WorldWideScience

Sample records for antioxidant diferulic acids

  1. Intestinal release and uptake of phenolic antioxidant diferulic acids

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Kroon, P A; Williamson, G

    2001-01-01

    Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester-linked to......Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester...... system. Our results suggest that the phenolic antioxidant diferulic acids are bioavailable. Udgivelsesdato: 2001-Aug-1...

  2. Astaxanthin diferulate as a bifunctional antioxidant

    DEFF Research Database (Denmark)

    Papa, T.B.R.; Pinho, V.D.; Nascimento, E.P. do;

    2015-01-01

    Abstract Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(- 1)s(- 1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(- 1)s(- 1). The ferulate moiety in the astaxanthin diester is a better radical s....... The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability....

  3. Astaxanthin diferulate as a bifunctional antioxidant.

    Science.gov (United States)

    Papa, T B R; Pinho, V D; do Nascimento, E S P; Santos, W G; Burtoloso, A C B; Skibsted, L H; Cardoso, D R

    2015-01-01

    Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(-1)s(-1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(-1)s(-1). The ferulate moiety in the astaxanthin diester is a better radical scavenger than free ferulic acid as seen from the rate constant of scavenging of 1-hydroxyethyl radicals in ethanol at 25°C with a second-order rate constant of (1.68 ± 0.1) 10(8) L mol(-1)s(-1) compared with (1.60 ± 0.03) 10(7) L mol(-1)s(-1) for the astaxanthin:ferulic acid mixture, 1:2 equivalents. The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability.

  4. Osmotic Stress Suppresses Cell Wall Stiffening and the Increase in Cell Wall-Bound Ferulic and Diferulic Acids in Wheat Coleoptiles.

    Science.gov (United States)

    Wakabayashi, K.; Hoson, T.; Kamisaka, S.

    1997-01-01

    The relationship between the mechanical properties of cell walls and the levels of wall-bound ferulic (FA) and diferulic (DFA) acids was investigated in wheat (Triticum aestivum L.) coleoptiles grown under osmotic stress (60 mM polyethylene glycol [PEG] 4000) conditions. The cell walls of stressed coleoptiles remained extensible compared with those of the unstressed ones. The contents of wall-bound FA and DFA increased under unstressed conditions, but the increase was substantially reduced by osmotic stress. In response to PEG removal, these contents increased and reached almost the same levels as those of the unstressed coleoptiles. A close correlation was observed between the contents of FA and DFA and the mechanical properties of cell walls. The activities of phenylalanine ammonia-lyase and tyrosine ammonia-lyase increased rapidly under unstressed conditions. Osmotic stress substantially reduced the increases in enzyme activities. When PEG was removed, however, the enzyme activities increased rapidly. There was a close correlation between the FA levels and enzyme activities. These results suggest that in osmotically stressed wheat coleoptiles, reduced rates of increase in phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities suppress phenylpropanoid biosynthesis, resulting in the reduced level of wall-bound FA that, in turn, probably causes the reduced level of DFA and thereby maintains cell wall extensibility. PMID:12223657

  5. A novel feruloyl esterase from rumen microbial metagenome: Gene cloning and enzyme characterization in the release of mono- and diferulic acids

    Science.gov (United States)

    A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae4) was classified as a Type D feruloyl esterase based on its action on synthetic substrates and ability to release diferulates. The RuFae4 alone releas...

  6. Diferulate content of maize sheaths is associated with resistance to the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Santiago, Rogelio; Butrón, Ana; Reid, Lana M; Arnason, John T; Sandoya, German; Souto, Xose C; Malvar, Rosa A

    2006-11-29

    The leaf sheaths of selected inbred lines of maize (Zea mays L.) with variable levels of stem resistance to the Mediterranean corn borer Sesamia nonagrioides (Lefèvbre) were evaluated for antibiotic effect on insect development. Phytochemical analyses of leaf sheaths were conducted for cell wall phenylpropanoid content to gain a better understanding of maize-resistance mechanisms. Laboratory bioassays established that sheath tissues from different genotypes significantly affected the growth of neonate larvae. Three hydroxycinnamates, p-coumaric, trans-ferulic, and cis-ferulic acids, and three isomers of diferulic acid, 8-5', 8-O-4', and 8-5' b (benzofuran form), were identified. Significant negative correlations were found between larvae weight and diferulic acid content for six genotypes. These results are in agreement with previous studies concerning the role of cell wall structural components in stem borer resistance.

  7. Covalent cross-linking of cell-wall polysaccharides through esterified diferulates as a maize resistance mechanism against corn borers.

    Science.gov (United States)

    Barros-Rios, Jaime; Santiago, Rogelio; Jung, Hans-Joachim G; Malvar, Rosa A

    2015-03-04

    There is strong evidence to suggest that cross-linking of cell-wall polymers through ester-linked diferulates has a key role in plant resistance to pests; however, direct experimentation to provide conclusive proof is lacking. This study presents an evaluation of the damage caused by two corn borer species on six maize populations particularly selected for divergent diferulate concentrations in pith stem tissues. Maize populations selected for high total diferulate concentration had 31% higher diferulates than those selected for low diferulates. Stem tunneling by corn borer species was 29% greater in the population with the lowest diferulates than in the population with the highest diferulates (31.7 versus 22.6 cm), whereas total diferulate concentration was negatively correlated with stem tunneling by corn borers. Moreover, orthogonal contrasts between groups of populations evaluated showed that larvae fed in laboratory bioassays on pith stem tissues from maize populations with higher diferulates had 30-40% lower weight than larvae fed on the same tissues from maize populations with lower diferulates. This is the first report that shows a direct relationship between diferulate deposition in maize cell walls and corn borer resistance. Current findings will help to develop adapted maize varieties with an acceptable level of resistance against borers and be useful in special kinds of agriculture, such as organic farming.

  8. Uric acid and antioxidant effects of wine.

    Science.gov (United States)

    Boban, Mladen; Modun, Darko

    2010-02-01

    The aim of this article is to review the role of uric acid in the context of antioxidant effects of wine and its potential implication to human health. We described and discussed the mechanisms of increase in plasma antioxidant capacity after consumption of moderate amounts of wine. Because this effect is largely contributed by acute elevation in plasma uric acid, we paid special attention to wine constituents and metabolic processes that are likely to be involved in uric acid elevation.

  9. Uric Acid and Antioxidant Effects of Wine

    OpenAIRE

    Boban, Mladen; Modun, Darko

    2010-01-01

    The aim of this article is to review the role of uric acid in the context of antioxidant effects of wine and its potential implication to human health. We described and discussed the mechanisms of increase in plasma antioxidant capacity after consumption of moderate amounts of wine. Because this effect is largely contributed by acute elevation in plasma uric acid, we paid special attention to wine constituents and metabolic processes that are likely to be involved in uric acid elevation.

  10. Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview

    Directory of Open Access Journals (Sweden)

    José Teixeira

    2013-01-01

    Full Text Available Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure. The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants. The structure-property-activity relationships (SPARs correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs obtained so far.

  11. Amino acids as antioxidants for frying oil

    Science.gov (United States)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  12. Potential applications of ferulic acid from natural sources

    Directory of Open Access Journals (Sweden)

    Naresh Kumar

    2014-12-01

    Full Text Available Ferulic acid (FA, a ubiquitous natural phenolic phytochemical present in seeds, leaves, bothin its free form and covalently conjugated to the plant cell wall polysaccharides, glycoproteins,polyamines, lignin and hydroxy fatty acids. FA plays a vital role in providing the rigidity to the cell wall and formation of other important organic compounds like coniferyl alcohol, vanillin, sinapic, diferulic acid and curcumin. FA exhibits wide variety of biological activities such as antioxidant, antiinflammatory, antimicrobial, antiallergic, hepatoprotective, anticarcinogenic, antithrombotic, increase sperm viability, antiviral and vasodilatory actions, metal chelation, modulation of enzyme activity, activation of transcriptional factors, gene expression and signal transduction.

  13. Beneficial effects of antioxidative lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hisako Nakagawa

    2017-01-01

    Full Text Available Oxidative stress is caused by exposure to reactive oxygen intermediates. The oxidative damage of cell components such as proteins, lipids, and nucleic acids one of the important factors associated with diabetes mellitus, cancers and cardiovascular diseases. This occurs as a result of imbalance between the generations of oxygen derived radicals and the organism’s antioxidant potential. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. To date, many studies have focused on food sources, nutrients, and components that exert antioxidant activity in worms, flies, mice, and humans. Probiotics, live microorganisms that when administered in adequate amounts provide many beneficial effects on the human health, have been attracting growing interest for their health-promoting effects, and have often been administered in fermented milk products. In particular, lactic acid bacteria (LAB are known to conferre physiologic benefits. Many studies have indicated the antioxidative activity of LAB. Here we review that the effects of lactic acid bacteria to respond to oxidative stress, is connected to oxidative-stress related disease and aging.

  14. Composition of antioxidants and amino acids in Stevia leaf infusions.

    Science.gov (United States)

    Periche, Angela; Koutsidis, Georgios; Escriche, Isabel

    2014-03-01

    Stevia, a non-caloric natural sweetener with beneficial properties and considerable antioxidants and amino acids, is increasingly consumed as an infusion. This work evaluates the influence of the conditions (temperature: 50, 70 or 90 °C and time: 1, 5, 20 or 40 min) applied to obtain Stevia infusions, on antioxidants (total phenols, flavonoids and antioxidant activity) and amino acids. The total concentration of the eleven amino acids found was 11.70 mg/g in dried leaves and from 6.84 to 9.11 mg/g per gram of Stevia in infusions. However, infusions showed higher levels of certain amino acids (alanine, asparagine, leucine and proline), and greater values of the three antioxidant parameters in comparison with dry leaves. Temperature had more influence (minimum values at 50 °C and maximum at 90 °C) than time in the case of antioxidants. At 90 °C there were no important increases in the extraction of antioxidant compounds after 5 min; each gram of Stevia had 117 mg trolox (total antioxidant activity), 90 mg gallic acid (total phenols) and 56 mg catechin equivalents (flavonoids). Varying the temperature and time conditions no notable differences were observed in the concentrations of the majority of amino acids. However, the infusion treatment at 90 °C for 5 min was the best, as it gave the highest yield of 8 of the 11 amino acids. Therefore, with respect to the compounds analyzed in this study, the best way to obtain Stevia leaf infusions is the same as the domestic process, almost boiling water for a short time.

  15. Spectroscopic studies on the antioxidant activity of ellagic acid

    Science.gov (United States)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  16. Evaluation of antioxidant properties of monoaromatic derivatives of pulvinic acids.

    Science.gov (United States)

    Habrant, Damien; Poigny, Stéphane; Ségur-Derai, Muriel; Brunel, Yves; Heurtaux, Benoît; Le Gall, Thierry; Strehle, Axelle; Saladin, Régis; Meunier, Stéphane; Mioskowski, Charles; Wagner, Alain

    2009-04-23

    The natural mushroom pigment Norbadione A and three other pulvinic acids were shown by our group to display very efficient antioxidant properties by comparison with a collection of potent molecules including catechols, flavonoids, stilbenes, or coumarins. Despite numerous publications on robust and straightforward synthetic access to pulvinic acids by us and others, no report has been made to unravel the structure-activity relationships that govern the striking antioxidant activity. Herein is presented the synthesis of 18 diverse pulvinic acid derivatives and the study of their radical scavenging capacities by four different assays. The influence of each of the two phenyl rings, of their substituents and of the lateral chain on the antioxidant properties, was explored to reveal a simplified structure of excellent activity. These results, along with the absence of cytotoxicity, make the synthesized compounds interesting to evaluate for several biological activities and especially for anti-inflammatory effects and skin protection against UV induced oxidative stress.

  17. Comparison and combination effects on antioxidant power of curcumin with gallic acid, ascorbic acid, and xanthone.

    Science.gov (United States)

    Naksuriya, Ornchuma; Okonogi, Siriporn

    2015-04-01

    Curcumin has been extensively reported as a potential natural antioxidant. However, there was no data on activity comparison as well as the biological interactions of curcumin with other natural antioxidants. The aim of the present study was to investigate the antioxidant power of curcumin in comparison with three important natural antioxidants; gallic acid, ascorbic acid, and xanthone on free radical scavenging action and their combination effects on this activity. The results indicated that the activities of these compounds were dose-dependent. The 50% effective concentration (EC50) of curcumin was found to be 11 μg/mL. Curcumin showed significantly higher antioxidant activity than ascorbic acid and xanthone but less than gallic acid. Interestingly, curcumin revealed synergistic antioxidant effect when combined with gallic acid whereas the antagonistic effect occurred in curcumin combination with ascorbic acid or xanthone. These results suggest that curcumin-gallic acid combination is the potential antioxidant mixture to be used in place of the individual substance whereas using of curcumin in combination with ascorbic acid or xanthone should be avoid.

  18. Selenium-containing amino acids as direct and indirect antioxidants.

    Science.gov (United States)

    Rahmanto, Aldwin Suryo; Davies, Michael J

    2012-11-01

    Selenium is a trace element essential for normal physiological processes. Organic selenium-containing amino acids, such as selenocysteine (Sec) / selenocystine and selenomethionine (SeMet, the major dietary form), can provide antioxidant benefits by acting both as direct antioxidants as well as a source of selenium for synthesis of selenium-dependent antioxidant and repair proteins (e.g., glutathione peroxidases, thioredoxin reductases, methionine sulfoxide reductases). The direct antioxidant actions of these amino acids arise from the nucleophilic properties of the ionized selenol (RSe(-), which predominates over the neutral form at physiological pH values) and the ease of oxidation of Sec and SeMet. This results in higher rate constants for reaction with multiple oxidants, than for the corresponding thiols/thioethers. Furthermore, the resulting oxidation products are more readily and rapidly reversed by both enzyme and nonenzymatic reactions. The antioxidant effects of these seleno species can therefore be catalytic. Seleno amino acids may also chelate redox-active metal ions. The presence of Sec in the catalytic site of selenium-dependent antioxidant enzymes enhances the kinetic properties and broadens the catalytic activity of antioxidant enzymes against biological oxidants when compared with sulfur-containing species. However, while normal physiological selenium levels afford protection, when compared with deficiency, excessive selenium may induce damage and adverse effects, with this being manifest, for example, as an increased incidence of type 2 diabetes. Further studies examining the availability of redox-active selenium species and their mechanisms and kinetics of action are therefore of critical importance in the potential development of seleno species as a therapeutic strategy. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  19. Antioxidant capacity and phenolic acids of virgin coconut oil.

    Science.gov (United States)

    Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I

    2009-01-01

    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.

  20. Antioxidant and antimicrobial activities of cinnamic acid derivatives.

    Science.gov (United States)

    Sova, M

    2012-07-01

    Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed.

  1. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    Science.gov (United States)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  2. Uric acid, an important antioxidant contributing to survival in termites

    Science.gov (United States)

    Tasaki, Eisuke; Sakurai, Hiroki; Nitao, Masaru; Matsuura, Kenji; Iuchi, Yoshihito

    2017-01-01

    Reactive oxygen species (ROS) are generated spontaneously in all organisms and cause oxidative damage to biomolecules when present in excess. Accumulated oxidative damage accelerates aging; enhanced antioxidant capacity may be a positive factor for longevity. Recently, numerous studies of aging and longevity have been performed using short-lived animals, however, longevity mechanisms remain unknown. Here we show that a termite Reticulitermes speratus that is thought to be long-lived eusocial insect than other solitary insects uses large quantities of uric acid as an antioxidant against ROS. We demonstrated that the accumulation of uric acid considerably increases the free radical-scavenging activity and resistance against ultraviolet-induced oxidative stress in laboratory-maintained termites. In addition, we found that externally administered uric acid aided termite survival under highly oxidative conditions. The present data demonstrates that in addition to nutritional and metabolic roles, uric acid is an essential antioxidant for survival and contributes significantly to longevity. Uric acid also plays important roles in primates but causes gout when present in excess in humans. Further longevity studies of long-lived organisms may provide important breakthroughs with human health applications. PMID:28609463

  3. Uric acid : A new antioxidant in patients with pemphigus vulgaris

    Directory of Open Access Journals (Sweden)

    Maryam Yousefi

    2011-01-01

    Full Text Available Background: Increased reactive oxygen species (ROS and lipid peroxidation are seen in many dermatologic disorders, for example, atopic dermatitis, psoriasis, vitiligo, acne vulgaris, pemphigus vulgaris (PV, lichen planus, and alopecia areata. ROS has an important role in the inflammation process. In PV, increased production of ROS leads to decline of antioxidants in plasma and red blood cells which results in oxidative stress. We aimed to evaluate the level of these antioxidants in PV patients and compare it to the controls. Materials and Methods: Among patients attending the dermatology clinics, 30 patients with PV, who had never been on treatment, were enrolled to the study. The control group consisted of 30 age- and sex-matched healthy non-smoker individuals. Venous blood was collected from the subjects for the evaluation of plasma levels of glutathione peroxidase, vitamin C, selenium, bilirubin, and uric acid. Results: Age mean and standard deviation of the patients (40.83, 12.74 was comparable to the controls (41.96, 13.08. Mean level of uric acid was significantly lower in PV patients compared to the controls (P = 0.006. Other antioxidants were not different between the two groups. Uric acid of the patients with mucosal involvement was significantly lower than patients with mucocutaneous involvement (P = 0.049. Limitations: The blood level of other antioxidants (e.g. malondialdehyde was not evaluated. Conclusions: Uric acid as an antioxidant in our study had similar changes to previous studies in the field of other diseases but selenium, bilirubin, and glutathione peroxidase did not differ between patients and controls.

  4. ANTIOXIDANT CAPACITY AND AMINO ACID PROFILES OF EGG TOFU

    Directory of Open Access Journals (Sweden)

    Maizura Murad

    2013-01-01

    Full Text Available Tofu contains high quality protein source and antioxidant which could reduce risk of cancer. This research aims to determine the effect of soymilk and egg ratios on the antioxidant capacity, daidzein and genistein content and amino acid profiles of egg tofu. Egg tofu was prepared using soymilk and fresh egg in ratios of 1:1, 2:1, 3:1 and 4:1. Glucono-Delta-Lactone (GDL was added in the egg tofu to act as a coagulating agent. Increased of soymilk at all ratios had significantly (p<0.05 increased in Ferric-Reducing Antioxidant Power (FRAP, daidzein and genistein content of egg tofu. Conversely, decreased in soymilk ratio had significantly (p<0.05 increased the radical scavenging activities of the 2,2-Azino-Bis 3-ethylbenzothiazoline-6-Sulfonic acid (ABTS and 2,2-Diphenyl-2-Picrylhydrazyl (DPPH in egg tofu. Increased of soymilk ratio up to 3:1 caused decreased in amino acid methionine (met and cystein (cys significantly (p<0.05. A significant (p<0.01 and a positive correlation was observed between Total Phenolic Content (TPC and FRAP (r = 0.93. However, there was a negative (p<0.01 correlation between TPC and DPPH (r = -0.83. The antioxidant capacity of egg tofu in DPPH assay showed a positive and significant (p<0.01 correlation with cysteine, methionine and tryptophan with r value of 0.92, 0.93 and 0.96 respectively. Higher content of egg in egg tofu had contributed to the increased of antioxidant capacity as indicated in DPPH assay and ABTS assay as well as amino acid methionine and cysteine.

  5. Omega-3 fatty acids and antioxidants in edible wild plants.

    Science.gov (United States)

    Simopoulos, Artemis P

    2004-01-01

    Human beings evolved on a diet that was balanced in the omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and was high in antioxidants. Edible wild plants provide alpha-linolenic acid (ALA) and higher amounts of vitamin E and vitamin C than cultivated plants. In addition to the antioxidant vitamins, edible wild plants are rich in phenols and other compounds that increase their antioxidant capacity. It is therefore important to systematically analyze the total antioxidant capacity of wild plants and promote their commercialization in both developed and developing countries. The diets of Western countries have contained increasingly larger amounts of linoleic acid (LA), which has been promoted for its cholesterol-lowering effect. It is now recognized that dietary LA favors oxidative modification of low density lipoprotein (LDL) cholesterol and increases platelet response to aggregation. In contrast, ALA intake is associated with inhibitory effects on the clotting activity of platelets, on their response to thrombin, and on the regulation of arachidonic acid (AA) metabolism. In clinical studies, ALA contributed to lowering of blood pressure, and a prospective epidemiological study showed that ALA is inversely related to the risk of coronary heart disease in men. Dietary amounts of LA as well as the ratio of LA to ALA appear to be important for the metabolism of ALA to longer-chain omega-3 PUFAs. Relatively large reserves of LA in body fat. as are found in vegans or in the diet of omnivores in Western societies, would tend to slow down the formation of long-chain omega-3 fatty acids from ALA. Therefore, the role of ALA in human nutrition becomes important in terms of long-term dietary intake. One advantage of the consumption of ALA over omega-3 fatty acids from fish is that the problem of insufficient vitamin E intake does not exist with high intake of ALA from plant sources.

  6. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid.

    Science.gov (United States)

    Goufo, Piebiep; Trindade, Henrique

    2014-03-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.

  7. Fatty acid content and antioxidant activity of Thai bananas.

    Directory of Open Access Journals (Sweden)

    Jirawan Banditpuritat and Rungthip Kawaree

    2007-12-01

    Full Text Available The aril extracts of three Thai banana varieties, namely “Kluai Khai”(KK, “Kluai Namwa”(KN and “Kluai Hom”(KH were analyzed by gas chromatography and mass spectrometry (GC-MS. GC-MS data were used to identify 5 methyl esters of each banana extract after transesterification. The most prominent components found in KK, KN and KH were hexadecanoic acid methyl ester (43.17, 29.18, 30.57 % respectively, 9, 12, 15-octadecatrienoic acid methyl ester (35.93, 30.46, 39.68 % respectively, 9, 12-octadecadienoic acid methyl ester (14.35, 36.10, 21.82 % respectively, 9-hexadecanoic acid methyl ester (3.76, 3.34, 3.32 % respectively and octadecanoic acid methyl ester (2.79, 0.92, 4.60 % respectively. The antioxidant activity of the crude oils was evaluated using DPPH method.

  8. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid

    DEFF Research Database (Denmark)

    Meyer, Anne Merete Boye; Jacobsen, Charlotte Munch

    1996-01-01

    Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147.......Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147....

  9. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid

    DEFF Research Database (Denmark)

    Meyer, Anne Merete Boye; Jacobsen, Charlotte Munch

    1996-01-01

    Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147.......Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147....

  10. In Vivo Antioxidant Activity of Deacetylasperulosidic Acid in Noni

    Directory of Open Access Journals (Sweden)

    De-Lu Ma

    2013-01-01

    Full Text Available Deacetylasperulosidic acid (DAA is a major phytochemical constituent of Morinda citrifolia (noni fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group, 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials.

  11. Simple and Rapid Method for the Determination of Uric Acid-Independent Antioxidant Capacity

    OpenAIRE

    2011-01-01

    Determination of the relative contribution of uric acid level increases to the total measured antioxidative activity could be very useful for testing antioxidative products and their effect on human health. The aim of this report is to present a simple spectrophotometric method that combines the measurement of total antioxidative capacity of a sample by ferric reducing/antioxidative power (FRAP) assay, with the uricase-reaction (specific elimination of uric acid), in order to establish and co...

  12. Derivatives of xanthic acid are novel antioxidants: application to synaptosomes.

    Science.gov (United States)

    Lauderback, Christopher M; Drake, Jennifer; Zhou, Daohong; Hackett, Janna M; Castegna, Alessandra; Kanski, Jaroslaw; Tsoras, Maria; Varadarajan, Sridhar; Butterfield, D Allan

    2003-04-01

    Xanthic acids have long been known to act as reducing agents. Recently, D609, a tricyclodecanol derivative of xanthic acid, has been reported to have anti-apoptotic and anti-inflammatory properties that are attributed to specific inhibition of phosphatidyl choline phospholipase C (PC-PLC). However, because oxidative stress is involved in both of these cellular responses, the possibility that xanthates may act as antioxidants was investigated in the current study. Finding that xanthates efficiently scavenge hydroxyl radicals, the mechanism by which D609 and other xanthate derivatives may protect against oxidative damage was further examined. The xanthates studied, especially D609, mimic glutathione (GSH). Xanthates scavenge hydroxyl radicals and hydrogen peroxide, form disulfide bonds (dixanthogens), and react with electrophilic products of lipid oxidation (acrolein) in a manner similar to GSH. Further, upon disulfide formation, dixanthogens are reduced by glutathione reductase to a redox active xanthate. Supporting its role as an antioxidant, D609 significantly (p < 0.01) reduces free radical-induced changes in synaptosomal lipid peroxidation (TBARs), protein oxidation (protein carbonyls), and protein conformation. Thus, in addition to inhibitory effects on PC-PLC, D609 may prevent cellular apoptotic and inflammatory cascades by acting as antioxidants and novel GSH mimics. These results are discussed with reference to potential therapeutic application of D609 in oxidative stress conditions.

  13. Genotoxic effect of ethacrynic acid and impact of antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Ward, William M.; Hoffman, Jared D.; Loo, George, E-mail: g_loo@uncg.edu

    2015-07-01

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased the production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA

  14. Taurine and ellagic acid: two differently-acting natural antioxidants.

    Science.gov (United States)

    Cozzi, R; Ricordy, R; Bartolini, F; Ramadori, L; Perticone, P; De Salvia, R

    1995-01-01

    Naturally occurring antimutagenic compounds are extensively analyzed for their capacity to protect cells from induced damage. We selected two agents, taurine and ellagic acid, treated in the literature as antioxidants, but whose activity is insufficiently known. This paper reports on the ability of these agents to act against damage induced by mitomycin-C and hydrogen peroxide in Chinese hamster ovary cells cultivated in vitro. Cytogenetic and cytofluorimetric analyses were performed. Ellagic acid proved to have more than one mechanism of action, probably as a scavenger of oxygen species produced by H2O2 treatment, and as a protector of the DNA double helix from alkylating agent injury. In our experimental conditions, taurine seems able to scavenge oxygen species.

  15. Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk

    DEFF Research Database (Denmark)

    Alemán, Mercedes; Bou, Ricard; Guardiola, Francesc

    2015-01-01

    The antioxidative effect of lipophilized caffeic acid was assessed in two different fish oil enriched food products: mayonnaise and milk. In both emulsion systems, caffeic acid esterified with fatty alcohols of different chain lengths (C1–C20) were better antioxidants than the original phenolic c...

  16. Simple and Rapid Method for the Determination of Uric Acid-Independent Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    Darko Modun

    2011-08-01

    Full Text Available Determination of the relative contribution of uric acid level increases to the total measured antioxidative activity could be very useful for testing antioxidative products and their effect on human health. The aim of this report is to present a simple spectrophotometric method that combines the measurement of total antioxidative capacity of a sample by ferric reducing/antioxidative power (FRAP assay, with the uricase-reaction (specific elimination of uric acid, in order to establish and correct for the contribution of uric acid in FRAP values. We measured FRAP values, with (uric acid-independent antioxidant capacity, TAC-UA and without (total antioxidant capacity, TAC uricase treatment, and expressed it as μmol/L of uric acid equivalents. In such way, it was possible to determine both total and uric acid-independent antioxidant capacity, plasma uric acid (UA, as the difference between TAC and TAC-UA, and the ratio of the uric acid in total antioxidant capacity (UA/TAC.

  17. Antioxidant and cytotoxic activity of mono- and bissalicylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Đurendić Evgenija A.

    2014-01-01

    Full Text Available A simple synthesis of mono- and bis-salicylic acid derivatives 1-10 by the transesterification of methyl salicylate (methyl 2-hydroxybenzoate with 3-oxapentane-1,5-diol, 3,6- dioxaoctane-1,8-diol, 3,6,9-trioxaundecane-1,11-diol, propane-1,2-diol or 1-aminopropan- 2-ol in alkaline conditions is reported. All compounds were tested in vitro on three malignant cell lines (MCF-7, MDA-MB-231, PC-3 and one non-tumor cell line (MRC- 5. Strong cytotoxicity against prostate PC-3 cancer cells expressed compounds 3, 4, 6, 9 and 10, all with the IC50 less than 10 μmol/L, which were 11-27 times higher than the cytotoxicity of antitumor drug doxorubicin. All tested compounds were not toxic against the non-tumor MRC-5 cell line. Antioxidant activity of the synthesized derivatives was also evaluated. Compounds 2, 5 and 8 were better OH radical scavengers than commercial antioxidants BHT and BHA. The synthesized compounds showed satisfactory scavenger activity, which was studied by QSAR modeling. A good correlation between the experimental variables IC50 DPPH and IC50 OH and MTI (molecular topological indices molecular descriptors and CAA (accessible Connolly solvent surface area for the new compounds 1, 3, and 5 was observed.

  18. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  19. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity

    OpenAIRE

    YAN, JING; Gong, Yuewen; She, Yi-Min; Wang, Guqi; Roberts, Michael S; Burczynski, Frank J.

    2009-01-01

    Hepatocytes expressing liver fatty acid binding protein (L-FABP) are known to be more resistant to oxidative stress than those devoid of this protein. The mechanism for the observed antioxidant activity is not known. We examined the antioxidant mechanism of a recombinant rat L-FABP in the presence of a hydrophilic (AAPH) or lipophilic (AMVN) free radical generator. Recombinant L-FABP amino acid sequence and its amino acid oxidative products following oxidation were identified by MALDI quadrup...

  20. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats.

    Science.gov (United States)

    Punithavathi, Vilapakkam Ranganathan; Prince, Ponnian Stanely Mainzen; Kumar, Ramesh; Selvakumari, Jemmi

    2011-01-10

    The present study aims to evaluate the antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic male Wistar rats. To induce diabetes mellitus, rats were injected with streptozotocin intraperitoneally at a single dose of 40mg/kg. Streptozotocin induced diabetic rats showed significant (Pacid reactive substances and lipid hydroperoxides were significantly (Pgallic acid (10 and 20mg/kg) daily for a period of 21days showed significant (Pgallic acid in diabetic rats. In vitro study also revealed the potent antioxidant effect of gallic acid. Thus, the study shows the antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic rats. The effect exerted by 20mg/kg body weight of gallic acid was more effective than 10mg/kg body weight of gallic acid.

  1. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee.

    Science.gov (United States)

    Kamiyama, Masumi; Moon, Joon-Kwan; Jang, Hae Won; Shibamoto, Takayuki

    2015-02-25

    Antioxidant activities of brewed coffees prepared from six commercial brands ranged from 63.13 ± 1.01 to 96.80 ± 1.68% at the highest levels tested. Generally, the degree of antioxidant activity of the brewed coffee was inversely proportional to the total chlorogenic acid concentration. A sample obtained from the major chlorogenic acid, 5-caffeoylquinic acid (5-CQA), heated at 250 °C exhibited potent antioxidant activity (79.12 ± 2.49%) at the level of 10 μg/mL, whereas unheated 5-CQA showed only moderate antioxidant activity (44.41 ± 0.27%) at the level of 100 μg/mL. Heat produced relatively high levels of pyrocatechol (2,809.3 μg/g) and 2-methoxy-4-vinylphenol (46.4 μg/g) from 5-CQA, and their antioxidant activity levels were 76.57 ± 3.00 and 98.63 ± 0.01%, respectively. The results of the present study suggest that roasting degrades chlorogenic acids to form potent antioxidants and thus plays an important role in the preparation of high-antioxidant low-acid coffee.

  2. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    Science.gov (United States)

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  3. Maternal and neonatal plasma antioxidant levels in normal pregnancy, and the relationship with fatty acid unsaturation

    NARCIS (Netherlands)

    Oostenbrug, G.S.; Mensink, R.P.; Al, M.D.M.; Houwelingen, A.C. van; Hornstra, G.

    1998-01-01

    During pregnancy, maternal plasma concentrations of the peroxidation-susceptible polyunsaturated fatty acids (polyenes) increase. In addition, the proportion of polyenes is higher in neonatal plasma than in maternal plasma. To study whether these increased amounts of polyenes affect antioxidant

  4. Involvement of Polyamine Oxidase in Abscisic Acid induced Cytosolic Antioxidant Defense in Leaves of Maize

    Institute of Scientific and Technical Information of China (English)

    Beibei Xue; Aying Zhang; Mingyi Jiang

    2009-01-01

    Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.

  5. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise : Partition of ascorbic acid

    DEFF Research Database (Denmark)

    Meyer, Anne S.; Jacobsen, Charlotte

    1996-01-01

    The distribution of ascorbic acid between the lipid and aqueous phase was investigated in mayonnaises enriched with fish oil containing a synergistic antioxidant mixture of ascorbic acid, lecithin and gamma-tocopherol, i.e., the A/L/T system (Loliger and Saucy 1989). The ascorbic acid was found...... to be located in the aqueous phase indicating that the A/L/T system broke down in mayonnaises. Based on the hypothesis that synergistic antioxidant action between ascorbic acid, lecithin and tocopherol requires that the three components are in close assembly, the results offer an explanation as to why the A...

  6. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise : Partition of ascorbic acid

    DEFF Research Database (Denmark)

    Meyer, A.S.; Jacobsen, Charlotte Munch

    1996-01-01

    The distribution of ascorbic acid between the lipid and aqueous phase was investigated in mayonnaises enriched with fish oil containing a synergistic antioxidant mixture of ascorbic acid, lecithin and gamma-tocopherol, i.e., the A/L/T system (Loliger and Saucy 1989). The ascorbic acid was found...... to be located in the aqueous phase indicating that the A/L/T system broke down in mayonnaises. Based on the hypothesis that synergistic antioxidant action between ascorbic acid, lecithin and tocopherol requires that the three components are in close assembly, the results offer an explanation as to why the A...

  7. The antioxidative effect of lipophilized rutin and dihydrocaffeic acid in fish oil enriched milk

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Petersen, Lone Kirsten; de Diego, Sara;

    2012-01-01

    The antioxidative effect of phenolipids was evaluated in fish oil enriched milk emulsions as a model for a complex food system. Two different phenolipids modified from dihydrocaffeic acid (with C8 or C18:1) and rutin (with C12 or C16) were evaluated. Both dihydrocaffeate esters and rutin laurate...... showed significantly better antioxidant properties in milk emulsion compared with the original phenolics. However, rutin palmitate only performed slightly better as antioxidant than rutin. The results with rutin indicated that a cut‐off effect exists in relation to the alkyl chain length with respect...... to the almost similar antioxidant effect of the two phenolipids. However, there was a tendency towards octyl dihydrocaffeate being slightly more efficient than oleyl dihydrocaffeate. Practical application: The finding that phenolipids are better antioxidants in milk emulsions than the original phenolic acid...

  8. Amino acid composition and antioxidant activities of hydrolysates and peptide fractions from porcine collagen.

    Science.gov (United States)

    Ao, Jing; Li, Bo

    2012-10-01

    The amino acid composition and antioxidant activities of different hydrolysates from porcine collagen were analyzed. The gelatin was hydrolyzed for antioxidative peptides with various proteases, namely papain, protease from bovine pancreas, protease from Streptomyces, and cocktail mixture of protease from bovine pancreas and protease from Streptomyces. The hydrolysates were assessed using methods of DPPH radical-scavenging ability, metal-chelating ability and lipid peroxidation inhibition activity. It was found that the collagen hydrolysates by different protease treatments had different amino acid compositions and antioxidant properties. However, the contents of Hyp and Pro were improved and the content of Gly was decreased in each collagen hydrolysate compared with collagen. The hydrolysate prepared with the cocktail mixture of proteases, which exhibited the highest antioxidant activity, was separated into 6 fractions by gel filtration chromatography. Fraction 2 was further separated by ion exchange chromatography. Fraction 2b with abundant basic amino acids and Fraction 2d which was slightly acidic fractions had higher radical-scavenging and metal-chelating activities, and both Fraction 2b and 2d contained more hydrophobic amino acids. The results confirmed that the antioxidative peptides were rich in Hyp, Pro and Gly, which accounted for half of amino acid composition. This article added further support to the preparation of natural antioxidative peptides from porcine skin collagen.

  9. Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf

    Directory of Open Access Journals (Sweden)

    Lee Uk

    2011-06-01

    Full Text Available Abstract Background Since oxidative stress has been implicated in a neurodegenerative disease such as Alzheimer's disease (AD, natural antioxidants are promising candidates of chemopreventive agents. This study examines antioxidant and neuronal cell protective effects of various fractions of the methanolic extract of Erigeron annuus leaf and identifies active compounds of the extract. Methods Antioxidant activities of the fractions from Erigeron annuus leaf were examined with [2,2-azino-bis(3-ethylbenz thiazoline-6-sulfonic acid diammonium salt] (ABTS and ferric reducing antioxidant power (FRAP assays. Neuroprotective effect of caffeic acid under oxidative stress induced by H2O2 was investigated with [3-(4,5-dimethythiazol-2-yl-2,5-diphenyl tetrazolium bromide] (MTT and lactate dehydrogenase (LDH assays. Results This study demonstrated that butanol fraction had the highest antioxidant activity among all solvent fractions from methanolic extract E. annuus leaf. Butanol fraction had the highest total phenolic contents (396.49 mg of GAE/g. Caffeic acid, an isolated active compound from butanol fraction, showed dose-dependent in vitro antioxidant activity. Moreover, neuronal cell protection against oxidative stress induced cytotoxicity was also demonstrated. Conclusion Erigeron annuus leaf extracts containing caffeic acid as an active compound have antioxidative and neuroprotective effects on neuronal cells.

  10. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    Science.gov (United States)

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts.

  11. Antioxidant activity of amino acids in soybean oil at frying temperature: structural effects and synergism with tocopherols

    Science.gov (United States)

    The purpose of this study was to evaluate amino acids as natural antioxidants for frying. Twenty amino acids were added to soybean oil heated to 180 ºC, and the effects of amino acid structure on the antioxidant activity were investigated. Amino acids containing a thiol, a thioether, or an extra ami...

  12. Effect of chlorogenic acid on antioxidant activity of Flos Lonicerae extracts

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Flos Lonicerae is a medically useful traditional Chinese medicine herb. However, little is known about the antioxidant properties ofFlos Lonicerae extracts. Here the antioxidant capacity of water, methanolic and ethanolic extracts prepared from Flos Lonicerae to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and reduce Fe3+ to Fe2+ is examined. Chlorogenic acid, a major component of Flos Lonicerae, is identified and further purified from 70% ethanolic extract with high performance liquid chromatography (HPLC) and its antioxidant capacity is characterized. The total phenolic compounds and chlorogenic acid contents in Flos Lonicerae are determined. The present results demonstrate that the Flos Lonicerae extracts exhibit antioxidant activity and chlorogenic acid is a major contributor to this activity.

  13. Effect of lipophilization of dihydrocaffeic acid on its antioxidative properties in fish oil enriched emulsion

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; de Diego, Sara; Petersen, Lone Kristine

    may cause a low efficacy in inhibiting lipid oxidation in food emulsions. However, lipophilization of the antioxidants with a fatty alcohol may alter their location in the emulsion matrix and thereby improve their efficacy. Evaluation of the effect of lipophilisation of selected antioxidants revealed......The relative low intake of fish and the health beneficial n-3 polyunsaturated fatty acids (PUFA) in the Western countries has created a growing market for food products enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Since EPA and DHA are more susceptible to lipid...... oxidation than PUFAs from vegetable oils due to their highly polyunsaturated nature, it is necessary to develop methods to protect these PUFAs. Many food systems are emulsions. Due to the so-called polar paradox phenomenon, hydrophilic antioxidants may in many cases be better antioxidants in bulk oil than...

  14. Phenolic acids in the inflorescences of different varieties of buckwheat and their antioxidant activity

    Directory of Open Access Journals (Sweden)

    Oksana Sytar

    2015-04-01

    Full Text Available The comparative analysis of total phenolics and phenolic acid composition together with parameters of antioxidant activities was studied in the inflorescences of three varieties of buckwheat (F. esculentum, Fagopyrum tataricum rotundatum and Fagopyrum esculentum, forma green-flowers. Antioxidant activity of extracts of these buckwheat varieties has been found high and at the same time extracts of inflorescences of green flower buckwheat have been characterized by the highest total phenolic content. Eight phenolic acids (ferulic acid, vanillic acid, chlorogenic acid, p-coumaric acid, trans-ferulic acid, p-anisic acid, salicylic acid and methoxycinnamic acid were found in the investigated buckwheat inflorescences with HPLC analysis. Inflorescences of F. esculentum, forma green-flowers have a high content of chlorogenic acid (16 mg 100 g−1 DW and p-anisic acid (872 mg 100 g−1 DW. The highest content among the investigated buckwheat inflorescences of vanillic acid, trans-ferulic acid, chlorogenic acid and p-anisic acid was found in the F. tataricum, F. esculentum inflorescences have been characterized by the highest content of salicylic acid (115 mg 100 g−1 DW and methoxycinnamic acid (74 mg 100 g−1 DW.

  15. Coffee component 3-caffeoylquinic acid increases antioxidant capacity but not polyphenol content in experimental cerebral infarction.

    Science.gov (United States)

    Ruiz-Crespo, Silvia; Trejo-Gabriel-Galan, Jose M; Cavia-Saiz, Monica; Muñiz, Pilar

    2012-05-01

    Although coffee has antioxidant capacity, it is not known which of its bioactive compounds is responsible for it, nor has it been analyzed in experimental cerebral infarction. We studied the effect one of its compounds, 3-caffeoylquinic acid (3-CQA), at doses of 4, 25 and 100 μg on plasma antioxidant capacity and plasma polyphenol content, measuring the differences before and after inducing a cerebral infarction in an experimental rat model. We compared them with 3-caffeoylquinic-free controls. The increase in total antioxidant capacity was only higher than in controls in 3-CQA treated animals with the highest dose. This increase in antioxidant capacity was not due to an increase in polyphenols. No differences between the experimental and control group were found regarding polyphenol content and cerebral infarction volume. In conclusion, this increase in antioxidant capacity in the group that received the highest dose of 3-CQA was not able to reduce experimental cerebral infarction.

  16. Exposure or release of ferulic acid from wheat aleurone: impact on its antioxidant capacity.

    Science.gov (United States)

    Rosa, Natalia N; Dufour, Claire; Lullien-Pellerin, Valérie; Micard, Valérie

    2013-12-01

    The relationship between the aleurone cell integrity and the exposure or release of bioavailable ferulic acid (FA) with the antioxidant capacity of aleurone in in vitro and under simulated gastric conditions was explored. The antioxidant capacity of aleurone was increased by around 2-fold when its median particle size was reduced to under 50 μm. The opening of aleurone cells increased the physical exposure of FA bound to the insoluble polysaccharides, which seemed to be responsible of the increased antioxidant capacity. Synergistic combination of xylanase and feruloyl esterase was found to be the most efficient enzymatic treatment releasing up to 86% of total FA in bioaccessible forms. This enzymatic treatment significantly enhanced the radical scavenging activity of aleurone by up to 4-fold, which overlapped the overall antioxidant potential estimated from the total content of FA in aleurone. The improvement in the antioxidant capacity of aleurone was also observed in the simulated gastric digestion by inhibition of lipid oxidation.

  17. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis

    Science.gov (United States)

    Lim, Sangyong; Choi, Jong-il; Park, Hyun

    2015-04-01

    Low molecular weight fucoidan, prepared by radical degradation using gamma ray was investigated for its antioxidant activities with different assay methods. As the molecular weight of fucoidan decreased with a higher absorbed dose, ferric-reducing antioxidant power values increased, but β-carotene bleaching inhibition did not change significantly. The antioxidant activity of acid-degraded fucoidan was also examined to investigate the effect of different degradation methods. At the same molecular weight, fucoidan degraded by gamma irradiation showed higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity than that observed with the acidic method. This result reveals that in addition to molecular weight, the degradation method affects the antioxidant activity of fucoidan.

  18. COMPARATIVE EFFICIENCY OF DIFFERENT ANTIOXIDANTS ON FAT STABILITY IN BROILER RATIONS: THIOBARBITURIC ACID VALUES

    Directory of Open Access Journals (Sweden)

    Ghulam Mustafa, Fawad Ahmad, Arfan Yousaf and Asad Ullah Hyder

    2002-04-01

    Full Text Available Thiobarbituric acid (TBA value was significantly (P< 0.05 affected by storage period, fat levels and antioxidants but the interaction of these factors was non significant. TBA value increased with the increase in storage period, however, the increase was relatively less during first 14 days of storage then a significant increase in TBA was observed as the storage period prolonged. Rations containing 4% fat have greater TBA value than the rations containing 2 or 3% fat. There was also a significant difference on TBA value due to antioxidant and their levels. TBA value was lower in the rations containing ethoxyquin than BHT containing rations and the rations supplemented with oxistat had greater TBA value. At higher level of any antioxidant, TBA value decreased, however, the difference between TBA values at both levels is non significant. With the increase in storage period there was increase in TBA value at both the antioxidant level. Antioxidant had a significant effect on fat stability in TBA test. Antioxidant level at 2 and 3% fat had a non significant effect but at 4% fat level. Antioxidant level had a significant effect. However, TBA values increased significantly at both levels of antioxidant with the increase in fat levels.

  19. Potent Antioxidative Activity of Lycopene: A Potential Role in Scavenging Hypochlorous Acid

    OpenAIRE

    Pennathur, Subramaniam; Maitra, Dhiman; Byun, Jaeman; Sliskovic, Inga; Abdulhamid, Ibrahim; Saed, Ghassan M.; DIAMOND, MICHAEL P.; Abu-Soud, Husam M.

    2010-01-01

    Lycopene, a carotenoid found in tomatoes, is a proven anti-oxidant that may lower the risk of certain disorders including heart disease and cancer. Hypochlorous acid (HOCl) is an oxidant linked to tissue oxidation in cardiovascular disease and other inflammatory disorders through its ability to modify proteins, deoxyribonucleic acid, ribonucleic acid and lipids. Here we show that lycopene can function as a potent scavenger of HOCl at a wide range of concentrations that span various pathophysi...

  20. Antioxidant activity of probiotic lactic acid bacteria isolated from Mongolian airag

    Directory of Open Access Journals (Sweden)

    E Uugantsetseg

    2014-12-01

    Full Text Available This research aimed to determine the antioxidant activity of probiotic lactic acid bacteria isolated from airag. In this study, 42 lactic acid bacteria were isolated from Mongolian airag. All isolates were identified by using morphological, biochemical and physiological methods. The isolated bacteria were studied for antagonistic effects on Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, 22 strains showed antibacterial activity. When we examined their probiotic properties such as bile acid tolerance and gastric acid tolerance, it is shown that only 6 bacterial strains can survive up to 3  hours in a pH 3.0 acid environment  and up to 8 hours in  0.3% bile acid environment. Selected probiotic strains were further identified to species by API 50CHL system. Antioxidant activity of  probiotic  strains were determined by 1,1-diphenyl-2 picrylhydrazyl (DPPH assay. While the antioxidant activity in cell free supernatant fluctuated between the range of 26.1-38.4%,  the antioxidant activity after 72 hours of fermentation in the whey fraction was between 17.23-55.12%. DOI: http://doi.dx.org/10.5564/mjc.v15i0.327 Mongolian Journal of Chemistry 15 (41, 2014, p73-78

  1. Divergent selection for ester-linked diferulates in maize pith stalk tissues. Effects on cell wall composition and degradability.

    Science.gov (United States)

    Barros-Rios, Jaime; Malvar, Rosa A; Jung, Hans-Joachim G; Bunzel, Mirko; Santiago, Rogelio

    2012-11-01

    Cross-linking of grass cell wall components through diferulates (DFAs) has a marked impact on cell wall properties. However, results of genetic selection for DFA concentration have not been reported for any grass species. We report here the results of direct selection for ester-linked DFA concentration in maize stalk pith tissues and the associated changes in cell wall composition and biodegradability. After two cycles of divergent selection, maize populations selected for higher total DFA (DFAT) content (CHs) had 16% higher DFAT concentrations than populations selected for lower DFAT content (CLs). These significant DFA concentration gains suggest that DFA deposition in maize pith parenchyma cell walls is a highly heritable trait that is genetically regulated and can be modified trough conventional breeding. Maize populations selected for higher DFAT had 13% less glucose and 10% lower total cell wall concentration than CLs, suggesting that increased cross-linking of feruloylated arabinoxylans results in repacking of the matrix and possibly in thinner and firmer cell walls. Divergent selection affected esterified DFAT and monomeric ferulate ether cross link concentrations differently, supporting the hypothesis that the biosynthesis of these cell wall components are separately regulated. As expected, a more higher DFA ester cross-coupled arabinoxylan network had an effect on rumen cell wall degradability (CLs showed 12% higher 24-h total polysaccharide degradability than CHs). Interestingly, 8-8-coupled DFAs, previously associated with cell wall strength, were the best predictors of pith cell wall degradability (negative impact). Thus, further research on the involvement of these specific DFA regioisomers in limiting cell wall biodegradability is encouraged.

  2. Antioxidant activity of bovine serum albumin binding amino acid Schiff-bases metal complexes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Glutamic acid-salicylaldehyde Schiff-base metal complexes are bound into bovine serum albumin (BSA), which afforded BSA binding Schiff-base metal complexes (BSA-SalGluM, M=Cu, Co, Ni, Zn). The BSA binding metal complexes were characterized by UV-vis spectra and Native PAGE. It showed that the protein structures of BSA kept after coordinating amino acid Schiff-bases metal complexes. The effect of the antioxidant activity was investigated. The results indicate that the antioxidant capacity of BSA increased more than 10 times after binding Schiff-base metal complexes.

  3. Antioxidant Properties of Pyroligneous Acid Obtained by Thermochemical Conversion of Schisandra chinensis Baill

    Directory of Open Access Journals (Sweden)

    Chunhui Ma

    2014-12-01

    Full Text Available Sustainable development of renewable resources is a major challenge globally. Biomass is an important renewable energy source and an alternative to fossil fuels. Pyrolysis of biomass is a promising method for simultaneous production of biochar, bio-oil, pyroligneous acid (PA, and gaseous fuels. The purpose of this study was to investigate the pyrolysis process and products yields of Schisandra chinensis fruits with different pyrolysis powers. The obtained PA was extracted with organic solvents, including ethyl formate, dichloromethane, methanol and tetrahydrofuran. The antioxidant activities, including the free radical scavenging activity and ferric reducing power, of the PA extracts were investigated. The synthetic antioxidants butylated hydroxyanisole and butylated hydroxytoluene were used as positive controls. A dichloromethane extract of PA showed excellent antioxidant properties compared to the other extracts. The chemical compositions of the PA extracts were determined by GC-MS, and further proved that the dichloromethane extract had the best antioxidant characteristics among the extracts tested.

  4. Antioxidant properties of pyroligneous acid obtained by thermochemical conversion of Schisandra chinensis Baill.

    Science.gov (United States)

    Ma, Chunhui; Li, Wei; Zu, Yuangang; Yang, Lei; Li, Jian

    2014-01-01

    Sustainable development of renewable resources is a major challenge globally. Biomass is an important renewable energy source and an alternative to fossil fuels. Pyrolysis of biomass is a promising method for simultaneous production of biochar, bio-oil, pyroligneous acid (PA), and gaseous fuels. The purpose of this study was to investigate the pyrolysis process and products yields of Schisandra chinensis fruits with different pyrolysis powers. The obtained PA was extracted with organic solvents, including ethyl formate, dichloromethane, methanol and tetrahydrofuran. The antioxidant activities, including the free radical scavenging activity and ferric reducing power, of the PA extracts were investigated. The synthetic antioxidants butylated hydroxyanisole and butylated hydroxytoluene were used as positive controls. A dichloromethane extract of PA showed excellent antioxidant properties compared to the other extracts. The chemical compositions of the PA extracts were determined by GC-MS, and further proved that the dichloromethane extract had the best antioxidant characteristics among the extracts tested.

  5. A Study on Anti-oxidative Activity of Soybean Peptides with Linoleic Acid Peroxidation Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Soybean bioactive peptides(SBPs) were prepared from the isolated soybean protein by proteolysis with an alkaline protease, alcalase, at 50 ℃ and pH = 8. 0. The dependence of hydrolysis time on hydrolysis degree and molecular weight distribution were examined. The hydrolysate was fractionated on a Sephadex G-25 column and the anti-oxidative activities of the fractions were detected by the method of pyrogallol auto-oxidation. The average chain length of soybean peptides that have anti-oxidative activity was estimated to be about 7. The anti-oxidative properties of the soybean peptide were also studied by using linoleic acid peroxidation systems. The optimal condition of the peroxidation system was set up, Vc/Cu2 + as the inducer at pH = 7.4 and 25 ℃. In addition, soybean peptides show higher antioxidative activity compared with GSH.

  6. Changes in antioxidant activity and phenolic acid composition of tarhana with steel-cut oats.

    Science.gov (United States)

    Kilci, A; Gocmen, D

    2014-02-15

    Steel-cut oats (SCO) was used to replace wheat flour in the tarhana formulation (control) at the levels of 10%, 20%, 30% and 40% (w/w). Control sample included no SCO. Substitution of wheat flour in tarhana formulation with SCO affected the mineral contents positively. SCO additions also increased phenolic acid contents of tarhana samples. The most abundant phenolic acids were ferulic and vanillic acids, followed by syringic acid in the samples with SCO. Tarhana samples with SCO also showed higher antioxidant activities than the control. Compared with the control, the total phenolic content increased when the level of SCO addition was increased. SCO addition did not have a deteriorative effect on sensory properties of tarhana samples and resulted in acceptable soup properties in terms of overall acceptability. SCO addition improved the nutritional and functional properties of tarhana by causing increases in antioxidant activity, phenolic content and phenolic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Fatty acid composition, antioxidant and antibacterial activities of Adonis wolgensis L. extract.

    Science.gov (United States)

    Mohadjerani, Maryam; Tavakoli, Rahmatollah; Hosseinzadeh, Rahman

    2014-01-01

    The objective of this study was to analyze the fatty acid content, antioxidant, and antibacterial activities of hydro-methanolic extract of Adonis wolgensis L. (A. wolgensis L.) growing wild in north of Iran. Oils of A. wolgensis L. was obtained by means of Soxhlet apparatus from leaves and stems. Methyl esters were derived from the oily mixtures by trans-esterification process and were analyzed by GC/FID and GC/MS systems. Phenolic compounds extraction was done with aqueous methanol (90%). This extract was investigated for antioxidant activity using DPPH radical scavenging and reducing power methods and was also tested against a panel of microorganisms. Linolenic acid (45.83%) and oleic acid (47.54%) were the most abundant fatty acids in leaves and stems, respectively. Hydro-methanolic extract with the high amount of total phenolics (9.20 ±0.011 mg GAE per dry matter) was the potent antioxidant in the assays. RESULTS obtained from measurements of MIC for extract, indicated that E. coli, S. aureus, and S. enteritidis were the most sensitive microorganisms tested, but no activity was observed against Gram-positive microorganism (B. subtilis). The results obtained from the present study indicated that the oil of A. wolgensis leaves and stems contained a high source of poly-unsaturated fatty acids (PUFAs). These results also showed that hydro-methanolic extract of this plant contained significant antioxidant and antibacterial activities.

  8. Fatty acid composition, antioxidant and antibacterial activities of Adonis wolgensis L. extract

    Directory of Open Access Journals (Sweden)

    Maryam Mohadjerani

    2014-01-01

    Full Text Available Objectives: The objective of this study was to analyze the fatty acid content, antioxidant, and antibacterial activities of hydro-methanolic extract of Adonis wolgensis L. (A. wolgensis L. growing wild in north of Iran. Materials and Methods: Oils of A. wolgensis L. was obtained by means of Soxhlet apparatus from leaves and stems. Methyl esters were derived from the oily mixtures by trans-esterification process and were analyzed by GC/FID and GC/MS systems. Phenolic compounds extraction was done with aqueous methanol (90%. This extract was investigated for antioxidant activity using DPPH radical scavenging and reducing power methods and was also tested against a panel of microorganisms. Results: Linolenic acid (45.83% and oleic acid (47.54% were the most abundant fatty acids in leaves and stems, respectively. Hydro-methanolic extract with the high amount of total phenolics (9.20 ±0.011 mg GAE per dry matter was the potent antioxidant in the assays. Results obtained from measurements of MIC for extract, indicated that E. coli, S. aureus, and S. enteritidis were the most sensitive microorganisms tested, but no activity was observed against Gram-positive microorganism (B. subtilis. Conclusion: The results obtained from the present study indicated that the oil of A. wolgensis leaves and stems contained a high source of poly-unsaturated fatty acids (PUFAs. These results also showed that hydro-methanolic extract of this plant contained significant antioxidant and antibacterial activities.  

  9. Elucidating the Structure-Activity Relationships of the Vasorelaxation and Antioxidation Properties of Thionicotinic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2010-01-01

    Full Text Available Nicotinic acid, known as vitamin B3, is an effective lipid lowering drug and intense cutaneous vasodilator. This study reports the effect of 2-(1-adamantylthionicotinic acid (6 and its amide 7 and nitrile analog 8 on phenylephrine-induced contraction of rat thoracic aorta as well as antioxidative activity. It was found that the tested thionicotinic acid analogs 6-8 exerted maximal vasorelaxation in a dose-dependent manner, but their effects were less than acetylcholine (ACh-induced nitric oxide (NO vasorelaxation. The vasorelaxations were reduced, apparently, in both NG-nitro-L-arginine methyl ester (L-NAME and indomethacin (INDO. Synergistic effects were observed in the presence of L-NAME plus INDO, leading to loss of vasorelaxation of both the ACh and the tested nicotinic acids. Complete loss of the vasorelaxation was noted under removal of endothelial cells. This infers that the vasorelaxations are mediated partially by endothelium-induced NO and prostacyclin. The thionicotinic acid analogs all exhibited antioxidant properties in both 2,2-diphenyl-1-picrylhydrazyl (DPPH and superoxide dismutase (SOD assays. Significantly, the thionicotinic acid 6 is the most potent vasorelaxant with ED50 of 21.3 nM and is the most potent antioxidant (as discerned from DPPH assay. Molecular modeling was also used to provide mechanistic insights into the vasorelaxant and antioxidative activities. The findings reveal that the thionicotinic acid analogs are a novel class of vasorelaxant and antioxidant compounds which have potential to be further developed as promising therapeutics.

  10. Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of dehusked rice.

    Science.gov (United States)

    Lee, H H; Loh, S P; Bong, C F J; Sarbini, S R; Yiu, P H

    2015-12-01

    Whole grains consumption promotes health benefits, but demonstrates controversial impacts from phytic acid in meeting requirements of good health. Therefore, this study was aimed to determine the nutrient bioaccessibility and antioxidant properties of rice cultivars named "Adan" or "Bario" and deduce the nutritional impact of phytic acid. Majority of the dehusked rice in the collection showed an acceptable level of in-vitro starch digestibility and in-vitro protein digestibility, but were poor in antioxidant properties and bioaccessibility of minerals (Ca, Fe and Zn). The drawbacks identified in the rice cultivars were due to relatively high phytic acid content (2420.6 ± 94.6 mg/100 g) and low phenolic content (152.39 ± 18.84 μg GAE/g). The relationship between phytic acid content and mineral bioaccessibility was strongest in calcium (r = 0.60), followed by iron (r = 0.40) and zinc (r = 0.27). Phytic acid content did not significantly correlate with in-vitro starch digestibility and in-vitro protein digestibility but showed a weak relationship with antioxidant properties. These suggest that phytic acid could significantly impair the mineral bioaccessibility of dehusked rice, and also act as an important antioxidant in non-pigmented rice. Bario rice cultivars offered dehusked rice with wide range of in-vitro digestibility of starch and protein, and also pigmented rice as a good source of antioxidants. However, there is a need to reduce phytic acid content in dehusked rice for improved mineral bioaccessibility among Bario rice cultivars.

  11. Determination of fruit characteristics, fatty acid profile and total antioxidant capacity of Mespilus germanica L. fruit

    Directory of Open Access Journals (Sweden)

    Hale Seçilmiş Canbay

    2015-11-01

    Full Text Available Objective: To determine fruit characteristics, fatty acid profile and total antioxidant capacitiy of first cultured Mespilus germanica L. Methods: A total of 15 fruits were taken randomly from four directions of adult trees. Then the physical and chemical properties of first cultured medlar fruit (Istanbul/Turkey were measured by using refractometer, colorimeter, spectrophotometer and gas chromatograph mass spectrometer, respectivly. Results: In the fruit studied, the results showed that palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid and behenic acid were the most abundant fatty acids (FAs, and the main FA was palmitic acid [(35.35 ± 1.20%]. The percentage of linoleic acid and stearic acid in this fruit oil were (29.10 ± 1.70% and (8.53 ± 0.25%, respectively. As a result of the analysis, the total antioxidant capacity of medlar fruit was (1.1 ± 0.2 mmol trolox equivalents/L. Conclusions: The present study has demonstrated the concentrations of FAs and the antioxidantive capacity of first cultured Istanbul medlar fruits by using many tested methods. It is proved that in our daily life, medlar fruit plays a significant role with its nutrition and health effect.

  12. Effect of Thermoultrasound on the Antioxidant Compounds and Fatty Acid Profile of Blackberry (Rubus fruticosus spp. Juice

    Directory of Open Access Journals (Sweden)

    José de Jesús Manríquez-Torres

    2016-11-01

    Full Text Available Blackberry (Rubus fruticosus spp. fruit has high antioxidant activity due to its significant content of anthocyanins and antioxidant compounds. Among emerging technologies for food preservation, thermoultrasound is a technique that reduces microbial loads and releases compounds with antioxidant properties. The objective of this study was to determine the antioxidant content and fatty acid profile of blackberry juice subjected to thermoultrasound treatment in comparison to pasteurized juice. Blackberry juice and n-hexane extracts from a control (untreated juice, pasteurized, and thermoultrasonicated samples were evaluated for antioxidant activity, fatty acid profile, and antioxidant content. The juice treated with thermoultrasound exhibited significantly (p < 0.05 higher levels of total phenols (1011 mg GAE/L, anthocyanins (118 mg Cy-3-GlE/L; antioxidant activity by ABTS (44 mg VCEAC/L and DPPH (2665 µmol TE/L in comparison to the control and pasteurized samples. Oil extract from thermoultrasound juice also had the highest antioxidant activity (177.5 mg VCEAC/L and 1802.6 µmol TE/L. The fatty acid profile of the n-hexane extracts showed the presence of myristic, linolenic, stearic, oleic, and linoleic acids and was not affected by the treatments except for stearic acid, whose amount was particularly higher in the control. Our results demonstrated that thermoultrasound can be an alternative technology to pasteurization that maintains and releases antioxidant compounds and preserves the fatty acids of fruit juice.

  13. ACID VALUE OF VEGETABLE OILS AND POULTRY FEED AS AFECTED BY STORAGE PERIOD AND ANTIOXIDANTS

    Directory of Open Access Journals (Sweden)

    Sohail Hassan Khan, Bashir Mahmood Bhatti and Rozina Sardar

    2001-09-01

    Full Text Available A study to assess acid values in soyabean, cotton seed and sunflower oil commonly used in poultry ration was conducted. It was observed that mean acid value of oils ~ept in open were significantly high (7.67 than oil kept in sealed form (1.296. The mean acid value was higher in soyabean oil (P<0.01 than the values in cotton seed oil and sunflower oil. While determining the effect of Santaquin, BHT and Oxistat as antioxidant, in the ration stored at 40 °C for 2 months, it was observed that the acid values in untreated control ration was 18.20 while with the added antioxidants were 4.88, 4.85 and 4.83, respectively showing a significant increase with each week of the storage.

  14. Antioxidant capacity, phenolic acids and caffeine contents of some commercial coffees available on the Romanian market.

