understanding of botanical drug products. Ethanol precipitation, a widely used unit operation in the manufacture of botanical drug products was employed to illustrate the use of QbD, taking the process of danshen (the dry root of Salvia miltiorrhiza Bunge) as an example. The recovery of four active pharmaceutical ingredients (APIs) and the removal of saccharides were used to represent the performance of ethanol precipitation. Potentially critical variables, including density of concentrate, ethanol consumption, and settling temperature were identified through risk assessment methods. Design of experiments (DOE) was used to evaluate the effects of the potentially critical factors on the performance of ethanol precipitation. It was observed that higher density of concentrate leads to higher removal of saccharides, but results in lower recovery of APIs. With the rise of ethanol consumption, the recovery of different APIs behaves in different ways. A potential design space of ethanol precipitation operation was established through DOE studies. The results in this work facilitate the enhanced understanding of the relationships between multiple factors (material attributes and process parameters) and the performance of ethanol precipitation. This case study demonstrated that QbD is a powerful tool to develop manufacturing process of botanical drug products.

  3. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  4. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: A structure-based drug designing approach

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Kesharwani

    2013-04-01

    Full Text Available Background & objectives: Cysteine proteases (falcipains, a papain-family of enzymes of Plasmodium falciparum, are responsible for haemoglobin degradation and thus necessary for its survival during asexual life cycle phase inside the human red blood cells while remaining non-functional for the human body. Therefore, these can act as potential targets for designing antimalarial drugs. The P. falciparum cysteine proteases, falcipain-II and falcipain- III are the enzymes which initiate the haemoglobin degradation, therefore, have been selected as targets. In the present study, we have designed new leupeptin analogues and subjected to virtual screening using Glide at the active site cavity of falcipain-II and falcipain-III to select the best docked analogues on the basis of Glide score and also compare with the result of AutoDock. The proposed analogues can be synthesized and tested in vivo as future potent antimalarial drugs. Methods: Protein falcipain-II and falcipain-III together with bounds inhibitors epoxysuccinate E64 (E64 and leupeptin respectively were retrieved from protein data bank (PDB and latter leupeptin was used as lead molecule to design new analogues by using Ligbuilder software and refined the molecules on the basis of Lipinski rule of five and fitness score parameters. All the designed leupeptin analogues were screened via docking simulation at the active site cavity of falcipain-II and falcipain-III by using Glide software and AutoDock. Results: The 104 new leupeptin-based antimalarial ligands were designed using structure-based drug designing approach with the help of Ligbuilder and subjected for virtual screening via docking simulation method against falcipain-II and falcipain-III receptor proteins. The Glide docking results suggest that the ligands namely result_037 shows good binding and other two, result_044 and result_042 show nearly similar binding than naturally occurring PDB bound ligand E64 against falcipain-II and in

  5. Antiviral Activity of Natural Products Extracted from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Sobia Tabassum

    2011-11-01

    Full Text Available Many epidemics have broken out over the centuries. Hundreds and thousands of humans have died over a disease. Available treatments for infectious diseases have always been limited. Some infections are more deadly than the others, especially viral pathogens. These pathogens have continuously resisted all kinds of medical treatment, due to a need for new treatments to be developed. Drugs are present in nature and are also synthesized in vitro and they help in combating diseases and restoring health. Synthesizing drugs is a hard and time consuming task, which requires a lot of man power and financial aid. However, the natural compounds are just lying around on the earth, may it be land or water. Over a thousand novel compounds isolated from marine organisms are used as antiviral agents. Others are being pharmacologically tested. Today, over forty antiviral compounds are present in the pharmacological market. Some of these compounds are undergoing clinical and pre-clinical stages. Marine compounds are paving the way for a new trend in modern medicine.

  6. A designed amphiphilic peptide containing the silk fibroin motif as a potential carrier of hydrophobic drugs

    Institute of Scientific and Technical Information of China (English)

    Qinghan Zhou; Juan Lin; Jing Wang; Feng Li; Fushan Tang; Xiaojun Zhao

    2009-01-01

    The amphiphilic peptide is becoming attractive as a potential drug carder to improve the dissolvability of hydrophobic drugs in an aqueous system; thus, facilitating drug uptake by target cells. Here, we report a novel designed amphiphilic peptide, Ac-RADAGAGA-RADAGAGA-NH_2, which was able to stabilize pyrene, a hydrophobic model drug we chose to study in aqueous solution. This designed peptide formed a colloidal suspension by encapsulating pyrene inside the peptide-pyrene complex. Egg phosphatidylcholine (EPC) ves-icles were used to mimic cell bilayer membranes. We found that pyrene was released from the peptide coating into the EPC vesicles by mixing the colloidal suspension with EPC vesicles, which was followed by steady fluorescence spectra as a function of time. A calibration curve for the amount of pyrene released into the EPC vesicles at a given time was used to determine the final concentration of pyrene released into the lipid vesicles from the peptide-pyrene complex. The release rate of the peptide pyrene complex was calculated to quan-tify the transfer of pyrene into EPC vesicles.

  7. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: PEGylation, lyophilization and pharmacokinetic studies

    Science.gov (United States)

    Sudhakar, Beeravelli; Krishna, Mylangam Chaitanya; Murthy, Kolapalli Venkata Ramana

    2016-01-01

    The aim of the present study was to formulate and evaluate the ritonavir-loaded stealth liposomes by using 32 factorial design and intended to delivered by parenteral delivery. Liposomes were prepared by ethanol injection method using 32 factorial designs and characterized for various physicochemical parameters such as drug content, size, zeta potential, entrapment efficiency and in vitro drug release. The optimization process was carried out using desirability and overlay plots. The selected formulation was subjected to PEGylation using 10 % PEG-10000 solution. Stealth liposomes were characterized for the above-mentioned parameters along with surface morphology, Fourier transform infrared spectrophotometer, differential scanning calorimeter, stability and in vivo pharmacokinetic studies in rats. Stealth liposomes showed better result compared to conventional liposomes due to effect of PEG-10000. The in vivo studies revealed that stealth liposomes showed better residence time compared to conventional liposomes and pure drug solution. The conventional liposomes and pure drug showed dose-dependent pharmacokinetics, whereas stealth liposomes showed long circulation half-life compared to conventional liposomes and pure ritonavir solution. The results of statistical analysis showed significance difference as the p value is (<0.05) by one-way ANOVA. The result of the present study revealed that stealth liposomes are promising tool in antiretroviral therapy.

