WorldWideScience

Sample records for antioxidant proteins protect

  1. Protection of naturally occurring antioxidants against oxidative damages to protein

    International Nuclear Information System (INIS)

    One of the most compelling theories explaining age-related deterioration is the free radical theory of aging. It has been shown that reactive oxygen species are involved in oxidative damages to biomolecules and this is related to a number of diseases. Proteins, the second most abundant components of cells (next to water by weight), are now increasingly recognized as major biological targets of oxidative damages. Convincing evidences have indicated that damages to protein have been implicated in Alzheimer's disease, Parkinson's disease, cancer, and aging. Antioxidant has been the subject of great attention because they are known to lower the risk of cardiovascular and other diseases. Hydroxycinnamic acid derivatives (HCAs) are antioxidants abundant in tea, red wine, fruits, beverages and various medicinal plants. Results showed that they exhibit remarkable activity for scavenging oxidizing radicals and triplet states. The protective effects of four kinds of HCAs on oxidative damages to lysozyme were investigated in our lab. Protein damages induced by two different paradigms: riboflavin-sensitized photooxidation and hydroxyl (.OH)-mediated oxidation, were investigated using polyacrylamide gel electrophoresis. HCAs were found to inhibit the cross-linking of protein induced by riboflavin-mediated photooxidation. HCAs also exhibited protection effect on lysozyme damage induced by γ-ray irradiation. The rate constants for quenching triplet state of riboflavin by lysozyme and HCAs were obtained using laser flash photolysis. The protective mechanism was proposed based on the dynamic study. HCAs were found to protect protein against oxidation by scavenging oxidizing species and repairing the damaged protein. (authors)

  2. Iron and exercise induced alterations in antioxidant status. Protection by dietary milk proteins.

    Science.gov (United States)

    Zunquin, Gautier; Rouleau, Vincent; Bouhallab, Said; Bureau, Francois; Theunynck, Denis; Rousselot, Pierre; Arhan, Pierre; Bougle, Dominique

    2006-05-01

    Lipid peroxidation stress induced by iron supplementation can contribute to the induction of gut lesions. Intensive sports lead to ischemia reperfusion, which increases free radical production. Athletes frequently use heavy iron supplementation, whose effects are unknown. On the other hand, milk proteins have in vitro antioxidant properties, which could counteract these potential side effects. The main aims of the study were: (1) to demonstrate the effects of combined exercise training (ET) and iron overload on antioxidant status; (2) to assess the protective properties of casein in vivo; (3) to study the mechanisms involved in an in vitro model. Antioxidant status was assessed by measuring the activity of antioxidant enzymes (superoxide dismutase (SOD); glutathione peroxidase (GSH-Px)), and on the onset of aberrant crypts (AC) in colon, which can be induced by lipid peroxidation. At day 30, all ET animals showed an increase in the activity of antioxidant enzymes, in iron concentration in colon mucosa and liver and in the number of AC compared to untrained rats. It was found that Casein's milk protein supplementation significantly reduced these parameters. Additional information on protective effect of casein was provided by measuring the extent of TBARS formation during iron/ascorbate-induced oxidation of liposomes. Free casein and casein bound to iron were found to significantly reduce iron-induced lipid peroxidation. The results of the overall study suggest that Iron supplementation during intensive sport training would decrease anti-oxidant status. Dietary milk protein supplementation could at least partly prevent occurrence of deleterious effects to tissue induced by iron overload. PMID:17390518

  3. Antioxidants and biological radiation protection

    International Nuclear Information System (INIS)

    Antioxidants and antioxidant enzymes, by combatting oxygen radical-mediated radiation-induced oxidative stress, may prevent the accumulation of damage involved in tumor initiation, promotion and progression, and thus serve to protect us against ionizing radiation. We are testing the possible role of dietary antioxidants, and other biological response modifiers, in determining individual radiation response. These experiments use the fluorescent protein beta-phycoerythrin as a target and biomolecular marker for radiation-induced oxidative stress. Antioxidants are ranked according to their radioprotectiveness by their ability to compete with beta-phycoerythrin for radiolytic oxygen radicals. Samples of blood serum from cancer patients have been analyzed using this technique. There is a trend towards decreasing antioxidant levels with increasing donor age, and this is consistent with data showing an increasing radiosensitivity with age. We are presently monitoring antioxidant and antioxidant enzyme levels in atomic radiation workers and the general public, in order to assess whether they influence individual radiosensitivity. Knowledge of this source of biological response modification will be useful in applying radiation protection practices to those individuals or groups most at risk, and for estimating individual risks associated with radiation exposure. (author)

  4. Antioxidants and biological radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Lenten, K.J.; Greenstock, C.L. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    1998-07-01

    Antioxidants and antioxidant enzymes, by combatting oxygen radical-mediated radiation-induced oxidative stress, may prevent the accumulation of damage involved in tumor initiation, promotion and progression, and thus serve to protect us against ionizing radiation. We are testing the possible role of dietary antioxidants, and other biological response modifiers, in determining individual radiation response. These experiments use the fluorescent protein beta-phycoerythrin as a target and biomolecular marker for radiation-induced oxidative stress. Antioxidants are ranked according to their radioprotectiveness by their ability to compete with beta-phycoerythrin for radiolytic oxygen radicals. Samples of blood serum from cancer patients have been analyzed using this technique. There is a trend towards decreasing antioxidant levels with increasing donor age, and this is consistent with data showing an increasing radiosensitivity with age. We are presently monitoring antioxidant and antioxidant enzyme levels in atomic radiation workers and the general public, in order to assess whether they influence individual radiosensitivity. Knowledge of this source of biological response modification will be useful in applying radiation protection practices to those individuals or groups most at risk, and for estimating individual risks associated with radiation exposure. (author)

  5. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis.

    Directory of Open Access Journals (Sweden)

    Matthew B Hudson

    Full Text Available Mechanical ventilation (MV is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1 determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2 establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.

  6. Human Anti-Oxidation Protein A1M—A Potential Kidney Protection Agent in Peptide Receptor Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    Jonas Ahlstedt

    2015-12-01

    Full Text Available Peptide receptor radionuclide therapy (PRRT has been in clinical use for 15 years to treat metastatic neuroendocrine tumors. PRRT is limited by reabsorption and retention of the administered radiolabeled somatostatin analogues in the proximal tubule. Consequently, it is essential to develop and employ methods to protect the kidneys during PRRT. Today, infusion of positively charged amino acids is the standard method of kidney protection. Other methods, such as administration of amifostine, are still under evaluation and show promising results. α1-microglobulin (A1M is a reductase and radical scavenging protein ubiquitously present in plasma and extravascular tissue. Human A1M has antioxidation properties and has been shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. It has recently been shown in mice that exogenously infused A1M and the somatostatin analogue octreotide are co-localized in proximal tubules of the kidney after intravenous infusion. In this review we describe the current situation of kidney protection during PRRT, discuss the necessity and implications of more precise dosimetry and present A1M as a new, potential candidate for renal protection during PRRT and related targeted radionuclide therapies.

  7. Antioxidant protection of proteins and lipids in processed pork loin chops through feed supplementation with avocado.

    Science.gov (United States)

    Hernández-López, Silvia H; Rodríguez-Carpena, Javier G; Lemus-Flores, Clemente; Galindo-García, Jorge; Estévez, Mario

    2016-06-01

    This study was conducted to analyze the impact of dietary avocado on the oxidative stability of lipids and proteins during pork processing. Loins from control (fed basic diet) and treated pigs (fed on avocado-supplemented diet) were roasted (102 °C/20 min) and subsequently packed in trays wrapped with oxygen-permeable films and chilled at 4 °C for 12 days. At each processing stage (raw, cooked and cooked & chilled), pork samples from both groups were analyzed for the concentration of TBARS, the loss of tryptophan and free thiols, and the formation of protein carbonyls, disulphide bonds and Schiff bases. Processing led to a depletion of tryptophan and sulfur-containing amino acids and an increase of lipid and protein oxidation products. Dietary avocado was not able to protect against the oxidation of tryptophan and thiols but cooked & chilled loins from treated pigs had significantly lower concentration of lipid and protein carbonyls than control counterparts. Likewise, dietary avocado alleviated the formation of Schiff bases during cooking. These results illustrate the benefits of dietary avocado on the oxidative stability of processed pork loins. PMID:27478235

  8. Antioxidative potential of Perna viridis and its protective role against ROS induced lipidperoxidation and protein carbonyl

    Digital Repository Service at National Institute of Oceanography (India)

    Jena, K.B.; Jagtap, T.G.; Verlecar, X.N.

    862 Current Trends in Biotechnology and Pharmacy Vol. 4 (4) 862-870 October 2010. ISSN 0973-8916 Antioxidative potential of Perna viridis Abstract The antioxidant potential of methanol extracts of green-lipped mussel (Perna viridis) were evaluated....N. Verlecar* Biological Oceanography Division, National Institute of Oceanography, Dona-Paula, Goa-403004 *For correspondence - verlecar@nio.org 863Current Trends in Biotechnology and Pharmacy Vol. 4 (4) 862-870 October 2010. ISSN 0973-8916 Jena et al...

  9. Paraoxonase-1 (PON1) inhibition by tienilic acid produces hepatic injury: Antioxidant protection by fennel extract and whey protein concentrate.

    Science.gov (United States)

    Abdel-Wahhab, Khaled G; Fawzi, Heba; Mannaa, Fathia A

    2016-03-01

    This study evaluated the effect of whey protein concentrate (WPC) or fennel seed extract (FSE) on paraoxonase-1 activity (PON1) and oxidative stress in liver of tienilic acid (TA) treated rats. Six groups of rats were treated for six weeks as follows: control; WPC (0.5g/kg/day); FSE (200mg/ kg/day); TA (1g/kg/twice a week); TA (1g/kg/twice a week) plus WPC (0.5g/kg/day); TA (1g/kg/twice a week) plus FSE (200mg/kg/day). TA administration significantly increased ALT and AST besides to total- and direct bilirubin levels. Also, serum tumor necrosis factor-α and nitric oxide levels were significantly increased. Furthermore, serum PON1, and hepatic reduced glutathione, glutathione-S-transferase and Na(+)/K(+)-ATPase values were diminished matched with a significant rise in the level of hepatic lipid peroxidation. Also, triglycerides, total- and LDL-cholesterol levels were significantly elevated while HDL-cholesterol was unchanged. The administration of either WPC or FSE to TA-treated animals significantly protected the liver against the injurious effects of tienilic acid. This appeared from the improvement of hepatic functions, atherogenic markers, Na(+)/K(+) ATPase activity, endogenous antioxidants and hepatic lipid peroxidation level; where WPC showed the strongest protection effect. In conclusion, the present study indicated that WPC and FSE improve PON1 activity and attenuate liver dysfunction induced by TA. This may be attributed to the high content of antioxidant compounds in WPC and fennel extract. PMID:26884099

  10. The application of natural antioxidants via brine injection protects Iberian cooked hams against lipid and protein oxidation.

    Science.gov (United States)

    Armenteros, Mónica; Morcuende, David; Ventanas, Jesús; Estévez, Mario

    2016-06-01

    In response to the increasing consumers' mistrust in synthetic additives, the meat industry is focused on searching sources of natural antioxidants. Two different sources of natural antioxidants i) a mixture of garlic, cinnamon, cloves and rosemary essential oils and ii) a Rosa canina L. extract, were compared with a commercial antioxidant additive (Artinox®) for their ability to control protein and lipid oxidation in cooked hams after a settling period of 30 days and at the end of a chilled storage (150 days). The mixture of essential oils was the most effective against lipid oxidation while R. canina L. extracts were the most effective in controlling protein carbonylation at day 150. Accordingly, the use of these antioxidants via brine injection is a successful strategy to enhance the oxidative stability of cooked hams without modifying their physicochemical properties. PMID:26923219

  11. Cardiovascular diseases: oxidative damage and antioxidant protection.

    Science.gov (United States)

    Zhang, P-Y; Xu, X; Li, X-C

    2014-10-01

    Atherosclerosis, the hardening of arteries under oxidative stress is related to oxidative changes of low density lipoproteins (LDL). The antioxidants prevent the formation of oxidized LDL during atherogenesis. Perhaps more than one mechanism is involved in the atherosclerosis disease where LDL is oxidized in all the cells of arterial wall during the development of this disease. The oxidation of LDL produces lipid peroxidation products such as isoprostans from arachidonic, eicosapentaenoic and docosahexaenoic acids, oxysterols from cholesterol, hydroxyl fatty acids, lipid peroxides and aldehydes. The lipid peroxidation bioassay can serve as a marker for the risk of cardiovascular. An in vivo test of levels of oxidative lipid damage is an early prediction of development of cardiovascular disease (CVD). Serum paraoxonase (PON) activity is correlated to severity of the coronary artery disease. The antioxidants level in the serum and serum paraoxonase activity provides information for the risk of CVD. The antioxidant enzyme superoxide dismutase is responsible for dismutation of superoxide, a free radical chain initiator. The subcellular changes in the equilibrium in favor of free radicals can cause increase in the oxidative stress which leads to cardiomyopathy, heart attack or cardiac dysfunction. The oxidative damage and defense of heart disease has been reported where dietary antioxidants protect the free radical damage to DNA, proteins and lipids. The ascorbic acid, vitamin C is an effective antioxidant and high vitamin E intake can reduce the risk of coronary heart disease (CHD) by inhibition of atherogenic forms of oxidized LDL. The vitamin A and beta-carotene protect lipid peroxidation and provitamin-A activity. It has been recently suggested that the protection of oxidative damage and related CVD is best served by antioxidants found in the fruits and vegetables. The oxidative damage and antioxidant protection of CVD have been described here. PMID:25392110

  12. Antioxidative effects of whey protein on peroxide-induced cytotoxicity.

    Science.gov (United States)

    Xu, R; Liu, N; Xu, X; Kong, B

    2011-08-01

    Myoblastic toxicity is a major adverse effect caused by reactive oxygen species (ROS) when exercising heavily. Although protection or alleviation of ROS toxicity can be achieved by administration of antioxidant vitamins such as vitamin E and vitamin C, their protective effect remains controversial. Thus, alternative natural antioxidants may be potential candidates for foods for athletes. In this research, we investigated the antioxidative effect of whey protein against hydrogen peroxide (H(2)O(2)) toxicity using C(2)C(12) myoblasts. Whey protein pre-incubation prevented the decrease in cell viability after H(2)O(2) treatment. The production of 8-hydroxydeoxyguanosine associated with DNA oxidative damage was also inhibited by the whey protein pre-incubation. Endogenous antioxidant defense, such as glutathione, catalase, and superoxide dismutase activity, was also modulated by the antioxidant. At the same time, enhanced mRNA expression levels of heme oxygenase-1 and NADPH quinone oxidoreductase-1 were observed in cells pre-incubated with whey protein before H(2)O(2) abuse. These findings suggest that whey protein improved the antioxidant capacity against acute oxidative stress through multiple pathways and this protein may serve as an alternative source of antioxidants for prevention of athletic injuries caused by ROS. PMID:21787910

  13. [Antioxidant activity of cationic whey protein isolate].

    Science.gov (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  14. The role of antioxidant-protein interactions in biological membrane

    International Nuclear Information System (INIS)

    Full text: Oxidative damage of cellular membranes has been linked to a variety of disease pathologies, including cardiac disease, Alzheimer's and complications due to diabetes. The oxidation of unsaturated and polyunsaturated fatty acid chains found in cellular membranes leads to significant alteration in membrane physical properties, including lipid orientation and membrane permeability, which ultimately affect biological function. Polyphenols are naturally occurring phytochemicals present in a number of fruit and vegetables that are of interest for their anti-oxidative powers. These polyphenols inhibit lipid oxidation in cellular membrane surfaces, although the mechanism of this inhibition is not entirely clear. Moreover, the polyphenols have significant binding affinity for proteins, which can lead to the formation of soluble and insoluble protein-polyphenol complexes Significantly, in the presence of casein proteins the oxidation inhibition the polyphenols in the membrane is significantly enhanced (as assessed by Lipid Peroxidation Inhibition Capacity assays). Thus the antioxidant pathway appears to involve these protein/polyphenol complexes, as well as direct antioxidant action by the polyphenol. Here we discuss neutron and x-ray scattering results from phospholipid membranes, looking at the positioning of two examples of polyphenolic antioxidants in phospholipid membranes, quercetin and phloretin, the antioxidants' impact on the membrane organisation, and the interaction between antioxidant and extra-membranous protein. This information sheds light on the mechanism of antioxidant protection in these systems, which may be used to understand biological responses to oxidative stress.

  15. Radio-protective role of antioxidant agents

    Directory of Open Access Journals (Sweden)

    Alireza Shirazi

    2012-10-01

    Full Text Available Ionizing radiation interacts with biological systems to produce reactive oxygen species and reactive nitrogen species which attack various cellular components. Radio-protectors act as prophylactic agents to shield healthy cells and tissues from the harmful effects of radiation. Past research on synthetic radio-protectors has brought little success, primarily due to the various toxicity-related problems. Results of experimental research show that antioxidant nutrients, such as vitamin E and herbal products and melatonin, are protective against the damaging effects of radiation, with less toxicity and side effects. Therefore, we propose that in the future, antioxidant radio-protective agents may improve the therapeutic index in radiation oncology treatments.

  16. Protection of lung fibroblast MRC-5 cells against hydrogen peroxide-induced oxidative damage by 0.1-2.8 kDa antioxidative peptides isolated from whey protein hydrolysate.

    Science.gov (United States)

    Kong, Baohua; Peng, Xinyan; Xiong, Youling L; Zhao, Xinhuai

    2012-11-15

    Antioxidative peptides (0.1-2.8 kDa) obtained from gel filtration of Alcalase-hydrolysed whey protein were subjected to individual peptide isolation by RP-HPLC. The sub-fraction P4 and a prominent pentapeptide identified by mass spectrometry (Val-His-Leu-Lys-Pro) (P4c) were found to be highly antioxidative, therefore, used to assess the efficacy against hydrogen peroxide (H(2)O(2))-induced human lung fibroblast MRC-5 cell oxidative injury. MRC-5 cells were damaged by incubation with H(2)O(2), but cell death was significantly reduced when exposed to P4 and P4c (Pactivity of cell superoxide dismutase, glutathione peroxidase, and catalase, and decreased the levels of malonaldehyde (Pantioxidative peptides had a significant protection of MRC-5 cells against the toxicity caused by H(2)O(2). PMID:22868126

  17. Pineal Proteins Upregulate Specific Antioxidant Defense Systems in the Brain

    Directory of Open Access Journals (Sweden)

    Vijay K. Bharti

    2009-01-01

    Full Text Available The neuroendocrine functions of the pineal affect a wide variety of glandular and nervous system processes. Beside melatonin (MEL, the pineal gland secretes and expresses certain proteins essential for various physiological functions. It has been suggested that the pineal gland may also have an antioxidant role due to secretory product other than MEL. Therefore, the present study was designed to study the effect of buffalo (Bubalus bubalis pineal proteins (PP on the antioxidant defense system in the brain of female rats. The twenty-four rats were taken in present study and were divided into four groups: control (0 day, control (28 day, vehicle control and buffalo PP. The PP was injected 100 µg/kg BW intraperitoneal (i.p. daily for 28 days. The activities of superoxide dismutase (SOD, glutathione peroxidase (GPx, catalase (CAT, glutathione reductase (GR and reduced glutathione (GSH concentration and the levels of lipid peroxidation (LPO in the brain tissue were measured to assess the antioxidant systems. These enzymes protect from adverse effects of free radicals and help in amelioration of oxidative stress. Buffalo pineal proteins administration did not cause any effect on brain LPO, whereas GPx, GR and GSH were significantly (p < 0.05 decreased. However, SOD and CAT activities were increased to significant levels than the control in PP treated rats. Our study herein suggested that buffalo (Bubalus bubalis pineal proteins upregulates specific antioxidant defense systems and can be useful in control of various oxidative stress-induced neuronal diseases.

  18. Antioxidant activity of whey protein hydrolysates in milk beverage system

    OpenAIRE

    Mann, Bimlesh; Kumari, Anuradha; Kumar, Rajesh; Sharma, Rajan; Prajapati, Kishore; Mahboob, Shaik; Athira, S.

    2014-01-01

    The aim of the present study was to evaluate the antioxidant activity of flavoured milk enriched with antioxidative whey protein hydrolysates (WPHs) by radical scavenging method. Whey protein concentrate (WPC) was hydrolyzed by using three commercial proteases; flavouzyme, alcalase and corolase PP and these WPHs were analyzed for degree of hydrolysis and antioxidant activity. The antioxidant activities of these WPHs were evaluated using ABTS method. Trolox equivalent antioxidant activity of a...

  19. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity1

    Science.gov (United States)

    Delles, Rebecca M.; Xiong, Youling L.; True, Alma D.; Ao, Touying; Dawson, Karl A.

    2014-01-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P < 0.05) with an antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P < 0.05) in antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. PMID:24879706

  20. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems.

    Science.gov (United States)

    Sheih, I-Chuan; Wu, Tung-Kung; Fang, Tony J

    2009-07-01

    Microalgae have been a popular edible food, but there are no known reports on the antioxidative peptides derived from microalgae. The algae protein waste, which is normally discarded as animal feed, is a by-product during production of algae essence from microalgae, Chlorella vulgaris. Algae protein waste was hydrolyzed using pepsin, and a potent antioxidative peptide of VECYGPNRPQF was separated and isolated. The peptide could efficiently quench a variety of free radicals, including hydroxyl radical, superoxide radical, peroxyl radical, DPPH radical and ABTS radicals, and performed more efficiently than that observed for BHT, Trolox and peptides from marine protein sources in most cases. The purified peptide also has significant protective effects on DNA and prevents cellular damage caused by hydroxyl radicals. In addition, the peptide has gastrointestinal enzyme-resistance and no cytotoxicity observed in human lung fibroblasts cell lines (WI-38) in vitro. These results demonstrate that inexpensive algae protein waste could be a new alternative to produce antioxidative peptides. PMID:19299123

  1. Enzymatic Modification of Antioxidants Towards Omega-3 Oil Protection

    OpenAIRE

    Yang, Zhiyong

    2011-01-01

    This PhD dissertation entitled “Enzymatic Modification of Antioxidants Towards Omega-3 Oil Protection” is primarily focused on synthesize of novel antioxidant from natural sources for better protection of oxidation-prone omega 3 oil. Selected phenolic acids were conjugated with fatty alcohols in different chain length and triacylglycerol (TAG). Several synthesis strategies were evaluated. Synthesis of lipophilic phenolic fatty alcohols esters were initially conducted in a binary organic solve...

  2. Antioxidants from defatted Indian Mustard (Brassica Juncea) protect biomolecules against in vitro oxidation.

    Science.gov (United States)

    Dua, Anita; Chander, Subhash; Agrawal, Sharad; Mahajan, Ritu

    2014-10-01

    Indian mustard seeds were defatted by distillation with hexane and the residue extracted with methanol was analyzed for potential antioxidants; ascorbate, riboflavin, and polyphenols. Gallic acid (129.796 μg), caffeic acid (753.455 μg), quercetin (478.352 μg) and kaempferol (48.060 μg)/g dry seeds were identified by HPLC analysis of the extract. DPPH free radical scavenging activity and protection of lipids, proteins and DNA against metal induced oxidation was examined. Defatted mustard seed remnant had excellent free radical scavenging activity and protects biomolecules with IC50 value 2.0-2.25 mg dry seed weight. Significant content of polyphenols in methanol extract of defatted seeds accounts for high antioxidant potential. We are the first to report the detailed analysis of antioxidant composition and protection of biomolecules against oxidative damage by methanol extract of mustard seed remnant after oil extraction. PMID:25320478

  3. Nucleic Acid Vaccination with Schistosoma mansoni Antioxidant Enzyme Cytosolic Superoxide Dismutase and the Structural Protein Filamin Confers Protection against the Adult Worm Stage

    OpenAIRE

    Cook, Rosemary M.; Carvalho-Queiroz, Claudia; Wilding, Gregory; Philip T. LoVerde

    2004-01-01

    Schistosomiasis remains a worldwide endemic cause of chronic and debilitating illness. There are two paradigms that exist in schistosome immunology. The first is that the schistosomule stages are the most susceptible to immune killing, and the second is that the adult stage, through evolution of defense mechanisms, can survive in the hostile host environment. One mechanism that seems to aid the adult worm in evading immune killing is the expression of antioxidant enzymes to neutralize the eff...

  4. Anthocyanin antioxidant activity and partition behavior in whey protein emulsion.

    Science.gov (United States)

    Viljanen, Kaarina; Kylli, Petri; Hubbermann, Eva-Maria; Schwarz, Karin; Heinonen, Marina

    2005-03-23

    The antioxidant activities of anthocyanins and anthocyanin fractions isolated from blackcurrants, raspberries, and lingonberries were investigated in whey protein-stabilized emulsion. The extent of protein oxidation was measured by determining the loss of tryptophan fluorescence and formation of protein carbonyl compounds and that of lipid oxidation by conjugated diene hydroperoxides and hexanal analyses. The antioxidant activity of berry anthocyanins increased with an increase in concentration. Blackcurrant anthocyanins were the most potent antioxidants toward both protein and lipid oxidation at all concentrations due to the beneficial combination of delphinidin and cyanidin glycosides. Most berry anthocyanins (69.4-72.8%) partitioned into the aqueous phase of the emulsion, thus being located favorably for antioxidant action toward protein oxidation. The presence of the lipid decreased the share of anthocyanin in the aqueous phase. Thus, the structure of food affects the antioxidant activity by influencing the partitioning of the antioxidant. PMID:15769130

  5. Skin protection against UV light by dietary antioxidants.

    Science.gov (United States)

    Fernández-García, Elisabet

    2014-09-01

    There is considerable interest in the concept of additional endogenous photoprotection by dietary antioxidants. A number of efficient micronutrients are capable of contributing to the prevention of UV damage in humans. These compounds protect molecular targets by scavenging reactive oxygen species, including excited singlet oxygen and triplet state molecules, and also modulate stress-dependent signaling and/or suppress cellular and tissue responses like inflammation. Micronutrients present in the diet such as carotenoids, vitamins E and C, and polyphenols contribute to antioxidant defense and may also contribute to endogenous photoprotection. This review summarizes the literature concerning the use of dietary antioxidants as systemic photoprotective agents towards skin damage induced by UVA and UVB. Intervention studies in humans with carotenoid-rich diets have shown photoprotection. Interestingly, rather long treatment periods (a minimum of 10 weeks) were required to achieve this effect. Likewise, dietary carotenoids exert their protective antioxidant function in several in vitro and in vivo studies when present at sufficiently high concentration. A combination of vitamins E and C protects the skin against UV damage. It is suggested that daily consumption of dietary polyphenols may provide efficient protection against the harmful effects of solar UV radiation in humans. Furthermore, the use of these micronutrients in combination may provide an effective strategy for protecting human skin from damage by UV exposure. PMID:24964816

  6. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity.

    Science.gov (United States)

    Delles, Rebecca M; Xiong, Youling L; True, Alma D; Ao, Touying; Dawson, Karl A

    2014-06-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. PMID:24879706

  7. Natural antioxidants for protection and radiation effects treatment

    International Nuclear Information System (INIS)

    Since many degenerative human diseases have been recognized as being a consequence of free radical damage, there have been many studies undertaken on how to delay or prevent the onset of these diseases. The most likely and practical way to fight against degenerative diseases is to improve body antioxidant status which could be achieved by higher consumption of vegetables and fruits. Foods from plant origin usually contain natural antioxidants that can scavenge free radicals. It is clear that vitamin C and antioxidant capacity are not directly related and thus that vitamin C is not the only antioxidant in juices with high content of vitamin C. Antioxidant capacity may also arise from phenolics / flavonoids found in plants. Three major antioxidant nutrients are vitamin C, vitamin E and beta carotene. Intake of these nutrients has an inverse relationship with degenerative disease risk. In an elderly study, it was found that high consumption of flavonoids correlated with low risk of coronary heart disease. Some evidence showed that flavonoids could protect membrane lipid from oxidation. A major source of flavonoids are vegetables and fruits. (author)

  8. Protective Action of Antioxidants on Hepatic Damage Induced by Griseofulvin

    Directory of Open Access Journals (Sweden)

    M. del C. Martinez

    2014-01-01

    Full Text Available Erythropoietic protoporphyria (EPP is a disease associated with ferrochelatase deficiency and characterized by the accumulation of protoporphyrin IX (PROTO IX in erythrocytes, liver, and skin. In some cases, a severe hepatic failure and cholestasis were observed. Griseofulvin (Gris develops an experimental EPP with hepatic manifestations in mice such as PROTO IX accumulation followed by cellular damage as wells as necrotic and inflammatory processes. The antioxidant defense system was also altered. The aim was to evaluate the possible protective effect of different antioxidant compounds: trolox (Tx, ascorbic acid (Asc, the combination Tx and Asc, melatonin (Mel, and the polyphenols: ellagic acid, quercetin, chlorogenic acid, caffeic acid, gallic acid, and ferulic acid on liver damage and oxidative stress markers in a mouse model of EPP. Coadministration of Gris with Tx, Asc, and its combination, or Mel mainly affected heme biosynthetic pathway, resulting in a decrease in ALA-S activity which was increased by Gris, while the tested polyphenols exerted a protective effect on oxidative stress, decreasing lipid peroxidation and the activity of some antioxidant enzymes. In conclusion, antioxidant compounds can only protect partially against the liver damage induced by Gris, reducing oxidative stress or acting on heme regulation.

  9. Effectiveness of using anti-oxidants in protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Khanlarova, A.G.; Abdullayeva, V.I.

    1979-01-01

    Search for reliable and economical methods of protecting the above-water part of a support complex of offshore oil field structures is of great importance. Polymer composite was developed based on epoxy resin whose application on the supports in the zone of periodic wetting is done with one procedure. During operation of polymer coatings under sea conditions it intensively ages. This deteriorates their protective properties. In order to slow down this process, antiaging agents (anti-oxidants) are introduced into the polymer composite, which are often also called oxidation inhibitors. Different compounds were studied as these inhibitors. The conducted work indicated the expediency and effectiveness of using the antioxidants in the polymer composites designed for protection of the support complex of offshore oil field structures in the zone of periodic wetting.

  10. Antioxidant activity of black bean (Phaseolus vulgaris L. protein hydrolysates

    Directory of Open Access Journals (Sweden)

    Jarine Amaral do EVANGELHO

    2016-01-01

    Full Text Available Abstract The objective of this work was to study the effect of enzymatic hydrolysis of black bean protein concentrate using different enzymes. Bean proteins were extracted and hydrolyzed over a period of 120 min using the enzymes pepsin or alcalase. The protein hydrolysates’ molecular weight was assayed by electrophoresis and the antioxidant activity was evaluated by the capturing methods of free radicals ABTS●+ and DPPH. Electrophoretic results showed that the bands above 50 kDa disappeared, when the beans protein was subjected to hydrolysis with pepsin. The bean protein hydrolysate obtained by hydrolysis with alcalase enzyme, showed higher antioxidant activity for inhibition of the radical ABTS●+. However, the hydrolysates obtained by hydrolysis with pepsin had higher antioxidant activity for inhibition of the radical DPPH. The use of pepsin and alcalase enzymes, under the same reaction time, produced black bean protein hydrolysates with different molecular weight profiles and superior antioxidant activity than the native bean protein.

  11. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    Directory of Open Access Journals (Sweden)

    Zacharias E. Suntres

    2011-01-01

    Full Text Available Reactive oxygen species (ROS, including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress.

  12. The Yeast Homolog of Heme Oxygenase-1 Affords Cellular Antioxidant Protection via the Transcriptional Regulation of Known Antioxidant Genes*

    OpenAIRE

    Collinson, Emma J.; Wimmer-Kleikamp, Sabine; Gerega, Sebastien K.; Yang, Yee Hwa; Parish, Christopher R.; Dawes, Ian W.; Stocker, Roland

    2010-01-01

    Heme oxygenase-1 (HO-1) degrades heme and protects cells from oxidative challenge. This antioxidant activity is thought to result from the HO-1 enzymatic activity, manifested by a decrease in the concentration of the pro-oxidant substrate heme, and an increase in the antioxidant product bilirubin. Using a global transcriptional approach, and yeast as a model, we show that HO-1 affords cellular protection via up-regulation of transcripts encoding enzymes involved in cellular antioxidant defens...

  13. Antioxidant activity of whey protein hydrolysates in milk beverage system.

    Science.gov (United States)

    Mann, Bimlesh; Kumari, Anuradha; Kumar, Rajesh; Sharma, Rajan; Prajapati, Kishore; Mahboob, Shaik; Athira, S

    2015-06-01

    The aim of the present study was to evaluate the antioxidant activity of flavoured milk enriched with antioxidative whey protein hydrolysates (WPHs) by radical scavenging method. Whey protein concentrate (WPC) was hydrolyzed by using three commercial proteases; flavouzyme, alcalase and corolase PP and these WPHs were analyzed for degree of hydrolysis and antioxidant activity. The antioxidant activities of these WPHs were evaluated using ABTS method. Trolox equivalent antioxidant activity of all the hydrolysates i.e. flavourzyme (0.81 ± 0.04), alcalase (1.16 ± 0.05) and corolase (1.42 ± 0.12) was higher than the WPC (0.19 ± 0.01). Among these, whey protein hydrolysates prepared using corolase showed maximum antioxidant activity. Total 15 β-lactoglobulin, 1 α-lactoalbumin, and 6 β-casein derived peptide fragments were identified in the WPHs by LC-MS/MS. Due to their size and characteristic amino acid composition, all the identified peptides may contribute for the antioxidant activity. The strawberry and chocolate flavoured milk was supplemented with WPC and WPHs and 2 % addition has shown increase in antioxidant activity upto 42 %. The result suggests that WPH could be used as natural biofunctional ingredients in enhancing antioxidant properties of food products. PMID:26028704

  14. Antioxidant Protection by American Ginseng in Pancreatic ß-Cells

    OpenAIRE

    Lin, Elaine; Wang, Yong; Mehendale, Sangeeta; Sun, Shi; Wang, Chong-Zhi; Xie, Jing-Tian; Aung, Han H.; Yuan, Chun-Su

    2008-01-01

    Hyperglycemia in diabetic conditions may cause oxidative stress in pancreatic ß-cells, leading to their dysfunction and insulin resistance within peripheral tissues. Previous studies suggest that American ginseng berry extract may have hypoglycemic effects, as well as offer antioxidant protection. We examined effects of American ginseng berry extract and ginsenoside Re in a pancreatic ß-cell line, MIN-6, to determine if these two properties are related. Cells were exposed to oxidative stress ...

  15. Antioxidant, antimelanogenic, and skin-protective effect of sesamol.

    Science.gov (United States)

    Srisayam, Montra; Weerapreeyakul, Natthida; Barusrux, Sahapat; Kanokmedhakul, Kwanjai

    2014-01-01

    Sesame contains high nutritional value and important bioactive lignans which are good for health-promoting effects including sesamol. Sesamol is found in trace amounts in sesame. The biological action from the trace amounts of sesamol found might indicate its efficacy. This paper presents a systematic study of the antimelanogenic and skin-protective effects (antioxidant) of sesamol and positive compounds. The results showed that sesamol had the most scavenging 2,2-Diphenyl-1-picrylhydrazyl hydrate (DPPH·) radical with an IC50 value < 14.48 µM. The antioxidant power (Ferric reducing antioxidant power value) of sesamol at a concentration of 0.1129 µM was 189.88 ± 17.56 µM FeSO4. Sesamol inhibited lipid peroxidation with an IC50 value of 6.15 ± 0.2 µM. Moreover, sesamol possessed a whitening effect by inhibition of mushroom tyrosinase at an IC50 value of 1.6 µM and an inhibition of cellular tyrosinase with 23.55 ± 8.25% inhibition at a concentration of 217.2 µM. Sesamol exhibited high antioxidant and anti-tyrosinase activity compared to the positive control, kojic acid and β-arbutin. Sesamol from edible sesame seed could therefore have an alternative cosmeceutical purpose. PMID:24797023

  16. Pineal Proteins Upregulate Specific Antioxidant Defense Systems in the Brain

    OpenAIRE

    Vijay K. Bharti; Srivastava, R. S.

    2009-01-01

    The neuroendocrine functions of the pineal affect a wide variety of glandular and nervous system processes. Beside melatonin (MEL), the pineal gland secretes and expresses certain proteins essential for various physiological functions. It has been suggested that the pineal gland may also have an antioxidant role due to secretory product other than MEL. Therefore, the present study was designed to study the effect of buffalo (Bubalus bubalis) pineal proteins (PP) on the antioxidant defense sys...

  17. OXIDATIVE STRESS INDUCED ULCER PROTECTED BY NATURAL ANTIOXIDANTS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Gupta Priya

    2012-05-01

    Full Text Available Oxidative stress is caused by an imbalance between the production of reactive oxygen and a biological system's ability to readily detoxify the reactive intermediates, which ultimately leads to oxidative deterioration of protein, lipid and DNA. In humans, oxidative stress is involved in pathology of many diseases, such as atherosclerosis, Parkinson’s disease, heart failure, myocardial infarction, and chronic fatigue syndrome. Reactive oxygen species (ROS can be beneficial, as they are used by the immune system as a way to attack and kill pathogens. To counteract oxidative stress, the body produces an armory of antioxidants to defend itself. It's the job of antioxidants to neutralize free radicals that can harm the cells. Body's internal production of antioxidants is not enough to neutralize all the free radicals. It’s a well-known fact that ROS are involved in the aetio-pathogenesis of the inflammatory and ulcerative lesions of the gastrointestinal tract. The present review focuses on the studies where oxidative damage due to stress has been linked causally to loss of cell integrity mainly in peptic ulcer cured by natural antioxidants.

  18. Antioxidant properties of wheat germ protein hydrolysates evaluated in vitro

    Institute of Scientific and Technical Information of China (English)

    CHENG Yun-hui; WANG Zhang; XU Shi-ying

    2006-01-01

    Wheat germ protein hydrolysates were prepared by protease hydrolysis, ultrafiltration and dynamical adsorption of resin. The total amount of amino acids in 100 g wheat germ protein hydrolysates is 93.95 g. Wheat germ protein hydrolysates are primarily composed of 4 fractions: 17.78 % in the relative molecular mass range of 11 563 -1 512, 17.50% in 1512 -842, 27.38% in 842- 372 and 30.65% in 372- 76, respectively. The antioxidant properties of wheat germ protein hydrolysates were evaluated by using different antioxidant tests in vitro. 1.20 g/L wheat germ protein hydrolysates exhibit 78.75% inhibition of peroxidation in linolei acid system; and 1.6 g/L wheat germ protein hydrolysates show 81.11% scavenging effect on the 1,1-diphenyl-2-picrylhrazyl radical. The reducing power of 2.50 g/L wheat germ protein hydrolysates is 0. 84. Furthermore, the scavenging activity of 0.60 g/L wheat germ protein hydrolysates against superoxide radical is 75. 40%; 0. 50 g/L wheat germ protein hydrolysates exhibit63.35 % chelating effect on ferrous ion. These antioxidant activities of wheat germ protein hydrolsates increase with the increase of its concentration. Experimental results suggest that wheat germ protein hydrolysate is a suitable natural antioxidant rich in nutrition and nontoxic.

  19. Effect of antioxidant and conditions on solubility of irradiated food proteins in aqueous solutions

    International Nuclear Information System (INIS)

    Food proteins were examined after irradiation. Effects of exposure, headspace gas, buffer, pH, antioxidant, total protein and type, and storage were tested. Decreases in solubility of native protein and formation of high MW polymers were observed. Destruction was greatest at low protein concentrations, high radiation dose (10 kGy) and pH 7. High protein concentration (5-10%), glucose, pH 5-6 and propyl gallate were protective. Ascorbic acid effects were concentration dependent. Nitrogen headspace effect was influenced by antioxidant and was smaller than expected. Propyl gallate plus glucose or SDS helped maintain protein solubility and size at high radiation rates. Marked declines in isoelectric pH consistent with lysine destruction were revealed

  20. Antioxidant activity and protective effect against oxidative hemolysis of Clinacanthus nutans (Burm.f Lindau.

    Directory of Open Access Journals (Sweden)

    Chantana Aromdee

    2007-03-01

    Full Text Available Increasing evidence suggests that oxidative damage to cell components has an important pathophysiological role in many human diseases. The free radicals formed in cells can readily attack protein, DNA and unsaturated lipids resulting in their loss of function and damage. Red blood cells are highly susceptibleto oxidative damage which results in cell lysis. A natural antioxidant could be a potential therapeutic intervention. Thus, we examined the antioxidant activity of Clinacanthus nutans (CN. An ethanolic extract of dried leaves of CN was used in this study. The free radical (1,1-diphenyl-2-picrylhydrazyl; DPPH scavengingactivity, the ferric reducing antioxidant power (FRAP and the intracellularly antioxidant activity of the extract were determined. The protective effect of the extract against 2,2′-azobis(2-amidinopropane hydrochloride(AAPH-induced rat red blood cell lysis was also evaluated. It was found that the extract could scavenge DPPH with the maximum scavenging activity of 67.65±6.59% and with an IC50 of 110.4±6.59 μg/ml. The FRAP value was 17 mg ascorbate equivalent to one gram of the extract. The extract demonstrated a significant inhibition of peroxide production in rat macrophages stimulated by phorbol myristate acetate (PMA and protected red blood cell against AAPH-induced hemolysis with an IC50 of 359.38±14.02 mg/ml. In conclusion, the ethanolic extract of CN had an antioxidant activity and protective effect against freeradical-induced hemolysis.

  1. Antioxidant activity of Fish Protein Hydrolysates from Sardinella longiceps

    Directory of Open Access Journals (Sweden)

    JEEVITHA K

    2014-12-01

    Full Text Available Sardinella longiceps were hydrolysed with the different concentration of proteolytic enzymes trypsin to obtain peptides with antioxidant activity. The degree of hydrolysis and yield of hydrolysates were found increasing with increasing the concentration of enzyme. The antioxidant activities of hydrolysates were investigated through various assays. The hydrolysate exhibited the higher reducing power capability. The hydrolysates has shown a higher scavenging activity against DPPH, Superoxide, hydroxyl radical and metal chelating activity at the maximum concentration of 5mg/ml. The finding of this study reveals that, protein hydrolysates produced has potent antioxidant properties and it could be used as a food supplement in nutraceutical and pharmaceutical industry.

  2. Identifying Antioxidant Proteins by Using Optimal Dipeptide Compositions.

    Science.gov (United States)

    Feng, Pengmian; Chen, Wei; Lin, Hao

    2016-06-01

    Antioxidant proteins are a kind of molecules that can terminate cellular and DNA damages caused by free radical intermediates. The use of antioxidant proteins for prevention of diseases has been intensively studied in recent years. Thus, accurate identification of antioxidant proteins is essential for understanding their roles in pharmacology. In this study, a support vector machine-based predictor called AodPred was developed for identifying antioxidant proteins. In this predictor, the sequence was formulated by using the optimal 3-gap dipeptides obtained by using feature selection method. It was observed by jackknife cross-validation test that AodPred can achieve an overall accuracy of 74.79 % in identifying antioxidant proteins. As a user-friendly tool, AodPred is freely accessible at http://lin.uestc.edu.cn/server/AntioxiPred . To maximize the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web server to obtain the desired results. PMID:26345449

  3. Differential protective effects of antioxidants against cell killing and mutagenesis of Salmonella typhimurium by gamma radiation

    International Nuclear Information System (INIS)

    A commercial mixture of phenolic antioxidants containing BHA (butylated hydroxyanisole), BHT (butylated hydroxytoluene) and PG (propyl gallate), commonly used in the food industry, was found to protect Salmonella typhimurium against killing and induction of his+ mutations by gamma radiation. The protective effect was apparent only when irradiation was performed in the presence of oxygen and no protection could be detected in its absence. When each of the components of the antioxidant mixture was tested separately, only PG displayed a protective effects. The amount of protection provided by the mixture of antioxidants was close to the protection afforded by hypoxia. Also, protection against cell killing was very similar in magnitude to protection against induction of mutations. The protective effect could be detected only when antioxidants were added to the cells before irradiation. No protection was afforded upon addition immediately after irradiation. (author)

  4. Justification for antioxidant preconditioning (or how to protect insulin-mediated actions under oxidative stress)

    Indian Academy of Sciences (India)

    A Orzechowski

    2003-02-01

    Insulin resistance is characterized by impaired glucose utilization in the peripheral tissues, accelerated muscle protein degradation, impaired antioxidant defences and extensive cell death. Apparently, both insulin and IGF-1 at physiological concentrations support cell survival by phosphatidylinositol 3 kinase-dependent and independent mechanisms. Postprandial hyperglycemia and hyperinsulinemia are found in insulin resistance, which accompanies the so-called noninsulin dependent diabetes mellitus (diabetes type 2). Evidence also indicates that increased susceptibility of muscle cells and cardiomycoytes to oxidative stress is among the harmful complications of insulin resistance and diabetes. Limited knowledge showing benefits of preconditioning with antioxidants (vitamin C, E, -lipoic acid, -acetylcysteine) in order to protect insulin action under oxidative stress prompted the author to discuss the theoretical background to this approach. It should be stressed that antioxidant preconditioning is relevant to prevention of both diabetes- and insulin resistance-associated side-effects such as low viability and cell deletion. Furthermore, antioxidant conditioning promises to provide higher efficacy for clinical applications in myoblast transfer therapy and cardiomyoplasty.

  5. Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates

    OpenAIRE

    Jarine Amaral do EVANGELHO; Jose de J. BERRIOS; Vânia Zanella PINTO; Mariana Dias ANTUNES; Nathan Levien VANIER; Elessandra da Rosa ZAVAREZE

    2016-01-01

    Abstract The objective of this work was to study the effect of enzymatic hydrolysis of black bean protein concentrate using different enzymes. Bean proteins were extracted and hydrolyzed over a period of 120 min using the enzymes pepsin or alcalase. The protein hydrolysates’ molecular weight was assayed by electrophoresis and the antioxidant activity was evaluated by the capturing methods of free radicals ABTS●+ and DPPH. Electrophoretic results showed that the bands above 50 kDa disappeared,...

  6. Evaluation of physicochemical and antioxidant properties of peanut protein hydrolysate.

    Directory of Open Access Journals (Sweden)

    Lin Tang

    Full Text Available Peanut protein and its hydrolysate were compared with a view to their use as food additives. The effects of pH, temperature and protein concentration on some of their key physicochemical properties were investigated. Compared with peanut protein, peanut peptides exhibited a significantly higher solubility and significantly lower turbidity at pH values 2-12 and temperature between 30 and 80°C. Peanut peptide showed better emulsifying capacity, foam capacity and foam stability, but had lower water holding and fat adsorption capacities over a wide range of protein concentrations (2-5 g/100 ml than peanut protein isolate. In addition, peanut peptide exhibited in vitro antioxidant properties measured in terms of reducing power, scavenging of hydroxyl radical, and scavenging of DPPH radical. These results suggest that peanut peptide appeared to have better functional and antioxidant properties and hence has a good potential as a food additive.

  7. Modified cupric reducing antioxidant capacity (CUPRAC) assay for measuring the antioxidant capacities of thiol-containing proteins in admixture with polyphenols.

    Science.gov (United States)

    Cekiç, Sema Demirci; Başkan, Kevser Sözgen; Tütem, Esma; Apak, Reşat

    2009-07-15

    Proteins are not considered as true antioxidants but are known to protect antioxidants from oxidation in various antioxidant activity assays. This study aims to investigate the contribution of proteins, especially thiol-containing proteins, to the observed overall antioxidant capacity measured by known methods. To determine the antioxidant properties of thiol-containing proteins, the CUPRAC method of antioxidant assay using the oxidizing reagent Cu(II)-neocuproine previously used for simultaneous analysis of cystine and cysteine was adopted. While the CUPRAC method is capable of determining all antioxidant compounds including thiols in complex sample matrices, the Ellman method of thiol quantitation basically does not respond to other antioxidants. The antioxidant quantities in the selected samples were assayed with the ABTS and FRAP methods as well as with the CUPRAC method. In all applied methods, the dilutions were made with a standard pH 8 buffer used in the Ellman method by substituting the Na(2)EDTA component of the buffer with sodium citrate. On the other hand, the standard CUPRAC protocol was modified by substituting the pH 7 ammonium acetate buffer (at 1M concentration) with 8M urea buffer adjusted to pH 7 by neutralizing with 6M HCl. Urea helps to partly solubilize and denaturate proteins so that their buried thiols be oxidized more easily. All methods used in the estimation of antioxidant properties of proteins (i.e., CUPRAC, Ellman, ABTS, and FRAP) were first standardized with a simple thiol compound, cysteine, by constructing the calibration curves. The molar absorptivities of these methods for cysteine were: epsilon(CUPRAC)=7.71x10(3), epsilon(Ellman)=1.37x10(4), epsilon(ABTS)=2.06x10(4), and epsilon(FRAP)=2.98x10(3)L mol(-1)cm(-1). Then these methods were applied to various samples containing thiols, such as glutathione (reduced form:GSH), egg white, whey proteins, and gelatin. Additionally, known quantities of selected antioxidants were added to

  8. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides.

    Science.gov (United States)

    Jin, Du-Xin; Liu, Xiao-Lan; Zheng, Xi-Qun; Wang, Xiao-Jie; He, Jun-Fang

    2016-08-01

    Corn gluten meal is a major co-product of corn wet milling. Corn gluten meal was hydrolyzed with Alcalase, Flavourzyme, Alcalase+Flavourzyme and Flavourzyme+Alcalase. At the substrate concentration of 10%, corn protein hydrolysate catalyzed by Alcalase had a degree of hydrolysis of 17.83%, which was higher than that by Flavourzyme (3.65%). The hydrolysate catalyzed by Alcalase+Flavourzyme exhibited better antioxidant activities and was further purified. Three novel antioxidant peptides were purified by a series of chromatographic techniques. Sequences of the three peptides were identified as Cys-Ser-Gln-Ala-Pro-Leu-Ala, Tyr-Pro-Lys-Leu-Ala-Pro-Asn-Glu and Tyr-Pro-Gln-Leu-Leu-Pro-Asn-Glu, respectively. Among the three peptides, Cys-Ser-Gln-Ala-Pro-Leu-Ala exhibited good reducing power and excellent scavenging capacities for DPPH radical and superoxide anion radical, with IC50 values of 0.116 and 0.39mg/ml, respectively. The results from our study indicate antioxidant potency of corn protein hydrolysates and peptides separated from corn gluten meal and can provide basic understanding for the application of corn protein hydrolysates as natural antioxidants. PMID:26988521

  9. Evaluation of activity of selected antioxidants on proteins in solution and in emulsions

    DEFF Research Database (Denmark)

    Baron, Caroline; Berner, Lis; Skibsted, L.H.; Refsgaard, H.H.F.

    2005-01-01

    Protection against protein oxidation by lipophilic and hydrophilic antioxidants in model systems using bovine serum albumin (BSA) in solution alone, or in an emulsion with linolenic acid methyl ester (LnMe) was found to be strongly dependent on the oxidation initiator. Tocopherol, Trolox, or the...... carotenoids astaxanthin and canthaxanthin were incubated with BSA or BSA/LnMe and oxidation was initiated either with the water-soluble azo-initiator 2,2' azo-bis-(2-amidinopropane) hydrochloride (AAPH), or FeCl3 and ascorbate, or the Fenton system using FeCl2/EDTA/H2O2, or with the singlet oxygen generating...... species anthracene-9,10-dipropionic acid disodium 1,4 endoperoxide (NDPO2). The results show that all the antioxidants tested were inefficient in the system with FeCl3/ascorbate. However, with the other initiating agents, the hydrophilic antioxidant, Trolox, was the most effective in preventing both...

  10. Methionine residues as endogenous antioxidants in proteins

    OpenAIRE

    Levine, Rodney L.; Mosoni, Laurent; Berlett, Barbara S.; Stadtman, Earl R.

    1996-01-01

    Cysteine and methionine are the two sulfur-containing residues normally found in proteins. Cysteine residues function in the catalytic cycle of many enzymes, and they can form disulfide bonds that contribute to protein structure. In contrast, the specific functions of methionine residues are not known. We propose that methionine residues constitute an important antioxidant defense mechanism. A variety of oxidants react readily with methionine to form methionine sulfoxi...

  11. Manganese Provides Antioxidant Protection for Sperm Cryopreservation that May Offer New Consideration for Clinical Fertility

    Directory of Open Access Journals (Sweden)

    Ranjna S. Cheema

    2009-01-01

    Full Text Available Reactive oxygen species (ROS are generated by sperm metabolism. While, ROS are required for maturation, capacitation and acrosome reaction, they also modify many peroxidable cellular compounds. There is production of ROS during cryopreservation and frozen spermatozoa are highly sensitive to lipid peroxidation (LPO. Antioxidants exert a protective effect on the plasma membrane of frozen bovine sperm preserving both metabolic activity and cellular viability. Manganese (Mn++ is proved to be a chain breaking antioxidant in biological system. Therefore, we examined the role of (Mn++ during cryopreservation of cattle bull semen. Semen was divided into four parts and cryopreserved in egg-yolk-citrate extender + glycerol (EYC-G, EYC-G + 100 µM of Mn++, EYC-G + 150 µM of Mn++ and EYC-G + 200 µM of Mn++. After four hours of cooling and 24 hrs of freezing, the spermatozoa were examined for percentage motility, Hypo-osmotic swelling (HOS, LPO and protein leakage. Addition of manganese to the semen during cryopreservation showed a protective effect and accounted for an increase in semen quality parameters [percentage motility, HOS percent and decrease in malondialdehyde (MDA production and protein leakage]. The effect of manganese on motility and HOS was non-significant (p < 0.05 in cooled spermatozoa but significant with 150 µM of Mn++ in frozen-thawed spermatozoa. MDA production and protein leakage decreased to a significant and maximum level (p < 0.05 on addition of 200 µM of manganese. The addition of manganese to EYC-G dilutor will improve the quality/fertility of semen, which will result in improvement of in vitro fertilization and artificial insemination success rate.

  12. Antioxidant-mediated protective effect of potato peel extract in erythrocytes against oxidative damage.

    Science.gov (United States)

    Singh, Nandita; Rajini, P S

    2008-05-28

    Potato peels are waste by-product of the potato processing industry. They are reportedly rich in polyphenols. Our earlier studies have shown that extracts derived from potato peel (PPE) possess strong antioxidant activity in chemical and biological model systems in vitro, attributable to its polyphenolic content. The main objective of this study was to investigate the ability of PPE to protect erythrocytes against oxidative damage, in vitro. The protection rendered by PPE in erythrocytes was studied in terms of resistance to oxidative damage, morphological alterations as well as membrane structural alterations. The total polyphenolic content in PPE was found to be 3.93 mg/g powder. The major phenolic acids present in PPE were predominantly: gallic acid, caffeic acid, chlorogenic acid and protocatechuic acid. We chose the experimental prooxidant system: FeSO(4) and ascorbic acid to induce lipid peroxidation in rat RBCs and human RBC membranes. PPE was found to inhibit lipid peroxidation with similar effectiveness in both the systems (about 80-85% inhibition by PPE at 2.5 mg/ml). While PPE per se did not cause any morphological alteration in the erythrocytes, under the experimental conditions, PPE significantly inhibited the H(2)O(2)-induced morphological alterations in rat RBCs as revealed by scanning electron microscopy. Further, PPE was found to offer significant protection to human erythrocyte membrane proteins from oxidative damage induced by ferrous-ascorbate. In conclusion, our results indicate that PPE is capable of protecting erythrocytes against oxidative damage probably by acting as a strong antioxidant. PMID:18452909

  13. Purification and identification of novel antioxidant peptides from egg white protein and their antioxidant activities.

    Science.gov (United States)

    Liu, Jingbo; Jin, Yan; Lin, Songyi; Jones, Gregory S; Chen, Feng

    2015-05-15

    The aim of this study was to isolate antioxidant peptides from egg white protein hydrolysates (EWPH) and identify novel antioxidant peptides by LC tandem mass spectrometric and mid-infrared spectroscopy (MIR). The amino acid composition of peptides was also analyzed by amino acid analyzer on the basis of ninhydrin reaction. Three novel peptides with molecular weights of 628.64 Da, 630.71 Da, and 684.1 Da were identified as Asp-His-Thr-Lys-Glu (DHTKE), Phe-Phe-Glu-Phe-His (FFGFN) and Met-Pro-Asp-Ala-His-Leu (MPDAHL), respectively. DHTKE exhibited the best oxygen radical absorbance capacity (P<0.05). The concentration of FFGFN and MPDAHL to scavenge 50% of DPPH radicals was 80 mM and 60mM, respectively. Thus, the three peptides may have potential applications as a functional food, which could also be used as nutraceutical compounds. PMID:25577078

  14. Antioxidant activities of buttermilk proteins, whey proteins, and their enzymatic hydrolysates.

    Science.gov (United States)

    Conway, Valérie; Gauthier, Sylvie F; Pouliot, Yves

    2013-01-16

    The oxygen radical absorbance capacities (ORAC) and metal chelating capacities (MCC) of protein concentrates prepared from buttermilk and cheese whey by ultrafiltration were compared with those of skim milk protein. Samples were also heat-denatured and hydrolyzed by pepsin for 2 h followed by trypsin for 3 h. The highest MCC was obtained for hydrolyzed skim milk protein. ORAC values ranged from 554.4 to 1319.6 μmol Trolox equivalents/g protein, with the highest value obtained for hydrolyzed buttermilk protein. Liquid-phase isoelectric focusing (IEF) of this hydrolysate yielded peptide fractions with lower ORAC values. LC-MS analysis of the hydrolyzed skim milk and buttermilk proteins and IEF fractions of the latter showed that peptides derived from milk fat globule membrane proteins, primarily butyrophilin, could be responsible for the superior antioxidant activity of buttermilk. These results suggest overall that hydrolyzed buttermilk protein could be used as a source of natural antioxidants. PMID:23244578

  15. Effect of resveratrol or ascorbic acid on the stability of α-tocopherol in O/W emulsions stabilized by whey protein isolate: Simultaneous encapsulation of the vitamin and the protective antioxidant.

    Science.gov (United States)

    Wang, Lei; Gao, Yahui; Li, Juan; Subirade, Muriel; Song, Yuanda; Liang, Li

    2016-04-01

    Food proteins have been widely used as carrier materials due to their multiple functional properties. Hydrophobic bioactives are generally dissolved in the oil phase of O/W emulsions. Ligand-binding properties provide the possibility of binding bioactives to the protein membrane of oil droplets. In this study, the influence of whey protein isolate (WPI) concentration and amphiphilic resveratrol or hydrophilic ascorbic acid on the decomposition of α-tocopherol in the oil phase of WPI emulsions is considered. Impact of ascorbic acid, in the continuous phase, on the decomposition depended on the vitamin concentration. Resveratrol partitioned into the oil-water interface and the cis-isomer contributed most of the protective effect of this polyphenol. About 94% of α-tocopherol and 50% of resveratrol were found in the oil droplets stabilized by 0.01% WPI. These results suggest the feasibility of using the emulsifying and ligand-binding properties of WPI to produce carriers for simultaneous encapsulation of bioactives with different physicochemical properties. PMID:26593516

  16. Free Radicals and Antioxidant Status in Protein Energy Malnutrition

    Directory of Open Access Journals (Sweden)

    M. Khare

    2014-01-01

    Full Text Available Background/Objectives. The aim of this study was to evaluate oxidant and antioxidant status in children with different grades of Protein Energy Malnutrition (PEM. Subjects/Methods. A total of two hundred fifty (250 children (age range: 6 months to 5 years living in eastern UP, India, were recruited. One hundred and ninety-three (193 of these children had different grades of PEM (sixty-five (65 children belong to mild, sixty (60 to moderate, and sixty-eight (68 to severe group. Grading in group was done after standardization in weight and height measurements. Fifty-seven (57 children who are age and and sex matched, healthy, and well-nourished were recruited from the local community and used as controls after checking their protein status (clinical nutritional status with height and weight standardization. Redox homeostasis was assessed using spectrophotometric/colorimetric methods. Results. In our study, erythrocyte glutathione (GSH, plasma Cu, Zn-superoxide dismutase (Cu,Zn-SOD,EC 1.15.1.1, ceruloplasmin (Cp, and ascorbic acid were significantly (P<0.001 more decreased in children with malnutrition than controls. Plasma malondialdehyde (MDA, and protein carbonyl (PC were significantly (P<0.001 raised in cases as compared to controls. Conclusion. Stress is created as a result of PEM which is responsible for the overproduction of reactive oxygen species (ROSs. These ROSs will lead to membrane oxidation and thus an increase in lipid peroxidation byproducts such as MDA and protein oxidation byproducts such as PC mainly. Decrease in level of antioxidants suggests an increased defense against oxidant damage. Changes in oxidant and antioxidant levels may be responsible for grading in PEM.

  17. Antioxidant effects of whey protein on muscle C2C12 cells.

    Science.gov (United States)

    Kerasioti, Efthalia; Stagos, Dimitrios; Priftis, Alexandros; Aivazidis, Stefanos; Tsatsakis, Aristidis M; Hayes, A Wallace; Kouretas, Demetrios

    2014-07-15

    In the present study, the in vitro scavenging activity of sheep whey protein against free radicals, as well as its reducing power were determined and compared with that of beef protein, soy protein and cow whey protein. Moreover, the possible protective effects of sheep whey protein from tert-butyl hydroperoxide (tBHP)-induced oxidative stress in muscle C2C12 cells were determined by assessing oxidative stress markers by flow cytometry and spectrophotometry. The results showed that sheep whey protein scavenged DPPH, ABTS(+) and OH radicals with IC50 values of 3.1, 4.1 and 1.8 mg of protein/ml. Moreover, the reducing power activity assessed with potassium ferricyanide of sheep whey protein was 1.3mg/ml. As regards to the antioxidant effects in muscle cell line, sheep whey protein at 0.78, 1.56, 3.12 and 6.24 mg of protein/ml increased GSH levels up to 138%, lowered TBARS levels up to 25% and decreased ROS levels up to 41.4%. PMID:24594185

  18. English walnuts (Juglans regia L.) protect endogenous antioxidants in humans

    Science.gov (United States)

    Ellagic acid monomers, polymeric tannins and related phenolic compounds isolated from English walnuts (Juglans regia L.) have been reported to inhibit LDL oxidation ex vivo and decrease biomarkers of oxidative stress in animal models. To determine whether dietary and endogenous antioxidants are pres...

  19. Ghost protein damage by peroxynitrite and its protection by melatonin

    Directory of Open Access Journals (Sweden)

    Di Mascio P.

    2000-01-01

    Full Text Available We have studied the effect of peroxynitrite (ONOO- on the membrane cytoskeleton of red blood cells and its protection by melatonin. Analysis of the protein fraction of the preparation by SDS-PAGE revealed a dose-dependent (0-600 µM ONOO- disappearance at pH 7.4 of the main proteins: spectrin, band 3, and actin, with the concomitant formation of high-molecular weight aggregates resistant to reduction by ß-mercaptoethanol (2% at room temperature for 20 min. These aggregates were not solubilized by 8 M urea. Incubation of the membrane cytoskeleton with ONOO- was characterized by a marked depletion of free sulfhydryl groups (50% at 250 µM ONOO-. However, a lack of effect of ß-mercaptoethanol suggests that, under our conditions, aggregate formation is not mediated only by sulfhydryl oxidation. The lack of a protective effect of the metal chelator diethylenetriaminepentaacetic acid confirmed that ONOO--induced oxidative damage does not occur only by a transition metal-dependent mechanism. However, we demonstrated a strong protection against cytoskeletal alterations by desferrioxamine, which has been described as a direct scavenger of the protonated form of peroxynitrite. Desferrioxamine (0.5 mM also inhibited the loss of tryptophan fluorescence observed when the ghosts were treated with ONOO-. Glutathione, cysteine, and Troloxregistered (1 mM, but not mannitol (100 mM, were able to protect the proteins against the effect of ONOO- in a dose-dependent manner. Melatonin (0-1 mM was especially efficient in reducing the loss of spectrin proteins when treated with ONOO- (90% at 500 µM melatonin. Our findings show that the cytoskeleton, and in particular spectrin, is a sensitive target for ONOO-. Specific antioxidants can protect against such alterations, which could seriously impair cell dynamics and generate morphological changes.

  20. Antioxidants

    Science.gov (United States)

    ... prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and vegetables. They are also available ... t clear whether this is because of the antioxidants, something else in the foods, or other factors. High-dose supplements of antioxidants ...

  1. Protective Action of Antioxidants on Hepatic Damage Induced by Griseofulvin

    OpenAIRE

    Martinez, M. del C.; Afonso, S. G.; Buzaleh, A. M.; Batlle, A.

    2014-01-01

    Erythropoietic protoporphyria (EPP) is a disease associated with ferrochelatase deficiency and characterized by the accumulation of protoporphyrin IX (PROTO IX) in erythrocytes, liver, and skin. In some cases, a severe hepatic failure and cholestasis were observed. Griseofulvin (Gris) develops an experimental EPP with hepatic manifestations in mice such as PROTO IX accumulation followed by cellular damage as wells as necrotic and inflammatory processes. The antioxidant defense system was also...

  2. Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil

    Directory of Open Access Journals (Sweden)

    Seme Youssef Reda

    2011-06-01

    Full Text Available In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG and Differential Scanning Calorimetry (DSC analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene, BHA (2, 3-tert-butyl-4-methoxyphenol, TBHQ (tertiary butyl hydroquinone, PG (propyl gallate - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.

  3. Antioxidant Activities of Protein Hydrolysates from Little Hairtail (Trichiurus haumela) of East China Sea

    OpenAIRE

    Ting Jin; Yu-Xue Wu

    2015-01-01

    This study investigated antioxidant properties of the little hairtail (Trichiurus haumela) protein hydrolysates obtained by commercial protease of Alcalase through using various antioxidant assays, including reducing power and free radical scavenging activities. The molecular mass distribution of hydrolysates was also examined to evaluate their relationship with antioxidant activity. The results showed that little hairtail protein hydrolysates had good ability to donate electron or hydrogen a...

  4. Antioxidant activity and protective effect against oxidative hemolysis of Clinacanthus nutans (Burm.f) Lindau.

    OpenAIRE

    Chantana Aromdee; Bunkerd Kongyingyoes; Pisamai Laupattarakasem; Upa Kukongviriyapan; Veerapol Kukongviriyapan; Patchareewan Pannangpetch

    2007-01-01

    Increasing evidence suggests that oxidative damage to cell components has an important pathophysiological role in many human diseases. The free radicals formed in cells can readily attack protein, DNA and unsaturated lipids resulting in their loss of function and damage. Red blood cells are highly susceptibleto oxidative damage which results in cell lysis. A natural antioxidant could be a potential therapeutic intervention. Thus, we examined the antioxidant activity of Clinacanthus nutans (CN...

  5. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available BACKGROUND: Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage. METHODS: Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated. RESULTS: Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4. CONCLUSION: This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the

  6. Oenanthe Javanica Extract Protects Against Experimentally Induced Ischemic Neuronal Damage via its Antioxidant Effects

    Institute of Scientific and Technical Information of China (English)

    Joon Ha Park; Jeong Hwi Cho; In Hye Kim; Ji Hyeon Ahn; Jae-Chul Lee; Bai Hui Chen; Bich-Na Shin

    2015-01-01

    Background:Water dropwort (Oenanthejavanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity.In this study,we firstly examined the neuroprotective effect of Oenanthejavanica extract (OJE) in the hippocampal cornus ammonis 1 region (CA1 region) of the gerbil subjected to transient cerebral ischemia.Methods:Gerbils were established by the occlusion of common carotid arteries for 5 min.The neuroprotective effect of OJE was estimated by cresyl violet staining.In addition,4 antioxidants (copper,zinc superoxide dismutase [SOD],manganese SOD,catalase,and glutathione peroxidase) immunoreactivities were investigated by immunohistochemistry.Results:Pyramidal neurons in the CA1 region showed neuronal death at 5 days postischemia;at this point in time,all antioxidants immunoreactivities disappeared in CA1 pyramidal neurons and showed in many nonpyramidal cells.Treatment with 200 mg/kg,not 100 mg/kg,OJE protected CA1 pyramidal neurons from ischemic damage.In addition,200 mg/kg OJE treatment increased or maintained antioxidants immunoreactivities.Especially,among the antioxidants,glutathione peroxidase immunoreactivity was effectively increased in the CA1 pyramidal neurons of the OJE-treated sham-operated and ischemia-operated groups.Conclusion:Our present results indicate that treatment with OJE can protect neurons from transient ischemic damage and that the neuroprotective effect may be closely associated with increased or maintained intracellular antioxidant enzymes by OJE.

  7. Antioxidative activity of whey protein hydrolysates in a liposomal system.

    Science.gov (United States)

    Peña-Ramos, E A; Xiong, Y L

    2001-12-01

    Whey protein isolate (WPI) with or without preheating (90 degrees C for 5 min) was hydrolyzed for 0.5 to 6 h using four pure enzymes (pepsin, papain, trypsin, and chymotrypsin) and three commercial crude proteases. After determining the degree of hydrolysis, the hydrolysates were incubated (37 degrees C, 1 h) with a liposome oxidizing system (50 mM FeCl3/0.1 mM ascorbate, pH 7.0). Lipid oxidation was measured by determining the concentrations of TBA-reactive substances (TBARS). The degree of hydrolysis of WPI ranged from 4 to 37% depending on the enzymes used and whether the substrate was heated or not. WPI hydrolysates prepared by pure enzyme treatments did not prevent TBARS formation in the oxidative model system, but WPI hydrolyzed by the commercial crude enzymes, especially protease F, exhibited antioxidant activity. The antioxidative potential of hydrolyzed WPI was not affected by the degree of hydrolysis, and it was improved by preheat treatment in only some samples. PMID:11814013

  8. Genetically increased antioxidative protection and decreased chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Juul, Klaus; Marklund, Stefan; Lange, Peter; Nordestgaard, Børge G.; Tybjærg-Hansen, Anne

    2006-01-01

    RATIONALE: Increased oxidative stress is involved in chronic obstructive pulmonary disease (COPD); however, plasma and bronchial lining fluid contains the antioxidant extracellular superoxide dismutase. Approximately 2% of white individuals carry the R213G polymorphism in the gene encoding...... RESULTS: In the general population, 97.5% were noncarriers, 2.4% were heterozygotes, and 0.02% were homozygotes. Among R213G noncarriers, extracellular superoxide dismutase plasma concentration was 148+/-52 and 142+/-43 ng/ml (mean+/-SD) in individuals with and without COPD (Student's t test, p=0...