    Science.gov (United States)

    Trandafir, Ion; Nour, Violeta; Ionica, Mira Elena

    2013-03-01

    In the present study a simple and highly sensitive RP-HPLC method has been established for simultaneous determination of chlorogenic acid, caffeic acid, vanillic acid and caffeine in coffee samples. The method has been applied to eight different coffees available on the Romanian market which were previously analysed concerning the total polyphenols content and antioxidant capacity. Reduction of the DPPH radical was used to determine the antioxidant capacity of the coffee extracts while the total polyphenols content was determined by spectrophotometry (Folin Ciocalteu's method). The total polyphenols content ranged from 1.98 g GAE/100 g to 4.19 g GAE/100 g while the caffeine content ranged from 1.89 g/100 g to 3.05 g/100 g. A large variability was observed in chlorogenic acid content of the investigated coffee samples which ranged between 0.6 and 2.32 g/100 g.

  15. Antioxidant glucosylated caffeoylquinic acid derivatives in the invasive tropical soda apple, Solanum viarum

    Science.gov (United States)

    The eggplant (Solanum melongena) and other species within the “spiny solanums” (Solanum subgenus Leptostemonum) contain diverse and abundant antioxidant caffeoylquinic acid (CQA) derivatives. The fruit of an aggressive invasive species in the spiny solanums, Solanum viarum, contain numerous CQA deri...

  16. Maternal and neonatal plasma antioxidant levels in normal pregnancy, and the relationship with fatty acid unsaturation

    NARCIS (Netherlands)

    Oostenbrug, G.S.; Mensink, R.P.; Al, M.D.M.; Houwelingen, A.C. van; Hornstra, G.

    1998-01-01

    During pregnancy, maternal plasma concentrations of the peroxidation-susceptible polyunsaturated fatty acids (polyenes) increase. In addition, the proportion of polyenes is higher in neonatal plasma than in maternal plasma. To study whether these increased amounts of polyenes affect antioxidant leve

  17. Phenylpropanoid acid esters from Korean propolis and their antioxidant activities.

    Science.gov (United States)

    Lee, In-Kyoung; Han, Myung-Suk; Kim, Dae-Won; Yun, Bong-Sik

    2014-08-01

    Ten phenylpropanoic acid esters were isolated from an ethanolic extract of Korean propolis. Their structures were elucidated by spectroscopic methods including NMR and ESI-MS. Caffeic acid esters with catechol moiety exhibited significant ABTS and DPPH radical scavenging activity and protective effect against DNA damage by a Fenton reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Skin delivery of antioxidant surfactants based on gallic acid and hydroxytyrosol.

    Science.gov (United States)

    Alonso, Cristina; Lucas, Ricardo; Barba, Clara; Marti, Meritxell; Rubio, Laia; Comelles, Francesc; Morales, Juan Carlos; Coderch, Luisa; Parra, José Luís

    2015-07-01

    The aim of this study has been to investigate the dermal absorption profile of the antioxidant compounds gallic acid and hydroxytyrosol as well as their derivatives, hexanoate (hexyl gallate and hydroxytyrosol hexanoate) and octanoate (octyl gallate and octanoate derivative) alkyl esters (antioxidant surfactants). Previously, the scavenging capacity of these compounds, expressed as efficient dose ED50, has also determined. The percutaneous absorption of these compounds was obtained by an in vitro methodology using porcine skin biopsies on Franz static diffusion cells. The antiradical activity of compounds was determined using the 1,1-diphenyl-2-picrylhydrazyl free radical method. The percutaneous penetration results show the presence of antioxidants in all layers of the skin. The content of the cutaneously absorbed compound is higher for the antioxidant surfactants (ester derivatives). This particular behaviour could be due to the higher hydrophobicity of these compounds and the presence of surface activity in the antioxidant surfactants. These new antioxidant surfactants display optimum properties, which may be useful in the preparation of emulsified systems in cosmetic and pharmaceutical formulations because of their suitable surface activity and because they can protect the skin from oxidative damage. © 2015 Royal Pharmaceutical Society.

  19. Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system.

    Science.gov (United States)

    Lenzi, Juliana; Rodrigues, Andre Felipe; Rós, Adriana de Sousa; de Castro, Amanda Blanski; de Castro, Bianca Blanski; de Lima, Daniela Delwing; Magro, Débora Delwing Dal; Zeni, Ana Lúcia Bertarello

    2015-12-01

    Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation.

  20. Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation.

    Science.gov (United States)

    Feng, Yingshu; Sun, Congyong; Yuan, Yangyang; Zhu, Yuan; Wan, Jinyi; Firempong, Caleb Kesse; Omari-Siaw, Emmanuel; Xu, Yang; Pu, Zunqin; Yu, Jiangnan; Xu, Ximing

    2016-03-30

    In the present study, a formulation system consisting of cholesterol and phosphatidyl choline was used to prepare an effective chlorogenic acid-loaded liposome (CAL) with an improved oral bioavailability and an increased antioxidant activity. The developed liposomal formulation produced regular, spherical and multilamellar-shaped distribution nanoparticles. The pharmacokinetic analysis of CAL compared with chlorogenic acid (CA), showed a higher value of Cmax(6.42 ± 1.49 min versus 3.97 ± 0.39 min) and a delayed Tmax(15 min versus 10 min), with 1.29-fold increase in relative oral bioavailability. The tissue distribution in mice also demonstrated that CAL predominantly accumulated in the liver which indicated hepatic targeting potential of the drug. The increased activities of antioxidant enzymes (Total Superoxide Dismutase (T-SOD) and Glutathione Peroxidase (GSH-Px)) and total antioxidant capacity (T-AOC), in addition to decreased level of malondialdehyde (MDA) in CCl4-induced hepatotoxicity study further revealed that CAL exhibited significant hepatoprotective and antioxidant effects. Collectively, these findings present a liposomal formulation with significantly improved oral bioavailability and an increased in vivo antioxidant activity of CA.

  1. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.

    Directory of Open Access Journals (Sweden)

    Thiago C Genaro-Mattos

    Full Text Available Caffeic acid (CA is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here--in association with its reported signaling effects--could be an explanation to its

  2. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation—A Chemical Approach

    Science.gov (United States)

    Genaro-Mattos, Thiago C.; Maurício, Ângelo Q.; Rettori, Daniel; Alonso, Antonio; Hermes-Lima, Marcelo

    2015-01-01

    Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here—in association with its reported signaling effects—could be an explanation to its beneficial effects

  3. Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin.

    Science.gov (United States)

    Russo, A; Longo, R; Vanella, A

    2002-11-01

    Propolis, a natural product produced by the honeybee, has been used for thousands of years in folk medicine for several purposes. The extract contains amino acids, phenolic acids, phenolic acid esters, flavonoids, cinnamic acid, terpenes and caffeic acid. It possesses several biological activities such as antiinflammatory, immunostimulatory, antiviral and antibacterial. The exact mode of physiological or biochemical mechanisms responsible for the medical effects, however, is yet to be determined. In this work, we have investigated the antioxidant activity of a propolis extract deprived of caffeic acid phenethyl ester (CAPE). In addition, the activity of CAPE and galangin was also examined. Propolis extract (with and without CAPE) and its active components showed a dose-dependent free radical scavenging effect, a significant inhibition of xanthine oxidase activity, and an antilipoperoxidative capacity. Propolis extract with CAPE was more active than propolis extract without CAPE. CAPE, used alone, exhibited a strong antioxidant activity, higher than galangin. The experimental evidence, therefore, suggests that CAPE plays an important role in the antioxidant activity of propolis.

  4. Synthesis and antioxidant activity of star-shape phenolic antioxidants catalyzed by acidic nanocatalyst based on reduced graphene oxide.

    Science.gov (United States)

    Golestanzadeh, Mohsen; Naeimi, Hossein; Zahraie, Zohreh

    2017-02-01

    Phenolic antioxidants play important role in prevention of oxidation in different industrials. The research objective in the current study was synthesis and evaluate of antioxidant activity of star-shape phenolic antioxidants. The synthetic compounds were prepared in the presence of sulfonated reduced graphene oxide. The antioxidant activity of synthesized compounds was investigated by spectrophotometrically method according to the DPPH assay. Overall, these compounds are potentially important antioxidant and also to limit activity of reactive oxygen species.

  5. Effect of Thermoultrasound on the Antioxidant Compounds and Fatty Acid Profile of Blackberry (Rubus fruticosus spp.) Juice.

    Science.gov (United States)

    Manríquez-Torres, José de Jesús; Sánchez-Franco, José Antonio; Ramírez-Moreno, Esther; Cruz-Cansino, Nelly Del Socorro; Ariza-Ortega, José Alberto; Torres-Valencia, Jesús Martín

    2016-11-29

    Blackberry (Rubus fruticosus spp.) fruit has high antioxidant activity due to its significant content of anthocyanins and antioxidant compounds. Among emerging technologies for food preservation, thermoultrasound is a technique that reduces microbial loads and releases compounds with antioxidant properties. The objective of this study was to determine the antioxidant content and fatty acid profile of blackberry juice subjected to thermoultrasound treatment in comparison to pasteurized juice. Blackberry juice and n-hexane extracts from a control (untreated juice), pasteurized, and thermoultrasonicated samples were evaluated for antioxidant activity, fatty acid profile, and antioxidant content. The juice treated with thermoultrasound exhibited significantly (p juice also had the highest antioxidant activity (177.5 mg VCEAC/L and 1802.6 µmol TE/L). The fatty acid profile of the n-hexane extracts showed the presence of myristic, linolenic, stearic, oleic, and linoleic acids and was not affected by the treatments except for stearic acid, whose amount was particularly higher in the control. Our results demonstrated that thermoultrasound can be an alternative technology to pasteurization that maintains and releases antioxidant compounds and preserves the fatty acids of fruit juice.

  6. Impact of salicylic acid on antioxidants, biomass and osmotic ...

    African Journals Online (AJOL)

    USER

    2013-08-14

    Aug 14, 2013 ... (Singh and Usha, 2003), enhance photosynthetic rate and growth rate ... performance liquid chromatography; ABA, abscisic acid; P5CS, .... filter paper. ..... activity and plastid pigments content in lucerne under the influence of.

  7. Antioxidant activity of amino acids in soybean oil at frying temperature: Structural effects and synergism with tocopherols.

    Science.gov (United States)

    Hwang, Hong-Sik; Winkler-Moser, Jill K

    2017-04-15

    The purpose of this study was to evaluate amino acids as natural antioxidants for frying. Twenty amino acids were added to soybean oil heated to 180°C, and the effects of amino acid structure on the antioxidant activity were investigated. Amino acids containing a thiol, a thioether, or an extra amine group such as arginine, cysteine, lysine, methionine, and tryptophan had the strongest antioxidant activities. At 5.5mM, these amino acids had stronger antioxidant activities than 0.02% (1.1mM) tert-butylhydroquinone (TBHQ). A functional group such as an amide, carboxylic acid, imidazole, or phenol appeared to negatively affect amino acid antioxidant activity. Synergism between amino acids and tocopherols was demonstrated, and we found that this synergistic interaction may be mostly responsible for the antioxidant activity that was observed. In a frying study with potato cubes, 5.5mM l-methionine had significantly stronger antioxidant activity than 0.02% TBHQ.

  8. Antibacterial and Antioxidant Activities of Ursolic Acid and Derivatives

    Directory of Open Access Journals (Sweden)

    Patrícia G.G. do Nascimento

    2014-01-01

    Full Text Available Ursolic acid, an important bioactive compound, was isolated from ethanol extract of aerial parts of Sambucus australis. In order to develop bioactive ursolic acid derivatives, two semi-synthetic compounds were obtained through modification at C-3. The antibacterial activity of the ursolic acid and its derivatives was investigated. The microdilution method was used for determination of the minimal inhibitory concentration (MIC, against twelve bacterial strains. The influence of ursolic acid and its derivatives on the susceptibility of some bacterial pathogens to the aminoglycosides antibiotics neomycin, amikacin, kanamycin and gentamicin was evaluated. The most representative synergistic effect was observed by 3β-formyloxy-urs-12-en-28-oic acid at the concentration of 64 μg/mL in combination with kanamycin against Escherichia coli (27, a multidrug-resistant clinical isolate from sputum, with reduction of MIC value from 128 μg/mL to 8 μg/mL. Ursolic acid and its derivatives were examined for their radical scavenger activity using the DPPH assay, and showed significant activity.

  9. [Antioxidant activity of vegetable oils with various omega-6/omega-3 fatty acids ratio].

    Science.gov (United States)

    Guseva, D A; Prozorovskaia, N N; Shironin, A V; Sanzhakov, M A; Evteeva, N M; Rusina, I F; Kasaikina, O T

    2010-01-01

    Antioxidant activity and the oxidative stability were investigated in flax, sesame, silybum oils and oils with different omega-6/omega-3 fatty acid ratio. The content of antioxidants (AO) in crude oils and their reactivity towards peroxyl radicals were studied using kinetic method for addition of oil in a model reaction of cumol oxidation. There were correlations between PUFA/omega-9 and thermal stability (50 degrees C); between gamma-tocopherol content and resistantance to oxidative changes after storage at (10 +/- 2) degrees C for 6 months.

  10. Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus.

    Science.gov (United States)

    Wei, Yunxiao; Liu, Zhenfeng; Su, Yujing; Liu, Donghong; Ye, Xingqian

    2011-03-01

    The effects of salicylic acid (SA) on the quality and antioxidant activity of asparagus stored at 18 ± 2 °C were investigated by analyzing the color, chlorophyll, shear force, and the activity of antioxidant compounds such as ascorbic acid, phenolics, flavonoids, 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity ferric reducing antioxidant power (FRAP), and polyamines (PAs). The results showed that SA improved the color and maintained the chlorophyll, phenolic, flavonoid, and ascorbic acid content of asparagus. High concentrations of SA caused a deterioration in asparagus would harm to color and had no effect on shear force within 6 d. SA induced the maximum concentration of phenolics in postharvest asparagus, promoted the increase in total flavonoids before 6 to 9 d, affected the antioxidant activity positively as indicated by the resultant increase in FRAP concentration; however, SA was only active with regard to DPPH scavenging activity within 6 d of treatment. Spermidine (Spd) is the most common form of PA in asparagus, and free putrescine (Put) contents increased over the first 3 d following harvest and then decreased. Spd and Spm concentrations evolved in a similar way and decreased during storage. Higher Spd and Spm contents in the SA pre-treatment Put was inhabited and its peaks appeared later.

  11. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria.

    Science.gov (United States)

    Rizzello, Carlo Giuseppe; Lorusso, Anna; Russo, Vito; Pinto, Daniela; Marzani, Barbara; Gobbetti, Marco

    2017-01-16

    Lactic acid bacteria strains, previously isolated from the same matrix, were used to ferment quinoa flour aiming at exploiting the antioxidant potential. As in vitro determined on DPPH and ABTS radicals, the scavenging activity of water/salt-soluble extracts (WSE) from fermented doughs was significantly (Pquinoa dough fermented with Lactobacillus plantarum T0A10. The corresponding WSE was subjected to Reverse Phase Fast Protein Liquid Chromatography, and 32 fractions were collected and subjected to in vitro assays. The most active fraction was resistant to further hydrolysis by digestive enzymes. Five peptides, having sizes from 5 to 9 amino acid residues, were identified by nano-Liquid Chromatography-Electrospray Ionisation-Mass Spectra/Mass Spectra. The sequences shared compositional features which are typical of antioxidant peptides. As shown by determining cell viability and radical scavenging activity (MTT and DCFH-DA assays, respectively), the purified fraction showed antioxidant activity on human keratinocytes NCTC 2544 artificially subjected to oxidative stress. This study demonstrated the capacity of autochthonous lactic acid bacteria to release peptides with antioxidant activity through proteolysis of native quinoa proteins. Fermentation of the quinoa flour with a selected starter might be considered suitable for novel applications as functional food ingredient, dietary supplement or pharmaceutical preparations.

  12. HPLC Quantification of Phenolic Acids from Vetiveria zizanioides (L. Nash and Its Antioxidant and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Jha Prajna

    2013-01-01

    Full Text Available Extraction procedure was standardized and for the soluble, glycoside, and wall-bound fractions of phenolic acids from Vetiveria zizanioides. The water soluble alkaline extract which represents the cell wall-bound fraction contained the highest amount of phenolic acids (2.62 ± 1.2 μM/g fwt GA equivalents. Increased phenolic content in the cell wall indicates more lignin deposition which has an important role in plant defense and stress mitigation. Antioxidant property expressed as percentage TEAC value obtained by ABTS assay was correlated with the amount of phenolic acids and showed a Pearson's coefficient 0.988 (significant at 0.01 level. The compounds p-coumaric acid, p-dihydroxybenzoic acid, and ferulic acid were detected in the acidic extracts by HPLC analysis. The plant extracts exhibited considerable antimicrobial activity against tested bacterial and fungal strains.

  13. Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties.

    Science.gov (United States)

    Göçer, Hülya; Gülçin, Ilhami

    2011-12-01

    Caffeic acid phenethyl ester (CAPE), a plant polyphenolic concentrated in honeybee propolis, has been found to be biologically active in a variety of pathways. The aim of this study was to determine the antioxidant activity of CAPE using different methods such as total antioxidant activity by the thiocyanate method, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid radicals, 1,1-diphenyl-2-picryl-hydrazyl free radicals, N,N-dimethyl-p-phenylenediamine dihydrochloride radicals and superoxide anion radicals scavenging activities, reducing power and ferrous ions (Fe(2+)) chelating activities. CAPE showed 97.9% inhibition on lipid peroxidation of linoleic acid emulsion. On the other hand, butylated hydroxyanisole, butylated hydroxytoluene, α-tocopherol and trolox indicated an inhibition of 87.3, 97.6, 75.3 and 90.3% on peroxidation in the same system, respectively.

  14. Synthesis and Antioxidant Activity of Polyhydroxylated trans-Restricted 2-Arylcinnamic Acids

    Directory of Open Access Journals (Sweden)

    Mitko Miliovsky

    2015-02-01

    Full Text Available A series of sixteen polyhydroxylated trans-restricted 2-arylcinnamic acid analogues 3a–p were synthesized through a one-pot reaction between homophthalic anhydrides and various aromatic aldehydes, followed by treatment with BBr3. The structure of the newly synthesized compounds was confirmed by spectroscopic methods and the configuration around the double bond was unequivocally estimated by means of gated decoupling 13C-NMR spectra. It was shown that the trans-cinnamic acid fragment incorporated into the target compounds’ structure ensures the cis-configuration of the stilbene backbone and prevents further isomerization along the carbon–carbon double bond. The antioxidant activity of compounds 3a–p was measured against 1,1-diphenyl-2-picrylhydrazyl (DPPH●, hydroxyl (OH● and superoxide (O2●▬ radicals. The results obtained showed that the tested compounds possess higher activities than natural antioxidants such as protocatechuic acid, caffeic acid and gallic acid. Moreover, it was shown that a combination of two different and independently acting fragments of well-known pharmacological profiles into one covalently bonded hybrid molecule evoke a synergistic effect resulting in higher than expected activity. To rationalize the apparent antioxidant activity and to establish the mechanism of action, a SAR analysis and DFT quantum chemical computations were also performed.

  15. Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation.

    Science.gov (United States)

    Szeto, Yim Tong; Tomlinson, Brian; Benzie, Iris F F

    2002-01-01

    Epidemiological evidence links high intake of ascorbic acid (AA) and other antioxidant micronutrients to health promotion. It would be useful to know the overall, or 'total' antioxidant capacity of foods, to establish the contribution of AA to this, and to assess how this information may translate into dietary intakes to meet the new US daily reference intake for AA. In this study, the total antioxidant capacity, as the ferric reducing-antioxidant power (FRAP) value, and AA content of thirty-four types of fruits and vegetables were measured using a modified version of the FRAP assay, known as FRASC. This measures AA (reduced form only) simultaneously with the FRAP value. Results covered a wide range: 880-15940 micromol/kg fresh wet weight and food production, preparation, preservation, and aid dietary choices to increase antioxidant and AA intake. Furthermore, FRASC will facilitate bioavailability studies of antioxidants from different foods of known antioxidant capacity and AA content.

  16. Characterization of Phytochemicals and Antioxidant Activities of Red Radish Brines during Lactic Acid Fermentation

    Directory of Open Access Journals (Sweden)

    Pu Jing

    2014-07-01

    Full Text Available Red radish (Raphanus L. pickles are popular appetizers or spices in Asian-style cuisine. However, tons of radish brines are generated as wastes from industrial radish pickle production. In this study, we evaluated the dynamic changes in colour properties, phenolics, anthocyanin profiles, phenolic acid composition, flavonoids, and antioxidant properties in radish brines during lactic acid fermentation. The results showed that five flavonoids detected were four anthocyanins and one kaempferol derivative, including pelargonidin-3-digluoside-5-glucoside derivatives acylated with p-coumaric acid, ferulic acid, p-coumaric and manolic acids, or ferulic and malonic acids. Amounts ranged from 15.5–19.3 µg/mL in total monomeric anthocyanins, and kaempferol-3,7-diglycoside (15–30 µg/mL. 4-Hydroxy-benzoic, gentisic, vanillic, syringic, p-coumaric, ferulic, sinapic and salicylic acids were detected in amounts that varied from 70.2–92.2 µg/mL, whereas the total phenolic content was 206–220 µg/mL. The change in colour of the brine was associated with the accumulation of lactic acid and anthocyanins. The ORAC and Fe2+ chelation capacity of radish brines generally decreased, whereas the reducing power measured as FRAP values was increased during the fermentation from day 5 to day 14. This study provided information on the phytochemicals and the antioxidative activities of red radish fermentation waste that might lead to further utilization as nutraceuticals or natural colorants.

  17. ANTIOXIDANT AND PRO-OXIDANT EFFECT OF ASCORBIC ACID

    Directory of Open Access Journals (Sweden)

    Goran Rankovic

    2005-01-01

    Full Text Available Free radicals attack proteins, lipids, enzymes and DNA causing pathological changes in organism. There are many mechanisms that organism uses to fight against free radicals. Ascorbic acid is one of the strongest reducers and eliminators of free radicals. It reduces stable oxygenic, azoth and thyol radicals and acts as a primary defense against water radicals in blood. When radicals are dissolved in water suspensions of erythrocytes and low density lipoproteins (LDL, ascorbic acid catches and eliminates free radicals before they arrive to the membrane and LDL molecules. Even though ascorbic acid is not capable of eliminating free radicals out of fluid medium, it acts as synergist to alpha-tocopherol in lipid section, contributes to the lessening of lipid tocoperoxil radicals, and above all, regenerates alpha-tocopherol. Ascorbic acid may act as pro-oxidant under in vitro conditions in the presence of metals; however, this effect is probably not important under in vivo conditions where metal ions, being sequestered, become second reducers.

  18. Effect of antioxidants on stabilization of meat products fortified with n-3 fatty acids.

    Science.gov (United States)

    Lee, S; Faustman, C; Djordjevic, D; Faraji, H; Decker, E A

    2006-01-01

    The effects of an n-3 oil emulsion, with and without added antioxidants, on lipid oxidation in n-3 polyunsaturated fatty acid (PUFA)-fortified meat products were studied. An emulsion of n-3 PUFAs was prepared (25% algal oil, 2.5% whey protein isolates, 10mM sodium citrate, 0.2% potassium sorbate, 500ppm of 70% mixed tocopherols, 100μM EDTA, pH 3, pasteurized at 75°C for 30min) and incorporated into fresh ground turkey, and fresh pork sausage (20% fat) to achieve a concentration of 500mg n-3 PUFA/110g meat. An antioxidant combination containing rosemary (0.2% w/w; radical quencher), citrate (0.5% w/w; sequestrant) and erythorbate (1g/kg product; reductant) was prepared and incorporated into ground turkey patties (5cm dia, 1.5cm thick) or fresh pork sausages (5cm dia, 1.5cm thick). Meat products were stored at 4°C or -18°C and analyzed for color (L*, a*, b* values), lipid oxidation (TBARS and lipid hydroperoxides) and n-3 PUFA profile. a* Values of refrigerated ground turkey patties decreased with storage, and an antioxidant combination effect was observed after 4 days (Psausages at 4°C, control+antioxidant (CON+ANTI), and n-3+antioxidant (n-3+ANTI) groups showed greater a* values than controls (CON) indicating that the antioxidant combination stabilized meat color. TBARS and lipid hydroperoxides of both n-3 PUFA-enhanced meat products increased with storage (P0.05). These results provide support for including antioxidant protection in n-3 PUFA fortified meat products.

  19. Response of antioxidant system of tomato to water deficit stress and its interaction with ascorbic acid

    Directory of Open Access Journals (Sweden)

    Fatemeh Daneshmand

    2014-03-01

    Full Text Available Environmental stresses including water deficit stress may produce oxidants such as reactive oxygen species that damage the membrane structure in plants. Among the antioxidants, ascorbic acid has a critical role in the cell and scavenges reactive oxygen species. In this research, effects of ascorbic acid at two levels (0 and 10 mM and water deficit stress based on 3 levels of field capacity (100, 60 and 30% were studied in tomato plants. Both levels of stress increased lipid peroxidation, reduced the amount of ascorbic acid and glutathione and increased the activity of enzymes superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase and reduced the growth parameters. Ascorbic acid treatment, reduced lipid peroxidation, increased ascorbic acid and glutathione levels and decreased the activity of superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase and guaiacol peroxidase and positive effects of ascorbic acid treatment appeared to improve the plant growth parameters.

  20. Effects of Omega-3 Fatty Acids Supplement on Antioxidant Enzymes Activity in Type 2 Diabetic Patients.

    Science.gov (United States)

    Toorang, Fatemeh; Djazayery, Abolghassem; Djalali, Mahmoud

    2016-03-01

    Diabetes is a major cause of death. Oxidative stress mainly caused by hyperglycemia is the primary reason of related complications. Omega-3 fatty acids are prescribed in diabetes but the effect on antioxidant defense is controversial. This study investigated effects of omega-3 supplementation on antioxidant enzymes activity in type 2 diabetic patients. A randomized, placebo controlled, double blind clinical trial was performed on 90 type2 diabetic patients. The treatment group took, daily, three capsules of omega-3 for two mo, which totally provided 2714mg omega-3 (EPA=1548 mg, DHA=828 mg and 338 mg of other omega=3 fatty acids). Placebo contained 2100 mg sunflower oil (12% SFA, 65% linoleic acid, 23% MUFA), which is the main oil used in the study population. Food intakes, anthropometric and demographic characteristics, and therapeutic regimen data were recorded before and after the intervention. Fasting blood samples were taken before and after the intervention to measure super oxide dismutase, glutathione peroxidase, glutathione reductase, catalase and total antioxidant capacity in erythrocytes. A total of 81 subjects completed the study. Two study groups were similar as regards duration of diabetes, age and the enzymes at baseline. Energy and macro- and micronutrients intakes, weight and hypoglycemic agent consumption were similar in the two groups at baseline and did not change. Supplementation had no effect on antioxidant enzyme status. Glycated hemoglobin showed a significant reduction by supplementation. Daily supplementation of 2714 mg mega-3 for two mo results in a significant reduction in HbA1c level in type2 diabetic patients with no effects on antioxidant enzymes activity.

  1. Yoghurts with addition of selected vegetables: acidity, antioxidant properties and sensory quality

    Directory of Open Access Journals (Sweden)

    Dorota Najgebauer-Lejko

    2014-03-01

    Full Text Available Background. Yoghurt is a fermented milk of unique sensory, nutritive and dietetic value offered in a variety of types and in different fl avours. Vegetables belong to the group of food products rich in antioxidant substances (e.g., vitamin C, carotenoids, tocopherols, polyphenols which regular consumption lowers the risk of many diseases including cancers and cardiovascular disorders. The aim of the present work was to manufacture and assess the acidity, sensory quality and antioxidant capacity of yoghurts with addition of selected vegetables during 2-week refrigerated storage. Material and methods. The vegetable preparations (carrot, pumpkin, broccoli and red sweet pepper were added to the cow’s milk fermented using DVS type yoghurt culture after initial cooling to 15-20°C in the amount of 10% (w/w. The following analyses were performed: determination of pH, titratable acidity, antioxidant activity by ferric reducing antioxidant power (FRAP and 2,2’-diphenyl-1-picrylhydrazyl (DPPH method as well as sensory evaluation and were conducted after 1, 7 and 14 days of cold storage. Results. The yoghurt supplementation with selected vegetables had no signifi cant effect on the pH and titratable acidity level. The highest ability to scavenge DPPH radicals was stated for yoghurts with broccoli and red sweet pepper. The latter treatment gained the highest notes in sensory evaluation. All vegetable yoghurts were characterised by higher than the natural yoghurt FRAP values measured directly after production. However, the level of this parameter signifi cantly decreased after storage. Conclusions. The red sweet pepper additive was the most benefi cial regarding antioxidant properties and organoleptic acceptance of the studied yoghurts.

  2. The cysteine releasing pattern of some antioxidant thiazolidine-4-carboxylic acids.

    Science.gov (United States)

    Önen Bayram, F Esra; Sipahi, Hande; Acar, Ebru Türköz; Kahveci Ulugöl, Reyhan; Buran, Kerem; Akgün, Hülya

    2016-05-23

    Oxidative stress that corresponds to a significant increase in free radical concentration in cells can cause considerable damage to crucial biological macromolecules if not prevented by cellular defense mechanisms. The low-molecular-weight thiol glutathione (GSH) constitutes one of the main intracellular antioxidants. It is synthesized via cysteine, an amino acid found only in limited amounts in cells because of its neurotoxicity. Thus, to ensure an efficient GSH synthesis in case of an oxidative stress, cysteine should be provided extracellularly. Yet, given its nucleophilic properties and its rapid conversion into cystine, its corresponding disulfide, cysteine presents some toxicity and therefore is usually supplemented in a prodrug approach. Here, some thiazolidine-4-carboxylic acids were synthesized and evaluated for their antioxidant properties via the DDPH and CUPRAC assays. Then, the cysteine releasing capacity of the obtained compounds was investigated in aqueous and organic medium in order to correlate the relevant antioxidant properties of the molecules with their cysteine releasing pattern. As a result, the structures' antioxidative properties were not only attributed to cysteine release but also to the thiazolidine cycle itself.

  3. Preliminary studies on the chemical characterization and antioxidant properties of acidic polysaccharides from Sargassum fusiforme

    Institute of Scientific and Technical Information of China (English)

    Jing ZHOU; Nan HU; Ya-lin WU; Yuan-jiang PAN; Cui-rong SUN

    2008-01-01

    In order to investigate the antioxidant properties of the polysaccharides from the brown alga Sargassum fusiforme, the crude polysaccharides from S.fusiforme (SFPS) were extracted in hot water, and the lipid peroxidation inhibition assay exhibited that SFPS possessed a potential antioxidant activity. Hence, two purely polymeric fractions, SFPS-1 and SFPS-2 were isolated by the column of DEAE (2-diethylaminoethanol)-Sepharose Fast Flow, with their molecular weights of 51.4 and 30.3 kDa determined by high performance gel permeation chromatography (HPGPC). They were preliminarily characterized using chemical analysis in combination of infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies and found to contain large amounts of uronic acids and β-glycosidical linkages. The antioxidant activities of these two SFPS fractions were evaluated using superoxide and hydroxyl radical-scavenging assays. The results show that the antioxidant ability of SFPS-2 was higher than that of SFPS-1, probably correlating with the molecular weight and uronic acid content.

  4. Characteristics of Oxidative Storage Stability of Canola Fatty Acid Methyl Ester Stabilised with Antioxidants

    Directory of Open Access Journals (Sweden)

    Tirto Prakoso

    2012-11-01

    Full Text Available The storage effects on the oxidation characteristics of fatty acid methyl ester of canola oil (CME were investigated in this study. CME stabilised with two antioxidants, i.e. 2,6-di-tert-bytyl-p-cresol (BHT and 6,6-di-tert-butyl-2, 2’-methylendi-p-cresol (BPH, was stored at 20, 40 and 60°C. The oxidation stability data were measured by the Rancimat test method and it was found that both BHT and BPH addition increased the oxidation resistance of the CME. The results showed that when BPH or BHT was added at a concentration of 100 ppm, the oxidation induction period of the neat CME samples increased from 5.53 h to 6.93 h and 6.14 h, respectively. Comparing both antioxidants, BPH proved to be more effective in increasing the oxidation resistance when both antioxidants were added at the same concentration. Furthermore, the oxidation induction time decreased linearly with the storage time. It was shown that the oxidation occurred rapidly in the first 8 weeks of storage. Later, a kinetic study was undertaken and first-order kinetics were applied to explain the oxidation characteristics of the CME added with antioxidants. This kinetic study focused on exploiting the activation energy values obtained from the Arrhenius equations. Also, the oxidation effects on other quality parameters, including acid value, peroxide value, kinematic viscosity, and water content, were examined.

  5. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.

    Science.gov (United States)

    Parashar, Akshaya; Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2014-09-01

    The aim was to explore the responses of varied doses of manganese in mustard plants and also to test the proposition that salicylic acid induced up-regulation of antioxidant system which protect photosynthetic apparatus. Seeds were sown in pots and allowed to germinate under natural environmental conditions. At 10 days stage, soils in the pots were enriched with different levels (0, 3, 6, or 9 mM) of Mn for three days and allowed to grow till 30 day stage. At 31st day, foliage of plants was sprayed with 10 μM of salicylic acid (SA) and then allowed to grow till 45 days. Then plants were harvested to assess various growth, leaf gas exchange traits and biochemical parameters. Mn-treated plants had diminished growth, water relations and photosynthetic attributes along with carbonic anhydrase activity whereas; the level of lipid peroxidation, electrolyte leakage, accumulation of H2O2 along with proline accumulation and antioxidant enzymes increased in a concentration dependent manner. Follow-up application of SA to the Mn-stressed plants improved growth, water relations and photosynthetic traits, accelerated the activity of antioxidant enzymes and also the accumulation of proline. SA mediated tolerance to Mn-stressed plants could have due to up-regulation of antioxidant enzymes and proline accumulation.

  6. Phenolic acid induced growth of gold nanoshells precursor composites and their application in antioxidant capacity assay.

    Science.gov (United States)

    Ma, Xiaoyuan; Qian, Weiping

    2010-11-15

    In the present work, the gold nanoshells (GNSs) precursor composites were preadsorbed onto the surface of ITO substrates. With the treatment of modified electrodes immersed in the gold nanoparticles (GNPs) growth solution containing different phenolic acids, the GNSs precursor composites were enlarged to varying degrees. Phenolic acids with one or more phenolic hydroxyl groups served as reductants for the growth of GNPs. The enlargement conditions varied with the different reducing capacity of phenolic acids, exhibiting specific morphologies differ from the complete GNSs. Consequently, the UV-vis-NIR spectra and cyclic voltammetry curves for the phenolic acid-treated ITO electrode were gradually changed. Results showed that the higher reducing capacity for phenolic acid to reduce AuCl(4)(-) to Au(0) resulted in the intensified localized surface plasmon resonance features and reduced cathodic currents. The spectral wavelength peaks red shifted hundreds of nanometers across the visible region. Moreover, the antioxidant capacity of phenolic acids correlates well with their reducing activity, both of which reflect their tendency to donate electrons. Thus, the optical and electrochemical results could be used to evaluate the antioxidant capacity of phenolic acids by utilizing GNSs precursor composites as nanoprobes. The method is simple, rapid and could be used in visual analysis to a certain extent.

  7. Phytochemical analysis, antioxidant activity, fatty acids composition, and functional group analysis of Heliotropium bacciferum.

    Science.gov (United States)

    Ahmad, Sohail; Ahmad, Shabir; Bibi, Ahtaram; Ishaq, Muhammad Saqib; Afridi, Muhammad Siddique; Kanwal, Farina; Zakir, Muhammad; Fatima, Farid

    2014-01-01

    Heliotropium bacciferum is paramount in medicinal perspective and belongs to Boraginaceae family. The crude and numerous fractions of leaves, stem, and roots of the plant were investigated for phytochemical analysis and DPPH radical scavenging activity. Phytochemical analysis of crude and fractions of the plant revealed the presence of alkaloids, saponins, tannins, steroids, terpenoids, flavonoids, glycosides, and phenols. The antioxidant (free radical scavenging) activity of various extracts of the Heliotropium bacciferum was resolute against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical with the avail of UV spectrophotometer at 517 nm. The stock solution (1000 mg/mL) and then several dilutions (50, 100, 150, 200, and 250 mg/mL) of the crude and fractions were prepared. Ascorbic acid was used as a standard. The plant leaves (52.59 ± 0.84 to 90.74 ± 1.00), stem (50.19 ± 0.92 to 89.42 ± 1.10), and roots extracts (49.19 ± 0.52 to 90.01 ± 1.02) divulged magnificent antioxidant activities. For the ascertainment of the fatty acid constituents a gas chromatograph hyphenated to mass spectrometer was used. The essential fatty acids for growth maintenance such as linoleic acid (65.70%), eicosadienoic acid (15.12%), oleic acid (8.72%), and palmitic acid (8.14%) were found in high percentage. The infrared spectra of all extracts of the plant were recorded by IR Prestige-21 FTIR model.

  8. Effect of high doses of L-ascorbic acid on the antioxidative/oxidative state in the rats

    DEFF Research Database (Denmark)

    Niemiec, T.; Sawosz, E.; Chwalibog, André

    2005-01-01

    The objective of this study was to determine the effects of mega-doses of vitamin C (0.3, 0.6 and 0.9% of diet) as a dietary supplement for rats on selected indices of the antioxidative/oxidative state in 40 growing Wistar rats (4x10). It was found that L-ascorbic acid and Total Antioxidative State...

  9. Synthesis of a Functionalized Benzofuran as a Synthon for Salvianolic Acid C Analogues as Potential LDL Antioxidants

    Directory of Open Access Journals (Sweden)

    Gabriela López-Frías

    2015-05-01

    Full Text Available A palladium mediated synthesis of a common synthon for the syntheses of antioxidant analogues of naturally occurring salvianolic acids is presented. The synthetic route may be used to obtain analogues with a balanced lipophilicity/hydrophilicity which may result in potentially interesting LDL antioxidants for the prevention of cardiovascular diseases.

  10. Synthesis of a Functionalized Benzofuran as a Synthon for Salvianolic Acid C Analogues as Potential LDL Antioxidants.

    Science.gov (United States)

    López-Frías, Gabriela; Camacho-Dávila, Alejandro A; Chávez-Flores, David; Zaragoza-Galán, Gerardo; Ramos-Sánchez, Víctor H

    2015-05-14

    A palladium mediated synthesis of a common synthon for the syntheses of antioxidant analogues of naturally occurring salvianolic acids is presented. The synthetic route may be used to obtain analogues with a balanced lipophilicity/hydrophilicity which may result in potentially interesting LDL antioxidants for the prevention of cardiovascular diseases.

  11. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.

  12. Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk.

    Science.gov (United States)

    Alemán, Mercedes; Bou, Ricard; Guardiola, Francesc; Durand, Erwann; Villeneuve, Pierre; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke

    2015-01-15

    The antioxidative effect of lipophilized caffeic acid was assessed in two different fish oil enriched food products: mayonnaise and milk. In both emulsion systems, caffeic acid esterified with fatty alcohols of different chain lengths (C1-C20) were better antioxidants than the original phenolic compound. The optimal chain length with respect to protection against oxidation was, however, different for the two food systems. Fish oil enriched mayonnaise with caffeates of medium alkyl chain length (butyl, octyl and dodecyl) added resulted in a better oxidative stability than caffeates with shorter (methyl) or longer (octadecyl) alkyl chains. Whereas in fish oil enriched milk emulsions the most effective caffeates were those with shorter alkyl chains (methyl and butyl) rather than the ones with medium and long chains (octyl, dodecyl, hexadecyl and eicosyl). These results demonstrate that there might be an optimum alkyl chain length for each phenolipid in each type of emulsion systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments.

    Science.gov (United States)

    Giménez, María José; Valverde, Juan Miguel; Valero, Daniel; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María; Castillo, Salvador

    2014-10-01

    The effects of salicylic acid (SA) or acetylsalicylic acid (ASA) treatments during on-tree cherry growth and ripening on fruit quality attributes, especially those related with the content on bioactive compounds and antioxidant activity were analysed in this research. For this purpose, two sweet cherry cultivars, 'Sweet Heart' and 'Sweet Late', were used and SA or ASA treatments, at 0.5, 1.0 and 2.0mM concentrations, were applied at three key points of fruit development (pit hardening, initial colour changes and onset of ripening). These treatments increased fruit weight and ameliorated quality attributes at commercial harvest, and led to cherries with higher concentration in total phenolics and in total anthocyanins, as well as higher antioxidant activity, in both hydrophilic and lipophilic fractions. Thus, preharvest treatments with SA or ASA could be promising tools to improve sweet cherry quality and health beneficial effects for consumers.

  14. Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings.

    Science.gov (United States)

    Yadav, Poonam; Kaur, Ravdeep; Kanwar, Mukesh Kumar; Sharma, Anket; Verma, Vinod; Sirhindi, Geetika; Bhardwaj, Renu

    2017-09-20

    The aim of the present study was to explore the effect of exogenous application of castasterone (CS) on physiologic and biochemical responses in Brassica juncea seedlings under copper (Cu) stress. Seeds were pre-soaked in different concentrations of CS and grown for 7 days under various levels of Cu. The exposure of B. juncea to higher levels of Cu led to decrease of morphologic parameters, with partial recovery of length and fresh weight in the CS pre-treated seedlings. Metal content was high in both roots and shoots under Cu exposure while the CS pre-treatment reduced the metal uptake. Accumulation of hydrogen peroxide (H2O2) and superoxide anion radical (O2(-)) were chosen as stress biomarker and higher levels of H2O2 (88.89%) and O2(-) (62.11%) showed the oxidative stress in metal treated B. juncea seedlings, however, CS pre-treatment reduced ROS accumulation in Cu-exposed seedlings. The Cu exposures lead to enhance the plant's enzymatic and non-enzymatic antioxidant system. It was observed that enzymatic activities of ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), glutathione perxoidase (GPOX) and gultrathione-s-transferase increased while activity of monodehydroascorbate reductase (MDHAR) decreased under Cu stress. The pre-treatment with CS positively affected the activities of enzymes. RT-PCR analysis showed that mRNA transcript levels were correlated with total enzymatic activity of DHAR, GR, GST and GSH. Increase in the gene expression of DHAR (1.85 folds), GR (3.24 folds), GST-1 (2.00 folds) and GSH-S (3.18 folds) was noticed with CS pre-treatment. Overall, the present study shows that Cu exposure induced severe oxidative stress in B. juncea plants and exogenous application of CS improved antioxidative defense system by modulating the ascorbate-glutathione cycle and amino acid metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    Science.gov (United States)

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-03-14

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. In this study, we aimed to determine whether uric acid could reduce endpoints associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. This article is protected by copyright. All rights reserved.

  16. Fatty acids, sterols, and antioxidant activity in minimally processed avocados during refrigerated storage.

    Science.gov (United States)

    Plaza, Lucía; Sánchez-Moreno, Concepción; de Pascual-Teresa, Sonia; de Ancos, Begoña; Cano, M Pilar

    2009-04-22

    Avocado ( Persea americana Mill.) is a good source of bioactive compounds such as monounsaturated fatty acids and sterols. The impact of minimal processing on its health-promoting attributes was investigated. Avocados cut into slices or halves were packaged in plastic bags under nitrogen, air, or vacuum and stored at 8 degrees C for 13 days. The stabilities of fatty acids and sterols as well as the effect on antioxidant activity were evaluated. The main fatty acid identified and quantified in avocado was oleic acid (about 57% of total content), whereas beta-sitosterol was found to be the major sterol (about 89% of total content). In general, after refrigerated storage, a significant decrease in fatty acid content was observed. Vacuum/halves and air/slices were the samples that maintained better this content. With regard to phytosterols, there were no significant changes during storage. Antioxidant activity showed a slight positive correlation against stearic acid content. At the end of refrigerated storage, a significant increase in antiradical efficiency (AE) was found for vacuum samples. AE values were quite similar among treatments. Hence, minimal processing can be a useful tool to preserve health-related properties of avocado fruit.

  17. In vitro antioxidant activity and in vivo antifatigue effect of layered double hydroxide nanoparticles as delivery vehicles for folic acid

    Directory of Open Access Journals (Sweden)

    Qin LL

    2014-12-01

    Full Text Available Lili Qin,1,* Wenrui Wang,2,* Songhui You,1 Jingmei Dong,1 Yunhe Zhou,1 Jibing Wang1 1Department of Physical Education, 2School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Folic acid antioxidants were successfully intercalated into layered double hydroxides (LDH nanoparticles according to a previous method with minor modification. The resultant folic acid-LDH constructs were then characterized by X-ray powder diffraction and transmission electron microscopy. The in vitro antioxidant activities, cytotoxicity effect, and in vivo anti­fatigue were examined by a series of assays. The results showed that folic acid-LDH antioxidant system can scavenge 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radicals and chelate pro-oxidative Cu2+. The in vitro cytotoxicity assays indicated that folic acid-LDH antioxidant system had no significant cytotoxic effect or obvious toxicity to normal cells. It also prolonged the forced swimming time of the mice by 32% and 51% compared to folic acid and control groups, respectively. It had an obvious effect on decreasing the blood urea nitrogen and blood lactic acid, while increasing muscle and hepatic glycogen levels. Therefore, folic acid-LDH might be used as a novel antioxidant and antifatigue nutritional supplement. Keywords: antioxidant supplementation, free radicals, biomaterials, drug delivery

  18. Efficacy of boswellic acid on lysosomal acid hydrolases, lipid peroxidation and anti-oxidant status in gouty arthritic mice

    Institute of Scientific and Technical Information of China (English)

    Evan Prince Sabina; Haridas Indu; Mahaboobkhan Rasool

    2012-01-01

    Objective:To evaluate the efficacy of boswellic acid against monosodium urate crystal-induced inflammation in mice. Methods:The mice were divided into four experimental groups. Group I served as control;mice in group II were injected with monosodium urate crystal;group III consisted of monosodium urate crystal-induced mice who were treated with boswellic acid (30 mg/kg/b.w.);group IV comprised monosodium urate crystal-induced mice who were treated with indomethacin (3 mg/kg/b.w.). Paw volume and levels/activities of lysosomal enzymes, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-αwere determined in control and monosodium urate crystal-induced mice. In addition, the levels of β-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL) in vitro. Results:The activities of lysosomal enzymes, lipid peroxidation, and tumour necrosis factor-αlevels and paw volume were increased significantly in monosodium urate crystal-induced mice, whereas the activities of antioxidant status were in turn decreased. However, these changes were modulated to near normal levels upon boswellic acid administration. In vitro, boswellic acid reduced the level of β-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated PMNL in concentration dependent manner when compared with control cells. Conclusions: The results obtained in this study further strengthen the anti-inflammatory/antiarthritic effect of boswellic acid, which was already well established by several investigators.

  19. Betalain, Acid Ascorbic, Phenolic Contents and Antioxidant Properties of Purple, Red, Yellow and White Cactus Pears

    Science.gov (United States)

    Sumaya-Martínez, María Teresa; Cruz-Jaime, Sandra; Madrigal-Santillán, Eduardo; García-Paredes, Juan Diego; Cariño-Cortés, Raquel; Cruz-Cansino, Nelly; Valadez-Vega, Carmen; Martinez-Cardenas, Leonardo; Alanís-García, Ernesto

    2011-01-01

    Commercialization of cactus pears based on their antioxidant properties can generate competitive advantages, and these can turn into business opportunities and the development of new products and a high-value ingredient for the food industry. This work evaluated the antioxidant activities (1,1-diphenyl-2-picrylhydrazyl radical-scavenging, protection against oxidation of a β-carotene-linoleic acid emulsion, and iron (II) chelation), the content of total phenolic compounds, ascorbic acid, betacyanin, betaxanthin and the stability of betacyanin pigments in presence of Cu (II)-dependent hydroxyl radicals (OH•), in 18 cultivars of purple, red, yellow and white cactus pear from six Mexican states. Our results indicated that the antiradical activities from yellow and white cactus pear cultivars were not significantly different (p < 0.05) and were lower than the average antiradical activities in red and purple cultivars. The red cactus pear from the state of Zacatecas showed the highest antioxidant activity. The free radical scavenging activity for red cactus pears was significantly correlated (p < 0.05) to the concentration of total phenolic compounds (R2 = 0.90) and ascorbic acid (R2 = 0.86). All 18 cultivars of cactus pears studied showed significant chelating activity of ferrous ions. The red and purple cactus pears showed a great stability when exposed to OH•. PMID:22072899

  20. Betalain, Acid Ascorbic, Phenolic Contents and Antioxidant Properties of Purple, Red, Yellow and White Cactus Pears

    Directory of Open Access Journals (Sweden)

    Leonardo Martinez-Cardenas

    2011-09-01

    Full Text Available Commercialization of cactus pears based on their antioxidant properties can generate competitive advantages, and these can turn into business opportunities and the development of new products and a high-value ingredient for the food industry. This work evaluated the antioxidant activities (1,1-diphenyl-2-picrylhydrazyl radical-scavenging, protection against oxidation of a β-carotene-linoleic acid emulsion, and iron (II chelation, the content of total phenolic compounds, ascorbic acid, betacyanin, betaxanthin and the stability of betacyanin pigments in presence of Cu (II-dependent hydroxyl radicals (OH•, in 18 cultivars of purple, red, yellow and white cactus pear from six Mexican states. Our results indicated that the antiradical activities from yellow and white cactus pear cultivars were not significantly different (p < 0.05 and were lower than the average antiradical activities in red and purple cultivars. The red cactus pear from the state of Zacatecas showed the highest antioxidant activity. The free radical scavenging activity for red cactus pears was significantly correlated (p < 0.05 to the concentration of total phenolic compounds (R2 = 0.90 and ascorbic acid (R2 = 0.86. All 18 cultivars of cactus pears studied showed significant chelating activity of ferrous ions. The red and purple cactus pears showed a great stability when exposed to OH•.

  1. Antioxidant Activity of Butyl- and Phenylstannoxanes Derivedfrom 2-, 3- and 4-Pyridinecarboxylic Acids

    Directory of Open Access Journals (Sweden)

    Ángel Ramos-Organillo

    2010-08-01

    Full Text Available In vitro antioxidant activity for 12 stannoxanes derived from Ph3SnCl (compounds 1-3, Ph2SnCl2 (compounds 4-6, Bu3SnCl (compounds 7-9, and Bu2SnCl2 (compounds 10-12, was assayed qualitatively by the chromatographic profile with 1,1-diphenyl-2-picrylhydrazil (DPPH method and by two quantitative methods: the DPPH radical scavenging activity and Ferric-Reducing Antioxidant Power (FRAP assays. The results were compared with those obtained with the starting materials 2-pyridine- carboxylic acid (I, 3-pyridinecarboxylic acid (II and 4-pyridinecarboxylic acid (III, as well as with standard compounds, such as vitamin C and vitamin E, respectively. The in vitro antiradical activity with DPPH of diphenyltin derivative 5 showed a very similar behavior to vitamin C at a 20 µg/mL concentration, whereas according to the FRAP method, compound 8 was better. This difference is due to the mechanism of the antioxidant process. The Structure-Activity Relationships (SAR for both methods is also reported.

  2. The oxidative stress, antioxidant profile and acid-base status in preterm and term canine neonates.

    Science.gov (United States)

    Vannucchi, C I; Kishi, D; Regazzi, F M; Silva, L C G; Veiga, G A L; Angrimani, D S R; Lucio, C F; Nichi, M

    2015-04-01

    During the initiation of neonatal pulmonary respiration, there is an exponential increase in reactive oxygen species that must be scavenged by antioxidant defences. However, neonate and preterm newborns are known to possess immature antioxidant mechanisms to neutralize these toxic effects. The purposes of this study were to compare the development of antioxidant system between preterm and term canine neonates and to evaluate the magnitude of acid-base balance during the initial 4 h of life. A prospective study was conducted involving 18 neonatal puppies assigned to Term Group (63 days of gestation; n = 5), Preterm-57 Group (57 days of gestation; n = 8) and Preterm-55 Group (55 days of gestation; n = 5). Neonates were physically examined through Apgar score and venous haemogasometry within 5 min, 2 and 4 h after birth. No difference on amniotic fluid and serum superoxide dismutase (SOD), glutathione peroxidase (GPx) and the marker of oxidative stress (thiobarbituric acid reactive substances; TBARS) was verified. Irrespective of prematurity, all neonates presented low vitality, hypothermia, acidosis, hypoxaemia and hypercapnia at birth. However, term puppies clinically evolved more rapidly than preterm newborns. During the course of the study, premature neonates presented more severe complications, such as prolonged hypoxaemia and even death. In conclusion, premature puppies have no signs of immature enzymatic mechanisms for controlling oxidative stress, although SOD and GPx may participate in achieving acid-base balance. Aside from initial unremarkable symptoms, premature puppies should be carefully followed up, as they are at high risk of succumbing to odds of prematurity.

  3. Changes in Ascorbic Acid Content, Antioxidant Capacity and Sensory Quality of Fresh-cut Mangosteens During Storage

    Directory of Open Access Journals (Sweden)

    Supranee MANURAKCHINAKORN

    2004-06-01

    Full Text Available Fresh-cut mangosteens, stored in modified atmosphere packaging (MAP; 5% O2 + 9% CO2, in vacuum packaging (VAC and in air (AIR were examined for ascorbic acid content, antioxidant capacity and sensory quality during 14 days of storage at 4oC. After 4 days-storage, fresh-cut fruits with MAP resulted in better retention of ascorbic acid and antioxidant capacity than those stored in AIR throughout the storage. Furthermore, there were no significant differences in ascorbic acid contents between fruits stored in MAP and VAC, as well as antioxidant capacities, during the remaining period of storage. Fresh-cut fruits with MAP treatment obtained the highest sensory scores, compared with other treatments, throughout the entire period of storage. Fresh-cut mangosteens stored in MAP resulted in the best overall retention of ascorbic acid, antioxidant capacity and sensory quality.

  4. Skin penetration and antioxidant effect of cosmeto-textiles with gallic acid.

    Science.gov (United States)

    Alonso, C; Martí, M; Barba, C; Lis, M; Rubio, L; Coderch, L

    2016-03-01

    In this work, the antioxidant gallic acid (GA) has been encapsulated in microspheres prepared with poly-ε-caprolactone (PCL) and incorporated into polyamide (PA) obtaining the cosmeto-textile. The topical application of the cosmeto-textile provides a reservoir effect in the skin delivery of GA. The close contact of the cosmeto-textile, containing microsphere-encapsulated GA (ME-GA), with the skin and their corresponding occlusion, may be the main reasons that explain the crossing of active principle (GA) through the skin barrier, located in the stratum corneum, and its penetration into the different compartments of the skin, epidermis and dermis. An ex vivo assessment was performed to evaluate the antioxidant effect of the ME-GA on the stratum corneum (SC) using the thiobarbituric acid-reactive species (TBARS) test. The test is based on a non-invasive ex vivo methodology that evaluates lipid peroxides formed in the outermost layers of the SC from human volunteers after UV radiation to determine the effectiveness of an antioxidant. In this case, a ME-GA cosmeto-textile or ME-GA formulation were applied to the skin in vivo and lipid peroxidation (LPO) in the horny layer were determined after UV irradiation. This methodology may be used as a quality control tool to determine ex vivo the percentage of LPO inhibition on human SC for a variety of antioxidants that are topically applied, in this case GA. Results show that LPO formation was inhibited in human SC when GA was applied directly or embedded in the cosmeto-textile, demonstrating the effectiveness of both applications. The percentage of LPO inhibition obtained after both topical applications was approximately 10% for the cosmeto-textile and 41% for the direct application of microspheres containing GA. This methodology could be used to determine the effectiveness of topically applied antioxidants encapsulated in cosmeto-textiles on human SC.

  5. Conformational analysis: a tool for the elucidation of the antioxidant properties of ferulic acid derivatives in membrane models.

    Science.gov (United States)

    Anselmi, Cecilia; Centini, Marisanna; Andreassi, Marco; Buonocore, Anna; La Rosa, Caterina; Facino, Roberto Maffei; Sega, Alessandro; Tsuno, Fumi

    2004-09-03

    With the aim to search and design more effective and safe antioxidant molecules to be used as functional ingredients in cosmetic formulations for UV protection, we evaluated the antioxidant/radical scavenging activities of ferulic acid and of some alkyl ferulates in both acellular and cellular systems. Ferulic acid esters, equipotent as antioxidant in homogeneous phase, showed when tested in membranous systems (rat liver microsomes, rat erythrocytes) marked differences in antioxidant potency. The n-C(12) derivative was the most potent, followed by n-C(8), n-C(16) and branched C(8), and then by ferulic acid. A conformational study carried out by NMR and modelling, indicates that the different antioxidant activity of ferulates in membrane models is due to the different spatial conformation and arrangement of the side chain of the molecule, which governs the access and binding to the phospholipid bilayer, the modality of orientation of the scavenging/quenching nucleus (phenol moiety), and hence the overall antioxidant potency of the derivative. These results emphasize the need of analytical studies (NMR and molecular modelling) addressed to the knowledge of the conformational parameters in combination with conventional antioxidant testings for understanding the antioxidant behaviour of a molecule in a biological membrane/system.

  6. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    OpenAIRE

    Xu, Q.; Chen, S. Y.; Deng,L.D.; Feng, L.P.; Huang,L.Z.; R. R. Yu

    2013-01-01

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cult...

  7. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    OpenAIRE

    Xu, Q.; Chen, S. Y.; Deng,L.D.; Feng, L.P.; Huang,L.Z.; R. R. Yu

    2013-01-01

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were...

  8. Study of genotoxic, antigenotoxic and antioxidant activities of the digallic acid isolated from Pistacia lentiscus fruits.

    Science.gov (United States)

    Bhouri, Wissem; Derbel, Safa; Skandrani, Ines; Boubaker, Jihed; Bouhlel, Ines; Sghaier, Mohamed B; Kilani, Soumaya; Mariotte, Anne M; Dijoux-Franca, Marie G; Ghedira, Kamel; Chekir-Ghedira, Leila

    2010-03-01

    The digallic acid obtained from the fruit Pistacia lentiscus exhibits an inhibitory activity against nitrofurantoine and B[a]P induced genotoxicity when tested by the SOS chromotest bacterial assay system in the presence of Escherichia coli PQ37 strain. The antioxidant activity of the tested compound was determined by its ability to scavenge the free radical ABTS(+), to inhibit the xanthine oxidase, involved in the generation of free radicals, and to inhibit the lipid peroxidation induced by H(2)O(2) in the K562 cell line. Our results revealed that digallic acid shows an important free radical scavenging activity towards the ABTS(+) radical (99%) and protection against lipid peroxidation (68%).

  9. Characterization and antioxidant activities of acidic polysaccharides from Gynostemma pentaphyllum (Thunb.) Markino.

    Science.gov (United States)

    Li, Bo; Zhang, Xiaoyu; Wang, Mingzhu; Jiao, Lili

    2015-01-01

    Three acid polysaccharides obtained from Gynostemma pentaphyllum (Thunb.) Markino (named as GPA1, GPA2 and GPA3) using combination of water extraction, ion-exchange and gel permeation chromatography were subjected to composition analysis and valuated for the antioxidant activity. The sugar content of GPA1, GPA2 and GPA3 were 54.55%, 85.70% and 91.34%, respectively. Monosaccharide analysis showed that GPA1, GPA2 and GPA3 were all composed of Man, Rha, GlcA, GalA, Glc, Gal, Ara and Fuc, besides, GPA2 and GPA3 also contained Xyl. The molecular weight of GPA1, GPA2 and GPA3 were 19.6kDa, 10.6 kDa and 6.7 kDa, respectively. In vitro antioxidant assay, GPA1, GPA2 and GPA3 could scavenge 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical and hydroxyl radical, chelate ferrous ion and reduce ferric ion. The antioxidant activities of GPA3 were stronger than those of GPA1 and GPA2, suggesting that GPA3 has significant potential as a natural antioxidant agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of bleomycin and antioxidants on the fatty acid profile of testicular cancer cell membranes.

    Science.gov (United States)

    Cort, A; Ozben, T; Melchiorre, M; Chatgilialoglu, C; Ferreri, C; Sansone, A

    2016-02-01

    Bleomycin is used in chemotherapy regimens for the treatment of patients having testicular germ-cell tumor (TGCT). There is no study in the literature investigating the effects of bleomycin on membrane lipid profile in testicular cancer cells. We investigated membrane fatty acid (FA) profiles isolated, derivatized and analyzed by gas chromatography of NTera-2 testicular cancer cells incubated with bleomycin (Bleo) for 24 h in the absence and presence of N-Acetyl-L-Cysteine (NAC) and curcumin (Cur) as commonly used antioxidant adjuvants. At the same time the MAPK pathway and EGFR levels were followed up. Bleomycin treatment increased significantly saturated fatty acids (SFA) of phospholipids at the expense of monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). Bleomycin also led to a significant increase in the trans lipid isomers of oleic and arachidonic acids due to its free radical producing effect. Incubation with bleomycin increased the p38 MAPK and JNK levels and downregulated EGFR pathway. Coincubation of bleomycin with NAC reversed effects caused by bleomycin. Our results highlight the important role of membrane fatty acid remodeling occurring during the use of bleomycin and its concurrent use with antioxidants which can adjuvate the cytotoxic effects of the chemotherapeutic agents.

  11. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems.

    Science.gov (United States)

    Stojković, Dejan; Petrović, Jovana; Soković, Marina; Glamočlija, Jasmina; Kukić-Marković, Jelena; Petrović, Silvana

    2013-10-01

    Three pure compounds that naturally occur in plants were of particular interest to our study regarding the possibility of using them as food preservatives: p-coumaric acid (found in peanuts, tomatoes, carrots, garlic, wine, vinegar, etc.), caffeic acid (found in argan oil, oats, wheat, rice and olive oil) and rutin (found in asparagus, citrus fruits, berries, apple, apricot, asparagus, beef and beer). In the following study we investigated in situ antioxidant and antimicrobial activities of three pure compounds, namely caffeic acid, p-coumaric acid and rutin, naturally occurring in plants. Two food systems were used in order to obtain information on how these compounds react in actual food systems rather than microbiological media. The results indicated good antioxidant activity in in situ food systems. For tested phenolic compounds it was further shown that they successively inhibited the development of the isolated food contaminant Staphylococcus aureus in chicken soup. Panelist found that organoleptic characteristics of chicken soup and pork meat improved after treatment with phenolics. Our findings alone, along with the potential use of phenolic compounds that are widespread in nature, may imply their potential use as preservatives in the food industry. © 2013 Society of Chemical Industry.

  12. Foliar and Seed Application of Amino Acids Affects the Antioxidant Metabolism of the Soybean Crop

    Science.gov (United States)

    Teixeira, Walquíria F.; Fagan, Evandro B.; Soares, Luís H.; Umburanas, Renan C.; Reichardt, Klaus; Neto, Durval D.

    2017-01-01

    In recent years, the application of natural substances on crops has been intensified in order to increase the resistance and yield of the soybean crop. Among these products are included plant biostimulants that may contain algae extracts, amino acids, and plant regulators in their composition. However, there is little information on the isolated effect of each of these constituents. The objective of this research was to evaluate the effect of the application of isolated amino acids on the antioxidant metabolism of the soybean crop. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate, phenylalanine, cysteine, glycine in seed treatment, and foliar application at V4 growth stage. Antioxidant metabolism constituents evaluated were superoxide dismutase, catalase, peroxidase, hydrogen peroxide content, proline, and lipid peroxidation. In addition, resistance enzymes as polyphenol oxidase and phenylalanine ammonia-lyase (PAL) were evaluated. In both experiments, the use of cysteine, only in seed treatment and in both seed treatment and foliar application increased the activity of the enzyme PAL and catalase. Also in both experiments, the use of phenylalanine increased the activity of the enzyme PAL when the application was carried out as foliar application or both in seed treatment and foliar application. In the field experiment, the application of glutamate led to an increase in the activity of the catalase and PAL enzymes for seed treatment and foliar application. The use of the set of amino acids was only efficient in foliar application, which led to a greater activity of the enzymes peroxidase, PAL, and polyphenol oxidase. The other enzymes as well as lipid peroxidation and hydrogen peroxide presented different results according to the experiment. Therefore, glutamate, cysteine, phenylalanine, and glycine can act as signaling amino acids in soybean plants, since small doses are enough to increase the activity

  13. Antioxidant capacity and contents of phenols, ascorbic acid, β-carotene and lycopene in lettuce

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina M.