  8. Hydration Free Energy as a Molecular Descriptor in Drug Design: A Feasibility Study.

    Science.gov (United States)

    Zafar, Ayesha; Reynisson, Jóhannes

    2016-05-01

    In this work the idea was investigated whether calculated hydration energy (ΔGhyd ) can be used as a molecular descriptor in defining promising regions of chemical space for drug design. Calculating ΔGhyd using the Density Solvation Model (SMD) in conjunction with the density functional theory (DFT) gave an excellent correlation with experimental values. Furthermore, calculated ΔGhyd correlates reasonably well with experimental water solubility (r(2) =0.545) and also log P (r(2) =0.530). Three compound collections were used: Known drugs (n=150), drug-like compounds (n=100) and simple organic compounds (n=140). As an approximation only molecules, which do not de/protonate at physiological pH were considered. A relatively broad distribution was seen for the known drugs with an average at -15.3 kcal/mol and a standard deviation of 7.5 kcal/mol. Interestingly, much lower averages were found for the drug-like compounds (-7.5 kcal/mol) and the simple organic compounds (-3.1 kcal/mol) with tighter distributions; 4.3 and 3.2 kcal/mol, respectively. This trend was not observed for these collections when calculated log P and log S values were used. The considerable greater exothermic ΔGhyd average for the known drugs clearly indicates in order to develop a successful drug candidate value of ΔGhyd <-5 kcal/mol or less is preferable.

  9. Design or screening of drugs for the treatment of Chagas disease: what shows the most promise?

    Science.gov (United States)

    Lepesheva, Galina I.

    2013-01-01

    Introduction Endemic in Latin America, Chagas disease is now becoming a serious global health problem, and yet has no financial viability for the pharmaceutical industry and remains incurable. In 2012, two antimycotic drugs inhibitors of fungal sterol 14α-demethylase (CYP51) – posaconazole and ravuconazole – entered clinical trials. Availability of the X-ray structure of the orthologous enzyme from the causative agent of the disease, protozoan parasite Trypanosoma cruzi, determined in complexes with posaconazole as well as with several experimental protozoa-specific CYP51 inhibitors opens an excellent opportunity to improve the situation. Areas covered This article summarizes the information available in PubMed and Google on the outcomes of treatment of the chronic Chagas disease. It also outlines the major features of the T. cruzi CYP51 structure and the possible structure-based strategies for rational design of novel T. cruzi specific drugs. Expert opinion There is no doubt that screenings for alternative drug-like molecules as well as mining the T. cruzi genome for novel drug targets are of great value and might eventually lead to groundbreaking discoveries. However, all newly identified molecules must proceed through the long, expensive and low-yielding drug optimization process, and all novel potential drug targets must be validated in terms of their essentiality and druggability. CYP51 is already a well-validated and highly successful target for clinical and agricultural antifungals. With minimal investments into the final stages of their development/trials, T. cruzi-specific CYP51 inhibitors can provide an immediate treatment for Chagas disease, either on their own or in combination with the currently available drugs. PMID:24079515

  10. Effect of Traditional Chinese Medicine Antiviral Capsules On Animal Model Genital Herpes and HSV-2 in Cell Culture

    Institute of Scientific and Technical Information of China (English)

    范瑞强; 李红毅; 谢长才; 禤国维; 朱宇同

    2001-01-01

    Objective: To study the effect of traditional Chinese medicine antiviral capsules in the treatment of genital herpes.Methods: Using female guinea pig genital herpes as the animal model, this study used oral administration of two formulations of antiviral capsules (AC) and observed the effect on vaginal HSV-2 titers and vulvar symptoms. Cell cultures were also used to examine the direct inactivation of HSV-2 by the antiviral capsules and the suppression of HSV-2 via three drug administration methods.Results: There was no significant difference of mean vaginal virus titers between the antiviral capsule groups and that of the positive acyclovir (ACV) control (P>0.05). Mean vulvar symptom scores of the two antiviral capsule groups were also significantly lower than that of the saline negative control group on days 2, 3, 5, 7 and 8 (P<0.05) and similar to that of the ACV control (P>0.05). Cell culture showed the minimum inhibitory concentrations of antiviral capsules No. 1 and No. 2 were 0.390625 mg/ml and 1,5625 mg/ml, respectively.Conclusion: The traditional Chinese medicine antiviral capsules had suppressive effects on HSV-2 in both animal model GH and in vitro cell culture.

  11. Supercritical fluid particle design for poorly water-soluble drugs (review).

    Science.gov (United States)

    Sun, Yongda

    2014-01-01

    Supercritical fluid particle design (SCF PD) offers a number of routes to improve solubility and dissolution rate for enhancing the bioavailability of poorly water-soluble drugs, which can be adopted through an in-depth knowledge of SCF PD processes and the molecular properties of active pharmaceutical ingredients (API) and drug delivery system (DDS). Combining with research experiences in our laboratory, this review focuses on the most recent development of different routes (nano-micron particles, polymorphic particles, composite particles and bio-drug particles) to improve solubility and dissolution rate of poorly water-soluble drugs, covering the fundamental concept of SCF and the principle of SCF PD processes which are typically used to control particle size, shape, morphology and particle form and hence enable notable improvement in the dissolution rate of the poorly water-soluble drugs. The progress of the industrialization of SCF PD processes in pharmaceutical manufacturing environment with scaled-up plant under current good manufacturing process (GMP) specification is also considered in this review.