  9. Antioxidant compounds in the seaweed Gelidiella acerosa protects human Peripheral Blood Mononuclear Cells against TCDD induced toxicity.

    Science.gov (United States)

    Ilavarasi, K; Chermakani, P; Arif Nisha, S; Sheeja Malar, D; Pandima Devi, K

    2015-04-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental toxin formed as an unintentional by-product of incomplete combustion. Several therapeutic approaches have evolved to combat its toxicity since it elicits immunotoxicity, neurotoxicity, hepatotoxicity, carcinogenicity and lethality. Search for drugs from natural resources especially from seaweeds has become intense due to their enormous pharmacological potential. Hence, the present study aims at revealing the protective effect of methanolic extract of G. acerosa (MEGA) in Peripheral Blood Mononuclear Cells (PBMC) against TCDD induced toxicity, by assessing the antioxidant, anti-apoptotic and cytoprotective activities. The results of antioxidant assays suggests that MEGA reverted TCDD induced toxicity by causing an alteration in the levels of antioxidant enzymes (Catalase [CAT], Superoxide dismutase [SOD], Glutathione peroxidase [GPx], Glutathione-S-transferase [GST]) and Glutathione [GSH]. The results of lipid peroxidation assay and protein carbonyl content reveal that MEGA protects PBMC from TCDD induced macromolecular damage. MEGA was found to exhibit significant (p effect against TCDD induced toxicity. PMID:24844840

  10. Physicochemical Changes of Antioxidant Peptides Hydrolyzed From Porcine Plasma Protein Subject to Free Hydroxyl Radical System

    OpenAIRE

    Hehong Yang; Yanqing Li; Peijun Li; Qian Liu; Baohua Kong; Xu Huang; Zengbao Wu

    2013-01-01

    Antioxidant peptides have attracted much attention for potential application as natural food ingredients but the fate of them, as well as oxidized proteins in foods during processing, is still poorly understood. Physicochemical changes in antioxidant peptides hydrolysated from porcine plasma protein were discussed in a free hydroxyl radical-mediated oxidation system. Porcine Plasma Protein Hydrolysates (PPH) was prepared by hydrolyzing porcine plasma protein with Alcalase for 5 h at pH 8.0, 5...

  11. Enzymatic Hydrolysis of Oat Flour Protein Isolates to Enhance Antioxidative Properties

    OpenAIRE

    A. Tsopmo; A. Cooper; S. Jodayree

    2010-01-01

    Oat is an important cereal for human consumption and has relatively higher protein content compared to other cereals. Numerous studies have shown that oat polyphenols had antioxidant properties but no data is available for similar activity on proteins and peptides. The objective of this study was to investigate the antioxidant activities of tryptic and alcalase digests of oat flour protein isolates and ultra-filtered fractions. Oat flour protein hydrolysates from alcalase (APH) and trypsin (T...

  12. The protective effect of antioxidants on liquid and frozen stored ram semen

    Directory of Open Access Journals (Sweden)

    Csilla Budai

    2014-05-01

    Full Text Available This systematic review is focusing on the current literature in order to give an overview of the protective role of antioxidants in ram semen preservation. Throughout the sperm conservation process the unsaturated fatty acids of the spermatozoa membrane binds oxygen and evolves numerous peroxide bonds. The lipid peroxidation leads to unbalanced oxidative stress that causes different impairments of sperm cells, and acrosome loss. ,,Cold shock” also induces caspase cascade involved in apoptosis, DNA fragmentation and in overall it has a detrimental effect on the fertilizing capacity of spermatozoa. Nowadays the cryopreservation of semen is considered as a routine procedure in cattle. Despite the various advantages of the method, the recovery rate of live and intact spermatozoa still remains low in boar, dog and ram samples. Previously several studies highlighted that the addition of antioxidants could improve the survival and motility rates, because antioxidants acted as free radical scavengers and protected spermatozoa against reactive oxygen species (ROS. Enzymatic antioxidants as superoxide dismutase (SOD, catalase, glutathione peroxidase (GPX and non-enzymatic antioxidant molecules like tocopherol, ascorbic acid, pyruvate, resveratrol have a protective effect against membrane damage that occurs during semen preservation process.

  13. Antioxidants protect keratinocytes against M. ulcerans mycolactone cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Alvar Grönberg

    Full Text Available BACKGROUND: Mycobacterium ulcerans is the causative agent of necrotizing skin ulcerations in distinctive geographical areas. M. ulcerans produces a macrolide toxin, mycolactone, which has been identified as an important virulence factor in ulcer formation. Mycolactone is cytotoxic to fibroblasts and adipocytes in vitro and has modulating activity on immune cell functions. The effect of mycolactone on keratinocytes has not been reported previously and the mechanism of mycolactone toxicity is presently unknown. Many other macrolide substances have cytotoxic and immunosuppressive activities and mediate some of their effects via production of reactive oxygen species (ROS. We have studied the effect of mycolactone in vitro on human keratinocytes--key cells in wound healing--and tested the hypothesis that the cytotoxic effect of mycolactone is mediated by ROS. METHODOLOGY/PRINCIPAL FINDINGS: The effect of mycolactone on primary skin keratinocyte growth and cell numbers was investigated in serum free growth medium in the presence of different antioxidants. A concentration and time dependent reduction in keratinocyte cell numbers was observed after exposure to mycolactone. Several different antioxidants inhibited this effect partly. The ROS inhibiting substance deferoxamine, which acts via chelation of Fe(2+, completely prevented mycolactone mediated cytotoxicity. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that mycolactone mediated cytotoxicity can be inhibited by deferoxamine, suggesting a role of iron and ROS in mycolactone induced cytotoxicity of keratinocytes. The data provide a basis for the understanding of Buruli ulcer pathology and the development of improved therapies for this disease.

  14. Induction of Antioxidant and Heat Shock Protein Responses During Torpor in the Gray Mouse Lemur, Microcebus murinus

    Institute of Scientific and Technical Information of China (English)

    Cheng-Wei Wu; Kyle K Biggar; Jing Zhang; Shannon N Tessier; Fabien Pifferi; Martine Perret; Kenneth B Storey

    2015-01-01

    A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaper-ones that help to minimize protein misfolding or unfolding under stress conditions. To understand the molecular mechanisms that act to protect cells during primate torpor, the present study charac-terizes antioxidant and heat shock protein (HSP) responses in various organs of control (aroused)and torpid gray mouse lemurs, Microcebus murinus. Protein expression of HSP70 and HSP90a was elevated to 1.26 and 1.49 fold, respectively, in brown adipose tissue during torpor as compared with control animals, whereas HSP60 in liver of torpid animals was 1.15 fold of that in control (P<0.05). Among antioxidant enzymes, protein levels of thioredoxin 1 were elevated to 2.19 fold in white adipose tissue during torpor, whereas Cu–Zn superoxide dismutase 1 levels rose to 1.1 fold in skeletal muscle (P<0.05). Additionally, total antioxidant capacity was increased to 1.6 fold in liver during torpor (P<0.05), while remaining unchanged in the five other tissues. Overall, our data suggest that antioxidant and HSP responses are modified in a tissue-specific manner during daily torpor in gray mouse lemurs. Furthermore, our data also show that cytoprotective strategies employed during primate torpor are distinct from the strategies in rodent hibernation as reported in previous studies.

  15. Light-induced protein and lipid oxidation in low-fat cheeses: whey proteins as antioxidants

    OpenAIRE

    Dalsgaard, Trine Kastrup; Sørensen, John; Bakman, Mette; Nebel, Caroline; Albrechtsen, Rita; Vognsen, Lene; Nielsen, Jacob Holm

    2011-01-01

    Photo-oxidation of cheese products has become an issue due to the fact that packaging of cheeses in transparent materials is very frequently used. The present study aimed to give new aspects of the possible antioxidative activity of whey proteins in photo-oxidation of cheese and the whey proteins were expected to act as scavenger and thereby reduce lipid oxidation. Oxidation was investigated in low-fat model cheese with whey protein isolate (WPI) added and compared to a low-fat control cheese...

  16. Antioxidant properties of repaglinide and its protections against cyclosporine A-induced renal tubular injury

    Science.gov (United States)

    Li, Dao; Li, Jin; Li, Hui; Wu, Qiong; Li, Qi-Xiong

    2016-01-01

    Objective(s): Repaglinide (RG) is an antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus. It has a good safety and efficacy profile in diabetic patients with complications in renal impairment and is an appropriate treatment choice, even for individuals with more severe degrees of renal malfunctions. The aim of the present study was to examine the protective effect of RG on cyclosporine A (CsA)-induced rat renal impairment and to evaluate the antioxidant mechanisms by which RG exerts its protective actions. Materials and Methods: Fifty male Sprague-Dawley rats weighing 250–300 g were randomly divided into five groups: administrations of olive oil (control, PO), RG (0.4 mg/kg, PO), CsA (30 mg/kg in olive oil, SC), RG (0.2 or 0.4 mg/kg, PO) plus CsA (30 mg/kg in olive oil SC) every day for 15 days. Results: SC administration of CsA (30 mg/kg) to rats produced marked elevations in the levels of renal impairment parameters such as urinary protein, N-acetyl-beta-D-glucosaminidase (NAG), serum creatinine (SCr), and blood urea nitrogen (BUN). It also caused histologic injury to the kidneys. Oral administration of RG (0.2 and 0.4 mg/kg) markedly decreased all the aforementioned changes. In addition, CsA caused increases in the levels of malondialdehyde (MDA) and decreases in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione reductase (GSR), glutathione-S-transferase (GST), and glutathione in kidney homogenate, which were reversed significantly by both doses of RG. Conclusion: The findings of our study indicate that RG may play an important role in protecting the kidney from oxidative insult.

  17. The indirect antioxidant sulforaphane protects against thiopurine-mediated photooxidative stress.

    Science.gov (United States)

    Benedict, Andrea L; Knatko, Elena V; Dinkova-Kostova, Albena T

    2012-12-01

    Long-term treatment with thiopurines, such as the widely used anticancer, immunosuppressive and anti-inflammatory agent azathioprine, combined with exposure to ultraviolet (UV) radiation is associated with increased oxidative stress, hyperphotosensitivity and high risk for development of aggressive squamous cell carcinomas of the skin. Sulforaphane, an isothiocyanate derived from broccoli, is a potent inducer of endogenous cellular defenses regulated by transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), including cytoprotective enzymes and glutathione, which in turn act as efficient indirect and direct antioxidants that have long-lasting effects. Treatment with 6-thioguanine, a surrogate for azathioprine, leads to profound sensitization to oxidative stress and glutathione depletion upon exposure to UVA radiation, the damaging effects of which are primarily mediated by generation of reactive oxygen species. The degree of sensitization is greater for irradiation exposures spanning the absorption spectrum of 6-thioguanine, and is dependent on the length of treatment and the level of guanine substitution with 6-thioguanine, suggesting that the 6-thioguanine that is incorporated in genomic DNA is largely responsible for this sensitization. Sulforaphane provides protection against UVA, but not UVB, radiation without affecting the levels of 6-thioguanine incorporation into DNA. The protective effect is lost under conditions of Nrf2 deficiency, implying that it is due to induction of Nrf2-dependent cytoprotective proteins, and that this strategy could provide protection against any potentially photosensitizing drugs that generate electrophilic or reactive oxygen species. Thus, our findings support the development of Nrf2 activators as protectors against drug-mediated photooxidative stress and encourage future clinical trials in populations at high risk for cutaneous photodamage and photocarcinogenesis. PMID:22983983

  18. The Assessments of the Intracellular Antioxidant Protection of the Organism after LLLT Irradiation

    International Nuclear Information System (INIS)

    The antioxidants are chemical compounds that can bind to free oxygen radicals preventing these radicals from damaging healthy cells. Low levels of antioxidants, or inhibition of the antioxidant enzymes causes oxidative stress and may damage or kill cells. The purpose of this project was to establish the changes at intracellular antioxidant protection of the organism after LLLT irradiation. We used female mice of the strain CD1. The mice were exposed in the abdomen region to laser light. From the blood was assessment the Glutathione peroxidase, Reduced Glutathione and Plasma Antioxidant Capacity. The results obtained in the present study demonstrated that in vivo irradiation of the mice with low level lasers did not cause any statistically significant changes in superoxide dismutase and Glutathione peroxidase but we found changes in Reduced Glutathione and Plasma Antioxidant Capacity after exposing the mice to the LLLT during the 30 minutes after irradiation, as well on the 4th day. Do not replace the word ''abstract,'' but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your ''Enter'' key. You may want to print this page and refer to it as a style sample before you begin working on your paper.

  19. Proteomic analysis of Ketogulonicigenium vulgare under glutathione reveals high demand for thiamin transport and antioxidant protection.

    Directory of Open Access Journals (Sweden)

    Qian Ma

    Full Text Available Ketogulonicigenium vulgare, though grows poorly when mono-cultured, has been widely used in the industrial production of the precursor of vitamin C with the coculture of Bacillus megaterium. Various efforts have been made to clarify the synergic pattern of this artificial microbial community and to improve the growth and production ability of K. vulgare, but there is still no sound explanation. In previous research, we found that the addition of reduced glutathione into K. vulgare monoculture could significantly improve its growth and productivity. By performing SEM and TEM, we observed that after adding GSH into K. vulgare monoculture, cells became about 4-6 folds elongated, and formed intracytoplasmic membranes (ICM. To explore the molecular mechanism and provide insights into the investigation of the synergic pattern of the co-culture system, we conducted a comparative iTRAQ-2-D-LC-MS/MS-based proteomic analysis of K. vulgare grown under reduced glutathione. Principal component analysis of proteomic data showed that after the addition of glutathione, proteins for thiamin/thiamin pyrophosphate (TPP transport, glutathione transport and the maintenance of membrane integrity, together with several membrane-bound dehydrogenases had significant up-regulation. Besides, several proteins participating in the pentose phosphate pathway and tricarboxylic acid cycle were also up-regulated. Additionally, proteins combating intracellular reactive oxygen species were also up-regulated, which similarly occurred in K. vulgare when the co-cultured B. megaterium cells lysed from our former research results. This study reveals the demand for transmembrane transport of substrates, especially thiamin, and the demand for antioxidant protection of K. vulgare.

  20. Antioxidative Defense Enzymes in Placenta Protect Placenta and Fetus in Inherited Thrombophilia from Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Jelena Bogdanovic Pristov

    2009-01-01

    Full Text Available Our aim was to investigate the activities of antioxidative defense enzymes in the placenta, fetal blood and amnion fluid in inherited thrombophilia. Thrombophilia was associated with nearly threefold increase of activity (p < 0.001 of the placental catalase (81.1 ± 20.6 U/mg of proteins in controls and 270.0 ± 69.9 U/mg in thrombophilic subjects, glutathione (GSH peroxidase (C: 20.2 ± 10.1 U/mg; T: 60.0 ± 15.5 U/mg, and GSH reductase (C: 28.9 ± 5.6 U/mg; T: 72.7 ± 23.0 U/mg. The placental activities of superoxide dismutating enzymes—MnSOD and CuZnSOD, did not differ in controls and thrombophilia. Likewise, the activities of catalase and SOD in the fetal blood, and the level of ascorbyl radical which represents a marker of oxidative status of amniotic fluid, were similar in controls and thrombophilic subjects. From this we concluded that in thrombophilia, placental tissue is exposed to H2O2-mediated oxidative stress, which could be initiated by pro-thrombic conditions in maternal blood. Increased activity of placental H2O2-removing enzymes protects fetus and mother during pregnancy, but may increase the risk of postpartum thrombosis.

  1. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins

    Directory of Open Access Journals (Sweden)

    Tang-Bin Zou

    2016-01-01

    Full Text Available Peptides derived from dietary proteins, have been reported to display significant antioxidant activity, which may exert notably beneficial effects in promoting human health and in food processing. Recently, much research has focused on the generation, separation, purification and identification of novel peptides from various protein sources. Some researchers have tried to discover the structural characteristics of antioxidant peptides in order to lessen or avoid the tedious and aimless work involving the ongoing generated peptide preparation schemes. This review aims to summarize the current knowledge on the relationship between the structural features of peptides and their antioxidant activities. The relationship between the structure of the precursor proteins and their abilities to release antioxidant fragments will also be summarized and inferred. The preparation methods and antioxidant capacity evaluation assays of peptides and a prediction scheme of quantitative structure–activity relationship (QSAR will also be pointed out and discussed.

  2. Protection of Astaxanthin in Astaxanthin Nanodispersions Using Additional Antioxidants

    OpenAIRE

    Chin Ping Tan; Imededdine Arbi Nehdi; Navideh Anarjan

    2013-01-01

    The protective effects of α-tocopherol and ascorbic acid on astaxanthin in astaxanthin nanodispersions produced via a solvent-diffusion technique and stabilized by a three-component stabilizer system, were studied either individually or in combination by using response surface methodology. Generally, both α-tocopherol and ascorbic acid could retard the astaxanthin degradation in astaxanthin nanodispersions. The results showed that the using α-tocopherol and ascorbic acid can be more efficient...

  3. Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates.

    Science.gov (United States)

    Theodore, Ann E; Raghavan, Sivakumar; Kristinsson, Hordur G

    2008-08-27

    Antioxidative activity of hydrolyzed protein prepared from alkali-solubilized catfish protein isolates was studied. The isolates were hydrolyzed to 5, 15, and 30% degree of hydrolysis using the protease enzyme, Protamex. Hydrolyzed protein was separated into hydrolysates and soluble supernatants, and both of these fractions were studied for their metal chelating ability, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and their ability to inhibit the formation of thiobarbituric acid reactive substances (TBARS) in washed tilapia muscle containing tilapia hemolysate. Both hydrolysates and supernatants were characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Results showed that DPPH radical scavenging ability and reducing power of catfish protein hydrolysates decreased, whereas the ORAC value, metal chelating ability, and ability to inhibit TBARS increased, with an increase in the degree of hydrolysis. Hydrolysate samples showed higher DPPH radical scavenging ability and Fe(3+) reducing ability, and supernatant samples had higher metal chelating ability. In general, low molecular weight (MW) peptides had high ORAC values and high metal chelating ability, and high MW peptides had a higher reducing power (FRAP) and were more effective in scavenging DPPH radicals. In a washed muscle model system, the ability of catfish protein hydrolysates and their corresponding supernatants to inhibit the formation of TBARS increased with an increase in the degree of hydrolysis. PMID:18662014

  4. Biochemical characterization of human peroxiredoxin 2, an antioxidative protein

    Institute of Scientific and Technical Information of China (English)

    Sheng Yan; Shaopei Chen; Zhendong Li; Haiying Wang; Tuxiong Huang; Xiaoning Wang; Jufang Wang

    2012-01-01

    Human peroxiredoxin 2 (Prx2),which is abundant in erythrocytes,has been shown to play a key role in protecting erythrocytes against oxidative stress by scavenging reactive oxygen species as well as participating in cell signal transduction.Here,human Prx2 gene was successfully cloned into Escherichia coli BL21 (DE3) for Prx2 expression.Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis suggested that the recombinant protein was expressed mainly in a soluble form.The recombinant protein was purified by one-step Ni-nitrilotriacetic acid chelating affinity chromatography to a purity of up to 91.5%.The peroxidase activity of Prx2 to scavenge H2O2was determined by a ferrithiocyanate assay.The ability of Prx2 to protect plasmid DNA was tested by using a mixed-function oxidation system,and results showed that Prx2 could prevent DNA from undergoing oxidative stress. Ultraviolet (UV)-induced cell apoptosis assay demonstrated that Prx2 is also able to protect NIH/3T3 cells from UV-induced damage,suggesting its possible applications in cosmetics and other areas.

  5. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    Science.gov (United States)

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-01-01

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro. PMID:26516115

  6. New-vista in fi nding antioxidant and anti-infl ammatory property of crude protein extract from Sauropus androgynus leaf

    Directory of Open Access Journals (Sweden)

    Chakkere Shivamadhu Madhu

    2014-12-01

    Full Text Available Aim. This study describes antioxidant and anti-infl ammatory properties of Sauropus androgynus leaf dialysed protein extract. Free radicals are implicated for many diseases including diabetes mellitus, arthritis, cancer, ageing etc. In the treatment of these diseases, antioxidant therapy has gained utmost importance. The main objective of the present study was to reveal the antioxidant and anti-infl ammatory potentiality from S. androgynus leaf dialysed protein extract. Material and methods. The antioxidant and anti-infl ammatory properties of S. androgynus studied using different models viz. hydroxyl radical scavenging, DPPH radical scavenging, reducing power assay, superoxide radical scavenging activity by alkaline DMSO and phosphomolybdenum antioxidant assays and in vitro antiinfl ammatory activity by inhibition of protein denaturation, membrane stabilisation test models carried out. Results. Antioxidant activity was estimated in dose dependent manner showed hydroxyl radical (55.62%, DPPH (50%, reducing power (0.286 Abs, alkaline DMSO (72.51% and phosphomolybdenum (0.198 Abs activity high at 50 μg/ml concentration compared to standard curcumin (62.31%, curcumin (56.61%, tannic acid (0.54 Abs, curcumin (75.38% and vitamin E (0.15 Abs respectively. In-vitro anti-infl ammatory activity by hypotonic induced model showed maximum protection (74.17% compared to standard Acetylsalcylic acid (86.88% at 100 μg/ml concentration and also in protein denaturation model protected protein denaturation maximum (83.60% compared to standard Diclofenac (86.82% at 100 μg/ml concentration respectively. Conclusion. The antioxidant property usually studied related to the polyphenols and fl avonoids present in the extract but present finding concluded that S. androgynus giving hint even potential proteins can also show responsible action effective against free radical mediated disease.

  7. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells

    Science.gov (United States)

    Kerasioti, Efthalia; Stagos, Dimitrios; Georgatzi, Vasiliki; Bregou, Erinda; Priftis, Alexandros; Kafantaris, Ioannis; Kouretas, Dimitrios

    2016-01-01

    Excessive production of reactive oxygen species (ROS) may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP) from tert-butyl hydroperoxide- (tBHP-) induced oxidative stress in endothelial cells (EA.hy926) were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH) and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS), protein carbonyls (CARB), and oxidized glutathione (GSSG) were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL−1 increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress. PMID:27127549

  8. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Efthalia Kerasioti

    2016-01-01

    Full Text Available Excessive production of reactive oxygen species (ROS may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP from tert-butyl hydroperoxide- (tBHP- induced oxidative stress in endothelial cells (EA.hy926 were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS, protein carbonyls (CARB, and oxidized glutathione (GSSG were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL−1 increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress.

  9. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells.

    Science.gov (United States)

    Kerasioti, Efthalia; Stagos, Dimitrios; Georgatzi, Vasiliki; Bregou, Erinda; Priftis, Alexandros; Kafantaris, Ioannis; Kouretas, Dimitrios

    2016-01-01

    Excessive production of reactive oxygen species (ROS) may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP) from tert-butyl hydroperoxide- (tBHP-) induced oxidative stress in endothelial cells (EA.hy926) were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH) and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS), protein carbonyls (CARB), and oxidized glutathione (GSSG) were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL(-1) increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress. PMID:27127549

  10. Rice proteins, extracted by alkali and α-amylase, differently affect in vitro antioxidant activity.

    Science.gov (United States)

    Wang, Zhengxuan; Liu, Ye; Li, Hui; Yang, Lin

    2016-09-01

    Alkali treatment and α-amylase degradation are different processes for rice protein (RP) isolation. The major aim of this study was to determine the influence of two different extraction methods on the antioxidant capacities of RPA, extracted by alkaline (0.2% NaOH), and RPE, extracted by α-amylase, during in vitro digestion for 2h with pepsin and for 3h with pancreatin. Upon pepsin-pancreatin digestion, the protein hydrolysates (RPA-S, RPE-S), which were the supernatants in the absence of undigested residue, and the whole protein digests (RPA, RPE), in which undigested residue remained, were measured. RPE exhibited the stronger antioxidant responses to free radical scavenging activity, metal chelating activity, and reducing power, whereas the weakest antioxidant capacities were produced by RPE-S. In contrast, no significant differences in antioxidant activity were observed between RPA and RPA-S. The present study demonstrated that the in vitro antioxidant responses induced by the hydrolysates and the protein digests of RPs could be affected differently by alkali treatment and α-amylase degradation, suggesting that the extraction is a vital processing step to modify the antioxidant capacities of RPs. The results of the current study indicated that the protein digests, in which undigested residues remained, could exhibit more efficacious antioxidant activity compared to the hydrolysates. PMID:27041309

  11. Assessment of Protective and Antioxidant Properties of Tribulus Terrestris Fruits against Testicular Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    Mostafa Abbas Shalaby

    2014-06-01

    Full Text Available Aims: This study was carried out to assess the protective and antioxidant activities of the methanolic extract of Tribulus terrestris fruits (METT against sodium valproate (SVP-induced testicular toxicity in rats. Material and methods: Fifty mature male rats were randomly divided into 5 equal groups (n=10. Group 1 was used normal (negative control, and the other four groups were intoxicated with SVP (500 mg/kg-1, orally during the last week of experiment. Group 2 was kept intoxicated (positive control and groups 3, 4 and 5 were orally pretreated with METT in daily doses 2.5, 5.0 and 10.0 mg/kg-1 for 60 days, respectively. Weights of sexual organs, serum testosterone, FSH and LH levels, semen picture, testicular antioxidant capacity and histopathology of testes were the parameters used in this study. Results: Oral pretreatment with METT significantly increased weights of testes and seminal vesicles; serum testosterone, FSH and LH levels and sperm motility, count and viability in SVP-intoxicated rats. METT enhanced the activity of testicular antioxidant enzymes and partially alleviated degenerative changes induced by SVP in testes. Conclusion: The pretreatment with METT has protective and antioxidant effects in SVP-intoxicated rats. Mechanisms of this protective effect against testicular toxicity may be due to the increased release of testosterone, FSH and LH and the enhanced tissue antioxidant capacity. These results affirm the traditional use of Tribulus terrestris fruits as an aphrodisiac for treating male sexual impotency and erectile dysfunction in patients. The study recommends that Tribulus terrestris fruits may be beneficial for male patients suffering from infertility. [J Intercult Ethnopharmacol 2014; 3(3.000: 113-118

  12. Phytochemical evaluation and in vitro antioxidant and photo-protective capacity of Calendula officinalis L. leaves

    Directory of Open Access Journals (Sweden)

    V.C.K.N. DEUSCHLE

    2015-01-01

    Full Text Available ABSTRACT The plant Calendula officinalis L. is widely applied due to its medicinal properties, which are mainly dermatological and ornamental. The goal of this study is to assess the phytochemical components in a hydroethanolic extract (HECO from the leaves of Calendula officinalis L. using UV-VIS spectrophotometry and thin layer chromatography (TLC, as well as to identify and quantify the components related to its antioxidant capacity employing high performance liquid chromatographic (HPLC. The antioxidant capacity evaluation was performed using the DPPH method for superoxide and hydroxyl radicals. The photo-protective capacity was evaluated by UVspectrophotometry in order to determine the in vitro Sun Protection Factor(SPF. The results show the plant’s strong antioxidant activity (DPPH and hydroxyl methods, which we believe to be related to the presence of flavonoids (24.67 mg/g, polyphenols (33.90 mg/g, condensed tannins (27.30 mg/g, and the amount of rutin (37.25 mg/g, and quercetin (6.09 mg/g found during the study. The HECO presented a good antioxidant capacity, most likely due to the polyphenols, flavonoids, and tannins in its contents. However, the obtained SPF of 1.89 ± 0.05 does not allow the plant to be classified as a stand-alone sunscreen, and more studies are needed in order to test its ability to enhance sunscreens in existing cosmetic formulations.

  13. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties.

    Science.gov (United States)

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Ouyang, Zhen; Su, Zhaoliang

    2016-07-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by degeneration and loss of dopaminergic neurons of the substantia nigra. Increasing evidence has indicated that oxidative stress plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Therapeutic options that target the antioxidant machinery may have potential in the treatment of PD. Cordycepin, a nucleoside isolated from Cordyceps species displayed potent antioxidant, anti-inflammatory and anticancer properties. However, its neuroprotective effect against 6-OHDA neurotoxicity as well as underlying mechanisms is still unclear. In this present study, we investigated the protective effect of cordycepin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity and its underlying mechanism. We observed that cordycepin effectively inhibited 6-OHDA-induced cell death, apoptosis and mitochondrial dysfunction. Cordycepin also inhibited cell apoptosis induced by 6-OHDA as observed in the reduction of cytochrome c release from the mitochondrial as well as the inhibition of caspase-3. In addition cordycepin markedly reduced cellular malondialdehyde (MDA) content and intracellular reactive oxygen species (ROS) level. Cordycepin also significantly increased the antioxidant enzymes; superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in 6-OHDA-treated cells. The results obtained unambiguously demonstrated that cordycepin protects PC12 cells against 6-OHDA-induced neurotoxicity through its potent antioxidant activity. PMID:27261571

  14. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity

    International Nuclear Information System (INIS)

    The cardiotoxicity associated with doxorubicin (DOX) therapy limits the total cumulative dose and therapeutic success of active anticancer chemotherapy. Cardiac mitochondria are implicated as primary targets for DOX toxicity, which is believed to be mediated by the generation of highly reactive free radical species of oxygen from complex I of the mitochondrial electron transport chain. The objective of this study was to determine if the protection demonstrated by carvedilol (CV), a β-adrenergic receptor antagonist with strong antioxidant properties, against DOX-induced mitochondrial-mediated cardiomyopathy [Toxicol. Appl. Pharmacol. 185 (2002) 218] is attributable to its antioxidant properties or its β-adrenergic receptor antagonism. Our results confirm that DOX induces oxidative stress, mitochondrial dysfunction, and histopathological lesions in the cardiac tissue, all of which are inhibited by carvedilol. In contrast, atenolol (AT), a β-adrenergic receptor antagonist lacking antioxidant properties, preserved phosphate energy charge but failed to protect against any of the indexes of DOX-induced oxidative mitochondrial toxicity. We therefore conclude that the cardioprotective effects of carvedilol against DOX-induced mitochondrial cardiotoxicity are due to its inherent antioxidant activity and not to its β-adrenergic receptor antagonism

  15. Physicochemical Changes of Antioxidant Peptides Hydrolyzed From Porcine Plasma Protein Subject to Free Hydroxyl Radical System

    Directory of Open Access Journals (Sweden)

    Hehong Yang

    2013-01-01

    Full Text Available Antioxidant peptides have attracted much attention for potential application as natural food ingredients but the fate of them, as well as oxidized proteins in foods during processing, is still poorly understood. Physicochemical changes in antioxidant peptides hydrolysated from porcine plasma protein were discussed in a free hydroxyl radical-mediated oxidation system. Porcine Plasma Protein Hydrolysates (PPH was prepared by hydrolyzing porcine plasma protein with Alcalase for 5 h at pH 8.0, 55°C. The content of carbonyl groups increased significantly at various degrees when PPH exposed to free radical-mediated oxidation for different time and different concentrations of H2O2, while total sulfhydryls, reactive sulfhydryls and free amines contents decreased. It was concluded that PPH played an antioxidant role in the radical-mediated oxidation system. This provides a potential way for antioxidation in food production.

  16. Protection of Astaxanthin in Astaxanthin Nanodispersions Using Additional Antioxidants

    Directory of Open Access Journals (Sweden)

    Chin Ping Tan

    2013-07-01

    Full Text Available The protective effects of α-tocopherol and ascorbic acid on astaxanthin in astaxanthin nanodispersions produced via a solvent-diffusion technique and stabilized by a three-component stabilizer system, were studied either individually or in combination by using response surface methodology. Generally, both α-tocopherol and ascorbic acid could retard the astaxanthin degradation in astaxanthin nanodispersions. The results showed that the using α-tocopherol and ascorbic acid can be more efficient in increasing the chemical stability of nanodispersions in comparison to using them individually. Using a response surface methodology (RSM response optimizer, it was seen that addition of ascorbic acid (ascorbic acid/astaxanthin w/w and α-tocopherol (α-tocopherol/astaxanthin w/w in proportions of 0.4 and 0.6, respectively, would give the maximum chemical stability to the studied astaxanthin nanodispersions.

  17. Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis.

    Science.gov (United States)

    Salami, Maryam; Moosavi-Movahedi, Ali Akbar; Ehsani, Mohammad Reza; Yousefi, Reza; Haertlé, Thomas; Chobert, Jean-Marc; Razavi, Seyed Hadi; Henrich, Robert; Balalaie, Saeed; Ebadi, Seyed Ahmad; Pourtakdoost, Samineh; Niasari-Naslaji, Amir

    2010-03-24

    The compositions and structures of bovine and camel milk proteins are different, which define their functional and biological properties. The aim of this study was to investigate the effects of enzymatic hydrolysis of camel and bovine whey proteins (WPs) on their antioxidant and antimicrobial properties. After enzymatic treatment, both the antioxidant and the antimicrobial activities of bovine and camel WPs were improved. The significantly higher antioxidant activity of camel WPs and their hydrolysates as compared with that of bovine WPs and their hydrolysates may result from the differences in amounts and/or in accessibilities of antioxidant amino acid residues present in their primary structures and from the prevalence of alpha-lactalbumin and beta-lactoglobulin as proteolytic substrates in camel and bovine whey, respectively. The results of this study reveal differences in antimicrobial and antioxidant activities between WP hydrolysates of bovine and camel milk and the effects of limited proteolysis on these activities. PMID:20175528

  18. Acetone Extract of Almond Hulls Provides Protection against Oxidative Damage and Membrane Protein Degradation.

    Science.gov (United States)

    Meshkini, Azadeh

    2016-06-01

    Several studies have revealed that among foods, the consumption of edible nuts has beneficial effects on health which are attributed to their high content of potent antioxidants. Among nuts, the whole seed of the almond (Prunus dulcis) has been demonstrated to possess potent free radical scavenging activity, which is related to the presence of phenolic compounds. The aim of the current study is to evaluate the polyphenol content and the antioxidant ability of almond hull, which is an agriculture solid waste. The present results revealed that among different extraction methods, the acetone extract of almond hulls has a high content of phenolic and flavonoid compounds and a high antioxidant ability, which were determined by using the phosphomolybdenum method and by measuring the potency of the antioxidant, respectively. Moreover, the experimental data disclosed that the acetone extract of almond hulls provides protection against the oxidative damage and the membrane protein degradation that are caused in human erythrocytes by hydrogen peroxide. These phenomena may likely be due to the recruitment of antioxidants by cell membranes and/or translocation to cytosol. Overall, almond hull extract could be considered as a natural source of antioxidants, and its consumption could have a positive effect on human health. PMID:27342887

  19. Protein Hydrolysis from Catfish Prepared by Papain Enzyme and Antioxidant Activity of Hydrolyzate

    OpenAIRE

    Ace Baehaki1); Shanti Dwita Lestari; Achmad Rizky Romadhoni

    2015-01-01

    The objective of this research was to make a protein hydrolysates from catfish (Pangasius pangasius) enzymatically using papain enzyme and analyzed the antioxidant activity of protein hydrolysates produced. The research used the method completely randomized design with two replications the treatment were the difference concentration of the papain enzyme (0%, 1%, 2%, 3%, 4%, 5%, and 6%). The parameters of research were antioxidative activity using DPPH (2,2-difenil-1–pikrilhidra...

  20. Factors affecting antioxidant activity of soybean meal and caseine protein hydrolysates

    International Nuclear Information System (INIS)

    Antioxidative activity of protein hydrolysates was dependent on the raw material, condition of hydrolysis and lipid substrate used in model systems. Soybean meal hydrolysate was more active in lard and in linoleic acid emulsion than caseine hydrolysate, whereas caseine was more active in vegetable oils. Antioxidant activity of evaluated protein hydrolysates in all lipid systems, with or without oxidation catalysts, suggests them as natural food additives for lipid stabilization, thus for improvement of its nutritional value and sensory properties

  1. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity

    OpenAIRE

    Yan, Jing; Gong, Yuewen; She, Yi-Min; Wang, Guqi; Roberts, Michael S; Burczynski, Frank J.

    2009-01-01

    Hepatocytes expressing liver fatty acid binding protein (L-FABP) are known to be more resistant to oxidative stress than those devoid of this protein. The mechanism for the observed antioxidant activity is not known. We examined the antioxidant mechanism of a recombinant rat L-FABP in the presence of a hydrophilic (AAPH) or lipophilic (AMVN) free radical generator. Recombinant L-FABP amino acid sequence and its amino acid oxidative products following oxidation were identified by MALDI quadrup...

  2. Antioxidant, Antibacterial, and Cytoprotective Activity of Agathi Leaf Protein

    Directory of Open Access Journals (Sweden)

    A. S. Zarena

    2014-01-01

    Full Text Available In the present study a protein termed agathi leaf protein (ALP from Sesbania grandiflora Linn. (agathi leaves was isolated after successive precipitation with 65% ammonium sulphate followed by purification on Sephadex G 75. The column chromatography of the crude protein resulted in four peaks of which Peak I (P I showed maximum inhibition activity against hydroxyl radical. SDS-PAGE analysis of P I indicated that the molecular weight of the protein is ≈29 kDa. The purity of the protein was 98.4% as determined by RP-HPLC and showed a single peak with a retention time of 19.9 min. ALP was able to reduce oxidative damage by scavenging lipid peroxidation against erythrocyte ghost (85.50 ± 6.25%, linolenic acid (87.67 ± 3.14% at 4.33 μM, ABTS anion (88 ± 3.22%, and DNA damage (83 ± 4.20% at 3.44 μM in a dose-dependent manner. The purified protein offered significant protection to lymphocyte (72% at 30 min induced damage by t-BOOH. In addition, ALP showed strong antibacterial activity against Pseudomonas aeruginosa (20 ± 3.64 mm and Staphylococcus aureus (19 ± 1.53 mm at 200 μg/mL. The safety assessment showed that ALP does not induce cytotoxicity towards human lymphocyte at the tested concentration of 0.8 mg/mL.

  3. Mcy protein, a potential antidiabetic agent: evaluation of carbohydrate metabolic enzymes and antioxidant status.

    Science.gov (United States)

    Marella, Saritha; Maddirela, Dilip Rajasekhar; Kumar, E G T V; Tilak, Thandaiah Krishna; Badri, Kameswara Rao; Chippada, Apparao

    2016-05-01

    The objective of the present study is to elucidate the long-term effects of anti-hyperglycemic active principle, Mcy protein (MCP), isolated from the fruits of Momordica cymbalaria on carbohydrate metabolism and oxidative stress in experimental diabetic rats. We used streptozotocin induced diabetic rats for the current studies. Our studies showed that MCP (2.5mg/kg.b.w) treatment significantly normalized the deranged activities of critical carbohydrate metabolizing enzymes, hexokinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase and fructose-1,6-bis phosphatase. In addition MCP showed inhibitory activity on α-glucosidase and aldose reductase enzymes in in vitro assays. Further MCP treatment improved the antioxidant defensive mechanism by preventing deleterious oxidative products of cellular metabolism, which initiates the lipid peroxidation and by normalizing the antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) activities. Additional structural studies using circular dichroism spectroscopy indicate that MCP contains majorly α-helix. Our findings suggest MCP regulates blood glucose and better manage diabetes mellitus associated complications by regulating carbohydrate metabolism and by protecting from the deleterious effects of oxidative stress. PMID:26826289

  4. Patatin, the tuber storage protein of potato (Solanum tuberosum L.), exhibits antioxidant activity in vitro.

    Science.gov (United States)

    Liu, Yen-Wenn; Han, Chuan-Hsiao; Lee, Mei-Hsien; Hsu, Feng-Lin; Hou, Wen-Chi

    2003-07-16

    The potato (Solanum tuberosum L.) tuber storage protein, patatin, was purified to homogeneity with a molecular mass of 45 kDa. The purified patatin showed antioxidant or antiradical activity by a series of in vitro tests, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical (half-inhibition concentration, IC(50), was 0.582 mg/mL) scavenging activity assays, anti-human low-density lipoprotein peroxidation tests, and protections against hydroxyl radical-mediated DNA damages and peroxynitrite-mediated dihydrorhodamine 123 oxidations. Using electron paramagnetic resonance (EPR) spectrometry for hydroxyl radical detections, it was found that the intensities of the EPR signal were decreased by the increased amounts of patatin added (IC(50) was 0.775 mg/mL). Through modifications of patatin by iodoacetamide or N-bromosuccinimide, it was found that the antiradical activities of modified patatin against DPPH or hydroxyl radicals were decreased. It was suggested that cysteine and tryptophan residues in patatin might contribute to its antioxidant activities against radicals. PMID:12848515

  5. Effect of the microfiltration process on antioxidant activity and lipid peroxidation protection capacity of blackberry juice

    OpenAIRE

    Gabriela Azofeifa; Silvia Quesada; Ana-Mercedes Pérez

    2011-01-01

    Phytochemicals are highly concentrated in berries, especially polyphenols as anthocyanins and ellagitannins. These compounds have been associated with antioxidant capacity, lipid peroxidation protection, anti-inflammatory activity, anti-carcinogenic activity, obesity prevention and others. Blackberries are commonly grown and consumed as juice in Latin-American countries. However, blackberry juice is easily fermented and different industrial techniques are being applied to enable the juice to ...

  6. Selenium in Bone Health: Roles in Antioxidant Protection and Cell Proliferation

    OpenAIRE

    Huawei Zeng; Cao, Jay J; Combs, Gerald F

    2013-01-01

    Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge...

  7. Atorvastatin protects against cerebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects

    OpenAIRE

    Tu, Qiuyun; Cao, Hui; Zhong, Wei; Ding, Binrong; Tang, Xiangqi

    2014-01-01

    In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral ischemia/reperfusion injury. The middle cerebral artery ischemia/reperfusion model was established, and atorvastatin, 6.5 mg/kg, was administered by gavage. We found that, after cerebral ischemia/reperfusion injury, levels of the inflammation-related factors E-selectin and myeloperoxidase were upregulat...

  8. Antioxidants and mucosa protectives: realistic therapeutic options in inflammatory bowel disease?

    OpenAIRE

    L. Kruidenier; Verspaget, H. W.

    1998-01-01

    Oxidative damage is involved in the pathogenic process of idiopathic chronic inflammatory bowel disease. Although specific intervention in the oxidative cascade showed promising results in animal models and preliminary patient trials, the clinical efficacy of antioxidants still has to be established. Mucosa protection, for example by dietary fatty acids, seems to attenuate the intestinal inflammatory process as well but awaits definite clinical proof for the treatment of inflammatory bowel di...

  9. Protective and Antioxidant Effects of a Chalconoid from Pulicaria incisa on Brain Astrocytes

    Directory of Open Access Journals (Sweden)

    Anat Elmann

    2013-01-01

    Full Text Available Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF. Thus, any damage to astrocytes will affect neuronal survival. In the present study, by activity-guided fractionation, we have purified from the desert plant Pulicaria incisa two protective compounds and determined their structures by spectroscopic methods. The compounds were found to be new chalcones—pulichalconoid B and pulichalconoid C. This is the first study to characterize the antioxidant and protective effects of these compounds in any biological system. Using primary cultures of astrocytes, we have found that pulichalconoid B attenuated the accumulation of ROS following treatment of these cells with hydrogen peroxide by 89% and prevented 89% of the H2O2-induced death of astrocytes. Pulichalconoid B exhibited an antioxidant effect both in vitro and in the cellular antioxidant assay in astrocytes and microglial cells. Pulichalconoid B also caused a fourfold increase in GDNF transcription in these cells. Thus, this chalcone deserves further studies in order to evaluate if beneficial therapeutic effect exists.

  10. Effect of the microfiltration process on antioxidant activity and lipid peroxidation protection capacity of blackberry juice

    Directory of Open Access Journals (Sweden)

    Gabriela Azofeifa

    2011-10-01

    Full Text Available Phytochemicals are highly concentrated in berries, especially polyphenols as anthocyanins and ellagitannins. These compounds have been associated with antioxidant capacity, lipid peroxidation protection, anti-inflammatory activity, anti-carcinogenic activity, obesity prevention and others. Blackberries are commonly grown and consumed as juice in Latin-American countries. However, blackberry juice is easily fermented and different industrial techniques are being applied to enable the juice to be stored for longer periods. One important issue required for these techniques is to preserve the health-promoting capacities of blackberries. This study compared the antioxidant activity and the lipid peroxidation protector effect between a fresh blackberry juice (FJ and a microfiltrated blackberry juice (MJ. Chemical analysis of both juices show less polyphenols concentration in the MJ. Despite this difference, values for biological activities, such as protection of lipid peroxidation, was not significantly different between FJ and MJ. These results suggest that the compounds responsible for the antioxidant activity are maintained even after microfiltration and the free radical scavenging capacity of these compounds could protect the initiation of lipid peroxidation. Microfiltration could be used as an industrial technique to produce blackberry juice that maintains biological activities of polyphenols.

  11. Antioxidant Activities of Protein Hydrolysates from Little Hairtail (Trichiurus haumela of East China Sea

    Directory of Open Access Journals (Sweden)

    Ting Jin

    2015-02-01

    Full Text Available This study investigated antioxidant properties of the little hairtail (Trichiurus haumela protein hydrolysates obtained by commercial protease of Alcalase through using various antioxidant assays, including reducing power and free radical scavenging activities. The molecular mass distribution of hydrolysates was also examined to evaluate their relationship with antioxidant activity. The results showed that little hairtail protein hydrolysates had good ability to donate electron or hydrogen and scavenge DPPH, hydroxyl and superoxide anion radicals. The highest value of reducing power and radical scavenging activities was 1.89, 46.15% (DPPH radical, 75.65% (hydroxyl radical and 82.5% (superoxide anion radical, respectively. The reducing power and free radical scavenging activities of little hairtail protein hydrolysates were related to hydrolysis time to some extent. The molecular mass distribution of hydrolysates showed that their molecular mass was between 337 and 6007Da, which indicated that little hairtail protein hydrolysates were mainly composed of low molecular peptides with antioxidant activity. Conclusively, the little hairtail protein was a good natural source for producing antioxidants, which could be used as antioxidant ingredient with potential applications in various food products.

  12. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Deng, Pengchi [Analytical and Testing Center, Sichuan University, Chengdu 610041 (China); Lv, Lei [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Wu, Dan [College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041 (China); Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Cen, Xiaobo, E-mail: xbcenalan@vip.sina.com [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China)

    2012-05-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  13. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    International Nuclear Information System (INIS)

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using 1H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  14. In silico comparative analysis and expression profile of antioxidant proteins in plants.

    Science.gov (United States)

    Sheoran, S; Pandey, B; Sharma, P; Narwal, S; Singh, R; Sharma, I; Chatrath, R

    2013-01-01

    The antioxidant system in plants is a very important defensive mechanism to overcome stress conditions. We examined the expression profile of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) using a bioinformatics approach. We explored secondary structure prediction and made detailed studies of signature pattern of antioxidant proteins in four plant species (Triticum aestivum, Arabidopsis thaliana, Oryza sativa, and Brassica juncea). Fingerprinting analysis was done with ScanProsite, which includes a large collection of biologically meaningful signatures. Multiple sequence alignment of antioxidant proteins of the different plant species revealed a conserved secondary structure region, indicating homology at the sequence and structural levels. The secondary structure prediction showed that these proteins have maximum tendency for α helical structure. The sequence level similarities were also analyzed with a phylogenetic tree using neighbor-joining method. In the antioxidant enzymes SOD, CAT and APX, three major families of signature were predominant and common; these were PKC_PHOSPHO_SITE, CK2_PHOSPHO_SITE and N-myristoylation site, which are functionally related to various plant signaling pathways. This study provides new strategies for screening of biomodulators involved in plant stress metabolism that will be useful for designing degenerate primers or probes specific for antioxidant. These enzymes could be the first line of defence in the cellular antioxidant defence pathway, activated due to exposure to abiotic stresses. PMID:23512671

  15. In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells.

    Directory of Open Access Journals (Sweden)

    Rosyana V Albuquerque

    Full Text Available Dapsone (DDS hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV on DDS hydroxylamine (DDS-NHOH mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET, but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT activity and reactive oxygen species (ROS generation, but did not alter superoxide dismutase (SOD activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.

  16. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish.

    Science.gov (United States)

    Sun, Chen; Zhang, Shicui

    2015-10-01

    Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health. PMID:26506386

  17. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish

    Directory of Open Access Journals (Sweden)

    Chen Sun

    2015-10-01

    Full Text Available Vitellogenin (Vtg, the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv and phosvitin (Pv extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health.

  18. The Protective Role of Antioxidants in the Defence against ROS/RNS-Mediated Environmental Pollution

    Directory of Open Access Journals (Sweden)

    Borut Poljšak

    2014-01-01

    Full Text Available Overproduction of reactive oxygen and nitrogen species can result from exposure to environmental pollutants, such as ionising and nonionising radiation, ultraviolet radiation, elevated concentrations of ozone, nitrogen oxides, sulphur dioxide, cigarette smoke, asbestos, particulate matter, pesticides, dioxins and furans, polycyclic aromatic hydrocarbons, and many other compounds present in the environment. It appears that increased oxidative/nitrosative stress is often neglected mechanism by which environmental pollutants affect human health. Oxidation of and oxidative damage to cellular components and biomolecules have been suggested to be involved in the aetiology of several chronic diseases, including cancer, cardiovascular disease, cataracts, age-related macular degeneration, and aging. Several studies have demonstrated that the human body can alleviate oxidative stress using exogenous antioxidants. However, not all dietary antioxidant supplements display protective effects, for example, β-carotene for lung cancer prevention in smokers or tocopherols for photooxidative stress. In this review, we explore the increases in oxidative stress caused by exposure to environmental pollutants and the protective effects of antioxidants.

  19. Amentolfavone protects hippocampal neurons:anti-inlfammatory, antioxidative, and antiapoptotic effects

    Institute of Scientific and Technical Information of China (English)

    Zhen Zhang; Tao Sun; Jian-guo Niu; Zhen-quan He; Yang Liu; Feng Wang

    2015-01-01

    Amentoflavone is a natural biflavone compound with many biological properties, including anti-inlfammatory, antioxidative, and neuroprotective effects. We presumed that amentolfavone exerts a neuroprotective effect in epilepsy models. Prior to model establishment, mice were intragastrically administered 25 mg/kg amentoflavone for 3 consecutive days. Amentoflavone effectively prevented pilocarpine-induced epilepsy in a mouse kindling model, suppressed nu-clear factor-κB activation and expression, inhibited excessive discharge of hippocampal neurons resulting in a reduction in epileptic seizures, shortened attack time, and diminished loss and apoptosis of hippocampal neurons. Results suggested that amentolfavone protected hippocampal neurons in epilepsy micevia anti-inlfammation, antioxidation, and antiapoptosis, and then ef-fectively prevented the occurrence of seizures.

  20. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection

    Directory of Open Access Journals (Sweden)

    Andréia Caverzan

    2012-01-01

    Full Text Available When plants are exposed to stressful environmental conditions, the production of Reactive Oxygen Species (ROS increases and can cause significant damage to the cells. Antioxidant defenses, which can detoxify ROS, are present in plants. A major hydrogen peroxide detoxifying system in plant cells is the ascorbate-glutathione cycle, in which, ascorbate peroxidase (APX enzymes play a key role catalyzing the conversion of H2O2 into H2O, using ascorbate as a specific electron donor. Different APX isoforms are present in distinct subcellular compartments, such as chloroplasts, mitochondria, peroxisome, and cytosol. The expression of APX genes is regulated in response to biotic and abiotic stresses as well as during plant development. The APX responses are directly involved in the protection of plant cells against adverse environmental conditions. Furthermore, mutant plants APX genes showed alterations in growth, physiology and antioxidant metabolism revealing those enzymes involvement in the normal plant development.

  1. Production and antioxidant properties of protein hydrolysate from Rastrelliger kanagurta (Indian mackerel).

    Science.gov (United States)

    Abdulazeez, Sheriff Sheik; Sundaram, Balasubramanian; Ramamoorthy, Baranitharan; Ponnusamy, Ponmurugan

    2014-09-01

    Fishery waste and by-products are valuable sources of raw material for recovery of antioxidant and bioactive peptides. Due to the increased demand for protein hydrolysates with antioxidative properties by various sectors of consumable food, health care and pharmaceutical industries, the present study focused in the production of fish protein hydrolysate (FPH) by enzymatic digestion from the backbone of Rastrelliger kanagurta (Indian mackerel) and evaluated its antioxidant potential. The observed results of the degree of hydrolysis suggest that the rapid phase of proteolytic cleavage was occurred in the first 60 minutes of incubation and during this period, the rate of hydrolysis was found to be increased with increasing ratio of enzyme to substrate concentration. The result of the antioxidant properties clearly indicates that the 1, 1-diphenyl-2 picrylhydrazyl (DPPH) radical scavenging efficacy of FPH was similar to that of synthetic antioxidants like butylated hydroxyl toluene (BHT). The FPH also exhibited significant reducing power ability and great potential to inhibit lipid peroxidation in equivalence with that of synthetic and natural antioxidants such as BHT and α-tocopherol respectively. The overall findings of the study reveal that, FPH produced by tryptic digestion has considerable amount of bioactive peptides with potent antioxidant properties. The synthesized FPH is a good candidate for further development into a commercial food additive. PMID:25176365

  2. ISOLATION AND CHARACTERIZATION OF BIOACTIVE PROTEIN FROM GREEN ALGAE Halimeda macrobola AS ANTIOXIDANT AND ANTICANCER AGENT

    OpenAIRE

    Ahmad, Ahyar

    2014-01-01

    A protein fraction isolated from green algae Halimeda macrobola taken from the sea of Selayar and Kapoposang Island inSouth Sulawesi was tested forantioxidant and anticancer properties.The protein was isolated using buffer Tris (hydroxymethyl) amino methane. Initial purification of protein uses conducted by using the fractionation method with ammonium sulphate, followed by a dialysis process. The protein concentration was determined by Lowry method. The antioxidant assay was done by using DP...

  3. Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg).

    Science.gov (United States)

    Chalamaiah, M; Jyothirmayi, T; Diwan, Prakash V; Dinesh Kumar, B

    2015-09-01

    Previously, we have reported the composition, molecular mass distribution and in vivo immunomodulatory effects of common carp roe protein hydrolysates. In the current study, antioxidative activity and functional properties of common carp (Cyprinus carpio) roe (egg) protein hydrolysates, prepared by pepsin, trypsin and Alcalase, were evaluated. The three hydrolysates showed excellent antioxidant activities in a dose dependent manner in various in vitro models such as 2,2 diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'-azino-bis(3-ethylbenzthiazoline-6)-sulfonic acid (ABTS(+)) radical scavenging activity, ferric reducing antioxidant power (FRAP) and ferrous ion (Fe(2+)) chelating ability. Enzymatic hydrolysis significantly increased protein solubility of the hydrolysates to above 62 % over a wide pH range (2-12). Carp roe hydrolysates exhibited good foaming and emulsification properties. The results suggest that bioactive carp roe protein hydrolysates (CRPHs) with good functional properties could be useful in health food/nutraceutical/pharmaceutical industry for various applications. PMID:26344996

  4. DETERMINATION OF PHYSICOCHEMICAL, IMMUNOCHEMICAL AND ANTIOXIDANT PROPERTIES, TOXICOLOGICAL AND HYGIENIC ASSESSMENT OF WHEY PROTEIN COMCENTRATE AND ITS HYDROLYSATE

    OpenAIRE

    T. N. Halavach; V. P. Kurchenko; V. G. Zhygankov; I. A. Evdokimov

    2015-01-01

    Enzymatic hydrolysis of whey proteins is aimed to obtain products with low allergenic potential and high nutritional value. Whey peptides are protein fraction that possesses a variety of physicochemical, immunochemical and bioactive properties (antioxidant, antibacterial, immunomodulatory effects). Controlled parameters of enzymatic hydrolysates are the degree of hydrolysis of protein substrates, peptide composition, residual antigenicity, antioxidant capacity, etc. The purpose of this work i...

  5. Protein Hydrolysis from Catfish Prepared by Papain Enzyme and Antioxidant Activity of Hydrolyzate

    Directory of Open Access Journals (Sweden)

    Ace Baehaki

    2015-12-01

    Full Text Available The objective of this research was to make a protein hydrolysates from catfish (Pangasius pangasius enzymatically using papain enzyme and analyzed the antioxidant activity of protein hydrolysates produced. The research used the method completely randomized design with two replications the treatment were the difference concentration of the papain enzyme (0%, 1%, 2%, 3%, 4%, 5%, and 6%. The parameters of research were antioxidative activity using DPPH (2,2-difenil-1–pikrilhidrazil, protein content, and molecular weight using SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis. The results showed that catfish protein hydrolysates prepared by papain enzyme has antioxidative activity. The highest degree of hydrolysis was 71.98% at enzyme concentration of 6%. Based on the DPPH scavenging method catfish protein hydrolysates has the antioxidative activity with the value 37.85-67.62%. The protein content of catfish protein hydrolysates were 20.86-54.47 mg/ml. The molecular weight of catfish protein hydrolyzates were 11.90-65.20 kDa.

  6. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    Michèle M. Iskandar

    2015-05-01

    Full Text Available Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI and native (nWPI whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties.

  7. Antioxidant and DNA damage protective properties of anthocyanin-rich extracts from Hibiscus and Ocimum: a comparative study.

    Science.gov (United States)

    Sarkar, Biswatrish; Kumar, Dhananjay; Sasmal, Dinakar; Mukhopadhyay, Kunal

    2014-01-01

    Anthocyanin extracts (AEs) from Ocimum tenuiflorum (leaf), Hibiscus rosa-sinensis (petal) and Hibiscus sabdariffa (calyx) were investigated and compared for in vitro antioxidant activity and DNA damage protective property. Total phenolic content (TPC) and total anthocyanin content (TAC) of the AEs were determined and the major anthocyanins were characterised. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay, 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical-scavenging activity, 2-deoxy-D-ribose degradation assay and lipid peroxidation assay. The protective property of the AEs was also examined against oxidative DNA damage by H2O2 and UV using pUC19 plasmid. All the AEs particularly those from O. tenuiflorum demonstrated efficient antioxidant activity and protected DNA from damage. Strong correlation between antioxidant capacity and TPC and TAC was observed. Significant correlation between antioxidant capacity and TPC and TAC ascertained that phenolics and anthocyanins were the major contributors of antioxidant activity. PMID:24730725

  8. Proteomic analysis of pure human airway gland mucus reveals a large component of protective proteins.

    Directory of Open Access Journals (Sweden)

    Nam Soo Joo

    Full Text Available Airway submucosal glands contribute to innate immunity and protect the lungs by secreting mucus, which is required for mucociliary clearance and which also contains antimicrobial, anti-inflammatory, anti-proteolytic and anti-oxidant proteins. We stimulated glands in tracheal trimmings from three lung donors and collected droplets of uncontaminated mucus as they formed at the gland orifices under an oil layer. We analyzed the mucus using liquid chromatography-tandem mass spectrometry (LC-MS/MS. Analysis identified 5486 peptides and 441 proteins from across the 3 samples (269-319 proteins per subject. We focused on 269 proteins common to at least 2 0f 3 subjects, of which 102 (38% had protective or innate immunity functions. While many of these have long been known to play such roles, for many others their cellular protective functions have only recently been appreciated in addition to their well-studied biologic functions (e.g. annexins, apolipoproteins, gelsolin, hemoglobin, histones, keratins, and lumican. A minority of the identified proteins are known to be secreted via conventional exocytosis, suggesting that glandular secretion occurs via multiple mechanisms. Two of the observed protective proteins, major vault protein and prohibitin, have not been observed in fluid from human epithelial cultures or in fluid from nasal or bronchoalveolar lavage. Further proteomic analysis of pure gland mucus may help clarify how healthy airways maintain a sterile environment.

  9. Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants

    DEFF Research Database (Denmark)

    Amari, Foued; Fettouche, Abdelmadjid; Samra, Mario Abou;

    2008-01-01

    responsive proteins oye2 and oye3. Yeast strains deficient in superoxide dismutase (Delta sod1), catalase A (Delta cta1), and double-deficient in Old Yellow enzyme 2 and glutathione reductase 1 (Delta oye2 glr1) were supplemented with ascorbic acid, beta-carotene, caffeic acid, or quercetin, subjected to pro......To assess the capacity of small molecules to function as antioxidants in pathologic conditions, a set of yeast assays utilizing strains deficient in the antioxidant machinery was applied with measurements of reactive oxygen species (ROS), glutathione (GSH/GSSG), and induction of the stress...... endogenous levels of ROS in some yeast mutants. Quercetin supplementation increased significantly GSH and GSSG levels but could not maintain GSH levels in H(2)O(2)-exposed cells. Induction of the stress response machinery was manifested by the strong up-regulation of a chromosomally encoded OYE2-GFP fusion...

  10. Use of Different Proteases to Obtain Flaxseed Protein Hydrolysates with Antioxidant Activity.

    Science.gov (United States)

    Karamać, Magdalena; Kosińska-Cagnazzo, Agnieszka; Kulczyk, Anna

    2016-01-01

    The antioxidant activity of flaxseed protein hydrolysates obtained using five different enzymes was evaluated. Proteins were isolated from flaxseed cake and were separately treated with papain, trypsin, pancreatin, Alcalase and Flavourzyme. The degree of hydrolysis (DH) was determined as the percentage of cleaved peptide bonds using a spectrophotometric method with o-phthaldialdehyde. The distribution of the molecular weights (MW) of the hydrolysis products was profiled using Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Tricine-SDS-PAGE) and size exclusion-high performance liquid chromatography (SE-HPLC) separations. The antioxidant activities of the protein isolate and hydrolysates were probed for their radical scavenging activity using 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS(•+)) and photochemiluminescence (PCL-ACL) assays, and for their ferric reducing antioxidant power (FRAP) and ability to bind Fe(2+). The hydrolysates were more effective as antioxidants than the protein isolate in all systems. The PCL-ACL values of the hydrolysates ranged from 7.2 to 35.7 μmol Trolox/g. Both the FRAP and ABTS(•+) scavenging activity differed among the hydrolysates to a lower extent, with the ranges of 0.20-0.24 mmol Fe(2+)/g and 0.17-0.22 mmol Trolox/g, respectively. The highest chelating activity (71.5%) was noted for the pancreatin hydrolysate. In general, the hydrolysates obtained using Alcalase and pancreatin had the highest antioxidant activity, even though their DH (15.4% and 29.3%, respectively) and the MW profiles of the peptides varied substantially. The O₂(•-) scavenging activity and the ability to chelate Fe(2+) of the Flavourzyme hydrolysate were lower than those of the Alcalase and pancreatin hydrolysates. Papain was the least effective in releasing the peptides with antioxidant activity. The study showed that the type of enzyme used for flaxseed protein hydrolysis determines the antioxidant activity

  11. Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Bobrowski Paul

    2001-12-01

    Full Text Available Abstract Background The potential of ascorbic acid and two botanical decoctions, green tea and cat's claw, to limit cell death in response to oxidants were evaluated in vitro. Methods Cultured human gastric epithelial cells (AGS or murine small intestinal epithelial cells (IEC-18 were exposed to oxidants – DPPH (3 μM, H2O2 (50 μM, peroxynitrite (300 μM – followed by incubation for 24 hours, with antioxidants (10 μg/ml administered as a 1 hour pretreatment. Cell number (MTT assay and death via apoptosis or necrosis (ELISA, LDH release was determined. The direct interactions between antioxidants and DPPH (100 μM or H2O2 (50 μM were evaluated by spectroscopy. Results The decoctions did not interact with H2O2, but quenched DPPH although less effectively than vitamin C. In contrast, vitamin C was significantly less effective in protecting human gastric epithelial cells (AGS from apoptosis induced by DPPH, peroxynitrite and H2O2 (P 2O2, but green tea was more effective than cat's claw in reducing DPPH-induced apoptosis (P 2O2, and was attenuated both by cat's claw and green tea (P Conclusions These results indicate that dietary antioxidants can limit epithelial cell death in response to oxidant stress. In the case of green tea and cat's claw, the cytoprotective response exceed their inherent ability to interact with the injurious oxidant, suggestive of actions on intracellular pathways regulating cell death.

  12. Antioxidant Activity of Oxygen Evolving Enhancer Protein 1 Purified from Capsosiphon fulvescens.

    Science.gov (United States)

    Kim, Eun-Young; Choi, Youn Hee; Lee, Jung Im; Kim, In-Hye; Nam, Taek-Jeong

    2015-06-01

    This study was conducted to determine the antioxidant activity of a protein purified from Capsosiphon fulvescens. The purification steps included sodium acetate (pH 6) extraction and diethylaminoethyl-cellulose, reversed phase Shodex C4P-50 column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the molecular weight of the purified protein was 33 kDa. The N-terminus and partial peptide amino acid sequence of this protein was identical to the sequence of oxygen evolving enhancer (OEE) 1 protein. The antioxidant activity of the OEE 1 was determined in vitro using a scavenging test with 4 types of reactive oxygen species (ROS), including the 2,2-diphenyl-1-picrylhydrazyl radical, hydroxyl radical, superoxide anion, and hydrogen peroxide (H2 O2 ). OEE 1 had higher H2 O2 scavenging activity, which proved to be the result of enzymatic antioxidants rather than nonenzymatic antioxidants. In addition, OEE 1 showed less H2 O2 -mediated ROS formation in HepG2 cells. In conclusion, this study demonstrates that OEE 1 purified from C. fulvescens is an excellent antioxidant. PMID:25944160

  13. Characterization of protein fractions and antioxidant activity of Chia seeds (Salvia hispanica L.

    Directory of Open Access Journals (Sweden)

    Kvetoslava Kačmárová

    2016-01-01

    Full Text Available Chia seed (Salvia hispanica L. is an annual herbaceous plant categorized under Lamiaceae family. Chia seeds were investigated as a source of proteins and natural antioxidants. It is a potential alternative source of high quality protein, fats, carbohydrates, high dietary fibre, vitamins and mineral elements. The objective of this study was to evaluate chia seed from protein content and antioxidant acivity and highlight the quality of this pseudocereal. A crude protein, moisture content, content of protein fractions, total antioxidant capacity (TAC and superoxide dismutase activity of chia seeds and food products containing chia seeds were determined. The protein content of chia seeds ranged from 2.9% to 4.6% dry matter from that albumins and globulins ranged from 54.6% to 62.8%. Chia is poor in a prolamines (<15%. Various chia seeds showed differences in their SOD activity and exhibited the high antiradical activity against 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS. The highest antioxidant capacity was found in sample chia seeds from Bolivia (1.46 mM TEAC.g-1 in the dry matter and the lowest values of antioxidant activity was estimated in sample chia seeds from Argentina (1.05 mM TEAC.g-1 in the dry matter. The highest SOD activity was determined in sample chia from Argentina (2191.8 U.g-1 in the dry matter. The lowest SOD activity was found in sample chia-bio from Argentina (754.0 U.g-1 in the dry matter.. It makes them potentially suitable for use in the gluten-free diet of coeliac people and it can be used as a potential ingredient in health food because of its high antioxidant activity.

  14. Fate of biomolecules during carbon tetrachloride induced oxidative stress and protective nature of Ammoniac baccifera Linn.: A natural antioxidant

    Directory of Open Access Journals (Sweden)

    Lavanya G

    2009-01-01

    Full Text Available Ethanol extract of Ammannia baccifera was studied for its protective nature against the oxidative damage of lipids, proteins and DNA in carbon tetrachloride (CCl 4 -induced toxicity in rats. CCl 4 administration to albino Wistar rats increased the levels of lipid peroxidation, protein carbonyls and decreased the levels of total sulfhydryls. CCl 4 also induced the elevation of DNA damage measured by the comet assay. The study revealed that the administration of the ethanol extract of A. baccifera to CCl 4 intoxicated rats could significantly ( P < 0.01 decrease the levels of lipid peroxidation, protein carbonyls and increased the levels of total sulfhydryls in a dose-dependent manner. It was also found that the ethanol extract of A. baccifera prevent the CCl 4 -induced elevation of DNA damage in hepatocytes. These results suggest that treatment with the ethanol extract of A. baccifera can minimize the deleterious effects caused by CCl 4 through its strong antioxidative and free radical scavenging properties.

  15. Isolation of 62 kda protein with antioxidant properties from natural honey

    International Nuclear Information System (INIS)

    Fourteen natural honey samples from Libya, Sudan and Pakistan were evaluated for their antioxidant activity by employing 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical assay. The scavenging activity of honey samples were in the range of 18-32% when compared to control. A 62 kDa protein was isolated from honey by gel filtration chromatography followed by reverse phase HPLC showed significant radical scavenging activity. The research pointed out the antioxidative role of honey proteins and possibility of their contribution to the therapeutic value of the natural honey. (author)

  16. Protective effect of supercritical fluid rosemary extract, , on antioxidants of major organs of aged rats

    OpenAIRE

    Posadas, S.J.; Caz, V.; Largo, C. (Cristina); De La Gándara, B.; Matallanas, B.; G. Reglero; Miguel, E.

    2009-01-01

    International audience Rosemary leaves, “”, possess a variety of antioxidant, anti-tumoral and anti-inflammatory bioactivities. We hypothesized that rosemary extract could enhance antioxidant defenses and improve antioxidant status in aged rats.