    2014-01-01

    Full Text Available The antioxidant activity of three lettuce varieties (Lactuca sativa L. Emerald, Vera and Neva, cultivated in two kinds of protected spaces, a glasshouse and a plastic greenhouse, under controlled conditions, was determined. The content of antioxidant compounds: total phenols, flavonoids, L-ascorbic acid, ß-carotene and lycopene, were determined in ethanolic extracts of the lettuce with spectrophotometric methods. The largest content of total phenols (78.98 ± 0.67 mg GAE/g of dry extract was found in ethanolic extract of the lettuce variety Neva cultivated in a plastic greenhouse, whereas the largest content of flavonoids (35.45 ± 0.95 mg RU/g of dry extract was displayed in the lettuce Emerald cultivated in a glasshouse. It was observed that the lettuce cultivated in the glasshouse contained a somewhat higher content of L-ascorbic acid than the lettuce same variety from plastic greenhouse. The content of lycopene in the examined lettuce is negligible, and the content of ß-carotene is low. On the other hand, the high content of phenolic components causes favourable antioxidant properties found in all varieties of examined lettuce. [Projekat Ministarstva nauke Republike Srbije, br. TR 31059: A new concept in breeding vegetable cultivars and hybrids designed for sustainable growing systems using biotechnological methods

  14. Preparation, physicochemical characterization and antioxidant activity of diphenyl diselenide-loaded poly(lactic acid) nanoparticles.

    Science.gov (United States)

    Dos Reis Antunes Junior, Osmar; Antônio, Emilli; Mainardes, Rubiana Mara; Khalil, Najeh Maissar

    2017-01-01

    In this study, we developed, characterized and evaluated the antioxidant activity of poly (lactic acid) nanoparticles containing diphenyl diselenide (PhSe)2. Nanoparticles were characterized in terms of mean particle size, polydispersity index, zeta potential, encapsulation efficiency, in vitro release profile, physical stability, polymer-drug interactions and thermal properties. Also, the antioxidant activity of nanoparticles on hypochlorous acid (HOCl) was assessed. Nanoparticles presented a mean size of 210nm, had low polydispersity, zeta potential of -24mV, and an encapsulation efficiency over 90%. Differential scanning calorimetry and X-ray diffraction results showed (PhSe)2 is dispersed in PLA matrix in an amorphous state. Lyophilized nanoparticles maintained physical stability over three months, while nanoparticles dispersed in water did not present stability over 7days. In vitro release assay was characterized by a biphasic release pattern with burst effect in 8h followed by a sustained release diffusion governed over 192h. Nanoencapsulation did not alter the antioxidant activity of (PhSe)2 on HOCl. The study concludes these properties of (PhSe)2-loaded nanoparticles can be useful to extend the biological effects of (PhSe)2. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Antioxidant Activity of Peptides from Fermented Milk with Mix Culture of Lactic Acid Bacteria and Yeast

    Directory of Open Access Journals (Sweden)

    Yun Li

    2015-02-01

    Full Text Available The aim of the present study is to investigate the production of antioxidant peptides during milk fermentation with co-culture of Lactic Acid Bacteria (LAB and yeast. Five LAB strains, previously screened with higher hydrolysis activity and Debaryomyces hansenii H2 which isolated from Tibet kefir were used in the study. The peptides separated from fermented milk were analysed antioxidant activity with DPPH radical scavenging, hydroxyl radical scavenging, chelation of metal ions and reducing power assays. The growth of Streptococcus. thermophilus Lactobacillus. delbrueckii ssp. bulgaricus and Lactococcus. lactis was enhanced with co-cultures and L. acidophilus was inhibited in co-culture with yeast. In co-culture with yeast, a significant decrease of the acidity was observed among all the fermentation and the pH reached higher values than in single LAB cultures. Except for L.delbrueckii ssp. bulgaricus, there was no significant difference of protein hydrolysis with other test LAB strains between co-culture and single culture. The co-incubation of LAB with the yeast developed a stronger antioxidant activity in DPPH radical and hydroxyl radical scavenging and no significant (p>0.05 difference in chelation of metal ions. The reducing power of L.delbrueckii ssp. bulgaricus and L. helveticus in co-culture was significant higher than those of single culture.

  16. Betalain, Acid ascorbic, phenolic contents and antioxidant properties of purple, red, yellow and white cactus pears.

    Science.gov (United States)

    Sumaya-Martínez, María Teresa; Cruz-Jaime, Sandra; Madrigal-Santillán, Eduardo; García-Paredes, Juan Diego; Cariño-Cortés, Raquel; Cruz-Cansino, Nelly; Valadez-Vega, Carmen; Martinez-Cardenas, Leonardo; Alanís-García, Ernesto

    2011-01-01

    Commercialization of cactus pears based on their antioxidant properties can generate competitive advantages, and these can turn into business opportunities and the development of new products and a high-value ingredient for the food industry. This work evaluated the antioxidant activities (1,1-diphenyl-2-picrylhydrazyl radical-scavenging, protection against oxidation of a β-carotene-linoleic acid emulsion, and iron (II) chelation), the content of total phenolic compounds, ascorbic acid, betacyanin, betaxanthin and the stability of betacyanin pigments in presence of Cu (II)-dependent hydroxyl radicals (OH•), in 18 cultivars of purple, red, yellow and white cactus pear from six Mexican states. Our results indicated that the antiradical activities from yellow and white cactus pear cultivars were not significantly different (p cactus pear from the state of Zacatecas showed the highest antioxidant activity. The free radical scavenging activity for red cactus pears was significantly correlated (p cactus pears studied showed significant chelating activity of ferrous ions. The red and purple cactus pears showed a great stability when exposed to OH•.

  17. Antibacterial and Antioxidant Activities of Acid and Bile Resistant Strains of Lactobacillus fermentum Isolated from Miang

    Directory of Open Access Journals (Sweden)

    Srikanjana Klayraung

    2009-12-01

    Full Text Available Miang is a kind of traditional fermented tea leaves, widely consumed in northern Thailand as a snack. It contains several kinds of Lactobacilli spp. The aim of this study was to isolate strains of Lactobacillus fermentum from miang and to investigate their antibacterial and antioxidant activities. The agar spot and well assays were used for determination of antibacterial power. The antibacterial mechanism was investigated by cell morphologic change under scanning electron microscope (SEM. Antioxidant activity was studied by means of free radical scavenging and ferric reducing power assays. The acid and bile screening tests indicated that L. fermentum FTL2311 and L. fermentum FTL10BR presented antibacterial activity against several pathogenic bacteria: Listeria monocytogenes DMST 17303, Salmonella Typhi DMST 5784, Shigella sonnei DMST 561 (ATCC 11060and Staphylococcus aureus subsp. aureus DMST 6512 (ATCC 6538Ptm. The results from SEM suggested that the antibacterial action was due to the destruction of cell membrane which consequently caused the pathogenic cell shrinking or cracking. The antioxidant study suggested that both L. fermentum FTL2311 and L. fermentum FTL10BR strains could liberate certain substances that possessed antioxidant activity expressed as trolox equivalent antioxidant capacity (TEAC and equivalent concentration (EC values for free radical scavenging and reducing mechanisms, respectively. The supernatant of L. fermentum FTL2311 broth revealed TEAC and EC values of 22.54±0.12 and 20.63±0.17 µM.mg-1 respectively, whereas that of L. fermentum FTL10BR yielded TEAC and EC values of 24.09±0.12 and 21.26±0.17 µM.mg-1 respectively. These two strains isolated from miang present high potential as promising health-promoting probiotics.

  18. Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves

    Directory of Open Access Journals (Sweden)

    Toong Long Jeng

    2015-12-01

    Full Text Available Caffeoylquinic acid (CQA derivatives are known to possess antioxidative potential and have many beneficial effects on human health. The present study compared the CQA contents and antioxidant activities of aerial parts of sweet potato plants. The effects of drying methods (freeze drying, and drying at 30°C, 70°C, and 100°C on these two parameters of the first fully expanded leaves were also assessed. The results indicated that the CQA derivatives were detectable in leaves, stem, and flowers of sweet potato plants (varied from 39.34 mg/g dry weight to 154.05 mg/g dry weight, with the leaves (particularly expanding and first fully expanded leaves containing more CQA derivatives than other aerial plant parts. The expanding and first fully expanded leaves also exhibited greater antioxidant activities than other aerial plant parts, possibly due to their higher contents of CQA derivatives. Drying method significantly affected the content of CQA derivatives in dried sweet potato leaf tissues. Drying treatments at both 70°C and 100°C significantly reduced the CQA derivative content and antioxidant activity in the first fully expanded leaves. Among the tested drying methods, the freeze-drying method demonstrated the preservation of the highest amount of CQA derivatives (147.84 mg/g and antioxidant property. However, 30°C cool air drying was also a desirable choice (total CQA derivative content was reduced to only 129.52 mg/g, compared to 70°C and 100°C hot air drying, for commercial-scale processing of sweet potato leaves, if the higher operation cost of freeze drying was a major concern.

  19. Impact of Altitudes and Habitats on Valerenic Acid, Total Phenolics, Flavonoids, Tannins, and Antioxidant Activity of Valeriana jatamansi.

    Science.gov (United States)

    Jugran, Arun K; Bahukhandi, Amit; Dhyani, Praveen; Bhatt, Indra D; Rawal, Ranbeer S; Nandi, Shyamal K

    2016-07-01

    The changes in total phenolics, flavonoids, tannins, valerenic acid, and antioxidant activity were assessed in 25 populations of Valeriana jatamansi sampled from 1200 to 2775 m asl and four habitat types of Uttarakhand, West Himalaya. Significant (p total phenolics, flavonoids, valerenic acid, and antioxidant activity in aerial and root portions and across the populations were observed. Antioxidant activity measured by three in vitro antioxidant assays, i.e., 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic) (ABTS) radical scavenging, 2,2'-diphenyl-1-picryylhydrazyl (DPPH) free radical scavenging, and ferric-reducing antioxidant power (FRAP) assays, showed significant (p < 0.05) differences across the populations. However, no clear pattern was found in phytochemicals across the altitudinal range. Among habitat types, (pine, oak, mixed forest, and grassy land), variation in phytochemical content and antioxidant activity were observed. Equal class ranking, neighbor-joining cluster analysis, and principal component analysis (PCA) identified Talwari, Jaberkhet, Manjkhali, and Khirshu populations as promising sources with higher phytochemicals and antioxidant activity. The results recommended that the identified populations with higher value of phytochemicals and antioxidants can be utilized for mass multiplication and breeding program to meet the domestic as well as commercial demand.

  20. New Lipophilic Piceatannol Derivatives Exhibiting Antioxidant Activity Prepared by Aromatic Hydroxylation with 2-Iodoxybenzoic Acid (IBX

    Directory of Open Access Journals (Sweden)

    Roberta Bernini

    2009-11-01

    Full Text Available Piceatannol (E-3,5,3’,4’-tetrahydroxystilbene is a phytoalexin synthesized in grapes in response to stress conditions. It exhibits strong antioxidant and antileukaemic activities due to the presence of the catechol moiety. To modify some physical properties like solubility, and miscibility in non-aqueous media some new previously unreported piceatannol derivatives having lipophilic chains on the A-ring were prepared in good yields by a simple and efficient procedure. The key step was a chemo- and regioselective aromatic hydroxylation with 2-iodoxybenzoic acid (IBX. The new compounds showed antioxidant activity and seemed promising for possible applications as multifunctional emulsifiers in food, cosmetic and pharmaceutical fields.

  1. Antioxidant Activity and α-Glucosidase Inhibitory Activities of the Polycondensate of Catechin with Glyoxylic Acid.

    Directory of Open Access Journals (Sweden)

    Sheng Geng

    Full Text Available In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG was prepared and its chemically antioxidant, cellular antioxidant (CAA and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL in comparison to catechin (IC50 value, 239.27 μg/mL. Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes.

  2. [Antioxidant properties of lactic acid bacteria--probiotic and yogurt strains].

    Science.gov (United States)

    Uskova, M A; Kravchenko, L V

    2009-01-01

    Antioxidant properties of 14 strains of lactic acid bacteria were evaluated in vitro using FRAP assay, inhibition of luminol oxidation in Hb-H2O2 system and inhibition of NADPH-Fe2+ induced microsomal lipid peroxidation. All strains demonstrated high reducing properties, but only L. casei spp. (including L. casei 114001) and L. fermentum ME-3 revealed pronounced ability to suppress oxidation of luminol (by 43-65,8%) and microsomal lipid peroxidation (by 57,9-89,5%). Either L. casei 114001 (10(8) CFU suspended in physiological solution) or fermented dairy drink containing equivalent amount of L. casei 114001 were daily administered orally to male Wistar rats. Antioxidant capacity of blood plasma, liver and intestines of animals elevated while MDA content in blood plasma decreased.

  3. Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Erben-Russ, M.; Bors, W.; Saran, M.

    1987-09-01

    Linoleic acid peroxyl radicals (LOO) can be viewed as model intermediates occurring during lipid peroxidation processes. Formation and reactions of these species were investigated in aqueous alkaline solution using pulse radiolysis combined with kinetic spectroscopy. Irradiation of linoleic acid in N/sub 2/O/O/sub 2/-saturated solutions leads to a mixture of peroxyl radical isomers; reaction of 13-hydroperoxylinoleic acid (13-LOOH) with azide radicals in N/sub 2/O-saturated solution produces 13-LOO radicals specifically. These peroxyl radicals cannot be observed directly, but their reactions with kaempferol and quercetin, acting as radical-scavenging antioxidants, produced strongly absorbing aroxyl radicals (ArO). The same aroxyl radicals were generated by OH and N/sub 3/ with rate constants exceeding 10/sup 9/ dm/sup 3/ mol/sup -1/ s/sup -1/. Applying a reaction scheme that includes competing generation and decay reactions of both LOO and ArO radicals, individual rate constants were derived for LOO reactions with the phenols (> 10/sup 7/ dm/sup 3/ mol/sup -1/ s-./sup 1/), with aroxyl radicals to form covalent adducts (> 10/sup 8/ dm/sup 3/ mol/sup -1/ s/sup -1/), as well as for their bimilecular decay (3.0 x 10/sup 8/ dm/sup 3/ mol/sup -1/ s/sup -1/). These results demonstrate high reactivity of fatty acid peroxyl radicals and flavone antioxidants in aqueous solution.

  4. Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation.

    Science.gov (United States)

    Li, Ming-Fei; Sun, Shao-Ni; Xu, Feng; Sun, Run-Cang

    2012-10-01

    Microwave-assisted extraction in organic acid aqueous solution (formic acid/acetic acid/water, 3/5/2, v/v/v) was applied to isolate lignin from bamboo. Additionally, the structural features of the extracted lignins were thoroughly investigated in terms of C₉ formula, molecular weight distribution, FT-IR, (1)H NMR and HSQC spectroscopy. It was found that with an increase in the severity of microwave-assisted extraction, there was an increase of phenolic hydroxyl content in the lignin. In addition, an increase of the severity resulted in a decrease of the bound carbohydrate content as well as molecular weight of the lignin. Antioxidant activity investigation indicated that the radical scavenging index of the extracted lignins (0.35-1.15) was higher than that of BHT (0.29) but lower than that of BHA (3.85). The results suggested that microwave-assisted organic acid extraction provides a promising way to prepare lignin from bamboo with good antioxidant activity for potential application in the food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Synthesis and evaluation of antioxidant and antifungal activities of novel ricinoleate-based lipoconjugates of phenolic acids.

    Science.gov (United States)

    Reddy, Kunduru Konda; Ravinder, Thumu; Kanjilal, Sanjit

    2012-10-15

    Syntheses of four castor oil fatty acid-based novel lipoconjugates of phenolic acids were carried out following Mitsunobu methodology. The lipid part consists of methyl ricinoleate and its saturated analogue, methyl-12-hydroxystearate and the phenolic moieties are ferulic and vanillic acid. Synthesised compounds are evaluated for antioxidant activity using three in vitro assays (DPPH radical scavenging assay, DSC studies for oxidative induction temperature of linoleic acid and autoxidation of linoleic acid in Tween 20 micellar medium) and compared with three widely used antioxidants in the food industry, BHT, α-tocopherol, and dodecyl gallate. Synthesised compounds are found to exhibit good antiradical activity. These compounds also exhibited very good antifungal activity against studied fungal strains. All these results suggested the applicability of the synthesised compounds as potent lipophilic antioxidants for combating oxidative stress.

  6. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    Science.gov (United States)

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants.

  7. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity.

    Science.gov (United States)

    de Cristo Soares Alves, Aline; Mainardes, Rubiana Mara; Khalil, Najeh Maissar

    2016-03-01

    Gallic acid is an important polyphenol compound presenting various biological activities. The objective of this study was to prepare, characterize and evaluate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated or not with polysorbate 80 (PS80) containing gallic acid. Nanoparticles coated or not with PS80 were produced by emulsion solvent evaporation method and presented a mean size of around 225 nm, gallic acid encapsulation efficiency of around 26% and zeta potential of -22 mV. Nanoparticle formulations were stable during storage, except nanoparticles coated with PS80 stored at room temperature. In vitro release profile demonstrated a quite sustained gallic acid release from nanoparticles and PS80-coating decreased drug release. Cytotoxicity over red blood cells was assessed and gallic acid-loaded PLGA nanoparticles at all analyzed concentrations demonstrated lack of hemolysis, while PS80-nanoparticles containing gallic acid were cytotoxic only in higher concentrations. Antioxidant potential of nanoparticles containing gallic acid was assessed and PLGA uncoated nanoparticles presented greater efficacy than PS80-coated PLGA nanoparticles.

  8. Phytochemical Analysis, Antioxidant Activity, Fatty Acids Composition, and Functional Group Analysis of Heliotropium bacciferum

    Directory of Open Access Journals (Sweden)

    Sohail Ahmad

    2014-01-01

    Full Text Available Heliotropium bacciferum is paramount in medicinal perspective and belongs to Boraginaceae family. The crude and numerous fractions of leaves, stem, and roots of the plant were investigated for phytochemical analysis and DPPH radical scavenging activity. Phytochemical analysis of crude and fractions of the plant revealed the presence of alkaloids, saponins, tannins, steroids, terpenoids, flavonoids, glycosides, and phenols. The antioxidant (free radical scavenging activity of various extracts of the Heliotropium bacciferum was resolute against 2,2-diphenyl-1-picrylhydrazyl (DPPH radical with the avail of UV spectrophotometer at 517 nm. The stock solution (1000 mg/mL and then several dilutions (50, 100, 150, 200, and 250 mg/mL of the crude and fractions were prepared. Ascorbic acid was used as a standard. The plant leaves (52.59 ± 0.84 to 90.74 ± 1.00, stem (50.19 ± 0.92 to 89.42 ± 1.10, and roots extracts (49.19 ± 0.52 to 90.01 ± 1.02 divulged magnificent antioxidant activities. For the ascertainment of the fatty acid constituents a gas chromatograph hyphenated to mass spectrometer was used. The essential fatty acids for growth maintenance such as linoleic acid (65.70%, eicosadienoic acid (15.12%, oleic acid (8.72%, and palmitic acid (8.14% were found in high percentage. The infrared spectra of all extracts of the plant were recorded by IR Prestige-21 FTIR model.

  9. Effect of citric acid deamidation on in vitro digestibility and antioxidant properties of wheat gluten.

    Science.gov (United States)

    Qiu, Chaoying; Sun, Weizheng; Cui, Chun; Zhao, Mouming

    2013-12-01

    The effects of citric acid deamidation on the physiochemical properties of wheat gluten were investigated. In vitro digestion was carried out to determine changes of molecular weight distribution, amino acids composition and antioxidant efficacy of wheat gluten hydrolysates. Results indicated that citric acid deamidation significantly increased gluten solubility and surface hydrophobicity, at a neutral pH. Deamidation induced molecular weight distribution change of gluten with little proteolysis. Results from FTIR indicated that the α-helix and β-turn of deamidated gluten increased accompanied by a decrease of the β-sheet structure. After deamidation, in vitro pepsin digestibility of wheat gluten decreased, while in vitro pancreatin digestibility increased. The oxygen radical absorbance capacity (ORAC) activity of the in vitro digests decreased with increase of deamidation time. The high Lys and total essential AAs amounts in the final digests suggested that the nutritional values of wheat gluten after deamidation might be enhanced.

  10. Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces.

    Science.gov (United States)

    Li, Zheng; Zhao, Xin; Sandhu, Amandeep K; Gu, Liwei

    2010-05-26

    Antioxidants and phytochemicals in vegetables are known to provide health benefits. Strategies that enhance these properties are expected to increase the nutritional values of vegetables. The objective of this research is to assess the effects of exogenous abscisic acid (ABA) on yield, antioxidant capacities, and phytochemical content of lettuces grown in a greenhouse. Red loose leaf lettuce (cv. Galactic) and green loose leaf lettuce (cv. Simpson Elite) were cultivated using a randomized complete block design. Three concentrations of ABA in water [0 (control), 150, 300 ppm] were sprayed on the 30th and 39th days after sowing, and lettuces were harvested on the 46th day. Exogenous ABA significantly decreased yield of green and red lettuces. Total phenolic and total anthocyanin contents in red lettuce treated with ABA were significantly higher than in controls, whereas no significant differences were observed in green lettuce. ABA significantly induced the accumulation of chlorophyll b and total carotenoids in lettuces. The phenolic compounds identified and quantified in red and green lettuces included caffeoyltartaric acid, 5-O-caffeoylquinic acid, dicaffeoyltartaric acid, 3,5-dicaffeoylquinic acid, and quercetin 3-(6''-malonyl)-glucoside. Additionally, cyanidin 3-glucoside, cyanidin 3-(3''-malonoyl)-glucoside, and cyanidin 3-(6''-malonoyl)-glucoside in red lettuces were quantified. No significant effects of ABA on these individual phytochemicals were observed in green lettuces, whereas ABA significantly elevated the content of individual phytochemicals in red lettuces except for 5-O-caffeoylquinic acid. Differences among red lettuces with or without exogenous ABA were visualized on the score plots of principal component analyses. Loading plot indicated that multiple phenolic compounds contributed to the observed differences in red lettuces.

  11. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Science.gov (United States)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  12. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  13. Effects of α-eleostearic acid on asolectin liposomes dynamics: relevance to its antioxidant activity.

    Science.gov (United States)

    de Sousa, Robson Simplício; de Moraes Nogueira, Alessandro Oliveira; Marques, Viviane Gobel; Clementin, Rosilene Maria; de Lima, Vânia Rodrigues

    2013-12-01

    In this study, the effect of α-eleostearic acid (α-ESA) on the lipid peroxidation of soybean asolectin (ASO) liposomes was investigated. This effect was correlated to changes caused by the fatty acid in the membrane dynamics. The influence of α-ESA on the dynamic properties of liposomes, such as hydration, mobility and order, were followed by horizontal attenuated total reflection Fourier transform infrared spectroscopy (HATR-FTIR), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and UV-vis techniques. The α-ESA showed an in vitro antioxidant activity against the damage induced by hydroxyl radical (OH) in ASO liposomes. The analysis of HATR-FTIR frequency shifts and bandwidths and (1)H NMR spin-lattice relaxation times, related to specific lipid groups, showed that α-ESA causes an ordering effect on the polar and interfacial regions of ASO liposomes, which may restrict the OH diffusion in the membrane. The DSC enthalpy variation analysis suggested that the fatty acid promoted a disordering effect on lipid hydrophobic regions, which may facilitate interactions between the reactive specie and α-ESA. Turbidity results showed that α-ESA induces a global disordering effect on ASO liposomes, which may be attributed to a change in the lipid geometry and shape. Results of this study may allow a more complete view of α-ESA antioxidant mode of action against OH, considering its influence on the membrane dynamics.

  14. Chlorogenic acid content, essential oil compositions, and in vitro antioxidant activities of Chromolaena odorata leaves

    Directory of Open Access Journals (Sweden)

    Yamon Pitakpawasutthi

    2016-01-01

    Full Text Available Chromolaena odorata (L. R. M. King and H. Rob. is a Thai medicinal plant used for the treatment of wounds, rashes, diabetes, and insect repellent. The leaves of C. odorata were collected from 10 different sources throughout Thailand. The chemical constituents of essential oils were hydro-distilled from the leaves and were analyzed by gas chromatography-mass spectrometry. Chlorogenic acid contents were determined by thin-layer chromatography (TLC - densitometry with winCATS software and TLC image analysis with ImageJ software. The TLC plate was developed in the mobile phase that consisted of ethyl acetate:water:formic acid (17:3:2. Antioxidant activities were examined by 1,1-diphenyl-2-picryl hydrazyl (DPPH radical scavenging and β-carotene bleaching assays. C. odorata essential oil has shown the major components of pregeijerene, dauca-5, 8-diene, (E-caryophyllene, β-pinene, and α-pinene. The chlorogenic acid content of C. odorata leaves was determined by TLC-densitometry and TLC image analysis. Results have shown that TLC-densitometry and TLC image analysis method were not statistically significantly different. DPPH radical scavenging and β-carotene bleaching assays of ethanolic extract of C. odorata leaves showed its antioxidant potential.

  15. Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk.

    Science.gov (United States)

    Lozano, Blanca; Castellote, Ana Isabel; Montes, Rosa; López-Sabater, M Carmen

    2014-09-01

    Although freezing is the most common method used to preserve human milk, nutritional and immunological components may be lost during storage. Freeze-drying could increase the shelf life of human milk, while preserving its original characteristics. Seventy-two samples of freeze-dried human milk were stored for different periods of time, up to a maximum of 3 months, at 4 °C or 40 °C. Vitamin C, tocopherols, antioxidant capacity, and fatty acids composition were analyzed. A new HILIC-UHPLC method improving vitamin C determination was also validated. Ascorbic acid and total vitamin C concentrations significantly decreased at both temperatures, while antioxidant capacity only decreased at 40 °C. Fatty acids composition and both γ-tocopherol and δ-tocopherol contents remained unaltered. The stability after storage of freeze-dried milk was higher than that reported for frozen or fresh milk indicating that freeze-drying is a promising option to improve the preservation of human milk in banks.

  16. Antioxidant activity, fatty acid profile and tocopherols of Tamarindus indica L. seeds

    Directory of Open Access Journals (Sweden)

    Débora Maria Moreno Luzia

    2011-06-01

    Full Text Available This study aimed to characterize Tamarindus indica L. seeds regarding its composition and to evaluate its antioxidant potential, fatty acid profile and content of tocopherols. In order to obtain the extract, the dried and crushed seeds were extracted with ethanol for 30 minutes in a 1:3 seeds: ethanol ratio under continuous stirring at room temperature. After that, the mixtures were filtered and subjected to roto-evaporation at 40 ºC in order to determine, through direct weighing, the dry matter yields of the extracts. According to the results, Tamarindus indica L. seeds showed high content of total carbohydrates (71.91% and offered relevant content and antioxidant activity of phenolic compounds. Tamarindus indica L. seeds oil presents high oxidative stability (15.83 hours and significant total tocopherol content (57.77 mg.kg-1, besides presenting a higher percentage of unsaturated fatty acids - the main component being linolenic (59.61%, which is considered an essential fatty acid.

  17. Oxidative Stress in Dog with Heart Failure: The Role of Dietary Fatty Acids and Antioxidants

    Directory of Open Access Journals (Sweden)

    Emmanuelle Sagols

    2011-01-01

    Full Text Available In dogs with heart failure, cell oxygenation and cellular metabolism do not work properly, leading to the production of a large amount of free radicals. In the organism, these free radicals are responsible of major cellular damages: this is oxidative stress. However, a suitable food intake plays an important role in limiting this phenomenon: on the one hand, the presence of essential fatty acids in the composition of membranes decreases sensitivity of cells to free radicals and constitutes a first protection against the oxidative stress; on the other hand, coenzyme Q10, vitamin E, and polyphenols are antioxidant molecules which can help cells to neutralize these free radicals.

  18. Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth.

    Science.gov (United States)

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E

    2013-07-05

    An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2-, phenylalanine ammonia lyase (PAL) activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and Lipoxygenase inhibitory activity (LOX)] under four levels of foliar abscisic acid (ABA) application (0, 2, 4, 6 µM) for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2-, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC) were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05) and O2- (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05). This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  19. Joint effects of dithiophosphoric acid ester and antioxidants on performance properties of mineral oil

    Energy Technology Data Exchange (ETDEWEB)

    Borshchevskii, S.B.; Shabanova, Ye.V.; Zagorodnyy, N.G.; Trofimov, G.A.

    1982-05-01

    High temperatures, catalytic effects of metals and environmental oxidation bring significant changes in lubricating oils. The joint effects of the methylbenzyl ester of diisobutyldithiophosphoric acid and various phenol and amine antioxidant additives were studied. At 200/sup 0/C, 2,2-methylene-bis(4-methyl-6-tert-butylphenol) and 2,6-di(tert-butyl)-4-methylphenol had a prooxidational effect, while 4,4-methylene-bis(2,6(tert-butyl)phenol), phenol-alpha-naphthylamine and the mixed products of phenol alkylation by styrene (A0-20) inhibited oxidation. A0-20 reduced the methylbenzyl ester's prooxidational action, while the others had little effect. At 180/sup 0/C in the presence of copper, all tested antioxidants but A0-20 inhibited oxidation and the methylbenzyl ester increased that action. Little change was noted in the M-11 lubricating oil tested because of the additives. The combination of A0-20 and the ester improved antiwear, antiscratch and antioxidation properties better than other combinations. 4 references, 2 figures.

  20. Antioxidant and anti-aging effects of acidic-extractable polysaccharides by Agaricus bisporus.

    Science.gov (United States)

    Li, Shangshang; Liu, Hui; Wang, Wenshuai; Wang, Xiuxiu; Zhang, Chen; Zhang, Jianjun; Jing, Huijuan; Ren, Zhenzhen; Gao, Zheng; Song, Xinling; Jia, Le

    2017-09-01

    This study was designed to investigate the antioxidant and anti-aging effects of D-galatose-induced (D-gal-induced) aging mice as well as monosaccharide compositions of acidic-extractable polysaccharides (AcAPS) and its major purified fractions (AcAPS-1, AcAPS-2 and AcAPS-3) from the fruiting body of Agaricus bisporus. In the in vitro assays, AcAPS-2 showed superior scavenging activities on hydroxyl (82.98±4.67%) and DPPH (64.47±4.05%) radicals at the concentration of 1.0mg/mL than AcAPS and other polysaccharides fractions. For in vivo anti-aging analysis, AcAPS-2 showed superior effects on hepatic and nephric protection by improving serum enzyme activities, biochemical levels, lipid contents and antioxidant status, respectively. The monosaccharide analysis showed that rhamnose (Rha) and glucose (Glu) may play vital roles in maintaining the antioxidant and anti-aging activities. The results suggested that both AcAPS and its purified fractions might be suitable for functional foods and natural drugs in preventing the acute aging-associated diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Dietary Lipoic Acid Influences Antioxidant Capability and Oxidative Status of Broilers

    Directory of Open Access Journals (Sweden)

    Yong-Ze Jie

    2011-11-01

    Full Text Available The effects of lipoic acid (LA on the antioxidant status of broilers were investigated. Birds (1 day old were randomly assigned to four groups and fed corn-soybean diets supplemented with 0, 100, 200, 300 mg/kg LA, respectively. The feeding program included a starter diet from 1 to 21 days of age and a grower diet from 22 to 42 days of age. Serum, liver and muscle samples were collected at 42 days of age. For antioxidant enzymes, superoxide dismutase (SOD and glutathione peroxidase (GSH-Px activity in serum, liver and breast muscle significantly increased in chickens fed with LA. The concentration of malondiadehyde (MDA, an indicator of lipid peroxidation, was significantly lower in serum, liver and leg muscle in birds that received LA than in the control group. Treatments with LA significantly increased glutathione (GSH content in liver and increased α-tocopherol content in leg muscle as compared to the control. These results indicate that dietary supplementation with 300 mg/kg LA may enhance antioxidant capability and depress oxidative stress in broilers.

  2. Antioxidant capacity and fatty acid profile of Centaurea kotschyi (Boiss. and Heldr.) Hayek var. persica (Boiss.) Wagenitz from Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Aktumseka, A.

    2011-07-01

    The antioxidant capacity of the methanolic extract and the fatty acid composition of C. kotschyi var. persica were investigated. Six different chemical methods were used to determine the antioxidant capacity. The fatty acid composition was analyzed using gas chromatography. The IC50 value of the extract was determined as 37.09 ig/ml (in the DPPH assay). In the {beta}carotene/linoleic acid system, the extract exhibited 65.22% inhibition against linoleic acid oxidation. The amount of total phenolic content and total antioxidant capacity were detected as 36.52 mg gallic acid equivalent (GAE)/g and 74.93 mg ascorbic acid equivalent (AE)/g, respectively. The major fatty acid in the composition of C. kotschyi var. persica was found to be C 18:3 u3 ({beta}-linolenic acid) by GC analysis. The results presented here indicate that C. kotschyi var. persica possess strong antioxidant properties. Therefore, the species can be used as a natural additive in food, cosmetic and pharmaceutical industries. (Author).

  3. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    Science.gov (United States)

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Landbo, A K; Christensen, L P

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...... investigated using an in vitro copper-catalyzed human LDL oxidation assay. The most abundant ferulic acid dehydrodimer (diFA) found in rye, 8-O-4-diFA, was a slightly better antioxidant than ferulic acid and p-coumaric acid. The antioxidant activity of the 8-5-diFA was comparable to that of ferulic acid...

  5. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Andreasen, M.F.; Landbo, Anne-Katrine Regel; Christensen, L.P.

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...... investigated using an in vitro copper-catalyzed human LDL oxidation assay. The most abundant ferulic acid dehydrodimer (diFA) found in rye, 8-O-4- diFA, was a slightly better antioxidant than ferulic acid and p-coumaric acid. The antioxidant activity of the 8-5-diFA was comparable to that of ferulic acid...

  6. Review of concepts and controversies of uric acid as antioxidant and pro- oxidant and ndash; an uncertainty

    Directory of Open Access Journals (Sweden)

    Amar Nagesh Kumar

    2015-03-01

    Full Text Available Uric acid, the end product of purine catabolism in humans and is known for its crystal deposition at higher concentrations (>7 mg/dl in gout. Less is known about its antioxidant property and the beneficial effects in various diseases. It is thought that high concentration of uric acid in humans is an evolutionary advantage and it is also hypothesized that high concentration of uric acid is to compensate the antioxidant capacity of ascorbic acid which is lost in humans during the course of evolution. In the extracelluar environment, uric acid can scavenge free radicals like hydroxyl radical, singlet oxygen and peroxynitrite radical therefore, it is considered as a powerful antioxidant. On the other hand uric acid depending upon the chemical milieu, changing its property and at times it acts as pro oxidant and is associated with the pathobiochemistry in developing various diseases like hypertension, cardio vascular diseases, ischemia reperfusion injury, diabetes mellitus, non alcoholic fatty liver disorders etc. In this review, we tried to summarize the evolutionary advantages of hyperuricaemia, effects of both antioxidant property and pro-oxidant nature of uric acid in various disease conditions.

  7. The effect of conjugated linoleic acid supplements on oxidative and antioxidative status of dairy cows.

    Science.gov (United States)

    Hanschke, N; Kankofer, M; Ruda, L; Höltershinken, M; Meyer, U; Frank, J; Dänicke, S; Rehage, J

    2016-10-01

    Dairy cows develop frequently negative energy balance around parturition and in early lactation, resulting in excessive mobilization of body fat and subsequently in increased risk of ketosis and other diseases. Dietary conjugated linoleic acid (CLA) supplements are used in dairy cows mainly for their depressing effect on milk fat content, but are also proposed to have antioxidative properties. As negative energy balance is associated with oxidative stress, which is also assumed to contribute to disease development, the present study was conducted to examine effects of CLA on oxidative and antioxidative status of lactating dairy cows. German Holstein cows (primiparous n=13, multiparous n=32) were divided into 3 dietary treatment groups receiving 100g/d of control fat supplement, containing 87% stearic acid (CON; n=14), 50g/d of control fat supplement and 50g/d of CLA supplement (CLA 50; n=15), or 100g/d of CLA supplement (CLA 100; n=16). The CLA supplement was lipid-encapsulated and contained 12% of trans-10,cis-12 CLA and cis-9,trans-11 CLA each. Supplementation took place between d1 and 182 postpartum; d 182 until 252 postpartum served as a depletion period. Blood was sampled at d -21, 1, 21, 70, 105, 140, 182, 224, and 252 relative to calving. The antioxidative status was determined using the ferric-reducing ability of plasma, α-tocopherol, α-tocopherol-to-cholesterol mass ratio, and retinol. For determination of oxidative status concentrations of hydroperoxides, thiobarbituric acid-reactive substances (TBARS), N'-formylkynurenine, and bityrosine were measured. Mixed models of fixed and random effects with repeated measures were used to evaluate period 1 (d -21 to 140) and 2 (d182-252) separately. Cows showed increased oxidative stress and lipid peroxidation during the periparturient period in terms of increased serum concentrations of hydroperoxides and TBARS, which decreased throughout lactation. During period 1, the supplemented cows had lower TBARS

  8. Acidic infusion in early reperfusion affects the activity of antioxidant enzymes in postischemic isolated rat heart.

    Science.gov (United States)

    Penna, Claudia; Perrelli, Maria-Giulia; Tullio, Francesca; Angotti, Carmelina; Pagliaro, Pasquale

    2013-07-01

    Acidic perfusion (AP) performed at the onset of reperfusion (i.e., acid postconditioning) is cardioprotective. We investigated the effect of AP on postischemic cardiac function and on the activity of endogenous superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase. The role of exogenous CAT or SOD on AP cardioprotection was also investigated. Phosphorylation of redox-sensitive survival kinases (protein kinase C [PKC] ε and extracellular signal-regulated kinase [ERK] 1/2) was also checked. Isolated rat hearts underwent ischemia and reperfusion (I/R) for 30 and 120 min, respectively. AP was obtained by lowering [HCO3(-)] in the perfusion buffer. Infarct size and left ventricular pressure were measured. Protocols include I/R only, I/R plus acidic perfusion in early reperfusion (I/R + AP), and I/R plus AP and CAT (I/R + AP + CAT) or SOD (I/R + AP + SOD). I/R + SOD and I/R + CAT additional hearts served as controls. AP and/or antioxidants were given in the initial 3 min of reperfusion. Enzyme activities were studied in postischemic phase (seventh minute of reperfusion) in I/R or I/R + AP and Sham (buffer-perfused) hearts. AP with (I/R + AP + CAT or I/R + AP + SOD) or without (I/R + AP) antioxidant enzymes resulted in a larger reduction of infarct size compared with I/R, I/R + SOD, or I/R + CAT. Compared with I/R, the postischemic systolic and diastolic recoveries of the cardiac function were markedly improved by the addition of AP and a lesser extent by AP + SOD or AP + CAT. AP increased the postischemic activity of CAT and lowered that of SOD and glutathione peroxidase compared with I/R only. Also, the phosphorylation and activity of ERK1/2 and PKCε were increased by AP. Acid postconditioning affects the activity of endogenous antioxidant enzymes, activates ERK1/2-PKCε pathways, and protects against myocardial I/R injury. The combination of AP and exogenous SOD or CAT still provides cardioprotection. It is likely that intracellular (not

  9. Antioxidant activity and sensory evaluation of a rosmarinic acid-enriched extract of Salvia officinalis.

    Science.gov (United States)

    Bakota, Erica L; Winkler-Moser, Jill K; Berhow, Mark A; Eller, Fred J; Vaughn, Steven F

    2015-04-01

    An extract of Salvia officinalis (garden sage) was prepared using supercritical carbon dioxide (SC-CO2 ) extraction, followed by hot water extraction. The resulting extract was enriched in polyphenols, including rosmarinic acid (RA), which has shown promising health benefits in animals. The extract contained RA at a concentration of 28.4 mg/g, representing a significant enrichment from the RA content in sage leaves. This extract was incorporated into oil-in-water emulsions as a source of lipid antioxidants and compared to emulsions containing pure rosmarinic acid. Both treatments were effective in suppressing lipid oxidation. The extract was evaluated by a trained sensory panel in a tea formulation. While the panel could discriminate among extract-treated and control samples, panelists demonstrated high acceptability of the sage extract in a tea.

  10. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis.

    Science.gov (United States)

    Lee, Sangmin; Kim, Sang-Gyu; Park, Chung-Mo

    2010-10-01

    • Findings regarding the role of salicylic acid (SA) in seed germination are somewhat variable, depending on the plant genotypes and experimental conditions used, and thus the molecular mechanisms underlying SA regulation of germination are still unclear. Here, we report that physiological concentrations of SA promote germination under high salinity by modulating antioxidant activity in Arabidopsis. • Germination of SA induction deficient 2 (sid2) seeds was hypersensitive to high salinity. While the inhibitory effect of high salinity was exaggerated in the presence of higher concentrations of SA (> 100 μM), it was significantly reduced in the presence of lower concentrations of SA (salinity, the endogenous contents of H(2) O(2) were elevated in wild-type and sid2 seeds but reduced to original concentrations after treatment with 1 μM SA. • Germination of NahG transgenic plants was influenced to a lesser degree by high salinity (NahG is a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol). We found that catechol, an SA degradation product accumulated in the transgenic plants, acts as an antioxidant that compromises the inhibitory effects of high salinity. • Our observations indicate that, although SA is not essential for germination under normal growth conditions, it plays a promotive role in seed germination under high salinity by reducing oxidative damage.

  11. Antioxidant Properties of Caffeic acid Phenethyl Ester and 4-Vinylcatechol in Stripped Soybean Oil.

    Science.gov (United States)

    Jia, Cai-Hua; Wang, Xiang-Yu; Qi, Jin-Feng; Hong, Soon-Taek; Lee, Ki-Teak

    2016-01-01

    Caffeic acid was used to synthesize 4-vinylcatechol (4-VC) by thermal decarboxylation and to prepare caffeic acid phenethyl ester (CAPE) by esterification reaction. The identities of synthesized products were confirmed by (1)H NMR. Antioxidative activities of 4-VC and CAPE were compared with α-tocopherol and BHT in stripped soybean oil at 60 °C under the dark. To evaluate the degrees of oxidation at different concentrations and combinations, peroxide value (PV) and (1)H NMR were performed. From the results of PV, the formation of primary oxidation products (i.e., hydroperoxides) in stripped soybean oil containing 200 ppm CAPE was the slowest. The relative oxidation degree of 200 ppm CAPE (9.5%) was lower than other samples on 9 d. Similar results were obtained by (1)H NMR analysis. After 15 d of storage, levels of conjugated diene forms and aldehydes of 200 ppm CAPE sample (57.3 and 0.9 mmol/mol oil) were also lower than other treatments. In addition, 4-VC and α-tocopherol were found to have a synergistic antioxidant effect.

  12. Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces.

    Science.gov (United States)

    Ji, Keunho; Jang, Na Young; Kim, Young Tae

    2015-09-01

    The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β- glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'- azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics.

  13. Omega-3 fatty acids, phenolic compounds and antioxidant characteristics of chia oil supplemented margarine.

    Science.gov (United States)

    Nadeem, Muhammad; Imran, Muhammad; Taj, Imran; Ajmal, Muhammad; Junaid, Muhammad

    2017-05-31

    Chia (Salvia hispanica L.) is known as power house of omega fatty acids which has great health benefits. It contains up to 78% linolenic acid (ω-3) and 18% linoleic acid (ω-6), which could be a great source of omega-3 fatty acids for functional foods. Therefore, in this study, margarines were prepared with supplementation of different concentrations of chia oil to enhance omega-3 fatty acids, antioxidant characteristics and oxidative stability of the product. Margarines were formulated from non-hydrogenated palm oil, palm kernel and butter. Margarines were supplemented with 5, 10, 15 and 20% chia oil (T1, T2, T3 and T4), respectively. Margarine without any addition of chia oil was kept as control. Margarine samples were stored at 5 °C for a period of 90 days. Physico-chemical (fat, moisture, refractive index, melting point, solid fat index, fatty acids profile, total phenolic contents, DPPH free radical scavenging activity, free fatty acids and peroxide value) and sensory characteristics were studied at the interval of 45 days. The melting point of T1, T2, T3 and T4 developed in current investigation were 34.2, 33.8, 33.1 and 32.5 °C, respectively. The solid fat index of control, T1, T2, T3 and T4 were 47.21, 22.71, 20.33, 18.12 and 16.58%, respectively. The α-linolenic acid contents in T1, T2, T3 and T4 were found 2.92, 5.85, 9.22, 12.29%, respectively. The concentration of eicosanoic acid in T2, T3 and T4 was 1.82, 3.52, 6.43 and 9.81%, respectively. The content of docosahexanoic acid in T2, T3 and T4 was present 1.26, 2.64, 3.49 and 5.19%, respectively. The omega-3 fatty acids were not detected in the control sample. Total phenolic contents of control, T1, T2, T3 and T4 samples were 0.27, 2.22, 4.15, 7.23 and 11.42 mg GAE/mL, respectively. DPPH free radical scavenging activity for control, T1, T2, T3 and T4 was noted 65.8, 5.37, 17.82, 24.95, 45.42 and 62.8%, respectively. Chlorogenic acid, caffeic acid, quercetin, phenolic glycoside k and phenolic

  14. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice

    Science.gov (United States)

    Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.

    2010-12-01

    The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.

  15. A novel method for the determination of ascorbic acid and antioxidant capacity in Opuntia ficus indica using in vivo microdialysis.

    Science.gov (United States)

    Pretti, L; Bazzu, G; Serra, P A; Nieddu, G

    2014-03-15

    A simple and rapid method was developed for in vivo simultaneous determination of ascorbic-acid and antioxidant capacity in microdialysates from cladodes of Opuntia ficus-indica (L.) Miller. The method is verified in water-stressed plants, as compared with a well-watered test controls. The microdialysis probe construction and insertion procedure was specifically developed to minimise the tissue trauma of the plant and to obtain optimal dialysis performance. Microdialysis was performed using a flow rate of 3 μL/min and the samples were analysed by HPLC coupled to electrochemical detection of ascorbic-acid and DPPH-determined antioxidant capacity. Our data indicate exponential decay of the concentrations of the analysed compounds as a function of microdialysis sampling time. Water-stressed Opuntia show decreased ascorbic acid levels and increased the others antioxidants.

  16. Evaluation of the antioxidant effects of coffee and its components using the biomarkers hydroxyoctadecadienoic acid and isoprostane.

    Science.gov (United States)

    Yoshida, Yasukazu; Hayakawa, Mieko; Niki, Etsuo

    2008-01-01

    The association between coffee consumption and its antioxidant effects has not been elucidated in detail. In experimental animals, we used biomarkers to investigate the relationship between coffee consumption and its effects on oxidative stress. We propose a method in which both the free and ester forms of hydroperoxides and ketones as well as the hydroxides of linoleic acid are measured as total hydroxyoctadecadienoic acid (tHODE). Mice were divided into 6 groups: animals in 5 of these groups were fed a vitamin E-depleted diet [VE(-) group], whereas those in the 6(th) (control) group were fed a diet containing 0.002 wt% vitamin E [VE(+) group]. Different VE(-) groups were also administered coffee or drinking water that contained a coffee component-chlorogenic acid, caffeic acid, or caffeine-for 1 month. It was clearly demonstrated that the liver levels of tHODE in the VE(-) groups increased compared to the VE(+) group but that coffee consumption reduced these elevated levels to that of the control. Interestingly, the plasma and liver levels of the HODE stereoisomer ratio (Z,E/E,E), which is a measure of antioxidant capacity in vivo, were highest among the groups studied. These data, together with the values for antioxidant levels in vivo, indicate that the efficacy of antioxidants in vivo can be evaluated reasonably well based on the tHODE level and its stereoisomer ratio, and that the antioxidant capacity of coffee is superior to that of its individual components.

  17. Characteristic of phenolic compound and antioxidant activity of fermented broccoli (Brassica oleracea L. ssp.) beverage by lactic acid bacteria (LAB)

    Science.gov (United States)

    Maryati, Yati; Susilowati, Agustine; Melanie, Hakiki; Lotulung, Puspa D.

    2017-01-01

    Broccoli (Brassica oleracea L. ssp.) has a relatively high nutrient content, especially as a source of vitamins, minerals and fiber and contain bioactive compounds that act as antioxidants. In order to increase the nutritional value and innovate new products, fermentation process involving rich-antioxidants lactic acid bacteria (LAB) was done. The aim of this study is to determine the content of bioactive components, such as total polyphenols, total acid and antioxidant activity of the mixed culture of LAB (L. bulgaricus, S. thermophulus, L. acidophilus, Bd. bifidum)-fermented broccoli extracts. Ratio of fermented broccoli extract and concentration of starter cultureLAB was varied in the range of 5, 10, 15 and 20% (v/v), and the alterations of characteristics of the fermented broccoli extract, before and after fermentation (0 and 24 hours), were evaluated. The results showed that fermentation functional beverage broccoli with different concentrations of LAB cultures affect the antioxidant activity, total polyphenols, total acid and total cell of LAB generated. The optimum conditions obtained for the highest antioxidant activity of 6.74%, at aculture concentration of 20% during fermentation time of 24 h with a pH value of 4.29, total sugar of 10.89%, total acids of 0.97%, total polyphenols of 0.076%, and total LAB of 13.02 + 0.05 log cfu /ml.

  18. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae from Turkey

    Directory of Open Access Journals (Sweden)

    Adnan Berber

    2014-03-01

    Full Text Available Adenocarpus complicatus is distributed throughout the Anatolian peninsula and is widely used for human and animal nutrition. The purpose of this work was to study the antioxidant properties and fatty acid composition of different parts of this plant (fruits and mixed materials. The species was collected from Golyuzu village of the Seydisehir district near Konya province, Turkey. Fruit and mixed parts obtained from this species were ground and a 15g sample was used to prepare methanolic extracts. Powdered plant samples were extracted with 100mL methanol in a mechanical shaker. The obtained extracts were filtered and concentrated to dryness under reduced pressure and were subsequently stored at -20°C. Antioxidant components, namely total phenolic and flavonoid content, were detected for each extract using spectrophotometric methods. Antioxidant capacity was evaluated by various assays including phosphomolybdenum, DPPH free radical scavenging capacity, metal chelating activity, and ferric and cupric ion reducing power. The fatty acid profiles of plant parts were also determined by using gas chromatography. The total phenolic content of fruit (36.21mgGAE/g was higher than that of mixed materials (13.79mgGAE/g. The methanolic extract of mixed material had higher amounts of flavonoid than fruit extract. The free radical scavenging activity of extracts was expressed as IC50 value (μg/mL (amount required to inhibit DPPH radical formation by 50%. The lower IC50 value reflects better free radical scavenging action. The radical scavenging activity of the samples was compared with BHT, it showed the mixed material to be almost two times more potent than the fruit extract. However, BHT is an excellent free radical scavenger with an IC50 of 34.061μg/mL. The ferric and cupric reducing power potentials of the extracts were expressed as EC50 value (the effective concentration at which the absorbance was 0.5. Fruit extract exhibited strong ferric reducing

  19. Influence of antioxidant (L- ascorbic acid on tolbutamide induced hypoglycaemia/antihyperglycaemia in normal and diabetic rats

    Directory of Open Access Journals (Sweden)

    Vardhan Vishnu A

    2005-03-01

    Full Text Available Abstract Background Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycaemia. Increased oxidative stress and decreased antioxidant levels are the leading cause of diabetes and diabetic complications. So it is felt that supplementation of antioxidants may be useful in controlling the glucose levels and to postpone the occurrence of diabetic complications. The objective of our study is to find the influence of antioxidant supplementation (L-ascorbic acid on tolbutamide activity in normal and diabetic rats. Methods L- ascorbic acid/tolbutamide/L-ascorbic acid + tolbutamide were administered orally to 3 different groups of albino rats of either sex in normal and diabetic condition. Blood samples were collected from retro-orbital puncture at different time intervals and were analyzed for blood glucose by GOD-POD method. Diabetes was induced by alloxan 100 mg/kg body weight administered by I.P route. Results L-ascorbic acid/ tolbutamide produced hypoglycaemic activity in a dose dependant manner in normal and diabetic condition. In the presence of L-ascorbic acid, tolbuatmide produced early onset of action and maintained for longer period compared to tolbutamide matching control. Conclusion Supplementation of antioxidants like L-ascorbic acid was found to improve tolbutamide response in normal and diabetic rats.

  20. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells.

    Science.gov (United States)

    Xu, Q; Chen, S Y; Deng, L D; Feng, L P; Huang, L Z; Yu, R R

    2013-11-18

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (Ppalmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.

  1. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat.

    Science.gov (United States)

    Mpofu, Archie; Sapirstein, Harry D; Beta, Trust

    2006-02-22

    The health-promoting effects of whole-grain wheat likely derive from phenolic compounds and other antioxidants that also make wheat a potential source of functional food ingredients. The objective of this study was to determine the effects of genotype and growing environment on the phenolic contents and antioxidant activities of alcohol-soluble extracts from commercial wheat cultivars. Total phenolic contents (TPCs), antioxidant activities (AOAs), and concentrations of six phenolic acids were measured in six red- and white-grained hard spring wheat genotypes grown at four diverse locations in Western Canada during the 2003 crop year. There were significant differences among genotypes and environments for TPC, AOA, and concentrations of all the phenolic acids measured. The predominant indicators of antioxidant potential, i.e., TPC, AOA, and ferulic acid (FA) concentration were highly intercorrelated (r > 0.72). For these indices, the Canada Western (CW) Red Spring wheat cultivars Neepawa and AC Elsa had the highest levels, whereas an analogous CW hard white spring wheat cultivar, AC Snowbird, had the lowest levels. Grain color did not appear to be a factor in the expression of antioxidant-related parameters. For both TPC and AOA, as well as for vanillic acid, syringic acid, and ferulic acid, environmental effects were considerably larger than genotype effects. Neither growing temperature nor rainfall from anthesis to maturity appeared to be related to the environmental variation that was observed. Genotype x environment interaction was small for all parameters compared with genotype and location effects and was significant only for TPC. Genotype variation for antioxidant properties indicates that it would be possible to select for these quantitative traits in a breeding program. However, the significant environmental variation observed would delay and/or complicate this process.

  2. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes.

    Science.gov (United States)

    Tang, Yao; Li, Xihong; Chen, Peter X; Zhang, Bing; Hernandez, Marta; Zhang, Hua; Marcone, Massimo F; Liu, Ronghua; Tsao, Rong

    2015-05-01

    Composition of fatty acids, tocopherols, tocotrienols, and carotenoids, and their contribution to antioxidant activities were investigated in seeds of three coloured quinoa cultivars (white, red and black). The major components and individual compounds were significantly different, and their concentrations were higher in darker seeds (p quinoa had the highest vitamin E followed by red and white quinoas. Carotenoids, mainly trans-lutein (84.7-85.6%) and zeaxanthin were confirmed for the first time in quinoa seeds, and the concentration was also the highest in black seeds. The antioxidant activities of lipophilic extracts were positively correlated with polyunsaturated fatty acids, total carotenoids and total tocopherols.

  3. Effects of salicylic acid and putrescine on storability, quality attributes and antioxidant activity of plum cv. 'Santa Rosa'.

    Science.gov (United States)

    Davarynejad, Gholam Hossein; Zarei, Mehdi; Nasrabadi, Mohamad Ebrahim; Ardakani, Elham

    2015-04-01

    Plum fruit has a short shelf life with a rapid deterioration in quality after harvest. The primary goal of this study is to investigate and compare the effect of putrescine and salicylic acid on quality properties and antioxidant activity of plum during storage. The plum fruits (cv. 'Santa Rosa') were harvested at the mature ripe stage, and dipped in different concentrations of putrescine (1, 2, 3 and 4 mmol/L) and salicylic acid (1, 2, 3 and 4 mmol/L), as well as distilled water (control) for 5 min. The fruits were then packed in boxes with polyethylene covers and stored at 4 °C with 95 % relative humidity for 25 days. A factorial trial based on completely randomized block design with 4 replications was carried out. The weight loss, fruit firmness, total soluble solids, titratable acidity, pH, maturity index, ascorbic acid, total phenolics and antioxidant activity at 0, 5, 10, 15, 20 and 25 days after harvest were recorded. During the storage period, the weight loss, total soluble solids, pH and maturity index increased significantly while the fruit firmness, titratable acidity, ascorbic acid, total phenolics and antioxidant activity decreased significantly (P plum fruits were decreased significantly by the use of putrescine and salicylic acid. Also, exogenous treatments of putrescine and salicylic acid are found to be effective in maintaining titratable acidity, ascorbic acid, total phenolics and antioxidant activity in plum fruits during storage at 4 °C. It was concluded that postharvest treatment of plum fruit with putrescine and salicylic acid were effective on delaying the ripening processes and can be used commercially to extend the shelf life of plum fruit with acceptable fruit quality.

  4. Sulfanilic acid functionalized mesoporous SBA-15: A water-tolerant solid acid catalyst for the synthesis of uracil fused spirooxindoles as antioxidant agents

    Indian Academy of Sciences (India)

    Robabeh Baharfar; Razieh Azimi

    2015-08-01

    Incorporating sulfanilic acid as a hydrophobic Brønsted acid inside the nanospaces of SBA-15 led to a water-tolerant solid acid catalyst, SBA-15-PhSO 3 H, which showed excellent catalytic performance in synthesis of uracil-fused spirooxindoles in aqueous ethanol. The synthesized compounds were evaluated for their antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay.

  5. Encapsulation of α-lipoic acid intochitosan and alginate/gelatin hydrogel microparticles and its in vitro antioxidant activity

    Directory of Open Access Journals (Sweden)

    Vidović Bojana B.

    2016-01-01

    Full Text Available Alpha-lipoic acidis an organosulphur compound well-known for its therapeutic potential and antioxidant properties. However, the effective use of α-lipoic acid depends on biological plasma half-life and its preserving stability, which could be improved by encapsulation. In this study, α-lipoic acid was incorporated into chitosan microparticles obtained by reverse emulsion crosslinking technique, as well as into microparticles of alginate/gelatin crosslinked with zinc ions. Encapsulation of α-lipoic acid in both cases was carried out by swelling of synthesized dried microparticles by their dipping in a solution of the active substance under strictly controlled conditions. Encapsulation efficiency of α-lipoic acid obtained in this study was up to 53.9 %. The structural interaction of α-lipoic acid with the carriers was revealed by Fourier transform infrared spectroscopy. In vitro released studies showed that controlled release of α-lipoic acid was achieved through its encapsulation into chitosan microparticles. The results of in vitro antioxidative activity assays of released α-lipoic acid indicated that antioxidant activity was preserved at a satisfactory level. These obtained results suggested that chitosan microparticles could be suitable for modeling the controlled release of α-lipoic acid. [Projekat Ministartsva nauke Republike Srbije, br. III 46010 i br. III46001

  6. Effect of Plasma Uric Acid on Antioxidant Capacity, Oxidative Stress, and Insulin Sensitivity in Obese Subjects

    Science.gov (United States)

    Fabbrini, Elisa; Serafini, Mauro; Colic Baric, Irena; Hazen, Stanley L.; Klein, Samuel

    2014-01-01

    Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m2) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20–90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45–95% decrease in NEAC and a 25–40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. PMID:24353177

  7. Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity

    Science.gov (United States)

    Munteanu, Bogdanel Silvestru; Aytac, Zeynep; Pricope, Gina M.; Uyar, Tamer; Vasile, Cornelia

    2014-10-01

    The antibacterial property of silver nanoparticles (Ag-NPs) and the antioxidant activity of Vitamin E have been combined by incorporation of these two active components within polylactic acid (PLA) nanofibers via electrospinning (PLA/Ag-NP/VitaminE nanofibers). The morphological and structural characterizations of PLA/Ag-NP/VitaminE nanofibers were performed by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and X-ray diffraction. The average fiber diameter was 140 ± 60 nm, and the size of the Ag-NP was 2.7 ± 1.5 nm. PLA/Ag-NP/VitaminE nanofibers inhibited growth of Escherichia coli, Listeria monocytogenes and Salmonella typhymurium up to 100 %. The amount of released Ag ions from the nanofibers immersed in aqueous solution was determined by Inductively Coupled Plasma Mass Spectrometry, and it has been observed that the release of Ag ions was kept approximately constant after 10 days of immersion. The antioxidant activity of PLA/Ag-NP/VitaminE nanofibers was evaluated according to DPPH (2,2-diphenyl-1-picrylhydrazyl) method and determined as 94 %. The results of the tests on fresh apple and apple juice indicated that the PLA/Ag/VitaminE nanofiber membrane actively reduced the polyphenol oxidase activity. The multifunctional electrospun PLA nanofibers incorporating Ag-NP and Vitamin E may be quite applicable in food packaging due to the extremely large surface area of nanofibers along with antibacterial and antioxidant activities. These materials could find application in food industry as a potential preservative packaging for fruits and juices.

  8. α-Lipoic acid antioxidant treatment limits glaucoma-related retinal ganglion cell death and dysfunction.

    Science.gov (United States)

    Inman, Denise M; Lambert, Wendi S; Calkins, David J; Horner, Philip J

    2013-01-01

    Oxidative stress has been implicated in neurodegenerative diseases, including glaucoma. However, due to the lack of clinically relevant models and expense of long-term testing, few studies have modeled antioxidant therapy for prevention of neurodegeneration. We investigated the contribution of oxidative stress to the pathogenesis of glaucoma in the DBA/2J mouse model of glaucoma. Similar to other neurodegenerative diseases, we observed lipid peroxidation and upregulation of oxidative stress-related mRNA and protein in DBA/2J retina. To test the role of oxidative stress in disease progression, we chose to deliver the naturally occurring, antioxidant α-lipoic acid (ALA) to DBA/2J mice in their diet. We used two paradigms for ALA delivery: an intervention paradigm in which DBA/2J mice at 6 months of age received ALA in order to intervene in glaucoma development, and a prevention paradigm in which DBA/2J mice were raised on a diet supplemented with ALA, with the goal of preventing glaucoma development. At 10 and 12 months of age (after 4 and 11 months of dietary ALA respectively), we measured changes in genes and proteins related to oxidative stress, retinal ganglion cell (RGC) number, axon transport, and axon number and integrity. Both ALA treatment paradigms showed increased antioxidant gene and protein expression, increased protection of RGCs and improved retrograde transport compared to control. Measures of lipid peroxidation, protein nitrosylation, and DNA oxidation in retina verified decreased oxidative stress in the prevention and intervention paradigms. These data demonstrate the utility of dietary therapy for reducing oxidative stress and improving RGC survival in glaucoma.

  9. Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes.

    Science.gov (United States)

    Dave, Richa; Tripathi, Rudra Deo; Dwivedi, Sanjay; Tripathi, Preeti; Dixit, Garima; Sharma, Yogesh Kumar; Trivedi, Prabodh Kumar; Corpas, Francisco J; Barroso, Juan B; Chakrabarty, Debasis

    2013-11-15

    Carcinogenic arsenic (As) concentrations are found in rice due to irrigation with contaminated groundwater in South-East Asia. The present study evaluates comparative antioxidant property and specific amino acid accumulation in contrasting rice genotypes corresponding to differential As accumulation during arsenate (As(V)) and arsenite (As(III)) exposures. The study was conducted on two contrasting As accumulating rice genotypes selected from 303 genotype accessions, in hydroponic conditions. Maximum As accumulation was up to 1181 μg g(-1) dw in the roots of high As accumulating genotype (HARG), and 89 μg g(-1) dw in low As accumulating genotype (LARG) under As(III) exposures. The inorganic As was correlated more significantly upon exposures to As(III) than As(V). In the presence of As(V) various antioxidant enzymes guiacol peroxidase (GPX), ascorbate peroxidase (APX) and superoxide dismutase (SOD) were highly stimulated in HARG. The stress responsive amino acids proline, cysteine, glycine, glutamic acid and methionine showed higher accumulation in HARG than LARG. A clear correlation was found between stress responsive amino acids, As accumulation and antioxidative response. The comparisons between the contrasting genotypes helped to determine the significance of antioxidants and specific amino acid response to As stress.