  12. Design of a RESTful web information system for drug prescription and administration.

    Science.gov (United States)

    Bianchi, Lorenzo; Paganelli, Federica; Pettenati, Maria Chiara; Turchi, Stefano; Ciofi, Lucia; Iadanza, Ernesto; Giuli, Dino

    2014-05-01

    Drug prescription and administration processes strongly impact on the occurrence of risks in medical settings for they can be sources of adverse drug events (ADEs). A properly engineered use of information and communication technologies has proven to be a promising approach to reduce these risks. In this study, we propose PHARMA, a web information system which supports healthcare staff in the secure cooperative execution of drug prescription, transcription and registration tasks. PHARMA allows the easy sharing and management of documents containing drug-related information (i.e., drug prescriptions, medical reports, screening), which is often inconsistent and scattered across different information systems and heterogeneous organization domains (e.g., departments, other hospital facilities). PHARMA enables users to access such information in a consistent and secure way, through the adoption of REST and web-oriented design paradigms and protocols. We describe the implementation of the PHARMA prototype, and we discuss the results of the usability evaluation that we carried out with the staff of a hospital in Florence, Italy.

  13. Designing of Anti Dengue Drug Molecule against Insilico Modeled Target DC-Sign (CD-209

    Directory of Open Access Journals (Sweden)

    Prashantha C.N

    2013-09-01

    Full Text Available The C-type lectin DC-SIGN (CD209 plays a major role in receptor on human dendritic cells, it binds to several glycoproteins of viruses that facilitate disease progression. In dengue fever, the disease targets of arbovirus infection, show dendritic and reticuloendothelial cells that may affect immune system. The phytochemical extracts of Bosenbergia rotunda (BR have been effectively used as potential small molecular inhibitors to inhibit DC-SIGN (CD209 function. Using rational drug designing the training sets include Panduratin-A and 4-hydroxypanduratin is designed from BR derivatives could be an effective inhibitor of a DC-SIGN (CD209 binding towards the drug discovery/ therapy against dengue fever.

  14. Structure-based drug design for G protein-coupled receptors.

    Science.gov (United States)

    Congreve, Miles; Dias, João M; Marshall, Fiona H

    2014-01-01

    Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed.

  15. Integrating structure-based and ligand-based approaches for computational drug design.

    Science.gov (United States)

    Wilson, Gregory L; Lill, Markus A

    2011-04-01

    Methods utilized in computer-aided drug design can be classified into two major categories: structure based and ligand based, using information on the structure of the protein or on the biological and physicochemical properties of bound ligands, respectively. In recent years there has been a trend towards integrating these two methods in order to enhance the reliability and efficiency of computer-aided drug-design approaches by combining information from both the ligand and the protein. This trend resulted in a variety of methods that include: pseudoreceptor methods, pharmacophore methods, fingerprint methods and approaches integrating docking with similarity-based methods. In this article, we will describe the concepts behind each method and selected applications.

  16. A Survey of the Role of Noncovalent Sulfur Interactions in Drug Design.

    Science.gov (United States)

    Beno, Brett R; Yeung, Kap-Sun; Bartberger, Michael D; Pennington, Lewis D; Meanwell, Nicholas A

    2015-06-11

    Electron deficient, bivalent sulfur atoms have two areas of positive electrostatic potential, a consequence of the low-lying σ* orbitals of the C-S bond that are available for interaction with electron donors including oxygen and nitrogen atoms and, possibly, π-systems. Intramolecular interactions are by far the most common manifestation of this effect, which offers a means of modulating the conformational preferences of a molecule. Although a well-documented phenomenon, a priori applications in drug design are relatively sparse and this interaction, which is often isosteric with an intramolecular hydrogen-bonding interaction, appears to be underappreciated by the medicinal chemistry community. In this Perspective, we discuss the theoretical basis for sulfur σ* orbital interactions and illustrate their importance in the context of drug design and organic synthesis. The role of sulfur interactions in protein structure and function is discussed and although relatively rare, intermolecular interactions between ligand C-S σ* orbitals and proteins are illustrated.

  17. The promise, pitfalls and progress of RNA-interference-based antiviral therapy for respiratory viruses.

    Science.gov (United States)

    DeVincenzo, John P

    2012-01-01

    Advances in the understanding of RNA biological processing and control are leading to new concepts in human therapeutics with practical implications for many human diseases, including antiviral therapy of respiratory viruses. So-called 'non-coding RNA' exerts specific and profound functional control on regulation of protein production and indeed controls the expression of all genes through processes collectively known as RNA interference (RNAi). RNAi is a naturally occurring intracellular process that regulates gene expression through the silencing of specific messenger RNAs (mRNAs). Methods are being developed that allow the catalytic degradation of targeted mRNAs using specifically designed complementary small interfering RNAs (siRNA). siRNAs are now being chemically modified and packaged into advanced delivery systems so as to acquire drug-like properties and the ability to deliver their effects systemically. Recent in vivo studies have provided proofs of the concept that RNAi may be useful therapeutically. Much of the design of these siRNAs can be accomplished bioinformatically, thus potentially expediting drug discovery and opening new avenues of therapy for many uncommon, orphan, or emerging diseases. Theoretically, any disease that can be ameliorated through knockdown of any endogenous or exogenous protein is a potential therapeutic target for RNAi-based therapeutics. Lung diseases in general are attractive targets for RNAi therapeutics, since the location of affected cells increases their accessibility to topical administration of siRNA, and respiratory viral infections are particularly attractive targets for RNAi-based drug discovery and development. RNAi therapeutics have been shown to exert potent antiviral effects against respiratory syncytial virus (RSV), parainfluenza, influenza, coronaviruses, measles and human metapneumoviruses in vitro and in vivo. Recently, a double-blind placebo-controlled clinical trial of an RNAi-based therapeutic against RSV