  17. Chlorogenic acid protects d-galactose-induced liver and kidney injury via antioxidation and anti-inflammation effects in mice.

    Science.gov (United States)

    Feng, Yan; Yu, Ying-Hua; Wang, Shu-Ting; Ren, Jing; Camer, Danielle; Hua, Yu-Zhou; Zhang, Qian; Huang, Jie; Xue, Dan-Lu; Zhang, Xiao-Fei; Huang, Xu-Feng; Liu, Yi

    2016-06-01

    Context Oxidative stress and inflammation are implicated in the aging process and its related hepatic and renal function decline. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, CGA has shown in vivo and in vitro antioxidant properties. Objective The current study investigates the effects of protective effects of chlorogenic acid (CGA) on d-galactose-induced liver and kidney injury. Materials and methods Hepatic and renal injuries were induced in a mouse model by subcutaneously injection of d-galactose (d-gal; 100 mg/kg) once a day for 8 consecutive weeks and orally administered simultaneously with CGA included in the food (200 mg/kg of diet). The liver and renal functions were examined. Histological analyses of liver and kidney were done by haematoxylin and eosin staining. The oxidative stress markers and pro-inflammatory cytokines in the liver and the kidney were measured. Results CGA significantly reduced the serum aminotransferase, serum creatinine (SCr) and blood urea nitrogen (BUN) levels in d-gal mice (p <0.05). CGA also restored superoxide dismutase, catalase, and malondialdehyde levels and decreased glutathione content in the liver and kidney in d-gal mice (p <0.05). Improvements in liver and kidney were also noted in histopathological studies. CGA reduced tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) protein levels in the liver and kidney in d-gal mice (p <0.05). Discussion and conclusion These findings suggest that CGA attenuates d-gal-induced chronic liver and kidney injury and that this protection may be due to its antioxidative and anti-inflammatory activities. PMID:26810301

  18. Protective Effect of Pomegranate (Punica Granatum), Juice in Rats Consuming Aspartame Peroxidation and Antioxidant Status

    International Nuclear Information System (INIS)

    Pomegranate (Punica granatum) has been traditionally used as medicine in many countries due to its high antioxidant activity, which has been related to beneficial health properties. Aspartame (ASP) is a widely used artificial sweetener that may be harmful at abuse levels. The objective of this study was to evaluate the potential efficacy of pomegranate juice (PJ) in protecting tissues from the possible damage induced by aspartame. ASP treated rats were given ASP, by gavages, at a dose of 250 mg/kg /day for 28 days. PJ-ASP treated rats were given PI at a dose of 1ml /kg body weight/day along with ASP. The data obtained indicate that ASP administration results in no significant change in the concentration of serum triglycerides (TG), total cholesterol (Tc), low-density lipoprotein (LDL-c), high density lipoprotein (HDL-c) and glucose while significant decreases have been recorded for insulin. The results demonstrated also that aspartame promotes lipid peroxidation and decreases the level of antioxidants superoxide dismutase (SOD) and catalase (Cat) activities and reduced glutathione (GSH) contents in serum and liver tissues. Significant elevations in the activities of serum aspartate transaminase (AST), serum alanine transaminase (AL T) and alkaline phosphatase (ALP) were also observed. Administration of PI in parallel with aspartame protected rats from aspartame-induced oxidative injury and ameliorated liver function

  19. Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum.

    Science.gov (United States)

    Lau, Kit-Man; He, Zhen-Dan; Dong, Hui; Fung, Kwok-Pui; But, Paul Pui-Hay

    2002-11-01

    Aqueous extract of processed leaves of Ligustrum robustum could dose-dependently scavenge superoxide radicals, inhibit lipid peroxidation, and prevent AAPH-induced hemolysis of red blood cells. In comparison with green tea, oolong tea and black tea, processed leaves of L. robustum exhibited comparable antioxidant potency in scavenging superoxide radicals and in preventing red blood cell hemolysis. By activity-guided fractionation, a glycoside-rich fraction named fraction B2 was separated and demonstrated to possess strong antioxidant effect. It was evaluated for its anti-inflammatory and hepato-protective activities. A single oral dose of fraction B2 at 0.5 g/kg could provide 51.5% inhibition on the vascular permeability change induced by intraperitoneal injection of acetic acid, but it could not inhibit croton oil-induced ear edema. On the other hand, fraction B2 exhibited moderate hepato-protective effect. Intragastric application of fraction B2 at 1.25, 2.5 or 5 g/kg 6 h after carbon tetrachloride administration could reduce the elevations of serum levels of aminotransferases (AST and ALT). Also, liver integrity was preserved, as liver sections from rats post-treated with fraction B2 showed a milder degree of fatty accumulation and necrosis. These results offer partial support to the traditional uses of the leaves of L. robustum as Ku-Ding-Cha. PMID:12413708

  20. The effect of natural antioxidants on haemoglobin-mediated lipid oxidation during enzymatic hydrolysis of cod protein.

    Science.gov (United States)

    Halldorsdottir, Sigrun M; Kristinsson, Hordur G; Sveinsdottir, Holmfridur; Thorkelsson, Gudjon; Hamaguchi, Patricia Y

    2013-11-15

    Heating and changes in pH often practised during fish protein hydrolysis can cause lipid oxidation. The effect of natural antioxidants towards haemoglobin-mediated lipid oxidation during enzymatic hydrolysis of cod proteins was investigated. Different variants of a washed cod model system, containing different combinations of haemoglobin and natural antioxidants (l-ascorbic acid and Fuscus vesiculosus extract), were hydrolysed using Protease P "Amano" 6 at pH 8 and 36°C to achieve 20% degree of hydrolysis. Lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS) were analysed periodically during the hydrolysis process. The in vitro antioxidant activity of the final products was investigated. Results indicate that oxidation can develop rapidly during hydrolysis and antioxidant strategies are preferable to produce good quality products. Oxidation products did not have an impact on the in vitro antioxidant activity of the hydrolysates. The natural antioxidants inhibited oxidation during hydrolysis and contributed to the antioxidant activity of the final product. PMID:23790867

  1. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    Science.gov (United States)

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. PMID:23769366

  2. Involvement of Protein Phosphorylation in Water Stress-induced Antioxidant Defense in Maize Leaves

    Institute of Scientific and Technical Information of China (English)

    Shu-cheng Xu; Hai-dong Ding; Feng-xia Su; A-ying Zhang; Ming-yi Jiang

    2009-01-01

    Using pharmacological and biochemical approaches, the role of protein phosphorylation and the interrelationship between water stress-enhanced kinase activity, antioxidant enzyme activity, hydrogen peroxide (H2O2) accumulation and endogenous abscisic acid in maize (Zea mays L.) leaves were investigated. Water-stress upregulated the activities of total protein phosphorylation and Ca2+ -dependent protein kinase, and the upregulation was blocked in abscisic acid-deficient vp5 mutant. Furthermore, pretreatments with a nicotinamide adenine dinucleotide phosphate oxidase inhibitor and a scavenger of H2O2 significantly reduced the increased activities of total protein kinase and Ca2+-dependent protein kinase in maize leaves exposed to water stress. Pretreatments with different protein kinase inhibitors also reduced the water stress-induced H2O2 production and the water stress-enhanced activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase. The data suggest that protein phosphorylation and H2O2 generation are required for water stress-induced antioxidant defense in maize leaves and that crosstalk between protein phosphorylation and H2O2 generation may occur.

  3. Isolation and characterization of bioactive protein from green algae Halimeda macrobola acting as antioxidant and anticancer agent

    OpenAIRE

    Ahmad, Ahyar

    2014-01-01

    A protein fraction isolated from green algae Halimeda macrobola taken from the sea of Selayar and Kapoposang Island in South Sulawesi was tested for antioxidant and anticancer properties. The protein was isolated using buffer Tris (hydroxymethyl) amino methane. Initial purification of protein was conducted by using the fractionation method with ammonium sulphate, followed by dialysis process. Protein concentration was determined by Lowry method. Antioxidant assay was done by using DPPH method...

  4. Protective Effect of Antioxidant Extracts from Grey Oyster Mushroom, Pleurotus pulmonarius (Agaricomycetes), Against Human Low-Density Lipoprotein Oxidation and Aortic Endothelial Cell Damage.

    Science.gov (United States)

    Abidin, Mohamad Hamdi Zainal; Abdullah, Noorlidah; Abidin, Nurhayati Zainal

    2016-01-01

    This study evaluated the in vitro antioxidant capacities of extracts from Pleurotus pulmonarius via Folin-Ciocalteu, 1,1-diphenyl-2-picrylhydrazyl free radical scavenging, metal chelating, cupric ion reducing antioxidant capacity, and lipid peroxidation inhibition assays. Extract compositions were determined by phenol-sulfuric acid; Coomassie Plus (Bradford) protein; Spectroquant zinc, copper, and manganese test assays; and liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatography-mass spectrometry (GC/MS). Methanol-dichloromethane extract, water fraction, hot water, aqueous extract and hexane fraction exhibited the most potent extracts in the antioxidant activities. LC/MS/MS and GC/MS showed that the extracts contained ergothioneine, ergosterol, flavonoid, and phenolic compounds. The selected potent extracts were evaluated for their inhibitory effect against oxidation of human low-density lipoproteins and protective effects against hydrogen peroxide-induced cytotoxic injury in human aortic endothelial cells. The crude aqueous extract was deemed most potent for the prevention of human low-density lipoprotein oxidation and endothelial membrane damage. Ergothioneine might be the compound responsible for the activities, as supported by previous reports. Thus, P. pulmonarius may be a valuable antioxidant ingredient in functional foods or nutraceuticals. PMID:27279533

  5. Prohibitin is associated with antioxidative protection in hypoxia/reoxygenation-induced renal tubular epithelial cell injury

    Science.gov (United States)

    Zhou, Tian-Biao; Qin, Yuan-Han; Lei, Feng-Ying; Huang, Wei-Fang; Drummen, Gregor P. C.

    2013-11-01

    Prohibitin is an evolutionary conserved and pleiotropic protein that has been implicated in various cellular functions, including proliferation, tumour suppression, apoptosis, transcription, and mitochondrial protein folding. We recently demonstrated that prohibitin downregulation results in increased renal interstitial fibrosis. Here we investigated the role of oxidative stress and prohibitin expression in a hypoxia/reoxygenation injury system in renal tubular epithelial cells with lentivirus-based delivery vectors to knockdown or overexpress prohibitin. Our results show that increased prohibitin expression was negatively correlated with reactive oxygen species, malon dialdehyde, transforming-growth-factor-β1, collagen-IV, fibronectin, and apoptosis (r = -0.895, -0.764, -0.798, -0.826, -0.817, -0.735 each P mechanisms that counteract oxidative stress and extracellular matrix accumulation and therefore has an antioxidative effect.

  6. Characterisation of powerful antioxidants and synthetic iron ligands, as protective agents against oxidative damages, using new high throughput screening assays

    International Nuclear Information System (INIS)

    This work was devoted to the development of pertinent high throughput screening assays in the aim of studying oxidative stress. Three screening assays have been developed for the evaluation of protective agents toward ROS generated by gamma irradiation, UV or by a Fenton-like system. 24 natural extracts and a library of 120 pure compounds, containing among the most powerful antioxidants known to date, have been readily studied using, these new techniques. We found that two pulvinic acid derivatives possess excellent protective properties, and especially a pigment of fungus named norbadione A. Beyond its in vitro activity, this molecule displays remarkable biological properties. In the aim of studying an alternative pathway of protection against oxidation induced by iron, ligands able to modify the redox properties of this metal, have been synthesised. We have developed a parallel synthesis allowing the variation of the architecture, denticity, chelating moieties and hydrophobicity of iron chelates. Using this strategy, 47 potential Fe(III) ligands were obtained. Their protective capacities have been studied using a fourth screening assay, demonstrating the effectiveness of some ligands. Finally, the immunoassay technique called SPI-RAD has been used in order to study a particular consequence of drastic oxidative stress, namely covalent crosslinks between proteins. Our results demonstrate that these linkages occur in the presence of metals (FeII or CuII) and hydrogen peroxide, as well as in the presence of NO. radical. Moreover, it has been demonstrated that tyrosines residues and disulfide bridges play an important role in these phenomena. (author)

  7. The in vitro antioxidant properties of alcalase hydrolysate prepared from silkie fowl (Gallus gallus) blood protein.

    Science.gov (United States)

    Cheng, Fu-Yuan; Lai, I-Chun; Lin, Liang-Chuan; Sakata, Ryoichi

    2016-07-01

    Two types of proteins including blood plasma protein and blood cell protein were isolated from silkie fowl (Gallus gallus) blood and hydrolyzed using alcalase for 0, 2, 4 and 6 h. The blood plasma protein hydrolysate (BPH) and blood cell protein hydrolysate (BCH) were analyzed for pH value, peptide content and antioxidative properties. The significantly higher peptide contents were observed in BPH than that of BCH, which showed that blood plasma protein was more suitable to hydrolysis by alcalase than blood cell protein. Both BPH and BCH showed strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and Fe(2+) chelating ability. BPH at 4 h of hydrolysis (BPH4) demonstrated significantly higher antioxidant capacity than those treated by alcalase in most of the assays. The BPH4 was separated using ultra-filtration and assessment of the fractions and indicated that low molecular weight of peptides (< 3 kDa) possessed greater DPPH scavenging activity, Fe(2+) chelating ability and inhibitory activity of lipid peroxidation. These results show that BPH has the potential to be ingredients in the food industry as a replacement of synthetic antioxidants. PMID:26556592

  8. Enzymatic hydrolysis of rice protein with papain and antioxidation activity of hydrolysate

    Science.gov (United States)

    The enzymatic hydrolysis technology of rice protein and the antioxidant activity of the hydrolysate were studied. Substrate concentration,enzyme dose,pH value and temperature were selected as factors to optimize the hydrolysis parameters with single—factor and orthogonal tests. Results show the opti...

  9. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein.

    Science.gov (United States)

    Wattanasiritham, Ladda; Theerakulkait, Chockchai; Wickramasekara, Samanthi; Maier, Claudia S; Stevens, Jan F

    2016-02-01

    Khao Dawk Mali 105 rice bran protein (RBP) was fractionated into albumin (12.5%), globulin (13.9%), glutelin (70.8%) and prolamine (2.9%). The native and denatured RBP fractions were hydrolyzed with papain and trypsin for 3h at optimum conditions. The RBP fractions and their hydrolysates were evaluated for their antioxidant activity by the Oxygen Radical Absorbance Capacity (ORAC) assay. The trypsin-hydrolyzed denatured albumin exhibited the highest antioxidant activity with an ORAC value of 4.07 μmol of Trolox equivalent (TE)/mg protein. This hydrolysate was separated by using RP-HPLC and three fractions with high antioxidant activity were examined by LTQ-FTICR ESI mass spectrometry. The MW of the peptides from these fractions were 800-2100 Da. and consisted of 6-21 amino acid residues. Most of the peptides from the fractions demonstrated typical characteristics of well-known antioxidant peptides. The results suggest that trypsin-hydrolyzed denatured rice bran albumin might be useful as a natural food antioxidant. PMID:26304333

  10. Anticancer and antioxidant activities of the peptide fraction from algae protein waste.

    Science.gov (United States)

    Sheih, I-Chuan; Fang, Tony J; Wu, Tung-Kung; Lin, Peng-Hsiang

    2010-01-27

    Algae protein waste is a byproduct during production of algae essence from Chlorella vulgaris. There is no known report on the anticancer peptides derived from the microalgae protein waste. In this paper, the peptide fraction isolated from pepsin hydrolysate of algae protein waste had strong dose-dependent antiproliferation and induced a post-G1 cell cycle arrest in AGS cells; however, no cytotoxicity was observed in WI-38 lung fibroblasts cells in vitro. The peptide fraction also revealed much better antioxidant activity toward peroxyl radicals and LDL than those of Trolox. Among these peptides, a potent antiproliferative, antioxidant, and NO-production-inhibiting hendecapeptide was isolated, and its amino acid sequence was VECYGPNRPQF. These results demonstrate that inexpensive algae protein waste could be a new alternative to produce anticancer peptides. PMID:19916544

  11. Study of antioxidant activity of sheep visceral protein hydrolysate: Optimization using response surface methodology

    OpenAIRE

    Meshginfar, Nasim; Sadeghi-Mahoonak, Alireza; Ziaiifar, Aman Mohammad; Ghorbani, Mohammad; Kashaninejad, Mahdi

    2014-01-01

    BACKGROUND The main objective of this experiment was optimal use of none edible protein source to increase nutritional value of production with high biological function, including antioxidant activity. METHODS Sheep visceral (stomach and intestine) was used as substrate. Response surface methodology (RSM) was used to optimize hydrolysis conditions for preparing protein hydrolysate from the sheep visceral, using alcalase 2.4 l enzyme. The investigated factors were temperature (43-52 °C), time ...

  12. Use of Different Proteases to Obtain Flaxseed Protein Hydrolysates with Antioxidant Activity

    OpenAIRE

    Magdalena Karamać; Agnieszka Kosińska-Cagnazzo; Anna Kulczyk

    2016-01-01

    The antioxidant activity of flaxseed protein hydrolysates obtained using five different enzymes was evaluated. Proteins were isolated from flaxseed cake and were separately treated with papain, trypsin, pancreatin, Alcalase and Flavourzyme. The degree of hydrolysis (DH) was determined as the percentage of cleaved peptide bonds using a spectrophotometric method with o-phthaldialdehyde. The distribution of the molecular weights (MW) of the hydrolysis products was profiled using Tricine-sodium d...

  13. Aqueous extract of Crataegus azarolus protects against DNA damage in human lymphoblast Cell K562 and enhances antioxidant activity.

    Science.gov (United States)

    Mustapha, Nadia; Bouhlel, Inès; Chaabane, Fadwa; Bzéouich, Imèn Mokdad; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2014-02-01

    The present study was carried out to characterize the cellular antioxidant effect of the aqueous extract of Crataegus azarolus and its antigenotoxic potential using human myelogenous cells, K562. The antioxidant capacity of this extract was evaluated by determining its cellular antioxidant activity (CAA) in K562 cells. Also, preceding antigenotoxicity assessment, its eventual genotoxicity property was investigated by evaluating its capacity to induce the DNA degradation of treated cell nuclei. As no genotoxicity was detected at different exposure times, its ability to protect cell DNA against H2O2 oxidative effect was investigated, using the "comet assay." It appears that 800 μg/mL of extract inhibited the genotoxicity induced by H2O2 with a rate of 41.30 %, after 4 h of incubation. In addition, this extract revealed a significant cellular antioxidant capacity against the reactive oxygen species in K562 cells. PMID:24347159

  14. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins

    Directory of Open Access Journals (Sweden)

    Marwa Yousr

    2015-12-01

    Full Text Available Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF. Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y and tryptophan (W, in sequences identified by LC-MS as WYGPD (EYGF-23 and KLSDW (EYGF-33, contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56 was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69% and IC50 value (3.35 mg/mL. The SDNRNQGY peptide (10 mg/mL had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL. In addition, YPSPV in (EYGF-33 (10 mg/mL had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  15. Analysis of trace elements responsible for antioxidant protection by SRXFA method

    International Nuclear Information System (INIS)

    The possibilities of using the energy dispersion synchrotron radiation X-ray fluorescence analysis (SRXFA) for control of blood plasma and liver trace element (TE) content in rats with hyperproduction of oxygen radicals and hair TE content in women with mammary hyperplasia and cancer are demonstrated. Our data show that activity of antioxidant enzymes superoxide dismutase (SOD) and catalase in the blood and liver depends on the amount of TE incorporated into the structure of the active center of these enzymes, which are responsible for antioxidant protection. A decrease of activity of these enzymes is accompanied by an increase of production of free OH radicals in the tissues. Clinical data demonstrated that scalp hair of patients with oncological mammary pathology was characterized by a significant decrease of concentrations of selenium (Se) and zinc (Zn) and by an increase of chromium (Cr). The Se deficit was more pronounced in patients with cancer than in those with mammary hyperplasia (p<0.05). The SRXFA method permits one to carry out a controllable correction of TE imbalance in many diseases whose development is caused by oxygen radical injury

  16. Pulmonary antioxidants exert differential protective effects against urban and industrial particulate matter

    Indian Academy of Sciences (India)

    L L Greenwell; T Moreno; R J Richards

    2003-02-01

    This investigation focuses on the application of an in vitro assay in elucidating the role of lung lining fluid antioxidants in the protection against inhaled particles, and to compare the toxicities of different airborne particulate matter (PM), PM10, collections from South Wales, UK. PM collections from both urban and industrial sites caused 50% oxidative degradation of DNA in vitro at concentrations as low as 12.9 ± 2.1 g ml–1 and 4.9 ± 0.9 mg ml–1 respectively. The primary source of this bioreactivity was found to be the soluble fraction of both particle collections. The coarser PM10–2.5 fraction also showed greater oxidative bioreactivity than the PM2.5–0.1 in both cases. When repeated in the presence of a low molecular weight fraction of fresh pulmonary lavage fluid, as well as in artificial lung lining fluid (200 M urate, glutathione and ascorbate), the DNA damage was significantly reduced in all cases ( < 0.05). The antioxidants exerted a greater effect on the industrial samples than on the urban samples, and on the PM10–2.5 fractions than on the PM2.5–0.1 fractions, supporting the previous findings that respirable PM and urban samples contain fewer free radical sources than inhalable PM and industrial samples.

  17. Mutation of cytotoxin-associated gene A affects expressions of antioxidant proteins of Hellcobacter pylori

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Huang; Guang-Cai Duan; Qing-Tang Fan; Wei-Dong Zhang; Chun-Hua Song; Xue-Yong Huang; Rong-Guang Zhang

    2009-01-01

    AIM: To determine if disruption of the cagA gene of Helicobacter pylori ( H pylori) has an effect on the expression of other proteins at proteome level.METHODS: Construction of a cagA knock out mutant Hp27_. cagA ( cagA-) via homologous recombinat ion wi th the wi ld- type st rain Hp27 ( cagA+) as a recipient was performed. The method of sonicat ion-urea-CHAPS-DTT was employed to extract bacterial proteins from both strains. Soluble proteins were analyzed by two-dimensional electrophoresis (2-DE). Images of 2-DE gels were digitalized and analyzed. Only spots that had a statistical significance in differential expression were selected and analyzed by matrix-assisted laser desorption/ionizationtime of flight mass spectrometry (MALDI-TOF-MS). Biological information was used to search protein database and identify the biological function of proteins. RESULTS: The proteome expressions between wild-type strain and isogenic mutant with the cagA gene knocked-out were compared. Five protein spots with high abundance in bacteria proteins of wild-type strains, down-regulated or absently expressed in bacteria proteins of mutants, were identified and analyzed. From a quantitative point of view, the identified proteins are related to the cagA gene and important antioxidant proteins of H pylori, including alkyl hydroperoxide reductase (Ahp), superoxide dismutase (SOD) and modulator of drug activity (Mda66), respectively, suggesting that cagA is important to maintain the normal activity of antioxidative stress and ensure H pylori persistent colonization in the host. CONCLUSION: cagA gene i s relevant to the expressions of antioxidant proteins of H pylori, which may be a novel mechanism involved in H pylori cagA pathogenesis.

  18. Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain.

    Science.gov (United States)

    Wani, Willayat Yousuf; Gudup, Satish; Sunkaria, Aditya; Bal, Amanjit; Singh, Parvinder Pal; Kandimalla, Ramesh J L; Sharma, Deep Raj; Gill, Kiran Dip

    2011-12-01

    Dichlorvos is a synthetic insecticide that belongs to the family of chemically related organophosphate (OP) pesticides. It can be released into the environment as a major degradation product of other OPs, such as trichlorfon, naled, and metrifonate. Dichlorvos exerts its toxic effects in humans and animals by inhibiting neural acetylcholinesterase. Chronic low-level exposure to dichlorvos has been shown to result in inhibition of the mitochondrial complex I and cytochrome oxidase in rat brain, resulting in generation of reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt c) from mitochondria to cytosol resulting in apoptotic cell death. MitoQ is an antioxidant, selectively targeted to mitochondria and protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in dichlorvos induced neurodegeneration, then MitoQ should ameliorate neuronal apoptosis. Administration of MitoQ (100 μmol/kg body wt/day) reduced dichlorvos (6 mg/kg body wt/day) induced oxidative stress (decreased ROS production, increased MnSOD activity and glutathione levels) with decreased lipid peroxidation, protein and DNA oxidation. In addition, MitoQ also suppressed DNA fragmentation, cyt c release and caspase-3 activity in dichlorvos treated rats compared to the control group. Further electron microscopic studies revealed that MitoQ attenuates dichlorvos induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that MitoQ may be beneficial against OP (dichlorvos) induced neurodegeneration. PMID:21784090

  19. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate.

    Science.gov (United States)

    Agrawal, Himani; Joshi, Robin; Gupta, Mahesh

    2016-08-01

    Pearl millet (Pennisetum glaucum) is a rich source of protein, used for present study to hydrolyze protein, peptide separation and its functional activity. Antioxidative bioactive peptide was successfully identified from pearl millet using trypsin enzyme. Different antioxidative potential of isolated peptide were assessed based on activity of DPPH radical, ABTS radical, hydroxyl radical, Fe(2+) chelating ability and reducing power. Bioactive peptide separated by gel-filtration chromatography, showed the higher antioxidant activity as tested by different free radicals. The activity of pearl millet protein hydrolysate fraction was found for DPPH assay (67.66%), ABTS assay (78.81%), Fe(2+) chelating ability (51.20%), hydroxyl assay (60.95%) and reducing power (0.375nm) was further purified using reversed-phase UFLC and subjected to matrix assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) for sequential identification of the peptide. The sequence SDRDLLGPNNQYLPK was identified as antioxidant peptide. PMID:26988514

  20. Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection.

    Science.gov (United States)

    Plotnikov, Egor Y; Morosanova, Maria A; Pevzner, Irina B; Zorova, Ljubava D; Manskikh, Vasily N; Pulkova, Natalya V; Galkina, Svetlana I; Skulachev, Vladimir P; Zorov, Dmitry B

    2013-08-13

    Acute pyelonephritis is a potentially life-threatening infection of the upper urinary tract. Inflammatory response and the accompanying oxidative stress can contribute to kidney tissue damage, resulting in infection-induced intoxication that can become fatal in the absence of antibiotic therapy. Here, we show that pyelonephritis was associated with oxidative stress and renal cell death. Oxidative stress observed in pyelonephritic kidney was accompanied by a reduced level of mitochondrial B-cell lymphoma 2 (Bcl-2). Importantly, renal cell death and animal mortality were both alleviated by mitochondria-targeted antioxidant 10(6'-plastoquinonyl) decylrhodamine 19 (SkQR1). These findings suggest that pyelonephritis can be treated by reducing mitochondrial reactive oxygen species and thus by protecting mitochondrial integrity and lowering kidney damage. PMID:23898194

  1. State changes both lipids peroxide oxidation and antioxidant protection under low radiation doses in experiment

    International Nuclear Information System (INIS)

    Research actuality of radiation effect of low insensitivity on biological objects and criteria elaboration for estimation of unfavorable factors influences of different levels of bio-object organization shows that there is the increasing the oncological patients in Stepnogorsk, Shantobe and other regions of Akmola oblast during the last time. The goal of ths work is to study the level of lipids peroxide oxidation (LPO) in condition of low radiation doses. Insensitivity of LPO was evaluated by content of malonyl dialdegide as a secondary product of lipids peroxide oxidation and by definition of catalase activity as enzyme of antioxidant protection. The were no reliable changes of LPO content in control groups after 4 weeks and catalase activity in comparison with animal groups after two weeks. We consider that it is necessary to research LPO dynamics in the further period, as well as testing of analysis of superoxides mutase erythrocytes activity and general peroxidation blood activity

  2. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera.

    Science.gov (United States)

    Singh, Brahma N; Singh, B R; Singh, R L; Prakash, D; Dhakarey, R; Upadhyay, G; Singh, H B

    2009-06-01

    The aqueous extract of leaf (LE), fruit (FE) and seed (SE) of Moringa oleifera was assessed to examine the ability to inhibit the oxidative DNA damage, antioxidant and anti-quorum sensing (QS) potentials. It was found that these extracts could significantly inhibit the OH-dependent damage of pUC18 plasmid DNA and also inhibit synergistically with trolox, with an activity sequence of LE > FE > SE. HPLC and MS/MS analysis was carried out, which showed the presence of gallic acid, chlorogenic acid, ellagic acid, ferulic acid, kaempferol, quercetin and vanillin. The LE was with comparatively higher total phenolics content (105.04 mg gallic acid equivalents (GAE)/g), total flavonoids content (31.28 mg quercetin equivalents (QE)/g), and ascorbic acid content (106.95 mg/100 g) and showed better antioxidant activity (85.77%), anti-radical power (74.3), reducing power (1.1 ascorbic acid equivalents (ASE)/ml), inhibition of lipid peroxidation, protein oxidation, OH-induced deoxyribose degradation, and scavenging power of superoxide anion and nitric oxide radicals than did the FE, SE and standard alpha-tocopherol. Eventually, LE and FE were found to inhibit violacein production, a QS-regulated behavior in Chromobacterium violaceum 12472. PMID:19425184

  3. Use of Different Proteases to Obtain Flaxseed Protein Hydrolysates with Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Magdalena Karamać

    2016-06-01

    Full Text Available The antioxidant activity of flaxseed protein hydrolysates obtained using five different enzymes was evaluated. Proteins were isolated from flaxseed cake and were separately treated with papain, trypsin, pancreatin, Alcalase and Flavourzyme. The degree of hydrolysis (DH was determined as the percentage of cleaved peptide bonds using a spectrophotometric method with o-phthaldialdehyde. The distribution of the molecular weights (MW of the hydrolysis products was profiled using Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Tricine-SDS-PAGE and size exclusion-high performance liquid chromatography (SE-HPLC separations. The antioxidant activities of the protein isolate and hydrolysates were probed for their radical scavenging activity using 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate radical cation (ABTS•+ and photochemiluminescence (PCL-ACL assays, and for their ferric reducing antioxidant power (FRAP and ability to bind Fe2+. The hydrolysates were more effective as antioxidants than the protein isolate in all systems. The PCL-ACL values of the hydrolysates ranged from 7.2 to 35.7 μmol Trolox/g. Both the FRAP and ABTS•+ scavenging activity differed among the hydrolysates to a lower extent, with the ranges of 0.20–0.24 mmol Fe2+/g and 0.17–0.22 mmol Trolox/g, respectively. The highest chelating activity (71.5% was noted for the pancreatin hydrolysate. In general, the hydrolysates obtained using Alcalase and pancreatin had the highest antioxidant activity, even though their DH (15.4% and 29.3%, respectively and the MW profiles of the peptides varied substantially. The O2•− scavenging activity and the ability to chelate Fe2+ of the Flavourzyme hydrolysate were lower than those of the Alcalase and pancreatin hydrolysates. Papain was the least effective in releasing the peptides with antioxidant activity. The study showed that the type of enzyme used for flaxseed protein hydrolysis determines the antioxidant

  4. Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity

    Science.gov (United States)

    Guo, Shuang; Cheng, Xiwen; Lim, Jun-Hee; Liu, Yu; Kao, Hung-Ying

    2014-01-01

    Oxidative stress is a consequence of an imbalance between reactive oxygen species (ROS) production and the ability of the cytoprotective system to detoxify the reactive intermediates. The tumor suppressor promyelocytic leukemia protein (PML) functions as a stress sensor. Loss of PML results in impaired mitochondrial complex II activity, increased ROS, and subsequent activation of nuclear factor erythroid 2–related factor 2 (Nrf2) antioxidative pathway. We also demonstrate that sulforaphane (SFN), an antioxidant, regulates Nrf2 activity by controlling abundance and subcellular distribution of PML and that PML is essential for SFN-mediated ROS increase, Nrf2 activation, antiproliferation, antimigration, and antiangiogenesis. Taking the results together, we have uncovered a novel antioxidative mechanism by which PML regulates cellular oxidant homeostasis by controlling complex II integrity and Nrf2 activity and identified PML as an indispensable mediator of SFN activity. PMID:24943846

  5. Protective Potential of Antioxidant Enzymes as Vaccines for Schistosomiasis in a Non-Human Primate Model.

    Science.gov (United States)

    Carvalho-Queiroz, Claudia; Nyakundi, Ruth; Ogongo, Paul; Rikoi, Hitler; Egilmez, Nejat K; Farah, Idle O; Kariuki, Thomas M; LoVerde, Philip T

    2015-01-01

    Schistosomiasis remains a major cause of morbidity in the world. The challenge today is not so much in the clinical management of individual patients, but rather in population-based control of transmission in endemic areas. Despite recent large-scale efforts, such as integrated control programs aimed at limiting schistosomiasis by improving education and sanitation, molluscicide treatment programs and chemotherapy with praziquantel, there has only been limited success. There is an urgent need for complementary approaches, such as vaccines. We demonstrated previously that anti-oxidant enzymes, such as Cu-Zn superoxide dismutase (SOD) and glutathione S peroxidase (GPX), when administered as DNA-based vaccines induced significant levels of protection in inbred mice, greater than the target 40% reduction in worm burden compared to controls set as a minimum by the WHO. These results led us to investigate if immunization of non-human primates with antioxidants would stimulate an immune response that could confer protection as a prelude study for human trials. Issues of vaccine toxicity and safety that were difficult to address in mice were also investigated. All baboons in the study were examined clinically throughout the study and no adverse reactions occurred to the immunization. When our outbred baboons were vaccinated with two different formulations of SOD (SmCT-SOD and SmEC-SOD) or one of GPX (SmGPX), they showed a reduction in worm number to varying degrees, when compared with the control group. More pronounced, vaccinated animals showed decreased bloody diarrhea, days of diarrhea, and egg excretion (transmission), as well as reduction of eggs in the liver tissue and in the large intestine (pathology) compared to controls. Specific IgG antibodies were present in sera after immunizations and 10 weeks after challenge infection compared to controls. Peripheral blood mononuclear cells, mesenteric, and inguinal node cells from vaccinated animals proliferated and

  6. Protective Potential of Antioxidant Enzymes as Vaccines for Schistosomiasis in a Non-Human Primate Model

    Science.gov (United States)

    Carvalho-Queiroz, Claudia; Nyakundi, Ruth; Ogongo, Paul; Rikoi, Hitler; Egilmez, Nejat K.; Farah, Idle O.; Kariuki, Thomas M.; LoVerde, Philip T.

    2015-01-01

    Schistosomiasis remains a major cause of morbidity in the world. The challenge today is not so much in the clinical management of individual patients, but rather in population-based control of transmission in endemic areas. Despite recent large-scale efforts, such as integrated control programs aimed at limiting schistosomiasis by improving education and sanitation, molluscicide treatment programs and chemotherapy with praziquantel, there has only been limited success. There is an urgent need for complementary approaches, such as vaccines. We demonstrated previously that anti-oxidant enzymes, such as Cu–Zn superoxide dismutase (SOD) and glutathione S peroxidase (GPX), when administered as DNA-based vaccines induced significant levels of protection in inbred mice, greater than the target 40% reduction in worm burden compared to controls set as a minimum by the WHO. These results led us to investigate if immunization of non-human primates with antioxidants would stimulate an immune response that could confer protection as a prelude study for human trials. Issues of vaccine toxicity and safety that were difficult to address in mice were also investigated. All baboons in the study were examined clinically throughout the study and no adverse reactions occurred to the immunization. When our outbred baboons were vaccinated with two different formulations of SOD (SmCT-SOD and SmEC-SOD) or one of GPX (SmGPX), they showed a reduction in worm number to varying degrees, when compared with the control group. More pronounced, vaccinated animals showed decreased bloody diarrhea, days of diarrhea, and egg excretion (transmission), as well as reduction of eggs in the liver tissue and in the large intestine (pathology) compared to controls. Specific IgG antibodies were present in sera after immunizations and 10 weeks after challenge infection compared to controls. Peripheral blood mononuclear cells, mesenteric, and inguinal node cells from vaccinated animals proliferated and

  7. Enzymatic Hydrolysis of Oat Flour Protein Isolates to Enhance Antioxidative Properties

    Directory of Open Access Journals (Sweden)

    A. Tsopmo

    2010-07-01

    Full Text Available Oat is an important cereal for human consumption and has relatively higher protein content compared to other cereals. Numerous studies have shown that oat polyphenols had antioxidant properties but no data is available for similar activity on proteins and peptides. The objective of this study was to investigate the antioxidant activities of tryptic and alcalase digests of oat flour protein isolates and ultra-filtered fractions. Oat flour protein hydrolysates from alcalase (APH and trypsin (TPH were therefore prepared and ultrafiltered using 2 and 10 kDa molecular cutoff membranes. The free radical scavenging properties were investigated by 2,2’-diphenyl-2-picrylhydrazyl (DPPH, oxygen radical absorbance capacity, linoleic acid emulsion system and ferrous ion-chelating assays. APH and TPH significantly reduced the generation of lipid hydroperoxides resulting from autoxidation of linoleic acid after 5 days incubation. At concentration of 200 :g/L, APH and TPH also showed better chelating properties than their ultrafiltered fractions (2 kDa, 2-10 kDa. On DPPH assay recorded after 15 min alcalase fraction less than 2 kDa possessed the greater inhibition activity (32.9% compared to 26.4% for 2 kDa trypsin fraction. The results suggest that alcalase and tryptic digests of oat flour protein can be used to produce antioxidant peptides for potential use in food products.

  8. Antioxidant Effect and Water-Holding Capacity of Roselle (Hibiscus sabdariffa L. Seed Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Fatoumata Tounkara

    2013-06-01

    Full Text Available The aim of this study was to investigate the effect of in-vitro pepsin and pancreatin digestion of proteins extracted from Roselle seed on the production of bioactive peptides. Defatted Roselle seed flour was used to extract different protein fractions namely globulin, albumin and glutelin. The proteins were digested using pepsin (1 h followed by pancreatin (1 h in order to produce hydrolysates with good antioxidant activity. The prepared hydrolysates were as effective as antioxidants in model systems, in scavenging of free radicals and acting as reducing agents. This effect was concentration-dependent and was also influenced by the type of protein fraction. The albumin fraction hydrolysates prepared showed the highest antioxidant activity followed by Glutelin and Globulin hydrolysates respectively (Albumin hydrolysates>Glutelin hydrolysates>Globulin hydrolysates. All of the prepared hydrolysates were also found to be effective in enhancing water-holding capacity and cooking yield in a meat model system. Albumin hydrolysates showed the highest improved meat cooking ability followed by Glutelin and Globulin respectively (Albumin hydrolysates>Glutelin hydrolysates>Globulin hydrolysates. The molecular weight distribution analysis of the hydrolysates was determined and most of the peptides were found between 1000 Da and below. The study findings suggest that Roselle seed protein hydrolysates can be applied as functional food ingredients and that their composition determines their functional properties thus their potential application in the food and feed industries.

  9. Protection of DPPC phospholipid liposomal membrane against radiation oxidative damage by antioxidants

    International Nuclear Information System (INIS)

    Investigations in our laboratory on egg lecithin liposomes have recently showed a marked protection against damage by gamma radiation when cholesterol was present in the composition of vesicles suggesting a role of bilayer molecular architecture in the mechanism of free radical mediated lipid peroxidation. Present study was designed to determine the changes in bilayer permeability in DPPC unilamelar vesicles after exposure to gamma radiation by monitoring the leakage of pre-loaded carboxyfluorescein (CF), a marker loaded in aqueous interior of vesicle and fluidity alterations in the bilayer using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a membrane bilayer probe. It was found that radiation doses of an order of magnitude higher were required to produce detectable changes in vesicles of DPPC than in the vesicles of egg lecithin suggesting a modulating role of chemical nature of composition in the membrane radiation sensitivity. It was significant to find that the leakage of CF from and incorporation of DPH into vesicle bilayer showed similar response pattern to radiation doses (0.1-6 kGy) which was also found to be dose rate dependent. Presence of antioxidants; alpha-tocopherol (0.15 mole %) in the bilayer membrane or ascorbic acid (0.1 mM) in the aqueous region significantly protected DPPC vesicles from radiation damage as determined from DPH uptake kinetics suggesting involvement of reactive free radicals of lipids as well as water radicals in the mechanism of membrane peroxidative damage. The magnitude of protection was found to increase with the increasing concentration of both these antioxidants but comparisons showed that α-tocopherol was far more effective in protecting the vesicles than ascorbic acid. These results contribute to our understanding of the mechanism of radiation oxidative damage and its modification by radical scavenging and/or organizational modulation which emphasize the importance of structure and composition of

  10. Bioactive Peptides from Angelica sinensis Protein Hydrolyzate Delay Senescence in Caenorhabditis elegans through Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Qiangqiang Wang

    2016-01-01

    Full Text Available Since excessive reactive oxygen species (ROS is known to be associated with aging and age-related diseases, strategies modulating ROS level and antioxidant defense systems may contribute to the delay of senescence. Here we show that the protein hydrolyzate from Angelica sinensis was capable of increasing oxidative survival of the model animal Caenorhabditis elegans intoxicated by paraquat. The hydrolyzate was then fractionated by ultrafiltration, and the antioxidant fraction (<3 kDa was purified by gel filtration to obtain the antioxidant A. sinensis peptides (AsiPeps, which were mostly composed of peptides with <20 amino acid residues. Further studies demonstrate that AsiPeps were able to reduce the endogenous ROS level, increase the activities of the antioxidant enzymes superoxide dismutase and catalase, and decrease the content of the lipid peroxidation product malondialdehyde in nematodes treated with paraquat or undergoing senescence. AsiPeps were also shown to reduce age pigments accumulation and extend lifespan but did not affect the food-intake behavior of the nematodes. Taken together, our results demonstrate that A. sinensis peptides (AsiPeps are able to delay aging process in C. elegans through antioxidant activities independent of dietary restriction.

  11. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review.

    Science.gov (United States)

    Chalamaiah, M; Dinesh Kumar, B; Hemalatha, R; Jyothirmayi, T

    2012-12-15

    The fish processing industry produces more than 60% by-products as waste, which includes skin, head, viscera, trimmings, liver, frames, bones, and roes. These by-product wastes contain good amount of protein rich material that are normally processed into low market-value products, such as animal feed, fish meal and fertilizer. In view of utilizing these fish industry wastes, and for increasing the value to several underutilised fish species, protein hydrolysates from fish proteins are being prepared by several researchers all over the world. Fish protein hydrolysates are breakdown products of enzymatic conversion of fish proteins into smaller peptides, which normally contain 2-20 amino acids. In recent years, fish protein hydrolysates have attracted much attention of food biotechnologists due to the availability of large quantities of raw material for the process, and presence of high protein content with good amino acid balance and bioactive peptides (antioxidant, antihypertensive, immunomodulatory and antimicrobial peptides). PMID:22980905

  12. Antioxidative defense enzymes in placenta protect placenta and fetus in inherited thrombophilia from hydrogen peroxide

    OpenAIRE

    Jelena Bogdanovic Pristov; Ivan Spasojevic; Željko Mikovic; Vesna Mandic; Nikola Cerovic; Mihajlo Spasic

    2009-01-01

    Our aim was to investigate the activities of antioxidative defense enzymes in the placenta, fetal blood and amnion fluid in inherited thrombophilia. Thrombophilia was associated with nearly threefold increase of activity (p < 0.001) of the placental catalase (81.1 ± 20.6 U/mg of proteins in controls and 270.0 ± 69.9 U/mg in thrombophilic subjects), glutathione (GSH) peroxidase (C: 20.2 ± 10.1 U/mg; T: 60.0 ± 15.5 U/mg), and GSH reductase (C: 28.9 ± 5.6 U/mg; T: 72.7 ± 23.0 U/mg). The placenta...

  13. Plasma Protein Oxidation and Its Correlation with Antioxidant Potential During Human Aging

    Science.gov (United States)

    Pandey, Kanti Bhooshan; Mehdi, Mohd Murtaza; Maurya, Pawan Kumar; Rizvi, Syed Ibrahim

    2010-01-01

    Previous studies have indicated that the main molecular characteristic of aging is the progressive accumulation of oxidative damages in cellular macromolecules. Proteins are one of the main molecular targets of age-related oxidative stress, which have been observed during aging process in cellular systems. Reactive oxygen species (ROS) can lead to oxidation of amino acid side chains, formation of protein-protein cross-linkages, and oxidation of the peptide backbones. In the present study, we report the age-dependent oxidative alterations in biomarkers of plasma protein oxidation: protein carbonyls (PCO), advanced oxidation protein products (AOPPs) and plasma total thiol groups (T-SH) in the Indian population and also correlate these parameters with total plasma antioxidant potential. We show an age dependent decrease in T-SH levels and increase in PCO and AOPPs level. The alterations in the levels of these parameters correlated significantly with the total antioxidant capacity of the plasma. The levels of oxidized proteins in plasma provide an excellent biomarker of oxidative stress due to the relative long half-life of such oxidized proteins. PMID:20826915

  14. Protective effect of dietary antioxidants and plant extracts on acute inflammation and hepatotoxicity in vitro

    OpenAIRE

    El-Saadany, Mohamed Abdel Meged Marawan

    2009-01-01

    Dietary antioxidants are believed to play an important role in the prevention and treatment of a variety of diseases associated with oxidative stress. Although there is a wide range of dietary antioxidants, the bulk of the research to date has been focused on the nutrient antioxidants vitamin C, E, and carotenoids. Certain relatively uncommon antioxidants such as lipoic acid (LA), and phenolic compounds such as (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), a...

  15. The Protective Effect of Antioxidants on Oxidative Stress in Rats Exposed to the 950 MHz Electromagnetic Field

    International Nuclear Information System (INIS)

    Studies have linked cell phone radiation to health problems such as headaches, high blood pressure, cancer and more. There is a latency period for most diseases and it may take years and more studies before the required weight of evidence is established. But the effects are cumulative and precautions should be taken now before it is too late. The aim of the present study was to investigate if supplementation with antioxidants would protect heart and liver tissues from harmful radiation emitted by cell phone. Thirty two male albino rats were randomly divided into four equal groups: I- Control, II- Antioxidants treated group, III- 950 MHz EMR, IV- 950 MHz EMR + antioxidants. A 950 MHz EMR radiation (217-Hz pulse rate, 2-W maximum peak power, SAR Specific Absorption Rate1.6 W/Kg) was applied to groups III and IV 60 min/day, for 30 days using an experimental exposure device. Antioxidants supplement (Vitamins A, E and C + Se) was administered to rats daily, by gavages, during the period of exposure to EMR. Malondialdehyde (MDA) and nitric oxide (NO) were used as markers of oxidative damage. Catalase (CAT), and glutathione peroxidase (GSHPx) activities were studied to evaluate the changes of antioxidant status. Biochemical analysis performed at the end of EMR exposure showed that supplementation with antioxidants has significantly attenuated EMR-induced oxidative stress signified by a decrease in the amount of MDA and an increase the activity of CAT and GSHPx in heart and liver tissues. Amelioration of oxidative damage was substantiated by significant amelioration in the activity of serum enzymes creatine phosphokinase (CPK), lactate dehydrogenase (LDH), aspartate amino-transferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). According to the results obtained in the present study, it could be concluded that antioxidants supplementation may protect from mobile phone-induced oxidative damage in heart and liver tissues

  16. Production and Purification of Antioxidant Peptides from Flatfish Skin Protein Hydrolysates

    Institute of Scientific and Technical Information of China (English)

    朱宏吉; 王世鹏; 田丽; 张华

    2015-01-01

    Antioxidant peptides of flatfish skin protein hydrolyzed by four enzymes(Papain, Pepsin, Trypsin and Neutrase, respectively)were investigated. The Trypsin hydrolysate obtained by hydrolysis exhibited the highest 1,1-dipheny-l-2-picrylhydrazyl(DPPH)radical scavenging activity(DRSA)compared with other hydrolysates. Re-sponse surface method ology(RSM), based on Box-Behnken design, was used to study the influence of hydrolysis conditions on the DRSA. The optimal hydrolysis conditions were as follows:pH 7.38, temperature 48.2℃and en-zyme/substrate(E/S)ratio 2 840 U/g. Under these conditions, the maximum DRSA was(22.85 ± 0.57)%,. The experimental values agreed with the value (23.09%,)predicted by the model within a 95%, confidence interval. By using gel filtration chromatography and reversed-phase high performance liquid chromatography(RP-HPLC), anti-oxidant peptide(D2-P)was isolated from flatfish skin protein hydrolysates(FSPH)and could exhibit a(54.28 ± 1.37)%, scavenging activity on DPPH radical at the concentration of 5 mg/mL. This is the first report of a scientific basis for the preparation of antioxidant peptides from flatfish skin. The results suggested that the antioxidant pep-tides can be exploited into functional foods or used as a novel source of nutraceuticals.

  17. Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one- and two-step hydrolysis

    OpenAIRE

    Yarnpakdee, Suthasinee; Benjakul, Soottawat; Kristinsson, Hordur G.; Kishimura, Hideki

    2014-01-01

    Antioxidant and sensory properties of Nile tilapia protein hydrolysates prepared by one- and two-step hydrolysis using commercial proteases were investigated. Hydrolysates prepared using single protease including Alcalase (HA), Flavourzyme (HF), Protamex (HPr) and papain (HPa) had increases in antioxidant activities as the degree of hydrolysis (DH) increased up to 40 % (P 

  18. In-vitro antioxidant and antibacterial properties of fermentatively and enzymatically prepared chicken liver protein hydrolysates.

    Science.gov (United States)

    Chakka, Ashok Kumar; Elias, Mercy; Jini, R; Sakhare, P Z; Bhaskar, N

    2015-12-01

    Protein hydrolysates were prepared from chicken liver using fermentation and enzymatic hydrolysis. The lactic acid bacteria Pediococcus acidilactici NCIM5368 was employed in the fermentation process and a commercial protease (Alcalase® 2.5) was used in enzymatic hydrolysis. Chicken liver hydrolysates prepared by fermentation (FCLH) and enzymatic hydrolysis (ECLH) revealed appreciable amounts of protein [55.85 and 61.34 %; on dry weight basis, respectively]. Fermentation and enzymatic hydrolysis resulted in 14.3 and 26.12 % of degree of hydrolysis. Total antioxidant activity, reducing power, scavenging of superoxide, 2- diphenyl-1-picrylhydrazyl (DPPH) and 2, 2-azino-bis-3-ethyl-benzthiazoline-6-sulphonic acid (ABTS) radicals were determined for both FCLH & ECLH. FCLH & ECLH showed total antioxidant activity of 0.99 and 1.13 μg AAE mg(-1) proteins, respectively; while, they scavenged 96.14 and 92.76 % of DPPH radicals respectively. FCLH showed higher ABTS radical scavenging activity (32.16 %) than ECLH (19.29 %). Superoxide anion scavenging activity of FCLH & ECLH were found to be 95.02 & 88.94 %, respectively. Residues obtained after both treatments also exhibited antioxidant activities. FCLH reported highest antagonistic activity against Listeria monocytogenes (30 mm); while, ECLH showed antibacterial activity only against Micrococcus luteus (12 mm). Both hydrolysates have the potential to be a protein rich ingredient for use in formulated foods and possible help in reduction of oxidative stress. PMID:26604378

  19. Production of Defatted Palm Kernel Cake Protein Hydrolysate as a Valuable Source of Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Mohammad Zarei

    2012-06-01

    Full Text Available The aim of this study was to produce a valuable protein hydrolysate from palm kernel cake (PKC for the development of natural antioxidants. Extracted PKC protein was hydrolyzed using different proteases (alcalase, chymotrypsin, papain, pepsin, trypsin, flavourzyme, and bromelain. Subsequently, antioxidant activity and degree of hydrolysis (DH of each hydrolysate were evaluated using DPPH• radical scavenging activity and O-phthaldialdehyde spectrophotometric assay, respectively. The results revealed a strong correlation between DH and radical scavenging activity of the hydrolysates, where among these, protein hydrolysates produced by papain after 38 h hydrolysis exhibited the highest DH (91 ± 0.1% and DPPH• radical scavenging activity (73.5 ± 0.25% compared to the other hydrolysates. In addition, fractionation of the most effective (potent hydrolysate by reverse phase high performance liquid chromatography indicated a direct association between hydrophobicity and radical scavenging activity of the hydrolysates. Isoelectric focusing tests also revealed that protein hydrolysates with basic and neutral isoelectric point (pI have the highest radical scavenging activity, although few fractions in the acidic range also exhibited good antioxidant potential.

  20. Hyperoxia-induced ciliary loss and oxidative damage in an in vitro bovine model: the protective role of antioxidant vitamins E and C.

    Science.gov (United States)

    Al-Shmgani, Hanady S; Moate, Roy M; Sneyd, J Robert; Macnaughton, Peter D; Moody, A John

    2012-12-14

    Although elevated oxygen fraction is used in intensive care units around the world, pathological changes in pulmonary tissue have been shown to occur with prolonged exposure to hyperoxia. In this work a bovine bronchus culture model has been successfully used to evaluate the effects of hyperoxia on ciliated epithelium in vitro. Samples were cultured using an air interface method and exposed to normoxia, 21% O(2) or hyperoxia, 95% O(2). Cilial coverage was assessed using scanning electron microscopy (SEM). Tissue damage (lactate dehydrogenase, LDH, in the medium), lipid peroxidation (thiobarbituric acid reactive substances, TBARS), DNA damage (comet assay), protein oxidation (OxyBlot kit) and antioxidant status (total glutathione) were used to assess whether the hyperoxia caused significant oxidative stress. Hyperoxia caused a time-dependent decline (t(½)=3.4d compared to 37.1d under normoxia) in cilial coverage (PDNA (18.7 ± 2.2 versus 11.1 ± 1.5); protein carbonyls (PVitamins E (10(-7)M) and C (10(-6) or 10(-7)M) alone or in combination (10(-7)M and 10(-6)M, respectively) had a significant protective effect on the hyperoxia-induced reduction in percentage cilial coverage (Pbovine bronchial epithelium and denudation of cilia. The antioxidant vitamins E and C significantly protected against hyperoxia-induced cilia loss. PMID:23142230

  1. The unfolded protein response protects from tau neurotoxicity in vivo.

    Directory of Open Access Journals (Sweden)

    Carin A Loewen

    Full Text Available The unfolded protein response is a critical system by which the cell handles excess misfolded protein in the secretory pathway. The role of the system in modulating the effects of aggregation prone cytosolic proteins has received less attention. We use genetic reporters to demonstrate activation of the unfolded protein response in a transgenic Drosophila model of Alzheimer's disease and related tauopathies. We then use loss of function genetic reagents to support a role for the unfolded protein response in protecting from tau neurotoxicity. Our findings suggest that the unfolded protein response can ameliorate the toxicity of tau in vivo.

  2. Protective effects of rice dreg protein hydrolysates against hydrogen peroxide-induced oxidative stress in HepG-2 cells.

    Science.gov (United States)

    Zhang, Xinxia; Wang, Li; Wang, Ren; Luo, Xiaohu; Li, Yanan; Chen, Zhengxing

    2016-03-01

    In this paper, the effects of rice dreg protein hydrolysates (RDPHs) obtained by various proteases on hydrogen peroxide-induced oxidative stress in HepG-2 cells were investigated. Cell cytotoxicity was evaluated through the aspects of cell viability, ROS level, antioxidant enzyme activity, and production of malondialdehyde (MDA). Cell apoptosis was assessed by flow cytometry. Molecular weight distribution was analyzed by gel permeation chromatography, and amino acid composition was measured using an automatic amino acid analyzer. The survival of cells and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were significantly increased through the pre-incubation of HepG-2 cells with RDPHs before H2O2 exposure. Additionally, these pretreatments also resulted in a reduction in ROS and MDA levels. As a result, apoptosis and loss of mitochondrial membrane potential of the HepG-2 cells were alleviated. Furthermore, the protective effects of protein hydrolysates obtained by various proteases were noticeably distinct, in which RDPHs prepared by alkaline protease showed higher antioxidant activities. The difference in the protective effects might be attributed to the specific peptide or amino acid composition. Therefore, enzymatic hydrolysis with different enzymes studied here could attenuate H2O2-induced cell damage, and the type of protease greatly influenced the anti-oxidative activity. Particularly, optimum use of Alcalase could produce peptides with higher antioxidant activity. PMID:26843356

  3. Protections of bovine serum albumin protein from damage on functionalized graphene-based electrodes by flavonoids.

    Science.gov (United States)

    Sun, Bolu; Gou, Yuqiang; Xue, Zhiyuan; Zheng, Xiaoping; Ma, Yuling; Hu, Fangdi; Zhao, Wanghong

    2016-05-01

    A sensitive electrochemical sensor based on bovine serum albumin (BSA)/poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene nanosheets (PDDA-G) composite film modified glassy carbon electrode (BSA/PDDA-G/GCE) had been developed to investigate the oxidative protein damage and protections of protein from damage by flavonoids. The performance of this sensor was remarkably improved due to excellent electrical conductivity, strong adsorptive ability, and large effective surface area of PDDA-G. The BSA/PDDA-G/GCE displayed the greatest degree of BSA oxidation damage at 40min incubation time and in the pH5.0 Fenton reagent system (12.5mM FeSO4, 50mM H2O2). The antioxidant activities of four flavonoids had been compared by fabricated sensor based on the relative peak current ratio of SWV, because flavonoids prevented BSA damage caused by Fenton reagent and affected the BSA signal in a solution containing Co(bpy)3(3+). The sensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). UV-vis spectrophotometry and FTIR were also used to investigate the generation of hydroxyl radical and BSA damage, respectively. On the basis of results from electrochemical methods, the order of the antioxidant activities of flavonoids is as follows: (+)-catechin>kaempferol>apigenin>naringenin. A novel, direct SWV analytical method for detection of BSA damage and assessment of the antioxidant activities of four flavonoids was developed and this electrochemical method provided a simple, inexpensive and rapid detection of BSA damage and evaluation of the antioxidant activities of samples. PMID:26952415

  4. Antioxidative Potentials as a Protective Mechanism in Catharanthus roseus (L.) G.Don. Plants under Salinity Stress

    OpenAIRE

    Jaleel, Cheruth Abdul; Gopi, Ragupathi; MANIVANNAN, Paramasivam; Panneerselvam, Rajaram

    2007-01-01

    Antioxidant responses were analysed in Catharanthus roseus (L.) G.Don. under 0, 50 and 100 mM NaCl in order to investigate the plant´s protective mechanisms against long-term salt-induced oxidative stress. The NaCl treatments were repeated in 4 different stages of growth, i.e. 30, 45, 60 and 75 days after sowing (DAS). The plants were uprooted randomly 90 DAS and the non-enzymatic and enzymatic antioxidant potentials were analysed. High salinity caused a decrease in reduced glutathione (GSH) ...

  5. Evaluation of Antioxidant and DNA Damage Protection Activity of the Hydroalcoholic Extract of Desmostachya bipinnata L. Stapf

    Directory of Open Access Journals (Sweden)

    Upendarrao Golla

    2014-01-01

    Full Text Available Desmostachya bipinnata Stapf (Poaceae/Gramineae is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18±3.47 μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton’s reagent at a concentration of 50 μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2. Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases.

  6. Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism.

    Science.gov (United States)

    Lau, Yeh Siang; Tian, Xiao Yu; Huang, Yu; Murugan, Dharmani; Achike, Francis I; Mustafa, Mohd Rais

    2013-02-01

    Increased oxidative stress is involved in the pathogenesis and progression of diabetes. Antioxidants are therapeutically beneficial for oxidative stress-associated diseases. Boldine ([s]-2,9-dihydroxy-1,10-dimethoxyaporphine) is a major alkaloid present in the leaves and bark of the boldo tree (Peumus boldus Molina), with known an antioxidant activity. This study examined the protective effects of boldine against high glucose-induced oxidative stress in rat aortic endothelial cells (RAEC) and its mechanisms of vasoprotection related to diabetic endothelial dysfunction. In RAEC exposed to high glucose (30 mM) for 48 h, pre-treatment with boldine reduced the elevated ROS and nitrotyrosine formation, and preserved nitric oxide (NO) production. Pre-incubation with β-NAPDH reduced the acetylcholine-induced endothelium-dependent relaxation; this attenuation was reversed by boldine. Compared with control, endothelium-dependent relaxation in the aortas of streptozotocin (STZ)-treated diabetic rats was significantly improved by both acute (1 μM, 30 min) and chronic (20mg/kg/daily, i.p., 7 days) treatment with boldine. Intracellular superoxide and peroxynitrite formation measured by DHE fluorescence or chemiluminescence assay were higher in sections of aortic rings from diabetic rats compared with control. Chronic boldine treatment normalized ROS over-production in the diabetic group and this correlated with reduction of NAD(P)H oxidase subunits, NOX2 and p47(phox). The present study shows that boldine reversed the increased ROS formation in high glucose-treated endothelial cells and restored endothelial function in STZ-induced diabetes by inhibiting oxidative stress and thus increasing NO bioavailability. PMID:23178655

  7. Determination of total antioxidant capacity of milk by CUPRAC and ABTS methods with separate characterisation of milk protein fractions.

    Science.gov (United States)

    Çekiç, Sema Demirci; Demir, Aslı; Başkan, Kevser Sözgen; Tütem, Esma; Apak, Reşat

    2015-05-01

    Most milk-applied antioxidant assays in literature are based on the isolation and quantification of individual antioxidative compounds, whereas total antioxidant capacity (TAC) gives a more holistic picture due to cooperative action of antioxidants. Recently, the cupric reducing antioxidant capacity (CUPRAC) method has been modified to measure the antioxidant capacities of thiol-containing proteins, where the classical ammonium acetate buffer - that may otherwise precipitate proteins- was replaced with concentrated urea buffer (able to expose embedded thiol groups of proteins to oxidative attack) adjusted to pH 7.0. Thus, antioxidant capacity of milk was investigated with two competing TAC assays, namely CUPRAC and ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid))/persulphate, because only these assays were capable of evaluating protein contribution to the observed TAC value. As milk fat caused turbidity, experiments were carried out with skim milk or defatted milk samples. To determine TAC, modified CUPRAC method was applied to whole milk, separated and redissolved protein fractions, and the remaining liquid phase after necessary operations. Both TAC methods were investigated for their dilution sensitivity and antioxidant power assessment of separate milk fractions such as casein and whey. Proteins like β-lactoglobulin and casein (but not simple thiols) exhibited enhanced CUPRAC reactivity with surfactant (SDS) addition. Addition of milk protein fractions to whole skim milk produced significant 'negative-biased' deviations (up to -26% relative standard error) from TAC absorbance additivity in the application of the ABTS method, as opposed to that of the CUPRAC method less affected by chemical deviations from Beer's law thereby producing much smaller deviations from additivity (i.e. the property of additivity is valid when the measured TAC of a mixture is equal to the sum of individual antioxidant capacities of its constituents). PMID:25731579

  8. Supplementation of Pork Patties with Bovine Plasma Protein Hydrolysates Augments Antioxidant Properties and Improves Quality

    OpenAIRE

    Seo, Hyun-Woo; Seo, Jin-Kyu; Yang, Han-Sul

    2016-01-01

    This study investigated the effects of bovine plasma protein (PP) hydrolysates on the antioxidant and quality properties of pork patties during storage. Pork patties were divided into 4 groups: without butylated hydroxytoluene (BHT) and PP hydrolysates (control), 0.02% BHT (T1), 1% PP hydrolysates (T2), and 2% PP hydrolysates (T3). Pork patty supplemented with PP hydrolysates had higher pH values and lower weight loss during cooking than the control patties. Results showed that lightness and ...

  9. Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity

    OpenAIRE

    GUO Shuang; Cheng, Xiwen; Lim, Jun-Hee; Yu LIU; Kao, Hung-Ying

    2014-01-01

    Oxidative stress is a consequence of an imbalance between reactive oxygen species (ROS) production and the ability of the cytoprotective system to detoxify the reactive intermediates. The tumor suppressor promyelocytic leukemia protein (PML) functions as a stress sensor. Loss of PML results in impaired mitochondrial complex II activity, increased ROS, and subsequent activation of nuclear factor erythroid 2–related factor 2 (Nrf2) antioxidative pathway. We also demonstrate that sulforaphane (S...

  10. Antioxidant Effect and Functional Properties of Hydrolysates Derived from Egg-White Protein

    OpenAIRE

    Cho, Dae-Yeon; Jo, Kyungae; Cho, So Young; Kim, Jin Man; Lim, Kwangsei; Suh, Hyung Joo; Oh, Sejong

    2014-01-01

    This study utilized commercially available proteolytic enzymes to prepare egg-white protein hydrolysates (EPHs) with different degrees of hydrolysis. The antioxidant effect and functionalities of the resultant products were then investigated. Treatment with Neutrase yielded the most α-amino groups (6.52 mg/mL). Alcalase, Flavourzyme, Protamex, and Ficin showed similar degrees of α-amino group liberation (3.19-3.62 mg/mL). Neutrase treatment also resulted in the highest degree of hydrolysis (2...

  11. Protein-bound polysaccharides from Amanita ponderosa cultures: characterisation, toxicological assessment and antioxidant properties

    OpenAIRE

    Nunes, Patricia; Salvador, Catia; Arteiro, J. M.; Martins, M. Rosário; Caldeira, A. Teresa

    2013-01-01

    In recent years, protein-polysaccharide complexes extracted from mushrooms have received great attention from the scientific community, due to their medicinal properties, namely antioxidant, antitumor, antimicrobial, immunomodulatory, antiatherogenic and hypoglycaemic properties [1, 2]. The southern of Portugal, due to its Mediterranean climate and flora diversity, is a region with a high prevalence of wild edible mushrooms Amanita ponderosa [3]. The aim of this work was to produce and ch...

  12. An Expanding Range of Functions for the Copper Chaperone/Antioxidant Protein Atox1

    OpenAIRE

    Hatori, Yuta; Lutsenko, Svetlana

    2013-01-01

    Significance: Antioxidant protein 1 (Atox1 in human cells) is a copper chaperone for the copper export pathway with an essential role in cellular copper distribution. In vitro, Atox1 binds and transfers copper to the copper-transporting ATPases, stimulating their catalytic activity. Inactivation of Atox1 in cells inhibits maturation of secreted cuproenzymes as well as copper export from cells. Recent Advances: Accumulating data suggest that cellular functions of Atox1 are not limited to its c...

  13. Angiotensin-I-Converting Enzyme Inhibitory and Antioxidant Activities of Protein Hydrolysate from Muscle of Barbel (Barbus callensis

    Directory of Open Access Journals (Sweden)

    Assaad Sila

    2013-01-01

    Full Text Available The present study investigated angiotensin-I-converting enzyme (ACE inhibitory and antioxidant activities of barbel muscle protein hydrolysate prepared with Alcalase. The barbel muscle protein hydrolysate displayed a high ACE inhibitory activity (CI50=0.92 mg/mL. The antioxidant activities of protein hydrolysate at different concentrations were evaluated using various in vitro antioxidant assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH radical method and reducing power assay. The barbel muscle protein hydrolysate exhibited an important radical scavenging effect and reducing power. These results obtained by in vitro systems obviously established the antioxidant potency of barbel hydrolysate to donate electron or hydrogen atom to reduce the free radical. Furthermore, these bioactive substances can be exploited into functional foods or used as source of nutraceuticals.

  14. Mechanical Stress and Antioxidant Protection in the Retina of Hindlimb Suspended Rats

    Science.gov (United States)

    Glass, Aziza; Theriot, Corey A.; Alway, Stephen E.; Zanello, Susana B.

    2012-01-01

    It has been postulated that hindlimb suspension (HS) causes a cephalad fluid shift in quadrupeds similar to that occurring to humans in microgravity. Therefore, HS may provide a suitable animal model in which to recapitulate the ocular changes observed in the human Visual Impairment and Intracranial Pressure (VIIP) syndrome. This work reports preliminary results from a tissue sharing project using 34 week-old Brown Norway rats. Two different experiments compared normal posture controls and HS rats for 2 weeks and rats exposed to HS for 2 weeks but allowed to recover in normal posture for 2 additional weeks. The effects of two nutritional countermeasures, green tea extract (GT) and plant polyphenol resveratrol (Rv), were also evaluated. Green tea contains the antioxidant epigallocatechin gallate (EGCG). qPCR gene expression analysis of selected targets was performed on RNA from isolated retinas, and histologic analysis was done on one fixed eye per rat. The transcription factor early growth response protein 1 (Egr1) was upregulated almost 2-fold in HS retinas relative to controls (P = 0.059), and its expression returned to control levels after 2 weeks of recovery in normal posture (P = 0.023). HS-induced upregulation of Egr1 was attenuated (but not significantly) in retinas from rats fed an antioxidant rich (GT extract) diet. In rats fed the GT-enriched diet, antioxidant enzymes were induced, evidenced by the upregulation of the gene heme oxygenase 1 (Hmox1) (P = 0.042) and the gene superoxide dismutase 2 (Sod2) (P = 0.0001). Egr1 is a stretch-activated transcription factor, and the Egr1 mechanosensitive response to HS may have been caused by a change in the translaminal pressure and/or mechanical deformation of the eye globe. The observed histologic measurements of the various retinal layers in the HS rats were lower in value than those of the control animal (n = 1), however insufficient data were available for statistical analysis. Aquaporin 4, a water

  15. TOTAL ANTIOXIDANT ACTIVITY OF YEAST SACCHAROMYCES CEREVISIAE

    OpenAIRE

    Blažena Lavová; Dana Urminská

    2013-01-01

    Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g. fats, lipids, proteins and DNA) from the damage of reactive oxygen species (ROS). Sacchamomyces cerevisiae are know as organisms with very important antioxidative enzyme systems such as superoxide dismutase or catalase. The total antioxidant activity (mmol Trolox equivalent – TE.g-1 d.w.) of Saccharomyces cerevisiae was measured by 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) during the yeas...

  16. Oxidative processes during enzymatic hydrolysis of cod protein and their influence on antioxidant and immunomodulating ability.