  10. CHANGES IN THE ANTIOXIDANT CAPACITY OF POTATOES DEPENDING ON THE CULTIVAR, CONTENTS OF POLYPHENOLS, CHLOROGENIC ACID AND ASCORBIC ACID

    Directory of Open Access Journals (Sweden)

    Janette Musilova

    2015-02-01

    Full Text Available Effect of cultivar is known as the most important factor determining the qualitative and quantitative characteristics of potatoes. In the study the influence of this factor on the content of chlorogenic acid (CGA, ascorbic acid (AA, total polyphenols (TPC and antioxidant capacity (TAC in six potato cultivars (Viola, Malvina, Evelin, Arlet, Megan, Timea was investigated. Potatoes were grown in vitro on peat substrate in a greenhouse and were harvested in the stage of physiological ripeness. The content of CGA, AA and the TAC were determined in fresh matter of potato tubers. CGA content was determined using standard HPLC gradient method. The lowest CGA amount was determined in cv. Viola (18.49 mg/kg FM and the highest one in cv. Megan (46.73 mg/kg FM. The determined AA content was in interval 5.40 mg/100 g FM (cv. Evelin – 20.10 mg/100 g FM (cv. Viola. Total antioxidant capacity expressed as mg eqv. Trolox/kg FM was the lowest in cv. Megan (41.06 mg TE/kg FM and the highest in cv. Arlet (56.16 mg TE/kg FM. For TP content determination lyophilised potato samples were used. The determined values ranged from 256.44 until 425.37 mg.kg-1 DM in followed order: Evelin < Arlet < Megan < Timea < Viola < Malvina. The obtained results were evaluated using one-factorial analysis ANOVA (LSD-test, statistical software Statgraphic. Mutual correlations between the contents of CGA, AA, TP and TAC were evaluated using regression and correlation analysis (Microsoft Excel. Statistically significant dependence (P-value < 0.05 between observed factors was confirmed.

  11. Determination of fruit characteristics, fatty acid profile and total antioxidant capacity ofMespilus germanica L. fruit

    Institute of Scientific and Technical Information of China (English)

    Hale Seilmi Canbay; Ersin Atay; Serdal Ot

    2015-01-01

    Objective:To determine fruit characteristics, fatty acid profile and total antioxidant capacitiy of first culturedMespilus germanica L. Methods: A total of15 fruits were taken randomly from four directions of adult trees.Then the physical and chemical properties of first cultured medlar fruit (Istanbul/Turkey) were measured by using refractometer, colorimeter, spectrophotometer and gas chromatograph mass spectrometer, respectivly. Results: In the fruit studied, the results showed that palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid and behenic acid were the most abundant fatty acids (FAs), and the main FA was palmitic acid [(35.35 ± 1.20)%]. The percentage of linoleic acid and stearic acid in this fruit oil were (29.10 ± 1.70)% and(8.53 ± 0.25)%, respectively. As a result of the analysis, the total antioxidant capacity of medlar fruit was (1.1 ± 0.2) mmol trolox equivalents/L. Conclusions: The present study has demonstrated the concentrations of FAs and the antioxidantive capacity of first cultured Istanbul medlar fruits by using many tested methods. It is proved that in our daily life, medlar fruit plays a significant role with its nutrition and health effect.

  12. Antioxidative Reaction of Carotenes against Peroxidation of Fatty Acids Initiated by Nitrogen Dioxide: A Theoretical Study.

    Science.gov (United States)

    Chen, Shau-Jiun; Huang, Li-Yen; Hu, Ching-Han

    2015-07-30

    In this study, we investigated the antioxidative functions of carotenes (CARs) against the peroxidation of lipids initiated by nitrogen dioxide using density functional theory. The hydrogen-atom transfer (HAT), radical adduct formation (RAF), and electron transfer (ET) mechanisms were investigated. We chose β-carotene (β-CAR) and lycopene (LYC) and compared their NO2(•) initiations and peroxidations with those of linoleic acid (LAH), the model of the lipid. We found that for CARs ET is more likely to occur in the most polar (water) environment than are HAT and RAF. In less polar environments, CARs react more readily with NO2(•) via HAT and RAF than does the lipid model, LAH. Comparatively, reaction barriers for the RAF between CARs and NO2(•) are smaller than those for the HAT. The additions of O2 to the radical intermediates O2N-CAR(•) and CAR(-H)(•) involve sizable barriers and are endergonic. Other than HAT of LAH, we revealed that lipid peroxidation is likely to be initiated by -NO2 addition and the subsequent barrierless addition of O2. Finally, LYC is a more effective antioxidative agent against NO2(•)-initiated lipid peroxidation than is β-CAR.

  13. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils

    Directory of Open Access Journals (Sweden)

    MARIA E.A. PINTO

    2017-08-01

    Full Text Available ABSTRACT Fatty acid methyl esters (FAMEs were obtained from vegetable oils of soybean, corn and sunflower. The current study was focused on evaluating the antifungal activity of FAMEs mainly against Paracoccidioides spp., as well as testing the interaction of these compounds with commercial antifungal drugs and also their antioxidant potential. FAMEs presented small IC50 values (1.86-9.42 μg/mL. All three FAMEs tested showed antifungal activity against isolates of Paracoccidioides spp. with MIC values ranging from 15.6-500 µg/mL. Sunflower FAMEs exhibited antifungal activity that extended also to other genera, with an MIC of 15.6 μg/mL against Candida glabrata and C. krusei and 31.2 μg/mL against C. parapsilosis. FAMEs exhibited a synergetic effect with itraconazole. The antifungal activity of the FAMEs against isolates of Paracoccidioides spp. is likely due to the presence of methyl linoleate, the major compound present in all three FAMEs. The results obtained indicate the potential of FAMEs as sources for antifungal and antioxidant activity.

  14. Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Naoki Wada

    2015-09-01

    Full Text Available Mycosporine-like amino acids (MAAs are water-soluble molecules that absorb UV-A and UV-B radiation and disperse the energy as heat. MAAs show great diversity in their molecular structures, which exhibit a range of molecular weights spanning 188 to 1050 Daltons. MAAs are utilized in a wide variety of organisms including prokaryotes and eukaryotic micro-organisms that inhabit aquatic, terrestrial, and marine environments. These features suggest that MAAs are stable and fundamental molecules that allow these organisms to live under UV irradiation. MAAs are thought to have been greatly important to ancient forms of life on Earth, functioning as a primary sunscreen to reduce short-wavelength light. Structurally different MAAs might have been developed in MAA-producing organisms during their environmental adaptation. Harmful irradiation directly damages biomolecules, including lipids, proteins and DNA, and induces oxidative stress through radical-propagating processes. Thus, MAAs are expected to play an additional role in the antioxidant system. This review focuses on MAAs with radical scavenging activities. To cover all the reported MAAs known thus far, we surveyed the CAS database and have summarized the structures and the chemical and physical properties of these MAAs, including their antioxidant activities.

  15. Determination of Antioxidant, Anticholinesterase, Tyrosinase Inhibitory Activities and Fatty Acid Profiles of 10 Anatolian Klasea Cass. Species

    Directory of Open Access Journals (Sweden)

    Gülsen Tel

    2016-01-01

    Full Text Available In search of new natural fatty acid sources, extract of 10 different Turkish Klasea species were studies. Fatty acids of Klasea species were studied by GC and GC-MSD. Oleic acid (4.8-45.8%, palmitic acid (15.6-51.8%, linoleic acid (0.3-45.5%, palmitoleic acid (0.8-28.4% and linolenic acid (15.6-34.6% were the main fatty acids elucidated. All extracts were also subjected to acetylcholinesterase, butyrylcholinesterase, tyrosinase, β-carotene-linoleic acid, DPPH • scavenging, CUPRAC and ferrous ion-chelating ability activities. Total flavonoid and phenolic contents were determined as quercetin and pyrocatechol equivalents. All extracts showed significant antioxidant activity in all tests, except hexane extracts of K. serratuloides and K. cerinthifolia that showed weak inhibition against BChE and AChE. The hexane extract of K. coriaceae and methanol extract of K. serratuloides exhibited notable tyrosinase inhibitory activity.

  16. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  17. Lactic Acid Fermentation Improved Textural Behaviour, Phenolic Compounds and Antioxidant Activity of Chia (Salvia hispanica L. Dough

    Directory of Open Access Journals (Sweden)

    Ana Yanina Bustos

    2017-01-01

    Full Text Available In this work, autochthonous lactic acid bacteria (LAB were isolated from chia (Salvia hispanica L. dough and selected on the basis of the kinetics of acidifi cation and proteolytic activity. Strain no. C8, identifi ed as Lactobacillus plantarum C8, was selected and used as starte r to obtain chia sourdough. Lactic acid fermentation increased the organic acid mass fractions (lactic, acetic and phenyl lactic acids to 12.3 g, 1.0 g and 23.8 μg per kg of dough respectively, and antioxidant activities, which increased by approx. 33–40 % compared to unfermented chia fl our dough. In addition, total phenolic content increased 25 % and its composition was strongly modifi ed aft er 24 h of fermentation by L. plantarum C8. Chlorogenic acid was only found in the fermented dough (2.5 mg/g, while ferulic acid was detected from the beginning of fermentation, being 32 % higher in chia sourdough (5.6 mg/g. The use of fermented chia sourdough improved the overall characteristics of white bread, including physical (e.g. reduced hardness and chewiness of the crumb and antioxidant properties (25 % on average, compared to the white bread. These results indicate that the use of chia sourdough could be a promising alternative to improve the technological and antioxidant properties of wheat bread. In addition, this work has shown, for the fi rst time, that lactic acid bacterium is able to ferment chia dough, improving its overall characteristics.

  18. Effect of fermentation with Monascus pilosus on the antioxidant activities and phenolic acid contents of adzuki bean (Vigna angularis)

    Institute of Scientific and Technical Information of China (English)

    Jinhua Cheng; Sung-Kwon Lee; Joo-Won Suh; Seung HwanYang

    2015-01-01

    Objective: To enhance physiological activities of adzuki bean (Vigna angularis) via fermentation with Monascus pilosus (M. pilosus). Methods: The adzuki bean fermentation conditions with M. pilosus were optimized, and the effect of Monascus-fermentation on the antioxidant capacity and phenolic acid contents of adzuki bean was investigated. Results: Optimal fermentation conditions were determined by the production of monacolin K. The highest monacolin K production was observed in 5% inoculum sized on day 15 in fermentation. Free and bound phenolic acids were isolated from native and fermented adzuki bean. A 1.9-fold decrease was observed in bound p-coumaric acid content, whereas the contents of bound ferulic and sinapic acids were increased by 28- and 1.7-fold, respectively. However, the contents of free phenolic acids such as p-coumaric, ferulic, and sinapic acids were increased by 2.6-, 5.2-, and 7.2-fold, respectively. The fermentation of adzuki bean by M. pilosus enhanced the activities of DPPH· radical scavenging, ferrous ion-chelating, nitric oxide scavenging, and ferric antioxidant reducing activities 2.2-, 1.7-, 1.2-, and 1.8-fold, respectively. Conclusions: Results from our study suggest that the contents of p-coumaric, ferulic, and sinapic acids in adzuki bean were highly increased by fermentation with M. pilosus, resulting in enhanced various antioxidant activities.

  19. Effect of fermentation with Monascus pilosus on the antioxidant activities and phenolic acid contents of adzuki bean (Vigna angularis

    Directory of Open Access Journals (Sweden)

    Jinhua Cheng

    2015-04-01

    Full Text Available Objective: To enhance physiological activities of adzuki bean (Vigna angularis via fermentation with Monascus pilosus (M. pilosus. Methods: The adzuki bean fermentation conditions with M. pilosus were optimized, and the effect of Monascus-fermentation on the antioxidant capacity and phenolic acid contents of adzuki bean was investigated. Results: Optimal fermentation conditions were determined by the production of monacolin K. The highest monacolin K production was observed in 5% inoculum sized on day 15 in fermentation. Free and bound phenolic acids were isolated from native and fermented adzuki bean. A 1.9-fold decrease was observed in bound p-coumaric acid content, whereas the contents of bound ferulic and sinapic acids were increased by 28- and 1.7-fold, respectively. However, the contents of free phenolic acids such as p-coumaric, ferulic, and sinapic acids were increased by 2.6-, 5.2-, and 7.2-fold, respectively. The fermentation of adzuki bean by M. pilosus enhanced the activities of DPPH● radical scavenging, ferrous ion-chelating, nitric oxide scavenging, and ferric antioxidant reducing activities 2.2-, 1.7-, 1.2-, and 1.8-fold, respectively. Conclusions: Results from our study suggest that the contents of p-coumaric, ferulic, and sinapic acids in adzuki bean were highly increased by fermentation with M. pilosus, resulting in enhanced various antioxidant activities

  20. Comparison of antioxidant activities between salvianolic acid B and Ginkgo biloba extract (Egb 761 )

    Institute of Scientific and Technical Information of China (English)

    Chang-suo LIU; Yong CHENG; Jin-feng HU; Wei ZHANG; Nai-hong CHEN; Jun-tian ZHANG

    2006-01-01

    Aim: To investigate and compare the antioxidant activities of salvianolic acid B (SalB) and Ginkgo biloba extract (EGb 761) in aqueous solution, rat microsomes and the cellular system. Methods: Superoxide anion (O-·2) was generated using xanthine/xanthine oxidase system and phenazine methosulate/NADH system, and the effects of SalB and EGb 761 on the generation of (O-·2) were achieved by spectrophotometric measurement of the product formed on reduction of nitro blue tetrazolium. Two different methods were used to assess the scavenging effects of the extracts on hydroxyl radical (·OH): HPLC method was used for quantitation of ·OH by oxy-radical trapping of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) to form DMPO-OH adducts in Fe2+-EDTA-H2O2 system. To confirm the HPLC data,·OH was also measured by spectrophotometry using a commercial detection kit. The anti-lipid peroxidation effects of the extracts in microsomes of rat brain, liver and kidney induced by ascorbate-NADPH were determined by thiobarbituric acid (TBA) method. The protective effects of the extracts on peroxide hydrogen (H2O2)-induced oxidative damage in SH-SY5Y cells were investigated by assessing cell viability assay, the level of lipid peroxidation, and the lactate dehydrogenase (LDH) release. Results: Both SalB and EGb 761 were able to scavenge O-·2 and ·OH, inhibit lipid peroxidation of microsomes, and protect SH-SY5Y cells against H2O2-induced oxidative damage. However, the concentration of SalB was far lower than that of EGb 761 when a similar effect was obtained. Conclusion: The antioxidant efficiency of SalB was greater than that of EGb 761. These results suggest that SalB, like EGb 761, has promising potential in treating oxidative damagederived neurodegenerative disorders.

  1. Phenol acidity and ease of oxidation in isoflavonoid/β-carotene antioxidant synergism.

    Science.gov (United States)

    Han, Rui-Min; Li, Dan-Dan; Chen, Chang-Hui; Liang, Ran; Tian, Yu-Xi; Zhang, Jian-Ping; Skibsted, Leif H

    2011-09-28

    Regeneration of β-carotene from the β-carotene radical cation by the 4'-propylpuerarin anion (second-order rate constant=1.5×10(9) L mol(-1) s(-1) in methanol/chloroform=1:9 (v/v) solution at 25 °C as determined by laser flash photolysis) was found to be marginally slower than regeneration by the 7-propylpuerarin anion (2.3×10(9) L mol(-1) s(-1)), in agreement with the 7-propylpuerarin anion being more reducing (E'=0.56 V vs NHE) than the 4'-propylpuerarin anion (E'=1.01 V vs NHE). The potentials were calculated from E°=1.12 and 1.44 V (vs NHE) as determined by cyclic voltametry in aqueous solution and pKa=9.51 and 7.23 obtained previously for 7-propylpuerarin and 4'-propylpuerarin, respectively. The less reducing but more acidic 4'-propylpuerarin showed less antioxidant activity in liposome of pH 7.4, but more significant antioxidant synergism with β-carotene than the more reducing but less acidic 7-propylpuerarin for oxidation initiated in the liposome lipid phase. Electrostatic effects are concluded to be important in the regeneration of β-carotene from the radical cation in the water/lipid interface because approximately 50% of 4'-propylpuerarin is present as the anion, whereas only 0.5% of 7-propylpuerarin is present as the anion. In contrast, penetration of the undissociated phenolic group into the lipid phase, more significant for 7-propylpuerarin than for 4'-propylpuerarin according to the calculated water/lipid partition coefficients, becomes important for the chain-breaking action in lipid oxidation of the puerarin derivatives as models for (iso)flavonoids and their glycosides.

  2. Chemical composition and antioxidant activity of an acidic polysaccharide extracted from Cucurbita moschata Duchesne ex Poiret.

    Science.gov (United States)

    Yang, Xingbin; Zhao, Yan; Lv, You

    2007-06-13

    A simple and sensitive high-performance capillary electrophoresis (HPCE) method was designed for quantitative analysis of the component monosaccharides of an acidic polysaccharide extracted from pumpkin. In this method, the polysaccharide was hydrolyzed into component monosaccharides with 2.0 M trifluoroacetic acid at 100 degrees C for 6 h and then labeled with 1-phenyl-3-methyl-5-pyrazolone, and subsequently the labeled monosaccharide derivatives were separated by HPCE. As a result, glucose (21.7%) and glucuronic acid (18.9%) were identified to be the main component monosaccharides, followed by galactose (11.5%), arabinose (9.8%), xylose (4.4%), and rhamnose (2.8%). Furthermore, the pumpkin polysaccharide was also demonstrated to effectively inhibit the H2O2-caused decrease of cell viability, lactate dehydrogenase leakage, and malondialdehyde formation, and also reduced the H2O2-caused decline of superoxide dismutase activity and glutathione depletion in cultured mouse peritoneal macrophages, indicating that pumpkin polysaccharide possessed significant cytoprotective effect and antioxidative activity.

  3. Extraction, fatty acid profile and antioxidant activity of sesame extract (Sesamum Indicum L.

    Directory of Open Access Journals (Sweden)

    R. H. R. Carvalho

    2012-06-01

    Full Text Available This article carried out the extraction of sesame oil by using three extraction techniques: supercritical fluid extraction (SFE, Soxhlet and sequential extraction. The SFE was performed using supercritical carbon dioxide (SC-CO2 as solvent and ethanol as cosolvent. Tests were performed at 20 MPa, 35ºC and a flow rate of 2.5 g CO2/min with a total extraction time of 210 minutes. The Soxhlet extraction was performed for 8 hours, using petroleum ether and ethanol as solvents, until the exhaustion of the oil contained in the seeds. The sequential extraction used ethyl ether, ethanol and water as solvents. The Soxhlet extraction was the most effective (58.93%, while the SFE technique obtained 26.47% as the best result. The antioxidant activity (AA was determined by the β-carotene/linoleic acid system, with good oxidation inhibition percentages (29.32-83.49% for all the extracts. The main fatty acids (FA in sesame oil were oleic and linoleic acids.

  4. Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice.

    Science.gov (United States)

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2016-11-01

    The objective of this study was to evaluate different antioxidants for anthocyanin (ACY) retention in vitamin C fortified cranberry juice and assess its quality. Cranberry juice was fortified with 40-80mg/100mL vitamin C and added hesperidin, catechin, and gallic acid at different concentrations. Juice was pasteurized at 85°C for 1min and stored at 23°C for 16days. ACYs, vitamin C, color intensity, and browning index (BI) were evaluated at 2-day intervals. Gallic acid was found to be the most effective antioxidant against ACYs degradation and significantly (pgallic acid-added juice was significantly lower (0.80 vs 1.00) than the control juice. The outcome of this research provided a potential solution of using gallic acid to preserve a health-beneficial component (ACYs), and endogenous red color in cranberry juice.

  5. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    Science.gov (United States)

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature.

  6. Quantitative HPLC Analysis of Rosmarinic Acid in Extracts of "Melissa officinalis" and Spectrophotometric Measurement of Their Antioxidant Activities

    Science.gov (United States)

    Canelas, Vera; da Costa, Cristina Teixeira

    2007-01-01

    The students prepare tea samples using different quantities of lemon balm leaves ("Melissa officinalis") and measure the rosmarinic acid contents by an HPLC-DAD method. The antioxidant properties of the tea samples are evaluated by a spectrophotometric method using a radical-scavenging assay with DPPH. (2,2-diphenyl-1-picrylhydrazyl). Finally the…

  7. Sacha Inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytoserols, phenolic compounds and antioxidant capacity

    NARCIS (Netherlands)

    Chirinos, R.; Zuloeta, G.; Pedreschi Plasencia, R.P.

    2013-01-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A

  8. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut

    Science.gov (United States)

    The objective of this study was to evaluate chemical compositions, free amino acid contents, and antioxidant activities of different cuts of Hanwoo (Bos taurus coreanae) beef. Beef preferences and prices in the Korean market depend on cut. Therefore, comparisons were made between high-preference (gr...

  9. Sacha Inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytoserols, phenolic compounds and antioxidant capacity

    NARCIS (Netherlands)

    Chirinos, R.; Zuloeta, G.; Pedreschi Plasencia, R.P.

    2013-01-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A

  10. Quantitative HPLC Analysis of Rosmarinic Acid in Extracts of "Melissa officinalis" and Spectrophotometric Measurement of Their Antioxidant Activities

    Science.gov (United States)

    Canelas, Vera; da Costa, Cristina Teixeira

    2007-01-01

    The students prepare tea samples using different quantities of lemon balm leaves ("Melissa officinalis") and measure the rosmarinic acid contents by an HPLC-DAD method. The antioxidant properties of the tea samples are evaluated by a spectrophotometric method using a radical-scavenging assay with DPPH. (2,2-diphenyl-1-picrylhydrazyl). Finally the…

  11. Antioxidant protection of gallic acid against toxicity induced by Pb in blood, liver and kidney of rats

    Directory of Open Access Journals (Sweden)

    Patrícia Reckziegel

    2016-01-01

    Full Text Available The effect of the antioxidant gallic acid (GA on Pb toxicity in blood, liver and kidney was investigated in the present study. Rats Wistar received Pb nitrate (50 mg/Kg/day, i.p., 5 days followed by GA (13.5 mg/Kg, p.o., 3 days or a chelating agent (EDTA, 55 mg/Kg, i.p.. As result, Pb decreased body weight, hematocrit and blood δ-aminolevulinic acid dehydratase (ALA-D activity. In addition, high Pb levels were observed in blood and tissues, together with increased (1 lipid peroxidation in erythrocytes, plasma and tissues, (2 protein oxidation in tissues and (3 plasma aspartate transaminase (AST levels. These changes were accompanied by decreasing in antioxidant defenses, like superoxide dismutase (SOD activity in tissues and catalase (CAT activity and reduced glutathione (GSH in liver. GA was able to reverse Pb-induced decrease in body weight and ALA-D activity, as well as Pb-induced oxidative damages and most antioxidant alterations, however it did not decrease Pb bioaccumulation herein as EDTA did. Furthermore, EDTA did not show antioxidant protection in Pb-treated animals as GA did. In conclusion, GA decreased Pb-induced oxidative damages not by decreasing Pb bioaccumulation, but by improving antioxidant defenses, thus GA may be promising in the treatment of Pb intoxications.

  12. Chemotherapeutic Impact Of Natural Antioxidant Flavonoids Gallic Acid Rutin Quercetin And Mannitol On Pathogenic Microbes And Their Synergistic Effect

    Directory of Open Access Journals (Sweden)

    Ganesh Ghosh

    2015-08-01

    Full Text Available Several studies suggest that natural flavonoids with antioxidants and can influence the response to chemotherapy as well as the development of adverse side effects that results from treatment with antineoplastic agents and Its prevalence over Multi drug resistant bacterial strain revived interest on Flavonoids. Synergistic effect is defined as passive interaction arises when two agents combine and together they exert an inhibitory effect that is greater than the sum of individual effect The new Synergistic therapy so that antioxidant are more effective in combination on multi drug resistant bacterial strain. Interaction between natural antioxidants and topoisomerase enzyme can be seen through Quercetin as a potent antimicrobial compound alone and in combination with other natural antioxidant like rutin. MICMBC result show antibacterial activity of the flavonoids were enhanced when used in combination against Staphylococcus aureus Bacillus cereus Bacillus subtilis Klebsiella pneumonae Escherichia coli as the test bacteria. The combination of rutin and quercetin rutin and gallic acid mannitol and gallic acid were much more effective than either flavonoid alone. Furthermore Its gave a good relation between these antioxidant compound and antimicrobial activity. Flavonoids as a chemotherapeutic agent and its Synergistic effect can be solution for various microbial disease conditions.

  13. Alkyl chain length impacts the antioxidative effect of lipophilized ferulic acid in fish oil enriched milk

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Lyneborg, Karina Sieron; Villeneuve, Pierre

    2015-01-01

    Lipophilization of phenolics by esterification with fatty alcohols may alter their localization in an emulsion and thereby their antioxidant efficacy. In this study, synthesized unbranched alkyl ferulates were evaluated as antioxidants in fish oil enriched milk. Lipid oxidation was determined...

  14. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  15. Dietary Phenolic Acids Act as Effective Antioxidants in Membrane Models and in Cultured Cells, Exhibiting Proapoptotic Effects in Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Laura Zambonin

    2012-01-01

    Full Text Available Caffeic, syringic, and protocatechuic acids are phenolic acids derived directly from food intake or come from the gut metabolism of polyphenols. In this study, the antioxidant activity of these compounds was at first evaluated in membrane models, where caffeic acid behaved as a very effective chain-breaking antioxidant, whereas syringic and protocatechuic acids were only retardants of lipid peroxidation. However, all three compounds acted as good scavengers of reactive species in cultured cells subjected to exogenous oxidative stress produced by low level of H2O2. Many tumour cells are characterised by increased ROS levels compared with their noncancerous counterparts. Therefore, we investigated whether phenolic acids, at low concentrations, comparable to those present in human plasma, were able to decrease basal reactive species. Results show that phenolic acids reduced ROS in a leukaemia cell line (HEL, whereas no effect was observed in normal cells, such as HUVEC. The compounds exhibited no toxicity to normal cells while they decreased proliferation in leukaemia cells, inducing apoptosis. In the debate on optimal ROS-manipulating strategies in cancer therapy, our work in leukaemia cells supports the antioxidant ROS-depleting approach.

  16. Effects of Omega-3 Fatty Acids Supplement on Antioxidant En¬zymes Activity in Type 2 Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Fatemeh TOORANG

    2016-03-01

    Full Text Available Background: Diabetes is a major cause of death. Oxidative stress mainly caused by hyperglycemia is the primary reason of related complications. Omega-3 fatty acids are prescribed in diabetes but the effect on antioxidant defense is controversial. This study investigated effects of omega-3 supplementation on antioxidant enzymes activity in type 2 diabetic patients.Methods: A randomized, placebo controlled, double blind clinical trial was performed on 90 type2 diabetic patients. The treatment group took, daily, three capsules of omega-3 for two mo, which totally provided 2714mg omega-3 (EPA=1548 mg, DHA=828 mg and 338 mg of other omega=3 fatty acids. Placebo contained 2100 mg sunflower oil (12% SFA, 65% linoleic acid, 23% MUFA, which is the main oil used in the study population. Food intakes, anthropometric and demographic characteristics, and therapeutic regimen data were recorded before and after the intervention. Fasting blood samples were taken before and after the intervention to measure super oxide dismutase, glutathione peroxidase, glutathione reductase, catalase and total antioxidant capacity in erythrocytes.Results: A total of 81 subjects completed the study. Two study groups were similar as regards duration of diabetes, age and the enzymes at baseline. Energy and macro- and micronutrients intakes, weight and hypoglycemic agent consumption were similar in the two groups at baseline and did not change. Supplementation had no effect on antioxidant enzyme status. Glycated hemoglobin showed a significant reduction by supplementation.Conclusion: Daily supplementation of 2714 mg mega-3 for two mo results in a significant reduction in HbA1c level in type2 diabetic patients with no effects on antioxidant enzymes activity. Keywords: Type 2 diabetes, Omega-3 supplement, Antioxidant enzymes

  17. Differentiation between stoichiometric and anticatalytic antioxidant properties of benzoic acid analogues: a structure/redox potential relationship study.

    Science.gov (United States)

    Franck, Thierry; Mouithys-Mickalad, Ange; Robert, Thierry; Ghitti, Gianangelo; Deby-Dupont, Ginette; Neven, Philippe; Serteyn, Didier

    2013-11-25

    We investigated the antioxidant activities of some phenolic acid derivatives on a cell free system and on cellular and enzymatic models involved in inflammation. The stoichiometric antioxidant activities of phenolic acid derivatives were studied by measuring their capacity to scavenge the radical cation 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS(+)) and reactive oxygen species (ROS) produced by stimulated neutrophils. The anticatalytic antioxidant capacity of the molecules was evaluated on the activity of myeloperoxidase (MPO), an oxidant enzyme present in and released by the primary granules of neutrophils. The ROS produced by PMA-stimulated neutrophils were measured by lucigenin-enhanced chemiluminescence (CL) and the potential interaction of the molecules with MPO was investigated without interferences due to medium by Specific Immuno-Extraction Followed by Enzyme Detection (SIEFED). The antioxidant activities of the phenolic compounds were correlated to their redox potentials measured by differential pulse voltammetry (DPV), and discussed in relation to their molecular structure. The ability of the phenolic molecules to scavenge ABTS radicals and ROS derived from neutrophils was inversely correlated to their increased redox potential. The number of hydroxyl groups (three) and their position (catechol) were essential for their efficacy as stoichiometric antioxidants or scavengers. On MPO activity, the inhibitory capacity of the molecules was not really correlated with their redox potential. Likewise, for the inhibition of MPO activity the number of OH groups and mainly the elongation of the carboxylic group were essential, probably by facilitating the interaction with the active site or the structure of the enzyme. The redox potential measurement, combined with ABTS and CL techniques, seems to be a good technique to select stoichiometric antioxidants but not anticatalytic ones, as seen for MPO, what rather involves a direct interaction with

  18. Surface-active properties of lipophilic antioxidants tyrosol and hydroxytyrosol fatty acid esters: a potential explanation for the nonlinear hypothesis of the antioxidant activity in oil-in-water emulsions.

    Science.gov (United States)

    Lucas, Ricardo; Comelles, Francisco; Alcántara, David; Maldonado, Olivia S; Curcuroze, Melanie; Parra, Jose L; Morales, Juan C

    2010-07-14

    Our group has recently observed a nonlinear tendency in antioxidant capacity of different hydroxytyrosol fatty acid esters in fish oil-in-water emulsions, where a maximum of antioxidant efficiency appeared for hydroxytyrosol octanoate. These results appear to disagree with the antioxidant polar paradox. Because the physical location of the antioxidants in an oil-water interface has been postulated as an important factor in explaining this behavior, we have prepared a series of tyrosol and hydroxytyrosol fatty acid esters with different chain length and studied their surface-active properties in water, because these physicochemical parameters could be directly related to the preferential placement at the interface. We have found that tyrosol and hydroxytyrosol fatty acid esters are relevant surfactants when the right hydrophilic-lipophilic balance (HLB) is attained and, in some cases, as efficient as emulsifiers commonly used in industry, such as Brij 30 or Tween 20. Moreover, a nonlinear dependency of surfactant effectiveness is observed with the increase in chain length of the lipophilic antioxidants. This tendency seems to fit quite well with the reported antioxidant activity in emulsions, and the best antioxidant of the series (hydroxytyrosol octanoate) is also a very effective surfactant. This potential explanation of the nonlinear hypothesis will help in the rational design of antioxidants used in oil-in-water emulsions.

  19. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells.

    Science.gov (United States)

    Tian, Lin-Lin; Wang, Xue-Jun; Sun, Yu-Ning; Li, Chun-Rong; Xing, Ya-Ling; Zhao, Hai-Bao; Duan, Ming; Zhou, Zhe; Wang, Sheng-Qi

    2008-01-01

    Oxidative stress caused by dopamine may play an important role in the pathogenesis of Parkinson's disease. Salvianolic acid B is an antioxidant derived from the Chinese herb, Salvia miltiorrhiza. In this study, we investigated the neuroprotective effect of salvianolic acid B against 6-hydroxydopamine-induced cell death in human neuroblastoma SH-SY5Y cells. Pretreatment of SH-SY5Y cells with salvianolic acid B significantly reduced 6-hydroxydopamine-induced generation of reactive oxygen species, and prevented 6-hydroxydopamine-induced increases in intracellular calcium. Our data demonstrated that 6-hydroxydopamine-induced apoptosis was reversed by salvianolic acid B treatment. Salvianolic acid B reduced the 6-hydroxydopamine-induced increase of caspase-3 activity, and reduced cytochrome C translocation into the cytosol from mitochondria. The 6-hydroxydopamine-induced decrease in the Bcl-x/Bax ratio was prevented by salvianolic acid B. Additionally, salvianolic acid B decreased the activation of extracellular signal-regulated kinase and induced the activation of 6-hydroxydopamine-suppressed protein kinase C. These results indicate that the protective function of salvianolic acid B is dependent upon its antioxidative potential. Our results strongly suggest that salvianolic acid B may be effective in treating neurodegenerative diseases associated with oxidative stress.

  20. Long chain fatty acid acylated derivatives of quercetin-3-o-glucoside as antioxidants to prevent lipid oxidation.

    Science.gov (United States)

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2014-11-06

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  1. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Sumudu N. Warnakulasuriya

    2014-11-01

    Full Text Available Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G was esterified individually with six selected long chain fatty acids: stearic acid (STA, oleic acid (OLA, linoleic acid (LNA, α-linolenic acid (ALA, eicosapentaenoic acid (EPA and decosahexaenoic acid (DHA, using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL, in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  2. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Der Jiun Ooi

    2016-06-01

    Full Text Available Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF isolated from M. latifolia rhizome methanolic extract (RME contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  3. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    Science.gov (United States)

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-06-17

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  4. Effect of Dietary n-3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    B. Guermouche

    2014-01-01

    Full Text Available The aim of this work was to determine the effect of dietary n-3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL, and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n-3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control or with the EPAX diet (enriched in n-3 PUFAs, by streptozotocin. The macrosomic pups were killed at birth (day 0 and at adulthood (day 90. Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC, hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n-3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation.

  5. Antioxidant activity of ferulic acid alkyl esters in a heterophasic system: a mechanistic insight.

    Science.gov (United States)

    Anselmi, Cecilia; Centini, Marisanna; Granata, Paola; Sega, Alessandro; Buonocore, Anna; Bernini, Andrea; Facino, Roberto Maffei

    2004-10-20

    The antioxidant activity of some esters of ferulic acid with the linear fatty alcohols C7, C8 (branched and linear), C9, C11, C12, C13, C15, C16, and C18 has been studied in homogeneous and heterogeneous phases. Whereas in homogeneous phase all of the alkyl ferulates possessed similar radical-scavenging abilities, in rat liver microsomes they showed striking differences, the more effective being C12 (7) (IC50 = 11.03 M), linear C8 (3) (IC50 = 12.40 microM), C13 (8) (IC50 = 18.60 microM), and C9 (5) (IC50 = 19.74 microM), followed by C7 (2), C15 (9), C11 (6), branched C8 (4), C16 (10), and C18 (11) (ferulic acid was the less active, IC50 = 243.84 microM). All of the molecules showed similar partition coefficients in an octanol-buffer system. Three-dimensional studies (NMR in solution, modeling in vacuo) indicate that this behavior might be due to a different anchorage of the molecules with the ester side chain to the microsomal phospholipid bilayer and to a consequent different orientation/positioning of the scavenging phenoxy group outside the membrane surface against the flux of oxy radicals.

  6. Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties.

    Science.gov (United States)

    Sahiner, Nurettin; Sagbas, Selin; Sahiner, Mehtap; Silan, Coskun; Aktas, Nahit; Turk, Mustafa

    2016-01-01

    A novel resourceful bulk poly(Tannic Acid) (p(TA)) hydrogel was prepared by crosslinking TA molecules with an epoxy crosslinker, trimethylolpropane triglycidyl ether (TMPGDE), in an autoclave at 90°C for 2h. The obtained p(TA) hydrogels were in disk form and have highly porous morphology. The swelling characteristics of p(TA) hydrogels were investigated in wound healing pH conditions of pH 5.4, 7.4, and 9 at 37.5°C, and the hydrogels showed good swelling and moisture content behavior. Especially, p(TA) hydrogels were found to be sensitive to pH 9 with 1669% maximum swelling. P(TA) hydrogels were completely degraded at pH 9 hydrolytically in 9 days. Total phenol contents and the effects of scavenging ABTS(+) radicals of degraded p(TA) hydrogels at pH 5.4, 7.4, and 9 were evaluated and calculated in terms of gallic acid equivalent and trolox equivalent antioxidant capacity, respectively, and found to be very effective. Moreover, degraded p(TA) hydrogels display strong antimicrobial behavior against gram positive Staphylococcus aureus, Bacillus subtilis, gram negative Pseudomonas aeruginosa bacteria strains and Candida albicans fungus strain. The WST-1 results indicated that bulk p(TA) hydrogels have no cyctotoxicity to the L929 fibroblast cell line in vitro.

  7. Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity

    Indian Academy of Sciences (India)

    M S Parihar; Taruna Hemnani

    2003-02-01

    Increasing evidence supports the role of excitotoxicity in neuronal cell injury. Thus, it is extremely important to explore methods to retard or reverse excitotoxic neuronal injury. In this regard, certain dietary compounds are begining to receive increased attention, in particular those involving phytochemicals found in medicinal plants in alleviating neuronal injury. In the present study, we examined whether medicinal plant extracts protect neurons against excitotoxic lesions induced by kainic acid (KA) in female Swiss albino mice. Mice were anesthetized with ketamine and xylazine (200 mg and 2 mg/kg body wt. respectively) and KA (0.25 g in a volume of 0.5 l) was administered to mice by intra hippocampal injections. The results showed an impairment of the hippocampus region of brain after KA injection. The lipid peroxidation and protein carbonyl content were significantly ( < 0.05) increased in comparison to controls. Glutathione peroxidase (GPx) activity (EC 1.11.1.9) and reduced glutathione (GSH) content declined after appearance of excitotoxic lesions. As GPx and GSH represent a major pathway in the cell for metabolizing hydrogen peroxide (H2O2), their depletion would be expected to allow H2O2 to accumulate to toxic levels. Dried ethanolic plant extracts of Withania somnifera (WS), Convolvulus pleuricauas (CP) and Aloe vera (AV) dissolved in distilled water were tested for their total antioxidant activity. The diet was prepared in terms of total antioxidant activity of plant extracts. The iron (Fe3+) reducing activity of plant extracts was also tested and it was found that WS and AV were potent reductants of Fe3+ at pH 5.5. CP had lower Fe3+ reducing activity in comparison to WS and AV. Plant extracts given singly and in combination 3 weeks prior to KA injections resulted in a decrease in neurotoxicity. Measures of lipid peroxidation and protein carbonyl declined. GPx activity and GSH content were elevated in hippocampus supplemented with WS and combination of

  8. Myricetin, rosmarinic and carnosic acids as superior natural antioxidant alternatives to α-tocopherol for the preservation of omega-3 oils.

    Science.gov (United States)

    Guitard, Romain; Paul, Jean-François; Nardello-Rataj, Véronique; Aubry, Jean-Marie

    2016-12-15

    22 natural polyphenols are compared to 7 synthetic antioxidants including BHT, BHA, TBHQ and PG with regard to their ability to protect omega-3 oils from autoxidation. The antioxidant efficiency of phenols is assessed using the DPPH test and the measurement of oxygen consumption during the autoxidation of oils rich in omega-3 fatty acids. Also, the bond dissociation enthalpies (BDE) of the Ar-OH bonds are calculated and excellent correlations between thermodynamic, kinetic and oxidation data are obtained. It is shown that kinetic rates of hydrogen transfer, number of radicals scavenged per antioxidant molecule, BDE and formation of antioxidant dimers from the primary radicals play an important role regarding the antioxidant activity of phenols. Based on this, it is finally shown that myricetin, rosmarinic and carnosic acids are more efficient than α-tocopherol and synthetic antioxidants for the preservation of omega-3 oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    Directory of Open Access Journals (Sweden)

    Q. Xu

    2013-11-01

    Full Text Available Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2 and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05, and decreased expression of GLUT2 (by 60%, P<0.05 and pyruvate kinase (by 80%, P<0.05 mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.

  10. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q.; Chen, S.Y.; Deng, L.D.; Feng, L.P.; Huang, L.Z.; Yu, R.R. [Department of Pharmacy, Guilin Medical University, Guilin (China)

    2013-11-18

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05), and decreased expression of GLUT2 (by 60%, P<0.05) and pyruvate kinase (by 80%, P<0.05) mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.

  11. Mathematical Evaluation of the Amino Acid and Polyphenol Content and Antioxidant Activities of Fruits from Different Apricot Cultivars

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2011-09-01

    Full Text Available Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L. cultivated in Lednice (climatic area T4, South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin, was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis. The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.

  12. In vitro antioxidant and antibacterial properties of hydrolysed proteins of delimed tannery fleshings: comparison of acid hydrolysis and fermentation methods.

    Science.gov (United States)

    Balakrishnan, Bijinu; Prasad, Binod; Rai, Amit Kumar; Velappan, Suresh Puthanveetil; Subbanna, Mahendrakar Namadev; Narayan, Bhaskar

    2011-04-01

    Proteins in delimed tannery fleshings were fermentatively hydrolysed using Enterococcus faecium NCIM5335 and also hydrolysed using mild organic acids (formic acid and propionic acid). The liquor portion containing hydrolysed proteins was spray dried, in both the cases, to obtain a powder. The spray dried powder was evaluated for in vitro antioxidant activities with respect to scavenging different free radicals and antibacterial properties against nine different pathogens. Fermentation and acid hydrolysates scavenged 83 and 75.3% of 2,2-azino-bis-3-ethyl-benzthiazoline-6-sulphonic acid (ABTS) radicals, respectively, at a protein concentration of 0.25 mg. Further, fermentation hydrolysate showed higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of 59% as compared to 56% scavenging by acid hydrolysate at a protein concentration of 5 mg. Acid hydrolysate exhibited lesser (82.3%) peroxy radical scavenging compared to hydrolysate from fermentation (88.2%) at a protein concentration of 10 mg. However, acid hydrolysate exhibited higher (89.2%) superoxide anion scavenging while its fermentation counterpart showed lower activity (85.4%) at 2.5 mg hydrolysate protein. Well as superoxide anion scavenging properties. All the in vitro antioxidant properties exhibited dose dependency. Fermentation hydrolysate exhibited maximum antagonistic activity against Salmonella typhi FB231, from among host of pathogens evaluated. Both the hydrolysates have potential to be ingredients in animal feeds and can help reduce oxidative stress in the animals.

  13. Physical and Flavor Characteristics, Fatty Acid Profile, Antioxidant Status and Nrf2-Dependent Antioxidant Enzyme Gene Expression Changes in Young Grass Carp (Ctenopharyngodon idella) Fillets Fed Dietary Valine.

    Science.gov (United States)

    Luo, Jian-Bo; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2017-01-01

    This study was conducted to examine the effects of dietary valine on the physical and flavor characteristics, fatty acid (FA) profile, antioxidant status and Nrf2-dependent antioxidant enzyme gene expression in the muscle of young grass carp (Ctenopharyngodon idella) fed increasing levels of valine (4.3, 8.0, 10.6, 13.1, 16.9 and 19.1 g/kg) for 8 weeks. Compared with the control group, the group fed valine showed improved physical characteristics of fish fillets (increased relative shear force, hydroxyproline, protein and lipid levels and decreased cathepsin B and L activities, as well as cooking loss, were observed). Moreover, valine improved the flavor of young grass carp fillets by increasing the amino acid (AA) concentration in fish muscle (increased aspartic acid, threonine, glutamine, cystine, methionine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine and valine concentrations were observed). Additionally, optimal valine supplementation increased the potential health benefits to humans by decreasing the saturated FA (C15:0 and C16:0) concentration and increasing the unsaturated FA (monounsaturated FAs (MUFAs), such as C16:1, C18:1c+t and C20:1, and polyunsaturated FAs (PUFAs), such as C18:3n-3, C20:2 and C22:6) concentration. In addition, the reduced glutathione (GSH) content and the activities of Cu/Zn superoxide dismutase (SOD1), catalase (CAT) and Selenium-dependent glutathione peroxydase (Se-GPx) increased under valine supplementation (P levels increased with dietary valine levels, possibly due to the up-regulation of NF-E2-related factor 2 (Nrf2), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1) and the down-regulation of Kelch-like-ECH-associated protein 1 (Keap1) in muscle (P antioxidant status and regulated the expression of the antioxidant enzyme genes Nrf2, Keap1, TOR and S6K1 in fish fillets.

  14. Physical and Flavor Characteristics, Fatty Acid Profile, Antioxidant Status and Nrf2-Dependent Antioxidant Enzyme Gene Expression Changes in Young Grass Carp (Ctenopharyngodon idella) Fillets Fed Dietary Valine

    Science.gov (United States)

    Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2017-01-01

    This study was conducted to examine the effects of dietary valine on the physical and flavor characteristics, fatty acid (FA) profile, antioxidant status and Nrf2-dependent antioxidant enzyme gene expression in the muscle of young grass carp (Ctenopharyngodon idella) fed increasing levels of valine (4.3, 8.0, 10.6, 13.1, 16.9 and 19.1 g/kg) for 8 weeks. Compared with the control group, the group fed valine showed improved physical characteristics of fish fillets (increased relative shear force, hydroxyproline, protein and lipid levels and decreased cathepsin B and L activities, as well as cooking loss, were observed). Moreover, valine improved the flavor of young grass carp fillets by increasing the amino acid (AA) concentration in fish muscle (increased aspartic acid, threonine, glutamine, cystine, methionine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine and valine concentrations were observed). Additionally, optimal valine supplementation increased the potential health benefits to humans by decreasing the saturated FA (C15:0 and C16:0) concentration and increasing the unsaturated FA (monounsaturated FAs (MUFAs), such as C16:1, C18:1c+t and C20:1, and polyunsaturated FAs (PUFAs), such as C18:3n-3, C20:2 and C22:6) concentration. In addition, the reduced glutathione (GSH) content and the activities of Cu/Zn superoxide dismutase (SOD1), catalase (CAT) and Selenium-dependent glutathione peroxydase (Se-GPx) increased under valine supplementation (P < 0.05). Furthermore, the SOD1, CAT and Se-GPx mRNA levels increased with dietary valine levels, possibly due to the up-regulation of NF-E2-related factor 2 (Nrf2), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1) and the down-regulation of Kelch-like-ECH-associated protein 1 (Keap1) in muscle (P < 0.05). In conclusion, valine improved the physical and flavor characteristics, FA profile, and antioxidant status and regulated the expression of the antioxidant enzyme genes Nrf2, Keap1, TOR

  15. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

    Science.gov (United States)

    Betbeder, Didier; Lipka, Emmanuelle; Howsam, Mike; Carpentier, Rodolphe

    2015-01-01

    Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity. PMID

  16. Determination of the antioxidant activity based on the content changes in fatty acid methyl esters in vegetable oils

    Institute of Scientific and Technical Information of China (English)

    Housam Haj Hamdo; Zaid Al-Assaf; Warid Khayata

    2014-01-01

    Free radicals,which are generated in several biochemical reactions in the body,have been implicated as mediators of many diseases,including cancer,atherosclerosis and heart diseases.Although the endogenous antioxidants can scavenge these free radicals,they are often insufficient to maintain the in vivo redox balance.The antioxidant activity (AOA) was examined by addition of each tested antioxidants [alpha-tocopherol (a-T),beta-tocopherol (β-T),gamma-tocopherol (γ-T),delta-tocopherol (δ-T),butylated hydroxyanisole (BHA),2,6-di-tert-butyl-4-methylphenol (BHT),and ascorbyle palmitate (AP)] to four types of different vegetable oils (sunflower oil,soybean oil,corn oil and olive oil).Moreover,content changes in fatty acids were then investigated every 3 months during the storage period.The results showed that the AOA was different among the tested antioxidants.The AOA for BHA was the most for different types of oil compared with other antioxidants,whereas the δ-T possessed the lowest AOA.

  17. OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice

    Institute of Scientific and Technical Information of China (English)

    Feng Wen; Tingting Qin; Yao Wang; Wen Dong; Aying Zhang; Mingpu Tan; Mingyi Jiang

    2015-01-01

    In this study, the role of the rice (Oryza sativa L.) histidine kinase OsHK3 in abscisic acid (ABA)‐induced antioxi-dant defense was investigated. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsHK3 in rice leaves, and H2O2 is required for ABA‐induced increase in the expression of OsHK3 under water stress. Subcel ular localization analysis showed that OsHK3 is located in the cytoplasm and the plasma membrane. The transient expres-sion analysis and the transient RNA interference test in rice protoplasts showed that OsHK3 is required for ABA‐induced upregulation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that OsHK3 functions upstream of the calcium/calmodulin‐dependent protein kinase OsDMI3 and the mito-gen‐activated protein kinase OsMPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, OsHK3 was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, OsrbohB and OsrbohE, and the production of H2O2 in ABA signaling. Our data indicate that OsHK3 play an important role in the regulation of ABA‐induced antioxidant defense and in the feedback regula-tion of H2O2 production in ABA signaling.

  18. α-lipoic acid ameliorates n-3 highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Shi, Xiao-Chen; Jin, Ai; Sun, Jian; Yang, Zhou; Tian, Jing-Jing; Ji, Hong; Yu, Hai-Bo; Li, Yang; Zhou, Ji-Shu; Du, Zhen-Yu; Chen, Li-Qiao

    2017-08-01

    This study evaluated the protective effect of α-lipoic acid (LA) on n-3 highly unsaturated fatty acids (HUFAs)-induced lipid peroxidation in grass carp. The result indicated that diets with n-3 HUFAs increased the production of malondialdehyde (MDA) (P n-3 HUFAs-only group. However, diets with LA remarkably inhibited the n-3 HUFAs-induced increase of HSI, KI, and MDA level in serum, liver and muscle (P n-3 HUFAs in fatty acid composition of muscle and liver (P n-3 HUFAs-induced lipid peroxidation, remit the toxicity of the lipid peroxidant, and protect n-3 HUFAs against lipid peroxidation to promote its deposition in fish, likely strengthening the activity of antioxidant enzymes through regulating mRNA expressions of antioxidant enzyme genes via mediating Nrf2-Keap1 signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Boswellic Acid Improves Cognitive Function in a Rat Model Through Its Antioxidant Activity - Neuroprotective effect of Boswellic acid -

    Directory of Open Access Journals (Sweden)

    Saeedeh Ebrahimpour

    2017-03-01

    Full Text Available Objectives: Boswellic acid (BA, a compound isolated from the gum-resin of Boswellia carterii, is a pentacyclic terpenoid that is active against many inflammatory diseases, including cancer, arthritis, chronic colitis, ulcerative colitis, Crohn's disease, and memory impairment, but the mechanism is poorly understood. This study investigated the effects of boswellic acid on spatial learning and memory impairment induced by trimethyltin (TMT in Wistar rats. Methods: Forty male Wistar rats were randomly divided into 5 groups: Normal group, TMT-administrated rats (8.0 mg/kg, Intraperitoneally, i.p. and TMT + BA (40, 80 and 160 mg/kg, i.p.-administrated rats. BA was used daily for 21 days. To evaluate the cognitive improving of BA, we performed the Morris water maze test. Moreover, to investigate the neuroprotective effect of BA, we determined the acetylcholinesterase (AchE activity, the malondialdehyde (MDA level as a marker of lipid peroxidation, and the glutathione (GSH content in the cerebral cortex. Results: Treatment with TMT impaired learning and memory, and treatment with BA at a dose of 160 mg/kg produced a significant improvement in learning and memory abilities in the water maze tasks. Consistent with behavioral data, the activity of AChE was significantly increased in the TMT-injected rats compared to the control group (P < 0.01 whereas all groups treated with BA presented a more significant inhibitory effect against AChE than the TMT-injected animals. In addition, TMT reduced the GSH content and increased the MDA level in the cerebral cortex as compared to the control group P < 0.01. On the other hand, treatment with BA at 160 mg/kg slightly increased the GSH content and reduced the MDA level in comparison to the TMT-administered group (P < 0.01. Conclusion: The above results suggest that the effect of BA in improving the cognitive function may be mediated through its antioxidant activity.

  20. Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity.

    Science.gov (United States)

    Chirinos, Rosana; Zuloeta, Gledy; Pedreschi, Romina; Mignolet, Eric; Larondelle, Yvan; Campos, David

    2013-12-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high α linolenic (α-Ln) fatty acid content was found in all cultivars (ω3, 12.8-16.0 g/100 g seed), followed by linoleic (L) fatty acid (ω6, 12.4-14.1g/100g seed). The ratio ω6/ω3 was within the 0.83-1.09 range. γ- and δ-tocopherols were the most important tocopherols, whereas the most representative phytosterols were β-sitosterol and stigmasterol. Contents of total phenolics, total carotenoids and hydrophilic and lipophilic antioxidant capacities ranged from 64.6 to 80 mg of gallic acid equivalent/100g seed; from 0.07 to 0.09 mg of β-carotene equivalent/100g of seed; from 4.3 to 7.3 and, from 1.0 to 2.8 μmol of Trolox equivalent/g of seed, respectively, among the evaluated SI cultivars. Results showed significant differences (p<0.05) among the evaluated SI cultivars in the contents of ω3, ω6, antioxidant capacities and other evaluated phytochemicals. SI seeds should be considered as an important dietary source of health promoting phytochemicals.

  1. Safety and Efficacy of Dextran-Rosmarinic Acid Conjugates as Innovative Polymeric Antioxidants in Skin Whitening: What Is the Evidence?

    Directory of Open Access Journals (Sweden)

    Ortensia I. Parisi

    2017-08-01

    Full Text Available Background: Melanins are high molecular weight pigments responsible for the mammalian skin and hair colour and play a key role in skin protection from UV radiation; however, their overproduction and excessive accumulation lead to pigmentation problems including melasma, freckles, uneven colouring, and age spots. Therefore, the modulation of melanin synthesis represents a critical issue in medicine and cosmetology. In the present study, an innovative polymeric antioxidant to be used as skin whitening agent is developed by the conjugation of dextran with rosmarinic acid. Methods: Dextran-rosmarinic acid conjugates (DEX-RA were synthesized in a one-pot method starting from Origanum vulgare aqueous leaf extract and dextran. The total polyphenol content and the antioxidant activity were assessed by Folin-Ciocalteau assay and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH and bleaching tests, respectively. The efficacy of DEX-RA was evaluated by inhibition of tyrosinase activity, in vitro diffusion and stability studies and in vivo studies. The biocompatibility of the conjugates was investigated by 3-[4,5-Dimethylthiaoly]-2,5-diphenyltetrazoliumbromide (MTT and EPISKIN™ model. Results: Efficacy and safety studies confirmed the antioxidant and tyrosinase inhibitory activities and the biocompatibility of the synthesized conjugates. Conclusion: The polymeric conjugates, comparing to the free antioxidant, show a long-lasting efficacy combined to an enhanced stability resulting in an improved performance of the cosmetic formulations prepared using this innovative whitening agent as a bioactive ingredient.

  2. Antiulcerogenic effect of gallic acid in rats and its effect on oxidant and antioxidant parameters in stomach tissue

    Directory of Open Access Journals (Sweden)

    S Sen

    2013-01-01

    Full Text Available In the present study, we investigate the antiulcerogenic effect of gallic acid against aspirin plus pyrolus ligation-induced gastric ulcer in rats. Rats were treated with gallic acid (100 and 200 mg/kg and famotidine (20 mg/kg for 1 week, followed by induction of gastric ulcer using the aspirin plus pyrolus ligation model. At the end of 4 h after ligation, the rats were sacrificed and ulcer index, gastric juice volume, pH and other biochemical parameter of gastric juice were evaluated. Stomachs of rats were evaluated biochemically to determine oxidant and antioxidant parameters. Pretreatment with gallic acid significantly decreased ulcer index, gastric juice volume, free and total acidity, total protein, DNA content and increased pH and carbohydrates concentration. Gallic acid at a dose of 100 and 200 mg/kg exerted 69.7 and 78.9% ulcer inhibition, respectively. The levels of superoxide dismutase, catalase, reduced glutathione, glutathione reductase, glutathione peroxidise, glucose-6-phosphate dehydrogenase were increased while reduction in myeloperoxidase and lipid peroxidation were observed in the stomach tissues of the drug treated rats. The histopathological studies further confirmed the antiulcer activity of gallic acid. We conclude that the gallic acid possesses antiulcer effect and that these occur by a mechanism that involves attenuation of offensive factors, improvement of mucosal defensive with activation of antioxidant parameters and inhibition of some toxic oxidant parameters.

  3. Antioxidant, Antidiabetic, and Antihypertensive Properties of Echinacea purpurea Flower Extract and Caffeic Acid Derivatives Using In Vitro Models.

    Science.gov (United States)

    Chiou, Shiow-Ying; Sung, Jih-Min; Huang, Po-Wei; Lin, Sheng-Dun

    2017-02-01

    The extraction yield, total phenols, caffeic acid derivatives (CAD), and antioxidant properties of 50% ethanolic Echinacea purpurea flower extract were determined. The in vitro inhibitory effects of 50% ethanolic extract and CAD on α-amylase, α-glucosidase, and angiotensin-converting enzyme (ACE) linked with type 2 diabetes were also investigated. The extraction yield, total phenols, and total CAD of the extract were 27.04%, 195.69 mg CAE/g and 78.42 mg/g, respectively. Cichoric acid (56.03 mg/g) was the predominant CAD compound in the extract. The extract exhibited good antioxidant properties. The extract and CAD inhibited α-amylase, α-glucosidase, and ACE activities in a concentration-dependent manner. Among the tested samples, chlorogenic acid, and caffeic acid (IC50 of 1.71-1.81 mg/mL) had the highest α-amylase inhibitory activity, cichoric acid (IC50 of 0.28 mg/mL) showed higher α-glucosidase inhibitory activity. Both chlorogenic acid and caffeic acid (IC50 of 0.11-0.14 mg/mL) demonstrated higher ACE-inhibitory activity. The in vitro results suggest that E. purpurea extract and CAD have good potential for managing hyperglycemia and hypertension. Overall, the data suggest it is a choice for developing antihyperglycemia and antihypertension compounds from field-grown E. purpurea.

  4. Anti-inflammatory and anti-oxidative effects of alpha-lipoic acid in experimentally induced acute otitis media.

    Science.gov (United States)

    Tatar, A; Korkmaz, M; Yayla, M; Gozeler, M S; Mutlu, V; Halici, Z; Uslu, H; Korkmaz, H; Selli, J

    2016-07-01

    To investigate the anti-inflammatory, anti-oxidative and tissue protective effects, as well as the potential therapeutic role, of alpha-lipoic acid in experimentally induced acute otitis media. Twenty-five guinea pigs were assigned to one of five groups: a control (non-otitis) group, and otitis-induced groups treated with saline, penicillin G, alpha-lipoic acid, or alpha-lipoic acid plus penicillin G. Tissue samples were histologically analysed, and oxidative parameters in tissue samples were measured and compared between groups. The epithelial integrity was better preserved, and histological signs of inflammation and secretory metaplasia were decreased, in all groups compared to the saline treated otitis group. In the alpha-lipoic acid plus penicillin G treated otitis group, epithelial integrity was well preserved and histological findings of inflammation were significantly decreased compared to the saline, penicillin G and alpha-lipoic acid treated otitis groups. The most favourable oxidative parameters were observed in the control group, followed by the alpha-lipoic acid plus penicillin G treated otitis group. Alpha-lipoic acid, with its antioxidant, anti-inflammatory and tissue protective properties, may decrease the clinical sequelae and morbidity associated with acute otitis media.

  5. The effect of antioxidants on quantitative changes of lysine and methionine in linoleic acid emulsions at different pH conditions

    Directory of Open Access Journals (Sweden)

    Marzanna Hęś

    2017-03-01

    Full Text Available Background. Plants are an important source of phenolic compounds. The antioxidant capacities of green tea, thyme and rosemary extracts that contain these compounds have been reported earlier. However, there is a lack of accessible information about their activity against lipid oxidation in emulsions and inhibit the interaction of lipid oxidation products with amino acids. Therefore, the influence of green tea, thyme and rosemary extracts and BHT (butylated hydroxytoluene on quantitative changes in lysine and methionine in linoleic acid emulsions at a pH of isoelectric point and a pH lower than the isoelectric point of amino acids was investigated. Material and methods. Total phenolic contents in plant extracts were determined spectrophotometrically by using Folin-Ciocalteu’s reagent, and individual phenols by using HPLC. The level of oxidation of emulsion was determined using the measurement of peroxides and TBARS (thiobarbituric acid reactive substances. Methionine and lysine in the system were reacted with sodium nitroprusside and trinitrobenzenesulphonic acid respectively, and the absorbance of the complexes was measured. Results. Extract of green tea had the highest total polyphenol content. The system containing antioxidants and amino acid protected linoleic acid more efficiently than by the addition of antioxidants only. Lysine and methionine losses in samples without the addition of antioxidants were lower in their isoelectric points than below these points. Antioxidants decrease the loss of amino acids. The protective properties of antioxidants towards methionine were higher in a pH of isoelectric point whereas towards lysine in pH below this point. Conclusion. Green tea, thyme and rosemary extracts exhibit antioxidant activity in linoleic acid emulsions. Moreover, they can be utilized to inhibit quantitative changes in amino acids in lipid emulsions. However, the antioxidant efficiency of these extracts seems to depend on p

  6. The effect of antioxidants on quantitative changes of lysine and methionine in linoleic acid emulsions at different pH conditions.

    Science.gov (United States)

    Hęś, Marzanna; Gliszczyńska-Świgło, Anna; Gramza-Michałowska, Anna

    2017-01-01

    Plants are an important source of phenolic compounds. The antioxidant capacities of green tea, thyme and rosemary extracts that contain these compounds have been reported earlier. However, there is a lack of accessible information about their activity against lipid oxidation in emulsions and inhibit the interaction of lipid oxidation products with amino acids. Therefore, the influence of green tea, thyme and rosemary extracts and BHT (butylated hydroxytoluene) on quantitative changes in lysine and methionine in linoleic acid emulsions at a pH of isoelectric point and a pH lower than the isoelectric point of amino acids was investigated. Total phenolic contents in plant extracts were determined spectrophotometrically by using Folin-Ciocalteu's reagent, and individual phenols by using HPLC. The level of oxidation of emulsion was determined using the measurement of peroxides and TBARS (thiobarbituric acid reactive substances). Methionine and lysine in the system were reacted with sodium nitroprusside and trinitrobenzenesulphonic acid respectively, and the absorbance of the complexes was measured. Extract of green tea had the highest total polyphenol content. The system containing antioxidants and amino acid protected linoleic acid more efficiently than by the addition of antioxidants only. Lysine and methionine losses in samples without the addition of antioxidants were lower in their isoelectric points than below these points. Antioxidants decrease the loss of amino acids. The protective properties of antioxidants towards methionine were higher in a pH of isoelectric point whereas towards lysine in pH below this point. Green tea, thyme and rosemary extracts exhibit antioxidant activity in linoleic acid emulsions. Moreover, they can be utilized to inhibit quantitative changes in amino acids in lipid emulsions. However, the antioxidant efficiency of these extracts seems to depend on pH conditions. Further investigations should be carried out to clarify this issue.