  18. How to optimise drug study design: pharmacokinetics and pharmacodynamics studies introduced to paediatricians.

    OpenAIRE

    Vermeulen, E.; van den Anker, J N; Della Pasqua, O; Hoppu, K.; Lee, J.H.; Global Research in Paediatrics

    2016-01-01

    OBJECTIVES: In children, there is often lack of sufficient information concerning the pharmacokinetics (PK) and pharmacodynamics (PD) of a study drug to support dose selection and effective evaluation of efficacy in a randomised clinical trial (RCT). Therefore, one should consider the relevance of relatively small PKPD studies, which can provide the appropriate data to optimise the design of an RCT. METHODS: Based on the experience of experts collaborating in the EU-funded Global Research in ...

  19. In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus.

    Science.gov (United States)

    Carvalho, Otávio V; Saraiva, Giuliana L; Ferreira, Caroline G T; Felix, Daniele M; Fietto, Juliana L R; Bressan, Gustavo C; Almeida, Márcia R; Silva Júnior, Abelardo

    2014-10-01

    Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection.

  20. Containing pandemic influenza with antiviral agents.

    Science.gov (United States)

    Longini, Ira M; Halloran, M Elizabeth; Nizam, Azhar; Yang, Yang

    2004-04-01

    For the first wave of pandemic influenza or a bioterrorist influenza attack, antiviral agents would be one of the few options to contain the epidemic in the United States until adequate supplies of vaccine were available. The authors use stochastic epidemic simulations to investigate the effectiveness of targeted antiviral prophylaxis to contain influenza. In this strategy, close contacts of suspected index influenza cases take antiviral agents prophylactically. The authors compare targeted antiviral prophylaxis with vaccination strategies. They model an influenza pandemic or bioterrorist attack for an agent similar to influenza A virus (H2N2) that caused the Asian influenza pandemic of 1957-1958. In the absence of intervention, the model predicts an influenza illness attack rate of 33% of the population (95% confidence interval (CI): 30, 37) and an influenza death rate of 0.58 deaths/1,000 persons (95% Cl: 0.4, 0.8). With the use of targeted antiviral prophylaxis, if 80% of the exposed persons maintained prophylaxis for up to 8 weeks, the epidemic would be contained, and the model predicts a reduction to an illness attack rate of 2% (95% Cl: 0.2, 16) and a death rate of 0.04 deaths/1,000 persons (95% CI: 0.0003, 0.25). Such antiviral prophylaxis is nearly as effective as vaccinating 80% of the population. Vaccinating 80% of the children aged less than 19 years is almost as effective as vaccinating 80% of the population. Targeted antiviral prophylaxis has potential as an effective measure for containing influenza until adequate quantities of vaccine are available.

  1. Optimizing drug delivery systems using systematic "design of experiments." Part I: fundamental aspects.

    Science.gov (United States)

    Singh, Bhupinder; Kumar, Rajiv; Ahuja, Naveen

    2005-01-01

    Design of an impeccable drug delivery product normally encompasses multiple objectives. For decades, this task has been attempted through trial and error, supplemented with the previous experience, knowledge, and wisdom of the formulator. Optimization of a pharmaceutical formulation or process using this traditional approach involves changing one variable at a time. Using this methodology, the solution of a specific problematic formulation characteristic can certainly be achieved, but attainment of the true optimal composition is never guaranteed. And for improvement in one characteristic, one has to trade off for degeneration in another. This customary approach of developing a drug product or process has been proved to be not only uneconomical in terms of time, money, and effort, but also unfavorable to fix errors, unpredictable, and at times even unsuccessful. On the other hand, the modern formulation optimization approaches, employing systematic Design of Experiments (DoE), are extensively practiced in the development of diverse kinds of drug delivery devices to improve such irregularities. Such systematic approaches are far more advantageous, because they require fewer experiments to achieve an optimum formulation, make problem tracing and rectification quite easier, reveal drug/polymer interactions, simulate the product performance, and comprehend the process to assist in better formulation development and subsequent scale-up. Optimization techniques using DoE represent effective and cost-effective analytical tools to yield the "best solution" to a particular "problem." Through quantification of drug delivery systems, these approaches provide a depth of understanding as well as an ability to explore and defend ranges for formulation factors, where experimentation is completed before optimization is attempted. The key elements of a DoE optimization methodology encompass planning the study objectives, screening of influential variables, experimental designs

  2. Viral Response to Specifically Targeted Antiviral Therapy for Hepatitis C and the Implications for Treatment Success

    Directory of Open Access Journals (Sweden)

    Curtis L Cooper

    2010-01-01

    Full Text Available Currently, hepatitis C virus (HCV antiviral therapy is characterized by long duration, a multitude of side effects, difficult administration and suboptimal success; clearly, alternatives are needed. Collectively, specifically targeted antiviral therapy for HCV (STAT-C molecules achieve rapid viral suppression and very high rapid virological response rates, and improve sustained virological response rates. The attrition rate of agents within this class has been high due to various toxicities. Regardless, several STAT-C molecules are poised to become the standard of care for HCV treatment in the foreseeable future. Optimism must be tempered with concerns related to the rapid development of drug resistance with resulting HCV rebound. Strategies including induction dosing with interferon and ribavirin, use of combination high-potency STAT-C molecules and an intensive emphasis on adherence to HCV antiviral therapy will be critical to the success of this promising advance in HCV therapy.

  3. [Designer drugs and caffeine - characteristics of psychoactive substances and their impact on the organism].