    Science.gov (United States)

    Halldorsdottir, Sigrun M; Sveinsdottir, Holmfridur; Freysdottir, Jona; Kristinsson, Hordur G

    2014-01-01

    Fish protein hydrolysates (FPH) have many desirable properties, however heating and shifts in pH can cause oxidation during enzymatic hydrolysis. The objective was to investigate oxidative processes during enzymatic hydrolysis of fish protein and the impact of oxidation on the antioxidant and immunomodulating ability of FPH. Protease P "Amano" 6 was used to hydrolyze cod protein in the presence and absence of pro-oxidants at pH 8 and 36°C to achieve 20% degree of hydrolysis. Results from thiobarbituric acid reactive substances (TBARS) and sensory analysis indicate that oxidation can develop rapidly during hydrolysis. A cellular antioxidant assay using a HepG2 cell model indicated a negative impact of oxidation products on antioxidant properties of the FPH while results obtained in chemical assays showed a negligible impact. Results from a dendritic cell model indicating that oxidation products may affect anti-inflammatory activity in the body. This study provides important information regarding bioactive FPH. PMID:24001832

  17. Tea Catechins Protect Goat Skeletal Muscle against H₂O₂-Induced Oxidative Stress by Modulating Expression of Phase 2 Antioxidant Enzymes.

    Science.gov (United States)

    Zhong, Rong-Zhen; Fang, Yi; Qin, Gui-Xin; Li, Hao-Yang; Zhou, Dao-Wei

    2015-09-16

    To study the mechanisms of tea catechins (TCs) in goat muscles against oxidative stress, skeletal muscle cells (SMCs) induced by H2O2 or not were incubated with TCs or 3H-1,2-dithiole-3-thione (D3T) and were defined as H2O2, H2O2D3T, H2O2TC, D3T, and TC treatments, respectively. Results showed that, similar to effects of D3T, TCs regulated mRNA and protein expression of antioxidant enzymes by suppressing Keap1 protein expression in SMCs from 1.58 ± 0.12 to 0.71 ± 0.21 and 1.03 ± 0.11 in H2O2TC and TC groups, respectively; however, effects differed in oxidative condition of cells and among enzymes. In stressed cells, TCs increased catalase and glutathione S-transferases (GST) activities (P goats fed grain supplemented with TCs or D3T following infusion with H2O2 was conducted to further verify mechanisms of TC action. As seen in vitro, TCs reduced Keap1 protein expression (P goats under both conditions increased meat color and tenderness (P ≤ 0.001). In conclusion, TCs protected goat muscles against oxidative stress and subsequently improved meat quality by modulating phase 2 antioxidant enzymes and Keap1 expression. PMID:26118494

  18. Effect of enzyme hydrolysis on solubility and antioxidative properties of potato protein isolates derived from heat coagulation

    OpenAIRE

    MIKOVÁ, Klára

    2014-01-01

    The bachelor thesis is focused on effect of enzyme hydrolysis on solubility and antioxidative properties of potato protein. It was used industrial potato fruit juice and potato fruit juice from tubers two varieties Sibu and Ornella. Isolates derived from heat coagulation are generally poorly soluble so their use is limited (only feeding purporses). This work describes positive effect of enzyme hydrolysis on solubility and antioxidative properties of potato protein isolates. For example, antio...

  19. Resveratrol protects the ovary against chromium-toxicity by enhancing endogenous antioxidant enzymes and inhibiting metabolic clearance of estradiol.

    Science.gov (United States)

    Banu, Sakhila K; Stanley, Jone A; Sivakumar, Kirthiram K; Arosh, Joe A; Burghardt, Robert C

    2016-07-15

    Resveratrol (RVT), a polyphenolic component in grapes and red wine, has been known for its cytoprotective actions against several diseases. However, beneficial effects of RVT against early exposure to endocrine disrupting chemicals (EDCs) have not been understood. EDCs are linked to several ovarian diseases such as premature ovarian failure, polycystic ovary syndrome, early menopause and infertility in women. Hexavalent chromium (CrVI) is a heavy metal EDC, and widely used in >50 industries. Environmental contamination with CrVI in the US is rapidly increasing, predisposing the human to several illnesses including cancers and still birth. Our lab has been involved in determining the molecular mechanism of CrVI-induced female infertility and intervention strategies to mitigate CrVI effects. Lactating mother rats were exposed to CrVI (50ppm potassium dichromate) from postpartum days 1-21 through drinking water with or without RVT (10mg/kg body wt., through oral gavage daily). During this time, F1 females received respective treatments through mother's milk. On postnatal day (PND) 25, blood and the ovary, kidney and liver were collected from the F1 females for analyses. CrVI increased atresia of follicles by increasing cytochrome C and cleaved caspase-3; decreasing antiapoptotic proteins; decreasing estradiol (E2) biosynthesis and enhancing metabolic clearance of E2, increasing oxidative stress and decreasing endogenous antioxidants. RVT mitigated the effects of CrVI by upregulating cell survival proteins and AOXs; and restored E2 levels by inhibiting hydroxylation, glucuronidation and sulphation of E2. This is the first study to report the protective effects of RVT against any toxicant in the ovary. PMID:27129868

  20. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions.

    Science.gov (United States)

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O

    2016-05-18

    In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders. PMID:27156453

  1. Antioxidant activities and functional properties of protein and peptide fractions isolated from salted herring brine

    DEFF Research Database (Denmark)

    Taheri, Ali; Farvin, Sabeena; Jacobsen, Charlotte;

    2014-01-01

    delay iron catalyzed lipid oxidation in 5% fish oil in water emulsions and the 10–50kDa fraction was the best. These results show the potential of proteins and peptide fractions recovered from waste water from the herring industry as source of natural antioxidants for use in food products....... fractions showed good radical scavenging activity and reducing power at a concentration of 0.5mg protein/ml. All the fractions demonstrated low iron chelating activity and did not inhibit oxidation in a soybean phosphatidylcholine liposome model system. However all the fractions were to some extent able to...

  2. Antioxidant and functional properties of tea protein as affected by the different tea processing methods

    OpenAIRE

    Zhang, Yu; Chen, Haixia; Ning ZHANG; Ma, Lishuai

    2013-01-01

    The Box-Behnken design combined with response surface methodology was used to optimize alkali extraction of protein from tea. Three independent extraction variables (extraction time: X1; extraction temperature: X2; alkali concentration: X3) were evaluated. The antioxidant and functional properties of tea protein as affected by different tea processing were compared. The optimum conditions were: extraction time of 85 min, extraction temperature of 80 °C, and alkali concentration of 0.15 M. Und...

  3. Influence of orally taken carotenoids on the antioxidative status of the skin, the radical protection function of the skin and the skin lipids

    OpenAIRE

    Friedrich, Annette

    2015-01-01

    In this work, the bioavailability and the antioxidant effect of orally administered carotenoids on the skin were examined. For this purpose different spectroscopic methods were used. A double-blind placebo-controlled study was conducted in 22 subjects over a time period of 20 weeks. The aim of this work was to develop an in vivo method to enable studying the antioxidative and protective effects of naturally occurring antioxidants against radical formation by visible and near infrared (Vi...

  4. Antioxidant activity and protection against oxidative-induced damage of Acacia shaffneri and Acacia farnesiana pods extracts: in vitro and in vivo assays

    OpenAIRE

    Delgadillo Puga, Claudia; Cuchillo Hilario, Mario; Espinosa Mendoza, José Guillermo; Medina Campos, Omar; Molina Jijón, Eduardo; Díaz Martínez, Margarita; Álvarez Izazaga, Marsela Alejandra; Ledesma Solano, José Ángel; Pedraza Chaverri, José

    2015-01-01

    Background Obesity is a worldwide public health issue, reaching epidemic condition in developing countries associated to chronic diseases. Oxidative damage is another side effect of obesity. Antioxidant activity from plant components regulates at some extent this imbalance. Main goal of the present study was to determine the antioxidant activity and protection against oxidative-induced damage of Acacia shaffneri (AS) and Acacia farnesiana (AF) pods extracts. Methods To evaluated antioxidant a...

  5. Novel indole-based melatonin analogues: Evaluation of antioxidant activity and protective effect against amyloid β-induced damage.

    Science.gov (United States)

    Gurer-Orhan, Hande; Karaaslan, Cigdem; Ozcan, Senem; Firuzi, Omidreza; Tavakkoli, Marjan; Saso, Luciano; Suzen, Sibel

    2016-04-15

    Oxidative stress has been recognized as a contributing factor in ageing and various diseases including cancer and neuropathological disorders. Indole derivatives such as the neurohormone melatonin (MLT) constitute an important class of therapeutic agent in medicinal chemistry. MLT can scavenge different reactive oxygen species and can also stimulate the synthesis of antioxidant enzymes. As a part of our ongoing studies, a series of new indole-based hydrazide/hydrazone derivatives were synthesized as MLT analogues. Their antioxidant activity was investigated in human erythrocytes by evaluating their reducing effect against oxidation of a redox-sensitive fluorescent probe. Possible inherent cytotoxicity of the compounds was investigated in CHO-K1 cells by lactate dehydrogenase leakage test. Protection of neuronal PC12 cells against amyloid β-induced damage was examined by MTT assay and their ability in reduction of ROS generation induced by amyloid β was tested. MLT analogues having an o-halogenated aromatic moiety exhibited effective antioxidant properties without having any membrane-damaging effect. Moreover, derivatives having o-halogenated and dihalogenated aromatic side chain significantly protected neuronal cells at concentrations of 10 and 100μM. In conclusion, MLT derivatives represent promising scaffolds for discovery of effective antioxidant and neuroprotective agents. PMID:26970662

  6. Antioxidant activity of pea protein hydrolysates produced by batch fermentation with lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Stanisavljević Nemanja S.

    2015-01-01

    Full Text Available Nine Lactobacillus strains known for surface proteinase activity were chosen from our collection and tested for their ability to grow in pea seed protein-based medium, and to hydrolyze purified pea proteins in order to produce peptides with antioxidant (AO activity. Two strains, Lactobacillus rhamnosus BGT10 and Lactobacillus zeae LMG17315, exhibited strong proteolytic activity against pea proteins. The AO activity of the pea hydrolysate fraction, MW <10 kDa, obtained by the fermentation of purified pea proteins with Lactobacillus rhamnosus BGT10, was tested by standard spectrophotometric assays (DPPH, ABTS, Fe3+-reducing capacity and the recently developed direct current (DC polarographic assay. The low molecular weight fraction of the obtained hydrolysate was separated using ion exchange chromatography, while the AO activity of eluted fractions was determined by means of a sensitive DC polarographic assay without previous concentration of samples. Results revealed that the fraction present in low abundance that contained basic peptides possessed the highest antioxidant activity. Based on the obtained results, it can be concluded that Lactobacillus rhamnosus BGT10 should be further investigated as a candidate strain for large-scale production of bioactive peptides from legume proteins. [Projekat Ministartsva nauke Republike Srbije, br. 173005 i br. 173026

  7. Resveratrol, a Natural Antioxidant, Has a Protective Effect on Liver Injury Induced by Inorganic Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Zhigang Zhang

    2014-01-01

    Full Text Available Resveratrol (Rev can ameliorate cytotoxic chemotherapy-induced toxicity and oxidative stress. Arsenic trioxide (As2O3 is a known cytotoxic environmental toxicant and a potent chemotherapeutic agent. However, the mechanisms by which resveratrol protects the liver against the cytotoxic effects of As2O3 are not known. Therefore, in the present study we investigated the mechanisms involved in the action of resveratrol using a cat model in which hepatotoxicity was induced by means of As2O3 treatment. We found that pretreatment with resveratrol, administered using a clinically comparable dose regimen, reversed changes in As2O3-induced morphological and liver parameters and resulted in a significant improvement in hepatic function. Resveratrol treatment also improved the activities of antioxidant enzymes and attenuated As2O3-induced increases in reactive oxygen species and malondialdehyde production. In addition, resveratrol attenuated the As2O3-induced reduction in the ratio of reduced glutathione to oxidized glutathione and the retention of arsenic in liver tissue. These findings provide a better understanding of the mechanisms whereby resveratrol modulates As2O3-induced changes in liver function and tissue morphology. They also provide a stronger rationale for the clinical utilization of resveratrol for the reduction of As2O3-induced hepatotoxicity.

  8. Antioxidant and DNA damage protecting potentials of polysaccharide extracted from Phellinus baumii using a delignification method.

    Science.gov (United States)

    Jin, Qun-Li; Zhang, Zuo-Fa; Lv, Guo-Ying; Cai, Wei-Ming; Cheng, Jun-Wen; Wang, Jian-Gong; Fan, Lei-Fa

    2016-11-01

    A delignification method was employed to extract the polysaccharide from the fruiting body of Phellinus baumii. The three parameters, processing temperature, ratio of water to raw material and amount of acetic acid every time were optimized using the Box-Behnken design. As a result, the optimal extraction conditions were: processing temperature 70.3°C, ratio of water to raw material of 34.7mL/g and amount of acetic acid of 0.32mL every time. Under these conditions, the highest yield of polysaccharide (10.28%) was obtained. The main fraction (PPB-2) purified from PPB was composed of fucose, arabinose, galactose, glucose, xylose and mannose, while glucose was the predominant monosaccharide. PPB-2 exhibited noticeable antioxidant activity and strong protection against oxidative DNA damage. These findings implied that acid-chlorite delignification was a superior method to extract the polysaccharide from P. baumii and PPB-2 may be useful for cancer chemoprevention. PMID:27516306

  9. Potent Antioxidative and UVB Protective Effect of Water Extract of Eclipta prostrata L.

    Directory of Open Access Journals (Sweden)

    Chin-Feng Chan

    2014-01-01

    Full Text Available Oxidative stress, including Ultraviolet (UV irradiation-induced skin damage, is involved in numerous diseases. This study demonstrates that water extract of Eclipta prostrata L. (WEP has a potent effect in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH, superoxide radicals, and chelating ferrous ion, exhibiting IC50 values of 0.23 mg/mL, 0.48 mg/mL, and 1.25 mg/mL, respectively. The WEP total phenol content was 176.45 mg gallic acid equivalents (GAE/g sample. Chlorogenic acid, a component of the plant's active ingredients, was determined by HPLC and antioxidative assay. However, no caffeic acid, stigmasterol, or wedelolactone was present in WEP. WEP absorbs both UVA and UVB irradiation, and furthermore, the extract shows a dose-dependent response in the protection of HaCaT human keratinocytes and mouse fibroblasts 3T3 cells against UVB-induced cytotoxicity, which may result from a synergistic effect between chlorogenic acid and other active components present in WEP.

  10. Antioxidative and anti-inflammatory protection from carnosine in the striatum of MPTP-treated mice.

    Science.gov (United States)

    Tsai, Shih-Jei; Kuo, Wei-Wen; Liu, Wen-Hu; Yin, Mei-Chin

    2010-11-10

    Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were used to examine the neuroprotective effects of carnosine. Carnosine at 0.5, 1, and 2 g/L was directly added to the drinking water for 4 weeks. MPTP treatment significantly depleted striatal glutathione content, reduced the activity of glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase, increased malondialdehyde and reactive oxygen species levels, and elevated interleukin-6, nitrite, and tumor necrosis factor-α production as well as enhanced inducible nitric oxide synthase (iNOS) activity in the striatum (P carnosine significantly attenuated MPTP-induced glutathione loss, retained the activity of GPX and SOD, diminished oxidative stress, and lowered inflammatory cytokines and nitrite levels as well as suppressed iNOS activity (P Carnosine preintake significantly elevated GPX mRNA expression and declined iNOS mRNA expression (P carnosine also significantly improved MPTP-induced dopamine depletion and maintained 3,4-dihydroxyphenylacetic acid and homovanillic acid levels (P carnosine could provide antioxidative and anti-inflammatory protection for the striatum against the development of Parkinson's disease. PMID:20925384

  11. Plant oil effect on organism antioxidant protection of animals which were kept in the contaminated zone

    International Nuclear Information System (INIS)

    An experimental ground of a necessity of addition in ration of the population living on contaminated territories a plant oils with antioxidant action vitamins is given. Inclusion on plant oils in ration of rats (in particular irradiated) reduced their antioxidant status in spite of an increase in the tocopherol content and a rise in the β carotene level in animal liver. An opposite effect is achieved by using flax oil with vitamins of antioxidant effect (the level of lipid peroxidation products is reduced, catalase activity is normalised, the content of non enzymatic antioxidants is sharply increased). It decreases a radio sensitiveness of mammal organism. 15 refs., 3 tabs

  12. Protective effects of zinc on oxidative stress enzymes in liver of protein-deficient rats.

    Science.gov (United States)

    Sidhu, Pardeep; Garg, M L; Dhawan, D K

    2005-01-01

    Persons afflicted with protein malnutrition are generally deficient in a variety of essential micronutrients like zinc, copper, iron, and selenium, which in turn affects number of metabolic processes in the body. To evaluate the protective effects of zinc on the enzymes involved in oxidative stress induced in liver of protein-deficient rats, the current study was designed. Zinc sulfate at a dose level of 227 mg/L zinc in drinking water was administered to female Sprague-Dawley normal control as well as protein-deficient rats for a total duration of 8 weeks. The effects of zinc treatment in conditions of protein deficiency were studied on rat liver antioxidant enzymes, which included catalase, glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), glutathione reduced (GSH), and glutathione-S-transferase (GST). Protein deficiency in normal rats resulted in a significant increase in hepatic activities of catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase and the levels of lipid peroxidation. A significant inhibition in the levels of reduced glutathione and the enzyme activity of superoxide dismutase has been observed after protein deficiency in normal rats. Interestingly, Zn treatment to protein-deficient animals lowered already raised activity catalase, glutathione peroxidase, and glutathione-S-transferase and levels of lipid peroxidation to significant levels when compared to protein-deficient animals. Also, Zn treatment to the protein-deficient animals resulted in a significant elevation in the levels of GSH and SOD activity as compared to their respective controls, thereby indicating its effectiveness in regulating their levels in adverse conditions. It has also been observed that concentrations of zinc, copper, iron, and selenium were found to be decreased significantly in protein-deficient animals. However, the levels of these elements came back to within normal limits when zinc was administrated

  13. Gelam Honey Protects against Gamma-Irradiation Damage to Antioxidant Enzymes in Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2013-02-01

    Full Text Available The present study was designed to determine the radioprotective effects of Malaysian Gelam honey on gene expression and enzyme activity of superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GPx of human diploid fibroblasts (HDFs subjected to gamma-irradiation. Six groups of HDFs were studied: untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/mL of sterilized Gelam honey (w/v for 24 h and exposed to 1 Gray (Gy of gamma rays at the dose rate of 0.25 Gy/min. Gamma-irradiation was shown to down-regulate SOD1, SOD2, CAT and GPx1 gene expressions (p < 0.05. Conversely, HDFs treated with Gelam honey alone showed up-regulation of all genes studied. Similarly, SOD, CAT and GPx enzyme activities in HDFs decreased with gamma-irradiation and increased when cells were treated with Gelam honey (p < 0.05. Furthermore, of the three different stages of study treatment, pre-treatment with Gelam honey caused up-regulation of SOD1, SOD2 and CAT genes expression and increased the activity of SOD and CAT. As a conclusion, Gelam honey modulates the expression of antioxidant enzymes at gene and protein levels in irradiated HDFs indicating its potential as a radioprotectant agent.

  14. Antioxidant activities and functional properties of enzymatic protein hydrolysates from defatted Camellia oleifera seed cake.

    Science.gov (United States)

    Li, Xu; Deng, Junlin; Shen, Shian; Li, Tian; Yuan, Ming; Yang, Ruiwu; Ding, Chunbang

    2015-09-01

    Seed cake protein (SCP) from Camellia oleifera was hydrolyzed by five commercial proteases (Flavorzyme, Trypsin, Neutrase, Papain, Alcalase). Amino acid composition, molecular weight distribution, antioxidant activity and functional property of the seed cake protein hydrolysates (SCPH) were investigated. Enzymatic hydrolysis improved protein solubility significantly but impaired the foaming and emulsifying property. Hydrolysate generated by alcalase had the highest hydrolysis degree (DH) and antioxidant activity, and displayed excellent protein solubility over wide range of pH, while hydrolysate prepared by flavorzyme showed better copper chelating capacity and emulsifying stability with low molecular weight distribution. Trypsin-treated SCPH showed better foaming property than original protein. The results indicated that enzyme type greatly influenced the molecular weight, functional property and antioxidant activity of SCPH. It was also found that electing appropriate protease and controlling the DH could be enhanced or reduced functional property according to actual applications. PMID:26344981

  15. Capsaicin protects endothelial cells and macrophage against oxidized low-density lipoprotein-induced injury by direct antioxidant action.

    Science.gov (United States)

    Chen, Kuo-Shuen; Chen, Pei-Ni; Hsieh, Yih-Shou; Lin, Chin-Yin; Lee, Yi-Hsun; Chu, Shu-Chen

    2015-02-25

    Atherosclerosis is a chronic inflammatory vascular disease. It is characterized by endothelial dysfunction, lipid accumulation, leukocyte activation, and the production of inflammatory mediators and reactive oxygen species (ROS). Capsaicin, a biologically active compound of the red pepper and chili pepper, has several anti-oxidant, anti-inflammatory, anti-cancer, and hypolipidemic biological effects. However, its protective effects on foam cell formation and endothelial injury induced by oxidized low-density lipoprotein (oxLDL) remain unclear. In this study, we evaluated the anti-oxidative activity of capsaicin, and determined the mechanism by which capsaicin rescues human umbilical vein endothelial cells (HUVECs) from oxLDL-mediated dysfunction. The anti-oxidative activity of capsaicin was defined by Apo B fragmentation and conjugated diene production of the copper-mediated oxidation of LDL. Capsaicin repressed ROS generation, as well as subsequent mitochondrial membrane potential collapse, cytochrome c expression, chromosome condensation, and caspase-3 activation induced by oxLDL in HUVECs. Capsaicin also protected foam cell formation in macrophage RAW 264.7 cells. Our results suggest that capsaicin may prevent oxLDL-induced cellular dysfunction and protect RAW 264.7 cells from LDL oxidation. PMID:25603234

  16. Evaluation of Antioxidant Activity and γ-radiation Induced Oxidative Stress Protection of Aquilaria crassna Leaf Extract

    International Nuclear Information System (INIS)

    In Asia Aquilaria has long been used in many traditional medicines due to its enrichment inseveral active ingredients such as flavonoids, tannins, and cardiac glycosides. The objective of this work is to investigate and evaluate antioxidant and γ-radiation induced oxidative stress protection activities of the Aquilaria leaf extract. The leaf was extracted by Soxhlet extractor in which both the upper fraction (filtrate) and the lower fraction (precipitate) were kept separately for evaluation. In terms of antioxidant activity, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) was used in a free radical scavenging assay. The precipitate of 3.13, 6.25, 12.50, 25.00, 50.00 and 100 μg/ml exhibited 17.70%, 33.52%, 45.80%, 60.49%, 76.30% and 85.71% DPPH inhibition, respectively. The filtrate at the same concentrations showed approximately 50% less inhibition than the precipitate. The extracts did not exhibit any cytotoxicity by MTT assay. However, the precipitate at 10, 20, 100 μg/ml and the filtrate at 50, 100, 200 μg/ ml could not protect human dermal fibroblast cells from irradiation damage when the cells were treated for 45 min or 24 h prior to exposure to gamma radiation at 0, 3 and 10 Gy. In conclusion, the Aquilaria leaf extract contained a potent antioxidant activity, but not μ-radiation induced oxidative stress protection activity.

  17. Antioxidant protective effect of flavonoids on linoleic acid peroxidation induced by copper(II)/ascorbic acid system.

    Science.gov (United States)

    Beker, Bilge Yıldoğan; Bakır, Temelkan; Sönmezoğlu, Inci; Imer, Filiz; Apak, Reşat

    2011-11-01

    Antioxidants are compounds that can delay or inhibit lipid oxidation. The peroxidation of linoleic acid (LA) in the absence and presence of Cu(II) ion-ascorbate combinations was investigated in aerated and incubated emulsions at 37°C and pH 7. LA peroxidation induced by copper(II)-ascorbic acid system followed first order kinetics with respect to hydroperoxides concentration. The extent of copper-initiated peroxide production in a LA system assayed by ferric thiocyanate method was used to determine possible antioxidant and prooxidant activities of the added flavonoids. The effects of three different flavonoids of similar structure, i.e. quercetin (QR), morin (MR) and catechin (CT), as potential antioxidant protectors were studied in the selected peroxidation system. The inhibitive order of flavonoids in the protection of LA peroxidation was: morin>catechin≥quercetin, i.e. agreeing with that of formal reduction potentials versus NHE at pH 7, i.e. 0.60, 0.57 and 0.33V for MR, CT, and QR, respectively. Morin showed antioxidant effect at all concentrations whereas catechin and quercetin showed both antioxidant and prooxidant effects depending on their concentrations. The structural requirements for antioxidant activity in flavonoids interestingly coincide with those for Cu(II)-induced prooxidant activity, because as the reducing power of a flavonoid increases, Cu(II)-Cu(I) reduction is facilitated that may end up with the production of reactive species. The findings of this study were evaluated in the light of structure-activity relationships of flavonoids, and the results are believed to be useful to better understand the actual conditions where flavonoids may act as prooxidants in the preservation of heterogeneous food samples containing traces of transition metal ions. PMID:21925488

  18. How Egg Case Proteins Can Protect Cuttlefish Offspring?

    Directory of Open Access Journals (Sweden)

    Valérie Cornet

    Full Text Available Sepia officinalis egg protection is ensured by a complex capsule produced by the female accessory genital glands and the ink bag. Our study is focused on the proteins constituting the main egg case. De novo transcriptomes from female genital glands provided essential databases for protein identification. A proteomic approach in SDS-PAGE coupled with MS unveiled a new egg case protein family: SepECPs, for Sepia officinalis Egg Case Proteins. N-glycosylation was demonstrated by PAS staining SDS-PAGE gels. These glycoproteins are mainly produced in the main nidamental glands. SepECPs share high sequence homology, especially in the signal peptide and the three cysteine-rich domains. SepECPs have a high number of cysteines, with conserved motifs involved in 3D-structure. SDS-PAGE showed that SepECPs could form dimers; this result was confirmed by TEM observations, which also revealed a protein network. This network is similar to the capsule network, and it associates these structural proteins with polysaccharides, melanin and bacteria to form a tight mesh. Its hardness and elasticity provide physical protection to the embryo. In addition, SepECPs also have bacteriostatic antimicrobial activity on GRAM- bacteria. By observing the SepECP / Vibrio aestuarianus complex in SEM, we demonstrated the ability of these proteins to agglomerate bacteria and thus inhibit their growth. These original proteins identified from the outer egg case ensure the survival of the species by providing physical and chemical protection to the embryos released in the environment without any maternal protection.

  19. Comparison of antioxidant capacity, protein profile and carbohydrate content of whey protein fractions.

    Science.gov (United States)

    Önay-Uçar, Evren; Arda, Nazlı; Pekmez, Murat; Yılmaz, Ayşe Mine; Böke-Sarıkahya, Nazlı; Kırmızıgül, Süheyla; Yalçın, A Suha

    2014-05-01

    Whey is used as an additive in food industry and a dietary supplement in nutrition. Here we report a comparative analysis of antioxidant potential of whey and its fractions. Fractions were obtained by size exclusion chromatography, before and after enzymatic digestion with pepsin or trypsin. Superoxide radical scavenging, lipid peroxidation inhibition and cupric ion reducing activities of different fractions were checked. Peptides were detected by SDS-PAGE and GC-MS was used to determine carbohydrate content of the fractions. All samples showed antioxidant activity and the second fraction of the trypsin hydrolysate showed the highest superoxide radical scavenging activity. CUPRAC value of this fraction was two-times higher than that of whey filtrate. The first fraction of the pepsin hydrolysate was the most effective inhibitor of lipid peroxidation. Each sample exhibited a different polypeptide profile. Different percentages of carbohydrates were identified in whey filtrate and in all second fractions, where galactose was the major component. PMID:24360416

  20. Dietary supplement enriched in antioxidants and omega-3 protects from progressive light-induced retinal degeneration.

    Directory of Open Access Journals (Sweden)

    Khaoula Ramchani-Ben Othman

    Full Text Available In the present study, we have evaluated one of the dietary supplements enriched with antioxidants and fish oil used in clinical care for patient with age-related macular degeneration. Rats were orally fed by a gastric canula daily with 0.2 ml of water or dietary supplement until they were sacrificed. After one week of treatment, animals were either sacrificed for lipid analysis in plasma and retina, or used for evaluation of rod-response recovery by electroretinography (ERG followed by their sacrifice to measure rhodopsin content, or used for progressive light-induced retinal degeneration (PLIRD. For PLIRD, animals were transferred to bright cyclic light for one week. Retinal damage was quantified by ERG, histology and detection of apoptotic nuclei. Animals kept in dim-cyclic-light were processed in parallel. PLIRD induced a thinning of the outer nuclear layer and a reduction of the b-wave amplitude of the ERG in the water group. Retinal structure and function were preserved in supplemented animals. Supplement induced a significant increase in omega-3 fatty acids in plasma by 168% for eicosapentaenoic acid (EPA, 142% for docosapentaenoic acid (DPA and 19% for docosahexaenoic acid (DHA and a decrease in the omega-6 fatty acids, DPA by 28%. In the retina, supplement induced significant reduction of linolenic acid by 67% and an increase in EPA and DPA by 80% and 72%, respectively, associated with significant decrease in omega-6 DPA by 42%. Supplement did not affect rhodopsin content or rod-response recovery. The present data indicate that supplement rapidly modified the fatty acid content and induced an accumulation of EPA in the retina without affecting rhodopsin content or recovery. In addition, it protected the retina from oxidative stress induced by light. Therefore, this supplement might be beneficial to slow down progression of certain retinal degeneration.

  1. Antioxidant Protection against Pathological Mycotoxins Alterations on Proximal Tubules in Rat Kidney

    Directory of Open Access Journals (Sweden)

    Susan Abdu

    2011-04-01

    Full Text Available Background: Ochratoxin A (OTA was one of the mycotoxins and received attention worldwide because of the hazard it posed to human and animal health, where the kidney was the primary target organ for OTA toxicity. In the other hand, dates served as a good source of natural antioxidants and could potentially be considered as a functional food.Methods: The study was performed in the department of biology in King Abdulaziz University. Animals were gavage administrated and divided into four groups: first group received (sodium bicarbonate, second group received (289 µg OTA /kg B.W. /day, third group received (1mg Ajwa/kg B.W. / day and fourth group received (289 µg OTA /kg B.W./day+ 1mg Ajwa /kg B.W. / day. Serum (creatinine - urea levels were measured in each group at the time of tissue collection , some biopsies were fixed in 10% buffered formalin solution for light microscopy processing stained with Haematoxylin and Eosin (H& E., Periodic Acid-Schiff (PAS and Masson´s Trichrome (M.T..Other biopsies were immediately collected into electron microscopy processing. Results: After 28 days, a significant decrease in body weight, kidney weight and relative weight was detected in OTA treated group. Also, Serum (creatinine - urea level were elevated .The normal cyto-architecture of proximal tubules were lost exhibiting damaged bruch border, degenerated, binucleated and karyomegalic cells. The most destructed ultra-structure was the mitochondria which severely swollen with disintegrated membranes. In Ajwa Date extract-group the proximal tubules were normal, whereas in Ajwa date extract + OTA -group the severity of the lesions was significantly reduced. Conclusion: The present results indicated that, Ajwa date have protective effects and ameliorated the lesions of Ochratoxin nepherotoxicity which might lead to kidney failure.

  2. Effect of irradiation of electron beam on protein and antioxidized enzyme activity of microcystis aeruginosa

    International Nuclear Information System (INIS)

    Microcystis aeruginosa often threatens human health and safety for its microcystin and bad smell. Its large number and hardness of removal are difficulty for water treatment. In this study, electron beam generated by an accelerator was applied to irradiate Microcystis aeruginosa by dose of l, 2, 3, 4 and 5 kGy. The effect of irradiation on Microcystis aeruginosa characteristic and mechanism was studied by surveying the changing of protein, enzyme activity and photosynthesis rate. The data show that irradiation of 1 kGy has little effect on dissoluble protein, POD and SOD activity. Irradiation of 25 kGy can decrease protein content and destroy the antioxidant system, also the photosynthesis rate decreases obviously, which makes Microcystis aeruginosa lose activity in short time. The result proves that a certain dose of electron beam irradiation can control algae growth and affect its life characteristic efficiently. (authors)

  3. Antioxidant activities of red tilapia (Oreochromis niloticus) protein hydrolysates as influenced by thermolysin and alcalase

    Science.gov (United States)

    Daud, Nur'Aliah; Babji, Abdul Salam; Yusop, Salma Mohamad

    2013-11-01

    The hydrolysis process was performed on fish meat from Red Tilapia (Oreochromis niloticus) by enzymes thermolysin and alcalase under optimum conditions. The hydrolysis was performed from 0 - 4 hours at 37°C. Hydrolysates after 2 hours incubation with thermolysin and alcalase had degree of hydrolysis of 76.29 % and 63.49 %, respectively. The freeze dried protein hydrolysate was tested for peptide content and characterized with respect to amino acid composition. The result of increased peptide content in Red Tilapia (O. Niloticus) hydrolysates obtained was directly proportional to the increase activities of different proteolytic enzymes. The result of amino acid composition showed that the sample used contained abundant Gly, Ala, Asp, Glu, Lys and Leu in residues or peptide sequences. Both enzymatic hydrolysates were tested for anti-oxidant activity with DPPH and ABTS assay. Alcalase yielded higher anti-oxidative activity than Thermolysin hydrolysates after 1 hour incubation, but both enzymes hydrolysates showed a significant decrease of anti-oxidant activity after 2 hours of incubation. Hydrolysates from Red Tilapia may contribute as a health promoting ingredient in functional foods to reduce oxidation stress caused by accumulated free radicals.

  4. Antioxidant and antimicrobial activity of lecithin free egg yolk protein preparation hydrolysates obtained with digestive enzymes

    Directory of Open Access Journals (Sweden)

    Aleksandra Zambrowicz

    2012-12-01

    Full Text Available ABSTRACT:Several biological activities have now been associated with egg protein- derived peptides, including antihypertensive, antimicrobial, immunomodulatory, anticancer and antioxidantactivities, highlighting the importance of these biopeptides in human health, and disease prevention and treatment. Special attention has been given to peptides with antioxidant and antimicrobial activities as a new source of natural preservatives in food industry. In this study, the antioxidant properties of the egg-yolk protein by-product (YP hydrolysates were evaluated based on their radical scavenging capacity (DPPH, Fe2+chelating effect and ferric reducing power (FRAP. Furthermore, antimicrobial properties of obtained hydrolysates against Bacillus species were studied. The degrees (DHs of hydrolysis for 4h hydrolysates were: 19.1%, 13.5% and 13.0%, for pepsin, chymotrypsin and trypsin, respectively. Pepsin was the most effective in producing the free amino groups (1410.3 μmolGly/g. The RP-HPLC profiles of the protein hydrolysates showed differences in the hydrophobicity of the generated peptides.Trypsin hydrolysate obtained after 4h reaction demonstrated the strongest DPPH free radical scavenging activity (0.85 µmol Troloxeq/mg. Trypsin and chymotrypsin hydrolysates obtained after 4h reaction exhibited 4 times higher ferric reducing capacity than those treated bypepsin. The hydrolysis products obtained from YP exhibited significant chelating activity. The 4h trypsin hydrolysate exhibited weak antimicrobial activity against B. subtilis B3; B. cereus B512; B. cereus B 3p and B. laterosporum B6.

  5. Total antioxidant and oxidant status of plasma and renal tissue of cisplatin-induced nephrotoxic rats: protection by floral extracts of Calendula officinalis Linn.

    Science.gov (United States)

    Verma, Pawan Kumar; Raina, Rajinder; Sultana, Mudasir; Singh, Maninder; Kumar, Pawan

    2016-01-01

    The present study was aimed to determine the total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) of plasma and renal tissue in cisplatin (cDDP) induced nephrotoxic rats and its protection by treatments with floral extracts of Calendula officinalis Linn. Treatment with cDDP elevated (p officinalis along with cDDP restored (p > 0.05) CR, albumin, TOS, GSH and activities of antioxidant enzymes in blood and renal tissue. Ethanolic extract treatments reduced (p officinalis protect cDDP induced nephrotoxicity by restoring antioxidant system of the renal tissue. PMID:26513373

  6. Antioxidant activities of two sericin proteins extracted from cocoon of silkworm (Bombyx mori) measured by DPPH, chemiluminescence, ORAC and ESR methods

    OpenAIRE

    TAKECHI, TAYORI; WADA, RITSUKO; FUKUDA, TSUBASA; HARADA, KAZUKI; TAKAMURA, HITOSHI

    2014-01-01

    Recent efforts have focused on the use of sericin proteins extracted from cocoons of silkworm as a healthy food source for human consumption. In this study, we focused on the antioxidative properties of sericin proteins. The antioxidative properties were measured in sericin proteins extracted from the shell of the cocoon, designated hereafter as white sericin protein and yellow-green sericin protein, as well as bread without sericin protein and bread to which white sericin powder had been add...

  7. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates

    OpenAIRE

    Melissa Ferreira SBROGGIO; Marina Silveira MONTILHA; Vitória Ribeiro Garcia de FIGUEIREDO; Sandra Regina GEORGETTI; Louise Emy KUROZAWA

    2016-01-01

    Abstract The objective of this work was to evaluate the antioxidant activity of protein hydrolysates obtained by the enzymatic hydrolysis of okara using an endopeptidase (Alcalase) and exopeptidase (Flavourzyme). The reaction was monitored by the pH-stat procedure in which five aliquots were collected during the hydrolysis by each enzyme, corresponding to different degrees of hydrolysis (DH). The antioxidant activities of the aliquots were evaluated by the ABTS, DPPH and FRAP methods. For the...

  8. Antioxidant Effectiveness of Vegetable Powders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties: Implications for Health

    OpenAIRE

    Wendy Russell; Sylvia Stephen; Charles Bestwick; Fiona Campbell; Garry Duthie

    2013-01-01

    Lipid and protein oxidation decreases the shelf-life of foods and may result in formation of end-products potentially detrimental for health. Consumer pressure to decrease the use of synthetic phenolic antioxidants has encouraged identification of alternative compounds or extracts from natural sources. We have assessed whether inclusion of dried vegetable powders improves the oxidative stability of turkey meat patties. Such powders are not only potentially-rich sources of phenolic antioxidant...

  9. Antioxidant Activity of Fish Protein Hydrolysates in in vitro Assays and in Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Andersen, Lisa Lystbæk; Jacobsen, Charlotte;

    The aim of this study was to screen different protein hydrolysates with respect to their antioxidative properties in order to select the most promising extracts for further evaluation in oil-in-water emulsions. Three fractions of protein hydrolysates (Crude, >5kDa and 5kDa, 3-5kDa and...

  10. Atheroprotective effects of antioxidants through inhibition of mitogen-activated protein kinases

    Institute of Scientific and Technical Information of China (English)

    Moe KYAW; Masanori YOSHIZUMI; Koichiro TSUCHIYA; Yuki IZAWA; Yasuhisa KANEMATSU; Toshiaki TAMAKI

    2004-01-01

    Reactive oxygen species (ROS) have been known to play an important role in the pathogenesis of atherosclerosis and several other cardiovascular diseases. It is now apparent that ROS induce endothelial cell damage and vascular smooth muscle cell (VSMC) growth and cardiac remodeling, which are associated with hypertension,atherosclerosis, heart failure, and restenosis. Several lines of evidence have indicated that ROS and mitogenactivated protein (MAP) kinases were involved in vascular remodeling under various pathological conditions. Recenfiy,it was also reported that MAP kinases were sensitive to oxidative stress. MAP kinases play an important role in cell differentiation, growth, apoptosis, and the regulation of a variety of transcription factors and gene expressions.Bioflavonoids and polyphenolic compounds are believed to be beneficial for the prevention and treatment of atherosclerosis and cardiovascular diseases. One of the most widely distributed bioflavonoids, 3,3',4',5,7-pentahydroxyflavone (quercetin) and its metabolite quercetin 3-O-β-D-glucuronide (Q3GA) inhibited Angiotensin Ⅱstimulated JNK activation and resultant hypertrophy of VSMC. Several studies have suggested that various antioxidants including probucol, N-acetyl-L-cysteine, diphenylene iodonium, Trolox C (vitamin E analogue), and vitamin C inhibit VSMC growth, which is associated with pathogenesis of cardiovascular diseases. Therefore, inhibition of MAP kinases by antioxidant treatment may prove to be a therapeutic strategy for cardiovascular diseases. In contrast, some clinical studies have reported that antioxidant vitamins did not show beneficial effects in coronary artery disease or in a number of high-risk people. Thus, further studies are needed to clarify why antioxidants showed beneficial effects in vitro, whereas less satisfactory results were obtained in some clinical conditions.

  11. In vitro antioxidant potential and deoxyribonucleic acid protecting activity of CNB-001, a novel pyrazole derivative of curcumin

    Directory of Open Access Journals (Sweden)

    Richard L Jayaraj

    2014-01-01

    Full Text Available Background: Free radicals are underpinned to initiate cascade of toxic events leading to oxidative stress and resultant cell death in many neurodegenerative disorders. Now-a-days antioxidants have become mandatory in the treatment of various diseases apart from the drug′s modes of action. CNB-001, a novel hybrid molecule synthesized by combining curcumin and cyclohexyl bisphenol A is known to possess various biological activities, but the antioxidative property of the compound has not yet been elucidated. Aim: The present study is aimed to analyze various free radicals scavenging by employing in vitro antioxidant assays and to evaluate the deoxyribonucleic acid (DNA protecting the ability of CNB-001 against hydroxyl radicals. Materials and methods: The in vitro antioxidant potential of CNB-001 was evaluated by analyzing its ability to scavenge DPPH, ABTS, nitric oxide, superoxide, hydrogen peroxide, superoxide anion, hydroxyl, hydrogen peroxide radicals and reducing power using spectroscopic method. The DNA protecting activity of CNB-001 was also evaluated on pUC19 plasmid DNA subjected to hydroxyl radicals using standard agarose gel electrophoresis. Results: From the assays, it was observed that CNB-001 scavenged free radicals effectively in a dose dependent manner. CNB-001 scavenged 2,2-diphenyl-1-picrylhydrazyl (IC50 = 44.99 μg/ml, 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (IC50 = 17.99 μg/ml, nitric oxide (IC50 = 1.36 μg/ml, superoxide radical (IC50 = 77.17 μg/ml, hydrogen peroxide (IC50 = 492.7 μg/ml, superoxide (IC50 = 36.92 μg/ml and hydroxyl (IC50 = 456.5 μg/ml radicals effectively and the reducing power was found to be 11.53 μg/ml. CNB-001 showed considerable protecting activity against plasmid DNA (pUC19 strand scission by ·OH at dose dependent manner. Conclusion: Results from these assays concluded that CNB-001 has a good antioxidant potential by reducing reactive oxygen and reactive nitrogen radicals and it

  12. Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil

    OpenAIRE

    Seme Youssef Reda

    2011-01-01

    In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG) and Differential Scanning Calorimetry (DSC) analyses, as well as an a...

  13. Antioxidant activity of sugar molasses, including protective effect against DNA oxidative damage

    OpenAIRE

    Guimarães, Carla M.; Maria S. Gião; Martinez, Sidónia S.; Pintado, Ana I.; Pintado, Manuela E.; Bento, Luís S.; Malcata, F. Xavier

    2007-01-01

    Extracts were obtained from molasses, a byproduct of the sugar industry, via a number of chromatographic steps. Their antioxidant capacity was studied, including the inhibitory effect upon DNA oxidative damage;the phenolic compound profile there of was ascertained as well. Two extracts exhibited significant antioxidant features, expressed by their capacity to decolorize ABTS radical cation and to scavenge hydroxyl free radicals (via deoxyribose assay). Those 2 extracts also brought abou...

  14. Protective Effects of Zinc Against Acute Arsenic Toxicity by Regulating Antioxidant Defense System and Cumulative Metallothionein Expression.

    Science.gov (United States)

    Ganger, Renuka; Garla, Roobee; Mohanty, Biraja Prasad; Bansal, Mohinder Pal; Garg, Mohan Lal

    2016-02-01

    Arsenic (As), a toxic metalloid, is one of the major global concerns. The toxicity resulting from As exposure is linked to the generation of reactive oxygen intermediates during their redox cycling and metabolic activation processes that cause lipid peroxidation (LPO). Zinc (Zn), a redox-inactive metal, helps to maintain cellular functions because of its prominent role in antioxidant network through multiple mechanisms. The present study, therefore, explores the effectiveness of administered Zn to combat against acute As toxicity by analysis of antioxidant defense status, alkaline phosphatase (ALP) activity, histological profile, MT expression, and elemental status in rat liver. To achieve this goal, four experimental groups, one control and three receiving different metal supplementations, were chosen (group 1, control; group 2, Zn supplemented; group 3, As substituted; group 4, Zn + As supplemented). The levels of reduced glutathione (GSH) and activities of glutathione reductase (GR) and ALP were lowered, whereas LPO levels and activity of superoxide dismutase (SOD) were elevated with no significant change in catalase (CAT) activity. Histopathological changes were also observed in the As substituted group in comparison to the control. Particle-induced X-ray emission (PIXE) analysis showed decrease in Fe and S concentration in rat liver after As intoxication, whereas As was below detection limit, i.e., <1 ppm. Zn administration almost restored the antioxidants, ALP activity, histopathological changes, and elemental status. A cumulative increase in MT expression was found with the combined treatment of Zn and As. Also, Zn alone caused no significant change in the antioxidant defense system. It can be concluded that restoration of antioxidant activity and increased MT expression are the two independent protective mechanisms of Zn to reduce acute As toxicity. PMID:26113309

  15. Nucleobase-based barbiturates: their protective effect against DNA damage induced by bleomycin-iron, antioxidant, and lymphocyte transformation assay.

    Science.gov (United States)

    Dhorajiya, Bhaveshkumar D; Dholakiya, Bharatkumar Z; Ibrahim, Ahmed S; Badria, Farid A

    2014-01-01

    A number of nucleobase-based barbiturates have been synthesized by combination of nucleic acid bases and heterocyclic amines and barbituric acid derivatives through green and efficient multicomponent route and one pot reaction. This approach was accomplished efficiently using aqueous medium to give the corresponding products in high yield. The newly synthesized compounds were characterized by spectral analysis (FT-IR, (1)H NMR, (13)C NMR, HMBC, and UV spectroscopy) and elemental analysis. Representative of all synthesized compounds was tested and evaluated for antioxidant, bleomycin-dependent DNA damage, and Lymphocyte Transformation studies. Compounds TBC > TBA > TBG showed highest lymphocyte transformation assay, TBC > TBA > BG showed inhibitory antioxidant activity using ABTS methods, and TBC > BPA > BAMT > TBA > 1, 3 -TBA manifested the best protective effect against DNA damage induced by bleomycin. PMID:24900997

  16. Senescence marker protein 30 has a cardio-protective role in doxorubicin-induced cardiac dysfunction.

    Directory of Open Access Journals (Sweden)

    Makiko Miyata

    Full Text Available BACKGROUND: Senescence marker protein 30 (SMP30, which was originally identified as an aging marker protein, is assumed to act as a novel anti-aging factor in the liver, lungs and brain. We hypothesized that SMP30 has cardio-protective function due to its anti-aging and anti-oxidant effects on doxorubicin (DOX-induced cardiac dysfunction. METHODS AND RESULTS: SMP30 knockout (SMP30 KO mice, SMP30 transgenic (SMP30 TG mice with cardiac-specific overexpression of SMP30 gene and wild-type (WT littermate mice at 12-14 weeks of age were given intra-peritoneal injection of DOX (20 mg/kg or saline. Five days after DOX injection, echocardiography revealed that left ventricular ejection fraction was more severely reduced in the DOX-treated SMP30 KO mice than in the DOX-treated WT mice, but was preserved in the DOX-treated SMP30 TG mice. Generation of reactive oxygen species and oxidative DNA damage in the myocardium were greater in the DOX-treated SMP30 KO mice than in the DOX-treated WT mice, but much less in the SMP30 TG mice. The numbers of deoxynucleotidyltransferase-mediated dUTP nick end-labeling positive nuclei in the myocardium, apoptotic signaling pathways such as caspase-3 activity, Bax/Bcl-2 ratio and phosphorylation activity of c-Jun N-terminal kinase were increased in SMP30 KO mice and decreased in SMP30 TG mice compared with WT mice after DOX injection. CONCLUSIONS: SMP30 has a cardio-protective role by anti-oxidative and anti-apoptotic effects in DOX-induced cardiotoxicity, and can be a new therapeutic target to prevent DOX-induced heart failure.

  17. Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment.

    Science.gov (United States)

    Girgih, Abraham T; Chao, Dongfang; Lin, Lin; He, Rong; Jung, Stephanie; Aluko, Rotimi E

    2015-12-01

    Isolated pea protein (IPP) dispersions (1%, w/v) were pretreated with high pressure (HP) of 200, 400, or 600 MPa for 5 min at 24 °C or high temperature (HT) for 30 min at 100 °C prior to hydrolysis with 1% (w/w) Alcalase. HP pretreatment of IPP at 400 and 600 MPa levels led to significantly (P40%) oxygen radical absorption capacity (ORAC) of hydrolysates. 2,2-Diphenyl-1-picrylhydrazyl, superoxide radical and hydroxyl radical scavenging activities of pea protein hydrolysates were also significantly (P<0.05) improved (25%, 20%, and 40%, respectively) by HP pretreatment of IPP. Protein hydrolysates from HT IPP showed no ORAC, superoxide or hydroxyl scavenging activity but had significantly (P<0.05) improved (80%) ferric reducing antioxidant power. The protein hydrolysates had weaker antioxidant properties than glutathione but overall, the HP pretreatment was superior to HT pretreatment in facilitating enzymatic release of antioxidant peptides from IPP. PMID:26041225

  18. Theoretical tests of the mechanical protection strategy in protein nanomechanics.

    Science.gov (United States)

    Chwastyk, Mateusz; Galera-Prat, Albert; Sikora, Mateusz; Gómez-Sicilia, Àngel; Carrión-Vázquez, Mariano; Cieplak, Marek

    2014-05-01

    We provide theoretical tests of a novel experimental technique to determine mechanostability of proteins based on stretching a mechanically protected protein by single-molecule force spectroscopy. This technique involves stretching a homogeneous or heterogeneous chain of reference proteins (single-molecule markers) in which one of them acts as host to the guest protein under study. The guest protein is grafted into the host through genetic engineering. It is expected that unraveling of the host precedes the unraveling of the guest removing ambiguities in the reading of the force-extension patterns of the guest protein. We study examples of such systems within a coarse-grained structure-based model. We consider systems with various ratios of mechanostability for the host and guest molecules and compare them to experimental results involving cohesin I as the guest molecule. For a comparison, we also study the force-displacement patterns in proteins that are linked in a serial fashion. We find that the mechanostability of the guest is similar to that of the isolated or serially linked protein. We also demonstrate that the ideal configuration of this strategy would be one in which the host is much more mechanostable than the single-molecule markers. We finally show that it is troublesome to use the highly stable cystine knot proteins as a host to graft a guest in stretching studies because this would involve a cleaving procedure. PMID:24123195

  19. Identification and characterization of antioxidant peptides obtained by gastrointestinal digestion of amaranth proteins.

    Science.gov (United States)

    Orsini Delgado, María C; Nardo, Agustina; Pavlovic, Marija; Rogniaux, Hélène; Añón, María C; Tironi, Valeria A

    2016-04-15

    The objective of the present work was to separate and identify antioxidant peptides from a simulated gastrointestinal digest (Id) from Amaranthus mantegazzianus proteins (I), which has previously been demonstrated to have this activity. I and Id were separated by preparative RP-HPLC. Fractions were evaluated by the ORAC method and the more active ones were analyzed by LC-MS/MS. Each fraction presented diverse peptides from different proteins, most of them from the 11S globulin. After grouping the peptides from 11S globulin according to their overlapping sequences, and based on previous information about structure-activity relationships, ten sequences were synthesized, in order to evaluate their antioxidant activity. Four peptides presented interesting activity: AWEEREQGSR>YLAGKPQQEH∼IYIEQGNGITGM∼TEVWDSNEQ. They exhibited some of the structural characteristics already known to demonstrate this activity, all of them containing at least one bulky aromatic residue. All belonged to little structured, internal or exposed regions of the acid subunit of the 11S globulin. PMID:26675853

  20. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Phytotoxicity of cadmium on growing Arachis hypogaea L. seedlings was studied. Seeds were exposed to 25, 50, and 100 μmol/L CdCl2 concentrations, for a period of 10, 15, 20 and 25 d. The extent of damage to chlorophyll, protein, proline, nitrate and nitrite reductase, antioxidant enzyme activity in leaves and roots were evaluated after 10 d of cadmium stress. The higher concentration of cadmium (100 μmol/L) resulted (leaves and roots) total chlorophyll 91.01%, protein 79.51%, 83.61%, nitrate reductase 79.39%,80.72% and nitrite reductase 77.07%, 75.88% activity decreased with increase in cadmium concentrations and exposure periods. Cadmium caused significant changes in the activity of antioxidative enzymes. Contrastingly Cd treated plant tissues showed an increase in proline 159.87%, 239.6%, gluthion reductase (GR) 337.72%, 306.14%, superoxide disumutase (SOD) 688.56%, 381.72%, ascorbate peroxidase (APX) 226.47%, 252.14%, peroxidase (POD) 72.19%, 60.29% and catalase (CAT) 228.96%, 214.74% as compared to control. Cadmium stress caused a significant increase in the rate of SOD activity in leaves and roots of plant species. Results show the crop A. hypogaea is highly sensitive even at very low cadmium concentrations.

  1. Amino acid composition and antioxidant properties of pea seed ( Pisum sativum L.) enzymatic protein hydrolysate fractions.

    Science.gov (United States)

    Pownall, Trisha L; Udenigwe, Chibuike C; Aluko, Rotimi E

    2010-04-28

    The amino acid composition and antioxidant activities of peptide fractions obtained from HPLC separation of a pea protein hydrolysate (PPH) were studied. Thermolysin hydrolysis of pea protein isolate and ultrafiltration (3 kDa molecular weight cutoff membrane) yielded a PPH that was separated into five fractions (F1-F5) on a C(18) reverse phase HPLC column. The fractions that eluted later from the column (F3-F5) contained higher contents hydrophobic and aromatic amino acids when compared to fractions that eluted early or the original PPH. Fractions F3-F5 also exhibited the strongest radical scavenging and metal chelating activities; however, hydrophobic character did not seem to contribute to reducing power of the peptides. In comparison to glutathione, the peptide fractions had significantly higher (p < 0.05) ability to inhibit linoleic acid oxidation and chelate metals. In contrast, glutathione had significantly higher (p < 0.05) free radical scavenging properties than the peptide fractions. PMID:20359226

  2. Antioxidant effects of crude extracts from Baccharis species: inhibition of myeloperoxidase activity, protection against lipid peroxidation, and action as oxidative species scavenger

    Directory of Open Access Journals (Sweden)

    Tiago O. Vieira

    2011-08-01

    Full Text Available The objective of this study was to show a comparison of the antioxidant properties of aqueous and ethanolic extracts obtained from Baccharis articulata (Lam. Pers., Baccharis trimera (Less. DC., Baccharis spicata (Lam. Baill. and Baccharis usterii Heering, Asteraceae, by several techniques covering a range of oxidant species and of biotargets. We have investigated the ability of the plant extracts to scavenge DPPH (1,1-diphenyl-2-picryl-hydrazyl free radical, action against lipid peroxidation of membranes including rat liver microsomes and soy bean phosphatidylcholine liposomes by ascorbyl radical and peroxynitrite. Hydroxyl radical scavenger activity was measured monitoring the deoxyribose oxidation. The hypochlorous acid scavenger activity was also evaluated by the prevention of protein carbonylation and finally the myeloperoxidase (MPO activity inhibition. The results obtained suggest that the Baccharis extracts studied present a significant antioxidant activity scavenging free radicals and protecting biomolecules from the oxidation. We can suggest that the supposed therapeutic efficacy of this plant could be due, in part, to these properties.

  3. Pathogenesis-related proteins protect extrafloral nectar from microbial infestation.

    Science.gov (United States)

    González-Teuber, Marcia; Eilmus, Sascha; Muck, Alexander; Svatos, Ales; Heil, Martin

    2009-05-01

    Plants in more than 300 genera produce extrafloral nectar (EFN) to attract carnivores as a means of indirect defence against herbivores. As EFN is secreted at nectaries that are not physically protected from the environment, and contains carbohydrates and amino acids, EFN must be protected from infestation by micro-organisms. We investigated the proteins and anti-microbial activity in the EFN of two Central American Acacia myrmecophytes (A. cornigera and A. hindsii) and two related non-myrmecophytes (A. farnesiana and Prosopis juliflora). Acacia myrmecophytes secrete EFN constitutively at high rates to nourish the ants inhabiting these plants as symbiotic mutualists, while non-myrmecophytes secrete EFN only in response to herbivore damage to attract non-symbiotic ants. Thus, the quality and anti-microbial protection of the EFN secreted by these two types of plants were likely to differ. Indeed, myrmecophyte EFN contained significantly more proteins than the EFN of non-myrmecophytes, and was protected effectively from microbial infestation. We found activity for three classes of pathogenesis-related (PR) enzymes: chitinase, beta-1,3-glucanase and peroxidase. Chitinases and beta-1,3-glucanases were significantly more active in myrmecophyte EFN, and chitinase at the concentrations found in myrmecophyte EFN significantly inhibited yeast growth. Of the 52 proteins found in A. cornigera EFN, 28 were annotated using nanoLC-MS/MS data, indicating that chitinases and glucanases contribute more than 50% of the total protein content in the EFN of this myrmecophyte. Our study demonstrates that PR enzymes play an important role in protecting EFN from microbial infestation. PMID:19143997

  4. Platycodon grandiflorum root attenuates vascular endothelial cell injury by oxidized low-density lipoprotein and prevents high-fat diet-induced dyslipidemia in mice by up-regulating antioxidant proteins.

    Science.gov (United States)

    Chung, Mi Ja; Kim, Soo-Hyun; Park, Jeong-Won; Lee, Young Jin; Ham, Seung-Shi

    2012-05-01

    We hypothesized that a Platycodon grandiflorum root (PG) ethyl acetate extract (PGEA) would help reduce the vascular cell injury caused by oxidized low-density lipoprotein (oxLDL) and prevent high-fat (HF) diet-induced dyslipidemia and oxidative stress by up-regulating antioxidant proteins. We investigated the protective effects of PGEA against vascular endothelial cell injury induced by oxLDL and dyslipidemia induced by an HF diet, and the mechanisms underlying these effects were studied. The protective effects of PGEA were investigated with respect to calf pulmonary arterial endothelial (CPAE) cell viability and the lactate dehydrogenase release during oxLDL treatment. The in vivo effects of PGEA were examined using C57BL/6 mice, which were fed an HF diet for 9 weeks. The HF diet was supplemented with 0, 25, or 75 mg/kg PGEA during the last 4 weeks of the experimental period. Histologic analyses of hepatic lipid accumulation were performed. The changes in antioxidant protein levels induced by PGEA, which protects against HF diet-induced oxidative stress, were measured using a proteomics approach. We found that PGEA exhibited antioxidant activity. In CPAE cells, PGEA inhibited both oxLDL-induced cell death and lactate dehydrogenase release. In the HF diet-induced obese mice that received PGEA, we observed significantly reduced plasma and hepatic lipid levels, demonstrating that PGEA has beneficial effects on hyperlipidemia. In addition, we found that PGEA caused the up-regulation of antioxidant proteins. These findings suggest that the antioxidant effects of PGEA may protect against oxidative stress-related diseases. PMID:22652376

  5. Protective capacity of Artemisia annua as a potent antioxidant remedy against free radical damage

    Institute of Scientific and Technical Information of China (English)

    Peter Nkachukwu Chukwurah; Ebiamadon Andi Brisibe; Aniefiok Ndubuisi Osuagwu; Tebekeme Okoko

    2014-01-01

    Objective: To evaluate the antioxidant capacity of four leaf-derived solvent extracts of Artemisiaannua Methods: A. annua leaves were extracted with four solvents (absolute ethanol, absolute methanol, 70% ethanol and 70% methanol), and extracts obtained studied by five complementaryin vitro antioxidant test systems using ascorbic acid (vitamin C) and rutin as standard references. Results: The extracts remarkably inhibited lipid peroxidation (79.81%-86.70%), and erythrocyte haemolysis (40.02%-49.91%). Their IC50 values for hydroxyl, nitric oxide and hydrogen peroxide radical scavenging activities ranged from 2.39-3.81 mg/mL (superior to the standards), 107.24-144.49 µg/mL and 28.53-53.20 µg/mL, respectively. 70% alcohol extracts generally showed better antioxidant activity than absolute alcohol extracts. (A. annua), a medicinal plant widely touted for its vast phyto-therapeutic potential. Conclusions: The results indicate that A. annua leaf extracts have potent antioxidant activities that would have beneficial effect on human health, and aqueous organic solvents are superior to the absolute counterparts in yielding extracts with better antioxidant potential.

  6. Antioxidant, Biomolecule Oxidation Protective Activities of Nardostachys jatamansi DC and Its Phytochemical Analysis by RP-HPLC and GC-MS

    Directory of Open Access Journals (Sweden)

    Sakina Razack

    2015-03-01

    Full Text Available The study aimed at analyzing the metabolite profile of Nardostachys jatamansi using RP-HPLC, GC-MS and also its antioxidant, biomolecule protective and cytoprotective properties. The 70% ethanolic extract of Nardostachys jatamansi (NJE showed the presence of polyphenols and flavonoids (gallic acid, catechin, chlorogenic acid, homovanillin, epicatechin, rutin hydrate and quercetin-3-rhamnoside analyzed by RP-HPLC, whereas hexane extract revealed an array of metabolites (fatty acids, sesquiterpenes, alkane hydrocarbons and esters by GC-MS analysis. The antioxidant assays showed the enhanced potency of NJE with a half maximal inhibitory concentration (IC50 value of 222.22 ± 7.4 μg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH, 13.90 ± 0.5 μg/mL for 2,2′-azino-bis(3-ethyl benzothiazoline-6-sulfonic acid diammonium salt (ABTS, 113.81 ± 4.2 μg/mL for superoxide, 948 ± 21.1 μg/mL for metal chelating and 12.3 ± 0.43 mg FeSO4 equivalent/g of extract for ferric reducing antioxidant power assays and was more potent than hexane extract. NJE effectively inhibited 2,2′-azobis(2-methylpropionamidine dihydrochloride (AAPH-induced oxidation of biomolecules analyzed by pBR322 plasmid DNA damage, protein oxidation of bovine serum albumin and lipid peroxidation assays. The observed effects might be due to the high content of polyphenols, 53.06 ± 2.2 mg gallic acid equivalents/g, and flavonoids, 25.303 ± 0.9 mg catechin equivalents/g, of NJE compared to the hexane fraction. Additionally, the extract abrogated the protein, carbonyl, and ROS formation, and NJE showed cytotoxicity in SH-SY5Y neuronal cells above 75 μg/mL. Thus, the study suggests that the herb unequivocally is a potential source of antioxidants and could aid in alleviating oxidative stress-mediated disorders.

  7. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    Science.gov (United States)

    Hu, Hongtao; Li, Mo

    2016-09-01

    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD. PMID:27444386

  8. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  9. Immune and anti-oxidant effects of in ovo selenium proteinate on post-hatch experimental avian necrotic enteritis.

    Science.gov (United States)

    Lee, Sung Hyen; Lillehoj, Hyun S; Jang, Seung I; Jeong, Misun; Kim, Duk Kyung; Xu, Shouzhen; Lee, Seung Kyu; Kim, Jung Bong; Park, Hong Ju; Kim, Haeng Ran; Bravo, David M

    2014-12-15

    This study was conducted to investigate the effects of in ovo administration of selenium (Se) incorporated into hydrolyzed soybean protein (B-Taxim [BT]) on protection against experimental avian necrotic enteritis (NE). Broiler eggs were injected with either 100 μl of PBS alone (BT0), or 20 or 40 μg/egg of BT in PBS (BT20, BT40) at 18 days of embryogenesis. On day 14 post-hatch, the chickens were uninfected or orally infected with 1.0 × 10(4) oocysts of Eimeria maxima (E. maxima). On day 18 post-hatch, E. maxima-infected chickens were orally infected with 1.0 × 10(9) CFU of Clostridium perfringens (C. perfringens). Compared with untreated and infected BT0 controls, BT20 and/or BT40 birds showed increased body weights, decreased fecal shedding of E. maxima oocysts, lower serum α-toxin and NetB levels, increased levels of serum antibodies against C. perfringens α-toxin and NetB toxin, decreased levels of serum malondialdehyde, reduced serum catalase and superoxide dismutase catalytic activities, and increased intestinal levels of gene transcripts encoding interleukin (IL)-1β, IL-6, IL-8, and peroxiredoxin-6, but decreased levels of transcripts for catalase and glutathione peroxidase. Interestingly, transcript levels for inducible nitric oxide synthase and paraoxonase/arylesterase 2 were decreased in the BT20 group and increased in the BT40 group, compared with BT0 controls. These results indicate that in ovo administration of broiler chickens with a Se-containing protein hydrolysate enhanced protection against experimental NE possibly by altering the expression of proinflammatory and anti-oxidant genes and their downstream pathways. PMID:25468015

  10. Assessment of protective and anti-oxidant properties of Tribulus terrestris fruits against testicular toxicity in rats

    OpenAIRE

    Mostafa Abbas Shalaby; Ashraf Abd El-Khalik Hammouda

    2014-01-01

    Aims: This study was carried out to assess the protective and anti-oxidant activities of the methanolic extract of Tribulus terrestris fruits (METT) against sodium valproate (SVP)-induced testicular toxicity in rats. Materials and Methods: Fifty mature male rats were randomly divided into five equal groups (n = 10). Group 1 was used normal (negative) control, and the other four groups were intoxicated with SVP (500 mg/kg–1, orally) during the last week of the experiment. Group 2 was kept into...

  11. Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina

    OpenAIRE

    Natoli, Riccardo; Zhu, Yuan; Valter, Krisztina; Bisti, Silvia; Eells, Janis; Stone, Jonathan

    2010-01-01

    Purpose To identify the genes and noncoding RNAs (ncRNAs) involved in the neuroprotective actions of a dietary antioxidant (saffron) and of photobiomodulation (PBM). Methods We used a previously published assay of photoreceptor damage, in which albino Sprague Dawley rats raised in dim cyclic illumination (12 h 5 lux, 12 h darkness) were challenged by 24 h exposure to bright (1,000 lux) light. Experimental groups were protected against light damage by pretreatment with dietary saffron (1 mg/kg...

  12. Protective Antioxidant Enzyme Activities are Affected by Drought in Quinoa (Chenopodium Quinoa Willd)

    DEFF Research Database (Denmark)

    Fghire, Rachid; Ali, Oudou Issa; Anaya, Fatima;

    2013-01-01

    of antioxidant enzymes superoxide dismutase (SOD), polyphenoloxydase (PPO), peroxidase (POD) and catalase (CAT), measured at flowering in quinoa, subjected to varying levels of drought stress. Drought levels were 100, 50 and 33% of evapotranspiration (ETc), and rainfed. Compared to full water supply (100%ETc...... increased in all treatments. These results suggest that antioxidant enzymes play important roles in reducing oxidative stress in quinoa plant exposed to drought stress.......Changes in water availability are responsible for a variety of biochemical stress responses in plant organisms. Stress induced by this factor may be associated with enhanced reactive oxygen species (ROS) generations, which cause oxidative damage. In the present study we investigated the activities...

  13. Lipid Peroxidation and Antioxidant Protective System in Patients with Chronic Nonspecific Endometritis

    Directory of Open Access Journals (Sweden)

    Gorodetskaya O.S.

    2011-06-01

    Full Text Available The aim of the study is to reveal the changes in “lipid peroxidation—antioxidant protection” system in chronic endometritis. Materials and Methods. 40 female patients of fertile age with chronic endometritis were examined. A screening method of induced chemiluminescence of serum was used to assess the intensity of free-radical oxidation. Results and Discussion. The patients with chronic endometritis are revealed to have an increased level of lipid peroxidation combined with the decrease in the activity of antioxidant enzymes. A marked imbalance stated requires an appropriate correction.

  14. The antioxidant system.

    Science.gov (United States)

    Bounous, Gustavo; Molson, John H

    2003-01-01

    The glutathione (GSH) antioxidant system is the principal protective mechanism of the cell and is a crucial factor in the development of the immune response by the immune cells. Experimental data demonstrate that a cysteine-rich whey protein concentrate represents an effective cysteine delivery system for GSH replenishment during the immune response. Animal experiments showed that the concentrates of whey protein also exhibit anticancer activity. They do this via the GSH pathway, the induction of p53 protein in transformed cells and inhibition of neoangiogenesis. PMID:12820403

  15. Red Sea Suberea mollis Sponge Extract Protects against CCl4-Induced Acute Liver Injury in Rats via an Antioxidant Mechanism

    Directory of Open Access Journals (Sweden)

    Aymn T. Abbas

    2014-01-01

    Full Text Available Recent studies have demonstrated that marine sponges and their active constituents exhibited several potential medical applications. This study aimed to evaluate the possible hepatoprotective role as well as the antioxidant effect of the Red Sea Suberea mollis sponge extract (SMSE on carbon tetrachloride- (CCl4- induced acute liver injury in rats. In vitro antioxidant activity of SMSE was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH assay. Rats were orally administered three different concentrations (100, 200, and 400 mg/kg of SMSE and silymarin (100 mg/kg along with CCl4 (1 mL/kg, i.p., every 72 hr for 14 days. Plasma aspartate aminotransferase (AST, alanine aminotransferase (ALT, alkaline phosphatase (ALP, and total bilirubin were measured. Hepatic malondialdehyde (MDA, reduced glutathione (GSH, nitric oxide (NO, superoxide dismutase (SOD, glutathione peroxidase (GPx, and catalase (CAT were also measured. Liver specimens were histopathologically examined. SMSE showed strong scavenging activity against free radicals in DPPH assay. SMSE significantly reduced liver enzyme activities. Moreover, SMSE significantly reduced hepatic MDA formation. In addition, SMSE restored GSH, NO, SOD, GPx, and CAT. The histopathological results confirmed these findings. The results of this study suggested a potent protective effect of the SMSE against CCl4-induced hepatic injury. This may be due to its antioxidant and radical scavenging activity.