  7. Synthesis of hydroxycinnamic acid derivatives as mitochondria-targeted antioxidants and cytotoxic agents

    Directory of Open Access Journals (Sweden)

    Jiyu Li

    2017-01-01

    Full Text Available In order to develop agents with superior chemopreventive and chemotherapeutic properties against hepatocellular carcinomas, mitochondria-targeted hydroxycinnamic acids (MitoHCAs were synthesized by conjugation with a triphenylphosphonium cation. These synthetic compounds were evaluated for their antioxidant activities in hepatic mitochondria, including against OH∙− and ROO∙− induced lipid peroxidation. H2O2 production was decreased significantly by increasing glutathione peroxidase and catalase activities. In addition, cell proliferation data from three cell lines (HepG2, L02 and WI38 indicated that the MitoHCAs were selective for cancer cells. Interestingly, the MitoHCAs both with or without Ca2+ triggered mitochondrial dysfunction by inducing mitochondrial swelling, collapsing the mitochondrial membrane potential and causing cytochrome c release. In particular, an inhibitor of the mitochondrial permeability transition pore (mPTP, cyclosporin A, attenuated mitochondrial damage and cell apoptosis, indicating that mPTP may be involved in the antiproliferative activity of MitoHCAs. Further studies focused on structural optimization of these compounds are onging.

  8. Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid.

    Science.gov (United States)

    Deligiannakis, Yiannis; Sotiriou, Georgios A; Pratsinis, Sotiris E

    2012-12-01

    Gallic acid (GA) and its derivatives are natural polyphenolic substances widely used as antioxidants in nutrients, medicine and polymers. Here, nanoantioxidant materials are engineered by covalently grafting GA on SiO(2) nanoparticles (NPs). A proof-of-concept is provided herein, using four types of well-characterized SiO(2) NPs of specific surface area (SSA) 96-352 m(2)/g. All such hybrid SiO(2)-GA NPs had the same surface density of GA molecules (~1 GA per nm(2)). The radical-scavenging capacity (RSC) of the SiO(2)-GA NPs was quantified in comparison with pure GA based on the 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical method, using electron paramagnetic resonance (EPR) and UV-vis spectroscopy. The scavenging of DPPH radicals by these nanoantioxidant SiO(2)-GA NPs showed mixed-phase kinetics: An initial fast-phase (t(1/2) nanoantioxidant particles can be reused by simple washing with no impairment of their RSC.

  9. Phenolics and Ascorbic Acid Related to Antioxidant Activity of MaoFruit Juice and Their Thermal Stability Study (Review Article

    Directory of Open Access Journals (Sweden)

    Thitiya Sripakdee

    2017-02-01

    Full Text Available Antioxidantand/or anti-aging activities are always linedwith people’s minds as major potential benefits concerning human health in the recent commercial features for an economicworld of foodstuffs and medical uses. Total phenolics includingflavonoids and anthocyanins,and ascorbic acid in the Mao juices areclosely related to their antioxidant activity.Numerous research approaches on these functional foods, in particular the colored fruits and vegetableshave been investigated. Method validation and determination ofthe potential compounds have been increasingly developedwith highly sensitive and selective procedures and applications including thermal stability of the Mao juice.Their antioxidant activities obtained from different assays related to the contents of both phenolics and ascorbic acid in the anthocyanins-richMao juicesin Thailand are reported and discussed.

  10. Phenolics and Ascorbic Acid Related to Antioxidant Activity of MaoFruit Juice and Their Thermal Stability Study (Review Article)

    OpenAIRE

    Thitiya Sripakdee; Ratana Mahachai; Saksit Chanthai

    2017-01-01

    Antioxidantand/or anti-aging activities are always linedwith people’s minds as major potential benefits concerning human health in the recent commercial features for an economicworld of foodstuffs and medical uses. Total phenolics includingflavonoids and anthocyanins,and ascorbic acid in the Mao juices areclosely related to their antioxidant activity.Numerous research approaches on these functional foods, in particular the colored fruits and vegetableshave been investigated. Method validation...

  11. Evaluation of sanitizing efficacy of acetic acid on Piper betle leaves and its effect on antioxidant properties.

    Science.gov (United States)

    Singla, Richu; Ganguli, Abhijit; Ghosh, Moushumi; Sohal, Sapna

    2009-01-01

    The sanitizing efficacy of acetic acid and its effect on health beneficial properties of Piper betle leaves were determined. Betel leaves artificially inoculated with Aeromonas, Salmonella and Yersinia were subjected to organic acid (citric acid, acetic acid and lactic acid) treatment. Pathogen populations reduced by 4 log upon individual inoculation and up to 2 log in a mixed cocktail following treatment with 2% acetic acid during storage up to 20 h at 28 degrees C, indicating a residual antimicrobial effect on pathogen during storage. Antioxidant potential ethanolic extracts of both raw and treated P. betle leaves were assayed for free radical scavenging activities against 2,2-diphenyl-1-picryhydrazyl. Polyphenols, flavonoids and the reducing power of treated and untreated P. betle were also compared. No significant (P>0.05) changes were observed in antioxidant status; flavonoids, polyphenols and reducing power of treated betel leaves. Results indicate the feasibility of a simple intervention strategy for inactivating pathogens in edible leaves of P. betle.

  12. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    Science.gov (United States)

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    Science.gov (United States)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  14. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong; Akashi, Mitsuru

    2015-01-22

    The aim of the present research was to study the thermal stability of ferulic acid after coupling onto chitosan, and the possibility of using ferulic acid-coupled chitosan (FA-CTS) as an antioxidant for biodegradable active packaging film. FA-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperatures up to 150°C followed by blown film extrusion at temperatures up to 175°C. Although incorporation of FA-CTS with a content of 0.02-0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the biodegradable films possessed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of film containing FA-CTS were higher than those of film containing naked ferulic acid, by about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by the addition of FA-CTS with a content of 0.02-0.08% (w/w). The above results suggested that FA-CTS could potentially be used as an antioxidant for active packaging film.

  15. Synthesis, characterization, solubility and stability studies of hydrate cocrystal of antitubercular Isoniazid with antioxidant and anti-bacterial Protocatechuic acid

    Science.gov (United States)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Ahmed, Imtiaz; Tahir, Muhammad Nawaz

    2016-08-01

    Isoniazid is an important component used in "triple therapy" to combat tuberculosis. It has reduced Tabletting formulations stability. Anti-oxidants are obligatory to counter oxidative stress, pulmonary inflammation, and free radical burst from macrophages caused in tuberculosis and other diseases. In the present study a hydrate cocrystal of Isoniazid with anti-oxidant and anti-inflammatory and anti-bacterial Protocatechuic acid (3,4-dihydroxybenzoic acid) in 1:1 is reported. This Cocrystal may have improved tabletting stability and anti-oxidant properties. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the Cocrystal. Other synthons of different graph sets involving Nsbnd H···O and Osbnd H···N bonds are formed between hydrazide group of isoniazid and coformer. Solubility studies revealed that cocrystal is less soluble as compared to isoniazid in buffer at pH 7.4 at 22 °C while stability studies at 80 °C for 24 h period disclosed the fact that cocrystal has higher stability than that of isoniazid.

  16. Aryl-acetic and cinnamic acids as lipoxygenase inhibitors with antioxidant, anti-inflammatory, and anticancer activity.

    Science.gov (United States)

    Hadjipavlou-Litina, Dimitra; Pontiki, Eleni

    2015-01-01

    Cinnamic acids have been identified as interesting compounds with cytotoxic, anti-inflammatory, and antioxidant properties. Lipoxygenase pathway, catalyzing the first two steps of the transformation of arachidonic acid into leukotrienes is implicated in several processes such as cell differentiation, inflammation and carcinogenesis. Development of drugs that interfere with the formation or effects of these metabolites would be important for the treatment of various diseases like asthma, psoriasis, ulcerative colitis, rheumatoid arthritis, atherosclerosis, cancer, and blood vessel disorders. Till now, asthma consists of the only pathological case in which improvement has been shown by lipoxygenase LO inhibitors. Thus, the research has been directed towards the development of drugs that interfere with the formation of leukotrienes. In order to explore the anti-inflammatory and cytotoxic effects of antioxidant acrylic/cinnamic acids a series of derivatives bearing the appropriate moieties have been synthesized via the Knoevenagel condensation and evaluated for their biological activities. The compounds have shown important antioxidant activity, anti-inflammatory activity and very good inhibition of soybean lipoxygenase while some of them were tested for their anticancer activity.

  17. Fluctuations in phenolic content, ascorbic acid and total carotenoids and antioxidant activity of fruit beverages during storage

    Directory of Open Access Journals (Sweden)

    C. Castro-López

    2016-09-01

    Full Text Available Stability of the total phenolic content, ascorbic acid, total carotenoids and antioxidant activity in eight fruit beverages was analyzed. The influence of storage temperature (4, 8 and 11 °C during the product shelf-life (20 days was evaluated. Pomegranate Juice presented the highest values for antioxidant activity by DPPH·− assay (552.93 ± 6.00 GAE μg mL−1, total carotenoids (3.18 ± 0.11 βCE μg mL−1, and total phenolic content (3967.07 ± 2.47 GAE μg mL−1; while Splash Blend recorded the highest levels of ascorbic acid (607.39 ± 2.13 AAE μg mL−1. The antioxidant capacity was stable at 4 and 8 °C for the first 8 days of storage; while carotenoids and ascorbic acid were slightly degraded through the storage time, possibly due to oxidation and/or reactions with other compounds. The results suggest that the observed variation during testing could be related to storage conditions of the final product.

  18. Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara, E-mail: rubianamainardes@hotmail.com

    2016-05-01

    Poly(lactic acid) (PLA) nanoparticles containing vanillin were prepared using an emulsion-solvent evaporation technique and were characterized and assessed for their in vitro antioxidant potential. Physicochemical properties of the nanoparticles were characterized by size, polydispersity index, zeta potential, encapsulation efficiency and stability. Solid state and thermal properties were assessed using X-ray diffraction and differential scanning calorimetry, while in vitro drug release profile was also evaluated. Results showed PLA nanoparticles having a characteristic amorphous structure, sizes in the range of 240 nm with high homogeneity in size distribution, zeta potential of − 22 mV and vanillin encapsulation efficiency of 41%. In vitro release study showed a slow and sustained release of vanillin governed by diffusion. Nanoparticles were stable over a period of three months. Antioxidant ability of the vanillin-loaded PLA nanoparticles in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was inferior to free vanillin and due to its prolonged release showed a profile that was both time and concentration dependent, while free vanillin showed concentration-dependent activity. The study concluded that PLA nanoparticles are potential carriers for vanillin delivery. - Highlights: • Vanillin was nanoencapsulated in poly(lactic acid) (PLA) nanoparticles. • Mean particle size was 240 nm and vanillin encapsulation efficiency was 41%. • A prolonged and biphasic vanillin release occurred with 20% released after 120 h. • Vanillin nanoparticles exhibited time/concentration dependent antioxidant activity.

  19. Ferulic acid from aleurone determines the antioxidant potency of wheat grain (Triticum aestivum L.)

    NARCIS (Netherlands)

    Mateo Anson, N.; Berg, R. van den; Havenaar, R.; Bast, A.; Haenen, G.R.M.M.

    2008-01-01

    Grain is an important source of phytochemicals, which have potent antioxidant capacity. They have been implicated in the beneficial health effect of whole grains in reducing cardiovascular disease and type 2 diabetes. The aim of the present study was to identify the most important antioxidant fracti

  20. Ferulic acid from aleurone determines the antioxidant potency of wheat grain (Triticum aestivum L.)

    NARCIS (Netherlands)

    Mateo Anson, N.; Berg, R. van den; Havenaar, R.; Bast, A.; Haenen, G.R.M.M.

    2008-01-01

    Grain is an important source of phytochemicals, which have potent antioxidant capacity. They have been implicated in the beneficial health effect of whole grains in reducing cardiovascular disease and type 2 diabetes. The aim of the present study was to identify the most important antioxidant fracti

  1. Influence of water biscuit processing and kernel puffing on the phenolic acid content and the antioxidant activity of einkorn and bread wheat

    National Research Council Canada - National Science Library

    Hidalgo, Alyssa; Yilmaz, Volkan A; Brandolini, Andrea

    .... Aim of this research was to assess the influence of processing on phenolic acid content and antioxidant activity of whole meal flour water biscuits and puffed kernels of einkorn and bread wheat...

  2. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats.

    Science.gov (United States)

    Rincón-Cervera, Miguel Ángel; Valenzuela, Rodrigo; Hernandez-Rodas, María Catalina; Barrera, Cynthia; Espinosa, Alejandra; Marambio, Macarena; Valenzuela, Alfonso

    2016-08-01

    Alpha-linolenic acid (C18:3 n-3, ALA) is an essential fatty acid and the metabolic precursor of long-chain polyunsaturated fatty acids (LCPUFA) from the n-3 family with relevant physiological and metabolic roles: eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA). Western diet lacks of suitable intake of n-3 LCPUFA and there are recommendations to increase the dietary supply of such nutrients. Seed oils rich in ALA such as those from rosa mosqueta (Rosa rubiginosa), sacha inchi (Plukenetia volubis) and chia (Salvia hispanica) may constitute an alternative that merits research. This study evaluated hepatic and epididymal accretion and biosynthesis of n-3 LCPUFA, the activity and expression of Δ-5 and Δ-6 desaturase enzymes, the expression and DNA-binding activity of PPAR-α and SREBP-1c, oxidative stress parameters and the activity of antioxidative enzymes in rats fed sunflower oil (SFO, 1% ALA) as control group, canola oil (CO, 10% ALA), rosa mosqueta oil (RMO, 33% ALA), sacha inchi oil (SIO, 49% ALA) and chia oil (ChO, 64% ALA) as single lipid source. A larger supply of ALA increased the accretion of n-3 LCPUFA, the activity and expression of desaturases, the antioxidative status, the expression and DNA-binding of PPAR-α, the oxidation of fatty acids and the activity of antioxidant enzymes, whereas the expression and DNA-binding activity of SREBP-1c transcription factor and the biosynthetic activity of fatty acids declined. Results showed that oils rich in ALA such as SIO and ChO may trigger metabolic responses in rats such as those produced by n-3 PUFA.

  3. Mitochondrial biotransformation of ω-(phenoxy)alkanoic acids, 3-(phenoxy)acrylic acids, and ω-(1-methyl-1H-imidazol-2-ylthio)alkanoic acids: A prodrug strategy for targeting cytoprotective antioxidants to mitochondria

    Science.gov (United States)

    Roser, Kurt S.; Brookes, Paul S.; Wojtovich, Andrew P.; Olson, Leif P.; Shojaie, Jalil; Parton, Richard L.; Anders, M. W.

    2010-01-01

    Mitochondrial reactive oxygen species (ROS) generation and the attendant mitochondrial dysfunction are implicated in a range of disease states. The objective of the present studies was to test the hypothesis that the mitochondrial β-oxidation pathway could be exploited to deliver and biotransform the prodrugs ω-(phenoxy)alkanoic acids, 3-(phenoxy)acrylic acids, and ω-(1-methyl-1H-imidazol-2-ylthio)alkanoic acids to the corresponding phenolic antioxidants or methimazole. 3 -and 5-(Phenoxy)alkanoic acids and methyl-substituted analogs were biotransformed to phenols; rates of biotransformation decreased markedly with methyl-group substitution on the phenoxy moiety. 2,6-Dimethylphenol formation from the analogs 3-([2,6-dimethylphenoxy]methylthio)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid was greater than that observed with ω-(2,6-dimethylphenoxy)alkanoic acids. 3- and 5-(1-Methyl-1H-imidazol-2-ylthio)alkanoic acids were rapidly biotransformed to the antioxidant methimazole and conferred significant cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. Both 3-(2,6-dimethylphenoxy)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid also afforded cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. These results demonstrate that mitochondrial β-oxidation is a potentially useful delivery system for targeting antioxidants to mitochondria. PMID:20129794

  4. Antioxidant capacity and fatty acid profile of Centaurea kotschyi (Boiss. & Heldr. Hayek var. persica (Boiss. Wagenitz from Turkey

    Directory of Open Access Journals (Sweden)

    Aktumsek, Abdurrahman

    2011-03-01

    Full Text Available The antioxidant capacity of the methanolic extract and the fatty acid composition of C. kotschyi var. persica were investigated. Six different chemical methods were used to determine the antioxidant capacity. The fatty acid composition was analyzed using gas chromatography. The IC50 value of the extract was determined as 37.09 μg/ml (in the DPPH assay. In the β-carotene/linoleic acid system, the extract exhibited 65.22% inhibition against linoleic acid oxidation. The amount of total phenolic content and total antioxidant capacity were detected as 36.52 mg gallic acid equivalent (GAE/g and 74.93 mg ascorbic acid equivalent (AE/g, respectively. The major fatty acid in the composition of C. kotschyi var. persica was found to be C 18:3 ω3 (α-linolenic acid by GC analysis. The results presented here indicate that C. kotschyi var. persica possess strong antioxidant properties. Therefore, the species can be used as a natural additive in food, cosmetic and pharmaceutical industries.La capacidad antioxidante de extractos metanólicos y composición de ácidos grasos de C. kotschyi var. pérsica fueron investigados. Seis métodos químicos diferentes fueron realizados para la determinación de la capacidad antioxidante. La composición de ácidos grasos fue analizada por cromatografía de gases. Los valores de IC50 de los extractos fueron 37.09 μg/ml (en el ensayo con DPPH. En el sistema β-carotene/ácido linoleico, el extracto mostró un 65.22% de inhibición frente a la oxidación del ácido linoleico. La cantidad total de contenido fenólico y capacidad antioxidante total fueron 36.52 mg equivalentes de ácido gallico (GAE/g y 74.93 mg equivalentes de ácido ascórbico (AE/g, respectivamente. El principal ácidos graso encontrado, por análisis de CG, en C. kotschyi var. pérsica fue el C 18:3 ω3 (ácido α-linolenico. Los resultados presentados aquí indican que C. kotschyi var. pérsica posee unas fuertes propiedades antioxidantes. Adem

  5. Ferulic acid ethyl ester diminished Complete Freund's Adjuvant-induced incapacitation through antioxidant and anti-inflammatory activity.

    Science.gov (United States)

    Cunha, Francisco Valmor Macedo; Gomes, Bruno de Sousa; Neto, Benedito de Sousa; Ferreira, Alana Rodrigues; de Sousa, Damião Pergentino; de Carvalho e Martins, Maria do Carmo; Oliveira, Francisco de Assis

    2016-01-01

    Ferulic acid ethyl ester (FAEE) is a derivate from ferulic acid which reportedly has antioxidant effect; however, its role on inflammation was unknown. In this study, we investigated the orally administered FAEE anti-inflammatory activity on experimental inflammation models and Complete Freund's Adjuvant (CFA)-induced arthritis in rats. CFA-induced arthritis has been evaluated by incapacitation model and radiographic knee joint records at different observation time. FAEE (po) reduced carrageenan-induced paw edema (p activities (p activity in radiographic records (p activity by inhibiting leukocyte migration, oxidative stress reduction, and pro-inflammatory cytokines.

  6. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat!

    Science.gov (United States)

    Daglia, Maria; Di Lorenzo, Arianna; Nabavi, Seyed F; Talas, Zeliha S; Nabavi, Seyed M

    2014-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid) is a phenolic acid widely distributed in many different families of higher plants, both in free state, and as a part of more complex molecules, such as ester derivatives or polymers. In nature, gallic acid and its derivatives are present in nearly every part of the plant, such as bark, wood, leaf, fruit, root and seed. They are present in different concentrations in common foodstuffs such as blueberry, blackberry, strawberry, plums, grapes, mango, cashew nut, hazelnut, walnut, tea, wine and so on. After consumption, about 70% of gallic acid is adsorbed and then excreted in the urine as 4-O-methylgallic acid. Differently, the ester derivatives of gallic acid, such as catechin gallate ester or gallotannins, are hydrolyzed to gallic acid before being metabolized to methylated derivatives. Gallic acid is a well known antioxidant compounds which has neuroprotective actions in different models of neurodegeneration, neurotoxicity and oxidative stress. In this review, we discuss about the neuroprotective actions of gallic acid and derivatives and their potential mechanisms of action.

  7. Myrtus communis berry color morphs: a comparative analysis of essential oils, fatty acids, phenolic compounds, and antioxidant activities.

    Science.gov (United States)

    Messaoud, Chokri; Boussaid, Mohamed

    2011-02-01

    Extracts of mature dark blue and white berries from two Tunisian Myrtus communis morphs growing at the same site were assessed for their essential-oil and fatty-acid compositions, phenolic contents, and antioxidant activities. The GC and GC/MS analyses of the essential oils allowed the identification of 33 constituents. The oils from the dark blue fruits showed high percentages of α-pinene (11.1%), linalool (11.6%), α-terpineol (15.7%), methyl eugenol (6.2%), and geraniol (3.7%). Myrtenyl acetate (20.3%) was found to be the major compound in the oils from white berries. GC Analysis of the pericarp and seed fatty acids showed that the polyunsaturated fatty acids constituted the major fraction (54.3-78.1%). The highest percentages of linoleic acid (78.0%) and oleic acid (20.0%) were observed in the seeds and the pericarps of the white fruits, respectively. The total phenol, flavonoid, and flavonol contents and the concentration of the eight anthocyanins, identified by HPLC analysis, were significantly higher in the dark blue fruits. All extracts showed a substantial antioxidant activity, assessed by the free radical-scavenging activity and the ferric reducing power, with the dark blue fruit extracts being more effective.

  8. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test

    Directory of Open Access Journals (Sweden)

    Barros Marcelo P

    2012-06-01

    Full Text Available Abstract Background Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 ± 5.8 years old immediately before and 5 and 60 min after the exhaustive Wingate test. Results Maximum anaerobic power was improved by acute creatine supplementation (10.5 %, but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP, leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent and inherent antioxidant activity of creatine.

  9. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test.

    Science.gov (United States)

    Barros, Marcelo P; Ganini, Douglas; Lorenço-Lima, Leandro; Soares, Chrislaine O; Pereira, Benedito; Bechara, Etelvino Jh; Silveira, Leonardo R; Curi, Rui; Souza-Junior, Tacito P

    2012-06-12

    Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 ± 5.8 years old) immediately before and 5 and 60 min after the exhaustive Wingate test. Maximum anaerobic power was improved by acute creatine supplementation (10.5 %), but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP), leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent) and inherent antioxidant activity of creatine.

  10. Effect of antioxidants on thiobarbituric acid reactive substances of mechanically de boned chicken meat irradiated with ionizing radiation: cobalt-60 and electron beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Azevedo, Heliana de; Pomarico Neto, Walter; Roque, Claudio Vitor; Brusqui, Armando Luiz, E-mail: hgomes@cnen.gov.b, E-mail: pbrito@cnen.gov.b, E-mail: cvroque@cnen.gov.b, E-mail: abrusqui@cnen.gov.b [Brazilian Nuclear Energy Commission (LAPOC/CNEN), Pocos de Caldas, MG (Brazil); Haguiwara, Marcia Mayumi Harada; Miyagusku, Luciana, E-mail: marciamh@ital.gov.b, E-mail: lucianam@ital.gov.b [Food Technology Institute (ITAL), SP (Brazil). Meat Technology Center

    2011-07-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 - A1 (0.3% Sodium Polyphosphate and Sodium Erythorbate 0.05%) and Antioxidant 2 - A2 (Rosemary Extract 0.02% and {alpha}-Tocopherol 0.01%). The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (Cn/I), with antioxidant A1 and non-irradiated (A1n/I), with antioxidant A2 and non-irradiated (A2n/I) without antioxidant and irradiated in Cobalt-60 source (CCo), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). Each 100 g sample was conditioned in a transparent, low density polyethylene oxygen permeable bag, frozen overnight at a temperature of -18 +- 1 deg C in a chamber, and irradiated in this state, maintaining the temperature low with dry ice. The samples were irradiated with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy.h{sup -1}) and electron beam (2.9 kGy.s{sup -1}). After this process, the samples were evaluated during the refrigeration period (2 +- 1 deg C) for 11 days for the following analysis: total psychotropic bacteria count, thiobarbituric acid reactive substances (TBARS). The addition of antioxidants was able to reduce lipid oxidation caused by the irradiation. There were no differences between the radiation sources used in the same parameters. The better antioxidants mixture in the TBARS reducing it was rosemary extract and {alpha}-tocopherol (A2). (author)

  11. Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices.

    Science.gov (United States)

    Hernández-Herrero, J A; Frutos, M J

    2015-04-15

    Model juices at pH 3.7 were prepared with different combinations of ascorbic acid, rutin (quercetin 3-rutinoside) and concentrated anthocyanin extract of plums (cv. Black Gold). The anthocyanins in the concentrated extract were cyanidin 3-glucoside and cyanidin 3-rutinoside, in a proportion of 76% and 24% respectively. The model juices were stored during 17 weeks in darkness at 20 °C. The colour stability was improved by the presence of rutin and strongly damaged by the ascorbic acid. The fortification of anthocyanin model juices with ascorbic acid originated the degradation of most of anthocyanins. However, anthocyanins improved ascorbic acid stability during storage. The copigmentation of anthocyanin and rutin showed a beneficial effect on colour stability from the 5 weeks of storage. In model juices prepared exclusively with purified plum extract a high correlation (R(2)=0.881) between anthocyanins and antioxidant capacity was found.

  12. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  13. Evaluation of Antioxidant Activity, Polyphenolic Compounds, Amino Acids and Mineral Elements of Representative Genotypes of Lonicera edulis

    Directory of Open Access Journals (Sweden)

    Jiri Sochor

    2014-05-01

    Full Text Available The aim of this study was to evaluate the bioactive substances in 19 berry cultivars of edible honeysuckle (Lonicera edulis. A statistical evaluation was used to determine the relationship between the content of selected bioactive substances and individual cultivars. Regarding mineral elements, the content of sodium was measured using potentiometry and spectrophotometry. The content of selected polyphenolic compounds with high antioxidant activity was determined by a HPLC–UV/ED method. The total amount of polyphenols was determined by the Folin-Ciocalteu method. The antioxidant activity was determined using five methods (DPPH, FRAP, ABTS, FR and DMPD that differ in their principles. The content of 13 amino acids was determined by ion-exchange chromatography. The experimental results obtained for the different cultivars were evaluated and compared by statistical and bioinformatic methods. A unique feature of this study lies in the exhaustive analysis of the chosen parameters (amino acids, mineral elements, polyphenolic compounds and antioxidant activity during one growing season.

  14. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin; Lotfi; Mohammad; Pessarakli; Puriya; Gharavi-Kouchebagh; Hossein; Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid(0, 300, and 600 mg L-1) on photosystem II and antioxidant enzyme activity of the rapeseed(Brassica napus L.) plant under water stress(60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid(FA) improved the maximum quantum efficiency of PSII(Fv/Fm)and performance index(PI) of plants under both well-watered and limited-water conditions. The time span from Foto Fmand the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species(ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  15. Physiological responses of Brassica napus to fulvic acid under water stress:Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin Lotfi; Mohammad Pessarakli; Puriya Gharavi-Kouchebagh; Hossein Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid (0, 300, and 600 mg L−1) on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L.) plant under water stress (60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA) improved the maximum quantum efficiency of PSII (Fv/Fm) and performance index (PI) of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  16. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities.

    Science.gov (United States)

    Liang, Ningjian; Xue, Wei; Kennepohl, Pierre; Kitts, David D

    2016-12-15

    Coffee bean source and roasting conditions significantly (pcoffee. CGA isomer content was positively correlated (pcoffee to reduce nitric oxide and scavenge Frémy's salt. Indices of browning in roasted coffee were positively correlated (pcoffee corresponded to intracellular antioxidant capacity measured in Caco-2 intestinal cells. This study concluded that the intracellular antioxidant capacity that best describes potential health benefits of coffee positively corresponds best with CGA content.

  17. Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species.

    Science.gov (United States)

    Guajardo, Eduardo; Correa, Juan A; Contreras-Porcia, Loretto

    2016-03-01

    The hormone ABA regulates the oxidative stress state under desiccation in seaweed species; an environmental condition generated during daily tidal changes. Desiccation is one of the most important factors that determine the distribution pattern of intertidal seaweeds. Among most tolerant seaweed is Pyropia orbicularis, which colonizes upper intertidal zones along the Chilean coast. P. orbicularis employs diverse mechanisms of desiccation tolerance (DT) (among others, e.g., antioxidant activation, photoinhibition, and osmo-compatible solute overproduction) such as those used by resurrection plants and bryophytes. In these organisms, the hormone abscisic acid (ABA) plays an important role in regulating responses to water deficit, including gene expression and the activity of antioxidant enzymes. The present study determined the effect of ABA on the activation of antioxidant responses during desiccation in P. orbicularis and in the sensitive species Mazzaella laminarioides and Lessonia spicata. Changes in endogenous free and conjugated ABA, water content during the hydration-desiccation cycle, enzymatic antioxidant activities [ascorbate peroxidase (AP), catalase (CAT) and peroxiredoxine (PRX)], and levels of lipid peroxidation and cell viability were evaluated. The results showed that P. orbicularis had free ABA levels 4-7 times higher than sensitive species, which was overproduced during water deficit. Using two ABA inhibitors (sodium tungstate and ancymidol), ABA was found to regulate the activation of the antioxidant enzymes activities during desiccation. In individuals exposed to exogenous ABA the enzyme activity increased, concomitant with low lipid peroxidation and high cell viability. These results demonstrate the participation of ABA in the regulation of DT in seaweeds, and suggest that regulatory mechanisms with ABA signaling could be of great importance for the adaptation of these organisms to dehydration.

  18. Quaternized chitosan/κ-carrageenan/caffeic acid-coated poly(3-hydroxybutyrate) fibrous materials: Preparation, antibacterial and antioxidant activity.

    Science.gov (United States)

    Ignatova, Milena; Manolova, Nevena; Rashkov, Iliya; Markova, Nadya

    2016-11-20

    Novel fibrous materials with antioxidant and antibacterial properties from poly(3-hydroxybutyrate) (PHB), quaternized chitosan (QCh), κ-carrageenan (Car) and caffeic acid (CA) were obtained. These materials were prepared by applying electrospinning or electrospinning in conjunction with dip-coating and polyelectrolyte complex (PEC) formation. It was found that the CA release depended on the fiber composition. X-ray diffraction analysis (XRD) and differential scanning calorimetry (DSC) revealed that CA incorporated in the fibers was in the amorphous state, whereas CA included in the coating was in the crystalline state. In contrast to the neat PHB mats, the CA-containing mats and the PEC QCh/Car-coated mats were found to kill the Gram-positive bacteria S. aureus and the Gram-negative bacteria E. coli and were effective in suppressing the adhesion of pathogenic bacteria S. aureus. Enhancement of the antioxidant activity of the fibrous materials containing both CA and QCh/Car coating was observed.

  19. Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion.

    Science.gov (United States)

    De Ancos, Begoña; Cilla, Antonio; Barberá, Reyes; Sánchez-Moreno, Concepción; Cano, M Pilar

    2017-06-15

    Polyphenols, ascorbic acid content and antioxidant activity of two sweet oranges (Navel-N and Cara Cara-CC) and mandarin (Clementine-M) as well as their bioaccessibilities were evaluated in pulps and compared to those in fresh juice. Thus, pulps of oranges and mandarins displayed higher hesperidin (HES), narirutin (NAR), total flavonoids (TF), total phenols (TP) and antioxidant activity (AAC) than their corresponding juices. Also, CC products presented higher bioactive compounds content than N ones. Bioaccessibility of bioactive compounds and AAC were higher in pulps of both oranges and mandarin than in their corresponding juices. Oranges (N and CC) pulps and juices presented higher bioaccessibilities than mandarin ones. The postharvest storage of mandarin at 12°C during 5weeks not only produced a significant increase of the bioactive compounds but also an increase of their bioaccessibility. The bioaccessibility of Citrus bioactive compounds is necessary for calculating more accurately their daily intake amount.

  20. Nitrate, ascorbic acid, mineral and antioxidant activities of Cosmos caudatus in response to organic and mineral-based fertilizer rates.

    Science.gov (United States)

    Hassan, Siti Aishah; Mijin, Salumiah; Yusoff, Umi Kalsom; Ding, Phebe; Wahab, Puteri Edaroyati Megat

    2012-06-28

    The source and quantity of nutrients available to plants can affect the quality of leafy herbs. A study was conducted to compare quality of Cosmos caudatus in response to rates of organic and mineral-based fertilizers. Organic based fertilizer GOBI (8% N:8% P₂O₅:8% K₂O) and inorganic fertilizer (15% N, 15% P₂O₅, 15% K₂O) were evaluated based on N element rates at 0, 30, 60, 90, 120 kg h⁻¹. Application of organic based fertilizer reduced nitrate, improved vitamin C, antioxidant activity as well as nitrogen and calcium nutrients content. Antioxidant activity and chlorophyll content were significantly higher with increased fertilizer application. Fertilization appeared to enhance vitamin C content, however for the maximum ascorbic acid content, regardless of fertilizer sources, plants did not require high amounts of fertilizer.

  1. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka).

    Science.gov (United States)

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Zhou, Jishu; Ye, Zhi; Lan, Ying

    2016-07-01

    The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity.

  2. Effect of natural antioxidants in Spanish salchichón elaborated with encapsulated n-3 long chain fatty acids in konjac glucomannan matrix.

    Science.gov (United States)

    Munekata, P E S; Domínguez, R; Franco, D; Bermúdez, R; Trindade, M A; Lorenzo, Jose M

    2017-02-01

    The effect of natural antioxidants on physicochemical properties, lipid and protein oxidation, volatile compounds and free fatty acids (FFA) were determined in Spanish salchichón enriched with n-3 fatty acids encapsulated and stabilized in konjac matrix. Phenolic compounds of beer residue extract (BRE), chestnut leaves extract (CLE) and peanut skin extract (PSE) were also identified and quantified. Five batches of salchichón were prepared: control (CON, without antioxidants), butylated hydroxytoluene (BHT), BRE, CLE and PSE. The main phenolic compounds were catechin and benzoic acid for BRE, gallic acid and catechin for CLE and catechin and protocatechuic acid for PSE. Statistical analysis did not show significant differences on chemical composition among treatments. Reductions in luminosity (Pantioxidants. Finally, the inclusion of antioxidants (P<0.001) decreased the hexanal content, whereas the FFA content increased by the addition of natural extracts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours.

    Science.gov (United States)

    Lutterodt, Herman; Slavin, Margaret; Whent, Monica; Turner, Ellen; Yu, Liangli Lucy

    2011-09-15

    Cold-pressed chardonnay, muscadine, ruby red, and concord grape seed oils and their defatted flours were studied for their fatty acid composition, oxidative stability and antioxidant and antiproliferative activities. The phenolic profiles of the seed flours were also measured. The most abundant fatty acid in the oils was linoleic acid, ranging from 66.0g/100g of total fatty acids in ruby red seed oil to 75.3g/100g of total fatty acids in concord seed oil. The oils were also high in oleic acid and low in saturated fat. Ruby red grape seed oil recorded the highest oxidative stability index of 40h under the accelerated conditions. Total phenolic content (TPC) was up to 100 times lower in the oils than in the flours. Lutein, zeaxanthin, cryptoxanthin, β-carotene, and α-tocopherol levels were also measured. DPPH radical-scavenging capacity ranged from 0.07 to 2.22mmol trolox equivalents (TE)/g of oil and 11.8 to 15.0mmol TE/g of flour. Oxidative stability of menhaden fish oil containing extracts of the seed flours was extended by up to 137%. HPLC analysis was conducted to determine the levels of free soluble, soluble conjugated and insoluble bound phenolics in the seed flours. The phenolic compounds analyzed included catechin, epicatechin, epicatechin gallate, quercetin, gallic acid, and procyanidins B1 and B2. Antiproliferative activity was tested against HT-29 colon cancer cells. All of the seed flours and muscadine seed oil registered significant (Puses for these seed oils and flours as dietary sources of natural antioxidants and antiproliferative agents for optimal health.

  4. Effects of molecular weight and ratio of guluronic acid to mannuronic acid on the antioxidant properties of sodium alginate fractions prepared by radiation-induced degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Murat, E-mail: msen@hacettepe.edu.t [Hacettepe University, Department of Chemistry, Polymer Chemistry Division, Beytepe, 06800 Ankara (Turkey)

    2011-01-15

    In this study, the effects of the molecular weight and ratio of guluronic acid (G) to mannuronic acid (M), G/M, of some sodium alginate (NaAlg) fractions on their antioxidative properties were investigated. Low-molecular-weight-fractions with various G/M were prepared by gamma radiation-induced degradation of NaAlg. Change in their molecular weight was monitored. Antioxidant properties of the fractions with various molecular weight and G/M were evaluated by determining the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH{sup {center_dot}}). 50% inhibition concentrations of the 50 kGy-irradiated NaAlgs having molecular weights of 20.5, 17.7, and 16.0 kDa were found to be 11.0, 18.0, and 24.0 mg/ml, respectively, whereas the fractions of the same molecular weight with a lower G/M exhibited a better DPPH{sup {center_dot}}scavenging activity. The results demonstrated that its molecular weight and G/M were important factors in controlling the antioxidant properties of NaAlg.

  5. Effect of antioxidants on thiobarbituric acid reactive substances, psychrotrophic bacteria and functional properties of mechanically deboned chicken meat irradiated with Cobalto-60 and electron beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Azevedo, Heliana de; Roque, Claudio Vitor; Pomarico Neto, Walter, E-mail: hgomes@cnen.gov.br, E-mail: pbrito@cnen.gov.br, E-mail: cvroque@cnen.gov.br, E-mail: abrusqui@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Mourao, Gerson Barreto; Orlando, Eduardo Adilson; Miyagusku, Luciana, E-mail: marciamh@ital.sp.gov.br, E-mail: eduardo.orlando@ital.sp.gov.br [Instituto de Tecnologia dos Alimentos (ITAL), Campinas, SP (Brazil)

    2013-07-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 (Sodium Polyphosphate and Sodium Ascorbate and Antioxidant 2 (Rosemary Extract and α-Tocopherol. The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (C), with antioxidant A1 and non-irradiated (A1), with antioxidant A2 and non-irradiated (A2) without antioxidant and irradiated in Cobalt-60 source (Co), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). The samples was conditioned in a transparent, low density frozen overnight at a temperature of -18 ± 1 deg C in a chamber, and irradiated in this state with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy/h) and electron beam (7.86 kGy/s). After this process, the samples were evaluated during the refrigeration period (2 ± 1 deg C) for 11 days for the following analysis: total psychrotrophic bacteria count and thiobarbituric acid reactive substances (TBARS) and the analysis of functional properties were performed after the irradiation process. The use of the combination of rosemary antioxidant and α-tocopherol were able to significantly decrease TBARS values caused by the irradiation of samples in MDCM cobalt-60 sources and electron beam, and show a synergetic effect to processing with ionizing radiation to reduce of psychrotrophic bacteria count. The use of irradiation processing of MDCM did not negatively affect the functional properties studied. (author)

  6. L-lysine pro-prodrug containing trans-ferulic acid for 5-amino salicylic acid colon delivery: synthesis, characterization and in vitro antioxidant activity evaluation.

    Science.gov (United States)

    Cassano, Roberta; Trombino, Sonia; Cilea, Alessia; Ferrarelli, Teresa; Muzzalupo, Rita; Picci, Nevio

    2010-01-01

    In the present work, we report the synthesis of a new 5-amino salicylic acid (5-ASA) pro-prodrug, useful in Crohn disease treatment, and the evaluation of its antioxidant activity. Using as pharmacological carrier L-lysine amino acid and taking advantage of its intrinsic chemical reactivity, due to the presence of two amino groups, placed on the chiral center and in epsilon-position, we inserted trans-ferulic acid in epsilon-position, through amidation reaction, esterified with methanol the carboxylic group and, finally, submitted the free amino group to diazotation with 5-ASA, principal drug for inflammatory bowel diseases (IBD) care. All intermediates of synthesis and the final product (derivative A) were characterized with usual spectroscopic techniques, as FT-IR, GC/MS and (1)H-MNR. Finally, the derivative A antioxidant activity in inhibiting the lipid peroxidation, in rat-liver microsomal membranes, induced in vitro by two different sources of free radicals, 2,2'-azobis (2-amidinopropane) (AAPH) and tert-butyl hydroperoxide (tert-BOOH), was evaluated. Our pro-prodrug could be successfully applied in pharmaceutical field both as prodrug of 5-ASA than as carrier of trans-ferulic acid.

  7. Fruit antioxidant activity, ascorbic acid, total phenol, quercetin, and carotene of Irwin mango fruits stored at low temperature after high electric field pretreatment.

    Science.gov (United States)

    Shivashankara, K S; Isobe, Seiichiro; Al-Haq, Muhammad Imran; Takenaka, Makiko; Shiina, Takeo

    2004-03-10

    Greenhouse-grown tree ripe (TR) and mature green (MG) mangoes (cv. Irwin) were exposed to high electric field treatment before 20 and 30 days of storage at 5 degrees C. MG fruits were allowed to ripen at room temperature after low-temperature storage. Fruit physical quality attributes, ascorbic acid, carotene, quercetin, total phenols, and antioxidant capacity were estimated before and after the storage period. Antioxidant capacity of fruit juice was estimated using the ferric reducing antioxidant power (FRAP) assay. Fruit firmness decreased significantly during storage. Titratable acidity decreased 20 days after storage. Total soluble solids did not change during storage. Antioxidant capacity of fruits remained unchanged up to 20 days of storage period and decreased thereafter. Total phenol and carotenes increased during storage. Antioxidant capacity of fruits was significantly correlated only to ascorbic acids. Peel color and carotenes were higher in TR fruits, whereas titratable acidity and firmness were higher in MG fruits. There was no significant difference in other parameters between the stages of picking. Electric field pretreatment affected the respiration and antioxidant capacity of TR fruits and did not have any significant affect on other parameters. TR mangoes of cv. Irwin are more suitable for low-temperature storage and can be successfully stored for up to 20 days at 5 degrees C without any significant losses in functional properties and quality attributes.

  8. Antioxidant and DPPH (1,1-diphenyl-2-picrylhydrazyl Free Radical Scavenging Activities of Boniger Acid and Calix[4]arene Derivative

    Directory of Open Access Journals (Sweden)

    E. ERDEM

    2014-07-01

    Full Text Available Diazonium derivative of calix[4]arene has been synthesized using three different synthetic steps. Initially p-tert-butylcalix[4]arene was synthesized with the condensation reaction of p-tert-butylphenol and formaldehyde in basic conditions. Calix[4]arene was obtained after the debutylation reaction of p-tert-butylcalix[4]arene with AlCl3. Calix[4]arene reacted with diazonium salt of Böniger acid to yield the 5,17-[(Bis(azo-bis(5-hydroxy-2,7-naphthalenedisulfonicacid]-25,26,27,28-tetrahydroxy calix[4]arene which has eight free phenolic hydroxyl group. Reaction steps were shown in Fig.1.2,7-naphthalenedisulfonicacid]-25,26,27,28-tetrahydroxy calix[4]arene The antioxidant activity of the Böniger acid and calix[4]aren derivative were determined using β-karotene-linoleic acid system. Moreover, the free radical scavenging activity values were tested with DPPH free radical. The two compounds showed strong antioxidant activity. Total antioxidant activity of Böniger acid and calix[4]aren derivative was determined using β–carotenelinoleic acid model system and was found the antioxidant activity of 84.00% and 85.60 % respectively. The free radical scavenging activities were determined as 83.05% and 84.69 %. Results show that, two compounds has the antioxidant activity. The calix[4]aren derivaties has more higher activity then Boniger acid because of calix[4]aren derivative has much hydroxl groups.

  9. Conversion of Squid Pen to Homogentisic Acid via Paenibacillus sp. TKU036 and the Antioxidant and Anti-Inflammatory Activities of Homogentisic Acid

    Directory of Open Access Journals (Sweden)

    San-Lang Wang

    2016-10-01

    Full Text Available The culture supernatant of Paenibacillus sp. TKU036, a bacterium isolated from Taiwanese soils, showed high antioxidant activity (85% when cultured in a squid pen powder (SPP-containing medium at 37 °C for three days. Homogentisic acid (2,5-dihydroxyphenylacetic acid, HGA was isolated and found to be the major antioxidant in the culture supernatant of the SPP-containing medium fermented by Paenibacillus sp. TKU036. Tryptophan was also present in the culture supernatant. The results of high-performance liquid chromatography (HPLC fingerprinting showed that HGA and tryptophan were produced via fermentation but did not pre-exist in the unfermented SPP-containing medium. Neither HGA nor tryptophan was found in the culture supernatants obtained from the fermentation of nutrient broth or other chitinous material, i.e., medium containing shrimp head powder, by Paenibacillus sp. TKU036. The production of HGA via microorganisms has rarely been reported. In this study, we found that squid pen was a potential carbon and nitrogen source for Paenibacillus sp. Tryptophan (105 mg/L and HGA (60 mg/L were recovered from the culture supernatant. The isolated HGA was found to have higher antioxidant activity (IC50 = 6.9 μg/mL than α-tocopherol (IC50 = 17.6 μg/mL. The anti-inflammatory activity of the isolated HGA (IC50 = 10.14 μg/mL was lower than that of quercetin (IC50 = 1.14 μg/mL. As a result, squid pen, a fishery processing byproduct, is a valuable material for the production of tryptophan and the antioxidant and anti-inflammatory HGA via microbial conversion.

  10. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity

    Science.gov (United States)

    Sodhi, Komal; Hilgefort, Jordan; Banks, George; Gilliam, Chelsea; Stevens, Sarah; Ansinelli, Hayden A.; Getty, Morghan; Abraham, Nader G.; Shapiro, Joseph I.

    2016-01-01

    Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO) levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs) in the presence and absence of cobalt protoporphyrin (CoPP), an HO-1 inducer, and tin mesoporphyrin (SnMP), an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels. PMID:26681956

  11. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity

    Directory of Open Access Journals (Sweden)

    Komal Sodhi

    2016-01-01

    Full Text Available Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs in the presence and absence of cobalt protoporphyrin (CoPP, an HO-1 inducer, and tin mesoporphyrin (SnMP, an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels.

  12. Post-Harvest Induced Production of Salvianolic Acids and Significant Promotion of Antioxidant Properties in Roots of Salvia miltiorrhiza (Danshen

    Directory of Open Access Journals (Sweden)

    Guo-Jun Zhou

    2014-05-01

    Full Text Available Danshen, the dried roots of Salvia miltiorrhiza, is an extremely valued Traditional Chinese Medicine. Previously, we have demonstrated that salvianolic acid B (SaB, the important bioactive ingredient in this herb, was a post-harvest product. Here, we further reported that all salvianolic acids (SAs in the roots were post-harvest products of the drying process. In addition, the results of various radical scavenging activity assays, including lipid peroxidation (1, DPPH (2, hydroxyl (3 and superoxide (4, were significantly increased along with the accumulation of total salvianolic acids in the process. The contents of chemical targets and antioxidant activities both reached the highest value under thermal treatment at 130 °C for 80 min. In this dehydration period, contents of SaB, and sum of nine SAs increased from 0.01% to 5.51%, and 0.20% to 6.61%; and IC50 of antioxidant activity decreased from 4.85 to 2.69 (1; 7.75 to 0.43 (2; 2.57 to 1.13 (3 and 17.25 to 1.10 mg/mL. These results further supported the hypothesis that the newly harvested plant roots were still physiologically active and the secondary metabolites might be produced due to dehydration stress after harvest. Our findings supplied an important and useful theoretical basis for promoting the quality of Danshen and other medicinal plant materials.

  13. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.).

    Science.gov (United States)

    Martínez-Esplá, Alejandra; Zapata, Pedro Javier; Valero, Daniel; García-Viguera, Cristina; Castillo, Salvador; Serrano, María

    2014-04-16

    Trees of 'Sweet Heart' and 'Sweet Late' sweet cherry cultivars (Prunus avium L.) were treated with oxalic acid (OA) at 0.5, 1.0, and 2.0 mM at 98, 112, and 126 days after full blossom. Results showed that all treatments increased fruit size at harvest, manifested by higher fruit volume and weight in cherries from treated trees than from controls, the higher effect being found with 2.0 mM OA (18 and 30% higher weight for 'Sweet Heart' and 'Sweet Late', respectively). Other quality parameters, such as color and firmness, were also increased by OA treatments, although no significant differences were found in total soluble solids or total acidity, showing that OA treatments did not affect the on-tree ripening process of sweet cherry. However, the increases in total anthocyanins, total phenolics, and antioxidant activity associated with the ripening process were higher in treated than in control cherries, leading to fruit with high bioactive compounds and antioxidant potential at commercial harvest (≅45% more anthocyanins and ≅20% more total phenolics). In addition, individual anthocyanins, flavonols, and chlorogenic acid derivatives were also increased by OA treatment. Thus, OA preharvest treatments could be an efficient and natural way to increase the quality and functional properties of sweet cherries.

  14. Plasma HDL reduces nonesterified fatty acid hydroperoxides originating from oxidized LDL: a mechanism for its antioxidant ability.

    Science.gov (United States)

    Kotosai, Mari; Shimada, Sachiko; Kanda, Mai; Matsuda, Namiko; Sekido, Keiko; Shimizu, Yoshibumi; Tokumura, Akira; Nakamura, Toshiyuki; Murota, Kaeko; Kawai, Yoshichika; Terao, Junji

    2013-06-01

    The antioxidant property of plasma high-density lipoprotein (HDL) is thought to be involved in potential anti-atherogenic effects but the exact mechanism is not known. We aimed to reveal the contribution of HDL on the elimination of lipid hydroperoxides (LOOH) derived from oxidized low-density lipoprotein (LDL). Oxidized LDL prepared by copper ion-induced oxidation contained nonesterified fatty acid hydroperoxides (FFA-OOH) and lysophosphatidylcholine (lysoPtdCho), in addition to cholesteryl ester hydroperoxides (CE-OOH) and phosphatidylcholine hydroperoxides (PtdCho-OOH). A platelet-activating factor-acetylhydrolase (PAF-AH) inhibitor suppressed formation of FFA-OOH and lysoPtdCho in oxidized LDL. Among LOOH species, FFA-OOH was preferentially reduced by incubating oxidized LDL with HDL. HDL exhibited selective FFA-OOH reducing ability if it was mixed with a liposomal solution containing FFA-OOH, CE-OOH and PtdCho-OOH. Two-electron reduction of the hydroperoxy group to the hydroxy group was confirmed by the formation of 13-hydroxyoctadecadienoic acid from 13-hydroperoxyoctadecadienoic acid in HPLC analyses. This reducing effect was also found in apolipoprotein A-1 (apoA-1). FFA-OOH released from PtdCho-OOH due to PAF-AH activity in oxidized LDL undergo two-electron reduction by the reducing ability of apoA1 in HDL. This preferential reduction of FFA-OOH may participate in the mechanism of the antioxidant property of HDL.

  15. Fatty acid composition and antioxidant activity of oils from two cultivars of Cantaloupe extracted by supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, M.; Mariod, A.; Bagalkotkar, G.; Ling, H. S

    2010-07-01

    The effect of supercritical fluid extraction (SFE) fractionation of three oil fractions (1st, 2nd, 3rd fraction) on the fatty acid composition and antioxidant activity of oils from two cultivars of cantaloupe were investigated. Rock melon oil (RMO) and Golden Langkawi oil (GLO) were extracted using SFE and the major fatty acids for both cultivars were linoleic, oleic, palmitic, and stearic acid. The SFA decreased from 15.78 to 14.14% in RMO 1st fraction, and MUFA decreased from 18.30 to 16.56% in RMO 2nd fraction, while PUFA increased from 65.9 to 69.30% in RMO 3rd fraction. On the other hand SFA decreased from 16.35 to 13.91% in GLO 1{sup s}t fraction, and MUFA decreased from 17.50 to 15.57% in GLO 2nd fraction, while PUFA increased from 66.15 to 70.52% in GLO 3rd fraction. The different fractions of the two oils showed high antioxidant activity in reducing the oxidation of {beta}-carotene in beta-carotene bleaching assay (BCB) and the quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH). (Author) 41 refs.

  16. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley.

    Science.gov (United States)

    El-Zaeddi, Hussein; Calín-Sánchez, Ángel; Nowicka, Paulina; Martínez-Tomé, Juan; Noguera-Artiaga, Luis; Burló, Francisco; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A

    2017-07-01

    The effects of a preharvest treatment with malic (MA), oxalic (OA), or acetylsalicylic (ASA) acid at three concentrations (1, 2 and 3mM) on the bioactivity and antioxidant capacity of coriander, dill, and parsley were investigated. The antioxidant capacity of the herbs extracts was assayed by spectrophotometric methods by using three different analytical methods: ORAC, FRAP, and ABTS; the effects of treatments were very positive in coriander, produced intermediate results in dill, and no effects were found in parsley plants. Polyphenol compounds were identified by LC-MS-QTof and quantified by UPLC-PDA-FL. Thirty phenolic compounds were identified in these three herbs. The major compounds were (i) coriander: dimethoxycinnamoyl hexoside and quercetin-3-O-rutinoside, (ii) dill: neochlorogenic acid and quercetin glucuronide, and (iii) parsley: apigenin-7-apiosylglucoside (apiin) and isorhamnetin-3-O-hexoside. The application of these three organic acids favored the accumulation of phenolic compounds in coriander plants, but had no significant positive effects on dill and parsley. The treatments leading to the best results in all three plants were the application of MA or OA at 1mM.

  17. The effect of dietary Digestarom® herbal supplementation on rabbit meat fatty acid profile, lipid oxidation and antioxidant content.

    Science.gov (United States)

    Mattioli, S; Dal Bosco, A; Szendrő, Zs; Cullere, M; Gerencsér, Zs; Matics, Zs; Castellini, C; Dalle Zotte, A

    2016-11-01

    The experiment tested the effect of Digestarom® herbal supplementation on the antioxidant content, lipid oxidation and fatty acid profile of rabbit meat. At kindling, rabbit does and litters were divided into two dietary groups (N=162 kits/dietary group) and fed either a control diet (C) or the C diet supplemented with Digestarom® (D: 300mg/kg). At weaning (35days) four experimental fattening groups (54 rabbits each) were considered: CC, CD, DC and DD. After slaughtering (12weeks of age), Longissimus thoracis et lumborum muscles were dissected from 20 rabbits/group and analyzed. Rabbit meat of DD group was enriched in essential C18:3 n-3 fatty acid and in other long-chain PUFA of n-3 series. Despite meat of DD group displayed the highest peroxidability index, TBARs value was the lowest. Meat antioxidant content followed the rank order: DD>CD>DC>CC. Digestarom® improved fatty acid composition and oxidative status of rabbit meat, particularly when administered from weaning throughout the growing period.

  18. Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder.

    Science.gov (United States)

    García-Salas, Patricia; Gómez-Caravaca, Ana María; Arráez-Román, David; Segura-Carretero, Antonio; Guerra-Hernández, Eduardo; García-Villanova, Belén; Fernández-Gutiérrez, Alberto

    2013-11-15

    The healthy properties of citrus fruits have been attributed to ascorbic acid and phenolic compounds, mainly to flavonoids. Flavonoids are important phytonutrients because they have a wide range of biological effects that provide health-related properties. In this context, this study seeks to characterise the phenolic compounds in lemon and their stability in different drying processes (freeze-drying and vacuum-drying) and storage conditions (-18 and 50°C for 1 and 3months). A powerful high-performance liquid chromatography coupled to DAD and electrospray-ionization time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) method has been applied for the separation, identification, and quantification of 19 phenolic compounds and 4 organic acids. To our knowledge, two hydroxycinnamic acids have been identified for the first time in lemon. Folin-Ciocalteu was applied to determine total phenolic compounds and TEAC, FRAP, and ORAC were applied to determine the antioxidant capacity of lemon. Total phenolic content significantly differed in the samples analysed, vacuum-dried lemon showing the highest phenolic content, followed by freeze-dried lemon and, finally, vacuum-dried lemon stored at 50°C for 1 and 3months. The content in furanic compounds was determined to evaluate the heat damage in lemon and it was showed an increase with the thermal treatment because of the triggering of Maillard reaction. As exception of ORAC, antioxidant-capacity assays were not correlated to phenolic content by HPLC due to the formation of antioxidant compounds during Maillard reaction.

  19. The Influence of Manganese and Glutamine Intake on Antioxidants and Neurotransmitter Amino Acids Levels in Rats' Brain.

    Science.gov (United States)

    Szpetnar, Maria; Luchowska-Kocot, Dorota; Boguszewska-Czubara, Anna; Kurzepa, Jacek

    2016-08-01

    Depending on the concentration, Mn can exert protective or toxic effect. Potential mechanism for manganese neurotoxicity is manganese-induced oxidative stress. Glutamine supplementation could reduce manganese-induced neurotoxicity and is able to influence the neurotransmission processes. The aim of this study was to investigate whether the long term administration of manganese (alone or in combination with glutamine) in dose and time dependent manner could affect the selected parameters of oxidative-antioxidative status (superoxide dismutase and glutathione peroxidase activities, concentrations of vitamin C and malonic dialdehyde) and concentrations of excitatory (Asp, Glu) and inhibitory amino acids (GABA, Gly) in the brain of rats. The experiments were carried out on 2-months-old albino male rats randomly divided into 6 group: Mn300 and Mn500-received solution of MnCl2 to drink (dose 300 and 500 mg/L, respectively), Gln group-solution of glutamine (4 g/L), Mn300-Gln and Mn500-Gln groups-solution of Mn at 300 and 500 mg/L and Gln at 4 g/L dose. The control group (C) received deionized water. Half of the animals were euthanized after three and the other half-after 6 weeks of experiment. The exposure of rats to Mn in drinking water contributes to diminishing of the antioxidant enzymes activity and the increase in level of lipid peroxidation. Glutamine in the diet admittedly increases SOD and GPx activity, but it is unable to restore the intracellular redox balance. The most significant differences in the examined amino acids levels in comparison to both control and Gln group were observed in the group of rats receiving Mn at 500 mg/L dose alone or with Gln. It seems that Gln is amino acid which could improve antioxidant status and affect the concentrations of the neurotransmitters.

  20. Antioxidant activity of wine pigments derived from anthocyanins: hydrogen transfer reactions to the dpph radical and inhibition of the heme-induced peroxidation of linoleic acid.

    Science.gov (United States)

    Goupy, Pascale; Bautista-Ortin, Ana-Belen; Fulcrand, Helene; Dangles, Olivier

    2009-07-08

    The consumption of red wine can provide substantial concentrations of antioxidant polyphenols, in particular grape anthocyanins (e.g., malvidin-3-O-beta-d-glucoside (1)) and specific red wine pigments formed by reaction between anthocyanins and other wine components such as catechin (3), ethanol, and hydroxycinnamic acids. In this work, the antioxidant properties of red wine pigments (RWPs) are evaluated by the DPPH assay and by inhibition of the heme-induced peroxidation of linoleic acid in acidic conditions (a model of antioxidant action in the gastric compartment). RWPs having a 1 and 3 moieties linked via a CH(3)-CH bridge appear more potent than the pigment with a direct 1-3 linkage. Pyranoanthocyanins derived from 1 reduce more DPPH radicals than 1 irrespective of the substitution of their additional aromatic ring. Pyranoanthocyanins are also efficient inhibitors of the heme-induced lipid peroxidation, although the highly hydrophilic pigment derived from pyruvic acid appears less active.

  1. Lipoic acid and haloperidol-induced vacuous chewing movements: Implications for prophylactic antioxidant use in tardive dyskinesia.

    Science.gov (United States)

    Lister, Joshua; Andreazza, Ana C; Navaid, Bushra; Wilson, Virginia S; Teo, Celine; Nesarajah, Yasika; Wilson, Alan A; Nobrega, José N; Fletcher, Paul J; Remington, Gary

    2017-01-04

    Tardive dyskinesia (TD), a potentially irreversible antipsychotic (AP)-related movement disorder, is a risk with all currently available antipsychotics. AP-induced vacuous chewing movements (VCMs) in rats, a preclinical model of TD, can be attenuated by antioxidant-based treatments although there is a shortage of well-designed studies. Lipoic acid (LA) represents a candidate antioxidant for the treatment of oxidative stress-related nervous system disorders; accordingly, its effects on AP-induced VCMs and striatal oxidative stress were examined. Rats treated with haloperidol decanoate (HAL; 21mg/kg every 3weeks, IM) for 12weeks were concurrently treated with LA (10 or 20mg/kg, PO). VCMs were assessed weekly by a blinded rater, and locomotor activity was evaluated as were striatal lipid peroxidation markers and serum HAL levels. VCMs were decreased by the lower dose (nonsignificant), whereas a significant increase was recorded with the higher dose of LA. HAL decreased locomotor activity and this was unaffected by LA. Striatal malondialdehyde (MDA) levels in HAL-treated rats were reduced by both LA doses, while 4-hydroxynonenal (4-HNE) levels were predictive of final VCM scores (averaged across weeks 10-12). Study limitations include differences between antipsychotics in terms of oxidative stress, LA dosing, choice of biomarkers for lipid peroxidation, and generalizability to TD in humans. Collectively, current preclinical evidence does not support a "protective" role for antioxidants in preventing TD or its progression, although clinical evidence offers limited evidence supporting such an approach.

  2. Antioxidant capacity of phytic acid purified from rice bran - doi: 10.4025/actascitechnol.v34i4.16358

    Directory of Open Access Journals (Sweden)

    Cristiane Canan

    2012-10-01

    Full Text Available Rice bran is a by-product of rice processing industry, with high levels of phytic acid or phytate. Considering phytic acid antioxidant activity, its various applications and its high concentration in rice bran, this study had the objective of evaluating the antioxidant capacity of purified phytic acid from rice bran using three different methods. Using of 2,4,6-tripyridil-s-triazine or method of FRAP (Ferric Reducing Antioxidant Power, reducing Fe2+ activity was not detected for standard or purified phytic acid. With BPS (bathophenanthroline method, the Fe2+ chelator activity of standard phytic acid and rice bran phytic acid were dependent on the concentration and contact time and were observed IC50 values of 4.39 mg mL-1 and IC50 of 7.54 mg mL-1, respectively. By the deoxyribose method, the standard phytic acid inhibited the hydroxyl radical with an IC50 of 0.70 mg mL-1 while the rice bran phytic acid showed a maximum inhibitory activity of 40% associated to its chelating capacity and confirm this important antioxidant capacity.

  3. Lipophilization of dihydrocaffeic acid affects its antioxidative properties in fish‐oil‐enriched emulsions

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Nielsen, Nina Skall; Yang, Zhiyong;

    2012-01-01

    in the aqueous phase rather than being located at the interface or oil phase. This phenomenon is suggested to explain the reduced antioxidant activity of oleyl dihydrocaffeate compared with octyl dihydrocaffeate. Practical application: The finding that lipophilization of phenolic compounds increase...... their efficacy opens up new possibilities for producing new and more efficient antioxidants for food systems. However, the results also show that optimization of the chain length for each type of phenolic compound may be necessary. Since these compounds may have a much higher efficacy against lipid oxidation...

  4. Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid.

    Science.gov (United States)

    Aytac, Zeynep; Kusku, Semran Ipek; Durgun, Engin; Uyar, Tamer

    2016-06-01

    Cyclodextrin-inclusion complexes (CD-ICs) possess great prominence in food and pharmaceutical industries due to their enhanced ability for stabilization of active compounds during processing, storage and usage. Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HPβCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF) using electrospinning technique to observe the effect of CD-ICs in the release behavior of GA into three different mediums (water, 10% ethanol and 95% ethanol). The GA incorporated PLA nanofibers (PLA/GA-NFs) were served as control. Phase solubility studies showed an enhanced solubility of GA with increasing amount of HPβCD. The detailed characterization techniques (XRD, TGA and (1)H-NMR) confirmed the formation of inclusion complex between GA and HPβCD. Computational modeling studies indicated that the GA made an efficient complex with HPβCD at 1:1 either in vacuum or aqueous system. SEM images revealed the bead-free and uniform morphology of PLA/GA/HPβCD-IC-NF. The release studies of GA from PLA/GA/HPβCD-IC-NF and PLA/GA-NF were carried out in water, 10% ethanol and 95% ethanol, and the findings revealed that PLA/GA/HPβCD-IC-NF has released much more amount of GA in water and 10% ethanol system when compared to PLA/GA-NF. In addition, GA was released slowly from PLA/GA/HPβCD-IC-NF into 95% ethanol when compared to PLA/GA-NF. It was also observed that electrospinning process had no negative effect on the antioxidant activity of GA when GA was incorporated in PLA nanofibers.