    Science.gov (United States)

    Wierzejska, Regina

    2014-01-01

    For many teenagers the time of growing up is a period of trying prohibited substances. Nowadays apart from alcohol and tobacco new designed, psychoactive substances known as "smart drugs" or "legal highs" are available. Intensive development of their market is taking place in the last few years which is difficult to overcome by regulations only. Toxicological tests used now are not able to detect the presence of many such substances in the body. Designer drugs cause the interest of young people even from small towns and many times taking them give effects requiring medical help. Caffeine is also a psychoactive substance but depending on the dose it can have positive or detrimental effect. Recently there are more and more products with caffeine, especially drinks and dietary supplements, what can cause the increase of consumption of caffeine. Children are particularly exposed to the adverse effect of high consumption of caffeine because of their small body weight and development of the central nervous system. This article presents actual data about the market of designer drugs, frequency of using them, consumption of caffeine by children and teenagers and about the impact of these substances on the organism.

  4. Formulation of liposomes gels of paeonol for transdermal drug delivery by Box-Behnken statistical design.

    Science.gov (United States)

    Shi, Jun; Ma, Fangli; Wang, Xiaoyan; Wang, Fang; Liao, Huawei

    2012-12-01

    The aim of this study was to design and optimize a transdermal liposomes gel formulation for paeonol (PAE). A three-factor, three-level Box-Behnken design was used to derive a second-order polynomial equation to construct three-dimensional (3-D) contour plots for prediction of responses. Independent variables studied were the DC-Chol concentration (X₁), molar ratio of lipid/drug (X₂), and the polymer concentration (X₃), and the levels of each factor were low, medium, and high. The dependent variables studied were the encapsulation efficiency (%EE) of PAE (Y₁), flux of PAE (Y₂), and viscosity of the gels (Y₃). Response surface plots were drawn and statistical validity of the polynomials was established to find the compositions of optimized formulation, which was evaluated using the Franz diffusion cell. The %EE of PAE increased proportionally with the molar ratio of lipid/drug, but decreased with polymer concentration, whereas the flux of PAE increased proportionally with polymer concentration and the DC-Chol concentration. The viscosity of gels increased with the polymer concentration. Gels showed a non-Fickian diffusion release mechanism for PAE, and the in vitro release profiles were fit for Higuchi's order model. The design demonstrated the role of the derived polynomial equation and 3-D contour plots in predicting the values of dependent variables for the preparation and optimization of gel formulation for transdermal drug release.

  5. Structure-based drug design to the discovery of new 2-aminothiazole CDK2 inhibitors.

    Science.gov (United States)

    Vulpetti, Anna; Casale, Elena; Roletto, Fulvia; Amici, Raffaella; Villa, Manuela; Pevarello, Paolo

    2006-03-01

    N-(5-Bromo-1,3-thiazol-2-yl)butanamide (compound 1) was found active (IC50=808 nM) in a high throughput screening (HTS) for CDK2 inhibitors. By exploiting crystal structures of several complexes between CDK2 and inhibitors and applying structure-based drug design (SBDD), we rapidly discovered a very potent and selective CDK2 inhibitor 4-[(5-isopropyl-1,3-thiazol-2-yl)amino] benzenesulfonamide (compound 4, IC50=20 nM). The syntheses, structure-based analog design, kinases inhibition data and X-ray crystallographic structures of CDK2/inhibitor complexes are reported.

  6. Quality by design case study: an integrated multivariate approach to drug product and process development.

    Science.gov (United States)

    Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder

    2009-12-01

    To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.

  7. Antiviral activity of Acacia nilotica against Hepatitis C Virus in liver infected cells

    Directory of Open Access Journals (Sweden)

    Javed Tariq

    2011-05-01

    Full Text Available Abstract Hepatitis C virus (HCV belonging to the family Flaviviridae has infected 3% of the population worldwide and 6% of the population in Pakistan. The only recommended standard treatment is pegylated INF-α plus ribavirin. Due to less compatibility of the standard treatment, thirteen medicinal plants were collected from different areas of Pakistan on the basis of undocumented antiviral reports against different viral infections. Medicinal plants were air dried, extracted and screened out against HCV by infecting HCV inoculums of 3a genotype in liver cells. RT-PCR results demonstrate that acetonic and methanolic extract of Acacia nilotica (AN showed more than 50% reduction at non toxic concentration. From the above results, it can be concluded that by selecting different molecular targets, specific structure-activity relationship can be achieved by doing mechanistic analysis. So, additional studies are required for the isolation and recognition of antiviral compound in AN to establish its importance as antiviral drug against HCV. For further research, we will scrutinize the synergistic effect of active antiviral compound in combination with standard PEG INF-α and ribavirin which may be helpful in exploring further gateways for antiviral therapy against HCV.

  8. Antiviral activity and mode of action of propolis extracts and selected compounds.

    Science.gov (United States)

    Schnitzler, Paul; Neuner, Annett; Nolkemper, Silke; Zundel, Christine; Nowack, Hans; Sensch, Karl Heinz; Reichling, Jürgen

    2010-01-01

    Aqueous and ethanol extracts of propolis were analysed phytochemically and examined for their antiviral activity in vitro. Different polyphenols, flavonoids and phenylcarboxylic acids were identified as major constituents. The antiviral effect of propolis extracts and selected constituents, e.g. caffeic acid (1), p-coumaric acid (2), benzoic acid (3), galangin (4), pinocembrin (5) and chrysin (6) against herpes simplex virus type 1 (HSV-1) was analysed in cell culture. The 50% inhibitory concentration (IC(50)) of aqueous and ethanol propolis extracts for HSV-1 plaque formation was determined at 0.0004% and 0.000035%, respectively. Both propolis extracts exhibited high levels of antiviral activity against HSV-1 in viral suspension tests, plaque formation was significantly reduced by >98%. In order to determine the mode of antiviral action of propolis, the extracts were added at different times during the viral infection cycle. Both propolis extracts exhibited high anti-HSV-1 activity when the viruses were pretreated with these drugs prior to infection. Among the analysed compounds, only galangin and chrysin displayed some antiviral activity. However, the extracts containing many different components exhibited significantly higher antiherpetic effects as well as higher selectivity indices than single isolated constituents. Propolis extracts might be suitable for topical application against herpes infection.