  16. Antioxidant potentials protect Vigna radiata (L. Wilczek plants from soil cobalt stress and improve growth and pigment composition

    Directory of Open Access Journals (Sweden)

    C. Abdul Jaleel

    2009-05-01

    Full Text Available The experiments were conducted in earthen pots lined with polythene sheet to find out the effect of different concentrations of cobalt (0, 50, 100, 150, 200 and 250 mg/kg soil on various morphological parameters, photosynthetic pigment contents and antioxidant enzyme activities on greengram (Vigna radiata (L. Wilczek. Plants were watered to field capacity daily. Plants were thinned to a maximum of five per pot. The data for various morphological parameters such as, root and shoot length, number of nodules, dry weight of root and shoot and photosynthetic pigments such as chlorophyll ‘a’, chlorophyll ‘b’, total chlorophyll and carotenoids content were collected on 30 days after sowing (DAS. Antioxidant enzymes like catalase, peroxidase and polyphenol oxidase activities were analysed from both control and treated plants. All the growth parameters and pigment contents increased at 50 mg/kg cobalt level in the soil, when compared with control. Further increase in cobalt level (100-250 mg/kg in the soil had a negative impact upon all studied parameters. From these results it is clear that Antioxidant potentials acts as a protective mechanism in Vigna radiata under soil cobalt stress.

  17. Isolation and identification of antioxidant peptides derived from whey protein enzymatic hydrolysate by consecutive chromatography and Q-TOF MS.

    Science.gov (United States)

    Zhang, Qiu-Xiang; Wu, Hui; Ling, Yu-Fang; Lu, Rong-Rong

    2013-08-01

    To isolate and identify antioxidant peptides from enzymatically hydrolysed whey protein, whey protein isolate was hydrolysed by different protease (trypsin, pepsin, alcalase 2·4L, promatex, flavourzyme, protease N). The hydrolysate generated by alcalase 2·4L had the highest antioxidant activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, superoxide radicals and in a linoleic acid peroxidation system induced by Fe2+. The IC50 values of DPPH and superoxide radical scavenging activities of the hydrolysate decreased significantly (6·89 and 38·88%, respectively) after treatment with macroporous adsorption resin. Seven different peptides showing strong antioxidant activities were isolated from the hydrolysate using consecutive chromatographic methods including gel filtration chromatography and high-performance liquid chromatography. The molecular mass and amino acids sequences of the purified peptides were determined using a Quadrupole time-of-flight mass spectrometer (Q-TOF MS). One of the antioxidative peptides, Trp-Tyr-Ser-Leu, displayed the highest DPPH radical scavenging activity (IC50=273·63 μm) and superoxide radical scavenging activity (IC50=558·42 μm). These results suggest that hydrolysates from whey proteins are good potential source of natural antioxidants. PMID:23876604

  18. Responses of antioxidant enzymes and heat shock proteins in drosophila to treatment with a pesticide mixture

    Directory of Open Access Journals (Sweden)

    Doganlar Oguzhan

    2015-01-01

    Full Text Available The effects of a mixture of seven pesticides were examined on the expression of antioxidant enzymes, Mn superoxide dismutase (Mn-SOD, catalase (CAT, glutathione synthetase (GS, and heat shock proteins (HSP 26, 60, 70 and 83 in adult fruit flies (Drosophila melanogaster Oregon R. The flies were reared under controlled conditions on artificial diets and treated with a mixture of seven pesticides (molinate, thiobencarb, linuron, phorate, primiphos-methyl, fenvalerate and lambda-cyhalothrin commonly found in water, at concentrations of 0.1, 0.5 and 1 parts per billion (ppb for 1 and 5 days. Quantitative real-time PCR (qRT-PCR analysis of Mn-SOD, CAT and GS expression revealed that the analyzed markers responded significantly to pesticide-induced oxidative stress, in particular on the 5th day of treatment. On the 1st day of treatment, the relative expression of HSP26 and HSP60 genes increased only after exposure to the highest concentrations of pesticides, whereas HSP70 and HSP83 expression increased after exposure to 0.5 and 1 ppb. After five days of treatment, the expression of all HSP genes was increased after exposure to all pesticide concentrations. A positive correlation was determined between the relative expression levels of some HSPs (except HSP60, and antioxidant genes. The observed changes in antioxidant enzyme and HSP mRNA levels in D. melanogaster suggest that the permissible limits of pesticide concentrations for clean drinking water outlined in the regulations of several countries are potentially cytotoxic. The presented findings lend support for reevaluation of these limits.

  19. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weixin [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wu, Mingchai [Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzou, Zhejiang (China); Tang, Longguang; Pan, Yong; Liu, Zhiguo [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zeng, Chunlai [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Wang, Jingying [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wei, Tiemin, E-mail: lswtm@sina.com [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia

  20. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    International Nuclear Information System (INIS)

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H2O2 or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H2O2 and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H2O2-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia/reperfusion (I/R) injury in vivo. • Compound 14

  1. Metabolism of oxidants and anti-oxidant protective mechanisms in dust exposed human lung cells; Oxidantienmetabolismus und anti-oxidative Schutzmechanismen in staubbelasteten, humanen Lungenzellen

    Energy Technology Data Exchange (ETDEWEB)

    Gillissen, A. [Berufsgenossenschaftliche Kliniken Bergmannsheil - Universitaetsklinik, Medizinische Klinik, Abt. fuer Pneumologie und Allergologie, Bochum (Germany); Jaworska, M. [Berufsgenossenschaftliche Kliniken Bergmannsheil - Universitaetsklinik, Medizinische Klinik, Abt. fuer Pneumologie und Allergologie, Bochum (Germany); Wickenburg, D. [Berufsgenossenschaftliche Kliniken Bergmannsheil - Universitaetsklinik, Medizinische Klinik, Abt. fuer Pneumologie und Allergologie, Bochum (Germany); Schultze-Werninghaus, G. [Berufsgenossenschaftliche Kliniken Bergmannsheil - Universitaetsklinik, Medizinische Klinik, Abt. fuer Pneumologie und Allergologie, Bochum (Germany)

    1994-04-01

    The effect of crocidolite fibers on cultivated human A549-Zells (epithelial like) were tested to induce or inhibit cellular {gamma}-glutamyl-cycle. The cells were exposed with increasing amounts of fibers (0 - 300 {mu}g/cm{sup 2}). Over a 48 h period glutathione has been determined intracellularly as well as extracellularly. Already low fiber concentrations resulted in a notable reduction of intracellular glutathione production. Extracellular glutathione levels augmented with increasing fiber concentrations. Due to increasing cytotoxicity, determined by LDH-release assay, extracellular glutathione increase seems to be related to direct cellular damage rather than to an ability to enhance the antioxidant protection screen on the cellular surface. In this context N-acetylcysteine (NAC) was tested in vitro to augment cellular oxidant capacity. It could be shown that NAC has intrinsic antioxidant capabilities as well as a potent glutathione precursor function. However, further experiments have to be done to determine if NAC can prevent dust related cell death. (orig.) [Deutsch] Es wurde in vitro in einem ersten Versuchsansatz an kultivierten A549-Zellen (eine humane Epithelzellinie) die Wirkung von UICC Krokydolith-Fasern auf den zellulaeren {gamma}-Glutamylzyklus untersucht. Den Zellen wurden steigende Konzentrationen von Krokidolith von 0 - 300 {mu}g/cm{sup 2} aufgelagert. Anschliessend wurden ueber einen Zeitraum von 1 - 48 Stunden sowohl intra- als auch extrazellulaer Glutathion-Bestimmungen durchgefuehrt. Es zeigte sich, dass schon geringe Krokydolith-Konzentrationen gegenueber den unbehandelten Zellen zu einer deutlichen Reduktion der intrazellulaeren Glutathion-Sekretion fuehrten. Die extrazellulaere Glutathion-Messungen zeigten einen Anstieg bei zunehmender Faserkonzentration. Da aber gleichzeitig auch der Zytotoxizitaetsindex (LDH-Release-Assay) deutlich anstieg scheint dieser extrazellulaere Glutathion-Anstieg mehr Ausdruck einer faserinduzierten

  2. Changes in antioxidative protection in bean cotyledons during natural and continuous irradiation-accelerated senescence

    Czech Academy of Sciences Publication Activity Database

    Procházková, Dagmar; Wilhelmová, Naděžda

    2004-01-01

    Roč. 48, č. 1 (2004), s. 33-39. ISSN 0006-3134 R&D Projects: GA ČR GA522/03/0312 Institutional research plan: CEZ:AV0Z5038910 Keywords : Antioxidants * reactive oxygen species * senescence Subject RIV: EF - Botanics Impact factor: 0.744, year: 2004

  3. [Uptake, metabolism, location, and protective antioxidant functioning of vitamin E in lung

    International Nuclear Information System (INIS)

    Studies describing experiments designed to assess to the antioxidant effects of vitamin E, the distribution of vitamin E after its intravenous injection, the transport of tocopherol across cellular membranes, and the ability of vitamin E to modulate lung damage by NO2. 10 refs

  4. Soy versus whey protein bars: Effects on exercise training impact on lean body mass and antioxidant status

    Directory of Open Access Journals (Sweden)

    Babaknia Ari

    2004-12-01

    Full Text Available Abstract Background Although soy protein may have many health benefits derived from its associated antioxidants, many male exercisers avoid soy protein. This is due partly to a popular, but untested notion that in males, soy is inferior to whey in promoting muscle weight gain. This study provided a direct comparison between a soy product and a whey product. Methods Lean body mass gain was examined in males from a university weight training class given daily servings of micronutrient-fortified protein bars containing soy or whey protein (33 g protein/day, 9 weeks, n = 9 for each protein treatment group. Training used workouts with fairly low repetition numbers per set. A control group from the class (N = 9 did the training, but did not consume either type protein bar. Results Both the soy and whey treatment groups showed a gain in lean body mass, but the training-only group did not. The whey and training only groups, but not the soy group, showed a potentially deleterious post-training effect on two antioxidant-related related parameters. Conclusions Soy and whey protein bar products both promoted exercise training-induced lean body mass gain, but the soy had the added benefit of preserving two aspects of antioxidant function.

  5. Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates.

    Science.gov (United States)

    Nongonierma, Alice B; FitzGerald, Richard J

    2013-01-01

    Selected synthetic dipeptides and milk protein hydrolysates were evaluated for their dipeptidyl peptidase IV (DPP-IV) inhibitory properties, and their superoxide (SO) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities. DPP-IV inhibition was seen with eight out of the twelve dipeptides and 5 of the twelve hydrolysates studied. Trp-Val inhibited DPP-IV, however, inhibition was not observed with the reverse peptide Val-Trp. The most potent hydrolysate inhibitors were generated from casein (CasH2) and lactoferrin (LFH1). Two Trp containing dipeptides, Trp-Val and Val-Trp, and three lactoferrin hydrolysates scavenged DPPH. The dipeptides had higher SO EC(50) values compared to the milk protein hydrolysates (arising from three lactoferrin and one whey protein hydrolysates). Higher molecular mass fractions of the milk protein hydrolysates were associated with the SO scavenging activity. Trp-Val and one lactoferrin hydrolysate (LFH1) were multifunctional displaying both DPP-IV inhibitory and antioxidant (SO and DPPH scavenging) activities. These compounds may have potential as dietary ingredients in the management of type 2 diabetes by virtue of their ability to scavenge reactive oxygen species and to extend the half-life of incretin molecules. PMID:23219487

  6. Antioxidant measurements.

    Science.gov (United States)

    Somogyi, Anikó; Rosta, Klára; Pusztai, Péter; Tulassay, Zsolt; Nagy, Géza

    2007-04-01

    Chemical reactions, including oxidation and reduction of molecules, occur in every cell. These reactions can lead to the production of free radicals. Free radicals react with organic substrates such as lipids, proteins, and DNA. Through oxidation free radicals cause damage to these molecules, disturbing their normal function, and may therefore contribute to a variety of diseases. The anti-oxidation system, which consists of enzymatic antioxidants and non-enzymatic antioxidants, defends against oxidative stress. The aim of this review is to summarize general aspects of methods to measure the antioxidant defence system all in one (total antioxidant capacity) and discuss a number of methods which are currently used for detection of antioxidant properties. PMID:17395989

  7. Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment.

    Science.gov (United States)

    Bayram, Tuğba; Pekmez, Murat; Arda, Nazli; Yalçin, A Süha

    2008-05-15

    Whey proteins were isolated from whey powder by a combination of gel exclusion chromatography and protease (pepsin or trypsin) treatment. Whey solution (6g/dl) was applied to Sephadex G-200 column chromatography and three fractions were obtained. Gel electrophoresis (SDS-PAGE) was used to identify the fractions; the first one contained immunoglobulins and bovine serum albumin, the second contained beta-lactoglobulin and alpha-lactalbumin whereas the third fraction contained small peptides. We have also subjected the whey filtrate to proteases (pepsin and trypsin). Treatment with proteases showed that beta-lactoglobulin can be obtained after hydrolysis of the second fraction with pepsin. When the whey filtrate was treated with pepsin and then applied to Sephadex G-200 column chromatography three fractions were obtained; the first one was bovine serum albumin, the second was beta-lactoglobulin and the third fraction contained small peptides. After trypsin treatment only two fractions were obtained; the first one was serum albumin and the second fraction was an alpha-lactalbumin rich fraction. We have determined the antioxidant activity of the fractions using an assay based on the measurement of superoxide radical scavenging activity. Our results showed that among the three fractions, the first fraction had the highest superoxide radical scavenging activity. Also, protease treatment of the second fraction resulted in an increase in the antioxidant activity. PMID:18585135

  8. Investigation of the protective effect of Cinnamomum cassia bark extract against H2O2-induced oxidative DNA damage in human peripheral blood lymphocytes and antioxidant activity

    OpenAIRE

    Sözer Karadağlı, Sumru; Agrap, Borte; Lermioğlu Erciyas, Ferzan

    2014-01-01

    ABSTRACT: Cinnamon, one of the most widely used spices in the world, has been shown tohave various biological functions including antidiabetic and antitumor activities. Its antidiabeticand antitumor effects were linked with its strong antioxidant activity. In the presentstudy we aimed to investigate the antioxidant activity and possible protective effect of Cinnamomumcassia bark water extract against H2O2-induced oxidative DNA damage.Viability of lymphocytes was determined by Trypan Blue test...

  9. Physical chemistry evaluation of stability, spreadability, in vitro antioxidant, and photo-protective capacities of topical formulations containing Calendula officinalis L. leaf extract

    OpenAIRE

    Viviane Cecília Kessler Nunes Deuschle; Regis Augusto Norbert Deuschle; Mariana Rocha Bortoluzzi; Margareth Linde Athayde

    2015-01-01

    Calendula is used widely in cosmetic formulations that present phenolic compounds in their chemical constitution. The objective of our research was to develop and evaluate the stability of topical formulations containing 5% hydro-ethanolic extract of calendula leaves, including spreadability, and in vitro photo-protective, and antioxidant capacity. To evaluate the stability, we used organoleptic characteristics, pH, and viscosity parameters. Antioxidant capacity was measured by the DPPH (2,2-...

  10. High whey protein intake delayed the loss of lean body mass in healthy old rats, whereas protein type and polyphenol/antioxidant supplementation had no effects.

    Directory of Open Access Journals (Sweden)

    Laurent Mosoni

    Full Text Available Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1 increase protein intake, which is likely to stimulate muscle protein anabolism; 2 use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism. 3 Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism. Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin and body composition (DXA. After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS. We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia.

  11. High whey protein intake delayed the loss of lean body mass in healthy old rats, whereas protein type and polyphenol/antioxidant supplementation had no effects.

    Science.gov (United States)

    Mosoni, Laurent; Gatineau, Eva; Gatellier, Philippe; Migné, Carole; Savary-Auzeloux, Isabelle; Rémond, Didier; Rocher, Emilie; Dardevet, Dominique

    2014-01-01

    Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin) and body composition (DXA). After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS). We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia. PMID:25268515

  12. Protection against retrovirus pathogenesis by SR protein inhibitors.

    Directory of Open Access Journals (Sweden)

    Anne Keriel

    Full Text Available Indole derivatives compounds (IDC are a new class of splicing inhibitors that have a selective action on exonic splicing enhancers (ESE-dependent activity of individual serine-arginine-rich (SR proteins. Some of these molecules have been shown to compromise assembly of HIV infectious particles in cell cultures by interfering with the activity of the SR protein SF2/ASF and by subsequently suppressing production of splicing-dependent retroviral accessory proteins. For all replication-competent retroviruses, a limiting requirement for infection and pathogenesis is the expression of the envelope glycoprotein which strictly depends on the host splicing machinery. Here, we have evaluated the efficiency of IDC on an animal model of retroviral pathogenesis using a fully replication-competent retrovirus. In this model, all newborn mice infected with a fully replicative murine leukemia virus (MLV develop erythroleukemia within 6 to 8 weeks of age. We tested several IDC for their ability to interfere ex vivo with MLV splicing and virus spreading as well as for their protective effect in vivo. We show here that two of these IDC, IDC13 and IDC78, selectively altered splicing-dependent production of the retroviral envelope gene, thus inhibiting early viral replication in vivo, sufficiently to protect mice from MLV-induced pathogenesis. The apparent specificity and clinical safety observed here for both IDC13 and IDC78 strongly support further assessment of inhibitors of SR protein splicing factors as a new class of antiretroviral therapeutic agents.

  13. Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ

    Directory of Open Access Journals (Sweden)

    Anna J. Dare

    2015-08-01

    Full Text Available Ischemia–reperfusion (IR injury to the kidney occurs in a range of clinically important scenarios including hypotension, sepsis and in surgical procedures such as cardiac bypass surgery and kidney transplantation, leading to acute kidney injury (AKI. Mitochondrial oxidative damage is a significant contributor to the early phases of IR injury and may initiate a damaging inflammatory response. Here we assessed whether the mitochondria targeted antioxidant MitoQ could decrease oxidative damage during IR injury and thereby protect kidney function. To do this we exposed kidneys in mice to in vivo ischemia by bilaterally occluding the renal vessels followed by reperfusion for up to 24 h. This caused renal dysfunction, measured by decreased creatinine clearance, and increased markers of oxidative damage. Administering MitoQ to the mice intravenously 15 min prior to ischemia protected the kidney from damage and dysfunction. These data indicate that mitochondrial oxidative damage contributes to kidney IR injury and that mitochondria targeted antioxidants such as MitoQ are potential therapies for renal dysfunction due to IR injury.

  14. Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ

    Science.gov (United States)

    Dare, Anna J.; Bolton, Eleanor A.; Pettigrew, Gavin J.; Bradley, J. Andrew; Saeb-Parsy, Kourosh; Murphy, Michael P.

    2015-01-01

    Ischemia–reperfusion (IR) injury to the kidney occurs in a range of clinically important scenarios including hypotension, sepsis and in surgical procedures such as cardiac bypass surgery and kidney transplantation, leading to acute kidney injury (AKI). Mitochondrial oxidative damage is a significant contributor to the early phases of IR injury and may initiate a damaging inflammatory response. Here we assessed whether the mitochondria targeted antioxidant MitoQ could decrease oxidative damage during IR injury and thereby protect kidney function. To do this we exposed kidneys in mice to in vivo ischemia by bilaterally occluding the renal vessels followed by reperfusion for up to 24 h. This caused renal dysfunction, measured by decreased creatinine clearance, and increased markers of oxidative damage. Administering MitoQ to the mice intravenously 15 min prior to ischemia protected the kidney from damage and dysfunction. These data indicate that mitochondrial oxidative damage contributes to kidney IR injury and that mitochondria targeted antioxidants such as MitoQ are potential therapies for renal dysfunction due to IR injury. PMID:25965144

  15. Quercetin Protects Primary Human Osteoblasts Exposed to Cigarette Smoke through Activation of the Antioxidative Enzymes HO-1 and SOD-1

    Directory of Open Access Journals (Sweden)

    Karl F. Braun

    2011-01-01

    Full Text Available Smokers frequently suffer from impaired fracture healing often due to poor bone quality and stability. Cigarette smoking harms bone cells and their homeostasis by increased formation of reactive oxygen species (ROS. The aim of this study was to investigate whether Quercetin, a naturally occurring antioxidant, can protect osteoblasts from the toxic effects of smoking. Human osteoblasts exposed to cigarette smoke medium (CSM rapidly produced ROS and their viability decreased concentration- and time-dependently. Co-, pre- and postincubation with Quercetin dose-dependently improved their viability. Quercetin increased the expression of the anti-oxidative enzymes heme-oxygenase- (HO- 1 and superoxide-dismutase- (SOD- 1. Inhibiting HO-1 activity abolished the protective effect of Quercetin. Our results demonstrate that CSM damages human osteoblasts by accumulation of ROS. Quercetin can diminish this damage by scavenging the radicals and by upregulating the expression of HO-1 and SOD-1. Thus, a dietary supplementation with Quercetin could improve bone matter, stability and even fracture healing in smokers.

  16. Supplementation of Pork Patties with Bovine Plasma Protein Hydrolysates Augments Antioxidant Properties and Improves Quality.

    Science.gov (United States)

    Seo, Hyun-Woo; Seo, Jin-Kyu; Yang, Han-Sul

    2016-01-01

    This study investigated the effects of bovine plasma protein (PP) hydrolysates on the antioxidant and quality properties of pork patties during storage. Pork patties were divided into 4 groups: without butylated hydroxytoluene (BHT) and PP hydrolysates (control), 0.02% BHT (T1), 1% PP hydrolysates (T2), and 2% PP hydrolysates (T3). Pork patty supplemented with PP hydrolysates had higher pH values and lower weight loss during cooking than the control patties. Results showed that lightness and hardness both decreased upon the addition of PP hydrolysates. All samples containing BHT and PP hydrolysates had reduced TBARS and peroxide values during storage. In particular, 2% PP hydrolysates were more effective in delaying lipid oxidation than were the other treatments. It was concluded that treatment with 2% PP hydrolysates can enhance the acceptance of pork patty. PMID:27194928

  17. Supplementation of Pork Patties with Bovine Plasma Protein Hydrolysates Augments Antioxidant Properties and Improves Quality

    Science.gov (United States)

    Seo, Hyun-Woo

    2016-01-01

    This study investigated the effects of bovine plasma protein (PP) hydrolysates on the antioxidant and quality properties of pork patties during storage. Pork patties were divided into 4 groups: without butylated hydroxytoluene (BHT) and PP hydrolysates (control), 0.02% BHT (T1), 1% PP hydrolysates (T2), and 2% PP hydrolysates (T3). Pork patty supplemented with PP hydrolysates had higher pH values and lower weight loss during cooking than the control patties. Results showed that lightness and hardness both decreased upon the addition of PP hydrolysates. All samples containing BHT and PP hydrolysates had reduced TBARS and peroxide values during storage. In particular, 2% PP hydrolysates were more effective in delaying lipid oxidation than were the other treatments. It was concluded that treatment with 2% PP hydrolysates can enhance the acceptance of pork patty. PMID:27194928

  18. Antioxidative Effect of Seaweed Extracts in Chilled Storage of Minced Atlantic Mackerel (Scomber scombrus): Effect on Lipid and Protein Oxidation

    DEFF Research Database (Denmark)

    Babakhani, Aria; Farvin, K. H Sabeena; Jacobsen, Charlotte

    2016-01-01

    In this study, antioxidant activity of absolute ethanol, 50 % ethanol and water extracts of two species of seaweeds namely, Fucus serratus and Polysiphonia fucoides were evaluated for their ability to retard lipid and protein oxidation in minced mackerel. Mackerel mince added with 0.5 g/kg of ext...

  19. Antioxidant and Chelating Activity of Nontoxic Jatropha curcas L. Protein Hydrolysates Produced by In Vitro Digestion Using Pepsin and Pancreatin

    Directory of Open Access Journals (Sweden)

    Santiago Gallegos Tintoré

    2015-01-01

    Full Text Available The antioxidant and metal chelating activities in J. curcas protein hydrolysates have been determined. The hydrolysates were produced by treatment of a nontoxic genotype with the digestive enzymes pepsin and pancreatin and then were characterized by fast protein liquid chromatography and reverse phase chromatography. Peptidic fractions with higher radical scavenging activity were analysed by matrix-assisted laser desorption/ionization mass spectrometry. The antioxidant activity was determined by measuring inhibition of the oxidative degradation of β-carotene and by measuring the reactive oxygen species (ROS in Caco-2 cell cultures. Cu2+ and Fe2+ chelating activities were also determined. The hydrolysates inhibited the degradation of β-carotene and the formation of ROS in Caco-2 cells. The lower molecular weight peptidic fractions from FPLC had stronger antioxidant activity in cell cultures compared with the hydrolysates, which correlated with a higher content in antioxidant and chelating amino acids. These fractions were characterized by a large presence of peptides with different molecular masses. The hydrolysates exhibited both Cu2+ and Fe2+ chelating activity. It was concluded that J. curcas is a good source of antioxidant and metal chelating peptides, which may have a positive impact on the economic value of this crop, as a potential source of food functional components.

  20. Antioxidant effectiveness of vegetable powders on the lipid and protein oxidative stability of cooked Turkey meat patties: implications for health.

    Science.gov (United States)

    Duthie, Garry; Campbell, Fiona; Bestwick, Charles; Stephen, Sylvia; Russell, Wendy

    2013-04-01

    Lipid and protein oxidation decreases the shelf-life of foods and may result in formation of end-products potentially detrimental for health. Consumer pressure to decrease the use of synthetic phenolic antioxidants has encouraged identification of alternative compounds or extracts from natural sources. We have assessed whether inclusion of dried vegetable powders improves the oxidative stability of turkey meat patties. Such powders are not only potentially-rich sources of phenolic antioxidants, but also may impart additional health benefits, as inadequate vegetable consumption is a risk factor for heart disease and several cancers. In an accelerated oxidation system, six of eleven vegetable powders significantly (p yellow pea pea < tomato). Improved lipid oxidative stability was strongly correlated with the decreased formation of protein carbonyls (r = 0.747, p < 0.01). However, improved lipid stability could not be ascribed to phenolic acids nor recognized antioxidants, such as α- and γ-tocopherol, despite their significant (p < 0.01) contribution to the total antioxidant capacity of the patties. Use of chemically complex vegetable powders offers an alternative to individual antioxidants for increasing shelf-life of animal-based food products and may also provide additional health benefits associated with increased vegetable intake. PMID:23595133

  1. Antioxidant Effectiveness of Vegetable Powders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties: Implications for Health

    Directory of Open Access Journals (Sweden)

    Wendy Russell

    2013-04-01

    Full Text Available Lipid and protein oxidation decreases the shelf-life of foods and may result in formation of end-products potentially detrimental for health. Consumer pressure to decrease the use of synthetic phenolic antioxidants has encouraged identification of alternative compounds or extracts from natural sources. We have assessed whether inclusion of dried vegetable powders improves the oxidative stability of turkey meat patties. Such powders are not only potentially-rich sources of phenolic antioxidants, but also may impart additional health benefits, as inadequate vegetable consumption is a risk factor for heart disease and several cancers. In an accelerated oxidation system, six of eleven vegetable powders significantly (p < 0.05 improved oxidative stability of patties by 20%–30% (spinach < yellow pea < onion < red pepper < green pea < tomato. Improved lipid oxidative stability was strongly correlated with the decreased formation of protein carbonyls (r = 0.747, p < 0.01. However, improved lipid stability could not be ascribed to phenolic acids nor recognized antioxidants, such as α- and γ-tocopherol, despite their significant (p < 0.01 contribution to the total antioxidant capacity of the patties. Use of chemically complex vegetable powders offers an alternative to individual antioxidants for increasing shelf-life of animal-based food products and may also provide additional health benefits associated with increased vegetable intake.

  2. Changes in Protein, Nonnutritional Factors, and Antioxidant Capacity during Germination of L. campestris Seeds

    Directory of Open Access Journals (Sweden)

    C. Jiménez Martínez

    2012-01-01

    Full Text Available The changes in SDS-PAGE proteins patterns, oligosaccharides and phenolic compounds of L. campestris seeds, were evaluated during nine germination days. SDS-PAGE pattern showed 12 bands in the original protein seeds, while in the samples after 1–9 germination days, the proteins located in the range of 28–49 and 49–80 kDa indicated an important reduction, and there was an increase in bands about 27 kDa. On the other hand, oligosaccharides showed more than 50% of decrease in its total concentration after 4 germination days; nevertheless after the fifth day, the oligosaccharides concentration increases and rises more than 30% of the original concentration. Phenolic compounds increased their concentration since the first germination day reaching until 450% more than the original seed level. The obtained results are related with liberation or increase of phenolic compounds with antioxidant properties, allowing us to suggest that the germination would be used to produce legume foods for human consumption with better nutraceutical properties.

  3. Antioxidant enzymatic protection during tobacco leaf ageing is affected by cytokinin depletion

    Czech Academy of Sciences Publication Activity Database

    Mýtinová, Zuzana; Motyka, Václav; Haisel, Daniel; Lubovská, Zuzana; Trávníčková, Alena; Dobrev, Petre; Holík, Josef; Wilhelmová, Naděžda

    2011-01-01

    Roč. 65, č. 1 (2011), s. 23-34. ISSN 0167-6903 R&D Projects: GA ČR GA522/03/0312; GA AV ČR IAA600380701; GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : Ageing * Antioxidant enzymes * Cytokinins Subject RIV: CE - Biochemistry Impact factor: 1.604, year: 2011

  4. Lipid Peroxidation and Antioxidant Protective System in Patients with Chronic Nonspecific Endometritis

    OpenAIRE

    2011-01-01

    The aim of the study is to reveal the changes in “lipid peroxidation—antioxidant protection” system in chronic endometritis. Materials and Methods. 40 female patients of fertile age with chronic endometritis were examined. A screening method of induced chemiluminescence of serum was used to assess the intensity of free-radical oxidation. Results and Discussion. The patients with chronic endometritis are revealed to have an increased level of lipid peroxidation combined with the decrea...

  5. Hyperoxia-induced ciliary loss and oxidative damage in an in vitro bovine model: The protective role of antioxidant vitamins E and C

    International Nuclear Information System (INIS)

    Highlights: ► A new bovine bronchial model for studying hyperoxia-induced cilia loss is presented. ► Hyperoxia-induced cilia loss was associated with increased sloughing of cells. ► Hyperoxia led to higher epithelial glutathione levels, evidence of oxidative stress. ► Hyperoxia led to increased DNA damage (Comet), and lipid peroxidation (TBARS). ► Vitamins C and E partially protected against hyperoxia-induced cilia loss. -- Abstract: Although elevated oxygen fraction is used in intensive care units around the world, pathological changes in pulmonary tissue have been shown to occur with prolonged exposure to hyperoxia. In this work a bovine bronchus culture model has been successfully used to evaluate the effects of hyperoxia on ciliated epithelium in vitro. Samples were cultured using an air interface method and exposed to normoxia, 21% O2 or hyperoxia, 95% O2. Cilial coverage was assessed using scanning electron microscopy (SEM). Tissue damage (lactate dehydrogenase, LDH, in the medium), lipid peroxidation (thiobarbituric acid reactive substances, TBARS), DNA damage (comet assay), protein oxidation (OxyBlot kit) and antioxidant status (total glutathione) were used to assess whether the hyperoxia caused significant oxidative stress. Hyperoxia caused a time-dependent decline (t½ = 3.4 d compared to 37.1 d under normoxia) in cilial coverage (P 6 compared to 1.97 ± 0.23 × 106 ml−1 after 6 d), many apparently intact, in the medium (P −1 g−1 after 6 d; P −1 for hyperoxia and normoxia, respectively); % tail DNA (18.7 ± 2.2 versus 11.1 ± 1.5); protein carbonyls (P −1 versus 189 ± 15 μmol g−1). Vitamins E (10−7 M) and C (10−6 or 10−7 M) alone or in combination (10−7 M and 10−6 M, respectively) had a significant protective effect on the hyperoxia-induced reduction in percentage cilial coverage (P < 0.05). In conclusion, hyperoxia caused damage to cultured bovine bronchial epithelium and denudation of cilia. The antioxidant vitamins E

  6. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson's disease: involvement of antioxidative enzymes induction.

    Science.gov (United States)

    Wu, Chi-Rei; Tsai, Chia-Wen; Chang, Shu-Wei; Lin, Chia-Yuan; Huang, Li-Chun; Tsai, Chia-Wen

    2015-01-01

    The neuroprotective effects of carnosic acid (CA), a phenolic diterpene isolated from rosemary (Rosmarinus officinalis), have been widely investigated in recent years, however, its protection in in vivo still unclear. In this study, we investigated the behavioral activity and neuroprotective effects of CA in a rat model of Parkinson's disease (PD) induced by 6-hydroxydopamine (6-OHDA). Rats were treated with 20mg/kg body weight of CA for 3 weeks before 6-OHDA exposure. Results indicated that CA improved the locomotor activity and reduced the apomorphine-caused rotation in 6-OHDA-stimulated rats. Significant protection against lipid peroxidation and GSH reduction was observed in the 6-OHDA rats pretreated with CA. Pretreatment with CA increased the protein expression of γ-glutamate-cysteine ligase catalytic subunit, γ-glutamate-cysteine ligase modifier subunit, superoxide dismutase, and glutathione reductase compared with 6-OHDA-stimulated rats and SH-SY5Y cells. Immunoblots showed that the reduction of the Bcl-2/Bax ratio, the induction of caspase 3 cleavage, and the induction of poly(ADP-ribose) polymerase (PARP) cleavage by 6-OHDA was reversed in the presence of SB203580 (a p38 inhibitor) or SP600125 (a JNK inhibitor) in SH-SY5Y cells. Rats treated with CA reversed the 6-OHDA-mediated the activation of c-Jun NH2-terminal kinase and p38, the down-regulation of the Bcl-2/Bax ratio, the up-regulation of cleaved caspase 3/caspase 3 and cleaved PARP/PARP ratio, and the down-regulation of tyrosine hydroxylase protein. However, BAM7, an activator of Bax, attenuated the effect of CA on apoptosis in SH-SY5Y cells. These results suggest that CA protected against 6-OHDA-induced neurotoxicity is attributable to its anti-apoptotic and anti-oxidative action. The present findings may help to clarify the possible mechanisms of rosemary in the neuroprotection of PD. PMID:25446857

  7. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications

    Directory of Open Access Journals (Sweden)

    Stéphanie Dal

    2016-07-01

    Full Text Available Obesity and diabetes is generally accompanied by a chronic state of oxidative stress, disequilibrium in the redox balance, implicated in the development and progression of complications such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the endothelium, play an early and critical role in the development of these complications. Blunted endothelium-dependent relaxation and/or contractions are quietly associated to oxidative stress. Thus, preserving endothelial function and oxidative stress seems to be an optimization strategy in the prevention of vascular complications associated with diabetes. Diet is a major lifestyle factor that can greatly influence the incidence and the progression of type 2 diabetes and cardiovascular complications. The notion that foods not only provide basic nutrition but can also prevent diseases and ensure good health and longevity is now attained greater prominence. Some dietary and lifestyle modifications associated to antioxidative supply could be an effective prophylactic means to fight against oxidative stress in diabesity and complications. A significant benefit of phytochemicals (polyphenols in wine, grape, teas, vitamins (ascorbate, tocopherol, minerals (selenium, magnesium, and fruits and vegetables in foods is thought to be capable of scavenging free radicals, lowering the incidence of chronic diseases. In this review, we discuss the role of oxidative stress in diabetes and complications, highlight the endothelial dysfunction, and examine the impact of antioxidant foods, plants, fruits, and vegetables, currently used medication with antioxidant properties, in relation to the development and progression of diabetes and cardiovascular complications.

  8. Soy versus whey protein bars: Effects on exercise training impact on lean body mass and antioxidant status

    OpenAIRE

    Babaknia Ari; DiSilvestro Robert A; Brown Erin C; Devor Steven T

    2004-01-01

    Abstract Background Although soy protein may have many health benefits derived from its associated antioxidants, many male exercisers avoid soy protein. This is due partly to a popular, but untested notion that in males, soy is inferior to whey in promoting muscle weight gain. This study provided a direct comparison between a soy product and a whey product. Methods Lean body mass gain was examined in males from a university weight training class given daily servings of micronutrient-fortified...

  9. Purification and Characterization of a Novel ~18 kDa Antioxidant Protein from Ginkgo biloba Seeds

    OpenAIRE

    Hongxia Chen; Jianzhong Ye; Chengzhang Wang; Hao Zhou; Xijuan Chen

    2012-01-01

    Ginkgo biloba seeds are widely used as a food and traditional medicine in China. In the present study, a novel antioxidant protein named GBSP was purified from Ginkgo biloba seeds. The protein (GBSP) was purified by homogenization of Ginkgo biloba seed powder in saline solution, 70% ammonium sulphate precipitation, filtration on a DEAE-Cellulose52 anion exchange column, gel filtration on a Sephadex G-50 column, and preparative chromatography on a C18 column using RP-HPLC. GBSP showed an appar...

  10. Hydrocolloids Decrease the Digestibility of Corn Starch, Soy Protein, and Skim Milk and the Antioxidant Capacity of Grape Juice

    OpenAIRE

    Yi, Yue; Jeon, Hyeong-Ju; Yoon, Sun; Lee, Seung-Min

    2015-01-01

    Hydrocolloids have many applications in foods including their use in dysphagia diets. We aimed to evaluate whether hydrocolloids in foods affect the digestibility of starch and protein, and their effects on antioxidant capacity. The thickening hydrocolloids: locust bean gum and carboxymethyl cellulose, and the gel-forming agents: agar agar, konjac-glucomannan, and Hot & Soft Plus were blended with corn starch and soy protein, skim milk, or grape juice and were examined for their in vitro-dige...

  11. Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation

    Directory of Open Access Journals (Sweden)

    Gómez-Pastor Rocío

    2012-01-01

    Full Text Available Abstract Background In the yeast biomass production process, protein carbonylation has severe adverse effects since it diminishes biomass yield and profitability of industrial production plants. However, this significant detriment of yeast performance can be alleviated by increasing thioredoxins levels. Thioredoxins are important antioxidant defenses implicated in many functions in cells, and their primordial functions include scavenging of reactive oxygen species that produce dramatic and irreversible alterations such as protein carbonylation. Results In this work we have found several proteins specifically protected by yeast Thioredoxin 2 (Trx2p. Bidimensional electrophoresis and carbonylated protein identification from TRX-deficient and TRX-overexpressing cells revealed that glycolysis and fermentation-related proteins are specific targets of Trx2p protection. Indeed, the TRX2 overexpressing strain presented increased activity of the central carbon metabolism enzymes. Interestingly, Trx2p specifically preserved alcohol dehydrogenase I (Adh1p from carbonylation, decreased oligomer aggregates and increased its enzymatic activity. Conclusions The identified proteins suggest that the fermentative capacity detriment observed under industrial conditions in T73 wine commercial strain results from the oxidative carbonylation of specific glycolytic and fermentation enzymes. Indeed, increased thioredoxin levels enhance the performance of key fermentation enzymes such as Adh1p, which consequently increases fermentative capacity.

  12. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Salomone, Federico; Li Volti, Giovanni; Vitaglione, Paola; Morisco, Filomena; Fogliano, Vincenzo; Zappalà, Agata; Palmigiano, Angelo; Garozzo, Domenico; Caporaso, Nicola; D'Argenio, Giuseppe; Galvano, Fabio

    2014-06-01

    Coffee consumption is inversely related to the degree of liver injury in patients with nonalcoholic fatty liver disease (NAFLD). Molecular mediators contributing to coffee's beneficial effects in NAFLD remain to be elucidated. In this study, we administrated decaffeinated espresso coffee or vehicle to rats fed an high-fat diet (HFD) for 12 weeks and examined the effects of coffee on liver injury by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis combined with mass spectrometry. Rats fed an HFD and water developed panacinar steatosis, lobular inflammation, and mild fibrosis, whereas rats fed an HFD and coffee exhibited only mild steatosis. Coffee consumption increased liver expression of the endoplasmic reticulum chaperones glucose-related protein 78 and protein disulfide-isomerase A3; similarly, coffee drinking enhanced the expression of the mitochondrial chaperones heat stress protein 70 and DJ-1. Furthermore, in agreement with reduced hepatic levels of 8-isoprostanes and 8-hydroxy-2'-deoxyguanosine, proteomic analysis showed that coffee consumption induces the expression of master regulators of redox status (i.e., peroxiredoxin 1, glutathione S-transferase α2, and D-dopachrome tautomerase). Last, proteomics revealed an association of coffee intake with decreased expression of electron transfer flavoprotein subunit α, a component of the mitochondrial respiratory chain, involved in de novo lipogenesis. In this study, we were able to identify by proteomic analysis the stress proteins mediating the antioxidant effects of coffee; moreover, we establish for the first time the contribution of specific coffee-induced endoplasmic reticulum and mitochondrial chaperones ensuring correct protein folding and degradation in the liver. PMID:24365744

  13. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  14. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    International Nuclear Information System (INIS)

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  15. Curcumin protects against nicotine-induced stress during protein malnutrition in female rat through immunomodulation with cellular amelioration.

    Science.gov (United States)

    Maiti, Moumita; Chattopadhyay, Krishna; Verma, Mukesh; Chattopadhyay, Brajadulal

    2015-12-01

    Nicotine aggravates many chronic inflammatory disorders in females under the protein-malnourished conditions because women are more susceptible to nicotine-induced diseases due to their low innate immunity. Although curcumin have been found to obliterate the nicotine-induced disorders through its anti-nicotinic activity under the protein-malnourished condition, the exact mechanism of protective action of curcumin is still unclear. Female Wister rats maintained under the normal and protein-restricted diets in two separate groups were injected with the effective dose of nicotine-tartrate (2.5 mg/kg body weight/day, subcutaneously) and supplemented with the effective dose of curcumin (80 mg/kg body weight/day, orally) for 21 days. The morphology of red blood cells (RBCs), molecular docking, lipid profile and activities of antioxidant enzymes in tissues, cytokines profiling (T helper cell type 1; and T helper cell type 2), mRNA and protein expression of cytokines, transcription factors (activator protein 1), regulatory molecule (P(53)), growth factors (Granulocyte-macrophage colony-stimulating factor; Transforming growth factor beta) were determined to establish the mechanism of actions of curcumin against the nicotine-mediated stress in the protein-malnourished rats. This study revealed that curcumin bound to the Histidine 87 residues of haemoglobin with a greater binding affinity and significantly protected the RBCs against nicotine-induced damage. Furthermore, the nicotine-mediated disruption of Th1/Th2 balance through upregulation and downregulation of different factors was effectively restored by curcumin under the protein-malnourished conditions. The study demonstrated that curcumin was a potent protective compound against the nicotine-induced stress and offered a probable biochemical and immunomodulatory mechanism of protective action of curcumin. PMID:26559197

  16. Protective effect of supercritical fluid rosemary extract, Rosmarinus officinalis, on antioxidants of major organs of aged rats

    OpenAIRE

    2009-01-01

    Abstract Rosemary leaves, ?Rosmarinus officinalis?, possess a variety of antioxidant, anti-tumoral and anti-inflammatory bioactivities. We hypothesized that rosemary extract could enhance antioxidant defenses and improve antioxidant status in aged rats. This work evaluates whether supplementing their diet with supercritical fluid (SFE) rosemary extract containing 20% antioxidant carnosic acid (CA) reduces oxidative stress in aged rats. Aged Wistar rats (20 mon...

  17. Comparative Composition and Antioxidant Activity of Peptide Fractions Obtained by Ultrafiltration of Egg Yolk Protein Enzymatic Hydrolysates

    Directory of Open Access Journals (Sweden)

    Yves Pouliot

    2011-07-01

    Full Text Available The objective of the study was to compare the antioxidant activity of two distinct hydrolysates and their peptide fractions prepared by ultrafiltration (UF using membranes with molecular weight cut-off of 5 and 1 kDa. The hydrolysates were a delipidated egg yolk protein concentrate (EYP intensively hydrolyzed with a combination of two bacterial proteases, and a phosphoproteins (PPP extract partially hydrolyzed with trypsin. Antioxidant activity, as determined by the oxygen radical absorbance capacity (ORAC assay, was low for EYP and PPP hydrolysates with values of 613.1 and 489.2 µM TE×g−1 protein, respectively. UF-fractionation of EYP hydrolysate increased slightly the antioxidant activity in permeate fractions (720.5–867.8 µM TE×g−1 protein. However, ORAC values were increased by more than 3-fold in UF-fractions prepared from PPP hydrolysate, which were enriched in peptides with molecular weight lower than 5 kDa. These UF-fractions were characterized by their lower N/P atomic ratio and higher phosphorus content compared to the same UF-fractions obtained from EYP-TH. They also contained high amounts of His, Met, Leu, and Phe, which are recognized as antioxidant amino acids, but also high content in Lys and Arg which both represent target amino acids of trypsin used for the hydrolysis of PPP.

  18. Review on the Antioxidant Properties of Protein Hydrolysates%蛋白水解物的抗氧化性研究与展望

    Institute of Scientific and Technical Information of China (English)

    陈洁; 胡晓赟

    2011-01-01

    elucidated, and are far away from the requests for supporting of the application of antixidant peptides in industry. Is there any relationship between the structure and functionality of antioxidant peptide? Is there any synergistic or antagonistic effect between the peptides in the protein hydrolysates? What is the effects of food components and additives on the properties of antioxidant peptides? Are they also effective in humans? The objective of this review was to examine the structure-activity relationship or the antioxidant mechanism of peptides. Several of the most commonly used methods for in vitro determination of antioxidant capacity are reviewed. The antioxidant properties and its mechanism of food protein hydrolysate were discussed. Antioxidant peptide may function by the combined effects of preventing the formation of radicals or by scavenging radicals or hydrogen peroxide and other peroxides, the chelating ability of metal ion and reducing ability. The structure-activity relationship was studied in detailed. The effects of His and Tyr residues in the peptide were outlined and critically discussed. Antioxidant activity of the hydrolysates seems to be inherent to the characteristic amino acid sequences and affected by peptide bond, configuration of amino acid residue in peptide, hydrophobicity of peptide, the molecular weight of peptide and the electrical or pKa of amino acid residue in peptide. The interaction of antixidant peptides and ascorbic acid, tocopherol, BHA, BHT, and plant extract were also highlighted. The results suggest that the food protein hydrolysates could be used as natural antioxidants in enhancing antioxidant properties of functional foods and in preventing oxidation reaction in food processing. Further studies are needed to elucidate the role of antioxidative peptides in the protective function in humans.

  19. Altered Plasma Profile of Antioxidant Proteins as an Early Correlate of Pancreatic β Cell Dysfunction.

    Science.gov (United States)

    Kuo, Taiyi; Kim-Muller, Ja Young; McGraw, Timothy E; Accili, Domenico

    2016-04-29

    Insulin resistance and β cell dysfunction contribute to the pathogenesis of type 2 diabetes. Unlike insulin resistance, β cell dysfunction remains difficult to predict and monitor, because of the inaccessibility of the endocrine pancreas, the integrated relationship with insulin sensitivity, and the paracrine effects of incretins. The goal of our study was to survey the plasma response to a metabolic challenge in order to identify factors predictive of β cell dysfunction. To this end, we combined (i) the power of unbiased iTRAQ (isobaric tag for relative and absolute quantification) mass spectrometry with (ii) direct sampling of the portal vein following an intravenous glucose/arginine challenge (IVGATT) in (iii) mice with a genetic β cell defect. By so doing, we excluded the effects of peripheral insulin sensitivity as well as those of incretins on β cells, and focused on the first phase of insulin secretion to capture the early pathophysiology of β cell dysfunction. We compared plasma protein profiles with ex vivo islet secretome and transcriptome analyses. We detected changes to 418 plasma proteins in vivo, and detected changes to 262 proteins ex vivo The impairment of insulin secretion was associated with greater overall changes in the plasma response to IVGATT, possibly reflecting metabolic instability. Reduced levels of proteins regulating redox state and neuronal stress markers, as well as increased levels of coagulation factors, antedated the loss of insulin secretion in diabetic mice. These results suggest that a reduced complement of antioxidants in response to a mixed secretagogue challenge is an early correlate of future β cell failure. PMID:26917725

  20. Comparative Study on Biochemical Properties and Antioxidative Activity of Cuttlefish (Sepia officinalis) Protein Hydrolysates Produced by Alcalase and Bacillus licheniformis NH1 Proteases

    OpenAIRE

    Balti, Rafik; Bougatef, Ali; El Hadj Ali, Nedra; Ktari, Naourez; Jellouli, Kemel; Nedjar-Arroume, Naima; Dhulster, Pascal; Nasri, Moncef

    2011-01-01

    Antioxidative activities and biochemical properties of protein hydrolysates prepared from cuttlefish (Sepia officinalis) using Alcalase 2.4 L and Bacillus licheniformis NH1 proteases with different degrees of hydrolysis (DH) were determined. For the biochemical properties, hydrolysis by both enzymes increased protein solubility to above 75% over a wide pH range. The antioxidant activities of cuttlefish protein hydrolysates (CPHs) increase with increasing DH. In addition, all CPHs exhibited an...

  1. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine

    International Nuclear Information System (INIS)

    Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Recently, it has been shown that fraxetin (coumarin) and myricetin (flavonoid) have significant neuroprotective effects against apoptosis induced by rotenone, increase the total glutathione levels in vitro, and inhibit lipid peroxidation. Thus, these considerations prompted us to investigate the way in which fraxetin and myricetin affect the endogenous antioxidant defense system, such as Mn and CuZn superoxide dismutase (MnSOD, CuZnSOD), catalase, glutathione reductase (GR), and glutathione peroxidase (GPx) on rotenone neurotoxicity in neuroblastoma cells. N-acetylcysteine (NAC), a potent antioxidant, was employed as a comparative agent. Also, the expression and protein levels of HSP70 by Northern and Western blot analysis were assayed in SH-SY5Y cells. After incubation for 16 h, rotenone significantly increased the expression and activity of MnSOD, GPx, and catalase. When cells were preincubated with fraxetin, there was a decrease in the protein levels and activity of both MnSOD and catalase, in comparison with the rotenone treatment. The myricetin effect was less pronounced. Activity and expression of GPx were increased by rotenone and pre-treatment with fraxetin did not modify significantly these levels. The significant enhancement in HSP70 expression at mRNA and protein levels induced by fraxetin was observed by pre-treatment of cells 0.5 h before rotenone insult. These data suggest that major features of rotenone-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that fraxetin partially protects against rotenone toxicity affecting the main protection system of the cells against oxidative injury

  2. NAP (davunetide) protects primary hippocampus culture by modulating expression profile of antioxidant genes during limiting oxygen conditions.

    Science.gov (United States)

    Arya, A; Meena, R; Sethy, N K; Das, M; Sharma, M; Bhargava, K

    2015-04-01

    Hypoxia is a well-known threat to neuronal cells and triggers the pathophysiological syndromes in extreme environments such as high altitudes and traumatic conditions such as stroke. Among several prophylactic molecules proven suitable for ameliorating free radical damage, NAP (an octapeptide with initial amino acids: asparagine/N, alanine/A, and proline/P) can be considered superlative, primarily due to its high permeability into brain through blood-brain barrier and observed activity at femtomolar concentrations. Several mechanisms of action of NAP have been hypothesized for its protective role during hypoxia, yet any distinct mechanism is unknown. Oxidative stress is advocated as the leading event in hypoxia; we, therefore, investigated the regulation of key antioxidant genes to understand the regulatory role of NAP in providing neuroprotection. Primary neuronal culture of rat was subjected to cellular hypoxia by limiting the oxygen concentration to 0.5% for 72 h and observing the prophylactic efficacies of 15fM NAP by conventional cell death assays using flow cytometry. We performed real-time quantitative polymerase chain reaction to comprehend the regulatory mechanism. Further, we validated the significantly regulated candidates by enzyme assays and immunoblotting. In the present study, we report that NAP regulates a major clad of cellular antioxidants and there is an involvement of more than one route of action in neuroprotection during hypoxia. PMID:25727410

  3. Coenzyme Q10 Supplementation Prevents Iron Overload While Improving Glycaemic Control and Antioxidant Protection in Insulin-Resistant Psammomys obesus.

    Science.gov (United States)

    Lazourgui, Mohamed Amine; El-Aoufi, Salima; Labsi, Moussa; Maouche, Boubekeur

    2016-09-01

    This study investigated the anti-diabetic preventive activity of coenzyme Q10 (CoQ10) in a murine model of diet-induced insulin resistance (IR), Psammomys obesus (Po). IR was induced by feeding a standard laboratory diet (SD). CoQ10 oil suspension was orally administered at 10 mg/kg body weight (BW)/day along with SD for 9 months. Anthropometric parameters, namely, total body weight gain (BWG) and the relative weight of white adipose tissue (WAT) were determined. Blood glucose, insulin, quantitative insulin sensitivity check index (QUICKI), total antioxidant status (TAS), iron, malondialdehyde (MDA) and nitrite (NO2 (-)) were evaluated. NO2 (-) level was also assessed in peripheral blood mononuclear cells (PBMCs) culture supernatants. Our results show that CoQ10 supplementation significantly improved blood glucose, insulin, QUICKI, TAS, iron and MDA, but influenced neither NO2 (-) levels nor the anthropometric parameters. These findings support the hypothesis that CoQ10 would exert an anti-diabetic activity by improving both glycaemic control and antioxidant protection. The most marked effect of CoQ10 observed in this study concerns the regulation of iron levels, which may carry significant preventive importance. PMID:26779622

  4. Further Studies on Antioxidant Potential and Protection of Pancreatic β-Cells by Embelia ribes in Experimental Diabetes

    Directory of Open Access Journals (Sweden)

    Uma Bhandari

    2007-01-01

    Full Text Available This study was designed to examine the antioxidant defense by ethanolic extract of Embelia ribes on streptozotocin-(40 mg/kg, intravenously, single-injection induced diabetes in Wistar rats. Forty days of oral feeding the extract (100 mg/kg and 200 mg/kg to diabetic rats resulted in significant (P<.01 decrease in blood glucose, blood glycosylated haemoglobin, serum lactate dehydrogenase, creatine kinase, and increase in blood glutathione levels as compared to pathogenic diabetic rats. Further, the extract also significantly (P<.01 decreased the pancreatic thiobarbituric acid-reactive substances (TBARS levels and significantly (P<.01 increased the superoxide dismutase, catalase, and glutathione levels as compared to above levels in pancreatic tissue of pathogenic diabetic rats. The islets were shrunken in diabetic rats in comparison to normal rats. In the drug-treated diabetic rats, there was expansion of islets. The results of test drug were comparable to gliclazide (25 mg/kg, daily, a standard antihyperglycemic agent. The study concludes that Embelia ribes enhances the antioxidant defense against reactive oxygen species produced under hyperglycemic condition and this protects β-cells against loss, and exhibit antidiabetic property.

  5. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves

    Institute of Scientific and Technical Information of China (English)

    Shucheng Xu

    2010-01-01

     The role of a calcium-dependent and calmodulin(CaM)stimulated protein kinase in abscisic acid(ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays).In-gel kinase assays showed that treatments with ABA or H2O2 induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly.Furthermore,we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase Ⅱ (CaMK Ⅱ)inhibitor KN-93 or CaM antagonist W-7.Treatments with ABA or H2O2 not only induced the acti vation of the 52-kDa protein kinase,but also enhanced the total activities of the antioxidant enzymes,including catalase,ascorbate peroxidase,glutathione reductase,and superoxide dismutase.Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species(ROS)inhibitor or scavenger.Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H2O2 production.Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger.These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H2O2 plays a pivotal role in ABA signaling.We infer that CaMK acts both upstream and downstream of H2O2,but mainly acts between ABA and H2O2 in ABA-induced antioxidant-defensive signaling.

  6. Inhibition of neuroinflammation in BV2 microglia by the biflavonoid kolaviron is dependent on the Nrf2/ARE antioxidant protective mechanism.

    Science.gov (United States)

    Onasanwo, Samuel A; Velagapudi, Ravikanth; El-Bakoush, Abdelmeneim; Olajide, Olumayokun A

    2016-03-01

    Kolaviron is a mixture of biflavonoids found in the nut of the West African edible seed Garcinia kola, and it has been reported to exhibit a wide range of pharmacological activities. In this study, we investigated the effects of kolaviron in neuroinflammation. The effects of kolaviron on the expression of nitric oxide/inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2)/cyclooxygenase-2, cellular reactive oxygen species (ROS) and the pro-inflammatory cytokines were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Molecular mechanisms of the effects of kolaviron on NF-κB and Nrf2/ARE signalling pathways were analysed by immunoblotting, binding assays and reporter assays. RNA interference was used to investigate the role of Nrf2 in the anti-inflammatory effect of kolaviron. Neuroprotective effect of kolaviron was assessed in a BV2 microglia/HT22 hippocampal neuron co-culture. Kolaviron inhibited the protein levels of NO/iNOS, PGE2/COX-2, cellular ROS and the pro-inflammatory cytokines (TNFα and IL-6) in LPS-stimulated microglia. Further mechanistic studies showed that kolaviron inhibited neuroinflammation by inhibiting IκB/NF-κB signalling pathway in LPS-activated BV2 microglia. Kolaviron produced antioxidant effect in BV2 microglia by increasing HO-1 via the Nrf2/antioxidant response element pathway. RNAi experiments revealed that Nrf2 is needed for the anti-inflammatory effects of kolaviron. Kolaviron protected HT22 neurons from neuroinflammation-induced toxicity. Kolaviron inhibits neuroinflammation through Nrf2-dependent mechanisms. This compound may therefore be beneficial in neuroinflammation-related neurodegenerative disorders. PMID:26838169

  7. The protective effect of thymoquinone, an anti-oxidant and anti--inflammatory agent, against renal injury: A review

    Directory of Open Access Journals (Sweden)

    Ragheb Ahmed

    2009-01-01

    Full Text Available Thymoquinone (TQ, 2-Isopropyl-5-methyl-1, 4-benzoquinone, is one of the most active ingredients of Nigella Sativa seeds. TQ has a variety of beneficial properties including anti-oxidative and anti-inflammatory activities. Studies have provided original observations on the role of oxidative stress and inflammation in the development of renal diseases such as glomerulo-nephritis and drug-induced nephrotoxicity. The renoprotective effects of TQ have been demons-trated in animal models. Also, TQ has been used successfully in treating allergic diseases in humans. The aim of this review is to highlight the importance of reactive oxygen species in renal pathophysiology and the intriguing possibility for a role of TQ in the prevention of and/or protection from renal injury in humans.

  8. [Helicobacter pylori infection and state of antioxidant protection in patients with the unstable course of ischemic disease].

    Science.gov (United States)

    Kratnov, A E; Pavlov, O N

    2004-01-01

    92 patients with ischemic heart disease (IHD) have been examined. Unlike stable angina pectoris, unstable angina and acute myocardial infarction occur more often against the aggravation of chronic atrophic gastritis with a high degree of H. pylori colonization in the mucous coat of the antral part of the stomach. The development of repeated coronary phenomena within one year in patients with unstable angina and acute myocardial infarction was related to the high degree of H. pylori colonization in the mucous coat of the stomach. Irrespective of the presence of IHD in patients, increased H. pylori colonization in the mucous coat was accompanied by a drop in the antioxidant protection activity against the growth of the blood malonic dialdehyde content. PMID:15770853

  9. Photogeneration of superoxide radicals by ommochromes and their role in antioxidative protection of invertebrate ocular cells. [Pandalus latirostris, Calopteryx splendens

    Energy Technology Data Exchange (ETDEWEB)

    Dontsov, A.E.; Lapina, V.A.; Sotrovskiy, M.A.

    Biochemical studies with ommochromes isolated from the eyes of Pandalus latirostris and Calopteryx splendens were found capable of generating superoxide radicals under influence of UV or visible light. Formation of the superoxide radicals was markedly accelerated by detergents (cetyltrimethylammonium bromide), and inhibited by superoxide dismutase. In addition, the ommochromes were found to inhibit lipid peroxidation initiated by Fe/sup + +/. It appears that the ommochromes may have a significant function to antioxidative protection of eye cells in invertebrates, since the reduced ommochromes are efficient in inhibiting lipid peroxidation. The latter reaction may be related to accelerated dismutation of the superoxide radicals. The structural similarity between phenoxazine and the ommochromes suggests that the latter may undergo reduction under light, since the reduced form promotes photogeneration of the superoxide radical. 15 references, 6 figures.

  10. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity

    Science.gov (United States)

    Shetty, Pallavi Krishna; Venuvanka, Venkatesh; Jagani, Hitesh Vitthal; Chethan, Gejjalagere Honnappa; Ligade, Virendra S; Musmade, Prashant B; Nayak, Usha Y; Reddy, Meka Sreenivasa; Kalthur, Guruprasad; Udupa, Nayanabhirama; Rao, Chamallamudi Mallikarjuna; Mutalik, Srinivas

    2015-01-01

    The objective of present work was to develop novel sunscreen creams containing polymeric nanoparticles (NPs) of morin. Polymeric NPs containing morin were prepared and optimized. The creams containing morin NPs were also prepared and evaluated. Optimized NPs exhibited particle size of 90.6 nm and zeta potential of −31 mV. The entrapment efficiency of morin, within the polymeric NPs, was found to be low (12.27%). Fourier transformed infrared spectroscopy and differential scanning calorimetry studies revealed no interaction between morin and excipients. Transmission electron microscopy and atomic force microscopy revealed that the NPs were spherical in shape with approximately 100 nm diameter. Optimized NPs showed excellent in vitro free radical scavenging activity. Skin permeation and deposition of morin from its NPs was higher than its plain form. Different sunscreen creams (SC1–SC8) were formulated by incorporating morin NPs along with nano zinc oxide and nano titanium dioxide. SC5 and SC8 creams showed excellent sun protection factor values (≈40). In vitro and in vivo skin permeation studies of sunscreen creams containing morin NPs indicated excellent deposition of morin within the skin. Morin NPs and optimized cream formulations (SC5 and SC8) did not exhibit cytotoxicity in Vero and HaCaT cells. Optimized sunscreen creams showed excellent dermal safety. SC5 and SC8 creams demonstrated exceptional in vivo antioxidant effect (estimation of catalase, superoxide dismutase, and glutathione) in UV radiation-exposed rats. The optimized sunscreen creams confirmed outstanding UV radiation protection as well as antioxidant properties. PMID:26508854

  11. Solid-state fermentation for the enrichment and extraction of proteins and antioxidant compounds in rice bran by Rhizopus oryzae

    OpenAIRE

    Larine Kupski; Eliane Cipolatti; Meritaine da Rocha; Melissa dos Santos Oliveira; Leonor Almeida de Souza-Soares; Eliana Badiale-Furlong

    2012-01-01

    The objective of this work was to evaluate the solid-state fermentation with Rhizopus oryzae CCT 7560 of rice bran for the enrichment of proteins and the antioxidant compounds in the fermented biomass. Fermentation was performed in tray bioreactors at 30ºC for 120 h. Protein extraction was done at alkaline pH, followed by precipitation with acetone. Phenolic compounds were extracted with cold methanol. The maximum protein was recovered from after 120 h (26.6%). The content of total phenolic c...

  12. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates

    Directory of Open Access Journals (Sweden)

    Melissa Ferreira SBROGGIO

    2016-01-01

    Full Text Available Abstract The objective of this work was to evaluate the antioxidant activity of protein hydrolysates obtained by the enzymatic hydrolysis of okara using an endopeptidase (Alcalase and exopeptidase (Flavourzyme. The reaction was monitored by the pH-stat procedure in which five aliquots were collected during the hydrolysis by each enzyme, corresponding to different degrees of hydrolysis (DH. The antioxidant activities of the aliquots were evaluated by the ABTS, DPPH and FRAP methods. For the hydrolysates obtained using Alcalase, the antioxidant activities increased from: 68.6 to 99.5% (ABTS, 14.5 to 17.7% (DPPH and 222.6 to 684.9 µM Trolox (FRAP, when the DH varied from 0 to 33.6%. With respect to Flavourzyme, the results were: 67.2 to 88.2% (ABTS, 9.5 to 18.5% (DPPH and 168.0 to 360.3 µM Trolox (FRAP, when the DH increased up to 5.8%. The results showed that the protein hydrolysates had antioxidant capacities, which were influenced by the degree of hydrolysis and the type of enzyme.

  13. Synthesis and in vitro antioxidant functions of protein hydrolysate from backbones of Rastrelliger kanagurta by proteolytic enzymes.

    Science.gov (United States)

    Sheriff, Sheik Abdulazeez; Sundaram, Balasubramanian; Ramamoorthy, Baranitharan; Ponnusamy, Ponmurugan

    2014-01-01

    Every year, a huge quantity of fishery wastes and by-products are generated by fish processing industries. These wastes are either underutilized to produce low market value products or dumped leading to environmental issues. Complete utilization of fishery wastes for recovering value added products would be beneficial to the society and individual. The fish protein hydrolysates and derived peptides of fishery resources are widely used as nutritional supplements, functional ingredients, and flavor enhancers in food, beverage and pharmaceutical industries. Antioxidants from fishery resources have attracted the attention of researchers as they are cheaper in cost, easy to derive, and do not have side effects. Thus the present investigation was designed to produce protein hydrolysate by pepsin and papain digestion from the backbones of Rastrelliger kanagurta (Indian mackerel) and evaluate its antioxidant properties through various in vitro assays. The results reveal that both hydrolysates are potent antioxidants, capable of scavenging 46% and 36% of DPPH (1,1-diphenyl-2 picrylhydrazyl) and 58.5% and 37.54% of superoxide radicals respectively. The hydrolysates exhibit significant (p hydrolysates produced, pepsin derived fraction is superior than papain derived fraction in terms of yield, DH (Degree of hydrolysis), and antioxidant activity. PMID:24596496

  14. Influence of Amino Acid Compositions and Peptide Profiles on Antioxidant Capacities of Two Protein Hydrolysates from Skipjack Tuna (Katsuwonus pelamis) Dark Muscle

    OpenAIRE

    Chang-Feng Chi; Fa-Yuan Hu; Bin Wang; Zhong-Rui Li; Hong-Yu Luo

    2015-01-01

    Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis) dark muscle was investigated. Dark muscles from skipjack tuna were hydrolyzed using five separate proteases, including pepsin, trypsin, Neutrase, papain and Alcalase. Two hydrolysates, ATH and NTH, prepared using Alcalase and Neutrase, respectively, showed the strongest antioxidant capacities and were further fractionated using ultrafiltration...

  15. β-carotene Protects the Physiological Antioxidants Against Aflatoxin-B1 Induced Carcinogenesis in Albino Rats

    Directory of Open Access Journals (Sweden)

    Vinayak Patel

    2006-01-01

    Full Text Available To study the effects of β-carotene on the body growth and physiological antioxidants, male weanling rats were fed with low and high amount of β-carotene before four weeks and after six months of Aflatoxin-B1 (AFB1 treatment (0.5 mg kg-1 body wt., on alternate days, total 10 doses, i.p. The results were compared with animals treated with AFB1. The final body weight of AFB1 treated animals was significantly reduced in the normal group (NVE. Plasma vitamin E was reduced significantly in NVE group whereas vitamin C levels decreased significantly in NVE and low β-carotene (LBE fed group. The maximum reduction was found in NVE group. Plasma GSH levels were increased significantly in animals in high β-carotene (HBC fed group. Liver protein showed significant reduction in NVE group. Liver lipid peroxidation was increased significantly in NVE and LBE groups. Liver vitamin A showed dose dependent increased levels in animals fed with high amount of β-carotene. Vitamin E was decreased significantly in NVE group. Liver antioxidative enzymes glutathione peroxidase, catalase and glutathione-S-transferase levels were reduced significantly in the treated animals of the NVE group. Results obtained indicated that β-carotene supplementation elevated the levels of vitamin C, glutathione and glutathione related enzymes which act as a free radical scavenger and reduced the toxicity effect of AFB1 in rats.

  16. The effect of germination on antioxidant and nutritional parameters of protein isolates from grass pea (Lathyrus sativus) seeds.

    Science.gov (United States)

    Starzyńska-Janiszewska, A; Stodolak, B; Mickowska, B

    2010-02-01

    The aim of this research was to study the antioxidant and nutritional (selected objects) properties of protein isolates obtained from grass pea seedlings as compared with soaked and raw seeds. Two percent extract of isolate from 5-day-old seedlings showed the highest total antioxidant activity (25%) and the ability to chelate Fe²+ (2.35 mg/g d.m.) as compared with other isolates. Protein isolates from grass pea seeds had on average 89% total protein, 87% in vitro protein bioavailability, about 5574 TIU/g (d.m.) (trypsin inhibitors activity) and did not contain ODAP. Germination of seeds for 5 days considerably improved the in vitro bioavailability of isolates, by 12%, and profile of sulfur amino acids by 42%, in comparison with isolates obtained from the raw seeds. Isolates from 5-day-old grass pea seedlings had the best antioxidant properties and improved nutritional parameters (as compared with raw seeds), which makes them worthy of being considered as a potential food additive. PMID:21339123

  17. Biomimetic nanomaterials: Development of protein coated nanoceria as a potential antioxidative nano-agent for the effective scavenging of reactive oxygen species in vitro and in zebrafish model.