  5. In vitro antioxidant potential and deoxyribonucleic acid protecting activity of CNB-001, a novel pyrazole derivative of curcumin

    Directory of Open Access Journals (Sweden)

    Richard L Jayaraj

    2014-01-01

    Full Text Available Background: Free radicals are underpinned to initiate cascade of toxic events leading to oxidative stress and resultant cell death in many neurodegenerative disorders. Now-a-days antioxidants have become mandatory in the treatment of various diseases apart from the drug′s modes of action. CNB-001, a novel hybrid molecule synthesized by combining curcumin and cyclohexyl bisphenol A is known to possess various biological activities, but the antioxidative property of the compound has not yet been elucidated. Aim: The present study is aimed to analyze various free radicals scavenging by employing in vitro antioxidant assays and to evaluate the deoxyribonucleic acid (DNA protecting the ability of CNB-001 against hydroxyl radicals. Materials and methods: The in vitro antioxidant potential of CNB-001 was evaluated by analyzing its ability to scavenge DPPH, ABTS, nitric oxide, superoxide, hydrogen peroxide, superoxide anion, hydroxyl, hydrogen peroxide radicals and reducing power using spectroscopic method. The DNA protecting activity of CNB-001 was also evaluated on pUC19 plasmid DNA subjected to hydroxyl radicals using standard agarose gel electrophoresis. Results: From the assays, it was observed that CNB-001 scavenged free radicals effectively in a dose dependent manner. CNB-001 scavenged 2,2-diphenyl-1-picrylhydrazyl (IC50 = 44.99 μg/ml, 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (IC50 = 17.99 μg/ml, nitric oxide (IC50 = 1.36 μg/ml, superoxide radical (IC50 = 77.17 μg/ml, hydrogen peroxide (IC50 = 492.7 μg/ml, superoxide (IC50 = 36.92 μg/ml and hydroxyl (IC50 = 456.5 μg/ml radicals effectively and the reducing power was found to be 11.53 μg/ml. CNB-001 showed considerable protecting activity against plasmid DNA (pUC19 strand scission by ·OH at dose dependent manner. Conclusion: Results from these assays concluded that CNB-001 has a good antioxidant potential by reducing reactive oxygen and reactive nitrogen radicals and it

  6. Effects of Exogenous Indole Butyric Acid and Callus Formation on the Anti-oxidant Activity, Total Phenolic, and Anthocyanin Constituents of Mulberry Cuttings

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to evaluate the effects of exogenous indole butyric acid (IBA) and callus formation on the antioxidant activity, total phenolics, and anthocyanin constituents of Morus nigra L. and M. alba L. cuttings, we investigated the variations before and after the treatment. The results indicate that anti-oxidant ability, total phenolic, and anthocyanin constituents of the callus stems of both Morus species were higher than those of non-callus forming species. There were also increases observed in anti-oxidant ability, total phenolic,and anthocyanin constituents of calli treated with IBA (1 000-3 000 mg/L).

  7. Gastroprotective Effect of Ginger Rhizome (Zingiber officinale Extract: Role of Gallic Acid and Cinnamic Acid in H+, K+-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism

    Directory of Open Access Journals (Sweden)

    Siddaraju M. Nanjundaiah

    2011-01-01

    Full Text Available Zinger officinale has been used as a traditional source against gastric disturbances from time immemorial. The ulcer-preventive properties of aqueous extract of ginger rhizome (GRAE belonging to the family Zingiberaceae is reported in the present study. GRAE at 200 mg kg−1 b.w. protected up to 86% and 77% for the swim stress-/ethanol stress-induced ulcers with an ulcer index (UI of 50 ± 4.0/46 ± 4.0, respectively, similar to that of lansoprazole (80% at 30 mg kg−1 b.w. Increased H+, K+-ATPase activity and thiobarbituric acid reactive substances (TBARS were observed in ulcer-induced rats, while GRAE fed rats showed normalized levels and GRAE also normalized depleted/amplified anti-oxidant enzymes in swim stress and ethanol stress-induced animals. Gastric mucin damage was recovered up to 77% and 74% in swim stress and ethanol stress, respectively after GRAE treatment. GRAE also inhibited the growth of H. pylori with MIC of 300 ± 38 μg and also possessed reducing power, free radical scavenging ability with an IC50 of 6.8 ± 0.4 μg mL−1 gallic acid equivalent (GAE. DNA protection up to 90% at 0.4 μg was also observed. Toxicity studies indicated no lethal effects in rats fed up to 5 g kg−1 b.w. Compositional analysis favored by determination of the efficacy of individual phenolic acids towards their potential ulcer-preventive ability revealed that between cinnamic (50% and gallic (46% phenolic acids, cinnamic acid appear to contribute to better H+, K+-ATPase and Helicobacter pylori inhibitory activity, while gallic acid contributes significantly to anti-oxidant activity.

  8. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves

    Institute of Scientific and Technical Information of China (English)

    Shucheng Xu

    2010-01-01

     The role of a calcium-dependent and calmodulin(CaM)stimulated protein kinase in abscisic acid(ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays).In-gel kinase assays showed that treatments with ABA or H2O2 induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly.Furthermore,we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase Ⅱ (CaMK Ⅱ)inhibitor KN-93 or CaM antagonist W-7.Treatments with ABA or H2O2 not only induced the acti vation of the 52-kDa protein kinase,but also enhanced the total activities of the antioxidant enzymes,including catalase,ascorbate peroxidase,glutathione reductase,and superoxide dismutase.Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species(ROS)inhibitor or scavenger.Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H2O2 production.Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger.These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H2O2 plays a pivotal role in ABA signaling.We infer that CaMK acts both upstream and downstream of H2O2,but mainly acts between ABA and H2O2 in ABA-induced antioxidant-defensive signaling.

  9. Stress relaxant and antioxidant activities of acid glycoside from Spondias mangifera fruit against physically and chemically challenged albino mice.

    Science.gov (United States)

    Arif, Muhammad; Fareed, Sheeba; Rahman, Md Azizur

    2016-01-01

    Stress relaxant and antioxidant activities of ethanolic extract of fruit Spondias mangifera (EEFSM) and its isolated compound (Sm-01) were evaluated. The structure of Sm-01 was also elucidated. EEFSM at two different doses of 100 and 200 mg/kg (bw)/day and Sm-01 at dose of 10 mg/kg (bw)/day were screened for in vivo stress relaxant activity using anoxia stress tolerance, swimming endurance and cyclophosphamide-induced immune suppression model and in vitro antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) model. The levels of Hb, red blood cell (RBC) and white blood cell (WBC) along with organ and body weights suppressed by cyclophosphamide were estimated. The structure of Sm-01 was elucidated by spectroscopy (ultraviolet, infrared, (1)H-nuclear magnetic resonance [NMR],(13) C-NMR and mass spectrometry) and chemical analyses. Sm-01 was structurally elucidated as propan-1,2-dioic acid-3-carboxyl-β-D-glucopyranosyl-(6'→1")-β-D-glucofuranoside. It was found that EEFSM and Sm-01 significantly increased the anoxia stress tolerance, swimming endurance and duration of stay on rotarod and normalized the levels of Hb, RBC, and WBC along with altered organ and body weights suppressed by cyclophosphamide. EEFSM and Sm-01 also exhibited significant antioxidant activity against DPPH free radical at the concentrations of 0.05, 0.5, and 1.0 mg/mL with obtained IC50 of 0.32 and 0.15 mg/mL, respectively. These findings demonstrated that extract and Sm-01 both possess significant stress relaxant and antioxidant activities favoring its use as adaptogens. The activities of the extract may be due to the Sm-01.

  10. Stress relaxant and antioxidant activities of acid glycoside from Spondias mangifera fruit against physically and chemically challenged albino mice

    Directory of Open Access Journals (Sweden)

    Muhammad Arif

    2016-01-01

    Full Text Available Aim: Stress relaxant and antioxidant activities of ethanolic extract of fruit Spondias mangifera (EEFSM and its isolated compound (Sm-01 were evaluated. The structure of Sm-01 was also elucidated. Materials and Methods: EEFSM at two different doses of 100 and 200 mg/kg (bw/day and Sm-01 at dose of 10 mg/kg (bw/day were screened for in vivo stress relaxant activity using anoxia stress tolerance, swimming endurance and cyclophosphamide-induced immune suppression model and in vitro antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH model. The levels of Hb, red blood cell (RBC and white blood cell (WBC along with organ and body weights suppressed by cyclophosphamide were estimated. The structure of Sm-01 was elucidated by spectroscopy (ultraviolet, infrared, 1H-nuclear magnetic resonance [NMR], 13C-NMR and mass spectrometry and chemical analyses. Results: Sm-01 was structurally elucidated as propan-1,2-dioic acid-3-carboxyl-β-D-glucopyranosyl-(6'→1"-β-D-glucofuranoside. It was found that EEFSM and Sm-01 significantly increased the anoxia stress tolerance, swimming endurance and duration of stay on rotarod and normalized the levels of Hb, RBC, and WBC along with altered organ and body weights suppressed by cyclophosphamide. EEFSM and Sm-01 also exhibited significant antioxidant activity against DPPH free radical at the concentrations of 0.05, 0.5, and 1.0 mg/mL with obtained IC50of 0.32 and 0.15 mg/mL, respectively. Conclusions: These findings demonstrated that extract and Sm-01 both possess significant stress relaxant and antioxidant activities favoring its use as adaptogens. The activities of the extract may be due to the Sm-01.

  11. Evaluation of Salicylic Acid and Calcium Chloride Effect on Shelf Life, Quality Properties and Antioxidant Activity of Peach Fruit cv. Amesden after Harvest

    Directory of Open Access Journals (Sweden)

    Gh. Davarynejad

    2015-05-01

    Full Text Available In order to evaluate the effect of different concentrations of postharvest salicylic acid and calcium chloride on shelf life, quality characteristics and antioxidant activity of peach fruit cv. Amesden, an experiment was conducted as factorial based on randomized completely design with three replications. Fruits were harvested at the commercial ripening stage, and fruits were immerged in different concentrations of salicylic acid (1 and 2 mM, calcium chloride (1.5 and 3%, combined salicylic acid and calcium chloride (1-1.5, 1-3, 2-1.5 and 2-3, and distilled water (control for 5 min, then fruits were packed in boxes with polyethylene cover and stored at 4°C with 80-85% relative humidity for 35 days. The changes in weight loss, fruit firmness, rot percentage; pH, total soluble solids, titratable acidity, ascorbic acid and antioxidant activity were estimated in 0 and 35 days during storage. The results showed that the weight loss, rot percentage, pH and total soluble solids significantly increased, while the fruit firmness, titratable acidity, ascorbic acid and antioxidant activity significantly decreased at the end of storage period. The salicylic acid and calcium chloride treatments significantly reduced the weight loss and maintained their firmness. In this condition, the highest of titratable acidity, ascorbic acid and antioxidant activity were observed in treatments of salicylic acid and calcium chloride, while the lowest of total soluble solids and rot percentage was showed in treatments of salicylic acid and calcium chloride than in the control treatment. Also, combined treatment (salicylic acid + calcium chloride had an important effect in relative to each treatment separately. The data indicated that the use of salicylic acid and calcium chloride may be introduced as an effective and successful strategy in postharvest technology of the peach.

  12. Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition.

    Science.gov (United States)

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2013-01-15

    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions.

  13. Antioxidant and oligonutrient status, distribution of amino acids, muscle damage, inflammation, and evaluation of renal function in elite rugby players.

    Science.gov (United States)

    Gorce-Dupuy, Anne Marie; Vela, Carlos; Badiou, Stéphanie; Bargnoux, Anne Sophie; Josse, Christophe; Roagna, Nicolas; Delage, Martine; Michel, Françoise; Vernet, Marie Hélène; Destizons, Dominique; Cristol, Jean Paul

    2012-10-01

    Our study investigated the biochemical and anthropometric characteristics in elite athletes of rugby union based in the south of France during the different periods of the competition to identify metabolic and biochemical adaptations to particular lifestyle conditions. Participants included 35 players in 2008 and 43 players in 2009. Biochemical variables [creatinine, uric acid, creatine kinase (CK), alanine aminotransferase, aspartate aminotransferase, C-reactive protein] were evaluated. Specific protein levels (albumin, acid α-glycoprotein, prealbumin), vitamins (A, E, C), antioxidant enzymes [glutathione peroxidase (GPx), superoxide dismutase (SOD)], oligoelements (Zn, Se, Cu, erythrocyte magnesium), homocysteine (Hcy), carnitine and the distribution of amino acids were specifically determined for our study during a pre-competition period (September 2008 and 2009). Globally, no deficit was observed for vitamins, oligonutrients and amino acids levels. The high SOD and GPx activities in rugby players suggest a presence of oxidative stress of exercise. The evaluation of renal function should be used with caution because of the interaction between creatinine and lean body mass. In addition, a profound effect of intense exercise on the CK values was reported to establish specific reference values for athletes. The analysis of the biological variation allows optimization of the interpretation of the changes from an increased or decreased baseline value from a season to the other one. The conclusions of present study were: 1) the necessity of rugby-specific reference intervals for CK and creatinine parameters; 2) the use of enzymatic creatinine for Modification of Diet in Renal Disease (MDRD) and CKD-EPI, or cystatin C to improve glomerular filtration rate estimation; 3) to take into account the oxidative stress testifying of a bad recovery; and 4) better to take care the nutritional status of the players by adapting needs and amino acids supplementations but also to

  14. Supercritical Carbon Dioxide Extraction of Seed Oil from Winter Melon (Benincasa hispida and Its Antioxidant Activity and Fatty Acid Composition

    Directory of Open Access Journals (Sweden)

    Ali Ganjloo

    2013-01-01

    Full Text Available In the present study, supercritical carbon dioxide (SC-CO2 extraction of seed oil from winter melon (Benincasa hispida was investigated. The effects of process variables namely pressure (150–300 bar, temperature (40–50 °C and dynamic extraction time (60–120 min on crude extraction yield (CEY were studied through response surface methodology (RSM. The SC-CO2 extraction process was modified using ethanol (99.9% as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE and ultrasound assisted extraction (UAE. It was found that the antioxidant activity of the extract obtained by SC-CO2 extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO2 extraction conditions.

  15. Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris).

    Science.gov (United States)

    Pal, R S; Bhartiya, Anuradha; Yadav, Pradhuman; Kant, Lakshmi; Mishra, K K; Aditya, J P; Pattanayak, A

    2017-03-01

    The changes in chemical composition, antioxidant activity and fatty acid composition of lentil flour after dehulling, germination and cooking of seeds were investigated. Dehulling showed no significant effect on protein content, however, protein content decreased in most of the varieties after germination and cooking. Total soluble sugars (TSS) content increased significantly after dehulling (2.0-41.64 %) and cooking (2.08-31.07 %) whereas, germination had no significant effect on TSS content. Total lipids increased significantly after dehulling (21.56-42.86 %) whereas, it decreased significantly after germination (2.97-26.52 %) and cooking (23.05-58.63 %). Cooking was more effective than other methods in reducing trypsin inhibitors (80.51-85.41 %). Dehulling was most effective in reducing tannins (89.46-92.99 %) and phytic acid (52.63-60.00 %) content over raw seed. Myristic, palmitic, stearic, oleic and linoleic acid content decreased while linolenic acid content increased after dehulling. Dehulling, germination and cooking decreased the content of antioxidant metabolite (gallic acid, catechin and quercetin) and also antioxidant activities. Raw samples followed by germinated samples showed the highest concentrations of phytochemicals responsible for antioxidant activity and also the antioxidant capacities. Present study showed germination and cooking would be useful in formulation and development of lentil based functional foods for human health benefits.

  16. [Combined effects of copper and simulated acid rain on copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa].

    Science.gov (United States)

    He, Shan-Ying; Gao, Yong-Jie; Shentu, Jia-Li; Chen, Kun-Bai

    2011-02-01

    A pot experiment was conducted to study the combined effects of Cu (0-1500 mg x kg(-1)) and simulated acid rain (pH 2.5-5.6) on the copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa. With the increasing concentration of soil Cu, the Cu accumulation in R. acetosa increased, being higher in root than in stem and leaf. The exposure to low pH acid rain promoted the Cu uptake by R. acetosa. With the increase of soil Cu concentration and/or of acid rain acidity, the biomass of R. acetosa decreased, leaf and root MDA contents increased and had good correlation with soil Cu concentration, and the SOD and POD activities in leaf and root displayed a decreasing trend after an initial increase. This study showed that R. acetosa had a strong adaptive ability to Cu and acid rain stress, exhibiting a high application potential in the remediation of Cu-contaminated soil in acid rain areas.

  17. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins

    DEFF Research Database (Denmark)

    Pattison, David I; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    and antioxidants in aqueous solution (pH 7.4). The reactions of HOCl with phosphoryl-serine and phosphoryl-ethanolamine are rapid (k approximately 10(5) M(-)(1) s(-)(1)) and of comparable reactivity to many of the protein sites. The major products formed in these reactions are chloramines, which decay to give both...... and yielded k = 9 M(-)(1) s(-)(1). The reactions of the lipid-soluble antioxidants, alpha-tocopherol and ubiquinol-10, with HOCl were investigated with model compounds. For the reactions of HOCl with both Trolox and ubiquinol-0, k = 1.3 x 10(3) M(-)(1) s(-)(1); thus, these lipid soluble antioxidants...... are relatively ineffective as direct scavengers for HOCl as compared to water soluble antioxidants (e.g., ascorbate, k ca. 10(6) M(-)(1) s(-)(1)). The reaction of HOCl with hydroquinone (a simple model for ubiquinol-10) was also investigated both in aqueous solution (k = 45 M(-)(1) s(-)(1)) and in a less polar...

  18. Screening of Lactic Acid Bacteria with Antioxidant Activity%抗氧化活性乳酸菌的筛选

    Institute of Scientific and Technical Information of China (English)

    刘天祎; 潘道东

    2011-01-01

    In order to achieve lactic acid bacteria with high antioxidant activity,20 lactic acid bacterial strains were isolated from kimchi juice,goose intestines and chicken crop.Strains L8 and L17 with high antioxidant activity were picked out through preliminary screening based on DPPH and superoxide anion free radical scavenging activity and secondary screening based on total antioxidant capacity(T-AOC) and total superoxide dismutase(T-SOD) activity.Both strains were identified as Lactobacillus casei by carbohydrate fermentation,physiological and biochemical tests and 16S rDNA sequence analysis.%以获得高抗氧化活性乳酸菌菌株为目的,从泡菜汁、鹅肠、鸡嗉囊等材料中分离获得20株乳酸菌。以对DPPH自由基和O-2.的清除率为初筛指标,总抗氧化(T-AOC)能力和总超氧化物歧化酶(T-SOD)活力为复筛指标,筛选得到两株具有较高抗氧化活性的菌株L8和L17。利用糖发酵实验、生理生化实验和16S rDNA序列比对的方法对其进行鉴定,发现它们均为干酪乳杆菌。

  19. Modulation of antioxidant enzymatic activities by certain antiepileptic drugs (valproic acid, oxcarbazepine, and topiramate): evidence in humans and experimental models.

    Science.gov (United States)

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress.

  20. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate): Evidence in Humans and Experimental Models

    Science.gov (United States)

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides III; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress. PMID:24454986

  1. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate: Evidence in Humans and Experimental Models

    Directory of Open Access Journals (Sweden)

    Noemí Cárdenas-Rodríguez

    2013-01-01

    Full Text Available It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity. This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS activation and the generation of reactive oxygen species (ROS. Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA, oxcarbazepine (OXC, and topiramate (TPM modulate oxidative stress.

  2. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    Science.gov (United States)

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture.

  3. Isolation, characterization, and antioxidant activity of E- and Z-p-coumaryl fatty acid esters from cv. Annurca apple fruits.

    Science.gov (United States)

    Cefarelli, Giuseppe; D'Abrosca, Brigida; Fiorentino, Antonio; Izzo, Angelina; Monaco, Pietro

    2005-05-04

    A total of 12 fatty acid esters of Z- and E-p-coumaryl alcohol were isolated from cv. Annurca apple fruit and characterized. This apple variety is widely cultivated in the south of Italy, and the fruits typically undergoe a reddening treatment after harvest. Structures of the p-coumaryl esters were elucidated by GC-MS and (1)H and (13)C NMR after purification of individual compounds by HPLC. It was found that the esters are localized in the fruit peel. During reddening of the fruit, there was a substantial increase in the amount of esters and particularly in molecular species with unsaturated fatty acids. The individual compounds were tested for antioxidant activity, and over half were shown to be at least as effective as alpha-tocopherol.

  4. Identification, stress tolerance, and antioxidant activity of lactic acid bacteria isolated from tropically grown fruits and leaves.

    Science.gov (United States)

    Fessard, Amandine; Bourdon, Emmanuel; Payet, Bertrand; Remize, Fabienne

    2016-07-01

    From 6 samples of tropically grown fruits and leaves, 10 lactic acid bacteria belonging Leuconostoc, Weissella, and Lactobacillus species were isolated and identified by 16S rRNA gene sequencing and (GTG)5 fingerprinting. Acidification kinetics determined from BHI broth cultures showed genus-related patterns. In particular, Weissella cibaria appeared to act as a potent acidifier. Tolerance of isolates to acid, oxidative, or salt stress was highly variable and strain dependent. Isolate S14 (Leuconostoc pseudomesenteroides) growth was not affected by the presence of 0.05% H2O2, while Lactobacillus spp. isolates (S17 and S29) were the most tolerant to pH 4.5. The growth of 4 isolates, S5 (Leuconostoc mesenteroides), S14 and S10 (Leuconostoc pseudomesenteroides), and S27 (W. cibaria), was not affected by 5% NaCl. Nutritional beneficial properties were examined through measurement of antioxidant activities of short-term fermented pineapple juice, such as LDL oxidation and polyphenol content, and through exopolysaccharide formation from sucrose. Two isolates, S14 and S27, increased the antioxidant capacity of pineapple juice. The robust capacity of W. cibaria and of Leuconostoc pseudomesenteroides for vegetable lactic fermentation aimed to ameliorate food nutritional and functional quality was highlighted.

  5. Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage.

    Science.gov (United States)

    Shao, Suqin; Hernandez, Marta; Kramer, John K G; Rinker, Danny L; Tsao, Rong

    2010-11-24

    This article investigated the mycochemical profiles and the antioxidant activities of the lipophilic extracts of the white and brown button mushrooms. We found that only free ergosterols were present in both mushrooms at 2.04-4.82 mg/g dry matter (DM). Ergosterol concentration was higher in early growth stages but decreased as the mushrooms grew, and it distributed evenly between the caps and stems during early developmental stages but accumulated more in the caps after maturation. The photochemiluminescence (PCL) values of the two mushrooms were 5.49-10.48 nmol trolox equivalent/mg DM, and the EC50 values of 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay ranged 20.19-41.49 mg DM/μg DPPH. The ergosterol content positively correlated with the antioxidant activities (r2>0.89). The total fatty acid content was 8.7 mg/g DM in the white and 5.1 mg/g DM in the brown button mushroom and contained mainly linoleic, palmitic, and stearic acids. Our data provide guidance for optimized harvesting time of mushrooms and maximized health benefits.

  6. Intracerebroventricular administration of N-acetylaspartic acid impairs antioxidant defenses and promotes protein oxidation in cerebral cortex of rats.

    Science.gov (United States)

    Pederzolli, Carolina Didonet; Rockenbach, Francieli Juliana; Zanin, Fernanda Rech; Henn, Nicoli Taiana; Romagna, Eline Coan; Sgaravatti, Angela M; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir; de Mattos Dutra, Angela; Dutra-Filho, Carlos S

    2009-06-01

    N-acetylaspartic acid (NAA) is the biochemical hallmark of Canavan Disease, an inherited metabolic disease caused by deficiency of aspartoacylase activity. NAA is an immediate precursor for the enzyme-mediated biosynthesis of N-acetylaspartylglutamic acid (NAAG), whose concentration is also increased in urine and cerebrospinal fluid of patients affected by CD. This neurodegenerative disorder is clinically characterized by severe mental retardation, hypotonia and macrocephaly, and generalized tonic and clonic type seizures. Considering that the mechanisms of brain damage in this disease remain not fully understood, in the present study we investigated whether intracerebroventricular administration of NAA or NAAG elicits oxidative stress in cerebral cortex of 30-day-old rats. NAA significantly reduced total radical-trapping antioxidant potential, catalase and glucose 6-phosphate dehydrogenase activities, whereas protein carbonyl content and superoxide dismutase activity were significantly enhanced. Lipid peroxidation indices and glutathione peroxidase activity were not affected by NAA. In contrast, NAAG did not alter any of the oxidative stress parameters tested. Our results indicate that intracerebroventricular administration of NAA impairs antioxidant defenses and induces oxidative damage to proteins, which could be involved in the neurotoxicity of NAA accumulation in CD patients.

  7. The antioxidant effect of Echinacea angustifolia and Echinacea purpurea in rat colitis model induced by acetic acid.

    Science.gov (United States)

    Dogan, Z; Ergul, B; Sarikaya, M; Filik, L; Gonultas, M Alparslan; Hucumenoglu, S; Can, M

    2014-01-01

    Ulcerative colitis is a chronic inflammatory condition of the colon, and reactive oxidative metabolites (ROMs) play an important role in its pathogenesis. Alternative therapies such as herbal remedies are increasingly being used in the treatment of ulcerative colitis for better clinical outcome of ulcerative colitis and less adverse effects. Echinacea has many features including antioxidant and wound-healing properties. Hence, the present study was undertaken to evaluate the protective effect of Echinacea spp. on experimental colitis model induced by acetic acid in Wistar albino rats. Acute colitis was induced by intrarectal administration of acetic acid. Rats were divided into four groups, namely control, Echinacea-administered, Echinacea-administered-colitis and colitis. Malondialdehyde and total antioxidant status were assayed in tissue samples. Histopathological evaluation was also performed. Macroscopic and microscopic scores were significantly higher in colitis group compared to control, Echinacea and Echinacea-colitis groups (p Echinacea and Echinacea-colitis groups (p > 0.3, p > 0.22). Malondialdehyde levels were elevated in colitis group compared to other groups (p Echinacea group compared with other groups and also significantly higher in Echinacea-colitis group compared with colitis group (p Echinacea may possibly have some therapeutic usefulness in the management of ulcerative colitis (Tab. 2, Fig. 4, Ref. 35).

  8. Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity.

    Science.gov (United States)

    Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-05-01

    Poly(lactic acid) (PLA) nanoparticles containing vanillin were prepared using an emulsion-solvent evaporation technique and were characterized and assessed for their in vitro antioxidant potential. Physicochemical properties of the nanoparticles were characterized by size, polydispersity index, zeta potential, encapsulation efficiency and stability. Solid state and thermal properties were assessed using X-ray diffraction and differential scanning calorimetry, while in vitro drug release profile was also evaluated. Results showed PLA nanoparticles having a characteristic amorphous structure, sizes in the range of 240 nm with high homogeneity in size distribution, zeta potential of -22 mV and vanillin encapsulation efficiency of 41%. In vitro release study showed a slow and sustained release of vanillin governed by diffusion. Nanoparticles were stable over a period of three months. Antioxidant ability of the vanillin-loaded PLA nanoparticles in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was inferior to free vanillin and due to its prolonged release showed a profile that was both time and concentration dependent, while free vanillin showed concentration-dependent activity. The study concluded that PLA nanoparticles are potential carriers for vanillin delivery.

  9. Arsenic accumulation and tolerance in rootless macrophyte Najas indica are mediated through antioxidants, amino acids and phytochelatins.

    Science.gov (United States)

    Tripathi, Rudra Deo; Singh, Ragini; Tripathi, Preeti; Dwivedi, Sanjay; Chauhan, Reshu; Adhikari, Bijan; Trivedi, Prabodh Kumar

    2014-12-01

    Arsenic (As) accumulation and tolerance response of a submerged rootless macrophyte Najas indica were evaluated during arsenate (As(V); 10-250 μM) and arsenite (As(III); 1-50 μM) exposure. Higher As accumulation at As(III) exposure and more tolerance upon As(V) exposure resulted in more toxicity during As(III) stress than As(V), which was evident through measurement of growth parameters and oxidative stress related parameters viz., lipid peroxidation (MDA content), electrical conductivity (EC) and hydrogen peroxide (H2O2) levels. Antioxidant enzymes and various amino acids were more prominent during moderate exposure of As(V), suggesting their possible role in As tolerance and detoxification. Various non-enzymatic antioxidant metabolites viz., ascorbic acid (ASC), glutathione (GSH), non-protein thiols (NPTs) and phytochelatins (PCs) biosynthesis involving phytochelatin synthase (PCS) activity increased more significantly during As(III) stress. However, PCs content seems inadequate in response to As accumulation leading to lower PC-SH:As molar ratio and higher As phytotoxicity during As(III) stress. N. indica may prove useful plant species for phytoremediation purpose in moderately As contaminated water bodies due to high As accumulation and tolerance potential.

  10. Fatty Acid Composition and Antioxidant Activity of Tea (Camellia sinensis L. Seed Oil Extracted by Optimized Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Ping Xu

    2011-11-01

    Full Text Available Seeds are another product in addition to leaves (raw materials for teas of tea (Camellia sinensis L. plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO2 extraction edible oil from tea seed was carried out, response surface methodology (RSM was used to optimize processing parameters including time (20–90 min, temperature (35–45 °C and pressure (50–90 MPa. The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6% was obtained under optimal SC-CO2 extraction conditions (45 °C, 89.7 min and 32 MPa, respectively, which was significantly higher (p < 0.05 than that (25.3 ± 1.0% given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO2 contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO2 is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO2 is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets.

  11. Antioxidant properties of neohesperidin dihydrochalcone: inhibition of hypochlorous acid-induced DNA strand breakage, protein degradation, and cell death.

    Science.gov (United States)

    Choi, Je-Min; Yoon, Byoung-Seok; Lee, Sang-Kyou; Hwang, Jae-Kwan; Ryang, Ryung

    2007-02-01

    Neohesperidin dihydrochalcone (NHDC), a non-nutritive sweetening agent, is simply produced by hydrogenation of neohesperidin. The aim of this study is to evaluate the antioxidant and radical scavenging properties of neohesperidin dihydrochalcone and other structurally related compounds (phloridzin, neohesperidin) toward different reactive radical and oxygen species including .ABTS+, .O2-, .OH, H2O2, and HOCl in vitro. NHDC showed remarkable radical scavenging activity against stable radical and reactive oxygen species (ROS) in concentration dependent manner. Especially, NHDC was the most potent inhibitor of H2O2 and HOCl. NHDC showed HOCl scavenging activity of 93.5% and H2O2 scavenging property of 73.5% which was more than those of all the tested compounds including ascorbic acid and BHT. Moreover, NHDC could inhibit protein degradation, plasmid DNA strand cleavage and HIT-T15, HUVEC cell death from HOCl attack while mannitol, BHT, and ascorbic acid could not protect them effectively. These results suggest that NHDC is a potent antioxidant, especially it is evaluated as a novel HOCl scavenger. This study implies the possibility of therapeutic effect of NHDC on ROS-related inflammatory diseases.

  12. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Wei

    Full Text Available Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans.The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%. Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans.This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods.

  13. Influence of salicylic and succinic acids on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Miroshnichenko N.N.

    2011-05-01

    Full Text Available The influence of treatment of millet (Panicum miliaceum L. seeds with the solutions of salicylic and succinic acids on the heat resistance of plantlets and activity of antioxidant enzymes – superoxide dismutase (SOD, catalase and peroxidase – in them have been investigated. In the micro-field experiment the influence of these acids on the millet yield was estimated. The action of salicylic (10 μM and succinic (1 mM acids caused the increase of plantlets resistance to the damaging heating that expressed in the rise of relative quantity of survived plantlets in 5 days after heating at the temperature of 47°С and in the reduced content of lipid peroxidation product malonic dialdehyde during the poststress period. The increase of activity of SOD, catalase and peroxidase took place in millet plantlets under the influence of salicylic and succinic acids. The increase of productivity of millet grain under the action of salicylic and succinic acids on 13,3-52,0 and 6,4-38,8% respectively depending on weather conditions in the field experiments was noted.

  14. Effects of feeding oxidized fat with or without dietary antioxidants on nutrient digestibility, microbial nitrogen, and fatty acid metabolism.

    Science.gov (United States)

    Vázquez-Añón, M; Jenkins, T

    2007-09-01

    A dual-effluent continuous culture system was used to investigate, in a 2 x 2 factorial design, the effect of feeding a fresh (FF) or oxidized (OF) blend of unsaturated fats (33% fish oil, 33% corn oil, 26% soybean oil, and 7% inedible tallow) when supplemented with a blend of antioxidants (AO; Agrado Plus, Novus International Inc.; Agrado Plus is a trademark of Novus International Inc. and is registered in the United States and other countries) on nutrient digestibility, bacterial protein synthesis, and fatty acid metabolism. Twice a day for 10 d, 12 fermenters were fed a diet that consisted of 52% forage and 48% grain mixture that contained 3% (dry matter basis) FF or OF, with or without AO. The OF contained a higher concentration of peroxides (215 vs. 3.5 mEq/kg), and a lower concentration of unsaturated fatty acids than the FF. Feeding OF reduced nitrogen digestibility, microbial nitrogen yield, and efficiency (expressed as kilograms of dry matter digested) and increased the outflow of saturated fatty acids in the effluent when compared with feeding FF. Adding AO improved total carbohydrate, neutral, and acid detergent fiber digestibilities and the amount of digested feed nitrogen converted to microbial nitrogen across the types of fats. From this study, we concluded that feeding OF reduced microbial nitrogen and increased the outflow of saturated fatty acids. Feeding AO improved fiber digestibility by rumen microorganisms, regardless of the type of fat.

  15. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: analysis with interaction indexes and isobolograms.

    Science.gov (United States)

    Enko, Jolanta; Gliszczyńska-Świgło, Anna

    2015-01-01

    Products containing natural additives, including antioxidants, are usually perceived by consumers as safer than those with synthetic ones. Natural antioxidants, besides having a preservative activity, may exert beneficial health effects. Interactions between antioxidants may significantly change their antioxidant activity, thus in designing functional foods or food/cosmetic ingredients knowledge about the type of interactions could be useful. In the present study, the interactions between ascorbic acid (AA; vitamin C) and different black and green tea extracts and the influence on their antioxidant activities were investigated. The antioxidant activities of tea extracts and their mixtures with AA prepared in several different weight ratios were measured using the trolox equivalent antioxidant capacity (TEAC), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and ferric-reducing antioxidant power (FRAP) methods. The type of interaction was determined by interaction indexes and isobolograms. It was found that the weight ratio of extracts to AA significantly influenced the antioxidant activity of a mixture and the type of interaction between these components. The weight ratio of tea extract to AA can cause the change of interaction, e.g. from antagonism to additivism or from additivism to synergism. The observed differences in the type of interactions were probably also a result of different extracts' polyphenol composition and content. The type of interaction may also be affected by the medium in which extracts and AA interact, especially its pH and the solvent used. To obtain the best antioxidant effect, all these factors should be taken into account during the design of a tea extract-AA mixture.

  16. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation.

    Science.gov (United States)

    Israr, Dania; Mustafa, Ghulam; Khan, Khalid Saifullah; Shahzad, Muhammad; Ahmad, Niaz; Masood, Sajid

    2016-11-01

    Phosphorus (P) availability in alkaline soils of arid and semi-arid regions is a major constraint for decreased crop productivity. Use of plant growth promoting rhizobacteria (PGPR) may enhance plant growth through the increased plant antioxidation activity. Additionally, PGPR may increase nutrient uptake by plants as a result of induced root exudation and rhizosphere acidification. The current study was aimed to investigate combined effects of P and Pesudomonas putida (PGPR) on chickpea growth with reference to antioxidative enzymatic activity and root exudation mediated plant nutrient uptake, particularly P. Half of the seeds were soaked in PGPR solution, whereas others in sterile water and latter sown in soils. Plants were harvested 8 weeks after onset of experiment and analyzed for leaf nutrient contents, antioxidant enzymes activities and organic acids concentrations. Without PGPR, P application (+P) increased various plant growth attributes, plant uptake of P and Ca, soil pH, citric acid and oxalic acid concentrations, whereas decreased the leaf POD enzymatic activity as compared to the P-deficiency. PGPR supply both under -P and +P improved the plant growth, plant uptake of N, P, and K, antioxidative activity of SOD and POD enzymes and concentrations of organic acids, whereas reduced the rhizosphere soil pH. Growth enhancement by PGPR supply was related to higher plant antioxidation activity as well as nutrient uptake of chickpea including P as a result of root exudation mediated rhizosphere acidification. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Alpha-Lipoic Acid and Antioxidant Diet Help to Improve Endothelial Dysfunction in Adolescents with Type 1 Diabetes: A Pilot Trial

    Directory of Open Access Journals (Sweden)

    Andrea Scaramuzza

    2015-01-01

    Full Text Available After evaluating the prevalence of early endothelial dysfunction, as measured by means of reactive hyperemia in adolescents with type 1 diabetes, we started a 6-month, double-blind, randomized trial to test the efficacy of an antioxidant diet (± alpha-lipoic acid supplementation to improve endothelial dysfunction. Seventy-one children and adolescents, ages 17 ± 3.9 yrs, with type 1 diabetes since 9.5 ± 5.3 yrs, using intensified insulin therapy, were randomized into 3 arms: (a antioxidant diet 10.000 ORAC + alpha-lipoic acid; (b antioxidant diet 10.000 ORAC + placebo; (c controls. BMI, blood pressure, fasting lipid profile, HbA1c, insulin requirement, dietary habits, and body composition were determined in each patient. An antioxidant diet significantly improved endothelial dysfunction when supplemented with alpha-lipoic acid, unlike diet with placebo or controls. A significant reduction in bolus insulin was also observed. We speculate that alpha-lipoic acid might have an antioxidant effect in pediatric diabetes patients by reducing insulin.

  18. GALLIC ACID: A PHENOLIC ACID AND ITS ANTIOXIDANT ACTIVITY FROM STEM BARK OF CHLOROFORM EXTRACTS OF SYZYGIUM LITORALE (BLUME AMSHOFF (MYRTACEAE

    Directory of Open Access Journals (Sweden)

    Tukiran Tukiran

    2016-11-01

    Full Text Available A phenolic acid had been isolated from chloroform soluble fractions of a methanol extract of stem bark of Syzygium litorale, Fam. Myrtaceae. The structure of the isolated compound was elucidated and established as gallic acid through extensive spectroscopic studies (UV-Vis, FTIR, and NMR and by comparison with literature data and authentic sample. This is the first report of the isolation of compound from this plant, although it has previously been found in Myrtaceae family such as S. aromaticum, S. cumini, S. polyanthum, S. cordatum, etc. The chloroform fraction, isolated compound, and vitamin C showed very strong antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH with IC50 value of 23.2, 7.5, and 12.5 mg/mL, respectively.

  19. Avaliação da atividade antioxidante do ácido fítico de germe de milho Corn germ phytic acid antioxidant activity evaluation

    Directory of Open Access Journals (Sweden)

    Cristina Tostes Filgueiras

    2009-01-01

    Full Text Available The obtained corn germ phytic acid (CGPA antioxidant potential was evaluated through the deoxyribose, bathophenanthroline (BPS and DPPH• assays. In the concentration of 130.5 μM of CGPA the hydroxyl radical maximum sequestering antioxidant activity was 29.3% while standard phytic acid (SPA presented this maximum activity of 18.2% in the concentration of 33.2 μM of SPA. The BPS assays revealed that the chelation activity towards Fe2+ increased concurrently with the increase of CGPA concentration and its Fe2+ contact time. Finally, DPPH• assay showed that CGPA and SPA did not present electron-donating capacity to DPPH•.

  20. Phenolic Contents and Antioxidant Potential of Crataegus Fruits Grown in Tunisia as Determined by DPPH, FRAP, and β-Carotene/Linoleic Acid Assay

    Directory of Open Access Journals (Sweden)

    Farouk Mraihi

    2013-01-01

    Full Text Available Crataegus fruit is one of most important fruits in Tunisian flora. Some fruits of this genus are edible. This study was undertaken in order to examine the benefits of these fruits in human health and their composition of antioxidants including total polyphenol, flavonoids, proanthocyanidins content, and total anthocyanins. The antioxidative properties of the ultrasonic methanolic extract were assessed by different in vitro methods such as the FRAP, DPPH, and β-carotene/linoleic acid assay. We concluded that peel fraction of red fruits possessed relatively high antioxidant activity and might be a rich source of natural antioxidants in comparison with the pulp and seed fruit extract. The results also showed that hawthorn yellow fruit presents lower amounts of phenolic content, absence of anthocyanins, and less antioxidant capacity. Most of peel and seed fractions were stronger than the pulp fractions in antioxidant activity based on their DPPH IC50, FRAP values, and results of β-carotene/linoleic acid. The total phenolic compounds contents were also highly correlated with the DPPH method and the FRAP assay.

  1. Efficacy of Ascorbic Acid (Vitamin C) and/N-Acetylcysteine (NAC) Supplementation on Nutritional and Antioxidant Status of Male Chronic Obstructive Pulmonary Disease (COPD) Patients.

    Science.gov (United States)

    Pirabbasi, Elham; Shahar, Suzana; Manaf, Zahara Abdul; Rajab, Nor Fadilah; Manap, Roslina Abdul

    2016-01-01

    Antioxidant therapy has a potential to be introduced as therapeutic modality for chronic obstructive pulmonary disease (COPD) patients. This study aimed to determine the effect of antioxidant supplementation [ascorbic acid and N-Acetylcysteine (NAC)] on nutritional and antioxidant status in male COPD patients. A parallel and single blind randomised controlled clinical trial (RCT) was conducted at two medical centers in Kuala Lumpur, Malaysia. Seventy-nine subjects were recruited and randomly divided into four trial arms (i.e., NAC, vitamin C, NAC+vitamin C and control groups) for six mo. The primary outcome was changes in body mass index by estimating power of 90% and significance level of psupplementation of NAC or vitamin C improved nutritional and antioxidant status of subjects.

  2. Antioxidant and type 2 diabetes related functional properties of phytic acid extract from Kenyan local food ingredients: effects of traditional processing methods.

    Science.gov (United States)

    Kunyanga, Catherine N; Imungi, Jasper K; Okoth, Michael W; Biesalski, Hans K; Vadivel, Vellingiri

    2011-01-01

    Emerging scientific evidences reveal that phytic acid has several positive effects on human health. The antioxidant and type 2 diabetes related enzyme inhibition properties of phytic acid extract prepared from raw and traditionally processed local grains and vegetables collected from Kenya were evaluated. Phytic acid content of raw grains and vegetables ranged between 2.81-3.01 and 0.29-3.23 g/100 g DM, respectively. The phytic acid extract from raw samples revealed 59%-89% of DPPH radical scavenging capacity, 27-3,526 mmol Fe(II)/g extract of reducing power, 20%-72% of α-amylase inhibition activity and 8%-91% of α-glucosidase inhibition activity. Cooking and roasting improved the antioxidant and health relevant functionality of phytic acid extracts obtained from Kenyan local vegetables and grains, respectively.

  3. Genotype x Environment interaction for antioxidants and phytic acid contents in bread and durum wheat as influenced by climate

    Directory of Open Access Journals (Sweden)

    Gordana Brankovic

    2015-06-01

    Full Text Available Antioxidants prevent oxidative stress and exert positive health effects. However, phytic acid among them decreases micronutrients absorption, representing also antinutrient to human and non-ruminant animals. Fifteen bread wheat (Triticum aestivum L. and 15 durum wheat (Triticum durum Desf. genotypes were evaluated across six environments to determine contents of phytic acid (PA, inorganic P (Pi, total yellow pigment, total soluble phenolic compounds, free protein sulfhydryl groups (PSH, and also phytic acid P/Pi (Pp/Pi. The objective of this study was to quantify, for each trait the effects of environment, genotype, and their interaction; and the influence of climatic factors on the Genotype x Environment interaction (GEI by the use of the factorial regression. GEI (P < 0.001 prevailed as source of variation over genotype (P < 0.001 in determining PA content in bread and durum wheat (44.3% and 34.7% of sum of squares-SS, respectively, PSH content in bread and durum wheat (27% and 28.4% of SS, respectively and total soluble phenolic compounds content in durum wheat (35.5% of SS. The major contribution to the GEI represented climatic variables during stages of stem elongation for PA and phenolic compounds, and also flowering, fertilization, grain formation and grain filling for PSH. Total yellow pigment and Pi contents in bread and durum wheat were predominantly determined by genotype (P < 0.001. Models of climatic variables proved to be efficient in the explanation of more than 92% of the SS of GEI for PA and antioxidants contents.

  4. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef

    Directory of Open Access Journals (Sweden)

    Nader Glenn A

    2010-03-01

    Full Text Available Abstract Growing consumer interest in grass-fed beef products has raised a number of questions with regard to the perceived differences in nutritional quality between grass-fed and grain-fed cattle. Research spanning three decades suggests that grass-based diets can significantly improve the fatty acid (FA composition and antioxidant content of beef, albeit with variable impacts on overall palatability. Grass-based diets have been shown to enhance total conjugated linoleic acid (CLA (C18:2 isomers, trans vaccenic acid (TVA (C18:1 t11, a precursor to CLA, and omega-3 (n-3 FAs on a g/g fat basis. While the overall concentration of total SFAs is not different between feeding regimens, grass-finished beef tends toward a higher proportion of cholesterol neutral stearic FA (C18:0, and less cholesterol-elevating SFAs such as myristic (C14:0 and palmitic (C16:0 FAs. Several studies suggest that grass-based diets elevate precursors for Vitamin A and E, as well as cancer fighting antioxidants such as glutathione (GT and superoxide dismutase (SOD activity as compared to grain-fed contemporaries. Fat conscious consumers will also prefer the overall lower fat content of a grass-fed beef product. However, consumers should be aware that the differences in FA content will also give grass-fed beef a distinct grass flavor and unique cooking qualities that should be considered when making the transition from grain-fed beef. In addition, the fat from grass-finished beef may have a yellowish appearance from the elevated carotenoid content (precursor to Vitamin A. It is also noted that grain-fed beef consumers may achieve similar intakes of both n-3 and CLA through the consumption of higher fat grain-fed portions.

  5. Major phenolic acids and total antioxidant activity in mamaki leaves, Pipturus albidus

    Science.gov (United States)

    Three phenolic acids, (+) catechins, chlorogenic acid, and rutin, were identified and quantified in mamaki leaves (Pipturus albidus) using a liquid chromatograph-mass spectrometer technique. Concentrations of (+) catechins, chlorogenic acid, and rutin varied from 1.1 mg to 5.0 mg per gram of mamaki...

  6. Purslane Weed (Portulaca oleracea: A Prospective Plant Source of Nutrition, Omega-3 Fatty Acid, and Antioxidant Attributes

    Directory of Open Access Journals (Sweden)

    Md. Kamal Uddin

    2014-01-01

    Full Text Available Purslane (Portulaca oleracea L. is an important plant naturally found as a weed in field crops and lawns. Purslane is widely distributed around the globe and is popular as a potherb in many areas of Europe, Asia, and the Mediterranean region. This plant possesses mucilaginous substances which are of medicinal importance. It is a rich source of potassium (494 mg/100 g followed by magnesium (68 mg/100 g and calcium (65 mg/100 g and possesses the potential to be used as vegetable source of omega-3 fatty acid. It is very good source of alpha-linolenic acid (ALA and gamma-linolenic acid (LNA, 18 : 3 w3 (4 mg/g fresh weight of any green leafy vegetable. It contained the highest amount (22.2 mg and 130 mg per 100 g of fresh and dry weight, resp. of alpha-tocopherol and ascorbic acid (26.6 mg and 506 mg per 100 g of fresh and dry weight, resp.. The oxalate content of purslane leaves was reported as 671–869 mg/100 g fresh weight. The antioxidant content and nutritional value of purslane are important for human consumption. It revealed tremendous nutritional potential and has indicated the potential use of this herb for the future.

  7. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method.

    Science.gov (United States)

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-07-27

    The major objective of this work was to develop a green and facile process to prepare gallic acid-chitosan conjugate and comprehensively evaluate the physicochemical properties and biological activities of an as-prepared water-soluble chitosan derivative. A free-radical-induced grafting approach using an ascorbic acid-hydrogen peroxide redox pair was adopted. The obtained conjugate was characterized by Fourier transform infrared spectroscopy, UV-vis, X-ray diffraction, and pKa analysis. The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulphonic acid (ABTS), reducing power, and oxygen-radical antioxidant-capacity assays. The results showed that the mass ratio of gallic acid to chitosan played a vital role in determining the grafting degree and ζ potential of the conjugates, with the ratio of 0.5:1 being the optimal ratio that resulted in the highest grafting degree. The antioxidant assays demonstrated that conjugation significantly improved the antioxidant activities, being dramatically higher than that of free chitosan. It was notable that the DPPH- and ABTS-scavenging activities of conjugate at 0.4 mg/mL reached the same level as the free gallic acid at the equivalent concentration. Our study demonstrated a green and facile synthesis approach to preparing a novel water-soluble chitosan derivative that may have promising potentials in the food industry.

  8. Margarines fortified with α-linolenic acid, eicosapentaenoic acid, or docosahexaenoic acid alter the fatty acid composition of erythrocytes but do not affect the antioxidant status of healthy adults.

    Science.gov (United States)

    Egert, Sarah; Lindenmeier, Michael; Harnack, Kerstin; Krome, Katharina; Erbersdobler, Helmut F; Wahrburg, Ursel; Somoza, Veronika

    2012-09-01

    We aimed to investigate the effects of increased intake of α-linolenic acid (ALA), EPA, or DHA incorporated into a food matrix on the fatty acid composition of erythrocytes and on biomarkers of oxidant/antioxidant status. To this end, a controlled dietary study was conducted in 74 healthy men and women. The participants were randomly assigned to 1 of 3 interventions in which margarines fortified with either 10 weight percent ALA, EPA, or DHA ethyl esters replaced their normal spread for 6 wk. The total intakes of ALA, EPA, and DHA were 4.4, 2.2, and 2.3 g/d, respectively. Consuming EPA increased the erythrocyte proportion of EPA (394%) and the omega-3 index (sum of EPA and DHA, 38%). Consumption of DHA increased erythrocyte DHA (91%), the omega-3 index (98%), and EPA (137%). The omega-3 index increased to a significantly greater extent in the DHA group than in the EPA group. ALA did not increase erythrocyte EPA or the omega-3 index. We found no change in plasma uric acid or antioxidant capacity in any of the groups. Plasma malondialdehyde (MDA) increased with the EPA and DHA interventions. All 3 interventions decreased erythrocyte linoleic acid hydroperoxides but did not affect their MDA concentrations. In conclusion, the intake of both isolated EPA and DHA incorporated into margarine resulted in an enhanced incorporation of EPA and DHA into erythrocytes. Our findings indicate that DHA is quantitatively superior to EPA in view of the EPA+DHA tissue incorporation and also that 4 g/d ALA is not sufficient to increase the omega-3 index over a 6-wk period.

  9. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise by...

  10. An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane.

    Science.gov (United States)

    Suwalsky, M; Jemiola-Rzeminska, M; Astudillo, C; Gallardo, M J; Staforelli, J P; Villena, F; Strzalka, K

    2015-11-01

    Usnic acid (UA) has been associated with chronic diseases through its antioxidant action. Its main target is the cell membrane; however, its effect on that of human erythrocytes has been scarcely investigated. To gain insight into the molecular mechanisms of the interaction between UA and cell membranes human erythrocytes and molecular models of its membrane have been utilized. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were chosen as representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. Results by X-ray diffraction showed that UA produced structural perturbations on DMPC and DMPE bilayers. DSC studies have indicated that thermotropic behavior of DMPE was most strongly distorted by UA than DMPC, whereas the latter is mainly affected on the pretransition. Scanning electron (SEM) and defocusing microscopy (DM) showed that UA induced alterations to erythrocytes from the normal discoid shape to echinocytes. These results imply that UA molecules were located in the outer monolayer of the erythrocyte membrane. Results of its antioxidant properties showed that UA neutralized the oxidative capacity of HClO on DMPC and DMPE bilayers; SEM, DM and hemolysis assays demonstrated the protective effect of UA against the deleterious oxidant effects of HClO upon human erythrocytes.

  11. The effect of the antioxidant on the properties of thiolated poly(aspartic acid) polymers in aqueous ocular formulations.

    Science.gov (United States)

    Budai-Szűcs, Mária; Horvát, Gabriella; Gyarmati, Benjámin; Szilágyi, Barnabás Áron; Szilágyi, András; Berkó, Szilvia; Ambrus, Rita; Szabó-Révész, Piroska; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Csányi, Erzsébet

    2017-04-01

    Thiolated polymers are a promising new group of excipients, but their stability against atmospheric oxidation has not been investigated in detail, and only a few efforts have been made to improve their stability. The oxidation of the thiol groups in solutions of thiolated polymers may result in a decrease of mucoadhesion and unpredictable in situ gelation. The aims of our work were to study the stability of aqueous solutions of thiolated polymers and the effects of stabilizing agents. We investigated thiolated poly(aspartic acid) polymers stabilized with dithiothreitol, glutathione or acetylcysteine. The effects of these antioxidants on the gel structure, mucoadhesion and drug release were determined by means of scanning electron microscopy, swelling, rheology, adhesion and drug release tests. It was concluded that the stability of polymer solutions containing antioxidants is sufficient for one day. Polymers stabilized with dithiotreitol demonstrated fast swelling and drug release, but weaker mucoadhesion as compared with the other samples. Polymers stabilized with glutathione displayed the weakest cohesive properties, resulting in fast and uncontrolled drug release and moderate mucoadhesion. Acetylcysteine-stabilized polymers exhibited an optimum cross-linked structure, with free thiol groups ensuring polymer-mucin interactions, resulting in the best mucoadhesive properties.

  12. The effect of lithospermic acid, an antioxidant, on development of diabetic retinopathy in spontaneously obese diabetic rats.

    Directory of Open Access Journals (Sweden)

    Cheng Ji Jin

    Full Text Available BACKGROUND: Lithospermic acid B (LAB, an active component isolated from Salvia miltiorrhiza radix, has been reported to have antioxidant effects. We examined the effects of LAB on the prevention of diabetic retinopathy in Otsuka Long-Evans Tokushima Fatty (OLETF rats, an animal model of type 2 diabetes. METHODS AND FINDINGS: LAB (10 or 20 mg/kg or normal saline were given orally once daily to 24-week-old male OLETF rats for 52 weeks. At the end of treatment, fundoscopic findings, vascular endothelial growth factor (VEGF expression in the eyeball, VEGF levels in the ocular fluid, and any structural abnormalities in the retina were assessed. Glucose metabolism, serum levels of high-sensitivity C-reactive protein (hsCRP, monocyte chemotactic protein-1 (MCP1, and tumor necrosis factor-alpha (TNFα and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG levels were also measured. Treatment with LAB prevented vascular leakage and basement membrane thickening in retinal capillaries in a dose-dependent manner. Insulin resistance and glucose intolerance were significantly improved by LAB treatment. The levels of serum hsCRP, MCP1, TNFα, and urinary 8-OHdG were lower in the LAB-treated OLETF rats than in the controls. CONCLUSIONS: Treatment with LAB had a preventive effect on the development of diabetic retinopathy in this animal model, probably because of its antioxidative effects and anti-inflammatory effects.

  13. Different pathways for copper sulphate and copper nitrate antioxidation and organic acid excretion in Typha latifolia?

    OpenAIRE

    Lyubenova L.; Kuhn A.; Höltkemeier A.; Bipuah H.; Belford E.; Schröder P.

    2013-01-01

    The major topic of the present experiment was the investigation of the antioxidative enzymes and the root exudate excretion after plant exposure to copper. The copper was added for each treatment as copper sulphate and copper nitrate in the concentrations of 10 μM, 50 μM and 100 μM, respectively. The plant species chosen for the study was Typha latifolia. The experiment gives insight into the plant responses to different copper supplies during the same conditions of exposure. Remarkable resul...

  14. Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress.

    Science.gov (United States)

    Choudhary, Sikander Pal; Bhardwaj, Renu; Gupta, Bishan Datt; Dutt, Prabhu; Gupta, Rajinder Kumar; Biondi, Stefania; Kanwar, Mukesh

    2010-11-01

    In the present study, the effects of epibrassinolide (EBL) on indole-3-acetic acid (IAA), abscisic acid (ABA) and polyamine (PA) tissue concentrations and antioxidant potential of 7-day-old Raphanus sativus L. cv. 'Pusa chetki' seedlings grown under Cu stress were investigated. EBL treatment alone or in combination with Cu enhanced free and bound IAA titers when compared with the metal alone. Modest increases in free and bound ABA contents were observed for EBL treatment alone. However, the combination of EBL with Cu caused major increases in both forms of ABA, over Cu alone. Among the PAs analyzed, only putrescine and cadaverine concentrations were enhanced by EBL treatment alone. By contrast, a significant decline in putrescine and spermine contents was found in seedlings treated with EBL plus Cu. EBL treatments alone or in combination with Cu enhanced activities of guaiacol peroxidase (EC1.11.1.7), catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) and glutathione reductase (EC 1.6.4.2) and protein contents in comparison with metal and control treatments. A major decrease in malondialdehyde content was also recorded for EBL treatments with or without Cu. An increase in phytochelatin content was also observed in seedlings treated with EBL alone or in combination with Cu. Major improvement in radical scavenging activities, as attested by the antioxidant activity assay using DPPH (1,1-diphenylpicrylhydrazyl), and elevated deoxyribose and reducing powers, along with increased contents of ascorbic acid, total phenols and proline, also suggest a major influence of EBL application in mitigating copper-induced oxidative stress in radish seedlings. Copyright © Physiologia Plantarum 2010.

  15. Antioxidant activity of pea protein hydrolysates produced by batch fermentation with lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Stanisavljević Nemanja S.

    2015-01-01

    Full Text Available Nine Lactobacillus strains known for surface proteinase activity were chosen from our collection and tested for their ability to grow in pea seed protein-based medium, and to hydrolyze purified pea proteins in order to produce peptides with antioxidant (AO activity. Two strains, Lactobacillus rhamnosus BGT10 and Lactobacillus zeae LMG17315, exhibited strong proteolytic activity against pea proteins. The AO activity of the pea hydrolysate fraction, MW <10 kDa, obtained by the fermentation of purified pea proteins with Lactobacillus rhamnosus BGT10, was tested by standard spectrophotometric assays (DPPH, ABTS, Fe3+-reducing capacity and the recently developed direct current (DC polarographic assay. The low molecular weight fraction of the obtained hydrolysate was separated using ion exchange chromatography, while the AO activity of eluted fractions was determined by means of a sensitive DC polarographic assay without previous concentration of samples. Results revealed that the fraction present in low abundance that contained basic peptides possessed the highest antioxidant activity. Based on the obtained results, it can be concluded that Lactobacillus rhamnosus BGT10 should be further investigated as a candidate strain for large-scale production of bioactive peptides from legume proteins. [Projekat Ministartsva nauke Republike Srbije, br. 173005 i br. 173026

  16. Lactic acid bacterial fermentation on the production of functional antioxidant herbal Anoectochilus formosanus Hayata.

    Science.gov (United States)

    Ng, Chang-Chai; Wang, Chung-Yi; Wang, Ya-Ping; Tzeng, Wen-Sheng; Shyu, Yuan-Tay

    2011-03-01

    This study evaluated a novel use of the traditional Asian herb Anoectochilus formosanus. This plant is a traditional food item, generally used for the treatment of liver disorder, hepatitis, hypertension, diabetes, cardiovascular disorder, etc. In this study, the root, stem, and leaf of A. formosanus were used as substrates for lactic fermentation. The fermentation products were analyzed for their total antioxidant activity, reducing power, and scavenging effect on superoxide anion radicals and hydrogen peroxide. The pH of the fermentation medium reached its lowest value, 3.5, at the 35th hour of fermentation. Antioxidant activity of A. formosanus was found to be 61-78%. Lactobacillus longum-led fermentation exhibited the greatest reducing power with an average of 0.3. The products of fermentations utilizing the three plant parts as substrates exhibited a similar scavenging activity (27-30%) on free radicals. This study may suggest a novel use of lactic-fermenting A. formosanus in the production of functional food.

  17. Influence of Amino Acid Compositions and Peptide Profiles on Antioxidant Capacities of Two Protein Hydrolysates from Skipjack Tuna (Katsuwonus pelamis Dark Muscle

    Directory of Open Access Journals (Sweden)

    Chang-Feng Chi

    2015-04-01

    Full Text Available Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis dark muscle was investigated. Dark muscles from skipjack tuna were hydrolyzed using five separate proteases, including pepsin, trypsin, Neutrase, papain and Alcalase. Two hydrolysates, ATH and NTH, prepared using Alcalase and Neutrase, respectively, showed the strongest antioxidant capacities and were further fractionated using ultrafiltration and gel filtration chromatography. Two fractions, Fr.A3 and Fr.B2, isolated from ATH and NTH, respectively, showed strong radical scavenging activities toward 2,2-diphenyl-1-picrylhydrazyl radicals (EC50 1.08% ± 0.08% and 0.98% ± 0.07%, hydroxyl radicals (EC50 0.22% ± 0.03% and 0.48% ± 0.05%, and superoxide anion radicals (EC50 1.31% ± 0.11% and 1.56% ± 1.03% and effectively inhibited lipid peroxidation. Eighteen peptides from Fr.A3 and 13 peptides from Fr.B2 were isolated by reversed-phase high performance liquid chromatography, and their amino acid sequences were determined. The elevated antioxidant activity of Fr.A3 might be due to its high content of hydrophobic and aromatic amino acid residues (181.1 and 469.9 residues/1000 residues, respectively, small molecular sizes (3–6 peptides, low molecular weights (524.78 kDa, and amino acid sequences (antioxidant score 6.11. This study confirmed that a smaller molecular size, the presence of hydrophobic and aromatic amino acid residues, and the amino acid sequences were the key factors that determined the antioxidant activities of the proteins, hydrolysates and peptides. The results also demonstrated that the derived hydrolysates and fractions from skipjack tuna (K. pelamis dark muscles could prevent oxidative reactions and might be useful for food preservation and medicinal purposes.

  18. Antioxidative activity of 3,4-dihydroxyplienylacetic acid and α-tocopherol on the triglyceride matrix of olive oil. Effect of acidity.

    Directory of Open Access Journals (Sweden)

    Blekas, Georgios

    1998-02-01

    Full Text Available Minor constituents of virgin olive oil are important for the remarkable stability of the oil in autoxidation, but the exact role and the extent to which each antioxidant factor contributes to the total antioxidant effect has not been thoroughly Investigated. In this study the role of α-tocopherol is explored at various acidity levels and at low concentrations of ortho-diphenols. A substrate of olive oil triacylglycerols devoid of prooxidant or antioxidant constituents was prepared from refined olive oil by column chromatography To tills substrate, slightly oxidized, the additives (oleic acid, 3,4-dihydroxyphenylacetic acid and α-tocopherol were added and the stability was assessed by periodical measurements of peroxide values. It was found that free fatty adds reduce mainly the protective activity of the ortho-diphenol. It is also concluded that α-tocopherol has a synergistic effect with the ortho-diphenols and contributes significantly to the retardation of peroxide formation. This is Important for oils poor in ortho-diphenols.