  9. Polymorphism in ion channel genes of Dirofilaria immitis: Relevant knowledge for future anthelmintic drug design

    Directory of Open Access Journals (Sweden)

    Thangadurai Mani

    2016-12-01

    Full Text Available Dirofilaria immitis, a filarial parasite, causes cardiopulmonary dirofilariasis in dogs, cats and wild canids. The macrocyclic lactone (ML class of drugs has been used to prevent heartworm infection. There is confirmed ML resistance in D. immitis and thus there is an urgent need to find new anthelmintics that could prevent and/or control the disease. Targeting ion channels of D. immitis for drug design has obvious advantages. These channels, present in the nematode nervous system, control movement, feeding, mating and respond to environmental cues which are necessary for survival of the parasite. Any new drug that targets these ion channels is likely to have a motility phenotype and should act to clear the worms from the host. Many of the successful anthelmintics in the past have targeted these ion channels and receptors. Knowledge about genetic variability of the ion channel and receptor genes should be useful information for drug design as receptor polymorphism may affect responses to a drug. Such information may also be useful for anticipation of possible resistance development. A total of 224 ion channel genes/subunits have been identified in the genome of D. immitis. Whole genome sequencing data of parasites from eight different geographical locations, four from ML-susceptible populations and the other four from ML-loss of efficacy (LOE populations, were used for polymorphism analysis. We identified 1762 single nucleotide polymorphic (SNP sites (1508 intronic and 126 exonic in these 224 ion channel genes/subunits with an overall polymorphic rate of 0.18%. Of the SNPs found in the exon regions, 129 of them caused a non-synonymous type of polymorphism. Fourteen of the exonic SNPs caused a change in predicted secondary structure. A few of the SNPs identified may have an effect on gene expression, function of the protein and resistance selection processes.

  10. Antiviral activities of heated dolomite powder.

    Science.gov (United States)

    Motoike, Koichi; Hirano, Shozo; Yamana, Hideaki; Onda, Tetsuhiko; Maeda, Takayoshi; Ito, Toshihiro; Hayakawa, Motozo

    2008-12-01

    The effect of the heating conditions of dolomite powder on its antiviral activity was studied against the H5N3 avian influenza virus. Calcium oxide (CaO) and magnesium oxide (MgO), obtained by the thermal decomposition of dolomite above 800 degrees C, were shown to have strong antiviral activity, but the effect was lessened when the heating temperature exceeded 1400 degrees C. Simultaneous measurement of the crystallite size suggested that the weakening of the activity was due to the considerable grain growth of the oxides. It was found that the presence of Mg in dolomite contributed to the deterrence of grain growth of the oxides during the heating process. Although both CaO and MgO exhibited strong antiviral activity, CaO had the stronger activity but quickly hydrated in the presence of water. On the other hand, the hydration of MgO took place gradually under the same conditions. Separate measurements using MgO and Mg(OH)2 revealed that MgO had a higher antiviral effect than Mg(OH)2. From the overall experiments, it was suggested that the strong antiviral activity of dolomite was related to the hydration reaction of CaO.

  11. Challenges in the design of clinically useful brain-targeted drug nanocarriers.

    Science.gov (United States)

    Costantino, L; Boraschi, D; Eaton, M

    2014-01-01

    Nowadays, the delivery of drugs by means of intravenously administered nanosized drug carriers - polymerdrug conjugates, liposomes and micelles, is technically possible. These delivery systems are mainly designed for tumour therapy, and accumulate passively into tumours by means of the well known EPR effect. Targeted nanocarriers, that additionally contain ligands for receptors expressed on cell surfaces, are also widely studied but products of this kind are not marketed, and only a few are in clinical trial. Polymeric nanoparticles (Np) able to deliver drugs to the CNS were pioneered in 1995; a number of papers have been published dealing with brain-targeted drug delivery using polymeric Np able to cross the BBB, mainly for the treatment of brain tumours. At present, however, the translation potential of these Np seems to have been exceeded by targeted liposomes, a platform based on a proven technology. This drug delivery system entered clinical trials soon after its discovery, while the challenges in formulation, characterization and manufacturing of brain-targeted polymeric Np and the cost/benefit ratio could be the factors that have prevented their development. A key issue is that it is virtually impossible to define the in vivo fate of polymers, especially in the brain, which is a regulatory requirement; perhaps this is why no progress has been made. The most advanced Np for brain tumours treatment will be compared here with the published data available for those in clinical trial for tumours outside the CNS, to highlight the knowledge gaps that still penalise these delivery systems. At present, new approaches for brain tumours are emerging, such as lipid Np or the use of monoclonal antibody (mAb)-drug conjugates, which avoid polymers. The success or failure in the approval of the polymeric Np currently in clinical trials will certainly affect the field. At present, the chances of their approval appear to be very low.

  12. Opportunities and challenges for drug development: public-private partnerships, adaptive designs and big data

    Directory of Open Access Journals (Sweden)

    Oktay Yildirim

    2016-12-01

    Full Text Available Drug development faces the double challenge of increasing costs and increasing pressure on pricing. To avoid that lack of perceived commercial perspective will leave existing medical needs unmet, pharmaceutical companies and many other stakeholders are discussing ways to improve the efficiency of drug Research & Development. Based on an international symposium organized by the Medical School of the University of Duisburg-Essen (Germany and held in January 2016, we discuss the opportunities and challenges of three specific areas, i.e. public-private partnerships, adaptive designs and big data. Public-private partnerships come in many different forms with regard to scope, duration and type and number of participants. They range from project-specific collaborations to strategic alliances to large multi-party consortia. Each of them offers specific opportunities and faces distinct challenges. Among types of collaboration, investigator-initiated studies are becoming increasingly popular but have legal, ethical and financial implications. Adaptive trial designs are also increasingly discussed. However, adaptive should not be used as euphemism for the repurposing of a failed trial; rather it requires carefully planning and specification before a trial starts. Adaptive licensing can be a counter-part of adaptive trial design. The use of Big Data is another opportunity to leverage existing information into knowledge useable for drug discovery and development. Respecting limitations of informed consent and privacy is a key challenge in the use of Big Data. Speakers and participants at the symposium were convinced that appropriate use of the above new options may indeed help to increase the efficiency of future drug development.