    Science.gov (United States)

    Bhushan, Bharat; Nandhagopal, Soundharapandiyan; Rajesh Kannan, Rajaretinam; Gopinath, P

    2016-10-01

    Reactive oxygen species (ROS) induced oxidative stress is one of the major factors responsible for initiation of several intracellular toxic events that leads to cell death. Antioxidant enzymes defence system of the body is responsible for maintaining the oxidative balance and cellular homeostasis. Several diseases are promoted by the excessive oxidative stress caused by the impaired antioxidant defence system that leads to oxidant/antioxidant imbalance in the body. In order to restore or precise the aberrant antioxidant system, a large number of catalytic nanoparticles has been screened so far. Exceptional antioxidative activity of nanoceria made it as a potential antioxidative nano-agent for the effective scavenging of toxic ROS. In this work albumin coated nanoceria (ANC) was synthesized and further characterised by various physicochemical techniques. The antioxidant and superoxide dismutase (SOD) assay confirm that the albumin coating do not alter the antioxidant potential of ANC. The biocompatibility and protective efficacy of ANC against oxidative stress was investigated both in vitro and in vivo in human lung epithelial (L-132) cells and zebrafish embryos, respectively. The inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and field emission scanning electron microscope (FE-SEM) analysis corroborates the uptake of ANC by the cells. Furthermore, the semi-quantitative gene expression studies confirmed that the ANC successfully defend the cells against oxidative stress by preserving the antioxidant system of the cells. Thus, the current work open up a new avenue for the development of improved antioxidant nano-drug therapies. PMID:27388966

  18. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury

    Energy Technology Data Exchange (ETDEWEB)

    Milatovic, Dejan, E-mail: dejan.milatovic@vanderbilt.edu [Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, TN (United States); Gupta, Ramesh C. [Murray State University, Breathitt Veterinary Center, Hopkinsville, KY (United States); Yu, Yingchun; Zaja-Milatovic, Snjezana [Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, TN (United States); Aschner, Michael [Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, TN (United States); Pharmacology and the Kennedy Center for Research on Human Development, Nashville, TN (United States)

    2011-11-15

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p < 0.01) increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 {mu}M) for 2 h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F{sub 2}-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100 mg/kg, s.c.) 24 h. Additionally, pretreatment with vitamin E (100 mg/kg, i.p.) or ibuprofen (140 {mu}g/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F{sub 2}-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional

  19. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury

    International Nuclear Information System (INIS)

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p 2-isoprostanes (F2-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 μM) for 2 h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F2-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100 mg/kg, s.c.) 24 h. Additionally, pretreatment with vitamin E (100 mg/kg, i.p.) or ibuprofen (140 μg/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F2-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic transmission and slowing of the progression of Mn-induced neurodegenerative

  20. Sulforaphane protects rodent retinas against ischemia-reperfusion injury through the activation of the Nrf2/HO-1 antioxidant pathway.

    Directory of Open Access Journals (Sweden)

    Hong Pan

    Full Text Available Retinal ischemia-reperfusion (I/R injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF, which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2-mediated induction of heme oxygenase-1 (HO-1. This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p. injected with SF (12.5 mg/kg or vehicle (corn oil once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II (ZnPP, 30 mg/kg, i.p. treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL, and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway.

  1. Alpha-lipoic acid protects against indomethacin-induced gastric oxidative toxicity by modulating antioxidant system.

    Science.gov (United States)

    Kaplan, Kursat Ali; Odabasoglu, Fehmi; Halici, Zekai; Halici, Mesut; Cadirci, Elif; Atalay, Fadime; Aydin, Ozlem; Cakir, Ahmet

    2012-11-01

    Gastroprotective effects of α-lipoic acid (ALA) against oxidative gastric damage induced by indomethacin (IND) have been investigated. All doses (50, 75, 100, 150, 200, and 300 mg/kg body weight) of ALA reduced the ulcer index with 88.2% to 96.1% inhibition ratio. In biochemical analyses of stomach tissues, ALA administration decreased the level of lipid peroxidation (LPO) and activities of myeloperoxidase (MPO) and catalase (CAT) in gastric tissues, which were increased after IND application. ALA also increased the level of glutathione (GSH) and activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) that were decreased in gastric damaged stomach tissues. In conclusion, the gastroprotective effect of ALA could be attributed to its ameliorating effect on the antioxidant defense systems. PMID:23057764

  2. Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri.

    Directory of Open Access Journals (Sweden)

    Sudip Bhattacharyya

    Full Text Available Aspirin has been used for a long time as an analgesic and anti-pyretic drug. Limitations of its use, however, remain for the gastro-intestinal side effects and erosions. Although the role of aspirin on gastro-intestinal injury has been extensively studied, the molecular mechanisms underlying aspirin-induced liver and spleen pathophysiology are poorly defined. The present study has been conducted to investigate whether phyllanthus niruri protein (PNP possesses any protective role against aspirin mediated liver and spleen tissue toxicity, and if so, what signaling pathways it utilizes to convey its protective action. Aspirin administration in mice enhanced serum marker (ALP levels, reactive oxygen species (ROS generation, reduced antioxidant power and altered oxidative stress related biochemical parameters in liver and spleen tissues. Moreover, we observed that aspirin intoxication activated both the extrinsic and intrinsic apoptotic pathways, as well as down regulated NF-κB activation and the phosphorylation of p38 and JNK MAPKs. Histological assessments and TUNEL assay also supported that aspirin induced tissue damages are apoptotic in nature. PNP treatment after aspirin exposure effectively neutralizes all these abnormalities via the activation of survival PI3k/Akt pathways. Combining all results suggest that PNP could be a potential protective agent to protect liver and spleen from the detrimental effects of aspirin.

  3. Protection of DFP-induced oxidative damage and neurodegeneration by antioxidants and NMDA receptor antagonist

    International Nuclear Information System (INIS)

    Prophylactic agents acutely administered in response to anticholinesterases intoxication can prevent toxic symptoms, including fasciculations, seizures, convulsions and death. However, anticholinesterases also have long-term unknown pathophysiological effects, making rational prophylaxis/treatment problematic. Increasing evidence suggests that in addition to excessive cholinergic stimulation, organophosphate compounds such as diisopropylphosphorofluoridate (DFP) induce activation of glutamatergic neurons, generation of reactive oxygen (ROS) and nitrogen species (RNS), leading to neurodegeneration. The present study investigated multiple affectors of DFP exposure critical to cerebral oxidative damage and whether antioxidants and NMDA receptor antagonist memantine provide neuroprotection by preventing DFP-induced biochemical and morphometric changes in rat brain. Rats treated acutely with DFP (1.25 mg/kg, s.c.) developed onset of toxicity signs within 7-15 min that progressed to maximal severity of seizures and fasciculations within 60 min. At this time point, DFP caused significant (p 2-isoprostanes, F2-IsoPs; and F4-neuroprostanes, F4-NeuroPs), RNS (citrulline), and declines in high-energy phosphates (HEP) in rat cerebrum. At the same time, quantitative morphometric analysis of pyramidal neurons of the hippocampal CA1 region revealed significant (p 2-IsoPs, F4-NeuroPs, citrulline, and depletion of HEP were noted. Furthermore, attenuation in oxidative damage following antioxidants or memantine pretreatment was accompanied by rescue from dendritic degeneration of pyramidal neurons in the CA1 hippocampal area. These findings closely associated DFP-induced lipid peroxidation with dendritic degeneration of pyramidal neurons in the CA1 hippocampal area and point to possible interventions to limit oxidative injury and dendritic degeneration induced by anticholinesterase neurotoxicity.

  4. Do cinnamylideneacetophenones have antioxidant properties and a protective effect toward the oxidation of phosphatidylcholines?

    Science.gov (United States)

    Silva, Eduarda M P; Melo, Tânia; Sousa, Bebiana C; Resende, Diana I S P; Magalhães, Luís M; Segundo, Marcela A; Silva, Artur M S; Domingues, M Rosário M

    2016-10-01

    Cinnamylideneacetophenones (CA) are an important group of α,β,γ,δ-diunsaturated ketones that have been widely used in a variety of synthetic transformations. Biological studies concerning these compounds are scarce and refer mainly to antiviral and antibacterial evaluations. Curcumin (CR), a natural polyphenol, is a yellow pigment extracted from the plant Curcuma longa, which is one of the major spices used in the Indian culinary. It has been reported that CR has cancer chemopreventive properties in a range of animal models of chemical carcinogenesis, along with antioxidative and anti-inflammatory properties. Inspired by the biological activity shown by CR and their structural resemblance with CA, it was considered to study the ability of the latter molecules to inhibit lipid oxidation induced by the hydroxyl radical (Fenton reaction) by electrospray ionization (ESI) mass spectrometry (MS) using phosphatidylcholine (PC) liposomes as a model of cell membrane. Compound 4, holding a methylated hydroxy group in the position R(2), and CR showed similar effects in inhibiting lipid peroxidation. In the presence of 7, the extension of oxidation was higher than the one verified in all other compounds. Other methodologies, namely DPPH radical scavenging and oxygen radical absorption capacity (ORAC) assays, were performed to complement and clarify the results attained by oxidation of PC monitored by ESI-MS and to evaluate the antioxidant profile of compounds. For both assays, compound 7 showed to be rather efficient due to its specific structure. This derivative can form a quite stable allylic radical by abstraction of a hydrogen atom which accounts for these results. PMID:27267003

  5. Protective effects of green tea on antioxidative biomarkers in chemical laboratory workers.

    Science.gov (United States)

    Tavakol, Heidary Shayesteh; Akram, Ranjbar; Azam, Sayadi; Nahid, Zadkhosh

    2015-09-01

    Chemical materials are environmental contaminants, are extensively used in laboratories, and may cause various forms of health hazards in laboratory workers. Therefore, this toxicity most likely is a result of the oxidative metabolism of chemical to reactive products. As green tea (GT) possesses antioxidant effects, the objective of this study was to examine any amelioration oxidative stress in chemical laboratory workers drinking one cup (3 g/300 ml water) of freshly prepared tea once daily. Baseline characteristics including age, sex, smoking, fruit consumption, and duration of exposure were recorded via questionnaire to the subjects. Saliva level oxidative stress parameters such as total antioxidant capacity (TAC), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were estimated before and after consumption of GT in these workers. Treatment of subjects with GT induced a significant reduction in saliva GPx activity (406.61 ± 22.07 vs. 238.96 ± 16.26 U/l p = 0.001) and induction in TAC (0.46 ± 0.029 μmol/ml vs. 0.56 ± 0.031, p = 0.016). No statistically significant alteration was found for saliva SOD (0.080 ± 0.0019 vs. 0.079 ± 0.0014, p > 0.05) and CAT (20.36 ± 0.69 vs. 19.78 ± 0.71, p > 0.05) after 28 days treatment by GT. These results demonstrate that drinking GT during chemical exposure can reduce several parameters indicative of oxidative stress. In conclusion, using GT as a dietary supplement can be a rational protocol to control source of hazards in chemical laboratory workers. PMID:23576111

  6. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion.

    Science.gov (United States)

    López-Barrios, Lidia; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A

    2016-07-15

    Germination is an inexpensive process to improve the nutritional properties of legumes. The effect of germinating black bean seeds on the production of cotyledon protein hydrolysates (CPH) with antioxidant and antiinflammatory activities was analyzed in this research. After simulated enzymatic digestion, the oxygen radical absorbance capacity (ORAC) of CPH obtained from germinated black beans was lower than that observed for raw cotyledons. There were no significant differences among CPH cellular antioxidant activities (CAA), except for the high CAA of the 120 min hydrolysate obtained from one day germinated black bean cotyledons. The most significant changes due to germination and enzymatic hydrolysis were observed for the inhibition of nitric oxide (NO) production in macrophages. The NO synthesis inhibition observed for raw CPH was reduced after simulated gastrointestinal digestion but for germinated samples the inhibition was doubled. Peptides derived from cell wall proteins produced during germination could be responsible of antiinflammatory activity. PMID:26948633

  7. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions

    DEFF Research Database (Denmark)

    Farvin Habebullah, Sabeena; Andersen, Lisa Lystbæk; Otte, Jeanette;

    2016-01-01

    This study aimed to characterise peptide fractions (>5 kDa, 3–5 kDa and <3 kDa) with antioxidative activity obtained from a cod protein hydrolysate. The free amino acids in all fractions were dominated by Ala, Gly, Glu and Ser. The total amino acid composition had high proportions of Lys, Ala and...... Glu. The 3–5 kDa and <3 kDa fractions were further fractionated by size exclusion chromatography. All sub-fractions showed high Fe2+ chelating activity. The DPPH radical-scavenging activity of the 3–5 kDa fraction was exerted mainly by one sub-fraction dominated by peptides with masses below 600 Da....... The DPPH radical-scavenging activity of the <3 kDa fraction was exerted by sub-fractions with low molecular weight. The highest reducing power was found in a sub-fraction containing peptides rich in Arg, Tyr and Phe. Both free amino acids and low molecular weight peptides thus seemed to contribute to...

  8. Nicotine-induced upregulation of antioxidant protein Prx 1 in oral squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    ZHAO YanHua; ZHANG Min; YAN Fei; CASTO Bruce C; TANG XiaoFei

    2013-01-01

    Nicotine is a source of exogenous oxidative stress,which is associated with the pathogenesis of numerous diseases including oral squamous cell carcinoma (OSCC),whereas an antioxidant protein,peroxiredoxin 1 (Prx 1),plays an important role in the modulation of this condition.This study was to investigate the association between Prx 1 and tobacco-induced oxidative stress.The expression of Prx 1 and GST π in OSCC Tca8113 cells,which were pre-treated with nicotine,was determined.In the present study,MTT assay,reactive oxygen species (ROS) assay,RT-PCR and Western blot analyses,respectively,were conducted to assess cell viability,ROS level,and expression level of Prx 1 and GST π in nicotine-treated Tca8113 cells.Nuclear factor kappa B (NF-κB) expression was detected by immuno-fluorescence.Our results showed the growth of Tca8113 cells was increased in a dose-dependent manner when cells were treated with nicotine at concentrations from 0.1 to 10 μmol/L,but the proliferation of the ceils decreased at 100 μmol/L.ROS levels increased in all groups treated with nicotine at concentrations of 0.1,1,10,or 100/μmol/L for 24 h.Prx 1 and GST π mRNA and protein expression were up-regulated in cells treated with nicotine for the same time at different concentrations or at the same concentration for different times (P<0.05).NF-κB was translocated from cytoplasm to nucleus,the expression of NF-κB was increased in nucleus.These results suggest that up-regulation of Prx1 expression appears to be associated with tobacco-induced oxidative stress,which may play an important role in the pathogenesis of OSCC.

  9. Antioxidant activities of dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber.

    Science.gov (United States)

    Hou, W C; Lee, M H; Chen, H J; Liang, W L; Han, C H; Liu, Y W; Lin, Y H

    2001-10-01

    Dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber (which is different from dioscorine found in tubers of Dioscorea hirsuta), was purified to homogeneity after DE-52 ion exchange column according to the methods of Hou et al. (J. Agric. Food Chem. 1999, 47, 2168-2172). A single band of 32 kDa dioscorin was obtained on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel with 2-mercaptoethanol treatment. This purified dioscorin was shown by spectrophotometric method to have scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in a pH-dependent manner. There is a positive correlation between scavenging effects against DPPH (8-46%) and amounts of 32 kDa dioscorin (5.97-47.80 nmol) added in Tris-HCl buffer (pH 7.9), which are comparable to those of glutathione at the same concentrations. Using electron paramagnetic resonance (EPR) spectrometry for DPPH radical detection, it was found that the intensities of the EPR signal were decreased by 28.6 and 57 nmol of 32 kDa dioscorin in Tris-HCl buffer (pH 7.9) more than in distilled water compared to controls. EPR spectrometry was also used for hydroxyl radical detection. It was found that 32 kDa dioscorin could capture hydroxyl radical, and the intensities of the EPR signal were significantly decreased dose-dependently by 1.79-14.32 nmol of 32 kDa dioscorin (r = 0.975) compared to the control. It is suggested that 32 kDa dioscorin, the storage protein of yam tuber, may play a role as antioxidant in tubers and may be beneficial for health when people take it as a food additive or consume yam tubers. PMID:11600050

  10. The Effects of Combined Antioxidant Supplementation on Antioxidant Capacity, DNA Single-Strand Breaks and Regulation of Insulin Growth Factor-1/IGF-Binding Protein 3 in the Ferret Model of Lung Cancer

    Science.gov (United States)

    Purpose: Insulin-like growth factor 1 (IGF-1) and its major binding protein, IGF binding protein 3 (IGFBP-3) are implicated in lung cancer and other malignancies. We have previously shown that the combination of three major antioxidants [beta-carotene (BC), alpha-tocopherol (AT) and ascorbic acid (...

  11. Chemical Composition, Starch Digestibility and Antioxidant Capacity of Tortilla Made with a Blend of Quality Protein Maize and Black Bean

    Directory of Open Access Journals (Sweden)

    Luis A. Bello-Pérez

    2011-12-01

    Full Text Available Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50% and the predicted glycemic index (88 to 80 of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g than control tortilla (7.8 μmol Trolox eq/g. The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics.

  12. Chemical composition, starch digestibility and antioxidant capacity of tortilla made with a blend of quality protein maize and black bean.

    Science.gov (United States)

    Grajales-García, Eva M; Osorio-Díaz, Perla; Goñi, Isabel; Hervert-Hernández, Deisy; Guzmán-Maldonado, Salvador H; Bello-Pérez, Luis A

    2012-01-01

    Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50%) and the predicted glycemic index (88 to 80) of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g) than control tortilla (7.8 μmol Trolox eq/g). The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics. PMID:22312252

  13. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity

    Directory of Open Access Journals (Sweden)

    Shetty PK

    2015-10-01

    Full Text Available Pallavi Krishna Shetty,1 Venkatesh Venuvanka,1 Hitesh Vitthal Jagani,1 Gejjalagere Honnappa Chethan,1 Virendra S Ligade,1 Prashant B Musmade,1 Usha Y Nayak,1 Meka Sreenivasa Reddy,1 Guruprasad Kalthur,2 Nayanabhirama Udupa,1 Chamallamudi Mallikarjuna Rao,1 Srinivas Mutalik1 1Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, 2Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, Karnataka, India Abstract: The objective of present work was to develop novel sunscreen creams containing polymeric nanoparticles (NPs of morin. Polymeric NPs containing morin were prepared and optimized. The creams containing morin NPs were also prepared and evaluated. Optimized NPs exhibited particle size of 90.6 nm and zeta potential of -31 mV. The entrapment efficiency of morin, within the polymeric NPs, was found to be low (12.27%. Fourier transformed infrared spectroscopy and differential scanning calorimetry studies revealed no interaction between morin and excipients. Transmission electron microscopy and atomic force microscopy revealed that the NPs were spherical in shape with approximately 100 nm diameter. Optimized NPs showed excellent in vitro free radical scavenging activity. Skin permeation and deposition of morin from its NPs was higher than its plain form. Different sunscreen creams (SC1–SC8 were formulated by incorporating morin NPs along with nano zinc oxide and nano titanium dioxide. SC5 and SC8 creams showed excellent sun protection factor values (≈40. In vitro and in vivo skin permeation studies of sunscreen creams containing morin NPs indicated excellent deposition of morin within the skin. Morin NPs and optimized cream formulations (SC5 and SC8 did not exhibit cytotoxicity in Vero and HaCaT cells. Optimized sunscreen creams showed excellent dermal safety. SC5 and SC8 creams demonstrated exceptional in vivo antioxidant effect (estimation of catalase, superoxide dismutase, and glutathione in

  14. Polysaccharide from Angelica sinensis protects chondrocytes from H2O2-induced apoptosis through its antioxidant effects in vitro.

    Science.gov (United States)

    Zhuang, Chao; Xu, Nan-Wei; Gao, Gong-Ming; Ni, Su; Miao, Kai-Song; Li, Chen-Kai; Wang, Li-Ming; Xie, Hong-Guang

    2016-06-01

    This study aimed to explore the protective effects of Angelica sinensis polysaccharide (ASP) on rat chondrocyte injury induced by hydrogen peroxide (H2O2). Rat chondrocytes were cultured and treated with different concentrations of ASP alone or in combination with H2O2, and they were measured with cell viability, apoptosis, release of inflammatory cytokines, such as interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α), activity of superoxide dismutase (SOD), and catalase (CAT), and levels of malondialdehyde (MDA) production, respectively. In addition, quantitative real-time reverse transcription polymerase chain reaction was used to estimate the relative expression levels of osteoarthritis (OA)-associated genes, such as collagen type II (Col2a1), aggrecan, SOX9, matrix metalloproteinase (MMP)-1, -3, and -9, as well as tissue inhibitor of matrix metalloproteinase (TIMP)-1, respectively. Results indicated that ASP protected chondrocytes from H2O2-induced oxidative stress and subsequent cell injury through its antioxidant, antiapoptotic and anti-inflammatory effects in vitro. Our study suggests that ASP could become a therapeutic supplementation for the treatment of OA. PMID:26893055

  15. Protective role of grape seed extract against radiation induced oxidative stress in rats: Role of endogenous antioxidants

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the protective role of grape seed extract against γ-irradiation induced oxidative stress in hepatic tissue. Animals were divided into four groups; Control group, Grape seed extract (GSE) group: animals were administered GSE for 14 consecutive days (100 mg/kg). Irradiated (IRR) group: rats were received dist. water for 7 days and then rats were irradiated with a single dose of 6 Gy and dist. water was maintained for 7 additional days. GSE-IRR group: rats were treated with GSE for 7 consecutive days, one hour later after the last dose of GSE, rats were irradiated with a single dose of 6 Gy and GSE was maintained for 7 additional days. Administration of GSE for 14 consecutive days resulted in a significant increase in the activities of both superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSHPx) and the level of reduced glutathione (GSH), in hepatic tissues which were reduced by radiation treatment. Also, GSE resulted in a significant decrease in total nitrate/nitrite (NO(x)) and malondialdehyde (MDA) levels in hepatic tissues and a significant decrease in Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels and Gamma glutamyl transpeptidase (GGT) activities and NO(x) level compared to irradiated group. In conclusion, data obtained from this study indicate that GSE could increase the endogenous antioxidant defense mechanism in rat and thereby protect the animals from radiation-induced hepatotoxicity

  16. Antioxidant Protective Effect of Glibenclamide and Metformin in Combination with Honey in Pancreas of Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Omotayo Owomofoyon Erejuwa

    2010-05-01

    Full Text Available Hyperglycemia exerts toxic effects on the pancreatic β-cells. This study investigated the hypothesis that the common antidiabetic drugs glibenclamide and metformin, in combination with tualang honey, offer additional protection for the pancreas of streptozotocin (STZ-induced diabetic rats against oxidative stress and damage. Diabetes was induced in male Sprague Dawley rats by a single dose of STZ (60 mg/kg; ip. Diabetic rats had significantly elevated levels of lipid peroxidation (TBARS, up-regulated activities of superoxide dismutase (SOD and glutathione peroxidase (GPx while catalase (CAT activity was significantly reduced. Glibenclamide and metformin produced no significant effects on TBARS and antioxidant enzymes except GPx in diabetic rats. In contrast, the combination of glibenclamide, metformin and honey significantly up-regulated CAT activity and down-regulated GPx activity while TBARS levels were significantly reduced. These findings suggest that tualang honey potentiates the effect of glibenclamide and metformin to protect diabetic rat pancreas against oxidative stress and damage.

  17. Physico-Chemical, Functional and Antioxidant Properties of Roe Protein Concentrates from Cyprinus carpio and Epinephelus tauvina

    Directory of Open Access Journals (Sweden)

    Galla Narsing Rao

    2014-09-01

    Full Text Available Roe protein concentrates prepared from Cyprinus carpio (CRPC and Epinephelus tauvina (ERPC were investigated for physico-chemical characteristics, functional properties and antioxidant activity. Cyprinus and Epinephelus roes yielded 19.5% and 21.5% of protein concentrates possessing 70.71% and 85.9% protein, respectively. Moisture sorption isotherms of roe protein concentrates indicated the non-hygroscopic nature of CRPC with initial moisture content (IMC of 8%, which equilibrated at 63% RH and hygroscopic nature of ERPC with IMC of 4.9%, which equilibrated at 42% RH. Water absorption capacity, oil absorption capacity, foam capacity and lower foam stability and emulsifying capacity were found in ERPC than in CRPC respectively. Maximum solubility of protein was 17.79% and 16.89% at pH 12, observed in CRPC and ERPC respectively. Higher buffer capacity was observed in both roe protein concentrates in alkali medium. Antioxidant activity determined by the DPPH radical scavenging activity was higher, and ferric reducing power was observed to be lower in ERPC.

  18. In vitro anti-inflammatory and antioxidant activities and protein quality of high hydrostatic pressure treated squids (Todarodes pacificus).

    Science.gov (United States)

    Zhang, Yifeng; Dai, Bona; Deng, Yun; Zhao, Yanyun

    2016-07-15

    This study investigated the in vitro anti-inflammatory and antioxidant properties, protein quality, and other related characteristics obtained by the single-cycle and two-cycle high hydrostatic pressure (HHP at 200, 400 and 600MPa) treatment of squids (Todarodes pacificus). The soluble protein nitrogen content and in vitro protein digestibility increased significantly (psquids significantly increased by all HHP treatments. (1)H nuclear magnetic resonance (NMR) showed that the main spectral changes associated to the anti-inflammatory properties of proteins following HHP treatment were in the range of 3.00-3.19 and 3.60-3.79ppm. This indicates that the HHP treatments modified the protein and functional properties of squids and gave the relevant chemical shifts in NMR signals, either migrated or disappeared. PMID:26948613

  19. Antioxidant and Protective Mechanisms against Hypoxia and Hypoglycaemia in Cortical Neurons in Vitro

    Directory of Open Access Journals (Sweden)

    José Joaquín Merino

    2014-02-01

    Full Text Available In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG. This “in vitro” model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1 and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12–24 h cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage.

  20. Protective effects of niacin against methylmercury-induced genotoxicity and alterations in antioxidant status in rats.

    Science.gov (United States)

    Silva de Paula, Eloisa; Carneiro, Maria Fernanda Hornos; Grotto, Denise; Hernandes, Lívia Cristina; Antunes, Lusânia Maria Greggi; Barbosa, Fernando

    2016-01-01

    This study investigates the potential beneficial effects of niacin (NA; vitamin B3) supplementation in rats chronically exposed to methylmercury (MeHg). Animals were randomly assigned to one of 4 groups (n = 6): Group I, control, received distilled water by gavage; Group II, received MeHg (100 µg/kg/d) by gavage; Group III, received NA (50 mg/kg/d) in drinking water; Group IV, received MeHg (100 µg/kg/d) by gavage + NA (50 mg/kg/d) in drinking water. Biochemical parameters levels of glucose, triglycerides, total cholesterol and fractions, and enzyme activities aspartate transaminase (AST) and alanine transaminase (ALT) were determined. Further, oxidative stress markers activity of glutathione peroxidase (GPx) and catalase (CAT) activity, as well as levels of reduced glutathione (GSH), malondialdehyde (MDA), and nitric oxide, were examined, and the comet assay was performed, using blood/plasma. Hg levels were measured in blood, brain, and kidneys of animals. Our results demonstrated that NA reduced adverse effects produced by MeHg. The mechanism underlying these effects appears to be related to the intrinsic antioxidant potential of NA. Considering the beneficial effects attributed to NA following MeHg exposure and that fish are the main source of both NA and MeHg, future studies need to evaluate the potential counteractive effect of NA against the adverse consequences of MeHg exposure in fish-eating populations. PMID:26914397

  1. Antioxidant Bioactivity of Samsum Ant (Pachycondyla sennaarensis Venom Protects against CCL4-Induced Nephrotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Hossam Ebaid

    2014-01-01

    Full Text Available To assess whether SAV could influence the effects of carbon tetrachloride (CCL4 exposure, mice were treated with SAV in doses of 100, 200, 300 and 400 μg/kg body weight and the effects on oxidative status and kidney function were studied. Serum levels of creatinine, malondialdehyde (MDA, and blood urea, together with renal and hepatic levels of MDA, glutathione (GSH, superoxide dismutase (SOD, and catalase (CAT were quantified in order to evaluate antioxidant activity. Results showed that the group injected with CCL4 exhibited significantly higher levels of oxidative stress markers, MDA, and significantly lower concentrations of GSH, SOD and catalase. SAV was found to significantly improve these oxidative markers, occasionally, in a dose-dependent manner. Furthermore, treatment with SAV was associated with the same behaviour in respect to kidney functions which had previously been impaired by CCL4. Histopathological examination demonstrated that SAV, in different groups, improved the renal tissue damage induced by CCL4 and histological scores confirmed that significant improvements were obtained after treatment with SAV, particularly with the lowest dose (100 μg/kg body weight. In conclusion, SAV has the potential capability to restore oxidative stability and to improve kidney functions after CCL4 acute injury.

  2. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H(2)O(2)-induced oxidative stress in cultured human skin fibroblasts.

    Science.gov (United States)

    Takahashi, Makoto; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2012-01-01

    Mannosylerythritol lipids (MELs) are biosurfactants known for their versatile interfacial and biochemical properties. To broaden their application in cosmetics, we investigated the antioxidant properties of different MEL derivatives (MEL-A, -B, and -C) by using a 1,1-diphenyl-2-picryl hydrazine (DPPH) free-radical- and superoxide anion-scavenging assay. All MEL derivatives tested showed antioxidant activity in vitro, but at lower levels than those of arbutin. Of the MELs, MEL-C, which is produced from soybean oil by Pseudozyma hubeiensis, showed the highest rates of DPPH radical scavenging (50.3% at 10 mg/mL) and superoxide anion scavenging (>50% at 1 mg/mL). The antioxidant property of MEL-C was further examined using cultured human skin fibroblasts (NB1RGB cells) under H(2)O(2) induced oxidative stress. Surprisingly, MEL-C had a higher protective activity against oxidative stress than arbutin did: 10 µg/mL of MEL-C and arbutin had protective activities of 30.3% and 13%, respectively. Expression of an oxidative stress marker, cyclooxygenase-2, in these cells was repressed by treatment with MEL-C as well as by arbutin. MEL-C was thus confirmed to have antioxidant and protective effects in cells, and we suggest that MELs have potential as anti-aging skin care ingredients. PMID:22864517

  3. Protective Role of Ca Against NaCl Toxicity in Jerusalem Artichoke by Up-Regulation of Antioxidant Enzymes

    Institute of Scientific and Technical Information of China (English)

    XUE Yan-Feng; LIU Ling; LIU Zhao-Pu; S. K.MEHTA; ZHAO Geng-Mao

    2008-01-01

    The ameliorative effect of external Ca2+ on Jerusalem artichoke (Helianthus tuberosus L.) under salt stress was studied through biochemical and physiological analyses of Jerusalem artichoke seedlings treated with or without 10 mol L-1 CaCl2, 150 mmol L-1 NaCl, and/or 5 mmol L-1 ethylene-bis(oxyethylenenitrilo)-tetraacetic acid (EGTA) for five days. Exposure to NaCl (150 mmol L-1) decreased growth, leaf chlorophyll content, and photosynthetic rate of Jerusalem artichoke seedlings. NaCl treatment showed 59% and 37% higher lipid peroxidation and electrolyte leakage, respectively, than the control. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were decreased by NaCl, indicating an impeded antioxidant defense mechanism of Jerusalem artichoke grown under salt stress. Addition of 10 mmol L-1 CaCl2 to the salt solutions significantly decreased the damaging effect of NaCl on growth and chlorophyll content and simultaneously restored the rate of photosynthesis almost to the level of the control. Ca2+ addition decreased the leaf malondialdehyde (MDA) content and electrolyte leakage from NaCl-treated seedlings by 47% and 24%, respectively, and significantly improved the activities of SOD, POD, and CAT in NaCl-treated plants. Addition of ECTA, a specific chelator of Ca2+, decreased the growth, chlorophyll content, and photosynthesis, and increased level of MDA and electrolyte leakage from NaCl-treated plants and from the control plants. ECTA addition to the growth medium also repressed the activities of SOD, POD, and CAT in NaCl-treated and control seedlings. External Ca2+ might protect Jerusalem artichoke against NaCl stress by up-regulating the activities of antioxidant enzymes and thereby decreasing the oxidative stress.

  4. Raising the level of radioresistance of cultivated plants seeds by using natural antioxidant

    International Nuclear Information System (INIS)

    Investigations showed possibility of raising radioresistance and viability (Liupinus angustifolius, Hordeum vulgare, Triticum aestivum) seeds by using natural antioxidant (aqueous solution of extraction of Urtica Dioica) which inhibit lipid peroxidation and protein protection

  5. Protective mechanisms against peptide and protein peroxides generated by singlet oxygen

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2004-01-01

    remove both the parent peroxides and radicals derived from them, whereas methionine and the synthetic phenolic antioxidants Probucol and BHT show little activity. These studies show that cells do not have efficient enzymatic defenses against protein peroxides, with only thiols and ascorbic acid able to...

  6. Antioxidative activity of protein hydrolysate produced by alcalase hydrolysis from shrimp waste (Penaeus monodon and Penaeus indicus)

    OpenAIRE

    Dey, Satya Sadhan; Dora, Krushna Chandra

    2011-01-01

    Protein hydrolysates prepared by hydrolysis of shrimp waste (Penaeus monodon and Penaeus indicus) for 90 min. using Alcalase enzyme following pH-stat method. Antioxidative activities of SWPH were assessed determining FRAP, ABTS and DPPH radical scavenging activities, which increased linearly with increasing concentration of protein hydrolysate upto 5 mg/ml maintaining good correlation. SWPH showed high stability over wide ranges of pH (2–11) and temperature (up to 100 °C for 150 min), in whic...

  7. Chemical Composition and Antioxidant Properties of Juniper Berry (Juniperus communis L. Essential Oil. Action of the Essential Oil on the Antioxidant Protection of Saccharomyces cerevisiae Model Organism

    Directory of Open Access Journals (Sweden)

    Martina Höferl

    2014-02-01

    Full Text Available The essential oil of juniper berries (Juniperus communis L., Cupressaceae is traditionally used for medicinal and flavoring purposes. As elucidated by gas chromatography/flame ionization detector (GC/FID and gas chromatography/mass spectrometry (GC/MS methods, the juniper berry oil from Bulgaria is largely comprised of monoterpene hydrocarbons such as α-pinene (51.4%, myrcene (8.3%, sabinene (5.8%, limonene (5.1% and β-pinene (5.0%. The antioxidant capacity of the essential oil was evaluated in vitro by 2,2-Diphenyl-1-picrylhydrazyl (DPPH scavenging, 2,2-azino-bis-3-ethylbenzothiazoline-6 sulfonic acid (ABTS radical cation scavenging, hydroxyl radical (ОН• scavenging and chelating capacity, superoxide radical (•O2− scavenging and xanthine oxidase inhibitory effects, hydrogen peroxide scavenging. The antioxidant activity of the oil attributable to electron transfer made juniper berry essential oil a strong antioxidant, whereas the antioxidant activity attributable to hydrogen atom transfer was lower. Lipid peroxidation inhibition by the essential oil in both stages, i.e., hydroperoxide formation and malondialdehyde formation, was less efficient than the inhibition by butylated hydroxytoluene (BHT. In vivo studies confirmed these effects of the oil which created the possibility of blocking the oxidation processes in yeast cells by increasing activity of the antioxidant enzymes superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx.

  8. Antioxidant, DNA protective efficacy and HPLC analysis of Annona muricata (soursop) extracts

    OpenAIRE

    George, V. Cijo; Kumar, D. R. Naveen; Suresh, P. K.; Kumar, R. Ashok

    2014-01-01

    Annona muricata is a naturally occurring edible plant with wide array of therapeutic potentials. In India, it has a long history of traditional use in treating various ailments. The present investigation was carried out to characterize the phytochemicals present in the methanolic and aqueous leaf extracts of A. muricata, followed by validation of its radical scavenging and DNA protection activities. The extracts were also analyzed for its total phenolic contents and subjected to HPLC analysis...

  9. Antioxidant-Induced Stress

    Directory of Open Access Journals (Sweden)

    Robert D. Kross

    2012-02-01

    Full Text Available Antioxidants are among the most popular health-protecting products, sold worldwide without prescription. Indeed, there are many reports showing the benefits of antioxidants but only a few questioning the possible harmful effects of these “drugs”. The normal balance between antioxidants and free radicals in the body is offset when either of these forces prevails. The available evidence on the harmful effects of antioxidants is analyzed in this review. In summary, a hypothesis is presented that “antioxidant-induced stress” results when antioxidants overwhelm the body’s free radicals.

  10. Antioxidant, DNA protective efficacy and HPLC analysis of Annona muricata (soursop) extracts.

    Science.gov (United States)

    George, V Cijo; Kumar, D R Naveen; Suresh, P K; Kumar, R Ashok

    2015-04-01

    Annona muricata is a naturally occurring edible plant with wide array of therapeutic potentials. In India, it has a long history of traditional use in treating various ailments. The present investigation was carried out to characterize the phytochemicals present in the methanolic and aqueous leaf extracts of A. muricata, followed by validation of its radical scavenging and DNA protection activities. The extracts were also analyzed for its total phenolic contents and subjected to HPLC analysis to determine its active metabolites. The radical scavenging activities were premeditated by various complementary assays (DRSA, FRAP and HRSA). Further, its DNA protection efficacy against H2O2 induced toxicity was evaluated using pBR322 plasmid DNA. The results revealed that the extracts were highly rich in various phytochemicals including luteolin, homoorientin, tangeretin, quercetin, daidzein, epicatechin gallate, emodin and coumaric acid. Both the extracts showed significant (p < 0.05) radical scavenging activities, while methanolic extract demonstrated improved protection against H2O2-induced DNA damage when compared to aqueous extract. A strong positive correlation was observed for the estimated total phenolic contents and radical scavenging potentials of the extracts. Further HPLC analysis of the phyto-constituents of the extracts provides a sound scientific basis for compound isolation. PMID:25829616

  11. Effect of pH and temperature on comparative antioxidant activity of nonenzymatically browned proteins produced by reaction with oxidized lipids and carbohydrates.

    Science.gov (United States)

    Alaiz, M; Hidalgo, F J; Zamora, R

    1999-02-01

    The antioxidative activity of nonenzymatically browned bovine serum albumin (BSA) produced by reaction with ribose (RI), hydroperoxides of methyl linoleate oxidation (HP), and secondary products of methyl linoleate oxidation (SP), at different pHs (4, 7, and 10) and temperatures (25, 37, 50, 80, and 120 degrees C), was studied to compare the antioxidative effects of carbohydrate- and oxidized lipids-modified proteins. The modified proteins (RIBSA, HPBSA, and SPBSA) were tested for antioxidative activity (at 100 ppm) in soybean oil using the thiobarbituric acid-reactive substances (TBARS) assay. All of them decreased significantly (p complimentary contribution of both Maillard and oxidized lipid/protein reactions to the antioxidative activity produced in foods during processing and storage. PMID:10563964

  12. The sigma-1 receptor-zinc finger protein 179 pathway protects against hydrogen peroxide-induced cell injury.

    Science.gov (United States)

    Su, Tzu-Chieh; Lin, Shu-Hui; Lee, Pin-Tse; Yeh, Shiu-Hwa; Hsieh, Tsung-Hsun; Chou, Szu-Yi; Su, Tsung-Ping; Hung, Jan-Jong; Chang, Wen-Chang; Lee, Yi-Chao; Chuang, Jian-Ying

    2016-06-01

    The accumulation of reactive oxygen species (ROS) have implicated the pathogenesis of several human diseases including neurodegenerative disorders, stroke, and traumatic brain injury, hence protecting neurons against ROS is very important. In this study, we focused on sigma-1 receptor (Sig-1R), a chaperone at endoplasmic reticulum, and investigated its protective functions. Using hydrogen peroxide (H2O2)-induced ROS accumulation model, we verified that apoptosis-signaling pathways were elicited by H2O2 treatment. However, the Sig-1R agonists, dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS), reduced the activation of apoptotic pathways significantly. By performing protein-protein interaction assays and shRNA knockdown of Sig-1R, we identified the brain Zinc finger protein 179 (Znf179) as a downstream target of Sig-1R regulation. The neuroprotective effect of Znf179 overexpression was similar to that of DHEAS treatment, and likely mediated by affecting the levels of antioxidant enzymes. We also quantified the levels of peroxiredoxin 3 (Prx3) and superoxide dismutase 2 (SOD2) in the hippocampi of wild-type and Znf179 knockout mice, and found both enzymes to be reduced in the knockout versus the wild-type mice. In summary, these results reveal that Znf179 plays a novel role in neuroprotection, and Sig-1R agonists may be therapeutic candidates to prevent ROS-induced damage in neurodegenerative and neurotraumatic diseases. PMID:26792191

  13. Effect of Peptide Size on Antioxidant Properties of African Yam Bean Seed (Sphenostylis stenocarpa Protein Hydrolysate Fractions

    Directory of Open Access Journals (Sweden)

    Comfort F. Ajibola

    2011-10-01

    Full Text Available Enzymatic hydrolysate of African yam bean seed protein isolate was prepared by treatment with alcalase. The hydrolysate was further fractionated into peptide sizes of < 1, 1–3, 3–5 and 5–10 kDa using membrane ultrafiltration. The protein hydrolysate (APH and its membrane ultrafiltration fractions were assayed for in vitro antioxidant activities. The < 1 kDa peptides exhibited significantly better (p < 0.05 ferric reducing power, diphenyl-1-picryhydradzyl (DPPH and hydroxyl radical scavenging activities when compared to peptide fractions of higher molecular weights. The high activity of < 1 kDa peptides in these antioxidant assay systems may be related to the high levels of total hydrophobic and aromatic amino acids. In comparison to glutathione (GSH, the APH and its membrane fractions had significantly higher (p < 0.05 ability to chelate metal ions. In contrast, GSH had significantly greater (p < 0.05 ferric reducing power and free radical scavenging activities than APH and its membrane fractions. The APH and its membrane fractions effectively inhibited lipid peroxidation, results that were concentration dependent. The activity of APH and its membrane fractions against linoleic acid oxidation was higher when compared to that of GSH but lower than that of butylated hydroxyl toluene (BHT. The results show potential use of APH and its membrane fractions as antioxidants in the management of oxidative stress-related metabolic disorders and in the prevention of lipid oxidation in food products.

  14. Antioxidant-Induced Stress

    OpenAIRE

    Robert D. Kross; Cleva Villanueva

    2012-01-01

    Antioxidants are among the most popular health-protecting products, sold worldwide without prescription. Indeed, there are many reports showing the benefits of antioxidants but only a few questioning the possible harmful effects of these “drugs”. The normal balance between antioxidants and free radicals in the body is offset when either of these forces prevails. The available evidence on the harmful effects of antioxidants is analyzed in this review. In summary, a hypothesis is presented that...

  15. Leaf extracts from Teucrium ramosissimum protect against DNA damage in human lymphoblast cell K562 and enhance antioxidant, antigenotoxic and antiproliferative activity.

    Science.gov (United States)

    Sghaier, Mohamed Ben; Ismail, Manel Ben; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila

    2016-06-01

    The in vitro antioxidant, antigenotoxic and antiproliferative activities of Teucrium ramosissimum extracts were investigated. The antioxidant activities of the tested extracts were evaluated through three chemical assays: The Cupric reducing antioxidant capacity, the reducing power and the ferric reducing antioxidant power. TR1 fraction from methanol extract showed the best antioxidant activity evaluated by the CUPRAC, RP and FRAP assays with TEAC values of 4.04, 1.77 and 1.48μM respectively compared to control. Yet, TR2 fraction exhibited the lowest antioxidant effect with a TEAC values of 1.97, 0.408 and 0.35μM respectively. All the tested extracts were also found to be effective in protecting plasmid DNA against the strand breakage induced by hydroxyl radicals. Furthermore, the effects of T. ramosissimum extracts on cell proliferation were also examined. The cytotoxic study revealed that methanol extract significantly inhibited the proliferation of K562 cells (IC50=150μg/mL). The antigenotoxic properties of these extracts were investigated by assessing the induction and inhibition of the genotoxicity induced by the direct-acting mutagen, hydrogen peroxide (H2O2), using an eukaryotic system; the "Comet assay." The results showed that all the extracts inhibited the genotoxicity induced by H2O2, and particularly TR2 fraction (96.99%) and methanol extract (96.64%). The present study has demonstrated that T. ramosissimum extract possess potent antioxidant, antiproliferative and antigenotoxic activities, which could be derived from compounds such as flavonoids and polyphenols. PMID:27105156

  16. An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ma Ruonan; Zhang Qian [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Feng Hongqing; Liang Yongdong [College of Engineering, Peking University, Beijing 100871 (China); Li Fangting [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Physics, Peking University, Beijing 100871 (China); Zhu Weidong [Department of Applied Science and Technology, Saint Peter' s College, Jersey City, New Jersey 07306 (United States); Zhang Jue; Fang Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Becker, Kurt H. [Department of Applied Physics, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States)

    2012-03-19

    With the development of plasma medicine, safety issues are emerging as a serious concern. In this study, both intracellular (genetic engineering) and extracellular (scavengers) measures were tested in an effort to determine the best protection for cells against plasma-induced oxidative stress. All results of immediate reactive species detection, short term survival and long term proliferation, suggest that intracellular pathways are superior in reducing oxidative stress and cell death. This work provides a potential mechanism to enhance safety and identifies precautionary measures that should be taken in future clinical applications of plasmas.

  17. Solid-state fermentation for the enrichment and extraction of proteins and antioxidant compounds in rice bran by Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Larine Kupski

    2012-12-01

    Full Text Available The objective of this work was to evaluate the solid-state fermentation with Rhizopus oryzae CCT 7560 of rice bran for the enrichment of proteins and the antioxidant compounds in the fermented biomass. Fermentation was performed in tray bioreactors at 30ºC for 120 h. Protein extraction was done at alkaline pH, followed by precipitation with acetone. Phenolic compounds were extracted with cold methanol. The maximum protein was recovered from after 120 h (26.6%. The content of total phenolic compounds increased during the fermentation and was maximum after 96 h, which inhibited the DPPH radical by 87%. The promising characteristics of the protein and phenolic extracts of the biomass suggested the application in the coating composition for vegetal tissues preservation.

  18. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1

    Directory of Open Access Journals (Sweden)

    Li Ping Zheng

    2016-02-01

    Full Text Available An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH radical scavenging activity of the EPS reached more than 50% at 3–5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7–1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H2O2 exposure increased the cell survival and glutathione (GSH level and catalase (CAT activities, and decreased the level of malondialdehyde (MDA and lactate dehydrogenase (LDH activity in a dose-dependent manner, suggesting a pronounced protective effect against H2O2-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries.

  19. The role of Montanide ISA 70 as an adjuvant in immune responses against Leishmania major induced by thiol-specific antioxidant-based protein vaccine.

    Science.gov (United States)

    Khabazzadeh Tehrani, Narges; Mahdavi, Mehdi; Maleki, Fatemeh; Zarrati, Somayeh; Tabatabaie, Fatemeh

    2016-09-01

    Leishmaniasis is a parasitic disease caused by several species of the genus Leishmania. Montanide ISA 70 is an adjuvant composed of a natural metabolizable oil and a very refined emulsifier from the manide monooleate family. The TSA (thiol-specific antioxidant) is a important antigen of Leishmania major. The purpose of this work was protein-vaccine efficacy as an protection and excellent candidate in the presence Montanide. The expression of recombinant protein was confirmed with SDS (sodium dodecyl sulfate) page and Western bloting. 48 BALB/c mice were divided into four groups (TSA/Freund,TSA/Alum + BCG, TSA/Montanide and PBS groups) and immunized with 20 μg of vaccine subcutaneously three times intervals on days 0, 14 and 28. The mice were challenged with parasite 21 days after final immunization. The lymphocyte proliferation was evaluated with Brdu method. Cytokines and also total antibody and subclasses were evaluated with ELISA method. The vaccine formulated with the recombinant TSA protein with Montanide induced lymphocytes proliferation cytokines and total antibody and subclasses as compared with the control group. PMID:27605780

  20. Physical chemistry evaluation of stability, spreadability, in vitro antioxidant, and photo-protective capacities of topical formulations containing Calendula officinalis L. leaf extract

    Directory of Open Access Journals (Sweden)

    Viviane Cecília Kessler Nunes Deuschle

    2015-03-01

    Full Text Available Calendula is used widely in cosmetic formulations that present phenolic compounds in their chemical constitution. The objective of our research was to develop and evaluate the stability of topical formulations containing 5% hydro-ethanolic extract of calendula leaves, including spreadability, and in vitro photo-protective, and antioxidant capacity. To evaluate the stability, we used organoleptic characteristics, pH, and viscosity parameters. Antioxidant capacity was measured by the DPPH (2,2-diphenyl-1-picrylhydrazyl method, and the photo-protective capacity by SPF spectrophotometric measure. All formulations were stable. The calendula extract formulations in gel and cream showed no significant variations in pH, and the cream formulations presented lower viscosity variations than gel formulations. The spreadability of the gel formulations was superior to those in cream. The formulations also presented good antioxidant capacities and an FPS of around 1.75. In accordance with the results, the formulations can be used as antioxidants, but considering the low SPF obtained, calendula cannot be considered as a stand-alone sunscreen, yet may well be tested in future studies towards verifying enhancement of synthetic sunscreens.

  1. Protective Effect of Antenatal Antioxidant on Nicotine-Induced Heart Ischemia-Sensitive Phenotype in Rat Offspring.

    Science.gov (United States)

    Xiao, DaLiao; Wang, Lei; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Zhang, Lubo

    2016-01-01

    Fetal nicotine exposure increased risk of developing cardiovascular disease later in life. The present study tested the hypothesis that perinatal nicotine-induced programming of heart ischemia-sensitive phenotype is mediated by enhanced reactive oxygen species (ROS) in offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth, in the absence or presence of a ROS inhibitor, N-acetyl-cysteine (NAC) in drinking water. Experiments were conducted in 8 month old age male offspring. Isolated hearts were perfused in a Langendorff preparation. Perinatal nicotine treatment significantly increased ischemia and reperfusion-induced left ventricular injury, and decreased post-ischemic recovery of left ventricular function and coronary flow rate. In addition, nicotine enhanced cardiac ROS production and significantly attenuated protein kinase Cε (PKCε) protein abundance in the heart. Although nicotine had no effect on total cardiac glycogen synthase kinase-3β (GSK3β) protein expression, it significantly increased the phosphorylation of GSK3β at serine 9 residue in the heart. NAC inhibited nicotine-mediated increase in ROS production, recovered PKCε gene expression and abrogated increased phosphorylation of GSK3β. Of importance, NAC blocked perinatal nicotine-induced increase in ischemia and reperfusion injury in the heart. These findings provide novel evidence that increased oxidative stress plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the heart, and suggest potential therapeutic targets of anti-oxidative stress in the treatment of ischemic heart disease. PMID:26918336

  2. Hyperoxia-induced ciliary loss and oxidative damage in an in vitro bovine model: The protective role of antioxidant vitamins E and C

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shmgani, Hanady S.; Moate, Roy M. [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Sneyd, J. Robert [Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth (United Kingdom); Macnaughton, Peter D. [Derriford Critical Care Unit, Plymouth (United Kingdom); Moody, A. John, E-mail: jmoody@plymouth.ac.uk [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom)

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer A new bovine bronchial model for studying hyperoxia-induced cilia loss is presented. Black-Right-Pointing-Pointer Hyperoxia-induced cilia loss was associated with increased sloughing of cells. Black-Right-Pointing-Pointer Hyperoxia led to higher epithelial glutathione levels, evidence of oxidative stress. Black-Right-Pointing-Pointer Hyperoxia led to increased DNA damage (Comet), and lipid peroxidation (TBARS). Black-Right-Pointing-Pointer Vitamins C and E partially protected against hyperoxia-induced cilia loss. -- Abstract: Although elevated oxygen fraction is used in intensive care units around the world, pathological changes in pulmonary tissue have been shown to occur with prolonged exposure to hyperoxia. In this work a bovine bronchus culture model has been successfully used to evaluate the effects of hyperoxia on ciliated epithelium in vitro. Samples were cultured using an air interface method and exposed to normoxia, 21% O{sub 2} or hyperoxia, 95% O{sub 2}. Cilial coverage was assessed using scanning electron microscopy (SEM). Tissue damage (lactate dehydrogenase, LDH, in the medium), lipid peroxidation (thiobarbituric acid reactive substances, TBARS), DNA damage (comet assay), protein oxidation (OxyBlot kit) and antioxidant status (total glutathione) were used to assess whether the hyperoxia caused significant oxidative stress. Hyperoxia caused a time-dependent decline (t{sub Vulgar-Fraction-One-Half} = 3.4 d compared to 37.1 d under normoxia) in cilial coverage (P < 0.0001). This was associated with a significant increase in the number of cells (2.80 {+-} 0.27 Multiplication-Sign 10{sup 6} compared to 1.97 {+-} 0.23 Multiplication-Sign 10{sup 6} ml{sup -1} after 6 d), many apparently intact, in the medium (P < 0.05); LDH release (1.06 {+-} 0.29 compared to 0.83 {+-} 0.36 {mu}mol min{sup -1} g{sup -1} after 6 d; P < 0.001); lipid peroxidation (352 {+-} 16 versus 247 {+-} 11 {mu}mol MDA g{sup -1} for hyperoxia and

  3. Effect of certain natural antioxidants in protecting against damage caused by gamma radiation in ischemic rat intestine

    International Nuclear Information System (INIS)

    Oxidative stress plays an important role in various clinical pathologies one of which is ischemia/reperfusion (I/R)- induced injury. Intestinal I/R enhances production of reactive oxygen species (ROS), inflammatory mediators and induces apoptosis. In other hand. the intestinal tract shows a high sensitivity to ionizing radiation due to a rapid cell turnover and is often implicated in radiation sickness the radiation damage may either be a consequence of a direct effect resulting in disruption of critical molecule (such as an enzyme or DNA) or an indirect effect through ionization of water molecules and formation of ROS. consequently, supplementation of antioxidants may be a beneficial approach to protect against cellular damages associated with oxidative stress. the current study was aimed to evaluate the possible protective effects of vitamin E (100 mg/kg p.o.), tomato extract (67 mg/kg. p.o.) and turmeric (100 mg/kg, p.o) against ileal injury induced in rats by total occlusion of the superior mesenteric artery for 30 min followed by reperfusion for another 30 min. Furthermore, this protective effect of the mentioned drugs was extended into injury that could happened in ileal tissues of rats exposed to (6 Gy) gamma radiation followed by intestinal I/R. Drugs were administered one daily for 14 consecutive days prior to the ischemic insult. Damage induced by I/R was manifested by depletion of ileal content of reduced glutathion (GSH) as well as Lactate dehydrogenas (LDH) activity, associated with elevation of ileal contents of thiobarbituric acid reactive substances (TBARS), nitrite, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Intestinal ischemic insults were exacerbated by radiation injury on comparing different untreated controls; except the ileal content of GSH which has elevated due to the preconditioning effect of irradiation. Vitamin E provided a significant protection against the decrease in LDH activity as well as the increase in TBARS

  4. Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect.

    Science.gov (United States)

    Jeong, Jin Boo; Park, Jae Ho; Lee, Hee Kyeong; Ju, So Yeong; Hong, Se Chul; Lee, Jeong Rak; Chung, Gyu Young; Lim, Jae Hwan; Jeong, Hyung Jin

    2009-03-01

    The dried rhizomes of Cnidium officinale are used as herbal drugs in the treatment of pain, inflammation, menstrual disturbance and antivitamin deficiency disease, and also act as a blood pressure depressant. In addition, there are several reports suggesting that they have pharmacological properties to tumor metastasis and angiogenesis, and that they act as an inhibitor of high glucose-induced proliferation of glomerular mesangial cells. However, little has been known about the functional role of the extracts from C. officinale on oxidative DNA damage and apoptosis caused by ROS. In this work, we have investigated the DPPH radical, hydroxyl radical and intracellular ROS scavenging capacity, and Fe(2+) chelating activity of the extracts from C. officinale. In addition, we evaluated whether the extracts are capable of reducing H(2)O(2)-induced DNA and cell damage in the human skin fibroblast cell. These extracts showed a dose-dependent free-radical scavenging capacity and a protective effect on DNA damage and the lipid peroxidation causing the cell damage by ROS. These antioxidant activities and inhibitory effects of the extracts on DNA and cell damage may further explain that C. officinale is useful as a herbal medicine for cancer chemoprevention. PMID:19101603

  5. The impact of antioxidant addition on flavor of cheddar and mozzarella whey and cheddar whey protein concentrate.

    Science.gov (United States)

    Liaw, I W; Eshpari, H; Tong, P S; Drake, M A

    2010-08-01

    Lipid oxidation products are primary contributors to whey ingredient off-flavors. The objectives of this study were to evaluate the impact of antioxidant addition in prevention of flavor deterioration of fluid whey and spray-dried whey protein. Cheddar and Mozzarella cheeses were manufactured in triplicate. Fresh whey was collected, pasteurized, and defatted by centrifugal separation. Subsequently, 0.05% (w/w) ascorbic acid or 0.5% (w/w) whey protein hydrolysate (WPH) were added to the pasteurized whey. A control with no antioxidant addition was also evaluated. Wheys were stored at 3 degrees C and evaluated after 0, 2, 4, 6, and 8 d. In a subsequent experiment, selected treatments were then incorporated into liquid Cheddar whey and processed into whey protein concentrate (WPC). Whey and WPC flavors were documented by descriptive sensory analysis, and volatile components were evaluated by solid phase micro-extraction with gas chromatography mass spectrometry. Cardboard flavors increased in fluid wheys with storage. Liquid wheys with ascorbic acid or WPH had lower cardboard flavor across storage compared to control whey. Lipid oxidation products, hexanal, heptanal, octanal, and nonanal increased in liquid whey during storage, but liquid whey with added ascorbic acid or WPH had lower concentrations of these products compared to untreated controls. Mozzarella liquid whey had lower flavor intensities than Cheddar whey initially and after refrigerated storage. WPC with added ascorbic acid or WPH had lower cardboard flavor and lower concentrations of pentanal, heptanal, and nonanal compared to control WPC. These results suggest that addition of an antioxidant to liquid whey prior to further processing may be beneficial to flavor of spray-dried whey protein. Practical Application: Lipid oxidation products are primary contributors to whey ingredient off-flavors. Flavor plays a critical and limiting role in widespread use of dried whey ingredients, and enhanced understanding

  6. Antioxidant enriched enteral nutrition and oxidative stress after major gastrointestinal tract surgery

    Institute of Scientific and Technical Information of China (English)

    Mireille FM van Stijn; Gerdien C Ligthart-Melis; Petra G Boelens; Peter G Scheffer; Tom Teerlink; Jos WR Twisk; Alexander PJ Houdijk; Paul AM van Leeuwen

    2008-01-01

    AIM: To investigate the effects of an enteral supplement containing antioxidants on circulating levels of antioxidants and indicators of oxidative stress after major gastrointestinal surgery.METHODS: Twenty-one patients undergoing major upper gastrointestinal tract surgery were randomised in a single centre, open label study on the effect of postoperative enteral nutrition supplemented with antioxidants. The effect on circulating levels of antioxidants and indicators of oxidative stress, such as F2-isoprostane, was studied.RESULTS: The antioxidant enteral supplement showed no adverse effects and was well tolerated. After surgery a decrease in the circulating levels of antioxidant parameters was observed. Only selenium and glutamine levels were restored to pre-operative values one week after surgery. F2-isoprostane increased in the first three postoperative days only in the antioxidant supplemented group. Lipopolysaccharide binding protein (LBP) levels decreased faster in the antioxidant group after surgery.CONCLUSION: Despite lower antioxidant levelsthere was no increase in the circulating markers of oxidative stress on the first day after major abdominal surgery. The rise in F2-isoprostane in patients receiving the antioxidant supplement may be related to the conversion of antioxidants to oxidants which raises questions on antioxidant supplementation. Module AOX restored the postoperative decrease in selenium levels.The rapid decrease in LBP levels in the antioxidant group suggests a possible protective effect on gut wall integrity. Further studies are needed on the role of oxidative stress on outcome and the use of antioxidants in patients undergoing major abdominal surgery.

  7. Antioxidant, Biomolecule Oxidation Protective Activities of Nardostachys jatamansi DC and Its Phytochemical Analysis by RP-HPLC and GC-MS

    OpenAIRE

    Sakina Razack; Kandikattu Hemanth Kumar; Ilaiyaraja Nallamuthu; Mahadeva Naika; Farhath Khanum

    2015-01-01

    The study aimed at analyzing the metabolite profile of Nardostachys jatamansi using RP-HPLC, GC-MS and also its antioxidant, biomolecule protective and cytoprotective properties. The 70% ethanolic extract of Nardostachys jatamansi (NJE) showed the presence of polyphenols and flavonoids (gallic acid, catechin, chlorogenic acid, homovanillin, epicatechin, rutin hydrate and quercetin-3-rhamnoside) analyzed by RP-HPLC, whereas hexane extract revealed an array of metabolites (fatty acids, sesquite...

  8. Antioxidant Capacity, Anthocyanins, and Total Phenols of Wild and Cultivated Berries in Chile Capacidad Antioxidante, Antocianinas y Fenoles Totales de Berries Silvestres y Cultivados en Chile

    OpenAIRE

    Jaime Guerrero C; Luigi Ciampi P; Andrea Castilla C; Fernando Medel S; Heidi Schalchli S; Emilio Hormazabal U; Emma Bensch T; Miren Alberdi L

    2010-01-01

    It is possible to incorporate a lot of natural antioxidants into the human organism by consuming berries which can prevent diseases generated by the action of free radicals. Antioxidants neutralize free radicals and thus protect the organism from the oxidative damage of lipids, proteins, and nucleic acids. Berries stand out as one of the richest sources of antioxidant phytonutrients among various fruits and vegetables. The objective of this research was to determine antioxidant capacity (AC),...

  9. Pulmonary toxicity and environmental contamination: radicals, electron transfer, and protection by antioxidants.

    Science.gov (United States)

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    The atmosphere is replete with a mixture of toxic substances, both natural and man-made. Inhalation of toxic substances produces a variety of insults to the pulmonary system. Lung poisons include industrial materials, particulates from mining and combustion, agricultural chemicals, cigarette smoke, ozone, and nitrogen oxides, among a large number of other chemicals and environmental contaminants. Many proposals have been advanced to explain the mode of action of pulmonary toxicants. In this review we focus on mechanisms of pulmonary toxicity that involve ET, ROS, and OS. The vast majority of toxicants or their metabolites possess chemical ET functionalities that can undergo redox cycling. Such recycling may generate ROS that can injure various cellular constituents in the lung and in other tissues. ET agents include quinones, metal complexes, aromatic nitro compounds, and conjugated iminium ions. Often, these agents are formed metabolically from parent toxicants. Such metabolic reactions are often catalytic and require only small amounts of the offending material. Oxidative attack is commonly associated with lipid peroxidation and oxidation of DNA, and it may result in strand cleavage and 8-OH-DG production. Toxicity is often accompanied by depletion of natural AOs, which further exacerbates the toxic effect. It is not surprising that the use of AOs, both natural in fruits and vegetables, as well as synthetic, may provide protection from the adverse effects of toxicant exposure. The mechanistic framework described earlier is also applicable to some of the more prominent pulmonary illnesses, such as asthma, COPD, and cancer. PMID:19484588

  10. Bread enriched with quinoa leaves - the influence of protein-phenolics interactions on the nutritional and antioxidant quality.

    Science.gov (United States)

    Swieca, Michał; Sęczyk, Lukasz; Gawlik-Dziki, Urszula; Dziki, Dariusz

    2014-11-01

    This paper investigates the functional and potential biological properties of bread fortified with quinoa leaves (QL) in the light of protein-phenolic interactions. The addition of QL changed the textural properties of bread crumb. With the replacement of wheat flour by QL (1-5%), a linear increase in crumb hardness, cohesiveness and gumminess was observed. Fortification positively affected antioxidant properties and phenolic contents; however, in some cases experimental values were significantly lower than those predicted. The QL addition affected nutrient content and digestibility. The starch digestibility of the bread investigated in this study was inversely proportional to the percentage content of QL (the changes in protein digestibility were not so pronounced). Increasing peak areas of extracts obtained after digestion of fortified bread and the significant reduction of free amino groups confirm the presence of interactions between phenolics and proteins. The quality of fortified bread is strongly affected by phenolic compounds and food matrix interactions. PMID:24874357

  11. Caffeic Acid Phenethyl Ester: A Review of Its Antioxidant Activity, Protective Effects against Ischemia-reperfusion Injury and Drug Adverse Reactions.

    Science.gov (United States)

    Tolba, Mai F; Omar, Hany A; Azab, Samar S; Khalifa, Amani E; Abdel-Naim, Ashraf B; Abdel-Rahman, Sherif Z

    2016-10-01

    Propolis, a honey bee product, has been used in folk medicine for centuries for the treatment of abscesses, canker sores and for wound healing. Caffeic acid phenethyl ester (CAPE) is one of the most extensively investigated active components of propolis which possess many biological activities, including antibacterial, antiviral, antioxidant, anti-inflammatory, and anti-cancer effects. CAPE is a polyphenolic compound characterized by potent antioxidant and cytoprotective activities and protective effects against ischemia-reperfusion (I/R)-induced injury in multiple tissues such as brain, retina, heart, skeletal muscles, testis, ovaries, intestine, colon, and liver. Furthermore, several studies indicated the protective effects of CAPE against chemotherapy-induced adverse drug reactions (ADRs) including several antibiotics (streptomycin, vancomycin, isoniazid, ethambutol) and chemotherapeutic agents (mitomycin, doxorubicin, cisplatin, methotrexate). Due to the broad spectrum of pharmacological activities of CAPE, this review makes a special focus on the recently published data about CAPE antioxidant activity as well as its protective effects against I/R-induced injury and many adverse drug reactions. PMID:25365228

  12. Antioxidative, DPP-IV and ACE inhibiting peptides from fish protein hydrolysed with intestinal proteases

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Stagsted, Jan; Nielsen, Henrik Hauch

    secondary marine products. The approach in this study is to hydrolyse skin and belly flap tissue from Salmon with the use of mammalian digestive proteases from pancreas and intestinal mucosa and test hydrolysates for antioxidative capacity, intestinal DPP-IV and angiotensin converting enzyme (ACE...... amino groups, antioxidative capacity by ABTS (2,2-azinobis(3-ethylbenzothiazoline-6-sulfonicacid)), DPP-IV and ACE inhibiting activity. Degree of hydrolysis (DH) of hydrolysates was approximately 13% and 10% for belly flap and skin respectively. No clear difference was observed in DH between pancreatin...... and pancreatin + mucosa hydrolysates. No DH was obtained for tissues hydrolysed with only intestinal mucosa extract. Preliminary results showed antioxidant activity and intestinal DPP-IV and ACE inhibiting activity in 10 kDa fraction from both belly flap and skin hydrolysates but with a higher...

  13. Purification and identification of Se-containing antioxidative peptides from enzymatic hydrolysates of Se-enriched brown rice protein.

    Science.gov (United States)

    Liu, Kunlun; Zhao, Yan; Chen, Fusheng; Fang, Yong

    2015-11-15

    As a further study of Se-containing proteins (Se-Pro) derived from Se-enriched brown rice (Se-BR), this paper aimed to purify and identify Se-containing antioxidative peptides (Se-antioxi-Peps) from Se-Pro hydrolysates. The total Se content in Se-BR was 6.26μg/g DW, and selenocystine, Se-methylselenocysteine, and selenomethionine were identified as the main organic Se species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Se-Pro was extracted and hydrolyzed by four types of proteases, and Alcalase was chosen as the optimum enzyme according to the degree of hydrolysis (DH). The hydrolysate with 17.08% DH possessing the highest DPPH radical scavenging activity was separated into five fractions (F1 to F5). Fractions F3 to F5, which had high antioxidative activities, were further separated. Sub-fractions F3-3, F4-2, and F5-1 were chosen to evaluate antioxidative activities and analyze Se species. The Se-antioxi-Pep with the sequence SeMet-Pro-Ser was identified by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. PMID:25977046

  14. Effect of topical application of antioxidants and free radical scavengers on protection of hairless mouse skin exposed to chronic doses of ultraviolet B

    Energy Technology Data Exchange (ETDEWEB)

    Muizzuddin, N.; Shakoori, A.R. [Univ. of the Punjab, Dept. of Zoology, Cell and Molecular Biology Lab., Lahore (Pakistan); Marenus, K.D. [SUNY at Stonybrook, Stonybrook, NY (United States)

    1998-11-01

    Background/aims: Within the past three decades, there has emerged a greater awareness of the molecular effects of solar rays especially ultraviolet radiation (UV-R), to the extent that the harmful effects of solar radiation are recognized not only by molecular biologists and physicians, but also by the general public. Various sunscreen molecules that effectively block the UVB component of the sun are available; however, a large part of Western populations elicits adverse reactions against chemical sunscreens. This study was designed to observe the protective effect of antioxidants against the damaging effects of chronic UVB exposure of skin in an attempt to introduce antioxidants and free radical scavengers as topical sun protective agents. Methods: Jackson hairless mice were exposed to suberythemal doses of UVB, three times a week, and topically treated with a cream containing the anti-oxidants vitamin E, butylated hydroxytoluene, nordihydroguaradinic acid and vitamin C. Results: Treatment with vehicle alone along with UVB exposure resulted in an increase in epidermal thickness showing a 38%, 77% and 112% increase after 4 weeks, 8 weeks and 12 weeks, respectively. Chronic UVB exposed skin treated with the material containing free radical scavengers and antioxidants mix (AO mix) exhibited 39%, 73% and 124% thicker epidermis than the untreated control after, respectively, 4 weeks, 8 weeks and 12 weeks of treatment. The vehicle did not appear to protect skin against UV irradiation, since there appeared to be more (16%) sunburn cells in vehicle treated skin than the untreated, UV exposed skin after 4 weeks of treatment. After 8 weeks and 12 weeks, there were 33% and 36% less sunburn cells in the vehicle treated skin than the untreated, UV exposed skin. The antioxidant mix was significantly effective (P=<0.001) in protecting against UVB irradiation, having 63%, 71% and 79% fewer sunburn cells than the untreated, UV exposed skin af after 4 weeks, 8 weeks and 12 weeks of

  15. Effect of topical application of antioxidants and free radical scavengers on protection of hairless mouse skin exposed to chronic doses of ultraviolet B

    International Nuclear Information System (INIS)

    Background/aims: Within the past three decades, there has emerged a greater awareness of the molecular effects of solar rays especially ultraviolet radiation (UV-R), to the extent that the harmful effects of solar radiation are recognized not only by molecular biologists and physicians, but also by the general public. Various sunscreen molecules that effectively block the UVB component of the sun are available; however, a large part of Western populations elicits adverse reactions against chemical sunscreens. This study was designed to observe the protective effect of antioxidants against the damaging effects of chronic UVB exposure of skin in an attempt to introduce antioxidants and free radical scavengers as topical sun protective agents. Methods: Jackson hairless mice were exposed to suberythemal doses of UVB, three times a week, and topically treated with a cream containing the anti-oxidants vitamin E, butylated hydroxytoluene, nordihydroguaradinic acid and vitamin C. Results: Treatment with vehicle alone along with UVB exposure resulted in an increase in epidermal thickness showing a 38%, 77% and 112% increase after 4 weeks, 8 weeks and 12 weeks, respectively. Chronic UVB exposed skin treated with the material containing free radical scavengers and antioxidants mix (AO mix) exhibited 39%, 73% and 124% thicker epidermis than the untreated control after, respectively, 4 weeks, 8 weeks and 12 weeks of treatment. The vehicle did not appear to protect skin against UV irradiation, since there appeared to be more (16%) sunburn cells in vehicle treated skin than the untreated, UV exposed skin after 4 weeks of treatment. After 8 weeks and 12 weeks, there were 33% and 36% less sunburn cells in the vehicle treated skin than the untreated, UV exposed skin. The antioxidant mix was significantly effective (P=<0.001) in protecting against UVB irradiation, having 63%, 71% and 79% fewer sunburn cells than the untreated, UV exposed skin af after 4 weeks, 8 weeks and 12 weeks of

  16. Hydrocolloids Decrease the Digestibility of Corn Starch, Soy Protein, and Skim Milk and the Antioxidant Capacity of Grape Juice.