    Los constituyentes menores del aceite de oliva virgen son importantes para la notable estabilidad del aceite en la autooxidación, pero el papel exacto y el alcance con que cada factor antioxidante contribuye al efecto antioxidante total no ha sido investigado a fondo. En este estudio el papel del α-tocoferol es examinado a varios niveles de acidez y a baja concentraciones de o-difenoles. Un sustrato de triacilgliceroles de aceite de oliva desprovisto de constituyentes prooxidantes o antioxidantes fue preparado a partir de aceite de oliva refinado mediante cromatografía en columna. A este sustrato, un poco oxidado, los aditivos (ácido oleico, ácido 3,4-dihidroxifenilacético y α-tocoferol fueron añadidos y la estabilidad fue calculada mediante medidas periódicas del índice de peróxido. Se encontró que los ácidos grasos libres reducen principalmente la actividad protectora de los orto-difenoles. Se

  19. The antioxidant role of xanthurenic acid in the Aedes aegypti midgut during digestion of a blood meal.

    Directory of Open Access Journals (Sweden)

    Vitor L A Lima

    Full Text Available In the midgut of the mosquito Aedes aegypti, a vector of dengue and yellow fever, an intense release of heme and iron takes place during the digestion of a blood meal. Here, we demonstrated via chromatography, light absorption and mass spectrometry that xanthurenic acid (XA, a product of the oxidative metabolism of tryptophan, is produced in the digestive apparatus after the ingestion of a blood meal and reaches milimolar levels after 24 h, the period of maximal digestive activity. XA formation does not occur in the White Eye (WE strain, which lacks kynurenine hydroxylase and accumulates kynurenic acid. The formation of XA can be diminished by feeding the insect with 3,4-dimethoxy-N-[4-(3-nitrophenylthiazol-2-yl] benzenesulfonamide (Ro-61-8048, an inhibitor of XA biosynthesis. Moreover, XA inhibits the phospholipid oxidation induced by heme or iron. A major fraction of this antioxidant activity is due to the capacity of XA to bind both heme and iron, which occurs at a slightly alkaline pH (7.5-8.0, a condition found in the insect midgut. The midgut epithelial cells of the WE mosquito has a marked increase in occurrence of cell death, which is reversed to levels similar to the wild type mosquitoes by feeding the insects with blood supplemented with XA, confirming the protective role of this molecule. Collectively, these results suggest a new role for XA as a heme and iron chelator that provides protection as an antioxidant and may help these animals adapt to a blood feeding habit.

  20. Effect of dietary antioxidant and increasing corn oil inclusion on milk fat yield and fatty acid composition in dairy cattle.

    Science.gov (United States)

    Boerman, J P; Preseault, C L; Lock, A L

    2014-12-01

    The objective of this study was to examine the effect of a dietary synthetic antioxidant on feed intake, yields of milk and milk components and milk fatty acids (FA), in combination with increasing concentrations of dietary corn oil to provide increasing rumen unsaturated fatty acid load (RUFAL) challenges. Twenty-six Holstein cows (177 ± 57 d in milk; mean ± standard deviation) were assigned to treatment in a randomized complete block design. Treatments were a control diet (CON; n=13 cows) or the same diet supplemented with a synthetic antioxidant (AOX; 6.1g/d; dry blend of ethoxyquin and propyl gallate, Novus International Inc., St. Charles, MO; n=13 cows). In period 1 (21 d), no supplemental corn oil was fed; in periods 2, 3, and 4 (14 d each), corn oil was supplemented at 0.7, 1.4, and 2.8% of the diet [dry matter (DM) basis] to incrementally increase RUFAL. For all variables measured, no significant interactions were detected between treatment and period, indicating no differences between the CON and AOX treatments at all levels of oil inclusion. Intake of DM was lower for AOX compared with CON but AOX had no effect on milk yield or milk fat concentration and yield. Milk protein yield and feed efficiency (energy-corrected milk/DM intake) tended to be greater for AOX compared with CON. Increasing dietary corn oil concentration (RUFAL) decreased DM intake, milk yield, milk fat concentration and yield, and feed efficiency. The AOX treatment increased the concentration and yield of 16-carbon milk FA, with no effect on de novo (16 carbon) milk FA. Milk FA concentration of trans-10 C18:1, trans-10,cis-12 C18:2, and trans-9,cis-11 C18:2 were unaffected by AOX but increased with increasing RUFAL. In conclusion, supplementation with AOX did not overcome the dietary-induced milk fat depression caused by increased RUFAL.

  1. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress

    Directory of Open Access Journals (Sweden)

    Nafees Khan

    2010-01-01

    Full Text Available Salicylic acid (SA, a naturally occurring plant hormone, is an important signal molecule known to have diverse effects on biotic and abiotic stress tolerance. Its growth-promoting effect on various plants has been shown, but the information on the response of mungbean, an important leguminous plant, to SA application under salt stress is limited. Mungbean (Vigna radiata L. cultivar Pusa Vishal plants grown with 50 mM NaCl were sprayed with 0.1, 0.5, or 1.0 mM SA and basic physiological processes were studied to substantiate our understanding of their role in tolerance to salinity-induced oxidative stress and how much such processes are induced by SA application. Treatment of plants with 0.5 mM SA resulted in a maximum decrease in the content of Na+, Cl-, H2O2, and thiobarbituric acid reactive substances (TBARS, and electrolyte leakage under saline conditions compared to the control. In contrast, this treatment increased N, P, K, and Ca content, activity of antioxidant enzymes, glutathione content, photosynthesis, and yield maximally under nonsaline and saline conditions. The application of higher concentration of SA (1.0 mM either proved inhibitory or was of no additional benefit. It was concluded that 0.5 mM SA alleviates salinity-inhibited photosynthesis and yield through a decrease in Na+, Cl-, H2O2, and TBARS content, and electrolyte leakage, and an increase in N, P, K, and Ca content, activity of antioxidant enzymes, and glutathione content.

  2. Beneficial role of ascorbic and folic acids antioxidants against thyroxin-induced testicular dysfunction in hyperthyroid rats.

    Science.gov (United States)

    Beltagy, Doha M; Mohamed, Tarek M; El Said, Ahmed S; Tousson, Ehab

    2016-09-01

    Thyroid hormones play a fundamental role in the regulation of metabolism of almost all mammalian tissue including the reproductive system. Hyperthyroidism in early life may cause delayed sexual maturation, although physical development is normal and skeletal growth may be accelerated. Hyperthyroidism after puberty influences reproductive functions and increases testosterone level. The aim of this work is to study the effect of induced hyperthyroidism by L-thyroxine sodium administration on the testis of rats and to evaluate the ameliorating role of different antioxidants as ascorbic acid and folic acid on the hyperthyroid state via the assessment of different biochemical markers, histopathological and immunochemical sections. DNA analysis of the D1 deiodinase was performed to determine genetic mutation due to hyperthyroidism. The results showed partially disrupted in the measured biochemical parameters and spermatogenesis in hyperthyroid rats. Post-administration of both folic and ascorbic acids together in hyperthyroid rats showed the best ameliorating effects on the thyroid hormones, testosterone, testicular GGT and ALP, and all oxidative stress markers. There is no genetic mutations that occurred in D1 deiodinase due to hyperthyroidism. These findings were indicated by the proliferating cell nuclear antigen (PCNA) studies of testes.

  3. The effect of extrusion conditions on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng

    Science.gov (United States)

    Gui, Ying; Ryu, Gi Hyung

    2013-01-01

    This study was conducted to investigate the effect of extrusion conditions (moisture content 20% and 30%, screw speed 200 and 250 rpm, barrel temperature 115℃ and 130℃) on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng (KRG). Extruded KRGs showed relatively higher amounts of acidic polysaccharide (6.80% to 9.34%) than nonextruded KRG (4.34%). Increased barrel temperature and screw speed significantly increased the content of acidic polysaccharide. The major ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg2s, Rg3s, Rh1, and Rg3r) of KRG increased through extrusion, while the ginsenoside (Rg1) decreased. The EX8 (moisture 30%, screw speed 250 rpm, and temperature 130℃) had more total phenolics and had a better scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals than those of extruded KRG samples. The extrusion cooking showed a significant increase (6.8% to 20.9%) in reducing power. Increased barrel temperature significantly increased the values of reducing power, the highest value was 1.152 obtained from EX4 (feed moisture 20%, screw speed 250 rpm, and temperature 130℃). These results suggest that extrusion conditions can be optimized to retain the health promoting compounds in KRG products. PMID:23717175

  4. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    Directory of Open Access Journals (Sweden)

    Yuzhen Chen

    Full Text Available Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p levels of theory, and quantitative structure-activity relationship (QSAR modeling. Three main working mechanisms (HAT, SETPT and SPLET are explored in four micro-environments (gas-phase, benzene, water and ethanol. Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.

  5. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    Science.gov (United States)

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.

  6. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans.

    Science.gov (United States)

    Liang, Ningjian; Lu, Xiaonan; Hu, Yaxi; Kitts, David D

    2016-01-27

    The chlorogenic acid isomer profile and antioxidant activity of both green and roasted coffee beans are reported herein using ATR-FTIR spectroscopy combined with chemometric analyses. High-performance liquid chromatography (HPLC) quantified different chlorogenic acid isomer contents for reference, whereas ORAC, ABTS, and DPPH were used to determine the antioxidant activity of the same coffee bean extracts. FTIR spectral data and reference data of 42 coffee bean samples were processed to build optimized PLSR models, and 18 samples were used for external validation of constructed PLSR models. In total, six PLSR models were constructed for six chlorogenic acid isomers to predict content, with three PLSR models constructed to forecast the free radical scavenging activities, obtained using different chemical assays. In conclusion, FTIR spectroscopy, coupled with PLSR, serves as a reliable, nondestructive, and rapid analytical method to quantify chlorogenic acids and to assess different free radical-scavenging capacities in coffee beans.

  7. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens

    NARCIS (Netherlands)

    Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T.

    2013-01-01

    This trial was conducted to evaluate the effects of dietary supplementation of phytogenic product containing an equal mixture of thymol and carvacrol at 4 levels (0, 60, 100, and 200 mg/kg of diet) on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, an

  8. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan

    Science.gov (United States)

    Mulberry trees are distributed throughout Pakistan. Besides the use of mulberry in forage and food for animals, it is also used as herbal medicine. The ojbective of this study was to determine phenolic acids profile, sugar content, and the antioxidant activity of the leaves and fruits of three mulb...

  9. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens

    NARCIS (Netherlands)

    Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T.

    2013-01-01

    This trial was conducted to evaluate the effects of dietary supplementation of phytogenic product containing an equal mixture of thymol and carvacrol at 4 levels (0, 60, 100, and 200 mg/kg of diet) on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities,

  10. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens

    NARCIS (Netherlands)

    Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T.

    2013-01-01

    This trial was conducted to evaluate the effects of dietary supplementation of phytogenic product containing an equal mixture of thymol and carvacrol at 4 levels (0, 60, 100, and 200 mg/kg of diet) on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, an

  11. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents A beta(25-35)-induced reduction in BPRP in PC12 cells

    NARCIS (Netherlands)

    Lin, Yan-Hua; Liu, Ai-Hua; Wu, Hong-Li; Westenbroek, Christel; Song, Qian-Liu; Yu, He-Ming; Ter Horst, Gert J.; Li, Xue-Jun; Li, Xiang-yi

    2006-01-01

    Several lines of evidence support that beta-amyloid (A beta)-induced neurotoxicity is mediated through the generation of reactive oxygen species (ROS) and elevation of intracellular calcium. Salvianolic acid B (Sal B), the major and most active anti-oxidant from Salvia miltiorrhiza. protects diverse

  12. Prophylactic antioxidant potential of gallic Acid in murine model of sepsis.

    Science.gov (United States)

    Maurya, Harikesh; Mangal, Vaishali; Gandhi, Sanjay; Prabhu, Kathiresan; Ponnudurai, Kathiresan

    2014-01-01

    Present study is to investigate the effect of Gallic acid pretreatment on survival of septic animals and oxidative stress in different organs like lungs, liver, kidney, spleen, and vascular dysfunction of mice. Sepsis was induced by cecal ligation and puncture (CLP) in healthy adult male albino mice (25-30 g) and was divided into 3 groups each consisting of 6 animals, that is, sham-operated (SO group (Group I), SO + sepsis (Group II), and Gallic acid + sepsis (Group III)). Group III animals were pretreated with Gallic acid at the dose rate of 20 mg/kg body weight for 2 days before induction of sepsis. Animals were sacrificed on 8th day and the tissue samples were obtained for further investigation on lipid peroxidation (LPO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GSH). Gallic acid pretreatment significant (P Gallic acid pretreated mice showed significant improvement in SOD activity of kidney and spleen when compared to septic mice. Finally, the beneficial effects of Gallic acid pretreatment in sepsis are evident from the observations that Gallic acid partially restored SOD and catalase activity and completely reversed lipid peroxidation. Further studies are required to find out the possible mechanisms underlying the beneficial effects of Gallic acid on large population.

  13. Characterisation of antioxidant and antiproliferative acidic polysaccharides from Chinese wolfberry fruits

    NARCIS (Netherlands)

    He, N.W.; Yang, X.B.; Jiao, Y.D.; Tian, L.; Zhao, Y.

    2012-01-01

    Wolfberry fruit polysaccharides (WFPs) were isolated by hot-water extraction and ethanol precipitation. With HPLC analysis, WFPs were for the first time identified as acidic polysaccharides with galacturonic acid being the main component monosaccharide (24.9%), followed by galactose (21.3%), arabino

  14. Characterisation of antioxidant and antiproliferative acidic polysaccharides from Chinese wolfberry fruits

    NARCIS (Netherlands)

    He, N.W.; Yang, X.B.; Jiao, Y.D.; Tian, L.; Zhao, Y.

    2012-01-01

    Wolfberry fruit polysaccharides (WFPs) were isolated by hot-water extraction and ethanol precipitation. With HPLC analysis, WFPs were for the first time identified as acidic polysaccharides with galacturonic acid being the main component monosaccharide (24.9%), followed by galactose (21.3%),

  15. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach.

    Science.gov (United States)

    Poljsak, B; Gazdag, Z; Jenko-Brinovec, S; Fujs, S; Pesti, M; Bélagyi, J; Plesnicar, S; Raspor, P

    2005-01-01

    The effect of antioxidant ascorbic acid (vitamin C) pretreatment on chromium(VI)-induced damage was investigated using the yeast Saccharomyces cerevisiae as a model organism. The objective of this study was to pretreat yeast cells with the antioxidant ascorbic acid in an effort to increase cell tolerance against reactive chromium intermediates and reactive oxygen species formed during chromium(VI) reduction. Intracellular oxidation was estimated using the fluorescence indicators dihidro-2,7-dichlorofluorescein, dihydroethidium and dihydrorhodamine 123. The role of ascorbic acid pretreatment on chromium(VI) toxicity was determined by measuring mitotic gene conversion, reverse mutations, 8-OHdG, hydroxyl radical, superoxide anion and chromium(V) formation. The chromium content in the biomass was determined by flame atomic absorption spectrometry. In the absence of chromium, ascorbic acid effectively protected the cells against endogenous reactive oxygen species formed during normal cellular metabolism. In vitro measurements employing EPR and the results of supercoiled DNA cleavage revealed that the pro-oxidative action of ascorbic acid during Cr(VI) reduction was concentration-dependent and that harmful hydroxyl radical and Cr(V) had formed following Cr(VI) reduction. However, the in vivo results highlighted the important role of increased cytosol reduction capacity related to modification of Cr(V) formation, increased chromium accumulation, better scavenging ability of superoxide anions and hydrogen peroxide, and consequently decreased cytotoxicity and genotoxicity in ascorbic acid pretreated cells. Ascorbic acid influenced Cr(VI) toxicity both as a reducing agent, by decreasing Cr(V) persistence, and as an antioxidant, by decreasing intracellular superoxide anion and hydrogen peroxide formation and by quenching free radicals formed during Cr(VI) to Cr(III) reduction. Increased 8-OHdG and decreased reduced glutathione in ascorbic acid-treated cells might induce an

  16. Effect of abscisic acid on biochemical constituents, enzymatic and non enzymatic antioxidant status of lettuce (Lactuca sativa L. under varied irrigation regimes

    Directory of Open Access Journals (Sweden)

    Mohamed A. Al Muhairi

    2015-12-01

    Full Text Available Economically important vegetable crop lettuce (Lactuca sativa L. of family Asteraceae was selected for the present investigation. It is being cultivated in UAE due to its commercial importance. In lettuce cultivation, the major problem is the requirement of large quantities of irrigation water. The present study was aimed to reduce the water consumption of lettuce cultivation; for that, a varied irrigation regime was used with the application of abscisic acid (ABA. The parameters studied were biochemical constituents, antioxidant potential and antioxidant enzymes’ activities in lettuce plants under drought stress and its response to ABA under stress. Drought stress caused an increase in the biochemical constituents like proline and amino acid contents when compared with control and also increased under individual ABA treatments and treatments under drought stress. The non-enzymatic antioxidant molecules like ascorbate and α-tocopherol showed significant increase under drought condition in lettuce. ABA slightly reduced these contents. The antioxidant enzymes like superoxide dismutase, catalase and peroxidase showed significant increase under drought condition and ABA caused significant enhancement in these antioxidant enzymes under drought stress and also in unstressed conditions, thereby protecting the plants from the deleterious effects of drought stress. From the results of this investigation, it can be concluded that ABA in 10 mg g−1 can be used as a potential tool to minimise the drought stress effects in lettuce cultivation.

  17. Prophylactic Antioxidant Potential of Gallic Acid in Murine Model of Sepsis

    Directory of Open Access Journals (Sweden)

    Harikesh Maurya

    2014-01-01

    healthy adult male albino mice (25–30 g and was divided into 3 groups each consisting of 6 animals, that is, sham-operated (SO group (Group I, SO + sepsis (Group II, and Gallic acid + sepsis (Group III. Group III animals were pretreated with Gallic acid at the dose rate of 20 mg/kg body weight for 2 days before induction of sepsis. Animals were sacrificed on 8th day and the tissue samples were obtained for further investigation on lipid peroxidation (LPO, malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione reductase (GSH. Gallic acid pretreatment significant (P<0.05 reduces kidney, spleen, liver, and lungs’ malondialdehyde level in septic mice. However, it fails to improve reduced glutathione level in all given organs, while, Gallic acid pretreated mice showed significant improvement in SOD activity of kidney and spleen when compared to septic mice. Finally, the beneficial effects of Gallic acid pretreatment in sepsis are evident from the observations that Gallic acid partially restored SOD and catalase activity and completely reversed lipid peroxidation. Further studies are required to find out the possible mechanisms underlying the beneficial effects of Gallic acid on large population.

  18. Effects of two antioxidants; α-lipoic acid and fisetin against diabetic cataract in mice.

    Science.gov (United States)

    Kan, Emrah; Kiliçkan, Elif; Ayar, Ahmet; Çolak, Ramis

    2015-02-01

    The purpose of this study was to determine whether α-lipoic acid and fisetin have protective effects against cataract in a streptozotocin-induced experimental cataract model. Twenty-eight male BALB/C mice were made diabetic by the intraperitoneal administration of streptozotocin (200 mg/kg). Three weeks after induction of diabetes, mice were divided randomly into 4 groups in which each group contained 7 mice; fisetin-treated group (group 1), α-lipoic acid-treated group (group 2), fisetin placebo group (group 3), α-lipoic acid placebo group (group 4). Fisetin and α-lipoic acid were administered intraperitoneally weekly for 5 weeks. Cataract development was assessed at the end of 8 weeks by slit lamp examination, and cataract formation was graded using a scale. All groups developed at least grade 1 cataract formation. In the fisetin-treated group, the cataract stages were significantly lower than in the placebo group (p = 0.02). In the α-lipoic acid-treated group, the cataract stages were lower than in the placebo group but it did not reach to a significant value. Both fisetin and α-lipoic acid had a protective effect on cataract development in a streptozotocin-induced experimental cataract model. The protective effect of fisetin appears as though more effective than α-lipoic acid.

  19. Test for antioxidant ability by scavenging long-lived mutagenic radicals in mammalian cells and by blood test with intentional radicals: an application of gallic acid

    Science.gov (United States)

    Kumagai, Jun; Kawaura, Tomoko; Miyazaki, Tetsuo; Prost, Michel; Prost, Emmanuelle; Watanabe, Masami; Quetin-Leclercq, Joëlle

    2003-01-01

    Antioxidant ability of gallic acid (GA) are determined both by electron spin resonance measurement of long-lived radicals produced in γ-ray irradiated Syrian golden hamster embryo cells with GA and by hemolysis measurement with GA when blood cells are submitted to radicals. Scavenging properties of GA are determined by the reaction rate constant with long-lived mutagenic radicals in the cells while the blood test allows to analyze the global effects of this compound: radical scavenger+metal ion chelator+regeneration of intra- and extra-cellular antioxidant.

  20. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and rosmarinic acid from perilla leaves using response surface methodology

    Directory of Open Access Journals (Sweden)

    Hui-Zhen LI

    Full Text Available Abstract Response surface methodology (RSM was used to optimize ultrasound-assisted extraction (UAE of functional components from perilla leaves. The factors investigated were ethanol concentration, extraction temperature, and extraction time. The results revealed that ethanol concentration had significant effects on all extraction parameters. Based on the RSM results, the optimal conditions were an ethanol concentration of 56%, a UAE temperature of 54 °C, and a UAE time of 55 min. Under these conditions, the experimental TPC (total phenolic content, RA (rosmarinic acid, FRAP (ferric reducing antioxidant power and DPPH (1,1-diphenyl-2-picrylhydrazyl values were 48.85 mg GAE/g DW (mg gallic acid equivalent /g of dry weight, 31.02 mg/g DW, 85.55 μmol Fe2+/g DW and 73.35%, respectively. The experimental values were in agreement with those predicted by RSM models, confirming suitability of the model employed and the success of RSM for optimization of the extraction conditions.

  1. Growth and antioxidant system under drought stress in Chickpea (Cicer arietinum L. as sustained by salicylic acid

    Directory of Open Access Journals (Sweden)

    B.K. Sarma

    2011-12-01

    Full Text Available Drought is one of the major factors limiting chickpea production in arid and semi arid regions. There is meagre information available regarding genotypic variation for drought tolerance in chickpea genotypes. Present investigation was carried out to find out the influence of salicylic acid (SA on drought tolerance in four chickpea genotypes. Reduction in relative injury was observed in plants treated with SA @1.5 mM as compared to control seedlings. Relationship between relative water content (RWC, membrane permeability (MP, ascorbic acid (AsA, proline, lipid peroxidation (LPO, hydrogen peroxide (H2O2, catalase (CAT, peroxidase (POX, superoxide dismutase (SOD, ascorbate peroxidase (APX was determined in order to find out whether these parameters can be used as selection criteria for drought tolerance in this crop. Results indicate wide variation in tolerance to drought stress amongst chickpea cultivars at both the critical stages i.e. pre- and post-anthesis. On the basis of growth and antioxidant activity better genotypes Tyson and ICC-4958 appear to be adapted to drought stress tolerance. Early drought stress (pre-anthesis drought was found to be more damaging than the late drought stress (post- anthesis drought.

  2. Alleviation of alcoholic liver injury by betaine involves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism.

    Science.gov (United States)

    Jung, Young Suk; Kim, Sun Ju; Kwon, Do Young; Ahn, Chul Won; Kim, Young Soon; Choi, Dal Woong; Kim, Young Chul

    2013-12-01

    Previous studies suggested that the hepatoprotective activity of betaine is associated with its effects on sulfur amino acid metabolism. We examined the mechanism by which betaine prevents the progression of alcoholic liver injury and its therapeutic potential. Rats received a liquid ethanol diet for 6 wk. Ethanol consumption elevated serum triglyceride and TNFα levels, alanine aminotransferase and aspartate aminotransferase activities, and lipid accumulation in liver. The oxyradical scavenging capacity of liver was reduced, and expression of CD14, TNFα, COX-2, and iNOS mRNAs was induced markedly. These ethanol-induced changes were all inhibited effectively by betaine supplementation. Hepatic S-adenosylmethionine, cysteine, and glutathione levels, reduced in the ethanol-fed rats, were increased by betaine supplementation. Methionine adenosyltransferase and cystathionine γ-lyase were induced, but cysteine dioxygenase was down-regulated, which appeared to account for the increment in cysteine availability for glutathione synthesis in the rats supplemented with betaine. Betaine supplementation for the final 2 wk of ethanol intake resulted in a similar degree of hepatoprotection, revealing its potential therapeutic value in alcoholic liver. It is concluded that the protective effects of betaine against alcoholic liver injury may be attributed to the fortification of antioxidant defense via improvement of impaired sulfur amino acid metabolism.

  3. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties.

    Science.gov (United States)

    Ghelichi, Sakhi; Shabanpour, Bahareh; Pourashouri, Parastoo; Hajfathalian, Mona; Jacobsen, Charlotte

    2017-08-03

    Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees of hydrolysis (DH). Gas chromatography (GC) of fatty acid methyl esters (FAMEs) revealed that common carp roe oil contained high level of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry (HPLC-MS) indicated that enzymatic hydrolysis of defatted roe yielded higher content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited antioxidant activity both in vitro and in 5% roe oil-in-water emulsions and inhibited the growth of certain bacterial strains. Common carp roe could be a promising source of unsaturated fatty acids and functional bioactive agents. Unsaturated fatty acid-rich oil extracted from common carp roe can be delivered into food systems by roe oil-in-water emulsions fortified by functional, antioxidant, and antibacterial hydrolysates from the defatted roe. This article is protected by copyright. All rights reserved.

  4. Effect of turmeric powder (Curcuma longa L. and ascorbic acid on antioxidant capacity and oxidative status in rabbit burgers after cooking

    Directory of Open Access Journals (Sweden)

    S. Mancini

    2016-06-01

    Full Text Available The aim of this study was to evaluate the effects of turmeric powder and ascorbic acid on lipid oxidation and antioxidant capacity in cooked rabbit burgers. The burgers were derived from 3 different formulations (C, control, with no additives; Tu with 3.5% of turmeric powder and AA with 0.1% of ascorbic acid and were stored at 4°C for 0 and 7 d and cooked. The lipid oxidation (thiobarbituric acid reactive substances [TBARS] and antioxidant capacity (2,2-azinobis-[3 ethylbenzothiazoline-6-sulfonic acid] {ABTS}, 1,1-diphenyl-2-pircydrazyl [DPPH] and ferric reducing ability [FRAP] were evaluated. A significant interaction between storage time and formulation (P<0.001 was observed for DPPH, FRAP and TBARS in cooked burgers. At day 0 and day 7, the DPPH value was higher in Tu and AA compared to C burgers. At day 0, C showed a lower level of FRAP than the Tu and AA burgers. At day 7, the FRAP values tended to decrease but remained significantly higher in Tu and AA compared to C burgers. Lipid oxidation at day 0 in Tu and AA showed lower TBARS values compared to C burgers. The addition of 3.5% turmeric powder in rabbit burgers exerts an antioxidant effect during storage and it seems more effective in controlling lipid oxidation than ascorbic acid after cooking.

  5. Comparative analysis of caffeoylquinic acids and lignans in roots and seeds among various burdock (Arctium lappa) genotypes with high antioxidant activity.

    Science.gov (United States)

    Liu, Jingyi; Cai, Yi-Zhong; Wong, Ricky Ngok Shun; Lee, Calvin Kai-Fai; Tang, Sydney Chi Wai; Sze, Stephen Cho Wing; Tong, Yao; Zhang, Yanbo

    2012-04-25

    Caffeoylquinic acids and lignans in the crude extracts of both roots and seeds from different burdock ( Arctium lappa L.) genotypes were simultaneously characterized and systematically compared by LC-MS and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS), and their antioxidant activities were also investigated. A total of 14 lignans were identified in burdock seeds and 12 caffeoylquinic acids in burdock roots. High levels of caffeoylquinic acids were also detected in burdock seeds, but only trace amounts of lignans were found in burdock roots. Burdock seeds contained higher concentrations of lignans and caffeoylquinic acids than burdock roots. Quantitative analysis of caffeoylquinic acids and lignans in roots and seeds of various burdock genotypes was reported for the first time. Great variations in contents of both individual and total phenolic compounds as well as antioxidant activities were found among different genotypes. Burdock as a root vegetable or medicinal plants possessed considerably stronger antioxidant activity than common vegetables and fruits.

  6. Jasmonic acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity and Gene Expression in Glycine max under Nickel Toxicity

    Directory of Open Access Journals (Sweden)

    Geetika eSirhindi

    2016-05-01

    Full Text Available In present study, we evaluated the effects of Jasmonic acid (JA on physio-biochemical attributes, antioxidant enzyme activity and gene expression in soybean (Glycine max L. plants subjected to nickel (Ni stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23%, 38.31% and 39.21% respectively over the control. However, application of JA was found to improve the chlorophyll content and growth of Ni-stressed seedlings in terms of root and shoot length. Plants supplemented with Jasmonate restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein and total soluble sugar (TSS by 33.09%, 51.26%, 22.58% and 49.15% respectively under Ni toxicity as compared to control. Supplementation of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2 by 68.49%, lipid peroxidation (MDA by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and ascorbate peroxidase (APX increases by 40.04%, 28.22%, 48.53% and 56.79% respectively over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62%, CAT by 15.25%, POD by 58.33% and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes and osmoprotectants, antioxidant enzyme activity and gene expression.

  7. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity.

    Science.gov (United States)

    Wang, Jian; Lv, Mengting; Islam, Faisal; Gill, Rafaqat A; Yang, Chong; Ali, Basharat; Yan, Guijun; Zhou, Weijun

    2016-11-01

    The auxin herbicide quinclorac is widely used for controlling weeds in transplanted and direct-seeded rice fields. However, its phytotoxic responses on rice are still unknown. Therefore, in the present investigation we studied the effects of different concentrations (0, 0.1 and 0.5g/L) of quinclorac herbicide on the physiological and biochemical changes of two rice cultivars (XS 134 and ZJ 88) and further analyzed the ameliorating role of salicylic acid (SA) on quinclorac toxicity in rice plants. The results revealed that exogenous application of SA significantly increased plant biomass and total chlorophyll contents in herbicide stressed plants. The lipid peroxidation and ROS (H2O2, O2(-.), (-)OH) production were significantly increased in roots and leaves of both rice cultivars under quinclorac stress, demonstrating an oxidative burst in rice plants. Whereas, application of SA significantly lowered ROS contents under quinclorac stress. Further, exogenous SA treatment significantly modulated antioxidant enzymes and enhanced GSH concentration in stress plants. Anatomical observations of leaf and root revealed that herbicide affected internal structures, while SA played a vital role in protection from toxic effects. Expression analysis of stress hormone ABA genes (OsABA8oxs, OsNCEDs) revealed that quinclorac application enhanced stress condition in cultivar ZJ 88, while SA treatment downregulated ABA genes more in cultivar XS 134, which correlated with the enhanced tolerance to quinclorac induced oxidative stress in this cultivar. The present study delineated that SA played a critical role under quinclorac stress in both rice cultivars by regulating antioxidant defense system, reducing ROS formation and preventing the degradation of internal cell organelles.

  8. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.

    Science.gov (United States)

    Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying

    2015-12-01

    Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis.

  9. Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress.

    Science.gov (United States)

    Sallah-Ud-Din, Rasham; Farid, Mujahid; Saeed, Rashid; Ali, Shafaqat; Rizwan, Muhammad; Tauqeer, Hafiz Muhammad; Bukhari, Syed Asad Hussain

    2017-07-01

    Phytoextraction is a cost-effective and eco-friendly technique for the removal of pollutants, mainly heavy metal(loids) especially from polluted water and metal-contaminated soils. The phytoextraction of heavy metals is, in general, limited due to the low availability of heavy metals in the growth medium. Organic chelators can help to improve the phytoextraction by increasing metal mobility and solubility in the growth medium. The present research was carried out to examine the possibility of citric acid (CA) in improving chromium (Cr) phytoextraction by Lemna minor (duckweed). For this purpose, healthy plants were collected from nearby marsh and grown in hydroponics under controlled conditions. Initial metal contents of both marsh water and plant were measured along with physico-chemical properties of the marsh water. Different concentrations of Cr and CA were applied in the hydroponics in different combinations after defined intervals. Continuous aeration was supplied and pH maintained at 6.5 ± 0.1. Results showed that increasing concentration of Cr significantly decreased the plant biomass, photosynthetic pigments, leaf area, and antioxidant enzyme activities (like catalase, ascorbate peroxidase, superoxide dismutase, peroxidase). Furthermore, Cr stress increased the Cr concentrations, electrolyte leakage, hydrogen peroxide, and malondialdehyde contents in plants. The addition of CA alleviated the Cr-induced toxicity in plants and further enhanced the Cr uptake and its accumulation in L. minor. The addition of CA enhanced the Cr concentration in L. minor by 6.10, 26.5, 20.5, and 20.2% at 0, 10, 100, and 200 μM Cr treatments, respectively, compared to the respective Cr treatments without CA. Overall, the results of the present study showed that CA addition may enhance the Cr accumulation and tolerance in L. minor by enhancing the plant growth and activities of antioxidant enzymes.

  10. Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway.

    Science.gov (United States)

    Dwivedi, Subhash; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-10-01

    Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats. Graphical Abstract ᅟ.

  11. Diabetic nephropathy and antioxidants.

    Science.gov (United States)

    Tavafi, Majid

    2013-01-01

    Oxidative stress has crucial role in pathogenesis of diabetic nephropathy (DN). Despite satisfactory results from antioxidant therapy in rodent, antioxidant therapy showed conflicting results in combat with DN in diabetic patients. Directory of Open Access Journals (DOAJ), Google Scholar,Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Treatment of DN in human are insufficient with rennin angiotensin system (RAS) blockers, so additional agent ought to combine with this management. Meanwhile based on DN pathogenesis and evidences in experimental and human researches, the antioxidants are the best candidate. New multi-property antioxidants may be improved human DN that show high power antioxidant capacity, long half-life time, high permeability to mitochondrion, improve body antioxidants enzymes activity and anti-inflammatory effects. Based on this review and our studies on diabetic rats, rosmarinic acid a multi-property antioxidant may be useful in DN patients, but of course, needs to be proven in clinical trials studies.

  12. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    Science.gov (United States)

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane.

  13. Prophylactic Antioxidant Potential of Gallic Acid in Murine Model of Sepsis

    OpenAIRE

    Harikesh Maurya; Vaishali Mangal; Sanjay Gandhi; Kathiresan Prabhu; Kathiresan Ponnudurai

    2014-01-01

    Present study is to investigate the effect of Gallic acid pretreatment on survival of septic animals and oxidative stress in different organs like lungs, liver, kidney, spleen, and vascular dysfunction of mice. Sepsis was induced by cecal ligation and puncture (CLP) in healthy adult male albino mice (25–30 g) and was divided into 3 groups each consisting of 6 animals, that is, sham-operated (SO group (Group I), SO + sepsis (Group II), and Gallic acid + sepsis (Group III)). Group III animals w...

  14. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions.

    Science.gov (United States)

    Giordano, Elena; Visioli, Francesco

    2014-01-01

    Several lines of investigation are being developed to assess the impact of polyunsaturated fatty acids, namely those of the omega 3 series, intake on oxidative stress. Keeping in mind that there might be a dose-response relation, in vivo and in vitro data strongly suggest that omega 3 fatty acids might act as anti- rather than pro-oxidant in several cells such as vascular cells, hence diminishing inflammation, oxidative stress, and, in turn, the risk of atherosclerosis and degenerative disorders such as cardiovascular disease. © 2013 Published by Elsevier Ltd.

  15. Storage of Fruits and Vegetables in Refrigerator Increases their Phenolic Acids but Decreases the Total Phenolics, Anthocyanins and Vitamin C with Subsequent Loss of their Antioxidant Capacity

    Science.gov (United States)

    Patel, Nilesh J.; Talati, Jayant G.

    2017-01-01

    It is of paramount importance for consumers, scientists and industrialists to understand how low-temperature storage of food items affects their bioactive compounds and properties. This study evaluated the effects of cold storage on total phenolics (TP), phenolic acids profile (PA), total anthocyanins (TA), total ascorbic acid (Vit. C) and antioxidant activity (AA) of 19 fruits and vegetables, collected from local Indian markets and stored in refrigerator (4 °C) during 15 days. Content of TP was highest in dill and amaranth and decreased (up to 29.67%) with storage. Leafy vegetables (amaranth, dill, onion, fenugreek and spinach) contained higher amounts of the 12 PA revealed by UPLC-UV; ellagic, gallic, sinapic and vanillic acids levels were the highest; chlorogenic acid (ρ = 0.423), syringic acid (ρ = 0.403) and sinapic acid (ρ = 0.452) mostly correlated with TP; and the PA increased during storage. Highest contents of Vit C estimated by AOAC, DCPIP and DNP methods were found in amaranth, dill and pomegranate, and decreased with storage. Pomegranate showed highest TA levels and low-temperature storage did not significantly increase TA, which was the largest contributor of TP in fruits and vegetables (ρ = 0.661). Storage induced a drastic decrease of AA, which mostly correlated with TP (ρ = 0.808, 0.690 and 0.458 for DPPH, ABTS and FRAP assays, respectively). Spearman’s correlation confirmed by principal component analysis demonstrated that dill, pomegranate and amaranth had the highest overall antioxidant capacity, whereas orange juice and carrot showed the lowest. The results provide support for a key-role of TP, followed by Vit. C and TA in antioxidant capacity of fruits and vegetables, which could be interesting dietary sources of natural antioxidants for prevention of diseases caused by oxidative stress. PMID:28737734

  16. Effect of fatty acid profile in vegetable oils and antioxidant supplementation on dairy cattle performance and milk fat depression.

    Science.gov (United States)

    He, M; Armentano, L E

    2011-05-01

    This study was conducted to evaluate the effect of dietary supplementation of unprotected vegetable oils differing in fatty acid profiles with or without a commercial antioxidant (Agrado Plus, Novus International, St. Charles, MO) on dairy cattle performance, milk fatty acid profiles, and milk fat depression. Twenty-four multiparous Holstein cows were blocked by production (high and low) and assigned to Agrado Plus or no Agrado Plus diets as the main plot in this experiment. The 6 cows in each of the fixed effect groups (high with and without Agrado, low with and without Agrado) were then assigned to a 6 × 6 Latin square as a split plot with 21-d periods. The 6 dietary treatments in the split-plot Latin square were no added oil (control), or 5% DM as oil from palm (PO), high-oleic safflower (OSAF), high-linoleic safflower (LSAF), linseed (LNSD), or corn (CO). Added oil replaced corn starch in the total mixed ration. Diets were formulated to have similar crude protein and neutral detergent fiber, and consisted of 41.2% alfalfa silage, 18.3% corn silage, and 40.5% concentrate mix (dry matter basis). Feeding Agrado Plus did not affect milk, milk fat, or milk protein production or milk fatty acid composition in this study. No significant differences were found between oil feeding versus control for dry matter intake, milk yield, and milk protein yield, but oils other than PO significantly decreased milk fat concentration and proportion and yield of milk short- and medium-chain fatty acids (C(<16)). Feeding PO effectively maintained milk fat yield (1.18 kg/d) and concentration (3.44%), whereas the oils rich in linoleic acid (CO and LSAF) significantly decreased milk fat yield (0.98 and 0.86 vs. 1.14 kg/d) and concentration (3.05 and 2.83 vs. 3.41%) compared with control. Similar lactation performance between OSAF and LNSD suggests that oleic and linolenic acids are roughly equal in potency of milk fat depression. Copyright © 2011 American Dairy Science Association

  17. ANTIOXIDANT MUSHROOMS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Aggarwal Preeti

    2012-06-01

    Full Text Available The antioxidant properties of wild mushrooms have been extensively studied and many antioxidant compounds such as phenolic compounds, tocopherols, ascorbic acid, and carotenoids identified. The various antioxidant mechanisms of the mushroom species extracts may be attributed to strong hydrogen-donating ability, metal-chelating ability, and their effectiveness as good scavengers of superoxide and free radicals. This indicates the potential of mushrooms as panacea for many diseases and also reveals a novel potential to fight against tumors in man.

  18. Antioxidant activity and sensory assessment of a rosmarinic acid-enriched extract of Salvia officinalis

    Science.gov (United States)

    An extract of S. officinalis (garden sage) was prepared using supercritical carbon dioxide (SC-CO2) extraction, followed by a Soxhlet hot water extraction. The resulting extract was enriched in polyphenols, including rosmarinic acid (RA), which has shown promising health benefits in animals. The ext...

  19. Lipophilic antioxidants and polyunsaturated fatty acids in lipoprotein classes: distribution and interaction

    DEFF Research Database (Denmark)

    Sunesen, V.H.; Weber, Christine; Hølmer, Gunhild Kofoed

    2001-01-01

    Objective: To study the lipoprotein distribution of supplemented coenzyme Q(10) (CoQ(10)), vitamin E, and polyunsaturated fatty acids (PUFA). Design: Balanced three- period crossover study. Setting: University research unit. Subjects: Eighteen apparently healthy free-living non-smoking volunteers...

  20. Lipophilic antioxidants and polyunsaturated fatty acids in lipoprotein classes: distribution and interaction

    DEFF Research Database (Denmark)

    Sunesen, V.H.; Weber, Christine; Hølmer, Gunhild Kofoed

    2001-01-01

    Objective: To study the lipoprotein distribution of supplemented coenzyme Q(10) (CoQ(10)), vitamin E, and polyunsaturated fatty acids (PUFA). Design: Balanced three- period crossover study. Setting: University research unit. Subjects: Eighteen apparently healthy free-living non-smoking volunteers...

  1. Evaluation of γ- aminobutyric acid, phytate and antioxidant activity of tempeh-like fermented oats (Avena sativa L.) prepared with different filamentous fungi.

    Science.gov (United States)

    Cai, Shengbao; Gao, Fengyi; Zhang, Xudong; Wang, Ou; Wu, Wei; Zhu, Songjie; Zhang, Di; Zhou, Feng; Ji, Baoping

    2014-10-01

    Tempeh is a popular traditional fermented food in Asia. Many tempeh-like foods are made from cereal grains. However, the information of γ-aminobutyric acid (GABA) accumulation in those tempeh-like cereal grains during fermentation is lacking. Meanwhile, little information is available on the anti-nutrient contents and antioxidant activity of tempeh-like fermented oats. The aim of the present work was to study the changes of GABA, phytate, natural antioxidants and antioxidant activity of tempeh-like fermented oats. As fermentation time progressed, the GABA, total phenolics content (TPC) and flavonoids increased rapidly. The Aspergillus oryzae-fermented oats had the highest GABA, whereas Rhizopus oryzae-fermented oats had the highest TPC. Phytate, an anti-nutrient component, was dramatically reduced in the fermented oats, especially those by A. oryzae (reduced by about 63 %). The antioxidant activities of fermented oats were also significantly enhanced after 72 h fermentation (p oats fermented by generally recognized as safe (GRAS) fungi can be recommended as tempeh-like functional foods with higher GABA, more natural antioxidants and lower phytate compared with native oats.

  2. Effect of saturated fatty acid-rich dietary vegetable oils on lipid profile, antioxidant enzymes and glucose tolerance in diabetic rats

    Directory of Open Access Journals (Sweden)

    Kochikuzhyil Benson

    2010-01-01

    Full Text Available Objective : To study the effect of saturated fatty acid (SFA-rich dietary vegetable oils on the lipid profile, endogenous antioxidant enzymes and glucose tolerance in type 2 diabetic rats. Materials and Methods : Type 2 diabetes was induced by administering streptozotocin (90 mg/kg, i.p. in neonatal rats. Twenty-eight-day-old normal (N and diabetic (D male Wistar rats were fed for 45 days with a fat-enriched special diet (10% prepared with coconut oil (CO - lauric acid-rich SFA, palm oil (PO - palmitic acid-rich SFA and groundnut oil (GNO - control (N and D. Lipid profile, endogenous antioxidant enzymes and oral glucose tolerance tests were monitored. Results : D rats fed with CO (D + CO exhibited a significant decrease in the total cholesterol and non-high-density lipoprotein cholesterol. Besides, they also showed a trend toward improving antioxidant enzymes and glucose tolerance as compared to the D + GNO group, whereas D + PO treatment aggravated the dyslipidemic condition while causing a significant decrease in the superoxide dismutase levels when compared to N rats fed with GNO (N + GNO. D + PO treatment also impaired the glucose tolerance when compared to N + GNO and D + GNO. Conclusion : The type of FA in the dietary oil determines its deleterious or beneficial effects. Lauric acid present in CO may protect against diabetes-induced dyslipidemia.

  3. Effect of supplementation of cows diet with linseed and fish oil and different variants of β-lactoglobulin on fatty acid composition and antioxidant capacity of milk.

    Science.gov (United States)

    Puppel, Kamila; Kuczyńska, Beata; Nałęcz-Tarwacka, Teresa; Gołębiewski, Marcin; Sakowski, Tomasz; Kapusta, Aleksandra; Budziński, Arkadiusz; Balcerak, Marek

    2016-04-01

    The aim of this study was to determine the influence of polymorphic variants of β-lactoglobulin in cows supplemented with linseed and fish oil on the fatty acid composition and antioxidant capacity of milk. From the herd of 320 Polish Holstein Friesian cows three groups of cows were selected according to the variants of β-LG (β-LGAA, β-LGBB, β-LGAB). During the first 7 days (the initial period) all the cows were fed the same total mixed ration (TMR) diet. From day 8 to 28,150 g fish oil and 250 g linseed (FOL) was added to the TMR diet of each cow. The results showed that the diet supplemented with FOL was effective in reducing atherogenic and thrombogenic indices. Introducing supplementation improved the antioxidant capacity: higher concentration of C18:2cis-9 trans-11, C20:5 n-3, C22:6 n-3, bioactive whey proteins and vitamin soluble in fat has been recorded. The results showed that β-LGAA was associated with lower levels of atherogenic and thrombogenic indices and higher concentration of C22:5 n-6, phospholipids and β-carotene. β-LGBB favours a higher content of C18:1trans-11, C18:2cis-9 trans-11 and lactoferrin. β-LGAB was associated with higher concentrations of C20:5 n-3, Lysozyme, α-retinol, α-tocopherol and total antioxidant status. Modification of the diet of cows with fish oil and linseed significantly influenced fatty acid composition and antioxidant properties of milk. The effect of β-LG phenotype on the fatty acid composition and antioxidant capacity of milk is variable, which could partly be the result of a β-LG phenotype × diet interaction. © 2015 Society of Chemical Industry.

  4. Determination of total antioxidant capacity of humic acids using CUPRAC, Folin-Ciocalteu, noble metal nanoparticle- and solid-liquid extraction-based methods.

    Science.gov (United States)

    Karadirek, Şeyda; Kanmaz, Nergis; Balta, Zeynep; Demirçivi, Pelin; Üzer, Ayşem; Hızal, Jülide; Apak, Reşat

    2016-06-01

    Total antioxidant capacity (TAC) of humic acid (HA) samples was determined using CUPRAC (CUPric Reducing Antioxidant Capacity), FC (Folin-Ciocalteu), QUENCHER-CUPRAC, QUENCHER-FC, Ag-NP (Silver nanoparticle)‒ and Au-NP (Gold nanoparticle)‒based methods. Conventional FC and modified FC (MFC) methods were applied to solid samples. Because of decreased solubility of Folin-Ciocalteu's phenol reagent in organic solvents, solvent effect on TAC measurement was investigated using QUENCHER-CUPRAC assay by using ethanol:distilled water and dimethyl sulfoxide:distilled water with varying ratios. To see the combined effect of solubilization (leaching) and TAC measurement of humic acids simultaneously, QUENCHER experiments were performed at 25°C and 50°C; QUENCHER-CUPRAC and QUENCHER-FC methods agreed well and had similar precision in F-statistics. Although the Gibbs free energy change (ΔG°) of the oxidation of HA dihydroxy phenols with the test reagents were negative, the ΔG° was positive only for the reaction of CUPRAC reagent with isolated monohydric phenols, showing CUPRAC selectivity toward polyphenolic antioxidants. This is the first work on the antioxidant capacity measurement of HA having a sparingly soluble matrix where enhanced solubilization of bound phenolics is achieved with coupled oxidation by TAC reagents.

  5. Identification, determination, and study of antioxidative activities of hesperetin and gallic acid in hydro-alcoholic extract from flowers of Eriobotrya japonica (Lindl.

    Directory of Open Access Journals (Sweden)

    Amir Hossein Esmaeili

    2014-06-01

    Full Text Available Objectives: Eriobotrya japonica belongs to the Rosaceae. Studies have shown that the flowers of this plant are rich in phenolic and flavonoid compounds. Accorrdingly, the evaluation of antioxidative effects of Eriobotrya japonica Flower Extract (EJFE have been performed in vitro. Material and Methods: In this study, to investigate the influences of components of EJFE on its antioxidative activity, extract was prepared using hydro-alcoholic (25:75 V/V solvent and the antioxidative activity of the extract was evaluated based on the scavenging of various radicals (DPPH and H2O2 by spectrophotometric method and chelating of ferrous ions by ferrozine reagent. Results: HPLC analysis of the Eriobotrya japonica Flower Extract (EJFE revealed hesperetin and gallic acid as the major antioxidants. When the content of total flavonoid and polyphenolic compounds in the flower extract of this plant was examined, a significantly higher level of total polyphenols was found in Eriobotrya japonica flower extract. Conclusion: Results demonstrate that the high ability to scavenge free radicals, reducing power, and Fe+2chelating activity exerted by the EJFE were due to the high content of hesperetin and gallic acid in the flowers.

  6. Radiolysis study of Sulfarlem, a sulfured antioxidant, in linoleic acid micellar system. Etude radiolytique d'un antioxydant soufre, le Sulfarlem, en milieu micellaire contenant de l'acide linoleique

    Energy Technology Data Exchange (ETDEWEB)

    Ruimy-Ifrah, P.; Jore, D.; Ferradini, C. (Paris-5 Univ., 75 (France)); Christen, M.O. (LTM France, 92 - Suresnes (France))

    1993-04-01

    Sulfarlem is a dithiol-thione derivative which exhibits antioxidant properties. The study of the possible radical mechanisms involved in this action have been studied by mean of steady state radiolysis in aerated linoleic acid micellar system. The experimental results indicate that the presence of Sulfarlem in the irradiated medium decreases the degradation of linoleic acid and the formation of conjugated dienes, sulfarlem being consumed proportionally to the absorbed dose.

  7. Synthesis, characterization and antioxidant/cytotoxic activity of oxovanadium(IV) complexes of methyliminodiacetic acid and ethylenediaminetetracetic acid

    Science.gov (United States)

    Ibrahim, Mohamed M.; Mersal, Gaber A. M.; Ramadan, Abdel-Motaleb M.; Shaban, Shaban Y.; Mohamed, Mahmoud A.; Al-Juaid, Salih

    2017-06-01

    Two oxovanadium(IV) complexes, viz., [VO(Me-IDA)(H2O)2] (1) and NaH[VO(EDTA)]·4H2O (2) (Me-IDA = methyliminodiacetic acid and EDTA = ethylenediaminetetraacetic acid) have been synthesized and characterized by FT-IR, UV-Vis, mass spectrometry, elemental analysis, magnetic moment and thermal analysis, as well as electrochemical measurements including cyclic voltammetry. Both compounds are monomeric with distorted octahedral geometries. Compound 2 has been structurally characterized by using X-ray crystallography. It shows an octahedral V(O)N2O3 coordination geometry, which exhibits chemically significant hydrogen bonding interactions besides showing coordination polymer formation. Compounds 1 and 2 show an irreversible redox peak around +0.80 V versus Ag/AgCl corresponding to one-electron oxidation of V(IV) to V(V). The free radical scavenging activity of compounds 1 and 2 were done using 2,2-diphenyl- 1-picrylhydrazyl (DPPH). Both compounds have shown encouraging ROS scavenging activities. The cytotoxicity effects of both compounds toward two different tumor cells (HePG2 and MCF-7) have been also studied by MTT assay. The IC50 values obtained, after 48 h incubation at 37 °C for HepG2 and MCF-7 cell lines were 74.23 and 42.04 μg/mL for compound 1 and 65.56 and 48.34 μg/mL for compound 2, respectively. Conclusively, the present investigation provides preliminary results which suggest that such compounds can be promising alternative antitumor agents.

  8. Neuroprotective role of antioxidant and pyranocarboxylic acid derivative against AlCl3 induced Alzheimer’s disease in rats

    Institute of Scientific and Technical Information of China (English)

    Sarabjeet Singh; Ramandeep Singh; Ajay S Kushwah; Gaurav Gupta

    2014-01-01

    Objective: To assess potential of quercetin and etodolac to treat oxidative stress in neuronal death and inflammation in Alzheimer’s disease of AlCl3 induced rat models. All results of this AlCl3 model are compared with those obtained in controls.Methods:Wistar rats, housed in a controlled environment were treated with aluminum chloride (4.2 mg/kg of body weight, i.p.) for 28 d rather than oral to ensure neurotoxic concentration in hippocampus and hypothalamic region, part highly active in memory control and cognition, while control group was injected with saline. Estimation of thiobarbituric acid reactive substance, superoxide dismutase, reduced glutathione and acetylcholine levels gave estimation of neuronal damage. Low (20 mg/kg and 25 mg/kg) and high (40 mg/kg and 50 mg/kg) doses of quercetin and etodolac were administered to the test groups respectively. Histopathology study was conducted to perform relative study.Results:Co-administration of quercetin and etodolac either alone or in combination prevented the changes in biochemical markers of Alzheimer’s disease, but significant results (P<0.05) were seen when a combination of two was administered at low dose levels. Good correlation was developed between chemical estimations and histopathology study.Conclusions:Our findings suggest a combined role of anti-oxidant and cyclooxygenase inhibitor in protection of neural degeneration and inflammation due to oxidative stress.

  9. Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities.

    Science.gov (United States)

    Hu, Bin; Li, Cheng; Zhang, Zhiqing; Zhao, Qing; Zhu, Yadong; Su, Zhao; Chen, Yizi

    2017-09-15

    Microwave-assisted extraction (MAE) of oil from silkworm pupae was firstly performed in the present research. The response surface methodology was applied to optimize the parameters for MAE. The yield of oil by MAE was 30.16% under optimal conditions of a mixed solvent consisting of ethanol and n-hexane (1:1, v/v), microwave power (360W), liquid to solid ratio (7.5/1mL/g), microwave time (29min). Moreover, oil extracted by MAE was quantitatively (yield) and qualitatively (fatty acid profile) similar to those obtained using Soxhlet extraction (SE), but oil extracted by MAE exhibited favourable physicochemical properties and oxidation stability. Additionally, oil extracted by MAE had a higher content of total phenolic, and it showed stronger antioxidant activities. Scanning electron microscopy revealed that microwave technique efficiently promoted the release of oil by breaking down the cell structure of silkworm pupae. Therefore, MAE can be an effective method for the silkworm pupal oil extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Effect of the Antioxidant Drug U-74389G on Uric Acid Levels during Ischemia Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Tsompos Constantinos

    2016-09-01

    Full Text Available This experimental study examined the effect of the anti-oxidant drug U-74389G in a rat model using a renal ischaemia-reperfusion (IR protocol. The effects of the molecule were studied biochemically by assessing mean serum uric acid levels (SUA. In total, 40 rats (mean weight = 231.875 g were used in the study. SUA levels were measured at 60 min of reperfusion for groups A and C and at 120 min of reperfusion for groups B and D. The drug U-74389G was administered only in groups C and D. U-74389G administration non-significantly increased the SUA levels by 15.43%±9.10% (p=0.096 at the representative endpoint of 1.5 h. The reperfusion time non-significantly decreased the SUA levels by 13.61%±9.18% (p=0.126. However, the interaction of U-74389G administration and reperfusion time non-significantly increased the SUA levels by 4.78%±5.64% (p= 0.387. Whether it interacted with the reperfusion time, U-74389G administration non-significantly increased SUA levels. It seems that U-74389G cannot reverse injury to IR tubular epithelial cells within 2 hours.

  11. Syntheses, crystal structures and antioxidant study of Zn(II) complexes with morin-5'-sulfonic acid (MSA).

    Science.gov (United States)

    Pieniążek, Elżbieta; Kalembkiewicz, Jan; Dranka, Maciej; Woźnicka, Elżbieta

    2014-12-01

    The study of modified synthetic procedure of water soluble morin-5'-sulfonic acid sodium salt (NaMSA) involving less aggressive chemicals and carried out at mild conditions was described. The NaMSA salt is a convenient source of anionic morin-5'-sulfonic ligand (MSA) in ion exchange reactions. The coordination ability of MSA ligand towards the zinc cations was investigated in aqueous solution and in solid state. Novel zinc complexes of morin-5'-sulfonate were obtained by a reaction of Zn(NO3)2 with morin-5'-sulfonate in water. Resulting compounds were characterized by single-crystal X-ray diffraction analysis, as well as spectral and thermal methods. The coordination interaction, hydrogen bond and π-π stacking lead to the formation of a 1D chain or 3D coordination polymers. The antioxidant activity of the Zn(II)-MSA complexes was evaluated by means of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. In this work, we have shown that the studied compounds are more effective free radical scavengers than the natural flavonoids like plain morin.

  12. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides.

    Science.gov (United States)

    Abdualrahman, Mohammed Adam Y; Ma, Haile; Zhou, Cunshan; Yagoub, Abu ElGasim A; Hu, Jiali; Yang, Xue

    2016-12-01

    Due to the disadvantages of traditional enzymolysis, pretreatments are crucial to enhance protein enzymolysis. Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution, fluorescence spectroscopy and antioxidant activity of thermal (HT) and single frequency counter-current ultrasound (SCFU) pretreated sodium caseinate (NaCas) were studied. Enzymolysis of untreated NaCas (control) improved significantly (P Chemical Industry. © 2016 Society of Chemical Industry.

  13. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein-gallic acid system.

    Science.gov (United States)

    Neo, Yun Ping; Ray, Sudip; Jin, Jianyong; Gizdavic-Nikolaidis, Marija; Nieuwoudt, Michel K; Liu, Dongyan; Quek, Siew Young

    2013-01-15

    Gallic acid was successfully incorporated into zein ultra-fine fibres at different loading amount (5%, 10% and 20%) in order to develop an encapsulating technology for functional ingredient delivery using electrospinning. The produced fibres exhibit diameters ranging from 327 to 387 nm. The physical and thermal properties of encapsulated gallic acid were determined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC); and the interaction between gallic acid and zein was attested by attenuated total reflection-Fourier transform infrared (ATR-FTIR). Thermogravimetric analysis (TGA) demonstrated a different thermal stability of the fabricated complex before and after the gallic acid incorporation. Lastly, the 1,1'-diphenyl-2-picrylhydrazyl (DPPH) assay showed that the gallic acid had retained its antioxidant activity after incorporation in zein electrospun fibres. Overall, electrospinning technique had shown promising results as an efficient and effective method for the preparation of sub-micron structured encapsulated functional ingredient that may find uses in food industry.

  14. Metabolomic characterization of a low phytic acid and high anti-oxidative cultivar of turmeric.

    Science.gov (United States)

    Tanaka, Ken; Arita, Masanori; Li, Donghan; Ono, Naoaki; Tezuka, Yasuhiro; Kanaya, Shigehiko

    2015-02-01

    Turmeric, the rhizome of Curcuma longa, has a long history of use as a spice and also as a traditional medicine in many Asian countries. To reveal unique morphological features of a newly registered Curcuma cultivar, C. longa cv. Okinawa Ougon (Ougon), non-targeted LC-MS and GC-MS analyses were conducted. The analysis revealed its distinctive chemical properties: lower amount of phytic acid and inorganic metals such as Fe, Mn, and Al, as well as higher concentrations of reduced derivatives of curcuminoids, such as dihydrobisdemethoxycurcumin, tetrahydrobisdemethoxycurcumin, dihydrodemethoxycurcumin, and tetrahydrodemethoxycurcumin. In addition, germacrane-type sesquiterpenes were almost absent although α-humulene and β-caryophyllene, generated by the same biosynthetic route, were present. Presumably the alternation of the metal ion content, serving as a cofactor of sesquiterpene synthase, modulates the resulting variation of the sesquiterpenes. In summary, the cultivar Ougon is considered a promising candidate for functional food additives.

  15. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay.

    Science.gov (United States)

    Qwele, K; Hugo, A; Oyedemi, S O; Moyo, B; Masika, P J; Muchenje, V

    2013-03-01

    The present study determined the chemical composition, fatty acid (FA) content and antioxidant capacity of meat from goats supplemented with Moringa oleifera leaves (MOL) or sunflower cake (SC) or grass hay (GH). The meat from goat supplemented with MOL had higher concentrations of total phenolic content (10.62±0.27 mg tannic acid equivalent E/g). The MOL significantly scavenged 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic-acid (ABTS) radical to 93.51±0.19% (93.51±0.19%) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical to 58.95±0.3% than other supplements. The antioxidative effect of MOL supplemented meat on catalase (CAT), reduced glutathione (GSH), superoxide dismutase (SOD) and lipid oxidation (LO) was significantly (P<0.05) higher than other meat from goat feed on grass hay or those supplemented with sunflower seed cake. The present study indicated that the anti-oxidative potential of MOL may play a role in improving meat quality (chemical composition, colour and lipid stability). Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans

    Science.gov (United States)

    Wei, Chia-Cheng; Yen, Pei-Ling; Chang, Shang-Tzen; Cheng, Pei-Ling; Lo, Yi-Chen; Liao, Vivian Hsiu-Chuan

    2016-01-01

    Background Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans. Principal Findings The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%). Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans. Conclusions This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods. PMID:27275864

  17. Total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut mango (Mangifera indica L., cv. Tommy Atkin) as affected by infrared heat treatment.