  13. Metal complexes in cancer therapy – an update from drug design perspective

    Directory of Open Access Journals (Sweden)

    Ndagi U

    2017-03-01

    Full Text Available Umar Ndagi, Ndumiso Mhlongo, Mahmoud E Soliman Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa Abstract: In the past, metal-based compounds were widely used in the treatment of disease conditions, but the lack of clear distinction between the therapeutic and toxic doses was a major challenge. With the discovery of cisplatin by Barnett Rosenberg in 1960, a milestone in the history of metal-based compounds used in the treatment of cancers was witnessed. This forms the foundation for the modern era of the metal-based anticancer drugs. Platinum drugs, such as cisplatin, carboplatin and oxaliplatin, are the mainstay of the metal-based compounds in the treatment of cancer, but the delay in the therapeutic accomplishment of other metal-based compounds hampered the progress of research in this field. Recently, however, there has been an upsurge of activities relying on the structural information, aimed at improving and developing other forms of metal-based compounds and nonclassical platinum complexes whose mechanism of action is distinct from known drugs such as cisplatin. In line with this, many more metal-based compounds have been synthesized by redesigning the existing chemical structure through ligand substitution or building the entire new compound with enhanced safety and cytotoxic profile. However, because of increased emphasis on the clinical relevance of metal-based complexes, a few of these drugs are currently on clinical trial and many more are awaiting ethical approval to join the trial. In this review, we seek to give an overview of previous reviews on the cytotoxic effect of metal-based complexes while focusing more on newly designed metal-based complexes and their cytotoxic effect on the cancer cell lines, as well as on new approach to metal-based drug design and molecular target in cancer therapy. We are optimistic that the concept of selective

  14. Promoting synergistic research and education in computational biology and drug design.

    Science.gov (United States)

    Jesneck, Jonathan L; Yang, Jack Y

    2008-01-01

    Supported by US National Science Foundation (NSF) and the International Society of Intelligent Biological Medicine (ISIBM), the IEEE 7th International Conference on Bioinformatics and Bioengineering at Harvard Medical School was designed dynamically in response to the cutting edge synergistic research and education. One of the key components of this academic event is the poster presentation focusing on specific topics to foster collaboration between the computational biology and drug design domains. The Harvard meeting attracted over five hundred scientists, researchers and medical doctors world-wide to present, discuss and exchange their research. The synergies between computational biology and drug design research had been well observed by participants. The poster sessions had been designed to be responsive to the need for synergistic inter/multidisciplinary research and education. A panel of judges was formed to decide the best posters. The papers in this special issue were selected for runners-up of the best poster award by a panel of judges. Authors were then invited to expand their posters into full research papers. Submitted papers were required to contain significant additional scientific detail and were rigorously reviewed by at least three external reviewers. Detailed information regarding the academic event can be found at the White Paper of the IEEE 7th International Conference on Bioinformatics and Bioengineering at Harvard Medical School at BMC Genomics http://www.biomedcentral.com/1471-2164/9/S2/I1.

  15. Challenges and Opportunities for New Protein Crystallization Strategies in Structure-Based Drug Design

    Science.gov (United States)

    Grey, Jessica; Thompson, David

    2010-01-01

    Structure-based drug design (SBDD) has emerged as a valuable pharmaceutical lead discovery tool, showing potential for accelerating the discovery process, while reducing developmental costs and boosting potencies of the drug that is ultimately selected. SBDD is a iterative, rational, lead compound sculpting process that involves both the synthesis of new derivatives and the evaluation of their binding to the target structure either through computational docking or elucidation of the target structure as a complex with the lead compound. This method heavily relies on the production of high-resolution (< 2Å) three-dimensional structures of the drug target, obtained through X-ray crystallographic analysis, in the presence or absence of the drug candidate. The lack of generalized methods for high quality crystal production is still a major bottleneck in the process of macromolecular crystallization. This review provides a brief introduction to SBDD and describes several macromolecular crystallization strategies, with an emphasis on advances and challenges facing researchers in the field today. Recent trends in the development of more universal macromolecular crystallization techniques, particularly nucleation-based techniques that are applicable to both soluble and integral membrane proteins, are also discussed. PMID:21116481

  16. A fresh look at an antiviral helicase

    Institute of Scientific and Technical Information of China (English)

    Leonid Gitlin; Marco Colonna

    2007-01-01

    @@ In order to survive,all organlsms must guard against viral infections.Recognition of viruses is accomplished via multiple sensors.Many mammalian proteins can recognize viral products,such as double-stranded RNA(dsRNA),yet feW of them are known to induce interferon,the central antiviral messenger.Since interferon is indispensable for Successful antiviral defense [1],the interferon-inducing sensors have been of particular interest.However,a clear understanding of such sensors has been elusive,and the first well-established sensor family,the toll-like receptors (TLRs),was described relatively recently[2].Antiviral TLRS are positioned in the endosomes,where they report the appearance of viral genetic material(DNA,single-and double-stranded RNA).

  17. Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy.