    Science.gov (United States)

    Yi, Yue; Jeon, Hyeong-Ju; Yoon, Sun; Lee, Seung-Min

    2015-12-01

    Hydrocolloids have many applications in foods including their use in dysphagia diets. We aimed to evaluate whether hydrocolloids in foods affect the digestibility of starch and protein, and their effects on antioxidant capacity. The thickening hydrocolloids: locust bean gum and carboxymethyl cellulose, and the gel-forming agents: agar agar, konjac-glucomannan, and Hot & Soft Plus were blended with corn starch and soy protein, skim milk, or grape juice and were examined for their in vitro-digestability by comparing the reducing sugar and trichloroacetic acid (TCA)-soluble peptide, for antioxidant capacity by total polyphenol contents and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity. The hydrocolloids resulted in a decrease in starch digestibility with the gel-forming agents. Hydrocolloids diminished TCA-soluble peptides in skim milk compared to soy protein with the exception of locust bean gum and decreased free radical scavenging capacities and total phenolic contents in grape juice. Our findings may provide evidence for the use of hydro-colloids for people at risk of nutritional deficiencies such as dysphagia patients. PMID:26770915

  17. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum ‘Bugwang'

    Science.gov (United States)

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression. PMID:27088085

  18. In vitro studies to evaluate the antioxidant property of salidroside and rosavin and protective effects of electron beam radiation induced damages in human dermal fibroblasts

    International Nuclear Information System (INIS)

    Rosavin and Salidroside are active component of Rhodiola rosea, it is a phenylpropanoid derivative of plant. Rhodiola rosea, also known as 'golden root' or 'roseroot' belongs to the plant family Crassulaceae. Rhodiola grows primarily in dry sandy ground at high altitudes in the arctic areas of Europe and Asia. Plant is rich with phenolic compounds, known to have a strong antioxidant property. Studies have shown that Rhodiola rosea has a capacity to decrease toxicity of Adriamycin (anti-cancer drugs), while it enhances their anti-carcinogenic effects. Enhanced antioxidant activity of Rhodiola rosea play role in the prevention of both chronic disease and aging. Present study is aimed to determine the antioxidant property of Rosavin and Salidroside and dose determination on human dermal fibroblast against dermal fibroblast. Rosavin and Salidroside were dissolved in 10% DMSO. Invitro biochemical assays like DPPH radical scavenging assay, Ferric Anion Reducing Potential using TPTZ, Nitric Oxide scavenging assay, Total antioxidant determination assay, Super Anion Radical Scavenging assays were carried out to know property of the extract. Extracts were then treated on monolayer dermal fibroblast cells survival assay was performed. Salidroside has shown 80% total antioxidant property compare to Rosavin with respect Ascorbic acid as a standard. 100'R concentration of Salidroside and Rosavin has quite equal potential to scavenging DPPH similar like Ascorbic acid. Ferric Anion Reducing Potential using TPTZ, Nitric Oxide scavenging assays have also shown both Salidroside and Rosavin has a good antioxidant property. Invitro studies on dermal fibroblast have shown remarkable protective effect on normal and irradiated groups. (author)

  19. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: evidence for differential thermal sensitivities

    OpenAIRE

    Zeng, Tao; Li, Jin-jun; Wang, De-qian; Li, Guo-qin; Wang, Gen-lin; Lu, Li-zhi

    2014-01-01

    Rising temperatures are severely affecting the mortality, laying performance, and meat quality of duck. Our aim was to investigate the effect of acute heat stress on the expression of heat shock proteins (HSPs: HSP90, 70, 60, 40, and 10) and inflammatory factors (nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)) and antioxidant enzyme activity (superoxide dismutase (SOD), malondialdehybe (MDA), catalase (CAT), total antioxidant capacity (T-AOC)) in livers of ducks and to compare the the...

  20. Protease from Aspergillus oryzae: Biochemical Characterization and Application as a Potential Biocatalyst for Production of Protein Hydrolysates with Antioxidant Activities

    OpenAIRE

    Ruann Janser Soares de Castro; Helia Harumi Sato

    2014-01-01

    This study reports the biochemical characterization of a protease from Aspergillus oryzae LBA 01 and the study of the antioxidant properties of protein hydrolysates produced with this protease. The biochemical characterization showed that the enzyme was most active over the pH range 5.0–5.5 and was stable from pH 4.5 to 5.5. The optimum temperature range for activity was 55–60°C, and the enzyme was stable at temperatures below 45°C. The activation energy (Ea) for azocasein hydrolysis and temp...

  1. D-Dopachrome tautomerase is a candidate for key proteins to protect the rat liver damaged by carbon tetrachloride

    International Nuclear Information System (INIS)

    Carbon tetrachloride (CCl4) is known to induce liver damage. Animal experiments with CCl4 injections have revealed many findings, especially mechanisms of liver damage and liver regeneration. Recently, proteomic approaches have been introduced in various studies to evaluate the quantitative and qualitative changes in the comprehensive proteome level. The aim of this research is to elucidate the key protein for liver damage, liver protection and liver regeneration by using proteomic techniques. 50 % (v/v) CCl4 in corn oil was administered intraperitoneally to adult male rats at a dose of 4 ml/kg body weight. Approximately 24 h after the injection, the liver was removed and extracted proteins were analyzed with cleavable isotope coded affinity tag (cICAT) reagents, two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). A twelvefold increase in D-dopachrome tautomerase (DDT) was indicated. This enzyme has been reported to be involved in the biosynthesis of melanin, an antioxidant. According to the histological analysis, melanin levels were increased in un-damaged hepatocytes of CCl4-treated rats. These results suggest that the increase in DDT is a response to liver damage, accelerates melanin biosynthesis and protects the liver from oxidative stress induced by CCl4

  2. Protection from Group B Streptococcal Infection in Neonatal Mice by Maternal Immunization with Recombinant Sip Protein

    OpenAIRE

    Martin, Denis; Rioux, Stéphane; Gagnon, Edith; Boyer, Martine; Hamel, Josée; Charland, Nathalie; Brodeur, Bernard R

    2002-01-01

    The protective potential of antibodies directed against group B streptococcus (GBS) Sip surface protein was determined by using the mouse neonatal infection model. Rabbit Sip-specific antibodies administered passively to pregnant mice protected their pups against a GBS lethal challenge. In addition, active immunization with purified recombinant Sip protein of female CD-1 mice induced the production of specific antibodies that also confer protection to the newborn pups against GBS strains of s...

  3. Comparative Study on Biochemical Properties and Antioxidative Activity of Cuttlefish (Sepia officinalis Protein Hydrolysates Produced by Alcalase and Bacillus licheniformis NH1 Proteases

    Directory of Open Access Journals (Sweden)

    Rafik Balti

    2011-01-01

    Full Text Available Antioxidative activities and biochemical properties of protein hydrolysates prepared from cuttlefish (Sepia officinalis using Alcalase 2.4 L and Bacillus licheniformis NH1 proteases with different degrees of hydrolysis (DH were determined. For the biochemical properties, hydrolysis by both enzymes increased protein solubility to above 75% over a wide pH range. The antioxidant activities of cuttlefish protein hydrolysates (CPHs increase with increasing DH. In addition, all CPHs exhibited antioxidative activity in a concentration-dependent manner. NH1-CPHs generally showed greater antioxidative activity than Alcalase protein hydrolysates (P<0.05 as indicated by the higher 1,1-diphenyl-1-picryhydrazyl (DPPH radical scavenging activity and ferrous chelating activity. Both Alcalase and NH1 protein hydrolysates were able to retard lipid peroxidation and β-carotene-linoleic acid oxidation. Alcalase-CPH (DH = 12.5% and NH1-CPH (DH = 15% contained 75.36% and 80.11% protein, respectively, with histidine and arginine as the major amino acids, followed by glutamic acid/glutamine, serine, lysine, and leucine. In addition, CPHs have a high percentage of essential amino acids made up 48.85% and 50.04%. Cuttlefish muscle protein hydrolysates had a high nutritional value and could be used as supplement to poorly balanced dietary proteins.

  4. The S-layer Protein DR_2577 Binds Deinoxanthin and under Desiccation Conditions Protects against UV-Radiation in Deinococcus radiodurans.

    Science.gov (United States)

    Farci, Domenica; Slavov, Chavdar; Tramontano, Enzo; Piano, Dario

    2016-01-01

    Deinococcus radiodurans has the puzzling ability to withstand over a broad range of extreme conditions including high doses of ultraviolet radiation and deep desiccation. This bacterium is surrounded by a surface layer (S-layer) built of a regular repetition of several proteins, assembled to form a paracrystalline structure. Here we report that the deletion of a main constituent of this S-layer, the gene DR_2577, causes a decrease in the UVC resistance, especially in desiccated cells. Moreover, we show that the DR_2577 protein binds the carotenoid deinoxanthin, a strong protective antioxidant specific of this bacterium. A further spectroscopical characterization of the deinoxanthin-DR_2577 complex revealed features which could suggest a protective role of DR_2577. We propose that, especially under desiccation, the S-layer shields the bacterium from incident ultraviolet light and could behave as a first lane of defense against UV radiation. PMID:26909071

  5. The S-layer protein DR_2577 binds deinoxanthin and under desiccation conditions protect against UV-radiation in Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Domenica eFarci

    2016-02-01

    Full Text Available Deinococcus radiodurans has the puzzling ability to withstand over a broad range of extreme conditions including high doses of ultraviolet radiation and deep desiccation. This bacterium is surrounded by a surface layer (S-layer built of a regular repetition of several proteins, assembled to form a paracrystalline structure. Here we report that the deletion of a main constituent of this S-layer, the gene DR_2577, causes a decrease in the UVC resistance, especially in dessicated cells. Moreover, we show that the DR_2577 protein binds the carotenoid deinoxanthin, a strong protective antioxidant specific of this bacterium. A further spectroscopical characterization of the deinoxanthin-DR_2577 complex revealed features which could suggest a protective role of DR_2577. We propose that, especially under dessication, the S-layer shields the bacterium from incident ultraviolet light and could behave as a first lane of defence against UV radiation.

  6. Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4-induced liver injury in low-protein fed rats.

    Science.gov (United States)

    Nkosi, C Z; Opoku, A R; Terblanche, S E

    2006-11-01

    The effects of pumpkin seed (Cucurbita pepo) protein isolate on the plasma activity levels of catalase (CA), superoxide dismutase (SOD), glutathione peroxidase (GSHpx) and total antioxidant capacity (TAC) as well as glucose-6-phosphatase (G6Pase) in liver homogenates and lipid peroxidation (LPO-malondialdehyde-MDA) levels in liver homogenates and liver microsomal fractions against carbon tetrachloride (CCl(4))-induced acute liver injury in low-protein fed Sprague-Dawley rats (Rattus norvegicus) were investigated. A group of male Sprague-Dawley rats maintained on a low-protein diet for 5 days were divided into three subgroups. Two subgroups were injected with carbon tetrachloride and the other group with an equivalent amount of olive oil. Two hours after CCl(4) intoxication one of the two subgroups was administered with pumpkin seed protein isolate and thereafter switched onto a 20% pumpkin seed protein isolate diet. The other two groups of rats were maintained on the low-protein diet for the duration of the investigation. Groups of rats from the different subgroups were killed at 24, 48 and 72 h after their respective treatments. After 5 days on the low-protein diet the activity levels of all the enzymes as well as antioxidant levels were significantly lower than their counterparts on a normal balanced diet. However, a low-protein diet resulted in significantly increased levels of lipid peroxidation. The CCl(4) intoxicated rats responded in a similar way, regarding all the variables investigated, to their counterparts on a low-protein diet. The administration of pumpkin seed protein isolate after CCl(4) intoxication resulted in significantly increased levels of all the variables investigated, with the exception of the lipid peroxidation levels which were significantly decreased. From the results of the present study it is concluded that pumpkin seed protein isolate administration was effective in alleviating the detrimental effects associated with protein

  7. Identification of polyvalent protective immunogens from outer membrane proteins in Vibrio parahaemolyticus to protect fish against bacterial infection.

    Science.gov (United States)

    Peng, Bo; Ye, Jin-Zhou; Han, Yi; Zeng, Li; Zhang, Jian-Ying; Li, Hui

    2016-07-01

    Vaccination is one of the most effective and economic way to prevent infectious diseases in aquaculture. The development of effective vaccines, however, is still limited, especially for polyvalent vaccines, which are against multiple species. With this regard, identification of polyvalent protective immunogens, serving as polyvalent vaccines, became a key step in vaccine development. In the current study, 17 outer membrane proteins from Vibrio parahaemolyticus were identified as immunogens. Further, four of the 17 proteins including VP2309, VP0887, VPA0548 and VP1019 were characterized as efficiently protective immunogens against V. parahaemolyticus' infection through passive and active immunizations in zebrafish. Importantly, these four proteins showed cross-protective capability against infections by Aeromonas hydrophila or/and Pseudomonas fluorescens, which shared similar epitopes with V. parahaemolyticus in homology of these proteins. Further investigation showed that the expression level of the four protective immunogens elevated in response to fish plasma in a dose-dependent manner. These results indicate that the four protective immunogens are polyvalent vaccine candidates in aquaculture. PMID:27071519

  8. Influence of Ultrafiltration on Antioxidant Activity of Tilapia (Oreochromis niloticus Protein Hydrolysate

    Directory of Open Access Journals (Sweden)

    Mohamed Beva Kelfala Foh

    2010-09-01

    Full Text Available The production of hot w ater dip hydrolysate (HWDH from tilapia (Oreochromis niloticus with DH of 25.43% improved its bioactivity. A pressure-driven ultrafiltration (UF membrane separated HWDH based on molecular weight cut-offs (MWCO of 1000, 3000, and 5,000 Da, to produce fractions F1-k, F3-k, F5-k respectively and 5k-R (retentate of 5,000 Da with antioxidative activity. The UF produced permeates with smaller Mw distribution (177-3015 Da, with F1-k portraying lowest molecular weight range (180-2008 Da, whilst the retentate fraction ranged higher 179-8130 Da. The antioxidant efficacy of fractions with ABTS, DPPH, inhibition of linoleic acid autoxidation, Metal-chelating ability, and reducing power exhibited antioxidant activity (82.30% for F1-k, within range of "-tocopherol (87.04% and BHT (89.71% in linoleic acid oxidation system. Furthermore, F1-k exhibited higher ABTS, DPPH and M etal-chelating activity with a significant difference (p<0.05. The correlation between the smaller Mw size and antioxidant activity is superiorly exhibited in the F1-k fraction.

  9. Supplementary health benefits of soy aglycons of isoflavone by improvement of serum biochemical attributes, enhancement of liver antioxidative capacities and protection of vaginal epithelium of ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Lo Dan-Yuan

    2009-04-01

    Full Text Available Abstract Background In the literature, supplement of soy aglycons of isoflavone as estrogen agonists in improvement of serum biochemical attributes, liver antioxidative capacities and vaginal epithelium protection has been meagerly investigated. In this study, ovariectomized (OVX rats were used as an animal model to simulate post-menopausal status. Supplementary health benefits of soy aglycons of isoflavone (SAI on improvement of growth and serum biochemical attributes, enhancement of liver antioxidation-related capacities and protection of vaginal epithelium of the OVX rats were assessed. Methods As an in vivo study, 30 OVX Sprague-Dawley rats were distributed into OVX (positive control, OVX/LSAI (low SAI group – supplemented with 0.0135% SAI being equivalent to 80 mg per day for a 60 Kg-human, and OVX/HSAI (high SAI group – supplemented with 0.027% SAI and 10 rats with sham operation as negative control fed with basal diet. Results The average daily gain (ADG, feed intake and feed/gain ratio were higher for the OVX groups than the sham group (P P P P Conclusion Diets supplemented with soy aglycons of isoflavone have conferred health benefits to the OVX rats, in comparison to the sham rats fed with basal diet, by detection of higher serum isoflavone concentrations, significantly lower contents of serum cholesterol and LDL, and higher contents of serum HDL, increased iron chelating ability, lower contents of TBARS (thiobarbituric acid-reactive substance and enhanced catalase and total antioxidative (as trolox equivalency activities of the liver extracts, and protection of the epithelial cellular linings of vagina in the former rather than in the latter. This evidences that estrogen-agonist chemoprevention of menopausal-related cardiovascular diseases, decreased liver antioxidative capacities and epithelial degeneration of vagina could be achieved by dietary supplementation with soy aglycons of isoflavone.

  10. Antioxidant Potential of the Methanol Extract of Parquetina nigrescens Mediates Protection Against Intestinal Ischemia-Reperfusion Injury in Rats.

    Science.gov (United States)

    Akinrinmade, Fadeyemi J; Akinrinde, Akinleye S; Soyemi, Olubisi O; Oyagbemi, Ademola A

    2016-07-01

    Parquetina nigrescens is a medicinal herb with recognized antioxidant properties and potential to alleviate conditions associated with oxidative stress, including gastric ulcers. We investigated the protective potential of methanol extract of Parquetina nigrescens (MEPN) against ischemia-reperfusion injury in the intestine of rats. Thirty (30) male Wistar albino rats were randomly assigned into five groups with Group I made up of control rats and Group II consisting of rats experimentally subjected to ischemia and reperfusion (IR) by clamping of the superior mesenteric artery (SMA) for 30 minutes and 45 minutes, respectively. Groups III and IV rats also had IR, but were initially pre-treated with MEPN at 500 mg/kg and 1000 mg/kg respectively, for seven days. Rats in Group V were also pre-treated with Vitamin C, for seven days, before induction of IR. The results showed marked reduction in intestinal epithelial lesions in groups treated with MEPN, compared to the IR group which had severe villi erosion, inflammatory cell infiltration and hemorrhages. There were significant increases in Malondialdehyde (MDA) and significant reductions in reduced glutathione (GSH) and Glutathione S-transferase (GST) activity with IR injury, while pre-treatment with either MEPN or Vitamin C prevented these effects. Increases in Glutathione peroxidase (GPX), Catalase (CAT) and Superoxide dismutase (SOD) with IR provided evidence for adaptive responses to oxidative injury during IR and preservation of enzyme activity by MEPN and Vitamin C. Taken together, Parquetina nigrescens provided considerable alleviation of intestinal injury produced by IR, at values much as effective as that offered by Vitamin C. PMID:26634775

  11. Cardiorenal Involvement in Metabolic Syndrome Induced by Cola Drinking in Rats: Proinflammatory Cytokines and Impaired Antioxidative Protection.

    Science.gov (United States)

    Otero-Losada, Matilde; Gómez Llambí, Hernán; Ottaviano, Graciela; Cao, Gabriel; Müller, Angélica; Azzato, Francisco; Ambrosio, Giuseppe; Milei, José

    2016-01-01

    We report experimental evidence confirming renal histopathology, proinflammatory mediators, and oxidative metabolism induced by cola drinking. Male Wistar rats drank ad libitum regular cola (C, n = 12) or tap water (W, n = 12). Measures. Body weight, nutritional data, plasma glucose, cholesterol fractions, TG, urea, creatinine, coenzyme Q10, SBP, and echocardiograms (0 mo and 6 mo). At 6 months euthanasia was performed. Kidneys were processed for histopathology and immunohistochemistry (semiquantitative). Compared with W, C rats showed (I) overweight (+8%, p < 0.05), hyperglycemia (+11%, p < 0.05), hypertriglyceridemia (2-fold, p < 0.001), higher AIP (2-fold, p < 0.01), and lower Q10 level (-55%, p < 0.05); (II) increased LV diastolic diameter (+9%, p < 0.05) and volume (systolic +24%, p < 0.05), posterior wall thinning (-8%, p < 0.05), and larger cardiac output (+24%, p < 0.05); (III) glomerulosclerosis (+21%, p < 0.05), histopathology (+13%, p < 0.05), higher tubular expression of IL-6 (7-fold, p < 0.001), and TNFα (4-fold, p < 0.001). (IV) Correlations were found for LV dimensions with IL-6 (74%, p < 0.001) and TNFα (52%, p < 0.001) and fully abolished after TG and Q10 control. Chronic cola drinking induced cardiac remodeling associated with increase in proinflammatory cytokines and renal damage. Hypertriglyceridemia and oxidative stress were key factors. Hypertriglyceridemic lipotoxicity in the context of defective antioxidant/anti-inflammatory protection due to low Q10 level might play a key role in cardiorenal disorder induced by chronic cola drinking in rats. PMID:27340342

  12. TOTAL ANTIOXIDANT ACTIVITY OF YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2013-02-01

    Full Text Available Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g. fats, lipids, proteins and DNA from the damage of reactive oxygen species (ROS. Sacchamomyces cerevisiae are know as organisms with very important antioxidative enzyme systems such as superoxide dismutase or catalase. The total antioxidant activity (mmol Trolox equivalent – TE.g-1 d.w. of Saccharomyces cerevisiae was measured by 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid during the yeast cultivation. It was found that the total antioxidant activity was the highest (1.08 mmol TE.g-1 d.w. in the strain Kolín after 32 hours of cultivation and the lowest (0.26 mmol TE.g-1 d.w. in the strain Gyöng after 12 hours of cultivation.

  13. The hepatic alpha tocopherol transfer protein (TTP): ligand-induced protection from proteasomal degradation†

    OpenAIRE

    Thakur, Varsha; Morley, Samantha; Manor, Danny

    2010-01-01

    There are eight naturally occurring forms of the dietary antioxidant vitamin E. Of these, only α-tocopherol is retained at high levels in vertebrate plasma and tissues. This selectivity is achieved in part by the action of the hepatic alpha tocopherol transfer protein (TTP), which facilitates the selective incorporation of dietary α-tocopherol into circulating lipoproteins. We examined the effects of vitamin E on TTP expression in cultured hepatocytes. Treatment with vitamin E brought about a...

  14. Protective Role of Sirtuin3 (SIRT3 in Oxidative Stress Mediated by Hepatitis B Virus X Protein Expression.

    Directory of Open Access Journals (Sweden)

    Ji-Hua Ren

    Full Text Available The hepatitis B virus (HBV infection is accompanied by the induction of oxidative stress, especially mediated by HBV X protein (HBx. Oxidative stress has been implicated in a series of pathological states, such as DNA damage, cell survival and apoptosis. However, the host factor by which cells protect themselves under this oxidative stress is poorly understood.In this study, we first confirmed that HBV infection significantly induced oxidative stress. Moreover, viral protein HBx plays a major role in the oxidative stress induced by HBV. Importantly, we found that mitochondrial protein SIRT3 overexpression could decrease reactive oxygen species (ROS induced by HBx while SIRT3 knockdown increased HBx-induced ROS. Importantly, SIRT3 overexpression abolished oxidative damage of HBx-expressing cells as evidenced by γH2AX and AP sites measurements. In contrast, SIRT3 knockdown promoted HBx-induced oxidative damage. In addition, we also observed that oxidant H2O2 markedly promoted HBV replication while the antioxidant N-acetyl-L-cysteine (NAC inhibited HBV replication. Significantly, SIRT3 overexpression inhibited HBV replication by reducing cellular ROS level.Collectively, these data suggest HBx expression induces oxidative stress, which promotes cellular oxidative damage and viral replication during HBV pathogenesis. Mitochondrial protein SIRT3 protected HBx expressing-cells from oxidative damage and inhibited HBV replication possibly by decreased cellular ROS level. These studies shed new light on the physiological significance of SIRT3 on HBx-induced oxidative stress, which can contribute to the liver pathogenesis.

  15. Antioxidant activity and protective effects of cocoa and kola nut mistletoe (Globimetula cupulata against ischemia/reperfusion injury in Langendorff-perfused rat hearts

    Directory of Open Access Journals (Sweden)

    Afolabi Clement Akinmoladun

    2016-04-01

    Full Text Available Protection against cardiomyocyte damage following ischemia/reperfusion (I/R injury is highly desirable in patients with ischemic heart disease. Hydromethanol extracts of Globimetula cupulata (mistletoe growing on cocoa (CGCE and kola nut (KGCE trees were assessed for antioxidant content and cardioprotective potential against I/R. Graded concentrations (1–50 μg/mL of CGCE or KGCE were tested on Langendorff-perfused rat hearts to evaluate the effects on the flow rate, heart rate, and force of cardiac contraction, while another set of hearts were subjected to biochemical analyses. Both extracts showed good antioxidant content and activity, but KGCE (EC50: 24.8±1.8 μg/mL showed higher hydroxyl radical scavenging activity than CGCE (70.2±4.5 μg/mL. Both extracts at 3 μg/mL reversed (p < 0.001 membrane peroxidation and the significant decrease in nitrite level, coronary flow rate, and superoxide dismutase and catalase activity caused by the I/R cycle. It is concluded that G. cupulata protects against ischemia–reperfusion injury in rat hearts via augmenting endogenous antioxidants and significant restoration of altered hemodynamic parameters.

  16. Antioxidant Properties and PC12 Cell Protective Effects of a Novel Curcumin Analogue (2E,6E-2,6-Bis(3,5- dimethoxybenzylidenecyclohexanone (MCH

    Directory of Open Access Journals (Sweden)

    Gui-Zhen Ao

    2014-03-01

    Full Text Available The antioxidative properties of a novel curcumin analogue (2E,6E-2,6-bis(3,5-dimethoxybenzylidenecyclohexanone (MCH were assessed by several in vitro models, including superoxide anion, hydroxyl radical and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and PC12 cell protection from H2O2 damage. MCH displayed superior O2•− quenching abilities compared to curcumin and vitamin C. In vitro stability of MCH was also improved compared with curcumin. Exposure of PC12 cells to 150 µM H2O2 caused a decrease of antioxidant enzyme activities, glutathione (GSH loss, an increase in malondialdehyde (MDA level, and leakage of lactate dehydrogenase (LDH, cell apoptosis and reduction in cell viability. Pretreatment of the cells with MCH at 0.63–5.00 µM before H2O2 exposure significantly attenuated those changes in a dose-dependent manner. MCH enhanced cellular expression of transcription factor NF-E2-related factor 2 (Nrf2 at the transcriptional level. Moreover, MCH could mitigate intracellular accumulation of reactive oxygen species (ROS, the loss of mitochondrial membrane potential (MMP, and the increase of cleaved caspase-3 activity induced by H2O2. These results show that MCH protects PC12 cells from H2O2 injury by modulating endogenous antioxidant enzymes, scavenging ROS, activating the Nrf2 cytoprotective pathway and prevention of apoptosis.

  17. The protective role of Aegle marmelos on aspirin-induced gastro-duodenal ulceration in albino rat model: A possible involvement of antioxidants

    Directory of Open Access Journals (Sweden)

    Shyamal K Das

    2012-01-01

    Full Text Available Background/Aim: Gastro duodenal ulcer is a common disorder of the gastrointestinal tract. Several Indian medicinal plants have been traditionally and extensively used to prevent different diseases. In the present research studies, Bael fruit (Aegle marmelos (AM, family: Rutaceae which are also called as Bilva in ancient Sanskrit was used as a herbal drug and its antioxidative role in aspirin- induced gastroduodenal ulceration in albino rat was evaluated using essential biochemical parameters. Patients and Methods: Mucosal thickness (MT, ulcer index (UI, different biochemical parameters, such as aspartate aminotransferase (AST, alanine aminotransferase (ALT, catalase (CAT, superoxide dismutase (SOD, reduced glutathione (GSH, and lipid peroxidation (LPO were measured in all the groups, to study the possible involvement of antioxidants with gastroduodenal protection. Results: A significant decrease in MT, SOD and CAT activities and GSH level and a significant increase in UI, AST, ALT, and ALP activities and LPO level were observed in aspirin treated stomach and duodenum of albino rats. Conclusions: Pretreatment with AM fruit pulp extract for 14 consecutive days showed the reverse effects of aspirin suggesting gastro-duodenal protective and anti- ulcerogenic properties of AM through its antioxidant mechanism.

  18. Insights into enzyme-substrate interaction and characterization of catalytic al intermediates of a Xylella Fastidiosa antioxidant protein

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcos Antonio de; Cussiol, Jose Renato Rosa; Soares Netto, Luis Eduardo [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Biociencias. Dept. de Genetica e Biologia Evolutiva; Guimaraes, Beatriz Gomes; Medrano, Francisco Javier; Gozzo, Fabio Cesar [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil). Centro de Biologia Molecular Estrutural

    2005-07-01

    Plants and animals have developed various strategies to defend themselves from pathogens. One of them is the generation of oxidants such as organic Hydroperoxides (OHP). OHP can be generated through free radicals as well as enzymatic oxidation of unsaturated fatty acids. To counteract this oxidative stress, bacteria have evolved several antioxidant mechanisms. Organic hydroperoxide resistance protein (Ohr) was initially identified as a factor involved in the resistance of bacteria, most of them pathogenic, to OHP, but not H{sub 2}O{sub 2}. We have cloned Ohr gene from Xylella fastidiosa and expressed in in Escherichia coli. The biochemical role of Ohr remained unknown for a long time until this work and the work of Nikolov's group (Cornell University, New York) independently showed that these proteins are thiol dependent peroxidases, whose activity is generated by a reactive cysteine. (author)

  19. Insights into enzyme-substrate interaction and characterization of catalytic al intermediates of a Xylella Fastidiosa antioxidant protein

    International Nuclear Information System (INIS)

    Plants and animals have developed various strategies to defend themselves from pathogens. One of them is the generation of oxidants such as organic Hydroperoxides (OHP). OHP can be generated through free radicals as well as enzymatic oxidation of unsaturated fatty acids. To counteract this oxidative stress, bacteria have evolved several antioxidant mechanisms. Organic hydroperoxide resistance protein (Ohr) was initially identified as a factor involved in the resistance of bacteria, most of them pathogenic, to OHP, but not H2O2. We have cloned Ohr gene from Xylella fastidiosa and expressed in in Escherichia coli. The biochemical role of Ohr remained unknown for a long time until this work and the work of Nikolov's group (Cornell University, New York) independently showed that these proteins are thiol dependent peroxidases, whose activity is generated by a reactive cysteine. (author)

  20. A comparative study of the antioxidant potential of various fractions of Podophyllum hexandrum vis-a-vis radiation protection

    International Nuclear Information System (INIS)

    High-altitude Podophyllum hexandrum was fractionated using five different solvents of varying polarity. The biological activities bear direct relevance to radioprotection. REC-2007 had maximum inherent antioxidant potential to combat radiation induced oxidative stress

  1. Influence of plasma total antioxidant ability on lipid and protein oxidation products in plasma and erythrocyte ghost obtained from developing and adult rats pretreated with two vitamin K formulations.

    Science.gov (United States)

    Hadi, Ansari Hadipour; Abdolamir, Allameh; Mahtab, Hajhaidari; Abolfazl, Dadkhah; Yusef, Rasmi

    2004-12-01

    Ferric reducing ability of plasma (FRAP), as an index of total antioxidant capacity of plasma was found to be enhanced significantly (p < 0.05) in suckling rats pretreated either with vitamin K1 (28, 56 or 84 mg/kg/3 days) or menadione (vitamin K3) at a dose of 15 mg/kg b.w./3 days. The effect of vitamin K1 on FRAP was dose-dependent and it was inversely related to the formation of lipid peroxidation products in plasma as judged by thiobarbituric acid reacting substances (TBARS). Lack of influence of the drugs on FRAP in adults was corroborated with elevation in the levels of plasma TBARS. Possible role of FRAP on the rate of lipid peroxidation and protein oxidation (protein carbonyls) on erythrocyte membrane was also investigated following isolation of erythrocyte ghost from control and treated rats. Vitamin K1 as well as menadione failed to change the levels of protein carbonyls in erythrocyte ghost obtained from both the age groups. Analysis of major erythrocyte membrane proteins, using SDS-polyacrylamide gel electrophoresis (SDS-PAGE) substantiated these results. In spite of higher antioxidant capacity of plasma and erythrocytes obtained from young rats, the rate of lipid peroxidation in erythrocyte ghost preparation was also high in this age group (p < 0.05). These results suggest that the drug-related induction in FRAP occurs only in immature animals as a part of protective mechanism against lipid peroxidation products generated in plasma. PMID:15663201

  2. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions.

    Science.gov (United States)

    Sabeena Farvin, K H; Andersen, Lisa Lystbæk; Otte, Jeanette; Nielsen, Henrik Hauch; Jessen, Flemming; Jacobsen, Charlotte

    2016-08-01

    This study aimed to characterise peptide fractions (>5kDa, 3-5kDa and DPPH radical-scavenging activity of the 3-5kDa fraction was exerted mainly by one sub-fraction dominated by peptides with masses below 600Da. The DPPH radical-scavenging activity of the <3kDa fraction was exerted by sub-fractions with low molecular weight. The highest reducing power was found in a sub-fraction containing peptides rich in Arg, Tyr and Phe. Both free amino acids and low molecular weight peptides thus seemed to contribute to the antioxidative activity of the peptide fractions, and Tyr seemed to play a major role in the antioxidant activity. PMID:26988519

  3. Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin.

    Science.gov (United States)

    Vayalil, Praveen K; Elmets, Craig A; Katiyar, Santosh K

    2003-05-01

    The use of botanical supplements has received immense interest in recent years to protect human skin from adverse biological effects of solar ultraviolet (UV) radiation. The polyphenols from green tea are one of them and have been shown to prevent photocarcinogenesis in animal models but their mechanism of photoprotection is not well understood. To determine the mechanism of photoprotection in in vivo mouse model, topical treatment of polyphenols from green tea (GTP) or its most chemopreventive constituent (-)-epigallocatechin-3-gallate (EGCG) (1 mg/cm(2) skin area) in hydrophilic ointment USP before single (180 mJ/cm(2)) or multiple UVB exposures (180 mJ/cm(2), daily for 10 days) resulted in significant prevention of UVB-induced depletion of antioxidant enzymes such as glutathione peroxidase (78-100%, P 0.001). Further, to delineate the inhibition of UVB-induced oxidative stress with cell signaling pathways, treatment of EGCG to mouse skin resulted in marked inhibition of a single UVB irradiation-induced phosphorylation of ERK1/2 (16-95%), JNK (46-100%) and p38 (100%) proteins of MAPK family in a time-dependent manner. Identical photoprotective effects of EGCG or GTP were also observed against multiple UVB irradiation-induced phosphorylation of the proteins of MAPK family in vivo mouse skin. Photoprotective efficacy of GTP given in drinking water (d.w.) (0.2%, w/v) was also determined and compared with that of topical treatment of EGCG and GTP. Treatment of GTP in d.w. also significantly prevented single or multiple UVB irradiation-induced depletion of antioxidant enzymes (44-61%, P the possibility of its use for the humans, and the data obtained from this in vivo study further suggest that GTP could be useful in attenuation of solar UVB light-induced oxidative stress-mediated and MAPK-caused skin disorders in humans. PMID:12771038

  4. Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity

    Directory of Open Access Journals (Sweden)

    Rouhollahi E

    2015-10-01

    Full Text Available Elham Rouhollahi,1 Soheil Zorofchian Moghadamtousi,2 Fatemeh Hajiaghaalipour,3 Maryam Zahedifard,2 Faezeh Tayeby,2 Khalijah Awang,4 Mahmood Ameen Abdulla,3 Zahurin Mohamed1 1Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, 2Institute of Biological Sciences, Faculty of Science, 3Department of Biomedical Science, Faculty of Medicine, 4Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia Purpose: Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP against excisional wound healing in rats.Materials and methods: Twenty four rats were randomly divided into 4 groups: A negative control (blank placebo, acacia gum, B low dose of HECP, C high dose of HECP, and D positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm were made on the neck area of each rat. Groups 1–4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg, HECP (200 mg/kg, and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson’s trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates.Results: Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process

  5. Antioxidants: Protecting Healthy Cells

    Science.gov (United States)

    ... and Facts Fitness Fitness Find out more Categories Sports and Performance Training and Recovery Exercise Topics Fueling Your Workout Benefits of Physical Activity Exercise Nutrition Top Articles Man ...

  6. α/β-hydrolase domain containing protein 15 (ABHD15--an adipogenic protein protecting from apoptosis.

    Directory of Open Access Journals (Sweden)

    Evelyn Walenta

    Full Text Available Our knowledge about adipocyte metabolism and development is steadily growing, yet many players are still undefined. Here, we show that α/β-hydrolase domain containing protein 15 (Abhd15 is a direct and functional target gene of peroxisome proliferator-activated receptor gamma (PPARγ, the master regulator of adipogenesis. In line, Abhd15 is mainly expressed in brown and white adipose tissue and strongly upregulated during adipogenesis in various murine and human cell lines. Stable knockdown of Abhd15 in 3T3-L1 cells evokes a striking differentiation defect, as evidenced by low lipid accumulation and decreased expression of adipocyte marker genes. In preconfluent cells, knockdown of Abhd15 leads to impaired proliferation, which is caused by apoptosis, as we see an increased SubG1 peak, caspase 3/7 activity, and BAX protein expression as well as a reduction in anti-apoptotic BCL-2 protein. Furthermore, apoptosis-inducing amounts of palmitic acid evoke a massive increase of Abhd15 expression, proposing an apoptosis-protecting role for ABHD15. On the other hand, in mature adipocytes physiological (i.e. non-apoptotic concentrations of palmitic acid down-regulate Abhd15 expression. Accordingly, we found that the expression of Abhd15 in adipose tissue is reduced in physiological situations with high free fatty acid levels, like high-fat diet, fasting, and aging as well as in genetically obese mice. Collectively, our results position ABHD15 as an essential component in the development of adipocytes as well as in apoptosis, thereby connecting two substantial factors in the regulation of adipocyte number and size. Together with its intricate regulation by free fatty acids, ABHD15 might be an intriguing new target in obesity and diabetes research.

  7. Crocin "saffron" protects against beryllium chloride toxicity in rats through diminution of oxidative stress and enhancing gene expression of antioxidant enzymes.

    Science.gov (United States)

    El-Beshbishy, Hesham A; Hassan, Memy H; Aly, Hamdy A A; Doghish, Ahmed S; Alghaithy, Abdulaziz A A

    2012-09-01

    Beryllium chloride (BeCl(2)) is a highly toxic substance that accumulates in different tissues after absorption. The purpose of this study was to investigate protective role of crocin against BeCl(2)-intoxication in rats. Male Wistar rats were used in this study and categorised into four groups (n=8). Group I served as normal control rats. Group II treated orally with BeCl(2) 86 mg/kg b.w. for five consecutive days. This dose was equivalent to experimental LD(50). Group III treated intraperitoneally with crocin 200 mg/kg b.w. for seven consecutive days. Group IV received crocin for seven consecutive days before BeCl(2) administration. Blood samples and liver and brain homogenates were obtained for haematological, biochemical and RT-PCR examinations. The haematocrit value, RBCs count and haemoglobin concentration were significantly decreased in BeCl(2)-treated rats. A significant increase was observed in rat liver and brain malondialdehyde level and protein carbonyls content in BeCl(2) exposed group compared to the control group, and these values were significantly declined upon administration of crocin. Lactate dehydrogenase levels in rat liver and brain significantly increased compared to the control group and was associated with significant decrease in catalase and superoxide dismutase activities. Reduced glutathione hepatic contents of BeCl(2)-treated rats were significantly decreased. There was significant decline in mRNA expression of catalase and superoxide dismutase genes in BeCl(2)-intoxicated rats compared to the normal rats. Crocin treatment prior to BeCl(2) intake resulted in significant increase in mRNA expressions of catalase and superoxide dismutase genes near to normalcy. The haematological and biochemical parameters were restored near to normal levels. Our results suggested that, BeCl(2) induced oxidation of cellular lipids and proteins and that administration of crocin reduced BeCl(2)-induced oxidative stress combined with initiation of m

  8. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: Protective effects of myo-inositol

    International Nuclear Information System (INIS)

    Highlights: • Cu exposure increased ROS production, lipid and protein oxidation of fish brain. • Cu exposure caused depletion of some antioxidants in the brain of fish. • Cu exposure up-regulated mRNA levels of brain CuZnSOD, GPx1a and GR genes in fish. • Cu exposure induced Nrf2 nuclear translocation and binding to ARE in fish brain. • Myo-inositol can inhibit Cu-induced toxic effects in the brain of fish. - Abstract: The brain is the center of the nervous system in all vertebrates, and homeostasis of the brain is crucial for fish survival. Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Although Cu is indicated as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this study was to assess the effects and the potential mechanism of Cu toxicity by evaluating brain oxidative status, the enzymatic and mRNA levels of antioxidant genes, as well as the Nrf2/ARE signaling in the brain of fish after Cu exposure. The protective effects of myo-inositol (MI) against subsequent Cu exposure were also investigated. The results indicate that induction of oxidative stress by Cu is shown by increases in brain ROS production, lipid peroxidation and protein oxidation, which are accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), CuZnSOD, glutathione-S-transferase (GST) and glutathione reductase (GR) activities and glutathione (GSH) content. Cu exposure increased the catalase (CAT) and glutathione peroxidase (GPx) activities. Further molecular results showed that Cu exposure up-regulated CuZnSOD, GPx1a and GR mRNA levels, suggesting an adaptive mechanism against stress. Moreover, Cu exposure increased fish brain Nrf2 nuclear accumulation and increased its ability of binding to ARE (CuZnSOD), which supported the increased CuZnSOD mRNA levels. In addition, Cu exposure caused increases of

  9. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: Protective effects of myo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei-Dan; Liu, Yang [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Hu, Kai [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Jiang, Jun [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Li, Shu-Hong [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Feng, Lin, E-mail: fenglin@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Zhou, Xiao-Qiu, E-mail: xqzhouqq@tom.com [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China)

    2014-10-15

    Highlights: • Cu exposure increased ROS production, lipid and protein oxidation of fish brain. • Cu exposure caused depletion of some antioxidants in the brain of fish. • Cu exposure up-regulated mRNA levels of brain CuZnSOD, GPx1a and GR genes in fish. • Cu exposure induced Nrf2 nuclear translocation and binding to ARE in fish brain. • Myo-inositol can inhibit Cu-induced toxic effects in the brain of fish. - Abstract: The brain is the center of the nervous system in all vertebrates, and homeostasis of the brain is crucial for fish survival. Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Although Cu is indicated as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this study was to assess the effects and the potential mechanism of Cu toxicity by evaluating brain oxidative status, the enzymatic and mRNA levels of antioxidant genes, as well as the Nrf2/ARE signaling in the brain of fish after Cu exposure. The protective effects of myo-inositol (MI) against subsequent Cu exposure were also investigated. The results indicate that induction of oxidative stress by Cu is shown by increases in brain ROS production, lipid peroxidation and protein oxidation, which are accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), CuZnSOD, glutathione-S-transferase (GST) and glutathione reductase (GR) activities and glutathione (GSH) content. Cu exposure increased the catalase (CAT) and glutathione peroxidase (GPx) activities. Further molecular results showed that Cu exposure up-regulated CuZnSOD, GPx1a and GR mRNA levels, suggesting an adaptive mechanism against stress. Moreover, Cu exposure increased fish brain Nrf2 nuclear accumulation and increased its ability of binding to ARE (CuZnSOD), which supported the increased CuZnSOD mRNA levels. In addition, Cu exposure caused increases of

  10. Estimation of salivary flow rate, pH, buffer capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries severity, age and gender

    Directory of Open Access Journals (Sweden)

    Pallavi Pandey

    2015-01-01

    Full Text Available Purpose: The aim of the study was to evaluate salivary flow rate, pH, buffering capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries, age and gender. Materials and Methods: The study population consisted of 120 healthy children aged 7-15 years that was further divided into two groups: 7-10 years and 11-15 years. In this 60 children with DMFS/dfs = 0 and 60 children with DMFS/dfs ≥5 were included. The subjects were divided into two groups; Group A: Children with DMFS/dfs = 0 (caries-free Group B: Children with DMFS/dfs ≥5 (caries active. Unstimulated saliva samples were collected from all groups. Flow rates were determined, and samples analyzed for pH, buffer capacity, calcium, total protein and total antioxidant status. Salivary antioxidant activity is measured with spectrophotometer by an adaptation of 2,2′-azino-di-(3-ethylbenzthiazoline-6-sulphonate assays. Results: The mean difference of the two groups; caries-free and caries active were proved to be statistically significant (P < 0.05 for salivary calcium, total protein and total antioxidant level for both the sexes in the age group 7-10 years and for the age 11-15 years the mean difference of the two groups were proved to be statistically significant (P < 0.05 for salivary calcium level for both the sexes. Salivary total protein and total antioxidant level were proved to be statistically significant for male children only. Conclusions: In general, total protein and total antioxidants in saliva were increased with caries activity. Calcium content of saliva was found to be more in caries-free group and increased with age.

  11. Study on search for antioxidant peptides in unused protein resources and their production; Miriyo tanpaku shigen kara no kosanka pepuchido no tansaku to seisan ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the development of antioxidants that are high in use value, peptides are produced in a bioreactor from so-far-unused or little-used protein resources originating in marine organisms collected along the Sanriku coast, and antioxidants that they may contain are searched for. Three kinds of red alga, eight kinds of brown alga, and internal organs of processed fish are treated in the bioreactor. The bioreactor is a rotary membrane type especially built for the effective decomposition of proteins in this study. Reaction solutions containing proteins and enzymes are let through an ultrafiltration membrane module in rotation at a high speed, and the products with their molecules reduced in weight are effectively taken out of the system (free of clogging). The specimens checked for antioxidant features are all found to be positive when subjected to the iron rhodanide method or carotene method, the two methods determining the change in the amount of oxygen in hydroperoxide and {beta}-carotene that are produced when the linolic acid is oxidized. Every one of the specimens prepared for this study exhibits antioxidant features in plural, different mechanisms. It is necessary to collect further basic findings about oxidation inhibiting mechanisms for the development of more active antioxidant peptides. 39 refs., 46 figs., 8 tabs.

  12. Dietary total antioxidant capacity from different assays in relation to serum C-reactive protein among young Japanese women

    Directory of Open Access Journals (Sweden)

    Kobayashi Satomi

    2012-10-01

    Full Text Available Abstract Background The association between dietary total antioxidant capacity (TAC from different assays and serum C-reactive protein (CRP has not been assessed in non-Western populations. We examined the association between dietary TAC and serum CRP concentration in young Japanese women using different four TAC assays. Methods The subjects were 443 young Japanese women aged 18–22 years. Dietary TAC was assessed with a self-administered diet history questionnaire and the TAC value of each food using the following four assays: ferric reducing ability of plasma (FRAP; oxygen radical absorbance capacity (ORAC; Trolox equivalent antioxidant capacity (TEAC; and total radical-trapping antioxidant parameter (TRAP. Serum CRP concentrations were measured by highly sensitive nephelometry. Results The major contributor to dietary TAC was green, barley, and oolong tea (FRAP: 53%, ORAC: 45%, TEAC: 36%, and TRAP: 44%. The prevalence of elevated CRP concentrations (≥ 1 mg/L was 5.6%. TAC from FRAP was inversely associated with serum CRP concentrations (adjusted odds ratio [OR] for elevated CRP concentration in high [compared with low] dietary TAC group: 0.39 [95% confidence interval (CI: 0.16-0.98]; P = 0.04. TAC from ORAC was inversely associated with CRP, although the association was not significant (OR: 0.48 [95% CI: 0.20-1.14]; P = 0.10. TAC from TEAC was inversely associated with CRP (OR: 0.32 [95% CI: 0.12-0.82]; P = 0.02, as was TAC from TRAP (OR: 0.31 [95% CI: 0.12-0.81]; P = 0.02. Conclusions Dietary TAC was inversely associated with serum CRP concentration in young Japanese women regardless of assay. Further studies are needed in other populations to confirm these results.

  13. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Samantha Giordano

    2014-01-01

    Full Text Available Oxidative stress including DNA damage, increased lipid and protein oxidation, are important features of aging and neurodegeneration suggesting that endogenous antioxidant protective pathways are inadequate or overwhelmed. Importantly, oxidative protein damage contributes to age-dependent accumulation of dysfunctional mitochondria or protein aggregates. In addition, environmental toxins such as rotenone and paraquat, which are risk factors for the pathogenesis of neurodegenerative diseases, also promote protein oxidation. The obvious approach of supplementing the primary antioxidant systems designed to suppress the initiation of oxidative stress has been tested in animal models and positive results were obtained. However, these findings have not been effectively translated to treating human patients, and clinical trials for antioxidant therapies using radical scavenging molecules such as α-tocopherol, ascorbate and coenzyme Q have met with limited success, highlighting several limitations to this approach. These could include: (1 radical scavenging antioxidants cannot reverse established damage to proteins and organelles; (2 radical scavenging antioxidants are oxidant specific, and can only be effective if the specific mechanism for neurodegeneration involves the reactive species to which they are targeted and (3 since reactive species play an important role in physiological signaling, suppression of endogenous oxidants maybe deleterious. Therefore, alternative approaches that can circumvent these limitations are needed. While not previously considered an antioxidant system we propose that the autophagy-lysosomal activities, may serve this essential function in neurodegenerative diseases by removing damaged or dysfunctional proteins and organelles.

  14. A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis.

    Science.gov (United States)

    Rivas, Manuel A; Graham, Daniel; Sulem, Patrick; Stevens, Christine; Desch, A Nicole; Goyette, Philippe; Gudbjartsson, Daniel; Jonsdottir, Ingileif; Thorsteinsdottir, Unnur; Degenhardt, Frauke; Mucha, Sören; Kurki, Mitja I; Li, Dalin; D'Amato, Mauro; Annese, Vito; Vermeire, Severine; Weersma, Rinse K; Halfvarson, Jonas; Paavola-Sakki, Paulina; Lappalainen, Maarit; Lek, Monkol; Cummings, Beryl; Tukiainen, Taru; Haritunians, Talin; Halme, Leena; Koskinen, Lotta L E; Ananthakrishnan, Ashwin N; Luo, Yang; Heap, Graham A; Visschedijk, Marijn C; MacArthur, Daniel G; Neale, Benjamin M; Ahmad, Tariq; Anderson, Carl A; Brant, Steven R; Duerr, Richard H; Silverberg, Mark S; Cho, Judy H; Palotie, Aarno; Saavalainen, Päivi; Kontula, Kimmo; Färkkilä, Martti; McGovern, Dermot P B; Franke, Andre; Stefansson, Kari; Rioux, John D; Xavier, Ramnik J; Daly, Mark J; Barrett, J; de Lane, K; Edwards, C; Hart, A; Hawkey, C; Jostins, L; Kennedy, N; Lamb, C; Lee, J; Lees, C; Mansfield, J; Mathew, C; Mowatt, C; Newman, B; Nimmo, E; Parkes, M; Pollard, M; Prescott, N; Randall, J; Rice, D; Satsangi, J; Simmons, A; Tremelling, M; Uhlig, H; Wilson, D; Abraham, C; Achkar, J P; Bitton, A; Boucher, G; Croitoru, K; Fleshner, P; Glas, J; Kugathasan, S; Limbergen, J V; Milgrom, R; Proctor, D; Regueiro, M; Schumm, P L; Sharma, Y; Stempak, J M; Targan, S R; Wang, M H

    2016-01-01

    Protein-truncating variants protective against human disease provide in vivo validation of therapeutic targets. Here we used targeted sequencing to conduct a search for protein-truncating variants conferring protection against inflammatory bowel disease exploiting knowledge of common variants associated with the same disease. Through replication genotyping and imputation we found that a predicted protein-truncating variant (rs36095412, p.R179X, genotyped in 11,148 ulcerative colitis patients and 295,446 controls, MAF=up to 0.78%) in RNF186, a single-exon ring finger E3 ligase with strong colonic expression, protects against ulcerative colitis (overall P=6.89 × 10(-7), odds ratio=0.30). We further demonstrate that the truncated protein exhibits reduced expression and altered subcellular localization, suggesting the protective mechanism may reside in the loss of an interaction or function via mislocalization and/or loss of an essential transmembrane domain. PMID:27503255

  15. Antioxidant properties of roasted coffee residues.

    Science.gov (United States)

    Yen, Wen-Jye; Wang, Bor-Sen; Chang, Lee-Wen; Duh, Pin-Der

    2005-04-01

    The antioxidant activity of roasted coffee residues was evaluated. Extraction with four solvents (water, methanol, ethanol, and n-hexane) showed that water extracts of roasted coffee residues (WERCR) produced higher yields and gave better protection for lipid peroxidation. WERCR showed a remarkable protective effect on oxidative damage of protein. In addition, WERCR showed scavenging of free radicals as well as the reducing ability and to bind ferrous ions, indicating that WERCR acts as both primary and secondary antioxidants. The HPLC analyses showed that phenolic acids (chlorogenic acid and caffeic acid) and nonphenolic compounds [caffeine, trigonelline, nicotinic acid, and 5-(hydroxymethyl)furfuraldehyde] remained in roasted coffee residues. These compounds showed a protective effect on a liposome model system. The concentrations of flavonoids and polyphenolic compounds in roasted coffee residues were 8,400 and 20,400 ppm, respectively. In addition, the Maillard reaction products (MRPs) remaining in roasted coffee residues were believed to show antioxidant activity. These data indicate that roasted coffee residues have excellent potential for use as a natural antioxidant source because the antioxidant compounds remained in roasted coffee residues. PMID:15796608

  16. Roles of Werner syndrome protein in protection of genome integrity

    DEFF Research Database (Denmark)

    Rossi, Marie L; Ghosh, Avik K; Bohr, Vilhelm A

    2010-01-01

    Werner syndrome protein (WRN) is one of a family of five human RecQ helicases implicated in the maintenance of genome stability. The conserved RecQ family also includes RecQ1, Bloom syndrome protein (BLM), RecQ4, and RecQ5 in humans, as well as Sgs1 in Saccharomyces cerevisiae, Rqh1 in Schizosacc......Werner syndrome protein (WRN) is one of a family of five human RecQ helicases implicated in the maintenance of genome stability. The conserved RecQ family also includes RecQ1, Bloom syndrome protein (BLM), RecQ4, and RecQ5 in humans, as well as Sgs1 in Saccharomyces cerevisiae, Rqh1 in...

  17. Protective effect of whey protein hydrolysates on H₂O₂-induced PC12 cells oxidative stress via a mitochondria-mediated pathway.

    Science.gov (United States)

    Jin, Man-Man; Zhang, Li; Yu, Hui-Xin; Meng, Jun; Sun, Zhen; Lu, Rong-Rong

    2013-11-15

    Whey protein hydrolysates (WPHs) were prepared with pepsin and trypsin. A PC12 cell model was built to observe the protective effect of WPHs against H2O2-induced oxidative stress. The results indicated that WPHs reduced apoptosis by 14% and increased antioxidant enzyme activities. Flow cytometry was used to assess the accumulation of reactive oxygen species (ROS), Ca(2+) levels and the mitochondrial membrane potential (MMP). The results showed that WPHs suppressed ROS elevation and Ca(2+) levels and stabilised MMP by 16%. The anti-apoptosis/pro-apoptosis proteins Bcl-2/Bax and poly (ADP-ribose) polymerase (PARP) were investigated by Western-blot analysis, which indicated that WPHs increased the expression of Bcl-2 while inhibiting the expression of Bax and the degradation of PARP. WPHs also blocked Caspase-3 activation by 62%. The results demonstrate that WPHs can significantly protect PC12 cells against oxidative stress via a mitochondria-mediated pathway. These findings indicate the potential benefits of WPHs as valuable food antioxidative additives. PMID:23790857

  18. Role of saccharomyces cerevisiae Rif1 and Rif2 proteins in protection of telomeres

    OpenAIRE

    Anbalagan

    2013-01-01

    Eukaryotic cells distinguish their chromosome ends from accidental DNA double-strand breaks (DSBs) by packaging them into protective structures called telomeres that prevent DNA repair/recombination activities. In this work, we investigated the role of key telomeric proteins in protecting Saccharomyces cerevisiae telomeres from degradation. We show that the shelterin-like proteins Rif1, Rif2, and Rap1 inhibit nucleolytic processing at both de novo and native telomeres during G1 and G2 cell cy...

  19. Discordance between in silico & in vitro analyses of ACE inhibitory & antioxidative peptides from mixed milk tryptic whey protein hydrolysate.

    Science.gov (United States)

    Chatterjee, Alok; Kanawjia, S K; Khetra, Yogesh; Saini, Prerna

    2015-09-01

    ACE inhibitory and antioxidative peptides identified by LCMS/MS, from mixed milk (Bubalus bubalis and Bos taurus) tryptic whey protein hydrolysate, were compared with the in silico predictions. α la and ß lg sequences, both from Bubalus bubalis and Bos taurus, were used for in silico study. SWISS-PROT and BIOPEP protein libraries were accessed for prediction of peptide generation. Study observed gaps in the prediction versus actual results, which remain unaddressed in the literature. Many peptides obtained in vitro, were not reflected in in silico predictions. Differences in identified peptides in separate libraries were observed too. In in silico prediction, peptides with known biological activities were also not reflected. Predictions, towards generation of bioactive peptides, based upon in silico release of proteins and amino acid sequences from different sources and thereupon validation in relation to actual results has often been reported in research literature. Given that computer aided simulation for prediction purposes is an effective research direction, regular updating of protein libraries and an effectual integration, for more precise results, is critical. The gaps addressed between these two techniques of research, have not found any address in literature. Inclusion of more flexibility with the variables, within the tools being used for prediction, and a hierarchy based database with search options for various peptides, will further enhance the scope and strength of research. PMID:26344975

  20. Antioxidant supplementation of low-protein diets reduced susceptibility to pulmonary hypertension in broiler chickens raised at high altitude.

    Science.gov (United States)

    Sharifi, M R; Khajali, F; Hassanpour, H

    2016-02-01

    A reduced-protein diet (designated as RPD) was prepared and its effects on growth performance and the development of pulmonary hypertension syndrome (PHS) were evaluated in broiler chickens compared to a normal-protein diet (designated as NPD) or to the RPD supplemented with CoQ10 alone (30 mg/kg) or in combination with vitamin E (30 mg/kg CoQ10  + 100 mg/kg vitamin E). The RPD had 30 g/kg less crude protein compared to the NPD. A total of 208 1-day-old male broilers (Ross 308 strain) were used in a 42-day trial. Serum concentrations of uric acid (UA) and nitric oxide (NO) significantly (p heart and lungs of broilers fed on the RPD, which was effectively restored by supplementation of CoQ10 . The right to total ventricular weight ratio (RV:TV) was significantly (p < 0.05) increased in birds fed the RPD, which concurred with an increase in mortality from pulmonary hypertension syndrome (PHS). However, a significant decline in mortality from PHS was observed when birds on RPD received CoQ10 or CoQ10  + VE. In conclusion, antioxidant supplementation effectively improves pulmonary hypertensive response in broiler chicken fed of reduced-protein diets. PMID:25900413

  1. Feeding rumen-protected gamma-aminobutyric acid enhances the immune response and antioxidant status of heat-stressed lactating dairy cows.

    Science.gov (United States)

    Cheng, Jianbo; Zheng, Nan; Sun, Xianzhi; Li, Songli; Wang, Jiaqi; Zhang, Yangdong

    2016-08-01

    This experiment was conducted to investigate the effects of rumen-protected gamma-aminobutyric acid (GABA) on immune function and antioxidant status in heat-stressed dairy cows. Sixty Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized block design. The treatments consisted of 0 (control), 40, 80, or 120mg of GABA/kg DM from rumen-protected GABA. The trial lasted 10 weeks. The average temperature-humidity indices at 0700, 1400 and 2200h were 78.4, 80.2 and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA. As the GABA increased, the immunoglobulin (Ig) A and IgG contents and the proportions of CD4(+) and CD8(+) T lymphocytes increased linearly (PAOC) increased linearly (P<0.05), whereas malondialdehyde (MDA) content decreased linearly (P<0.05) with increasing GABA. These results indicate that rumen-protected GABA supplementation to heat-stressed dairy cows can improve their immune function and antioxidant activity. PMID:27503722

  2. Purification and characterization of a novel antitumor protein with antioxidant and deoxyribonuclease activity from edible mushroom Pholiota nameko.

    Science.gov (United States)

    Zhang, Yeni; Liu, Zhaokun; Ng, Tzi Bun; Chen, Zhihui; Qiao, Wentao; Liu, Fang

    2014-04-01

    A novel antitumor protein from the edible mushroom Pholiota nameko (PNAP) was purified through a two-step chromatographic procedure including SP cation exchange chromatogram and Superdex gel filtration. The approximate molecular weight was demonstrated to be 18.5 kDa by SDS-PAGE and ultracentrifugation analysis and N-terminal sequence was detected as AGRTFIGYNG by Edman degradation. Biochemical characterization showed that it exhibited significant antioxidant activity by effectively scavenging hydroxyl and 1,1-diphenyl-2-picrylhydrazyl radicals compared to standard antioxidant butylated hydroxy anisole. PNAP had deoxyribonuclease activity with the optimum pH and temperature were 5.0 and 60 °C respectively, as well as it can act on both double-stranded and single-stranded DNA, but preferentially on double-stranded DNA. PNAP displayed antitumor activity against cancer cell lines such as MCF7 and Hela cells. Human breast cancer MCF7 cells treated with PNAP produced typical apoptotic morphological changes including chromatin condensation, accumulation of sub-G1 cells and alternation of mitochondrial permeability. The PNAP induced apoptosis of MCF7 cells entailed loss of mitochondrial membrane potential resulting in release of cytochrome c into cytosol, activation of caspase-9 and caspase-3, which are responsible for the execution of apoptosis, implying intrinsic signal pathway is involved in PNAP induced apoptosis. PMID:24189312

  3. Influence of Ultrafiltration on Antioxidant Activity of Tilapia (Oreochromis niloticus) Protein Hydrolysate

    OpenAIRE

    Mohamed Beva Kelfala Foh; J. Qixing; I. Amadou; W.S. Xia

    2010-01-01

    The production of hot w ater dip hydrolysate (HWDH) from tilapia (Oreochromis niloticus) with DH of 25.43% improved its bioactivity. A pressure-driven ultrafiltration (UF) membrane separated HWDH based on molecular weight cut-offs (MWCO) of 1000, 3000, and 5,000 Da, to produce fractions F1-k, F3-k, F5-k respectively and 5k-R (retentate of 5,000 Da) with antioxidative activity. The UF produced permeates with smaller Mw distribution (177-3015 Da), with F1-k portraying lowest molecular weight ra...

  4. Optimized DPPH assay in a detergent-based buffer system for measuring antioxidant activity of proteins

    OpenAIRE

    Nicklisch, Sascha C.T.; Herbert Waite, J.

    2014-01-01

    © 2014 The Authors. (Graph Presented) The free radical method using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) is a well established assay for the in vitro determination of antioxidant activity in food and biological extracts. The standard DPPH assay uses methanol or ethanol as solvents, or buffered alcoholic solutions in a ratio of 40%/60% (buffer/alcohol, v/v) to keep the hydrophobic hydrazyl radical and phenolic test compounds soluble while offering sufficient buffering capacity at different pH...

  5. Protection against keratoconjunctivitis shigellosa induced by immunization with outer membrane proteins of Shigella spp.

    OpenAIRE

    Adamus, G.; Mulczyk, M; Witkowska, D; Romanowska, E

    1980-01-01

    Active immunization of guinea pigs and rabbits with outer membrane proteins (OMP) isolated from Shigella flexneri 3a and Shigella sonnei phase I protected the animals against keratoconjunctivitis shigellosa induced with the homologous or heterologous strain. Protection was also achieved in rabbits after passive immunization with anti-OMP immune serum. Active immunization with lipopolysaccharide of S. flexneri 3a did not protect rabbits against keratoconjunctivitis shigellosa.

  6. Antioxidant properties of green tea extract protect reduced fat soft cheese against oxidation induced by light exposure

    DEFF Research Database (Denmark)

    Huvaere, Kevin; Nielsen, Jacob Holm; Bakman, Mette;

    2011-01-01

    The effect of two different antioxidants, EDTA and green tea extract (GTE), used individually or in combination, on the light-induced oxidation of reduced fat soft cheeses (0.2 and 6% fat) was investigated. In samples with 0.2% fat, lipid hydroperoxides as primary lipid oxidation products were not...... of 50 ppm EDTA to samples with 6% fat was ineffective, but 750 ppm GTE (alone or in combination with EDTA) strongly reduced levels of hexanal and heptanal. Accumulation of primary lipid hydroperoxides was not affected by GTE, hence antioxidative activity was ascribed to scavenging of hexanal and...

  7. A Synergistic, Balanced Antioxidant Cocktail, Protects Aging Rats from Insulin Resistance and Absence of Meal-Induced Insulin Sensitization (AMIS Syndrome

    Directory of Open Access Journals (Sweden)

    Hui Helen Wang

    2015-01-01

    Full Text Available A series of in vivo and in vitro studies using animal and human models in the past 15 years have demonstrated that approximately 55% (~66% in humans of the glucose disposal effect of an i.v. injection of insulin in the fed state is dependent on the action of a second hormone, hepatic insulin sensitizing substance (HISS, which is released from the liver and stimulates glucose uptake in muscle, heart and kidneys. Sensitization of the insulin response by a meal through release of HISS is called meal-induced insulin sensitization (MIS. Absence of HISS action results in postprandial hyperglycemia, hyperinsulinemia, hyperlipidemia, adiposity, increased free radical stress and a cluster of progressive metabolic and cardiovascular dysfunctions referred to as the AMIS (absence of meal-induced insulin sensitization syndrome. Reduced HISS release accounts for the insulin resistance that occurs with aging and is made worse by physical inactivity and diets high in sucrose or fat. This brief review provides an update of major metabolic disturbances associated with aging due to reduction of HISS release, and the protection against these pathological changes in aging animals using a balanced synergistic antioxidant cocktail SAMEC (S-adenosylmethionine, vitamins E and C. The synergy amongst the components is consistent with the known benefits of antioxidants supplied by a mixed diet and acting through diverse mechanisms. Using only three constituents, SAMEC appears suitable as an antioxidant specifically targeting the AMIS syndrome.

  8. Protein Lamtoro leaves (Leucaena leucocephala) with Tannin, Saponin and Oil Protection and the Effect on ruminal undegradable dietary protein (RUDP), and Synthesis of rumen microbial protein

    OpenAIRE

    FM Suhartati

    2005-01-01

    A research was conducted to find out the effect of lamtoro (Leucaena leucocephala) leaves with tannin, saponin and oil protection to ruminal undegradable dietary protein (RUDP), and rumen microbial protein. Materials employed in this research were lamtoro leaves (Leucaena leucocephala) which are heated and then processed into mash form: tea leaves (contain 20% of tannin), klerak fruits (contain 48% of saponin) and soybean oil (oil source) as protection agent; and rumen fluid collected from fi...

  9. Dietary rice protein isolate attenuates atherosclerosis in apoE-deficient mice by upregulating antioxidant enzymes

    Science.gov (United States)

    Rice-based diets may have been reported to protect against the development of atherosclerosis; however, the underlying mechanism(s) for this protection remains unknown. In this report, the mechanism(s) contributing to the atheroprotective effects of rice-based diet was addressed using the apolipopro...

  10. CD38 Deficiency Protects the Heart from Ischemia/Reperfusion Injury through Activating SIRT1/FOXOs-Mediated Antioxidative Stress Pathway

    Science.gov (United States)

    Guan, Xiao-Hui; Liu, Xiao-Hong; Hong, Xuan; Zhao, Ning; Xiao, Yun-Fei; Wang, Ling-Fang; Qian, Yi-Song; Deng, Ke-Yu; Ji, Guangju; Fu, Mingui

    2016-01-01

    Ischemia/reperfusion (I/R) injury induces irreversible oxidative stress damage to the cardiac muscle. We previously observed that CD38 deficiency remarkably protects mouse embryonic fibroblasts (MEFs) from oxidative stress-induced injury. However, whether CD38 deficiency protects from I/R injury in the heart is not explored. Here, we showed that the hearts of CD38 deficient mice or wild type mice supplied with exogenous NAD were significantly protected from ischemia/reperfusion injury, seen as reduction of the myocardial infarct sizes when the mice were subjected to 30 min ischemia followed by 24 hours of reperfusion. Consistently, the protection of CD38 deficiency on hypoxia/reoxygenation (H/R) injury was confirmed with a CD38 knockdown H9c2 stable cell line. Furthermore, we observed that knockdown of CD38 remarkably inhibited ROS generation and intracellular Ca2+ overloading induced by H/R in H9c2 cells. The FOXO1 and FOXO3 expressions were significantly elevated by H/R injury in CD38 knockdown cells compared with normal H9c2 cells. The cell immunofluorescence assay showed that FOXO1 nuclear translocation was significantly increased in CD38 knockdown H9c2 cells. In addition, we demonstrated that the increase of FOXO1 nuclear translocation was associated with the increased expressions of antioxidant catalase and SOD2 and the attenuated expression of the ROS generation enzyme NOX4. In conclusion, our results provide new evidence that CD38 deficiency protects the heart from I/R injury through activating SIRT1/FOXOs-mediated antioxidative stress pathway. PMID:27547294

  11. Antioxidants in food

    OpenAIRE

    Đilas Sonja M.; Čanadanović-Brunet Jasna M.; Ćetković Gordana S.

    2002-01-01

    This paper attempts to lead the reader an understanding of what free radicals are and how they can form during lipid oxidation. Also, it provides some information out natural antioxidants (tocopherols and tocotrienols flavonoids, polyphenols, tannines, melanoidihes, carotenoids, ascorbates) and the echanisms of their protection from radical damage. The sources of natural antioxidants are: oil seeds, teas, vegetables, fruits, spices and herbs.

  12. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    Science.gov (United States)

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  13. Early light-induced proteins protect Arabidopsis from photooxidative stress.

    Science.gov (United States)

    Hutin, Claire; Nussaume, Laurent; Moise, Nicolae; Moya, Ismaël; Kloppstech, Klaus; Havaux, Michel

    2003-04-15

    The early light-induced proteins (ELIPs) belong to the multigenic family of light-harvesting complexes, which bind chlorophyll and absorb solar energy in green plants. ELIPs accumulate transiently in plants exposed to high light intensities. By using an Arabidopsis thaliana mutant (chaos) affected in the posttranslational targeting of light-harvesting complex-type proteins to the thylakoids, we succeeded in suppressing the rapid accumulation of ELIPs during high-light stress, resulting in leaf bleaching and extensive photooxidative damage. Constitutive expression of ELIP genes in chaos before light stress resulted in ELIP accumulation and restored the phototolerance of the plants to the wild-type level. Free chlorophyll, a generator of singlet oxygen in the light, was detected by chlorophyll fluorescence lifetime measurements in chaos leaves before the symptoms of oxidative stress appeared. Our findings indicate that ELIPs fulfill a photoprotective function that could involve either the binding of chlorophylls released during turnover of pigment-binding proteins or the stabilization of the proper assembly of those proteins during high-light stress. PMID:12676998

  14. System of Antioxidant Protection of Corn Roots in Case of Adaptation to Combined Action of Herbicides and Soil Drought

    Directory of Open Access Journals (Sweden)

    G. S. Rossihina

    2005-09-01

    Full Text Available Reaction of antioxidant enzymes in the maize root (Kadr 267 MVhybrid to the combined action of herbicides and soil drought was studied. These conditions activated superoxide dismutase (SOD and peroxidase and coused oscillation in the catalase enzymatic activity.

  15. An antioxidative galactomannan-protein complex isolated from fermentation broth of a medicinal fungus Cs-HK1.

    Science.gov (United States)

    Chen, Xia; Ding, Zhong-Yang; Wang, Wen-Qiang; Siu, Ka-Chai; Wu, Jian-Yong

    2014-11-01

    A protein-containing polysaccharide, EPS2BW, was fractionated from the exopolysaccharide (EPS) produced by a medicinal fungus Cordyceps sinensis (Cs-HK1). EPS2BW was mainly composed of galactomannan with about 16% (w/w) protein and 50 kDa average molecular weight. The galactomannan part consisted of mannose and galactose at 1.7:1.0 molar ratio, and the protein segments were composed of sixteen amino acids with 12.5% proline and 16.6% threonine (mol%) being the most abundant. Based on analytical results from NMR, methylation analysis, partial acid hydrolysis and GC-MS, the galactomannan structure was elucidated as a (1 → 2)-α-D-mannopyranosyl (Manp) backbone with O-6-linked galactopyranosyl (Galp) branches. EPS2BW exhibited a high antioxidant capacity in both chemical and cell culture assays, with a Trolox equivalent radical scavenging activity of 44.7 μmol Trolox/mg, a Fe(3+) reducing power of 38.9 μmol Fe(2+)/mg, and significant cytoprotective effect against H2O2-induced PC12 cell death at 50-250 μg/mL. PMID:25129769

  16. Antioxidant potential of date (Phoenix dactylifera L.) seed protein hydrolysates and carnosine in food and biological systems.

    Science.gov (United States)

    Ambigaipalan, Priyatharini; Shahidi, Fereidoon

    2015-01-28

    Date seed protein hydrolysates were evaluated for antioxidant activity as well as solubility and water-holding capacity in food and biological model systems. Date seed protein hydrolysates as well as carnosine exhibited >80% of solubility over a pH range of 2-12. The hydrolysates and carnosine at 0.5% (w/w) were also found to be effective in enhancing water-holding capacity and cooking yield in a fish model system, which was nearly similar to sodium tripolyphosphate (STPP; 0.3%, w/w). Incorporation of hydrolysates (200 ppm) in fish model systems resulted in the highest inhibition (30%) of oxidation in comparison to butylated hydroxytoluene (BHT; 9%). In addition, hydrolysates and carnosine inhibited β-carotene oxidation by 75%. The hydrolysates (0.1 mg/mL) inhibited LDL cholesterol oxidation by 60%, whereas carnosine inhibited oxidation by 80% after 12 h of incubation. Additionally, hydrolysates and carnosine effectively inhibited hydroxyl (6 mg/mL) and peroxyl (0.1 mg/mL) radical-induced DNA scission. Therefore, date seed protein hydrolysates could be used as a potential functional food ingredient for health promotion. PMID:25553507

  17. Testing the Effects of DL-Alpha-Tocopherol Supplementation on Oxidative Damage, Total Antioxidant Protection and the Sex-Specific Responses of Reproductive Effort and Lifespan to Dietary Manipulation in Australian Field Crickets (Teleogryllus commodus

    Directory of Open Access Journals (Sweden)

    C. Ruth Archer

    2015-12-01

    Full Text Available The oxidative stress theory predicts that the accumulation of oxidative damage causes aging. More generally, oxidative damage could be a cost of reproduction that reduces survival. Both of these hypotheses have mixed empirical support. To better understand the life-history consequences of oxidative damage, we fed male and female Australian field crickets (Teleogryllus commodus four diets differing in their protein and carbohydrate content, which have sex-specific effects on reproductive effort and lifespan. We supplemented half of these crickets with the vitamin E isoform DL-alpha-tocopherol and measured the effects of nutrient intake on lifespan, reproduction, oxidative damage and antioxidant protection. We found a clear trade-off between reproductive effort and lifespan in females but not in males. In direct contrast to the oxidative stress theory, crickets fed diets that improved their lifespan had high levels of oxidative damage to proteins. Supplementation with DL-alpha-tocopherol did not significantly improve lifespan or reproductive effort. However, males fed diets that increased their reproductive investment experienced high oxidative damage to proteins. While this suggests that male reproductive effort could elevate oxidative damage, this was not associated with reduced male survival. Overall, these results provide little evidence that oxidative damage plays a central role in mediating life-history trade-offs in T. commodus.

  18. Testing the Effects of DL-Alpha-Tocopherol Supplementation on Oxidative Damage, Total Antioxidant Protection and the Sex-Specific Responses of Reproductive Effort and Lifespan to Dietary Manipulation in Australian Field Crickets (Teleogryllus commodus).

    Science.gov (United States)

    Archer, C Ruth; Hempenstall, Sarah; Royle, Nick J; Selman, Colin; Willis, Sheridan; Rapkin, James; Blount, Jon D; Hunt, John

    2015-01-01

    The oxidative stress theory predicts that the accumulation of oxidative damage causes aging. More generally, oxidative damage could be a cost of reproduction that reduces survival. Both of these hypotheses have mixed empirical support. To better understand the life-history consequences of oxidative damage, we fed male and female Australian field crickets (Teleogryllus commodus) four diets differing in their protein and carbohydrate content, which have sex-specific effects on reproductive effort and lifespan. We supplemented half of these crickets with the vitamin E isoform DL-alpha-tocopherol and measured the effects of nutrient intake on lifespan, reproduction, oxidative damage and antioxidant protection. We found a clear trade-off between reproductive effort and lifespan in females but not in males. In direct contrast to the oxidative stress theory, crickets fed diets that improved their lifespan had high levels of oxidative damage to proteins. Supplementation with DL-alpha-tocopherol did not significantly improve lifespan or reproductive effort. However, males fed diets that increased their reproductive investment experienced high oxidative damage to proteins. While this suggests that male reproductive effort could elevate oxidative damage, this was not associated with reduced male survival. Overall, these results provide little evidence that oxidative damage plays a central role in mediating life-history trade-offs in T. commodus. PMID:26783958

  19. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish

    OpenAIRE

    Chen Sun; Shicui Zhang

    2015-01-01

    Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable ...

  20. Plasma Protein Oxidation and Its Correlation with Antioxidant Potential During Human Aging

    OpenAIRE

    Kanti Bhooshan Pandey; Mohd Murtaza Mehdi; Pawan Kumar Maurya; Syed Ibrahim Rizvi

    2010-01-01

    Previous studies have indicated that the main molecular characteristic of aging is the progressive accumulation of oxidative damages in cellular macromolecules. Proteins are one of the main molecular targets of age-related oxidative stress, which have been observed during aging process in cellular systems. Reactive oxygen species (ROS) can lead to oxidation of amino acid side chains, formation of protein-protein cross-linkages, and oxidation of the peptide backbones. In the present study, we ...

  1. Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein Promotes Protective Immune Responses in Mice

    OpenAIRE

    Zhang, Chunyan; Zhu, Shanshan; Wei, Li; Yan, Xu; Wang, Jing; Quan, Rong; She, Ruiping; Hu, Fengjiao; Liu, Jue

    2015-01-01

    The Cap protein of porcine circovirus type 2 (PCV2) that serves as a major host-protective immunogen was used to develop recombinant vaccines for control of PCV2-associated diseases. Growing research data have demonstrated the high effectiveness of flagellin as an adjuvant for humoral and cellular immune responses. Here, a recombinant protein was designed by fusing a modified version of bacterial flagellin to PCV2 Cap protein and expressed in a baculovirus system. When administered without ad...

  2. Protecting role of cosolvents in protein denaturation by SDS: a structural study

    OpenAIRE

    Wouters Johan; Pouyez Jenny; Michaux Catherine; Privé Gilbert G

    2008-01-01

    Abstract Background Recently, we reported a unique approach to preserve the activity of some proteins in the presence of the denaturing agent, Sodium Dodecyl Sulfate (SDS). This was made possible by addition of the amphipathic solvent 2,4-Methyl-2-PentaneDiol (MPD), used as protecting but also as refolding agent for these proteins. Although the persistence of the protein activity in the SDS/MPD mixture was clearly established, preservation of their structure was only speculative until now. Re...

  3. The 90-kDa Heat Shock Protein Hsp90 Protects Tubulin against Thermal Denaturation*

    OpenAIRE

    Weis, Felix; Moullintraffort, Laura; Heichette, Claire; Chrétien, Denis; Garnier, Cyrille

    2010-01-01

    Hsp90 and tubulin are among the most abundant proteins in the cytosol of eukaryotic cells. Although Hsp90 plays key roles in maintaining its client proteins in their active state, tubulin is essential for fundamental processes such as cell morphogenesis and division. Several studies have suggested a possible connection between Hsp90 and the microtubule cytoskeleton. Because tubulin is a labile protein in its soluble form, we investigated whether Hsp90 protects it against thermal denaturation....

  4. Effect of simulated processing on the antioxidant capacity and in vitro protein digestion of fruit juice-milk beverage model systems.

    Science.gov (United States)

    He, Zhiyong; Yuan, Bo; Zeng, Maomao; Tao, Guanjun; Chen, Jie

    2015-05-15

    The effects of simulated processing (pH adjustment and thermal treatment) on the antioxidant capacity and in vitro protein digestion of fruit juice-milk beverage (FJMB) models consisting of whey protein (WP), and chlorogenic acid (CHA) or catechin (CAT) were investigated. Results indicated that CAT was more susceptible to processing than CHA, and showed a significant (p 0.05) by pasteurization, whereas sterilization initially accelerated WP digestion but did not change its overall digestibility. PMID:25577106

  5. Metabolism of oxidants and anti-oxidant protective mechanisms in dust exposed human lung cells; Oxidantienmetabolismus und anti-oxidative Schutzmechanismen in staubelasteten humanen Lungenzellen

    Energy Technology Data Exchange (ETDEWEB)

    Gillissen, A. [Berufsgenossenschaftliche Krankenanstalten Bergmannsheil, Bochum (Germany). Medizinische Klinik und Poliklinik; Jaworska, M. [Berufsgenossenschaftliche Krankenanstalten Bergmannsheil, Bochum (Germany). Medizinische Klinik und Poliklinik; Wickenburg, D. [Berufsgenossenschaftliche Krankenanstalten Bergmannsheil, Bochum (Germany). Medizinische Klinik und Poliklinik; Schultze-Werninghaus, G. [Berufsgenossenschaftliche Krankenanstalten Bergmannsheil, Bochum (Germany). Medizinische Klinik und Poliklinik

    1996-04-01

    The imbalance of the oxidant-antioxidant system in the human lung after fiber and dust exposure is to play a major pathophysiologic role in the development of diseases such as asbestosis and silicosis. We compared the effect of crocidolite and silica (SiO{sub 2}) with rockwool and basaltwool, both man made mineral fibers, (1) on the antioxidant system of bronchial epithelial cells (A549 and BEAS 2 B cell lines), and (2) on the stimulation of oxidant production (e.g. O{sub 2} and H{sub 2}O{sub 2}) of alveolar macrophages ex vivo. The alveolar macrophages were obtained from patients with asbestosis (n=8), patients with silicosis (n=10) and non-exposed volunteers (n=9). In both epithelial cell lines fiber/silica induced cytotoxicity increased dependent on incubation time and fiber/dust concentration. Simultaneously intracellular glutathione content decreased with increasing cytotoxicity. Within the particle groups crocidolite was the be most toxic fiber in all tests. Additional administration of N-acetylcysteine (NAC) - a thiol capable of scavenging oxygen radicals and having cellular glutathione precursor capabilities - reduced this cytotoxic effect significantly (p<0.05). In BEAS 2B cells intracellular glutathione and superoxide dismutase (SOD) levels rose after low fiber/dust concentrations (1 {mu}g/cm{sup 2}) and short incubation time (<5 h). However, at higher concentrations and longer incubation times glutathione and SOD levels decreased. In contrast, even at high concentrations (100 {mu}g/cm{sup 2}) and the longest incubation time (24 h) used, intracellular catalase levels did not decline. The most striking effects were detected after crocidolite, the smallest changes were found after rockwood exposure. In exposed alveolar macrophages rockwool and basaltwood caused less oxidant production than crocidolite and silica. Interestingly, even at highest concentrations (50 {mu}g/cm{sup 2}) rockwool exposure caused no significant change in oxidant release. (orig

  6. The protein PprI provides protection against radiation injury in human and mouse cells.

    Science.gov (United States)

    Shi, Yi; Wu, Wei; Qiao, Huiping; Yue, Ling; Ren, Lili; Zhang, Shuyu; Yang, Wei; Yang, Zhanshan

    2016-01-01

    Severe acute radiation injuries are both very lethal and exceptionally difficult to treat. Though the radioresistant bacterium D. radiodurans was first characterized in 1956, genes and proteins key to its radioprotection have not yet to be applied in radiation injury therapy for humans. In this work, we express the D. radiodurans protein PprI in Pichia pastoris yeast cells transfected with the designed vector plasmid pHBM905A-pprI. We then treat human umbilical endothelial vein cells and BALB/c mouse cells with the yeast-derived PprI and elucidate the radioprotective effects the protein provides upon gamma irradiation. We see that PprI significantly increases the survival rate, antioxidant viability, and DNA-repair capacity in irradiated cells and decreases concomitant apoptosis rates and counts of damage-indicative γH2AX foci. Furthermore, we find that PprI reduces mortality and enhances bone marrow cell clone formation and white blood cell and platelet counts in irradiated mice. PprI also seems to alleviate pathological injuries to multiple organs and improve antioxidant viability in some tissues. Our results thus suggest that PprI has crucial radioprotective effects on irradiated human and mouse cells. PMID:27222438

  7. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins

    Directory of Open Access Journals (Sweden)

    Yagut Allahverdiyeva

    2015-03-01

    Full Text Available Flavodiiron proteins (FDPs, also called flavoproteins, Flvs are modular enzymes widely present in Bacteria and Archaea. The evolution of cyanobacteria and oxygenic photosynthesis occurred in concert with the modulation of typical bacterial FDPs. Present cyanobacterial FDPs are composed of three domains, the β-lactamase-like, flavodoxin-like and flavin-reductase like domains. Cyanobacterial FDPs function as hetero- and homodimers and are involved in the regulation of photosynthetic electron transport. Whilst Flv2 and Flv4 proteins are limited to specific cyanobacterial species (β-cyanobacteria and function in photoprotection of Photosystem II, Flv1 and Flv3 proteins, functioning in the “Mehler-like” reaction and safeguarding Photosystem I under fluctuating light conditions, occur in nearly all cyanobacteria and additionally in green algae, mosses and lycophytes. Filamentous cyanobacteria have additional FDPs in heterocyst cells, ensuring a microaerobic environment for the function of the nitrogenase enzyme under the light. Here, the evolution, occurrence and functional mechanisms of various FDPs in oxygenic photosynthetic organisms are discussed.

  8. A cellular system that degrades misfolded proteins and protects against neurodegeneration.

    Science.gov (United States)

    Guo, Lili; Giasson, Benoit I; Glavis-Bloom, Alex; Brewer, Michael D; Shorter, James; Gitler, Aaron D; Yang, Xiaolu

    2014-07-01

    Misfolded proteins compromise cellular function and cause disease. How these proteins are detected and degraded is not well understood. Here we show that PML/TRIM19 and the SUMO-dependent ubiquitin ligase RNF4 act together to promote the degradation of misfolded proteins in the mammalian cell nucleus. PML selectively interacts with misfolded proteins through distinct substrate recognition sites and conjugates these proteins with the small ubiquitin-like modifiers (SUMOs) through its SUMO ligase activity. SUMOylated misfolded proteins are then recognized and ubiquitinated by RNF4 and are subsequently targeted for proteasomal degradation. We further show that PML deficiency exacerbates polyglutamine (polyQ) disease in a mouse model of spinocerebellar ataxia 1 (SCA1). These findings reveal a mammalian system that removes misfolded proteins through sequential SUMOylation and ubiquitination and define its role in protection against protein-misfolding diseases. PMID:24882209

  9. Antioxidant and cardio protective effect of palm oil leaves extract (standardized ethanolic fraction) in rats' model of saturated fats induced metabolic disorders.

    Science.gov (United States)

    Ibraheem, Zaid O; Satar, Munnavar; Abdullah, Nor A; Rathore, Hassaan; Tan, Young Chia; Uldin, Faiz; Basri, Rusliza; Abdullah, Mohammad H; John, Edward

    2014-01-01

    Recently, it is suggested to use POLE (palm oil leaf extract) as a nutraceutical health product in food industry due to its newly discovered content of polyphenols and antioxidant vitamins. In the experiment, the antioxidant and anti-lipid-peroxidation activities of the extract were confirmed using; DPPH (1-diphenyl-2-picryl-hydrazil) radical scavenging activity, ferric ion induced lipid peroxidation inhibition, reducing power and hydrogen peroxide scavenging activity assays. The cardio-protective activity was studied in vivo using a model of metabolic syndrome induced by high fat diet. Lipid profile, obesity indices, renal tubular handling of water and electrolytes, blood pressure and arterial stiffness were measured at the end of the treatment period. Sprague Dawley rats weighing 150-200 g were divided into six groups, viz; group C; was treated as a negative control and fed with standard rodents chow, group H; was treated as a positive control and fed with an experimental diet enriched with saturated free fatty acids for 8 weeks, groups HP0.5, HP1 and HP2 which were fed with 0.5,1 and 2 g/kg (body weight) /day of POLE orally during the last 24 days of the high fat diet feeding period and group P; fed with highest dose of POLE. Results revealed that POLE possesses a cardio-protective effect which is ascribed to its content of polyphenols. PMID:24374430

  10. The extraction of different proteins in selenium enriched peanuts and their antioxidant properties.

    Science.gov (United States)

    Zhao, P; Wang, Y; Zhang, Y; Guo, T; Zhang, Z; Zhang, W J; Zhang, X G; Ashraf, Muhammad Aqeel

    2016-05-01

    In this study, the selenium enriched peanuts and the different solubility proteins extracted from them were investigated. The dried defatted selenium enriched peanuts (SeP) powder (0.3147 μg/g) had a 2.5-fold higher mean total selenium concentration than general peanuts (GP) power (0.1233 μg/g). The SeP had higher concentration of selenium, manganese and zinc than that of GP, but less calcium. The rate of extraction of protein was 23.39% for peanuts and alkali soluble protein was the main component of protein in SeP, which accounted for 92.82% of total soluble protein and combined selenium was 77.33% of total selenium protein. In different forms of proteins from SeP, the WSePr due to higher concentration of selenium had higher DPPH free-radical scavenging activity, higher reducing activity and longer induction time than other proteins. PMID:27081360

  11. Antioxidative defense

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals occur constantly during metabolism and take part in numerous physiological processes, such as: intra-cellular and inter-cellular signalization, gene expression, removal of damaged or senescent cells, and control of the tone of blood vessels. However, there is an increased quantity of free radicals in situations of so-called oxidative stress, when they cause serious damage to cellular membranes (peroxidation of their lipids, damage of membrane proteins, and similar, to interior cellular protein molecules, as well as DNA molecules and carbohydrates. This is precisely why the organism has developed numerous mechanisms for removing free radicals and/or preventing their production. Some of these are enzyme-related and include superoxide-dismutase, catalase, glutathione-peroxidase, and others. Other, non-enzyme mechanisms, imply antioxidative activities of vitamins E and C, provitamin A, coenzyme Q, reduced glutation, and others. Since free radicals can leave the cell that has produced them and become dispersed throughout the body, in addition to antioxidative defense that functions within cellular structures, antioxidant extra-cellular defense has also been developed. This is comprised by: transferrin, lactoferrin, haptoglobin, hemopexin, ceruloplasmin, albumins, extra-cellular isoform SOD, extracellular glutathione-peroxidase, glucose, bilirubin, urates, and many other molecules.

  12. Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice.

    Science.gov (United States)

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2016-11-01

    The objective of this study was to evaluate different antioxidants for anthocyanin (ACY) retention in vitamin C fortified cranberry juice and assess its quality. Cranberry juice was fortified with 40-80mg/100mL vitamin C and added hesperidin, catechin, and gallic acid at different concentrations. Juice was pasteurized at 85°C for 1min and stored at 23°C for 16days. ACYs, vitamin C, color intensity, and browning index (BI) were evaluated at 2-day intervals. Gallic acid was found to be the most effective antioxidant against ACYs degradation and significantly (pjuice was significantly lower (0.80 vs 1.00) than the control juice. The outcome of this research provided a potential solution of using gallic acid to preserve a health-beneficial component (ACYs), and endogenous red color in cranberry juice. PMID:27211666

  13. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues.

    Science.gov (United States)

    Hibbert, Sarah A; Watson, Rachel E B; Gibbs, Neil K; Costello, Patrick; Baldock, Clair; Weiss, Anthony S; Griffiths, Christopher E M; Sherratt, Michael J

    2015-08-01

    Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr) content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm(2)) of solar UVR (95% UVA, 5% UVB). We show that: i) purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins) are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR exposure

  14. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues

    Directory of Open Access Journals (Sweden)

    Sarah A. Hibbert

    2015-08-01

    Full Text Available Excessive ultraviolet radiation (UVR exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths here we hypothesised that UV chromophore (Cys, Trp and Tyr content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm2 of solar UVR (95% UVA, 5% UVB. We show that: i purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR-induced aggregation and/or decomposition and ii exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR

  15. The protective effect of antioxidants on orbital fibroblasts from patients with Graves’ ophthalmopathy in response to oxidative stress

    OpenAIRE

    Tsai, Chieh-Chih; Wu, Shi-Bei; Kao, Shu-Ching; Kau, Hui-Chuan; Lee, Fenq-Lih; Wei, Yau-Huei

    2013-01-01

    Purpose: To investigate the biphasic effects of hydrogen peroxide (H2O2) on the orbital fibroblasts of patients with Graves’ ophthalmopathy (GO) and the relation to antioxidants and proinflammatory cytokines. Methods Proliferation of cultured orbital fibroblasts from patients with GO and normal controls was evaluated in response to various concentrations of H2O2. The effect of low concentrations of H2O2 (6.25 μM) on the cellular proliferation and induction of intracellular proinflammatory cyt...

  16. Protective Effects of B Vitamins and Antioxidants on the Risk of Arsenic-Related Skin Lesions in Bangladesh

    OpenAIRE

    Lydia B Zablotska; Chen, Yu; Graziano, Joseph H.; Parvez, Faruque; van Geen, Alexander; Howe, Geoffrey R.; Ahsan, Habibul

    2008-01-01

    Background An estimated 25–40 million of the 127 million people of Bangladesh have been exposed to high levels of naturally occurring arsenic from drinking groundwater. The mitigating effects of diet on arsenic-related premalignant skin lesions are largely unknown. Objectives The purpose of this study was to clarify the effects of the vitamin B group (thiamin, riboflavin, niacin, pyridoxine, and cobalamin) and antioxidants (vitamins A, C, and E) on arsenic-related skin lesions. Methods We per...

  17. Perturbations in the antioxidant metabolism during Newcastle disease virus (NDV) infection in chicken. Protective role of vitamin E

    Science.gov (United States)

    Subbaiah, Kadiam C. Venkata; Raniprameela, D.; Visweswari, Gopalareddygari; Rajendra, Wudayagiri; Lokanatha, Valluru

    2011-12-01

    The aim of the present study was to investigate the effect of vitamin E on pro/anti-oxidant status in the liver, brain and heart of Newcastle disease virus (NDV) infected chickens. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione- S-transferase (GST) and the levels of reduced glutathione and malonaldehyde were estimated in selected tissues of uninfected, NDV-infected and NDV + vit. E-treated chickens. A significant increase in MDA levels in brain and liver ( p chickens when compared to controls. The activities of SOD, CAT, GPx, GR, GST and levels of GSH were significantly ( p chickens over controls. On the other hand, a significant decreased MDA levels and enhanced antioxidant enzyme activity levels were observed in NDV + vit. E-treated animals compared to NDV-infected chickens. Histopathological studies revealed that liver of NDV infected chicken shows focal coagulation and infiltration of hepatocytes, whereas neuronal necrosis and degeneration of Purkinje cells were observed in brain and moderate infiltration of inflammatory cells was observed in heart. However such histological alterations were not observed in NDV + vit. E-treated animals. The results of the present study, thus demonstrated that antioxidant defense mechanism is impaired after the induction of NDV, suggesting its critical role in cellular injury in brain and liver. Further, the results also suggest that vitamin E treatment will ameliorate the antioxidant status in the infected animals. The findings could be beneficial to understand the role of oxidative stress in the pathogenesis of NDV and therapeutic interventions of antioxidants.

  18. Further Studies on Antioxidant Potential and Protection of Pancreatic β-Cells by Embelia ribes in Experimental Diabetes

    OpenAIRE

    Uma Bhandari; Neeti Jain; Pillai, K. K.

    2007-01-01

    This study was designed to examine the antioxidant defense by ethanolic extract of Embelia ribes on streptozotocin-(40 mg/kg, intravenously, single-injection) induced diabetes in Wistar rats. Forty days of oral feeding the extract (100 mg/kg and 200 mg/kg) to diabetic rats resulted in significant (P < .01) decrease in blood glucose, blood glycosylated haemoglobin, serum lactate dehydrogenase, creatine kinase, and increase in blood glutathione levels as compared to pathogenic diabetic rats. Fu...

  19. Antioxidative protection of dietary rosehips and polyphenol active lactobacilli in mice subjected to intestinal oxidative stress by ischemia-reperfusion

    OpenAIRE

    Jakesevic, Maja; Håkansson, Åsa; Adawi, Diya; Jeppsson, Bengt; Rumpunen, Kimmo; Ekholm, Anders; Ahrné, Siv; Molin, Göran

    2011-01-01

    Background and aim: Ischemia-reperfusion (I/R) in the intestines activates leukocytes and reactive oxygen species (ROS) and leads to lipid peroxidation and DNA damage. Rosehips have a high content of polyphenols and might prevent lipid peroxidation. Some Lactobacillus species are capable of degrading polyphenols to simpler and non-toxic constituents, sometimes with enhanced antioxidative capacity. Methods: A mixture of eight polyphenol active Lactobacillus strains (LAB) were administered in f...

  20. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain.

    Science.gov (United States)

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2015-08-01

    Spirulina is a widely used health supplement and is a dietary source of C-Phycocyanin (CPC), a potent anti-oxidant. We have previously reported the neurotoxic potential of tributyltin chloride (TBTC), an environmental pollutant and potent biocide. In this study, we have evaluated the protective efficacy of CPC against TBTC induced neurotoxicity. To evaluate the extent of neuroprotection offered by CPC, its efficacy was compared with the degree of protection offered by N-acetylcysteine (NAC) (a well known neuroprotective drug, taken as a positive control). Male Wistar rats (28 day old) were administered with 20mg/kg TBTC (oral) and 50mg/kg CPC or 50mg/kg NAC (i.p.), alone or in combination, and various parameters were evaluated. These include blood-brain barrier (BBB) damage; redox parameters (ROS, GSH, redox pathway associated enzymes, oxidative stress markers); inflammatory, cellular, and stress markers; apoptotic proteins and in situ cell death assay (TUNEL). We observed increased CPC availability in cortical tissue following its administration. Although BBB associated proteins like claudin-5, p-glycoprotein and ZO-1 were restored, CPC/NAC failed to protect against TBTC induced overall BBB permeability (Evans blue extravasation). Both CPC and NAC remarkably reduced oxidative stress and inflammation. NAC effectively modulated redox pathway associated enzymes whereas CPC countered ROS levels efficiently. Interestingly, CPC and NAC were equivalently capable of reducing apoptotic markers, astroglial activation and cell death. This study illustrates the various pathways involved in CPC mediated neuroprotection against this environmental neurotoxicant and highlights its capability to modulate glial cell activity. PMID:26079211

  1. Antioxidant Properties of Berberis aetnensis C. Presl (Berberidaceae Roots Extract and Protective Effects on Astroglial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Agata Campisi

    2014-01-01

    Full Text Available Berberis aetnensis C. Presl (Berberidaceae is a bushy-spiny shrub common on Mount Etna (Sicily. We demonstrated that the alkaloid extract of roots of B. aetnensis C. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties of B. aetnensis C. Presl collected in Sicily. Air-dried, powdered roots of B. aetnensis C. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract of B. aetnensis C. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots of B. aetnensis C. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress.

  2. Protective effects of L-arginine on pulmonary oxidative stress and antioxidant defenses during exhaustive exercise in rats

    Institute of Scientific and Technical Information of China (English)

    Wan-teng LIN; Suh-ching YANG; Kung-tung CHEN; Chi-chang HUANG; Ning-yuean LEE

    2005-01-01

    Aim: To assess the effects of L-arginine (L-Arg) supplementation on pulmonary oxidative stress and antioxidant defenses in rats after exhaustive exercise. Methods:Rats were randomly divided into four groups: sedentary control (SC), sedentary control with L-Arg treatment (SC+Arg), exhaustive exercise with control diet (E)and exhaustive exercise with L-Arg treatment (E+Arg). Rats in groups SC+Arg and E+Arg received a 2% L-Arg diet. Rats in groups E and E+Arg underwent an exhaustive running test on a motorized treadmill. Pulmonary oxidative stress indices [xanthine oxidase (XO), myeloperoxidase (MPO), and malondialdehyde (MDA)] and antioxidant defense systems [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione (GSH)] were investigated in this study. Results: L-Arg supplementation significantly reduced exercise-induced elevations of XO and MPO activities in lung. LArg reversed the exercise-induced increase in SOD and GR activities, but increased CAT and GPX activities. L-Arg administration also significantly increased the GSH levels in plasma. Conclusion: L-Arg supplementation can prevent elevations of XO and MPO activities in the lung and favorably influence pulmonary antioxidant defense systems after exhaustive exercise.

  3. Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels.

    Science.gov (United States)

    Hansen, B H; Rømma, S; Garmo, Ø A; Olsvik, P A; Andersen, R A

    2006-07-01

    Three populations of brown trout (Salmo trutta) exposed to different metal levels in their natural environments, were studied with respect to antioxidants metallothionein (MT), superoxide dismutase (SOD) and catalase (CAT) as well as for corresponding mRNA levels. In addition, mRNA levels were studied for glutathione peroxidase (GPx) and glutathione reductase (GR). The Cd/Zn-exposed trout (Naustebekken River) had higher accumulated levels of Cd, Cu and Zn in gills, and higher levels of MT (both protein and mRNA) in liver and kidney as well as in gills compared to the Cu-exposed trout (Rugla River) and trout from an uncontaminated reference river (Stribekken River). Less MT found in the Cu-exposed trout may increase susceptibility to oxidative stress, but no higher levels of antioxidant mRNAs were found in gills of these trouts. The data indicated that chronic exposures of brown trout to Cd, Zn and/or Cu did not involve maintenance of high activities of SOD and CAT enzymes in gills, although SOD mRNA levels were higher in the Cd/Zn-exposed trout. In livers, mRNA levels of SOD, CAT and GPx were higher in the metal-exposed trout, but in the case of GR this was only seen in kidneys of Cd/Zn-exposed trout. However, both metal-exposed groups had higher activities of SOD enzyme in liver compared to the unexposed reference trout, and CAT activity was found to be higher in kidneys of Cu-exposed trout. The Cu-exposed trout did not seem to rely on MT production to avoid Cu toxicity in gills, but rather by keeping the Cu uptake at a low level. A coordinated expression of different stress genes may also be important in chronic metal exposure. It may be concluded that the observed metal effects relies on acclimation rather than on genetic adaptation in the metal exposed populations. PMID:16616685

  4. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation

    OpenAIRE

    Celi, Pietro; Gabai, Gianfranco

    2015-01-01

    This review examines the role that oxidative stress (OS), and protein oxidation in particular, plays in nutrition, metabolism, and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functi...

  5. Invasive SIlver Carp (Hypophthalmichthys molitrix) Protein Hydrolysates- A Potential Source of Natural Antioxidant

    OpenAIRE

    Malaypally, Sravanthi Priya

    2013-01-01

    Invasive silver carp (Hypophthalmichthys molitrix), continue to spread over the Mississippi River causing a great concern for the river ecosystem due to their impact on native fish species. To minimize the negative effects of silver carp, many strategies were implemented including using it for animal feed, as fertilizers or simply discarding them into waste. However, these fish are high in protein content, making them excellent starting material for protein-derived by-products. One alternativ...

  6. Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats.

    Science.gov (United States)

    Yogalakshmi, Baskaran; Viswanathan, Periyasamy; Anuradha, Carani Venkatraman

    2010-02-01

    The present study investigated the preventive effect of eugenol, a naturally occurring food flavouring agent on thioacetamide (TA)-induced hepatic injury in rats. Adult male Wistar rats of body weight 150-180 g were used for the study. Eugenol (10.7 mg/kg b.w./day) was administered to rats by oral intubation for 15 days. TA was administered (300 mg/kg b.w., i.p.) for the last 2 days at 24h interval and the rats were sacrificed on the 16th day. Markers of liver injury (aspartate transaminase, alanine transaminase, alkaline phosphatase, gamma-glutamyl transferase and bilirubin), inflammation (myeloperoxidase, tumor necrosis factor-alpha and interleukin-6), oxidative stress (lipid peroxidation indices, protein carbonyl and antioxidant status) and cytochrome P4502E1 activity were assessed. Expression of cyclooxygenase-2 (COX-2) and the extent of DNA damage were analyzed using immunoblotting and comet assay, respectively. Liver injury and collagen accumulation were assessed using histological studies by hematoxylin and eosin and Masson trichrome staining. Rats exposed to TA alone showed increased activities of hepatocellular enzymes in plasma, lipid peroxidation indices, inflammatory markers and pro-inflammatory cytokines and decreased antioxidant status in circulation and liver. Hepatic injury and necrosis were also evidenced by histology. Eugenol pretreatment prevented liver injury by decreasing CYP2E1 activity, lipid peroxidation indices, protein oxidation and inflammatory markers and by improving the antioxidant status. Single-cell gel electrophoresis revealed that eugenol pretreatment prevented DNA strand break induced by TA. Increased expression of COX-2 gene induced by TA was also abolished by eugenol. These findings suggest that eugenol curtails the toxic effects of TA in liver. PMID:20036707

  7. A Phospholipid-Protein Complex from Krill with Antioxidative and Immunomodulating Properties Reduced Plasma Triacylglycerol and Hepatic Lipogenesis in Rats.

    Science.gov (United States)

    Ramsvik, Marie S; Bjørndal, Bodil; Bruheim, Inge; Bohov, Pavol; Berge, Rolf K

    2015-07-01

    Dietary intake of marine omega-3 polyunsaturated fatty acids (n-3 PUFAs) can change the plasma profile from atherogenic to cardioprotective. In addition, there is growing evidence that proteins of marine origin may have health benefits. We investigated a phospholipid-protein complex (PPC) from krill that is hypothesized to influence lipid metabolism, inflammation, and redox status. Male Wistar rats were fed a control diet (2% soy oil, 8% lard, 20% casein), or diets where corresponding amounts of casein and lard were replaced with PPC at 3%, 6%, or 11% (wt %), for four weeks. Dietary supplementation with PPC resulted in significantly lower levels of plasma triacylglycerols in the 11% PPC-fed group, probably due to reduced hepatic lipogenesis. Plasma cholesterol levels were also reduced at the highest dose of PPC. In addition, the plasma and liver content of n-3 PUFAs increased while n-6 PUFAs decreased. This was associated with increased total antioxidant capacity in plasma and increased liver gene expression of mitochondrial superoxide dismutase (Sod2). Finally, a reduced plasma level of the inflammatory mediator interleukin-2 (IL-2) was detected in the PPC-fed animals. The present data show that PPC has lipid-lowering effects in rats, and may modulate risk factors related to cardiovascular disease progression. PMID:26193284

  8. Colonization of epidermal tissue by Staphylococcus aureus produces localized hypoxia and stimulates secretion of antioxidant and caspase-14 proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lone , Abdul G.; Atci, Erhan; Renslow, Ryan S.; Beyenal, Haluk; Noh, S.; Fransson, B.; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R.; Call, Douglas R.

    2015-08-31

    A partial-thickness epidermal explant model was colonized with GFP-expressing S. aureus and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. Oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using MSE mass spectrometry. We found that S. aureus biofilm grows predominantly in sebum-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2-3 fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after four days of culture. The colonized explants released significantly (P< 0.01) more anti-oxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentration found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in media from infected explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface.

  9. Effect of urdbean leaf crinkle virus infection on total soluble protein and antioxidant enzymes in blackgram plants

    International Nuclear Information System (INIS)

    Urdbean leaf crinkle virus (ULCV) is a common, wide spread, destructive and economically important disease causing systemic infection in blackgram (Vigna mungo (L.) Hepper), resulting in extreme crinkling, curling, puckering and rugosity of leaves, and yield reductions. Effect of viral infection was investigated on total soluble proteins and antioxidant enzymes activity in two genotypes viz., Mash-88-susceptible and CM-2002-resistant, at different growth stages under both the inoculated and un-inoculated conditions. ULCV infection resulted in significant increase in total soluble protein contents of the leaves in both genotypes. In healthy plant, super oxide dismutase (SOD), catalase (CAT) and peroxidase (PO) showed similar activity levels. In inoculated plants of Mash-88, SOD and PO activities decreased and increased non-significantly at all growth stages, respectively. The activities of PO and SOD increased and decreased significantly after 15 and 30 days of inoculation in resistant genotype, respectively. No significant changes in catalase (CAT) activity were detected in ULCV-infected leaves over the control. It was concluded that the super oxide dismutase and peroxidases might be associated with resistance/susceptibility to ULCV infection. (author)

  10. A Phospholipid-Protein Complex from Krill with Antioxidative and Immunomodulating Properties Reduced Plasma Triacylglycerol and Hepatic Lipogenesis in Rats

    Directory of Open Access Journals (Sweden)

    Marie S. Ramsvik

    2015-07-01

    Full Text Available Dietary intake of marine omega-3 polyunsaturated fatty acids (n-3 PUFAs can change the plasma profile from atherogenic to cardioprotective. In addition, there is growing evidence that proteins of marine origin may have health benefits. We investigated a phospholipid-protein complex (PPC from krill that is hypothesized to influence lipid metabolism, inflammation, and redox status. Male Wistar rats were fed a control diet (2% soy oil, 8% lard, 20% casein, or diets where corresponding amounts of casein and lard were replaced with PPC at 3%, 6%, or 11% (wt %, for four weeks. Dietary supplementation with PPC resulted in significantly lower levels of plasma triacylglycerols in the 11% PPC-fed group, probably due to reduced hepatic lipogenesis. Plasma cholesterol levels were also reduced at the highest dose of PPC. In addition, the plasma and liver content of n-3 PUFAs increased while n-6 PUFAs decreased. This was associated with increased total antioxidant capacity in plasma and increased liver gene expression of mitochondrial superoxide dismutase (Sod2. Finally, a reduced plasma level of the inflammatory mediator interleukin-2 (IL-2 was detected in the PPC-fed animals. The present data show that PPC has lipid-lowering effects in rats, and may modulate risk factors related to cardiovascular disease progression.

  11. Functions that protect Escherichia coli from DNA-protein crosslinks.

    Science.gov (United States)

    Krasich, Rachel; Wu, Sunny Yang; Kuo, H Kenny; Kreuzer, Kenneth N

    2015-04-01

    Pathways for tolerating and repairing DNA-protein crosslinks (DPCs) are poorly defined. We used transposon mutagenesis and candidate gene approaches to identify DPC-hypersensitive Escherichia coli mutants. DPCs were induced by azacytidine (aza-C) treatment in cells overexpressing cytosine methyltransferase; hypersensitivity was verified to depend on methyltransferase expression. We isolated hypersensitive mutants that were uncovered in previous studies (recA, recBC, recG, and uvrD), hypersensitive mutants that apparently activate phage Mu Gam expression, and novel hypersensitive mutants in genes involved in DNA metabolism, cell division, and tRNA modification (dinG, ftsK, xerD, dnaJ, hflC, miaA, mnmE, mnmG, and ssrA). Inactivation of SbcCD, which can cleave DNA at protein-DNA complexes, did not cause hypersensitivity. We previously showed that tmRNA pathway defects cause aza-C hypersensitivity, implying that DPCs block coupled transcription/translation complexes. Here, we show that mutants in tRNA modification functions miaA, mnmE and mnmG cause defects in aza-C-induced tmRNA tagging, explaining their hypersensitivity. In order for tmRNA to access a stalled ribosome, the mRNA must be cleaved or released from RNA polymerase. Mutational inactivation of functions involved in mRNA processing and RNA polymerase elongation/release (RNase II, RNaseD, RNase PH, RNase LS, Rep, HepA, GreA, GreB) did not cause aza-C hypersensitivity; the mechanism of tmRNA access remains unclear. PMID:25731940

  12. Identification of differentially regulated antioxidant proteins by redox proteomics in irradiated mouse liver

    International Nuclear Information System (INIS)

    Since radiation treatment has been reappraised in the treatment of hepatic tumors, radiation response in liver is emerging as a new interesting area of investigation. The main issue is how to minimize radiation-induced hepatotoxicity. In this study, identification of the repertoire of the proteins was analyzed by a proteomics approach regarding cellular responses of liver tissue to ionizing radiation. C3H/HeJ mice were given 10 Gy radiation and liver tissues were analyzed by 2-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). At least twenty-eight proteins showed significant alteration following radiation. The increased proteins include cytochrome c, glutathione S transferase pi (GSTP), NADH dehydrogenase and peroxiredoxin VI (Prx VI), whereas the proteins such as peroxisomal bifunctional enzyme, phosphatidylethanolamin and ras relative protein decreased after radiation treatment. Mainly GSTP and Prx VI including thiol group seem to be implicated into radiation response in liver. Further study is warranted to elucidate their role in radiation-induced hepatotoxicity

  13. The Protective Function of Human C-reactive Protein in Mouse Models of Streptococcus pneumoniae Infection

    OpenAIRE

    Agrawal, Alok; Suresh, Madathilparambil V.; Singh, Sanjay K.; Ferguson, Donald A.

    2008-01-01

    Human C-reactive protein (CRP), injected intravenously into mice or produced inside mice by a human transgene, protects mice from death following administration of lethal numbers of Streptococcus pneumoniae. The protective effect of CRP is due to reduction in the concentration of bacteria in the blood. The exact mechanism of CRP-dependent killing of pneumococci and the partners of CRP in this process are yet to be defined. The current efforts to determine the mechanism of action of CRP in mic...

  14. Cross-Protection against Challenge with Puumala Virus after Immunization with Nucleocapsid Proteins from Different Hantaviruses

    OpenAIRE

    de Carvalho Nicacio, Cristina; Gonzalez Della Valle, Marcelo; Padula, Paula; Björling, Ewa; Plyusnin, Alexander; Lundkvist, Åke

    2002-01-01

    Hantaviruses are rodent-borne agents that cause hemorrhagic fever with renal syndrome or hantavirus pulmonary syndrome in humans. The nucleocapsid protein (N) is relatively conserved among hantaviruses and highly immunogenic in both laboratory animals and humans, and it has been shown to induce efficient protective immunity in animal models. To investigate the ability of recombinant N (rN) from different hantaviruses to elicit cross-protection, we immunized bank voles with rN from Puumala (PU...

  15. Heat protective role and mechanism of heat shock protein Hpc60

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A cytosolic heat shock protein named Hpc60 has been purified by immunoaffinity chromatography from pea leaves and its function has been examined in vitro. Results show that Hpc60 may suppress the aggregation of luciferase (LUC), protect lactate dehydrogenase (LDH) and ascorbate peroxidase (APX) from thermal inactivation. It also shows that Mg2+, ATP and pH affect the protective function of Hpc60 in different manners.

  16. Free radicals, oxidative stress and importance of antioxidants in human health

    Directory of Open Access Journals (Sweden)

    K.I. Priyadarsini

    2011-07-01

    Full Text Available Reactive oxygen species (ROS is a collective term used for oxygen containing free radicals, depending on their reactivity and oxidizing ability. ROS participate in a variety of chemical reactions with biomolecules leading to a pathological condition known as oxidative stress. Antioxidants are employed to protect biomolecules from the damaging effects of such ROS. In the beginning, antioxidant research was mainly aimed at understanding free radical reactions of ROS with antioxidants employing biochemical assays and kinetic methods. Later on, studies began to be directed to monitor the ability of anti-oxidants to modulate cellular signaling proteins like receptors, secondary messengers, transcription factors, etc. Of late several studies have indicated that antioxidants can also have deleterious effects on human health depending on dosage and bio-availability. It is therefore, necessary to validate the utility of antioxidants in improvement of human health in order to take full advantage of their therapeutic potential.

  17. Influence of adjuvants on protection induced by a recombinant fusion protein against malarial infection.

    OpenAIRE

    Daly, T M; Long, C A

    1996-01-01

    Previously, we described a protective immune response induced by the carboxyl-terminal region of the merozoite surface protein-1 (MSP-1) from the rodent malarial parasite Plasmodium yoelii yoelii 17XL, expressed as a fusion protein and designated glutathione S-transferase (GST)-PYC2. We also demonstrated that the humoral response induced by GST-PYC2 was the primary mechanism by which immunized animals controlled their blood-stage infections. We have now examined the influence of several adjuv...

  18. Immunization with Polyamine Transport Protein PotD Protects Mice against Systemic Infection with Streptococcus pneumoniae

    OpenAIRE

    Shah, P.; Swiatlo, E.

    2006-01-01

    The human pathogen Streptococcus pneumoniae contains genes for a putative polyamine ABC transporter which are organized in an operon and designated potABCD. Polyamine transport protein D (PotD) is an extracellular protein which binds polyamines and possibly other structurally related molecules. PotD has been shown to contribute to virulence in both a murine sepsis model and a pneumonia model with capsular type 3 pneumococci. The protective efficacy of recombinant PotD was evaluated by active ...

  19. Lipid Peroxidative Damage on Cisplatin Exposure and Alterations in Antioxidant Defense System in Rat Kidneys: A Possible Protective Effect of Selenium

    Directory of Open Access Journals (Sweden)

    Branka I. Ognjanović

    2012-02-01

    Full Text Available Cisplatin (Cis-diamminedichloroplatinum II, CP is an important chemotherapeutic agent, useful in the treatment of several cancers, but with several side effects such as nephrotoxicity. The present study investigated the possible protective effect of selenium (Se against CP-induced oxidative stress in the rat kidneys. Male Wistar albino rats were injected with a single dose of cisplatin (7 mg CP/kg b.m., i.p. and selenium (6 mg Se/kg b.m, as Na2SeO3, i.p., alone or in combination. The obtained results showed that CP increased lipid peroxidation (LPO and decreased reduced glutathione (GSH concentrations, suggesting the CP-induced oxidative stress, while Se treatment reversed this change to control values. Acute intoxication of rats with CP was followed by statistically significant decreased activity of antioxidant defense enzymes: superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR and glutathione-S-transferase (GST. Treatment with Se reversed CP-induced alterations of antioxidant defense enzyme activities and significantly prevented the CP-induced kidney damage.

  20. Antioxidative protective effect of icariin on the FeSO4/H 2O 2-damaged human sperm based on confocal raman micro-spectroscopy.

    Science.gov (United States)

    Huang, Zhan-Sen; Xiao, Heng-Jun; Qi, Tao; Hu, Zhi-Ming; Li, Hao; Chen, Di-Ling; Xu, Ya-Lin; Chen, Jun

    2014-10-01

    Oxidative stress is implicated in male infertility and significantly higher reactive oxygen species are detected in 25% of infertile males. Although different agents of various alternative medicines, including traditional Chinese medicine, have been tried with varying success, evidence remains limited on whether and how much herbs or supplements might help increase the anti-oxidant ability of the sperm. This study examined the anti-oxidative effects of icariin, a flavonoid isolated from Herba Epimedii, on the human sperm. We prepared the FeSO4/H2O2-damaged human sperms, which were co-cultured with icariin in vitro, and then observed the changes of the sperm by employing Raman micro-spectroscopy. The results showed that Raman mapping with a 514 nm excitation laser allowed clear differentiation of the nucleus, neck, and, in particular, the mitochondria-rich middle piece of a human sperm cell. The effect of icariin on different organelles of the sperm was quantified by localized spectral Raman signatures obtained within milli-seconds, and icariin could keep the "Raman fingerprint" of the human sperm the same as the control groups, suggesting that icariin could protect the human sperm from being damaged by FeSO4/H2O2. Icariin may serve as a tonifying and replenishing agent of herbal origin for enhancing reproductive functions. PMID:25318889

  1. Protection of photosynthetic machinery by up-regulation of antioxidant enzymes in contrasting tomato genotypes under drought

    International Nuclear Information System (INIS)

    Current study was designed to evaluate the drought effect on some physiological and biochemical properties of tomato plants. Some native and exotic tomato genotypes were subjected to drought stress to investigate the effect on antioxidant enzymes and photosynthetic machinery. The tomato genotypes were exposed to different water regimes viz: 80, 60 and 40% of field capacity. Statistical analysis revealed significant interactions in some physiological parameters including transpiration rate (E), photosynthetic rate (A) and stomatal conductance (gs). Drought stress enhanced the above properties in tolerant varieties like 'L. pennellii', 'L. chilense', 'Lyallpur-1' and 'CLN1767' in contrast to rest of the water stress sensitive genotypes. Moreover, same type of significant elevations were also observed when antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) were caloremitrcially quantified in drought tolerant tomato varieties. Overall, it was found that some tomato genotypes maintained their degree of water stress tolerance during their growth but with varying mechanism of water stress tolerance. Moreover, the above mentioned physiological and biochemical characteristics can act as valuable markers for selection and breeding programs for development of drought tolerant tomato genotypes. (author)

  2. Protective effect of naringin on 3-nitropropionic acid-induced neurodegeneration through the modulation of matrix metalloproteinases and glial fibrillary acidic protein.

    Science.gov (United States)

    Gopinath, Kulasekaran; Sudhandiran, Ganapasam

    2016-01-01

    Naringin (4',5,7-trihydroxy-flavonone-7-rhamnoglucoside), a flavonone present in grapefruit, has recently been reported to protect against neurodegeration, induced with 3-nitropropionic acid (3-NP), through its antioxidant, anti-inflammatory, and antiapoptotic properties. This study used a rat model of 3-NP-induced neurodegeneration to investigate the neuroprotective effects of naringin exerted by modulating the expression of matrix metalloproteinases and glial fibrillary acidic protein. Neurodegeneration was induced with 3-NP (10 mg/kg body mass, by intraperitoneal injection) once a day for 2 weeks, and induced rats were treated with naringin (80 mg/kg body mass, by oral gavage, once a day for 2 weeks). Naringin ameliorated the motor abnormalities caused by 3-NP, and reduced blood-brain barrier dysfunction by decreasing the expression of matrix metalloproteinases 2 and 9, along with increasing the expression of the tissue inhibitors of metalloproteinases 1 and 2 in 3-NP-induced rats. Further, naringin reduced 3-NP-induced neuroinflammation by decreasing the expression of nuclear factor-kappa B and glial fibrillary acidic protein. Thus, naringin exerts protective effects against 3-NP-induced neurodegeneration by ameliorating the expressions of matrix metalloproteinases and glial fibrillary acidic protein. PMID:26544788

  3. Bioactive Profiles, Antioxidant Activities, Nitrite Scavenging Capacities and Protective Effects on H2O2-Injured PC12 Cells of Glycyrrhiza Glabra L. Leaf and Root Extracts

    Directory of Open Access Journals (Sweden)

    Yi Dong

    2014-06-01

    Full Text Available This study compared the total flavonoid content of Glycyrrhiza glabra L. leaf and root extracts. Results suggested that the total flavonoid content in the leaf extract was obviously higher than that in the root extract. Pinocembrin, the main compound in the leaf extract after purification by column chromatography, showed good antioxidant activity and nitrite scavenging capacity, but moderate inhibitory effect on mushroom tyrosinase. Liquiritin was the main compound in root extract and possessed strong inhibitory effect on mushroom tyrosinase. Both compounds exhibited significant protection effect on H2O2-injured PC12 cells at a low concentration. These results indicate that Glycyrrhiza glabra L. leaf is potential as an important raw material for functional food.

  4. Dietary Protection Against Free Radicals: A Case for Multiple Testing to Establish Structure-activity Relationships for Antioxidant Potential of Anthocyanic Plant Species

    Directory of Open Access Journals (Sweden)

    Chiara Cheng Lim

    2009-03-01

    Full Text Available DNA damage by reactive species is associated with susceptibility to chronic human degenerative disorders. Anthocyanins are naturally occurring antioxidants, that may prevent or reverse such damage. There is considerable interest in anthocyanic food plants as good dietary sources, with the potential for reducing susceptibility to chronic disease. While structure-activity relationships have provided guidelines on molecular structure in relation to free hydroxyl- radical scavenging, this may not cover the situation in food plants where the anthocyanins are part of a complex mixture, and may be part of complex structures, including anthocyanic vacuolar inclusions (AVIs. Additionally, new analytical methods have revealed new structures in previously-studied materials. We have compared the antioxidant activities of extracts from six anthocyanin-rich edible plants (red cabbage, red lettuce, blueberries, pansies, purple sweetpotato skin, purple sweetpotato flesh and Maori potato flesh using three chemical assays (DPPH, TRAP and ORAC, and the in vitro Comet assay. Extracts from the flowering plant, lisianthus, were used for comparison. The extracts showed differential effects in the chemical assays, suggesting that closely related structures have different affinities to scavenge different reactive species. Integration of anthocyanins to an AVI led to more sustained radical scavenging activity as compared with the free anthocyanin. All but the red lettuce extract could reduce endogenous DNA damage in HT-29 colon cancer cells. However, while extracts from purple sweetpotato skin and flesh, Maori potato and pansies, protected cells against subsequent challenge by hydrogen peroxide at 0oC, red cabbage extracts were pro-oxidant, while other extracts had no effect. When the peroxide challenge was at 37oC, all of the extracts appeared pro-oxidant. Maori potato extract, consistently the weakest antioxidant in all the chemical assays, was more effective in the

  5. Antitumor activity against murine lymphoma L5178Y model of proteins from cacao (Theobroma cacao L. seeds in relation with in vitro antioxidant activity

    Directory of Open Access Journals (Sweden)

    Lugo Eugenia

    2010-10-01

    Full Text Available Abstract Background Recently, proteins and peptides have become an added value to foodstuffs due to new knowledge about its structural analyses as related to antioxidant and anticancer activity. Our goal was to evaluate if protein fractions from cacao seeds show antitumor activity on lymphoma murine L5178Y model. The antioxidant activity of these fractions was also evaluated with the aim of finding a correlation with the antitumor activity. Methods Differential extraction of proteins from unfermented and semi-fermented-dry cacao seeds was performed and characterized by SDS-PAGE and FPLC size-exclusion chromatography. Antitumor activity was evaluated against murine lymphoma L5178Y in BALB/c mice (6 × 104 cells i.p., with a treatment oral dose of 25 mg/kg/day of each protein fraction, over a period of 15 days. Antioxidant activity was evaluated by the ABTS+ and ORAC-FL assays. Results Albumin, globulin and glutelin fractions from both cacao seed type were obtained by differential solubility extraction. Glutelins were the predominant fraction. In the albumin fraction, polypeptides of 42.3 and 8.5 kDa were found in native conditions, presumably in the form of two peptide chains of 21.5 kDa each one. The globulin fraction presented polypeptides of 86 and 57 kDa in unfermented cacao seed that produced the specific-cacao aroma precursors, and after fermentation the polypeptides were of 45 and 39 kDa. The glutelin fraction presented proteins >200 kDa and globulins components Conclusion This study is the first report on the biological activity of semifermented-dry cacao protein fractions with their identification, supporting the traditional use of the plant. The albumin fraction showed antitumor and free radical scavenging capacity, however both activities were not correlated. The protein fractions could be considered as source of potential antitumor peptides.

  6. Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolysates obtained with cardoon extract

    OpenAIRE

    Tavares, T. G.; Contreras, M. M.; Amorim, M; Martín-Álvarez, P. J.; Pintado, M. E.; Recio, I.; Malcata, F.X.

    2011-01-01

    The hydrolysis of bovine whey protein concentrate (WPC), a-lactalbumin (a-La) and caseinomacropeptide (CMP), by aqueous extracts of Cynara cardunculus, was optimized using response surface methodology. Degree of hydrolysis (DH), angiotensin-converting enzyme (ACE)-inhibitory activity and antioxidant activity were used as objective functions, and hydrolysis time and enzyme/substrate ratio as manipulated parameters. The model was statistically appropriate to describe ACE-inhibitory activi...

  7. Tpo1-mediated spermine and spermidine export controls cell cycle delay and times antioxidant protein expression during the oxidative stress response

    OpenAIRE

    Krüger, Antje; Vowinckel, Jakob; Mülleder, Michael; Grote, Phillip; Capuano, Floriana; Bluemlein, Katharina; Ralser, Markus

    2013-01-01

    Cells counteract oxidative stress by altering metabolism, cell cycle and gene expression. However, the mechanisms that coordinate these adaptations are only marginally understood. Here we provide evidence that timing of these responses in yeast requires export of the polyamines spermidine and spermine. We show that during hydrogen peroxide (H2O2) exposure, the polyamine transporter Tpo1 controls spermidine and spermine concentrations and mediates induction of antioxidant proteins, including H...

  8. Protection against yellow fever in monkeys by immunization with yellow fever virus nonstructural protein NS1.

    OpenAIRE

    Schlesinger, J J; Brandriss, M. W.; Cropp, C.B.; Monath, T. P.

    1986-01-01

    Immunization of monkeys with yellow fever virus-specified nonstructural protein NS1 resulted in protection against fatal hepatitis as well as marked reduction in the magnitude of viremia after subcutaneous challenge with yellow fever virus. The results may be relevant to the design of possible subunit or recombinant flavivirus vaccines.

  9. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.

    Science.gov (United States)

    Morgenthau, Ari; Partha, Sarathy K; Adamiak, Paul; Schryvers, Anthony B

    2014-10-01

    A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein's C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10. PMID:25038734

  10. RUMEN MICROBE ADAPTATION TO RED CLOVER POLYPHENOL OXIDASE PROTEIN AND LIPID PROTECTION

    Science.gov (United States)

    Introduction: Polyphenol oxidase (PPO) has been shown to reduce both proteolysis and lipolysis in incubated red clover (Lee et al. 2004). However it has not been determined whether rumen microbes can adapt to utilize PPO-protected protein and lipid. This study investigated whether rumen inoculum fro...

  11. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein

    DEFF Research Database (Denmark)

    Andersson, Anne-Marie Carola; Håkansson, Kjell Ove; Jensen, Benjamin Anderschou Holbech;

    2012-01-01

    e as presented in membranes. M2e-NSP4 was then evaluated side-by-side with synthetic M2e peptide for its immunogenicity and protective efficacy in a murine influenza challenge model. Here we demonstrate that M2e fused to the tetramerizing protein induces an accelerated, augmented and more broadly...

  12. Influence of Amino Acid Compositions and Peptide Profiles on Antioxidant Capacities of Two Protein Hydrolysates from Skipjack Tuna (Katsuwonus pelamis Dark Muscle

    Directory of Open Access Journals (Sweden)

    Chang-Feng Chi

    2015-04-01

    Full Text Available Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis dark muscle was investigated. Dark muscles from skipjack tuna were hydrolyzed using five separate proteases, including pepsin, trypsin, Neutrase, papain and Alcalase. Two hydrolysates, ATH and NTH, prepared using Alcalase and Neutrase, respectively, showed the strongest antioxidant capacities and were further fractionated using ultrafiltration and gel filtration chromatography. Two fractions, Fr.A3 and Fr.B2, isolated from ATH and NTH, respectively, showed strong radical scavenging activities toward 2,2-diphenyl-1-picrylhydrazyl radicals (EC50 1.08% ± 0.08% and 0.98% ± 0.07%, hydroxyl radicals (EC50 0.22% ± 0.03% and 0.48% ± 0.05%, and superoxide anion radicals (EC50 1.31% ± 0.11% and 1.56% ± 1.03% and effectively inhibited lipid peroxidation. Eighteen peptides from Fr.A3 and 13 peptides from Fr.B2 were isolated by reversed-phase high performance liquid chromatography, and their amino acid sequences were determined. The elevated antioxidant activity of Fr.A3 might be due to its high content of hydrophobic and aromatic amino acid residues (181.1 and 469.9 residues/1000 residues, respectively, small molecular sizes (3–6 peptides, low molecular weights (524.78 kDa, and amino acid sequences (antioxidant score 6.11. This study confirmed that a smaller molecular size, the presence of hydrophobic and aromatic amino acid residues, and the amino acid sequences were the key factors that determined the antioxidant activities of the proteins, hydrolysates and peptides. The results also demonstrated that the derived hydrolysates and fractions from skipjack tuna (K. pelamis dark muscles could prevent oxidative reactions and might be useful for food preservation and medicinal purposes.

  13. Antioxidative, DPP-IV and ACE inhibiting peptides from fish protein hydrolysed with intestinal proteases

    OpenAIRE

    Falkenberg, Susan Skanderup; Stagsted, Jan; Nielsen, Henrik Hauch

    2012-01-01

    Proteins from fish tissue could be a promising source of peptides with a nutritional and pharmaceutical value, e.g. as treatment of type 2 diabetes with dipeptidyl peptidase IV (DPP-IV) inhibiting peptides, and could be used in health and functional foods and thereby increasing the value of secondary marine products.The approach in this study is to hydrolyse skin and belly flap tissue from Salmon with the use of mammalian digestive proteases from pancreas and intestinal mucosa and test hydrol...

  14. Antioxidant and regulatory role of mitochondrial uncoupling protein UCP2 in pancreatic beta-cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Olejár, Tomáš; Smolková, Katarína; Ježek, Jan; Dlasková, Andrea; Plecitá-Hlavatá, Lydie; Zelenka, Jaroslav; Špaček, Tomáš; Engstová, Hana; Reguera Pajuelo, David; Jabůrek, Martin

    2014-01-01

    Roč. 63, Suppl.1 (2014), S73-S91. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GAP305/12/1247; GA ČR(CZ) GPP304/10/P204; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : mitochondria * uncoupling protein UCP2 * pancreatic beta-cells * reactive oxygen species * glucose-stimulated insulin secretion Subject RIV: EA - Cell Biology Impact factor: 1.293, year: 2014

  15. Alpha-helical protein networks are self-protective and flaw-tolerant.

    Science.gov (United States)

    Ackbarow, Theodor; Sen, Dipanjan; Thaulow, Christian; Buehler, Markus J

    2009-01-01

    Alpha-helix based protein networks as they appear in intermediate filaments in the cell's cytoskeleton and the nuclear membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without catastrophic failure while providing significant mechanical resistance. PMID:19547709

  16. Protecting role of cosolvents in protein denaturation by SDS: a structural study

    Directory of Open Access Journals (Sweden)

    Wouters Johan

    2008-06-01

    Full Text Available Abstract Background Recently, we reported a unique approach to preserve the activity of some proteins in the presence of the denaturing agent, Sodium Dodecyl Sulfate (SDS. This was made possible by addition of the amphipathic solvent 2,4-Methyl-2-PentaneDiol (MPD, used as protecting but also as refolding agent for these proteins. Although the persistence of the protein activity in the SDS/MPD mixture was clearly established, preservation of their structure was only speculative until now. Results In this paper, a detailed X-ray study addresses the pending question. Crystals of hen egg-white lysozyme were grown for the first time in the presence of MPD and denaturing concentrations of SDS. Depending on crystallization conditions, tetragonal crystals in complex with either SDS or MPD were collected. The conformation of both structures was very similar to the native lysozyme and the obtained complexes of SDS-lysozyme and MPD-lysozyme give some insights in the interplay of protein-SDS and protein-MPD interactions. Conclusion This study clearly established the preservation of the enzyme structure in a SDS/MPD mixture. It is hypothesized that high concentrations of MPD would change the properties of SDS and lower or avoid interactions between the denaturant and the protein. These structural data therefore support the hypothesis that MPD avoids disruption of the enzyme structure by SDS and can protect proteins from SDS denaturation.

  17. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    Science.gov (United States)

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and protein, ash, and dry matter contents (% wt/wt) in the different Fresco-style cheese wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value. PMID:26364114

  18. C4b-binding protein protects coagulation factor Va from inactivation by activated protein C

    NARCIS (Netherlands)

    van de Poel, RHL; Meijers, JCM; Rosing, J; Tans, G; Bouma, Bonno N.

    2000-01-01

    We investigated the effect of C4BP on APC-mediated inactivation of factor Va (FVa) in the absence and presence of protein S. FVa inactivation was biphasic (k(506) = 4.4 x 10(8) M-1 s(-1), k(306) = 2.7 x 10(7) M-1 s(-1)), and protein S accelerated Arg(306) cleavage approximately 10-fold. Preincubatio

  19. Use of antioxidants substances to protect the hydrocolloids carrageenan, agaran and alginates used in food industry when exposed to radiation

    International Nuclear Information System (INIS)

    Carrageenan, agaran e alginates are hydrocolloids largely employed in every kind of food products as stabilizing agent and viscosity builder. The human body does not absorb them, so they do not introduce extra calories in the diet. Irradiation is presented as an important alternative method in food preservation because do not induce temperature increase being of good efficiency in cold food ingredients decontamination. In this work aqueous solutions of carrageenan, agar e sodium alginate were gamma irradiated (0-10 kGy) in presence of ascorbic acid, roselle (Hibiscus sabdariffa L.) extract and soy isoflavone. Edible polysaccharide solutions showed to be suitable systems for the evaluation of ionizing radiation effects as they presented a singular radiosensitivity through viscosity changes. The results obtained showed that in general the antioxidants employed had a radioprotective action that can be of importance in the future commercial applications of food irradiation. (author)

  20. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism

    OpenAIRE

    Kaushal, Neeru; Gupta, Kriti; Bhandhari, Kalpna; Kumar, Sanjeev; Thakur, Prince; Nayyar, Harsh

    2011-01-01

    Chickpea is a heat sensitive crop hence its potential yield is considerably reduced under high temperatures exceeding 35 °C. In the present study, we evaluated the efficacy of proline in countering the damage caused by heat stress to growth and to enzymes of carbon and antioxidative metabolism in chickpea. The chickpea seeds were raised without (control) and with proline (10 μM) at temperatures of 30/25 °C, 35/30 °C, 40/35 °C and 45/40 °C as day/ night (12 h/12 h) in a growth chamber. The sho...