    Directory of Open Access Journals (Sweden)

    Joseph T Wu

    2009-05-01

    Full Text Available BACKGROUND: The effectiveness of single-drug antiviral interventions to reduce morbidity and mortality during the next influenza pandemic will be substantially weakened if transmissible strains emerge which are resistant to the stockpiled antiviral drugs. We developed a mathematical model to test the hypothesis that a small stockpile of a secondary antiviral drug could be used to mitigate the adverse consequences of the emergence of resistant strains. METHODS AND FINDINGS: We used a multistrain stochastic transmission model of influenza to show that the spread of antiviral resistance can be significantly reduced by deploying a small stockpile (1% population coverage of a secondary drug during the early phase of local epidemics. We considered two strategies for the use of the secondary stockpile: early combination chemotherapy (ECC; individuals are treated with both drugs in combination while both are available; and sequential multidrug chemotherapy (SMC; individuals are treated only with the secondary drug until it is exhausted, then treated with the primary drug. We investigated all potentially important regions of unknown parameter space and found that both ECC and SMC reduced the cumulative attack rate (AR and the resistant attack rate (RAR unless the probability of emergence of resistance to the primary drug p(A was so low (less than 1 in 10,000 that resistance was unlikely to be a problem or so high (more than 1 in 20 that resistance emerged as soon as primary drug monotherapy began. For example, when the basic reproductive number was 1.8 and 40% of symptomatic individuals were treated with antivirals, AR and RAR were 67% and 38% under monotherapy if p(A = 0.01. If the probability of resistance emergence for the secondary drug was also 0.01, then SMC reduced AR and RAR to 57% and 2%. The effectiveness of ECC was similar if combination chemotherapy reduced the probabilities of resistance emergence by at least ten times. We extended our model

  18. Facile identification of dual FLT3-Aurora A inhibitors: a computer-guided drug design approach.

    Science.gov (United States)

    Chang Hsu, Yung; Ke, Yi-Yu; Shiao, Hui-Yi; Lee, Chieh-Chien; Lin, Wen-Hsing; Chen, Chun-Hwa; Yen, Kuei-Jung; Hsu, John T-A; Chang, Chungming; Hsieh, Hsing-Pang

    2014-05-01

    Computer-guided drug design is a powerful tool for drug discovery. Herein we disclose the use of this approach for the discovery of dual FMS-like receptor tyrosine kinase-3 (FLT3)-Aurora A inhibitors against cancer. An Aurora hit compound was selected as a starting point, from which 288 virtual molecules were screened. Subsequently, some of these were synthesized and evaluated for their capacity to inhibit FLT3 and Aurora kinase A. To further enhance FLT3 inhibition, structure-activity relationship studies of the lead compound were conducted through a simplification strategy and bioisosteric replacement, followed by the use of computer-guided drug design to prioritize molecules bearing a variety of different terminal groups in terms of favorable binding energy. Selected compounds were then synthesized, and their bioactivity was evaluated. Of these, one novel inhibitor was found to exhibit excellent inhibition of FLT3 and Aurora kinase A and exert a dramatic antiproliferative effect on MOLM-13 and MV4-11 cells, with an IC50 value of 7 nM. Accordingly, it is considered a highly promising candidate for further development.

  19. Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design.

    Science.gov (United States)

    Grinter, Sam Z; Zou, Xiaoqin

    2014-07-11

    The docking methods used in structure-based virtual database screening offer the ability to quickly and cheaply estimate the affinity and binding mode of a ligand for the protein receptor of interest, such as a drug target. These methods can be used to enrich a database of compounds, so that more compounds that are subsequently experimentally tested are found to be pharmaceutically interesting. In addition, like all virtual screening methods used for drug design, structure-based virtual screening can focus on curated libraries of synthesizable compounds, helping to reduce the expense of subsequent experimental verification. In this review, we introduce the protein-ligand docking methods used for structure-based drug design and other biological applications. We discuss the fundamental challenges facing these methods and some of the current methodological topics of interest. We also discuss the main approaches for applying protein-ligand docking methods. We end with a discussion of the challenging aspects of evaluating or benchmarking the accuracy of docking methods for their improvement, and discuss future directions.

  20. Towards a rational design of solid drug nanoparticles with optimised pharmacological properties

    Science.gov (United States)

    Martin, Phillip; Smith, Darren; Curley, Paul; McDonald, Tom; Giardiello, Marco; Liptrott, Neill; Rannard, Steve; Owen, Andrew

    2016-01-01

    Abstract Solid drug nanoparticles (SDNs) are a nanotechnology with favourable characteristics to enhance drug delivery and improve the treatment of several diseases, showing benefit for improved oral bioavailability and injectable long‐acting medicines. The physicochemical properties and composition of nanoformulations can influence the absorption, distribution, and elimination of nanoparticles; consequently, the development of nanoparticles for drug delivery should consider the potential role of nanoparticle characteristics in the definition of pharmacokinetics. The aim of this study was to investigate the pharmacological behaviour of efavirenz SDNs and the identification of optimal nanoparticle properties and composition. Seventy‐seven efavirenz SDNs were included in the analysis. Cellular accumulation was evaluated in HepG2 (hepatic) and Caco‐2 (intestinal), CEM (lymphocyte), THP1 (monocyte), and A‐THP1 (macrophage) cell lines. Apparent intestinal permeability (Papp) was measured using a monolayer of Caco‐2 cells. The Papp values were used to evaluate the potential benefit on pharmacokinetics using a physiologically based pharmacokinetic model. The generated SDNs had an enhanced intestinal permeability and accumulation in different cell lines compared to the traditional formulation of efavirenz. Nanoparticle size and excipient choice influenced efavirenz apparent permeability and cellular accumulation, and this appeared to be cell line dependent. These findings represent a valuable platform for the design of SDNs, giving an empirical background for the selection of optimal nanoparticle characteristics and composition. Understanding how nanoparticle components and physicochemical properties influence pharmacological patterns will enable the rational design of SDNs with desirable pharmacokinetics. PMID:27774308