    Science.gov (United States)

    Sogi, D S; Siddiq, M; Roidoung, S; Dolan, K D

    2012-11-01

    Mango (Mangifera indica L.) is a major tropical fruit that has not been exploited for fresh-cut or minimally processed products on a scale similar to apples, pineapples, or melons. The objective of this study was to investigate the effect of infrared (IR) treatment on total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut cubes from 'Tommy Atkin' mangoes. Mango cubes were IR treated (5, 10, 15 min) and evaluated at 4-d intervals during 16-d storage at 4 ± 1 °C. Total phenolics, carotenoids, and ascorbic acid content in fresh-cut control mango cubes were 43.33, 1.37, and 15.97 mg/100 g FW, respectively. IR treatments increased total phenolics (59.23 to 71.16 mg/100 g FW) and decreased ascorbic acid (12.14 to 15.38 mg/100 g, FW). Total carotenoids showed a mixed trend (1.13 to 1.66 mg/100 g, FW). The IR treatment showed a significant positive impact on antioxidant properties (μM TE/100 g, FW) of mango cubes, as assayed by ABTS (261.5 compared with 338.0 to 416.4), DPPH (270.5 compared with 289.4 to 360.5), and ORAC (6686 compared with 8450 to 12230). Total phenolics, carotenoids, ascorbic acid, and antioxidant capacity decreased over 16-d storage. However, IR treated samples had consistently higher ABTS, DPPH, and total phenolics during storage. It was demonstrated that IR treatment can be effectively used in improving antioxidant properties of fresh-cut mangoes with minimal effect on the visual appearance. Various methods/treatments are in use for extending the quality of fresh-cut fruits, including mild heat treatment. This study explored the application of infrared (IR) heat for processing fresh-cut mango cubes and evaluated its effect on vitamin C and antioxidant capacity during 16-d storage. This is the first study reporting on the use of IR heat in fresh-cut fruits. IR treatment was shown to be effective in retaining antioxidant properties of fresh-cut mango cubes with minimal effect on the visual appearance. © 2012 Institute

  18. Fatty acid composition and antioxidant activity of oils from two cultivars of Cantaloupe extracted by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Sy Ling, Hoe

    2010-03-01

    Full Text Available The effect of supercritical fluid extraction (SFE fractionation of three oil fractions (1st, 2nd, 3rd fraction on the fatty acid composition and antioxidant activity of oils from two cultivars of cantaloupe were investigated. Rock melon oil (RMO and Golden Langkawi oil (GLO were extracted using SFE and the major fatty acids for both cultivars were linoleic, oleic, palmitic, and stearic acid. The SFA decreased from 15.78 to 14.14% in RMO 1st fraction, and MUFA decreased from 18.30 to 16.56% in RMO 2nd fraction, while PUFA increased from 65.9 to 69.30% in RMO 3rd fraction. On the other hand SFA decreased from 16.35 to 13.91% in GLO 1st fraction, and MUFA decreased from 17.50 to 15.57% in GLO 2nd fraction, while PUFA increased from 66.15 to 70.52% in GLO 3rd fraction. The different fractions of the two oils showed high antioxidant activity in reducing the oxidation of β-carotene in beta-carotene bleaching assay (BCB and the quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH.El efecto del fraccionamiento mediante extracción con fluido supercrítico de tres fracciones (fracción 1ª, 2ª y 3ª sobre la composición de ácidos grasos y actividad antioxidante de aceites de dos variedades de melón fué investigado. Aceites de melón de los cultivares Rock (RMO y Golden Langkawi GLO fueron extraídos usando SFE y los principales ácidos grasos en cada cultivar fueron ácido linoleico, oleico, palmítico y esteárico. Los ácidos grasos saturados (SFA disminuyeron desde 15.78 a 14.14% en la 1ª fracción de RMO y los ácidos grasos monoinsaturados (MUFA disminuyeron desde 18.30 a 16.56% en la 2ª fracción de RMO, mientras que los ácidos grasos poliinsaturados (PUFA aumentaron de 65.9 a 69.30% en la 3ª fracción de RMO. Por otra parte, SFA disminuyo de 16.35 a 13.91% en la primera fracción de GLO y MUFA disminuyo de 17.50 a 15.57% en la 2ª fracción de GLO, mientras que PUFA aumento de 66.15 a 70.52% en la 3ª fracción de GLO. Las diferentes

  19. Synthesis, structures, electrochemical studies and antioxidant activity of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids

    Science.gov (United States)

    Quiroga, Jairo; Romo, Pablo E.; Ortiz, Alejandro; Isaza, José Hipólito; Insuasty, Braulio; Abonia, Rodrigo; Nogueras, Manuel; Cobo, Justo

    2016-09-01

    The synthesis of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids 3 from the reaction of 6-aminopyrimidines 1 with arylidene derivatives of pyruvic acid 2 under microwave and ultrasound irradiation is described. The orientation of cyclization process was determined by NMR measurements. The methodology provides advantages such as high yields and friendly to the environment without the use of solvents. The antioxidant properties, DPPH free radical scavenging, ORAC, and anodic potential oxidation of the new pyridopyrimidines were studied.

  20. Antioxidant effect of vitamin E and 5-aminosalicylic acid on acrylamide induced kidney injury in rats.

    Science.gov (United States)

    Rajeh, Nisreen A; Al-Dhaheri, Najlaa M

    2017-02-01

    To explore renal toxicity caused by sub-acute exposure of acrylamide and to study the protective effect of 5-Aminosalicylic acid (5-ASA) and Vitamin E (vit-E)on Acrylamide (ACR) induced renal toxicity. Methods: This study was conducted at King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, between August and November 2015. A total of 49 adult Wistar rats (250 ± 20g) aged 60 days were kept in a controlled environment and used in the present study. The rats were divided into 7 groups (control, ACR alone, ACR+5-ASA, ACR+vit-E, ACR+ASA+vit-E, vit-E alone, and ASA alone). After 5 days of ACR oral gavage treatment, the rats were observed for 24 hours then killed. Histopathology for the kidney and lactate dehydrogenase assay were carried out.  Results: Acrylamide produced significant pathological changes in the kidney with acute tubular necrosis in the distal tubules that could be reversed by concomitant injection of rat with 5-ASA. Together with vitamin E, 5-ASA, showed maximum renal protection. No statistically significant difference was observed in either body weights or lactate dehydrogenase activity of ACR treated rats.  Conclusion: Acrylamide exposure leads to adverse clinical pathologies of renal tubules, which were reversed by a concomitant treatment with 5-ASA and vitamin-E.

  1. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability

    Directory of Open Access Journals (Sweden)

    Ilaiyaraja Nallamuthu

    2015-06-01

    Full Text Available In this study, chlorogenic acid (CGA, a phenolic compound widely distributed in fruits and vegetables, was encapsulated into chitosan nanoparticles by ionic gelation method. The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively. A regular, spherical shaped distribution of nanoparticles was observed through scanning electron microscopy (SEM and the success of entrapment was confirmed by FTIR analysis. The encapsulation efficiency of CGA was at about 59% with the loading efficiency of 5.2%. In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further, the release kinetics study revealed the burst release of 69% CGA from nanoparticles at the end of 100th hours. Pharmacokinetic analysis in rats showed a lower level of Cmax, longer Tmax, longer MRT, larger AUC0–t and AUC0–∞ for the CGA nanoparticles compared to free CGA. Collectively, these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.

  2. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

    Directory of Open Access Journals (Sweden)

    Betbeder D

    2015-08-01

    Full Text Available Didier Betbeder,1–4 Emmanuelle Lipka,1,2,5 Mike Howsam,6 Rodolphe Carpentier1–3 1U995-LIRIC, Inserm (Institut National de la Recherche Médicale, Lille, France; 2U995-LIRIC, CHRU de Lille, Lille, France; 3U995-LIRIC, Faculté de Médecine, Université de Lille, Lille, France; 4Faculté des Sciences du Sport, Université d’Artois, Arras, France; 5Faculté de Pharmacie, Université de Lille, Lille, France; 6Faculté de Pharmacie, Université de Lille, Centre Universitaire de Mesures et d’Analyses, Lille, France Purpose: Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin.Method: We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C.Results: In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching

  3. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yang, E-mail: gaoyang0898@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240 (China); Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083 (China); Miao Chiyuan [Department of Environmental Engineering, Peking University, Beijing, 100871 (China); Mao Liang [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240 (China); School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China); Zhou Pei [School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240 (China); Jin Zhiguo; Shi Wanjun [School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China)

    2010-09-15

    Remediation of plant-microorganism-chelates synergy has been proposed as an effective remediation method for enhancing the removal efficiency of heavy metal. Manipulation of the antioxidative system increases plant tolerance, thereby potentially enhancing the uptake capacity to heavy metal. In this study, we investigated the possibility of improving the phytoextraction of Cd and the antioxidative defense of Solanum nigrum L. by application of a new isolated strain (Paecilomyces lilacinus NH1) (PLNH1) and citric acid (CA). The results showed that application of CA or PLNH1 significantly promoted S. nigrum's growth under Cd stress, but the synergistic effect of CA and PLNH1 on S. nigrum's growth was more obvious. The coexistence of CA and PLNH1 could enhance about 30% of Cd accumulation in different organs of S. nigrum compared to the treatment without the addition of CA and PLNH1, whereas single CA or PLNH1 added treatment only enhanced about 10-15% of Cd accumulation in different organs of S. nigrum. The antioxidative defense in S. nigrum under Cd stress was significantly improved as result of application of CA and PLNH1. The responses of antioxidative enzymes to Cd stress significantly decreased following application of CA and PLNH1, and the oxidative stress experienced by the plant due to Cd in the soil was significantly alleviated.

  4. Analysis of fatty acids, aliphatic esters, and in vitro studies of antioxidant and antimicrobial activities for Recineckea carnea and Tupistra chinensis from the Guizhou Province.

    Science.gov (United States)

    Lin, Qisi; Wang, Miao; Li, Jinghua; Shi, Wanping; Wang, Hui; Zhao, Chunjie

    2014-02-01

    Recineckea carnea and Tupistra chinensis collected from the Guizhou province (China) were evaluated in this study. Petroleum ether fractions from the two herbs were subjected to gas chromatography-mass spectrometry analysis; 10 species, which were fatty acids or aliphatic esters, were identified. The antimicrobial activities of a variety of extracts were evaluated against four microorganisms. The methanol extract (ME), chloroform fraction, and ethyl acetate fraction from T. chinensis exhibited antimicrobial activities comparable to standard antibiotics, whereas none of the investigated extracts from R. carnea demonstrated any antimicrobial activities. The antioxidant potential was evaluated in vitro using ferric-reducing antioxidant power (FRAP) and the 2,2-diphenyl-1-picrylhydrazil (DPPH) radical method. The FRAP value of the ME from T. chinensis (4.19±0.088 mmol/g) was found to be significantly higher than the analogous extract from R. carnea (2.39±0.092 mmol/g); the EC₅₀ of the ME from R. carnea (0.32±0.011 mg/mL) was found to be significantly higher than that of T. chinensis (0.30±0.015 mg/mL). Total phenolic content was estimated by the Folin-Ciocalteu's colorimetric method. A positive correlation was found between total phenolic content and antioxidant activities (FRAP value and the reciprocal of EC₅₀). The results suggested that the phenolic compounds contributed significantly to the antioxidant capacity of R. carnea and T. chinensis.

  5. Synergistic ameliorative effects of sesame oil and alpha-lipoic acid against subacute diazinon toxicity in rats: hematological, biochemical, and antioxidant studies.

    Science.gov (United States)

    Abdel-Daim, Mohamed M; Taha, Ramadan; Ghazy, Emad W; El-Sayed, Yasser S

    2016-01-01

    Diazinon (DZN) is a common organophosphorus insecticide extensively used for agriculture and veterinary purposes. DZN toxicity is not limited to insects; it also induces harmful effects in mammals and birds. Our experiment evaluated the protective and antioxidant potential of sesame oil (SO) and (or) alpha-lipoic acid (ALA) against DZN toxicity in male Wistar albino rats. DZN-treated animals exhibited macrocytic hypochromic anemia and significant increases in serum biochemical parameters related to liver injury, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transferase (γGT), cholesterol, and triglycerides. They also had elevated levels of markers related to cardiac injury, such as lactate dehydrogenase (LDH) and creatine phosphokinase (CPK), and increased biomarkers of renal injury, urea and creatinine. DZN also increased hepatic, renal, and cardiac lipid peroxidation and decreased antioxidant biomarker levels. SO and (or) ALA supplementation ameliorated the deleterious effects of DZN intoxication. Treatment improved hematology and serum parameters, enhanced endogenous antioxidant status, and reduced lipid peroxidation. Importantly, they exerted synergistic hepatoprotective, nephroprotective, and cardioprotective effects. Our findings demonstrate that SO and (or) ALA supplementation can alleviate the toxic effects of DZN via their potent antioxidant and free radical-scavenging activities.

  6. Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain.

    Science.gov (United States)

    Chen, Juan; Wang, Wen-Hua; Liu, Ting-Wu; Wu, Fei-Hua; Zheng, Hai-Lei

    2013-03-01

    To study whether differential responses occur in photosynthesis and antioxidant system for seedlings of Liquidambar formosana, an acid rain (AR)-sensitive tree species and Schima superba, an AR-tolerant tree species treated with three types of pH 3.0 simulated AR (SiAR) including sulfuric-rich (S-SiAR), nitric-rich (N-SiAR), sulfate and nitrate mixed (SN-SiAR), we investigated the changes of leaf necrosis, chlorophyll content, soluble protein and proline content, photosynthesis and chlorophyll fluorescence characteristics, reactive oxygen species production, membrane lipid peroxidation, small molecular antioxidant content, antioxidant enzyme activities and related protein expressions. Our results showed that SiAR significantly caused leaf necrosis, inhibited photosynthesis, induced superoxide radical and hydrogen peroxide generation, aggravated membrane lipid peroxidation, changed antioxidant enzyme activities, modified related protein expressions such as Cu/Zn superoxide dismutase (SOD), l-ascorbate peroxidase (APX, EC 1. 11. 1. 11), glutathione S transferase (GST, EC 2. 5. 1. 18) and Rubisco large subunit (RuBISCO LSU), altered non-protein thiols (NPT) and glutathione (GSH) content in leaves of L. formosana and S. superba. Taken together, we concluded that the damages caused by SiAR in L. formosana were more severe and suffered from more negative impacts than in S. superba. S-SiAR induced more serious damages for the plants than did SN-SiAR and N-SiAR.

  7. Cryopreservation of ram semen in extenders containing soybean lecithin as cryoprotectant and hyaluronic acid as antioxidant.

    Science.gov (United States)

    Najafi, A; Najafi, M H; Zanganeh, Z; Sharafi, M; Martinez-Pastor, F; Adeldust, H

    2014-12-01

    A soybean lecithin-based extender supplemented with hyaluronic acid (HA) was assayed for effectiveness to improve the quality of frozen-thawed ram semen. HA has not been tested yet in an extender containing soybean lecithin for freezing ram semen. Thus, the aim of this study was to analyse the effects of soybean lecithin at 1% or 1.5% along with HA at 0, 0.5 and 1 mg ml(-1) in a Tris-based extender on the motion characteristics, membrane integrity (HOST), viability, GSH peroxidase (GSH-PX) activity, lipid peroxidation and acrosomal status after freezing-thawing. Semen was collected from four Mehraban rams during the breeding season and frozen in the six lecithin×HA extenders. The extender containing 1.5% lecithin supplemented with no HA yielded higher total motility (52.5%±1.6), viability (55.8%±1.6) and membrane integrity (44.5%±1.7), but the effects of the lecithin concentration did not reach signification. Linearity-related parameters, ALH, BCF, lipid peroxidation, GSH-PX activity, morphology and acrosomal status were not affected by the extender composition. In general, adding HA significantly decreased sperm velocity (1 mg ml(-1) HA), total motility (only with 1.5% lecithin), viability (1 mg ml(-1) HA for 1% lecithin; both concentrations for 1.5% lecithin) and membrane integrity. In conclusion, adding HA to the freezing extender supplemented with soybean lecithin failed to improve quality-related variables in ram semen. Increasing the lecithin content could have a positive effect, but further studies are needed. © 2014 Blackwell Verlag GmbH.

  8. Patients undergoing long-term treatment with antihypertensive eye drops responded positively with respect to their ocular surface disorder to oral supplementation with antioxidants and essential fatty acids

    Directory of Open Access Journals (Sweden)

    Galbis-Estrada C

    2013-06-01

    Full Text Available Carmen Galbis-Estrada,1,* Maria D Pinazo-Durán,1,* Jorge Cantú-Dibildox,2 Carla Marco-Ramírez,1 Manuel Díaz-Llópis,1,3 Javier Benítez-del-Castillo21Ophthalmic Research Unit Santiago Grisolia, Department of Surgery/Ophthalmology, Faculty of Medicine, University of Valencia, Valencia, Spain; 2Department of Ophthalmology, Hospital of Jerez, Jerez de la Frontera, Cádiz, Spain; 3University and Polytechnic Hospital La Fe, Valencia, Spain*These authors contributed equally to this workBackground: Glaucoma and dry eye disorders (DEDs are frequent comorbidities. The antioxidant and anti-inflammatory properties of essential polyunsaturated fatty acids have been extensively studied in relation to eye diseases.Objective: Our objective was to determine the effects of oral supplementation with a combined formulation of antioxidants and essential polyunsaturated fatty acids on expression of cytokines and chemokines in tears from patients with DEDs or primary open-angle glaucoma (POAG.Methods: Participants (n = 97 were distributed into three groups: (1 individuals with nonsevere DEDs (DEDG, (2 individuals with nonadvanced POAG (POAGG, and (3 healthy controls. These groups were randomized into two subgroups: one received a daily antioxidant and essential polyunsaturated fatty acid supplement (two pills for 3 months (+S, and the other did not (−NS. Participants were interviewed and ophthalmologically examined. Concentrations of specific cytokines and chemokines in reflex tears were determined by multiplexed particle-based flow cytometry. The data were analyzed statistically (SPSS version 15.0.Results: Comparison of the results from the DEDG and POAGG patients showed significant differences in tear expression of granulocyte-macrophage colony-stimulating factor (P = 0.008, tumor necrosis factor α (P = 0.005, vascular endothelial growth factor (P = 0.038, interleukin-4 (P = 0.030, and interleukin-6 (P = 0.044. The main signs and symptoms of dry eyes such

  9. Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil.

    Science.gov (United States)

    Lima, Marcos Dos Santos; Silani, Igor de Souza Veras; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Biasoto, Aline Camarão Telles; Pereira, Giuliano Elias; Bordignon-Luiz, Marilde T; Ninow, Jorge Luiz

    2014-10-15

    The phenolic compounds, organic acids and the antioxidant activity were determined for grape juice samples from new Brazilian varieties grown in the Sub-middle São Francisco Valley in the Northeast Region of Brazil. The results showed that the Brazilian grape juices have high antioxidant activity, which was significantly correlated with the phenolic compounds catechin, epicatechin gallate, procyanidin B1, rutin, gallic acid, caffeic acid, p-coumaric acid, pelargonidin-3-glucoside, cyanidin-3-glucoside, cyaniding-3,5-diglucoside and delphinidin-3-glucoside. The produced juice samples showed higher concentrations of trans-resveratrol than those observed in juices made from different varieties of grapes from traditional growing regions. Organic acids concentrations were similar to those of juices produced from other classical varieties. It was demonstrated that it is possible to prepare juices from grapes of new varieties grown in the Northeast of Brazil containing a high content of bioactive compounds and typical characteristics of the tropical viticulture practised in the Sub-middle São Francisco Valley.

  10. Adding of ascorbic acid to the culture medium influences the antioxidant status and some biochemical parameters in the hen granulosa cells.

    Science.gov (United States)

    Capcarova, M; Kolesarova, A; Kalafova, A; Bulla, J; Sirotkin, A V

    2015-07-01

    The aim of the present study was to determine the activity of superoxide dismutase (SOD), total antioxidant status (TAS) of the hen granulosa cells, and selected biochemical parameters, including calcium, phosphorus, sodium, potassium, glucose, cholesterol, proteins, in the culture medium of granulosa cells after exposing them to ascorbic acid in vitro conditions. Ovarian granulosa cells of hens were incubated with various doses of ascorbic acid (E1 0.09 mg/ml, E2 0.13 mg/ml, E3 0.17 mg/ml, E4 0.33 mg/ml, E5 0.5 mg/ml). Ascorbic acid did not manifest antioxidant potential and higher doses of ascorbic acid (0.17; 0.33 and 0.5 mg/ml) decreased the activity of SOD in granulosa cells. Vitamin application resulted in a significantly (p<0.05) higher accumulation of Na+ and K+ in culture media of granulosa cells and decreased the concentration of glucose and proteins. These results indicate that ascorbic acid might be involved in the regulation of selected biochemical and physiological processes in ovarian granulosa cells.

  11. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system.

    Science.gov (United States)

    Srivastava, Shivani; Conlan, Xavier A; Cahill, David M; Adholeya, Alok

    2016-11-01

    Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.

  12. Water-deficit impact on fatty acid and essential oil composition and antioxidant activities of cumin (Cuminum cyminum L.) aerial parts.

    Science.gov (United States)

    Bettaieb, Iness; Knioua, Sana; Hamrouni, Ibtissem; Limam, Ferid; Marzouk, Brahim

    2011-01-12

    This study is designed to examine the effect of water deficit on growth, fatty acid and essential oil composition, and antioxidant activities of Cuminum cyminum aerial part extracts. Plants were treated with different levels of water deficit: control (C), moderate water deficit (MWD), and severe water deficit (SWD). Plant growth (height, fresh and dry matter weights) as well as yield components were significantly increased under moderate water deficit and conversely reduced at severe level. Total fatty acid content decreased significantly with severity of constraint. Drought reduced considerably the proportions of major fatty acids and the unsaturated to saturated fatty acid ratio. The essential oil yield was 0.14% (based on the dry weight); it increased by 2.21-fold at MWD but decreased by 42.8% under SWD in comparison to the control. Drought results in the modification of the essential oil chemotype from 1-phenyl-1-butanol to 1-phenyl-1,2-ethanediol. Antioxidant activities of the acetone extracts were determined by two complementary test systems, namely, DPPH and β-carotene/linoleic acid. The highest activity was exhibited by moderately stressed plants and was reduced significantly under SWD. In control plants, the total phenolic amount was 10.23 mg GAE/g DW, which increased by 1.5-fold under MWD and decreased by 42% under SWD.

  13. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, Chisato, E-mail: yosizaki@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Nishio, Yoshihiko [Division of Diabetes, Metabolism and Endocrinology, Department of Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kashiwagi, Atsunori; Maegawa, Hiroshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  14. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System

    Directory of Open Access Journals (Sweden)

    Seyed Fazel Nabavi

    2016-04-01

    Full Text Available Gallic acid (3,4,5-trihydroxybenzoic acid, GA is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG, possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate, in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD and catalase (Cat activity, thiobarbituric acid-reactive substances (TBARS and reduced glutathione (GSH levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress.

  15. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens).

    Science.gov (United States)

    Fadhlaoui, Mariem; Couture, Patrice

    2016-11-01

    The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9°C and 28°C) and exposed either to Cd or Ni (respectively 4μg/L and 600μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9°C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28°C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is responsible for the thermal acclimation of phospholipid fatty acid profiles. However, this response was altered under Ni and Cd exposure: PUFA decreased (specifically n-6 PUFA) while the proportion of saturated fatty acids increased at 9°C, whereas at 28°C, PUFA increased to proportions exceeding those observed at 9°C. Lipid peroxidation could be observed under all experimental conditions. Both enzymatic and non-enzymatic antioxidant defense systems acted cooperatively to cope with oxidative stress leading to lipid peroxidation, which was not affected by temperature acclimation as indicated by malondialdehyde concentration, in spite of a higher polyinsaturation in cold-acclimated fish which would be predicted to increase their vulnerability to

  16. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage.

    Science.gov (United States)

    Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Ramírez-de León, José A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2015-04-01

    Plant infusions are consumed due to their beneficial effects on health, which is attributed to their bioactive compounds content. However, these compounds are susceptible to degradation during processing and storage. The objective of this research was to evaluate the effect of stevia and citric acid on the stability of phenolic compounds, antioxidant capacity and carbohydrate-hydrolysing enzyme inhibitory activity of roselle beverages during storage. The optimum extraction conditions of roselle polyphenolic compounds was of 95 °C/60 min, which was obtained by a second order experimental design. The incorporation of stevia increased the stability of colour and some polyphenols, such as quercetin, gallic acid and rosmarinic acid, during storage. In addition, stevia decreased the loss of ABTS, DPPH scavenging activity and α-amylase inhibitory capacity, whereas the incorporation of citric acid showed no effect. These results may contribute to the improvement of technological processes for the elaboration of hypocaloric and functional beverages.

  17. Histological changes and antioxidant enzyme activity in signal crayfish (Pacifastacus leniusculus) associated with sub-acute peracetic acid exposure.

    Science.gov (United States)

    Chupani, Latifeh; Zuskova, Eliska; Stara, Alzbeta; Velisek, Josef; Kouba, Antonin

    2016-01-01

    Peracetic acid (PAA) is a powerful disinfectant recently adopted as a therapeutic agent in aquaculture. A concentration of 10 mg L(-1) PAA effectively suppresses zoospores of Aphanomyces astaci, the agent of crayfish plague. To aid in establishing safe therapeutic guideline, the effects of PAA on treated crayfish were investigated through assessment of histological changes and oxidative damage. Adult female signal crayfish Pacifastacus leniusculus (n = 135) were exposed to 2 mg L(-1) and 10 mg L(-1) of PAA for 7 days followed by a 7 day recovery period in clean water. Superoxide dismutase activity was significantly lower in gill and hepatopancreas after three days exposure to 10 mg L(1) PAA than in the group treated with 2 mg L(-1) PAA and a control in only clean water. Catalase activity in gill and hepatopancreas remained unaffected by both exposures. Glutathione reductase was significantly decreased in gill of 10 mg L(-1) PAA treated crayfish and increased in group exposed to 2 mg L(-1) compared to control after 7 days exposure. Antioxidant enzyme activity in exposed groups returned to control values after recovery period. Gill, hepatopancreas, and antennal gland showed slight damage in crayfish treated with 2 mg L(-1) of PAA compared to the control group. The extent and frequency of histological alterations were more pronounced in animals exposed to 10 mg L(-1). The gill was the most affected organ, infiltrated by granular hemocytes and displaying malformations of lamella tips and disorganization of epithelial cells. After a 7 day recovery period, the infiltrating cells in affected tissues of the exposed crayfish began to return to normal levels. Results suggested that the given concentrations could be applied to signal crayfish against crayfish plague agent in aquaculture; however, further studies are required for safe use.

  18. Interactive Effect of Salicylic Acid on Some Physiological Features and Antioxidant Enzymes Activity in Ginger (Zingiber officinale Roscoe

    Directory of Open Access Journals (Sweden)

    Hawa Z. E. Jaafar

    2013-05-01

    Full Text Available The effect of foliar salicylic acid (SA applications (10−3 and 10−5 M on activities of nitrate reductase, guaiacol peroxidase (POD, superoxide dismutases (SOD, catalase (CAT and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO2 concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10–5 M SA, with significant increases observed in CAT (20.1%, POD (45.2%, SOD (44.1% and proline (43.1% activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO2 supply. Our results support the idea that low SA concentrations (10–5 M may induce nitrite reductase synthesis by mobilizing intracellular NO3− and can provide protection to nitrite reductase degradation in vivo in the absence of NO3–. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H2O2 quenching.

  19. Improved production of poly-γ-glutamic acid by Bacillus subtilis D7 isolated from Doenjang, a Korean traditional fermented food, and its antioxidant activity.

    Science.gov (United States)

    Lee, Na-Ri; Lee, Sang-Mee; Cho, Kwang-Sik; Jeong, Seong-Yun; Hwang, Dae-Youn; Kim, Dong-Seob; Hong, Chang-Oh; Son, Hong-Joo

    2014-06-01

    The objectives of this study was to improve poly-γ-glutamic acid (γ-PGA) production by Bacillus subtilis D7 isolated from a Korean traditional fermented food and to assess its antioxidant activity for applications in the cosmetics and pharmaceutical industries. Strain D7 produced γ-PGA in the absence of L-glutamic acid, indicating L-glutamic acid-independent production. However, the addition of L-glutamic acid increased γ-PGA production. Several tricarboxylic acid cycle intermediates and amino acids could serve as the metabolic precursors for γ-PGA production, and the addition of pyruvic acid and D-glutamic acid to culture medium improved the yield of γ-PGA markedly. The maximum yield of γ-PGA obtained was 24.93 ± 0.64 g/l in improved medium, which was about 5.4-fold higher than the yield obtained in basal medium. γ-PGA was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (46.8 ± 1.5 %), hydroxyl radical scavenging activity (52.0 ± 1.8 %), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging activity (42.1 ± 1.8 %), nitric oxide scavenging activity (35.1 ± 1.3 %), reducing power (0.304 ± 0.008), and metal chelating activity (91.3 ± 3.5 %). These results indicate that γ-PGA has a potential use in the food, cosmetics, and biomedical industries for the development of novel products with radical scavenging activity. As far as we are aware, this is the first report to describe the antioxidant activityof γ-PGA produced by bacteria.

  20. A Regenerative Antioxidant Protocol of Vitamin E and α-Lipoic Acid Ameliorates Cardiovascular and Metabolic Changes in Fructose-Fed Rats

    Directory of Open Access Journals (Sweden)

    Jatin Patel

    2011-01-01

    Full Text Available Type 2 diabetes is a major cause of cardiovascular disease. We have determined whether the metabolic and cardiovascular changes induced by a diet high in fructose in young adult male Wistar rats could be prevented or reversed by chronic intervention with natural antioxidants. We administered a regenerative antioxidant protocol using two natural compounds: α-lipoic acid together with vitamin E (α-tocopherol alone or a tocotrienol-rich fraction, given as either a prevention or reversal protocol in the food. These rats developed glucose intolerance, hypertension, and increased collagen deposition in the heart together with an increased ventricular stiffness. Treatment with a fixed combination of vitamin E (either α-tocopherol or tocotrienol-rich fraction, 0.84 g/kg food and α-lipoic acid (1.6 g/kg food normalized glucose tolerance, blood pressure, cardiac collagen deposition, and ventricular stiffness in both prevention and reversal protocols in these fructose-fed rats. These results suggest that adequate antioxidant therapy can both prevent and reverse the metabolic and cardiovascular damage in type 2 diabetes.

  1. Ultraviolet-visible study on acid-base equilibria of aporphine alkaloids with antiplasmodial and antioxidant activities from Alseodaphne corneri and Dehaasia longipedicellata

    Science.gov (United States)

    Zahari, Azeana; Ablat, Abdulwali; Omer, Noridayu; Nafiah, Mohd Azlan; Sivasothy, Yasodha; Mohamad, Jamaludin; Khan, Mohammad Niyaz; Awang, Khalijah

    2016-02-01

    The UV-vis spectra of isocorydine 1, norisocorydine 2 and boldine 3 were studied in 2% v/v acetonitrile, at constant ionic strength (0.1 M NaCl, 35 degree Celsius). The pKa values of isocorydine 1 and norisocorydine 2 were 11.75 and 12.07, respectively. Boldine 3 gave a pKa value of 9.16 and 10.44. All of the alkaloids 1–3 were stable at physiological pH; thereby all of them will not ionize, thus permitting the basic nitrogen to be protonated and accumulated within the acidic food vacuole of Plasmodium via pH trapping. Subsequently, acidic food vacuoles that have been neutralized by alkaloids would result in enhancement of the antiplasmodial activity. The alkaloids showed antiplasmodial activity against Plasmodium falciparum and antioxidant activities; DPPH radical scavenging, metal chelating and ferric reducing power. The antioxidant properties of the alkaloids under investigation revealed that in addition to the antiplasmodial activity, the alkaloids can also prevent oxidative damage. It can be prevented by binding free heme and neutralizing the electrons produced during the Plasmodium falciparum mediated haemoglobin destruction in the host. Slightly basic properties of the aforementioned alkaloids, along with their antioxidant activities, are advantageous in improving the suppression of malaria infection that cause less damage to the host.

  2. Antioxidant activity of the organotellurium compound 3-[4-(N,N-dimethylamino)benzenetellurenyl]propanesulfonic acid against oxidative stress in synaptosomal membrane systems and neuronal cultures.

    Science.gov (United States)

    Kanski, J; Drake, J; Aksenova, M; Engman, L; Butterfield, D A

    2001-08-17

    Antioxidant activities of 3-[4-(N,N-dimethylamino) benzenetellurenyl]propanesulfonic acid sodium salt (NDBT) were evaluated in solution, red blood cells, synaptosomal membranes, and cultured hippocampal neuronal cells after exposure to peroxynitrite (ONOO(-)) and hydroxyl radicals. The organotellurium compound NDBT possesses significant activity towards hydrogen peroxide and/or the hydroxyl radical in solution, demonstrated by inhibition of hydroxylation of terephthalic acid. In addition, the compound displayed great antioxidant abilities as shown by: reduction of ONOO(-)-induced 2,7-dichlorofluorescein (DCF) fluorescence in synaptosomes; complete prevention of lipid peroxidation in synaptosomes caused by OH radicals (TBARS), and significant prevention of protein oxidation caused by ONOO(-) and OH, indexed by the levels of protein carbonyls in synaptosomes and neuronal cells. The presence of the compound abolished neuronal cell death caused by ONOO(-). Further, the compound was effective in preventing the oxidative changes in synaptosomal membrane protein conformation and crosslinking (EPR spin labeling). Finally, the organotellurium molecule attenuated peroxynitrite-induced, luminol-dependent chemiluminescence in red blood cells--an index of cellular oxidation. These findings demonstrate the great potential of the antioxidant and are consistent with the notion that NDBT may have a role to play in modulating oxidative stress in neurodegenerative disorders, including Alzheimer's disease.

  3. Antioxidant/prooxidant effects of α-tocopherol, quercetin and isorhamnetin on linoleic acid peroxidation induced by Cu(II) and H2O2.

    Science.gov (United States)

    Bakır, Temelkan; Sönmezoğlu, Inci; Imer, Filiz; Apak, Reşat

    2014-03-01

    The peroxidation of linoleic acid (LA) in the presence of copper(II) (Cu(II)) ions alone and with α-tocopherol (α-TocH) was investigated in aerated and incubated emulsions at 37 °C and pH 7. Additionally, the effects of quercetin (QR) and its O-methylated derivative, isorhamnetin (IR), as potential antioxidant protectors were studied in the (Cu(II) + TocH)-induced LA peroxidation system. Cu(II)-induced LA peroxidation followed pseudo-first-order kinetics with respect to primary (hydroperoxides) and secondary (aldehydes- and ketones-like) oxidation products, which were determined by ferric thiocyanate and thiobarbituric acid-reactive substances methods, respectively. As opposed to the concentration-dependent (at 0.6 and 10.0 µM) prooxidative action of α-TocH in the absence of QR and IR, the latter two compounds showed antioxidant effect over TocH. The peroxidation of LA in the presence of Cu(II)-H(2)O(2) combination alone and with TocH, QR and IR were also investigated in aerated and incubated emulsions, where the latter three compounds exhibited antioxidant effects.

  4. The role of cyclodextrins in ORAC-fluorescence assays. antioxidant capacity of tyrosol and caffeic acid with hydroxypropyl-β-cyclodextrin.

    Science.gov (United States)

    García-Padial, Marcos; Martínez-Ohárriz, María Cristina; Navarro-Blasco, Iñigo; Zornoza, Arantza

    2013-12-18

    Tyrosol and caffeic acid are biophenols that contribute to the beneficial properties of virgin olive oil. The influence of hydroxypropyl-β-cyclodextrin (HPβ-CD) on their respective antioxidant capacities was analyzed. The ORAC antioxidant activity of tyrosol (expressed as μM Trolox equivalents/μM Tyrosol) was 0.83 ± 0.03 and it increased up to 1.20 ± 0.11 in the presence of 0.8 mM HPβ-CD. However, the ORAC antioxidant activity of caffeic acid experienced no change. The different effect of HPβ-CD on each compound was discussed. In addition, the effect of increasing concentrations of different cyclodextrins in the development of ORAC-fluorescence (ORAC-FL) assays was studied. The ORAC signal was higher for HPβ-CD, followed by Mβ-CD, β-CD, γ-CD and finally α-CD. These results could be explained by the formation of inclusion complexes with fluorescein.

  5. Antioxidant, anticholinesterase and tyrosinase inhibition activities, and fatty acids of Crocus mathewii - A forgotten endemic angiosperm of Turkey.

    Science.gov (United States)

    Yildiztekin, Fatma; Nadeem, Said; Erol, Ebru; Yildiztekin, Mahmut; Tuna, Atilla L; Ozturk, Mehmet

    2016-09-01

    Context We report the first ever chemical/biochemical study on Crocus mathewii Kerndorff (Iridaceae) - a Turkish endemic angiosperm. This plant has never been explored for its phytochemistry and bioactivities. Objective This study explores C. mathewii corm and aerial parts for the chemical and biological properties of hexane, ethyl acetate, methanol and water fractions of the extracts. Material and methods Plant material (20 g) was extracted by methanol (250 mL × 5, 3 days each) and fractioned into hexane, ethyl acetate, methanol and water. All fractions were subjected to β-carotene-linoleic acid, DPPH(·), ABTS(·)(+), CUPRAC, metal chelating and tyrosinase inhibition activities. Hexane fractions were submitted to GC-MS analysis. Results Ethyl acetate fractions showed excellent IC50 values in DPPH(·) (aerial 36.21 ± 0.76 and corm 33.87 ± 0.02 mg/L) and ABTS(·)(+) (aerial 33.01 ± 0.79 and bulb 27.87 ± 0.33 mg/L); higher than the IC50 of the standard α-tocopherol (DPPH 116.25 ± 1.97; ABTS 52.64 ± 0.37 mg/L), higher than BHA in DPPH (57.31 ± 0.25 mg/L), but slightly lower in ABTS (19.86 ± 2.73 mg/L). Methanol extract of aerial parts also showed higher activity than α-tocopherol in DPPH (85.56 ± 11.51 mg/L) but slightly less (72.90 ± 3.66 mg/L) than both the standards in ABTS. Linoleic (aerial 53.9%, corm 43.9%) and palmitic (aerial 22.2%, corm 18%) were found as the major fatty acids. Discussion and conclusion Some fractions of C. mathewii showed higher antioxidant activities than the standards. There is a need to explore more about this plant.

  6. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Thu-Ha; Jung, Sunyo, E-mail: sjung@knu.ac.kr

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  7. Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Confirmation by microarray expression profiling.

    Science.gov (United States)

    Abdelwahed, Afef; Bouhlel, Ines; Skandrani, Ines; Valenti, Kita; Kadri, Malika; Guiraud, Pascal; Steiman, Régine; Mariotte, Anne-Marie; Ghedira, Kamel; Laporte, François; Dijoux-Franca, Marie-Geneviève; Chekir-Ghedira, Leila

    2007-01-05

    In vitro antioxidant and antimutagenic activities of two polyphenols isolated from the fruits of Pistacia lentiscus was assessed. Antioxidant activity was determined by the ability of each compound to scavenge the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH*), to inhibit xanthine oxidase and to inhibit the lipid peroxidation induced by H(2)O(2) in K562 cell line. Antimutagenic activity was assayed with SOS chromotest using Escherichia coli PQ37 as tester strain and Comet assay using K562 cell line. 1,2,3,4,6-Pentagalloylglucose was found to be more effective to scavenge DPPH* radical and protect against lipid peroxidation. Moreover, these two compounds induced an inhibitory activity against nifuroxazide and aflatoxin B1 mutagenicity. The protective effect exhibited by these molecules was also determined by analysis of gene expression as response to an oxidative stress. For this purpose, we used a cDNA-microarray containing 82 genes related to cell defense, essentially represented by antioxidant and DNA repair proteins. We found that 1,2,3,4,6-pentagalloylglucose induced a decrease in the expression of 11 transcripts related to antioxidant enzymes family (GPX1, TXN, AOE372, SHC1 and SEPW1) and DNA repair (POLD1, APEX, POLD2, MPG, PARP and XRCC5). The use of Gallic acid, induced expression of TXN, TXNRD1, AOE372, GSS (antioxidant enzymes) and LIG4, POLD2, MPG, GADD45A, PCNA, RPA2, DDIT3, HMOX2, XPA, TDG, ERCC1 and GTF2H1 (DNA repair) as well as the repression of GPX1, SEPW1, POLD1 and SHC1 gene expression.

  8. 植物种子皮壳抗氧剂阿魏酸的生理功能和人体健康%New natural antioxidants ferulic acid

    Institute of Scientific and Technical Information of China (English)

    尤新

    2012-01-01

    Widespread nature of the acid in the seed hull, is a natural antioxidant, to plant seeds in the harsh environment to maintain its survival and reproduction, play an important protective role. Phenolic acids as the main active ingredient : p - coumaric acid, chlorogenic acid, caffeic acid and ferulic acidFerulic acid extraction from plants to human body with antioxidant and scavenging free radicals, antithrombosis, improve the cell membrane stability, and anti - inflammatory, regulate immune function. So Ferulic acid is a kind of natural , nutrition, multi - function food ingredients.Home and abroad used in medicine, food of application into the development phase. This paper briefly introduces the new natural antioxidants ferulic acid of source, production method, main function and the domestic and foreign market survey, for reference.%自然界广泛存在于种子皮壳中的酚酸,是天然的抗氧化剂,对植物种子在恶劣环境下维护其生存和繁衍,发挥着重要保护作用.酚酸类主要活性成分为:对香豆酸、绿原酸、咖啡酸和阿魏酸等植物中分离提取的阿魏酸,对人体具有抗氧化和清除自由基、抗血栓形成、提高细胞膜稳定性,以及抗炎、调节免疫等功能.所以是一种天然、营养、多功能的食品配料.过去国内外大量应用于医药,近年食品应用也进入开发阶段.本文简要介绍这一新型天然抗氧剂阿魏酸的来源、生产方法、主要功能及国内外研发及市场概况,供参考.

  9. Bisphenol A alters n-6 fatty acid composition and decreases antioxidant enzyme levels in rat testes: a LC-QTOF-based metabolomics study.

    Directory of Open Access Journals (Sweden)

    Minjian Chen

    Full Text Available BACKGROUND: Male reproductive toxicity induced by exposure to bisphenol A (BPA has been widely reported. The testes have proven to be a major target organ of BPA toxicity, so studying testicular metabolite variation holds promise for the discovery of mechanisms linked to the toxic effects of BPA on reproduction. METHODOLOGY/PRINCIPAL FINDINGS: Male Sprague-Dawley rats were orally administered doses of BPA at the levels of 0, 50 mg/kg/d for 8 weeks. We used an unbiased liquid chromatography-quadrupole time-of-flight (LC-QTOF-based metabolomics approach to discover, identify, and analyze the variation of testicular metabolites. Two n-6 fatty acids, linoleic acid (LA and arachidonic acid (AA were identified as potential testicular biomarkers. Decreased levels of LA and increased levels of AA as well as AA/LA ratio were observed in the testes of the exposed group. According to these suggestions, testicular antioxidant enzyme levels were detected. Testicular superoxide dismutase (SOD declined significantly in the exposed group compared with that in the non-exposed group, and the glutathione peroxidase (GSH-Px as well as catalase (CAT also showed a decreasing trend in BPA treated group. CONCLUSIONS/SIGNIFICANCE: BPA caused testicular n-6 fatty acid composition variation and decreased antioxidant enzyme levels. This study emphasizes that metabolomics brings the promise of biomarkers identification for the discovery of mechanisms underlying reproductive toxicity.

  10. Effect of Azadirachta indica leaves extract on acetic acid-induced colitis in rats:Role of antioxidants, free radicals and myeloperoxidase

    Directory of Open Access Journals (Sweden)

    Ghatule RR

    2012-10-01

    Full Text Available Objective: To evaluate the healing effects of extract of dried leaves of Azadirachta indica (Neem on acetic acid-induced colitis in rats. Neem tree is known as ‘arishtha ’ in Sanskrit, meaning ‘reliever of sicknesses ’. Methods: 50% ethanolic extract of Azadirachta indica leaves was administered orally, once daily for 14 days in rats after the induction of colitis with acetic acid and 500 mg/kg dose of extract was found to have an optimal effect against acetic acid-induced colonic damage score, weight and adhesions (Macroscopic. Effect of Azadirachta indica extract was then further studied on various physical (mucous/blood in stool, food and water intake and body weight changes, colonic mucosal damage and inflammation (microscopic, antibacterial and biochemical parameters viz. i antioxidants (superoxide dismutase, catalase and reduced glutathione and ii free radicals (nitric oxide and lipid peroxidation and myeloperoxidase (acute inflammatory marker activities in acetic acid-induced colitis. Results: Azadirachta indica extract decreased colonic mucosal damage and inflammation (macroscopic and microscopic, mucous/bloody diarrhea, fecal frequency and increased body weight. Azadirachta indica extract showed intestinal antibacterial activity and enhanced the antioxidants but decreased free radicals and myeloperoxidase activities. Acute toxicity study indicated no mortality or other ANS or CNS related adverse effects even with 5.0 g/kg dose (10 times of effective dose indicating its safety. Conclusions: Azadirachta indica seemed to be safe and effective in colitis by its predominant effect on promoting antioxidant status and decreasing intestinal bacterial load, free radicals and myeloperoxidase responsible for tissue damage and delayed healing.

  11. Evaluation of anti-herpetic and antioxidant activities, and cytotoxic and genotoxic effects of synthetic alkyl-esters of gallic acid.

    Science.gov (United States)

    Savi, Luciane A; Leal, Paulo C; Vieira, Tiago O; Rosso, Rober; Nunes, Ricardo J; Yunes, Rosendo A; Creczynski-Pasa, Tânia B; Barardi, Célia R M; Simões, Cláudia M O

    2005-01-01

    The n-alkyl esters of gallic acid (CAS 13857-8) have a diverse range of uses as antioxidants in food, cosmetics and pharmaceutical industries. Pharmaceutical studies performed with these compounds have found that they have many therapeutic potentialities including anti-cancer, antiviral and antimicrobial properties. However, more interest has been devoted to their antioxidant activity due to the ability to scavenge and reduce reactive oxygen species (ROS) formation. In this study, gallic acid and 14 different alkyl gallates were tested. The cytotoxicity and anti-herpetic (HSV-1, KOS and 29-R strains) activity were studied by using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) colorimetric assay and the cell viability by using the Trypan blue dye exclusion method. The genotoxicity was studied by the Comet assay and the antioxidant activity by using the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging and microsomal lipid peroxidation-inhibiting activities. The results showed that all the tested compounds have anti-herpetic activity at non cytotoxic concentrations with selectivity indices (SI = CC50/EC50) varying from 0.89 to 18.34, depending on the used HSV-1 strain. It was observed that all tested alkyl gallates showed some degree of genotoxicity, at the tested concentrations, except cetyl gallate, at 256.60 micromol/L (p <0.05, t-Student test), probably induced by ROS released by infected cells and/or by the alkyl gallates that were not antioxidants, at the tested concentrations, in which they demonstrated anti-herpetic activity. The hydroxyl groups can induce DNA damage due interactions with some metal ions, which are naturally present in the culture medium supplemented with fetal bovine serum, probably explaining the genotoxicity detected. However, the obtained results showed considerable antioxidant activity at smaller concentrations, when compared to quercetin which is considered as a reference drug due to its already described

  12. Do diet, folic acid, and vitamins matter? What did we learn from the Women's Health Initiative, the Women's Health Study, the Women's Antioxidant and Folic Acid Cardiovascular Study, and other clinical trials?

    Science.gov (United States)

    Wenger, Nanette K

    2007-01-01

    Data from recent randomized clinical trials have contributed substantially to our understanding of appropriate interventions for coronary heart disease in women. Addressed in this monograph are issues of diet, folic acid, and antioxidant vitamins. Importantly, these randomized clinical trials have helped to clarify conflicting information from observational data, and to aid clinicians and their women patients in making appropriate choices of coronary and cardiovascular preventive therapy.

  13. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties

    DEFF Research Database (Denmark)

    Ghelichi, Sakhi; Shabanpour, Bahareh; Pourashouri, Parastoo

    2017-01-01

    content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited......Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees...... of hydrolysis (DH). Gas chromatography (GC) of fatty acid methyl esters (FAMEs) revealed that common carp roe oil contained high level of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry (HPLC-MS) indicated that enzymatic hydrolysis of defatted roe yielded higher...

  14. Qualitative and quantitative electroanalysis of synthetic phenolic antioxidant mixtures in edible oils based on their acid-base properties.

    Science.gov (United States)

    Noel Robledo, Sebastian; Alicia Zón, María; Daniel Ceballos, Claudio; Fernández, Héctor

    2011-08-01

    A simple electroanalytical method using square wave voltammetry at a Pt band ultramicroelectrode to perform a qualitative and quantitative analysis of different synthetic antioxidant mixtures permitted by official regulations in edible oils is proposed. The methodology was based on the comparison of voltammetric signals obtained in acetonitrile+0.1M (C4H9)4NF6P with those recorded in the same reaction medium when different aliquots of (C4H9)4NOH were added to allow a qualitative differentiation between antioxidants. Firstly, studies on solutions prepared from commercial reagents were carried out. Then, the results obtained were transferred to the analysis of a real matrix, i.e., an edible olive oil. From real samples spiked with a known amount of different synthetic antioxidant mixtures, we could deduce the presence of these antioxidants by comparing results obtained in the neutral medium with those obtained after the successive addition of base. The standard addition method was used to quantify the individually spiked synthetic antioxidants in the real sample. Recovery percentages were between 88% and 118%. The reproducibility was 1.5%, 3.1%, 4.1% and 4.1% in ACN+0.1M TBAHFP and 1.5%, 4.6%, 6.6% and 2.5% in Bz/EtOH (1:2)+0.1M H2SO4 for TBHQ, BHA, BHT and PG, respectively. The repeatability was 1% for PG in both media. These parameters show a good system performance.

  15. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense.

    Science.gov (United States)

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Dubey, R S

    2013-05-01

    Aluminum toxicity is a major constraint to crop production in acid soils. The present study was undertaken to examine the comparative ameliorating effects of salicylic acid, Ca and Mg on Al toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Al treatment (0.5 mM AlCl3) caused decrease in plant vigour, loss of root plasma membrane integrity, increased contents of O 2 (∙-) , H2O2, lipid peroxidation, protein carbonyls and decline in the level of protein thiol. Al treatment caused significant changes in activity of antioxidative enzymes in rice seedlings. Exogenously added salicylic acid (60 μM), Ca (1 mM) and Mg (0.25 mM) significantly alleviated Al toxicity effects in the seedlings marked by restoration of growth, suppression of Al uptake, restoration of root plasma membrane integrity and decline in O 2 (∙-) , H2O2, lipid peroxidation and protein carbonyl contents. Salicylic acid, Ca and Mg suppressed Al-induced increase in SOD, GPX and APX activities while it elevated Al-induced decline in CAT activity. By histochemical staining of O 2 (∙-) using NBT and H2O2 using DAB, it was further confirmed that added salicylic acid, Ca or Mg decreased Al-induced accumulation of O 2 (∙-) and H2O2 in the leaf tissues. Results indicate that exogenously added salicylic acid, Ca or Mg alleviates Al toxicity in rice seedlings by suppressing Al uptake, restoring root membrane integrity, reducing ROS level and ROS induced oxidative damage and regulating the level of antioxidative enzyme activities. Further salicylic appears to be superior to Mg and Ca in alleviating Al toxicity effects in rice plants.

  16. Study on Synthesis and Antioxidant Activity of Ferulic Acid%阿魏酸的合成及抗氧化性能的研究

    Institute of Scientific and Technical Information of China (English)

    梁红冬

    2012-01-01

    With vanillin and malonic acid as raw materials,ammonium acetate as catalyst,DMF as solvent, benzene as water-carrying agent,ferulic acid was synthesized. The optimal conditions were obtained as follows: the volume ratio of benzene to DMF was 2 : 1 ,the dosage of catalyst was 6% of mass of vanillin,the molar ratio of vanillin to malonic acid was 1 : 1. 4, the reaction time was 4 h. Under above conditions, the yield of ferulic acid reached 71. 02%. The antioxidant activity of ferulic acid was studied. The results showed that the antioxi-dant activity of ferulic acid for edible oil was better than that of vitamin E(VE).%以香草醛和丙二酸为原料、乙酸铵为催化剂、DMF为溶剂、苯为带水剂,合成了阿魏酸.在V(苯):V(DMF)=2:1、乙酸铵用量为6%(以香草醛质量计)、n(香草醛):n(丙二酸)=1:1.4、反应时间为4h的优化条件下,阿魏酸产率达到71.02%.阿魏酸的抗氧化性实验结果表明,阿魏酸对食用油脂有一定的抗氧化能力,其在油脂中的抗氧化能力优于维生素E.

  17. The effects of bud load and regulated deficit irrigation on sugar, organic acid, phenolic compounds and antioxidant activity of Razakı table grape berries

    Directory of Open Access Journals (Sweden)

    Tangolar Semih

    2015-01-01

    Full Text Available This study aims at assessing the effects of increased bud load and irrigation applications on berry quality of the Razakı table grape. Two Regulated Deficit Irrigation (RDI having different irrigation levels (RDI-I and RDI-II based on the growth stages, in addition to a non-irrigated control treatment together with two different bud load practices (K-normal and 2K-two-fold buds of the normal were examined for their effects on quality attributes such as sugar and organic acids contents, phenolic compounds as well as antioxidant capacity of the berries. The non-irrigated vines had highest sugar level (198.86 g/kg in the first year (2013 of the experiment whilst the sugar content of the berries was increased with irrigation (RDI-II in 2014. However the highest organic acid (7.10 g/kg was recorded from the RDI-II treatment in 2013 whereas those of from non-irrigated vines were highest (7.81 g/kg in 2014. Considering the sugar and organic acid content of the berries, bud load effects were not significant. The total phenolic acids were higher under non-irrigated and 2K bud load conditions. Antioxidant activity of berries was increased with RDI-I irrigation and 2K practices in the first year (2013 although no significant effect was recorded in the second year of the experiment. In all applications, glucose among the sugars, tartaric acid among the organic acids, catechin and epicatechin among the phenolic compounds were detected to be higher compared to other components in berries.

  18. Reduction of the DNA damages, Hepatoprotective Effect and Antioxidant Potential of the Coconut Water, ascorbic and Caffeic Acids in Oxidative Stress Mediated by Ethanol

    Directory of Open Access Journals (Sweden)

    VANDERSON S. BISPO

    Full Text Available ABSTRACT Hepatic disorders such as steatosis and alcoholic steatohepatitis are common diseases that affect thousands of people around the globe. This study aims to identify the main phenol compounds using a new HPLC-ESI+-MS/MS method, to evaluate some oxidative stress parameters and the hepatoprotective action of green dwarf coconut water, caffeic and ascorbic acids on the liver and serum of rats treated with ethanol. The results showed five polyphenols in the lyophilized coconut water spiked with standards: chlorogenic acid (0.18 µM, caffeic acid (1.1 µM, methyl caffeate (0.03 µM, quercetin (0.08 µM and ferulic acid (0.02 µM isomers. In the animals, the activity of the serum γ-glutamyltranspeptidase (γ-GT was reduced to 1.8 I.U/L in the coconut water group, 3.6 I.U/L in the ascorbic acid group and 2.9 I.U/L in the caffeic acid groups, when compared with the ethanol group (5.1 I.U/L, p<0.05. Still in liver, the DNA analysis demonstrated a decrease of oxidized bases compared to ethanol group of 36.2% and 48.0% for pretreated and post treated coconut water group respectively, 42.5% for the caffeic acid group, and 34.5% for the ascorbic acid group. The ascorbic acid was efficient in inhibiting the thiobarbituric acid reactive substances (TBARS in the liver by 16.5% in comparison with the ethanol group. These data indicate that the green dwarf coconut water, caffeic and ascorbic acids have antioxidant, hepatoprotective and reduced DNA damage properties, thus decreasing the oxidative stress induced by ethanol metabolism.

  19. Dietary alpha-tocopherol affects tissue vitamin e and malondialdehyde levels but does not change antioxidant enzymes and fatty acid composition in farmed Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Faizan, Mohammad; Stubhaug, Ingunn; Menoyo, David; Esatbeyoglu, Tuba; Wagner, Anika E; Struksnæs, Gunvor; Koppe, Wolfgang; Rimbach, Gerald

    2013-01-01

    In this study the effect of increasing dietary alpha tocopherol on vitamin E tissue concentrations, lipid peroxidation (malondialdehyde), antioxidant enzymes, and fatty acid composition has been investigated in farmed Atlantic salmon. To this end fish (initial body weight ~ 193 g, n = 70 per group) were fed diets based on fish oil (27.5 %), fish meal (15.0 %), wheat gluten (20.6 %), and soy protein concentrate (24.0 %) for 14 weeks. Diets were supplemented with 0 (negative control), 150, and 400 mg/kg vitamin E as all-rac alpha-tocopheryl acetate. Dietary vitamin E did not affect feed conversion efficiency ratio but significantly (p level. Furthermore, we observed an antagonistic interaction between alpha- and gamma-tocopherol in plasma at the highest supplementation level, since high dietary alpha-tocopherol reduced plasma gamma-tocopherol concentrations. Liver antioxidant enzymes, including glutathione peroxidase and superoxide dismutase, remained largely unchanged in response to dietary alpha-tocopherol. Dietary alpha-tocopherol did not affect eicosapentaenoic acid and docosahexaenoic acid concentrations in salmon fillet. Present data suggest that alpha-tocopherol supplementations beyond dietary recommendations may further improve flesh quality and nutritional value of Atlantic salmon fillet as far as malondialdehyde and vitamin E concentrations are concerned.

  20. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Li, Zhong-Guang

    2015-01-01

    Salicylic acid (SA), is a plant hormone with multifunction that is involved in plant growth, development and the acquisition of stress tolerance. Hydrogen sulfide (H2S) is emerging similar functions, but crosstalk between SA and H2S in the acquisition of heat tolerance is not clear. Our recent study firstly reported that SA treatment enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, followed by induced endogenous H2S accumulation, which in turn improved the heat tolerance of maize seedlings. (1) In addition, NaHS, a H2S donor, enhanced SA-induced heat tolerance, while its biosynthesis inhibitor DL-propargylglycine (PAG) and scavenger hydroxylamine (HT) weakened SA-induced heat tolerance. Also, NaHS had no significant effect on SA accumulation and its biosynthesis enzymes phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H) activities, as well as significant difference was not observed in NaHS-induced heat tolerance of maize seedlings by SA biosynthesis inhibitors paclobutrazol (PAC) and 2-aminoindan-2-phosph- onic acid (AIP) treatment. (1) Further study displayed that SA induced osmolytes (proline, betaine and trehalose) accumulation and enhancement in activity of antioxidant system in maize seedlings. These results showed that antioxidant system and osmolyte play a synergistic role in SA and H2S crosstalk-induced heat tolerance of maize seedlings.

  1. In Vitro Antioxidant Activities, Free Radical Scavenging Capacity, and Tyrosinase Inhibitory of Flavonoid Compounds and Ferulic Acid from Spiranthes sinensis (Pers. Ames

    Directory of Open Access Journals (Sweden)

    Chung Pin Liang

    2014-04-01

    Full Text Available In this study, ultrasound-assisted extraction (UAE and other methods of extracting flavonoid compounds and ferulic acid (FA from S. sinensis were investigated. Five different extraction methods, including water extraction (W, water extraction using UAE (W+U, 75% ethanol extraction (E, 75% ethanol extraction using UAE (E+U, and supercritical CO2 extraction (SFE were applied in the extraction of bioactive compounds (flavonoids and ferulic acid in order to compare their efficiency. The highest yield of flavonoids (4.28 mg/g and ferulic acid (4.13 mg/g content was detected in the E+U extract. Furthermore, S. sinensis extracts obtained by E+U show high antioxidant activity, and IC50 values of 0.47 mg/mL for DPPH radicals and 0.205 mg/mL for metal chelating activity. The total antioxidant assay shows superoxide radical scavenging capacity and in vitro mushroom tyrosinase inhibition in a dose-dependent manner, suggesting that E+U can be used for extraction of bioactive compounds from S. sinensis.

  2. In vitro antioxidant activities, free radical scavenging capacity, and tyrosinase inhibitory of flavonoid compounds and ferulic acid from Spiranthes sinensis (Pers.) Ames.

    Science.gov (United States)

    Liang, Chung Pin; Chang, Chia Hao; Liang, Chien Cheng; Hung, Kuei Yu; Hsieh, Chang Wei

    2014-04-15

    In this study, ultrasound-assisted extraction (UAE) and other methods of extracting flavonoid compounds and ferulic acid (FA) from S. sinensis were investigated. Five different extraction methods, including water extraction (W), water extraction using UAE (W+U), 75% ethanol extraction (E), 75% ethanol extraction using UAE (E+U), and supercritical CO2 extraction (SFE) were applied in the extraction of bioactive compounds (flavonoids and ferulic acid) in order to compare their efficiency. The highest yield of flavonoids (4.28 mg/g) and ferulic acid (4.13 mg/g) content was detected in the E+U extract. Furthermore, S. sinensis extracts obtained by E+U show high antioxidant activity, and IC50 values of 0.47 mg/mL for DPPH radicals and 0.205 mg/mL for metal chelating activity. The total antioxidant assay shows superoxide radical scavenging capacity and in vitro mushroom tyrosinase inhibition in a dose-dependent manner, suggesting that E+U can be used for extraction of bioactive compounds from S. sinensis.

  3. Nutritional quality of fresh and heated Aleppo pine (Pinus halepensis Mill.) seed oil: trans-fatty acid isomers profiles and antioxidant properties.

    Science.gov (United States)

    Dhibi, Madiha; Issaoui, Manel; Brahmi, Faten; Mechri, Beligh; Mnari, Amira; Cheraif, Imed; Skhiri, Fathia; Gazzah, Noureddine; Hammami, Mohamed

    2014-08-01

    Numerous studies have focused on trans fatty acids (TFA) technologically produced by partial hydrogenation of oils. However, TFA can also be present in fresh oils. For this reason, cis fatty acid (CFA), TFA and conjugated linoleic acid (CLA) of fresh and heated Aleppo pine seed oil (APSO) at frying temperature (180 °C) were evaluated and correlated with the antioxidant characteristics. Results showed that fresh APSO had a low oleic/linoleic ratio O/L (0.4). Total TFA in fresh APSO reached 1%. The predominant TFA was 18:2 n-6 (t9, t12) in both fresh and heated APSO. Individual TFA increased with significant differences (p < 0.05) with heating time. CLA occurred after 4 h and significantly increased (p < 0.05) accounting 10% of total TFA after 10 h. Total TFA are negatively correlated with α-tocopherol, γ-tocopherol (p < 0.05) and carotenoïds (p < 0.01) and positively correlated with remaining DPPH. Oil stability index (OSI) showed significant negative correlation with TFA (r = -0.925; p = 0.008). A principal component analysis (PCA) showed a clear discrimination between fresh and heated oils. Temperature, heating time, unsaturation degree and antioxidants are combined factors which significantly affect the isomerization rate and nutritional quality of APSO.

  4. Study on the Efficiency of Grape Seed Meals Used as Antioxidants in Layer Diets Enriched with Polyunsaturated Fatty Acids Compared with Vitamin E

    Directory of Open Access Journals (Sweden)

    M Olteanu

    Full Text Available ABSTRACT The 4-week study was conducted with 180 Lohmann Brown layers (52 weeks of age. The layers were assigned to three groups (C, E1 and E2. The basal diet (group C consisted mainly of corn, soybean meal and corn gluten, and contained 19% crude protein and 11.58 MJ/kg metabolizable energy. The diets for groups E1 and E2 differed from group C by the inclusion of 5% flax meal and of dietary antioxidants. The concentration of α-linolenic acid in the fat of E1 and E2 diets was almost 10 times higher than in group C. E1 diet was supplemented with vitamin E (100 mg/kg feed, DM, while E2 diet was supplemented with 2% grape seed meal (polyphenols: 630.890 µg gallic acid equivalents/g sample; flavonoids: 5.065 µg rutin equivalents/g sample; antioxidant capacity: 28.468 mM trolox equivalents/g sample. The antioxidant capacity of E2 was higher than in C, but lower than in E1. Haugh units of the eggs (18 eggs/group harvested during the last experimental week were not significantly different among groups. The ω-6/ω-3 polyunsaturated fatty acids (PUFAs ratio in the fat from the eggs was 4.46 ± 0.11 (E1 and 4.52 ± 0.21 (E2, three times lower (p<0.05 than the control group (14.70 ± 0.43. In group E1 in particular, but also in group E2, the concentration of total polyphenols in the egg yolk was higher (p<0.05 than in group C.

  5. Ameliorative effect of synthetic γ-aminobutyric acid (GABA) on performance traits, antioxidant status and immune response in broiler exposed to cyclic heat stress.

    Science.gov (United States)

    Chand, Naila; Muhammad, Sher; Khan, Rifat Ullah; Alhidary, Ibrahim Abdullah; Rehman, Zia Ur

    2016-12-01

    The aim of this study was to find the effect of synthetic γ-aminobutyric acid (GABA) on the performance, antioxidant status, and immune response in broiler exposed to summer stress. A total of 400-day-old male broiler chickens (Ross 308) was randomly distributed into five treatments (5 replicates). One group served as a control (basal diet only) while the others were supplemented with GABA at the rate of 25 (GABA-25), 50 (GABA 50), 75 (GABA-75), and 100 (GABA-100) mg/kg feed. The experiment was continued for 35 days. Feed intake during the third week was significantly higher (P heat stress.

  6. Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger

    OpenAIRE

    Ghasemzadeh Ali; Jaafar Hawa ZE; Karimi Ehsan; Ibrahim Mohd

    2012-01-01

    Abstract Background The increase in atmospheric CO2 concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M) and CO2 enrichment (at two levels: 400 and 800 μmol·mol−1) on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids f...

  7. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    Science.gov (United States)

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest

  8. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L. Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    Directory of Open Access Journals (Sweden)

    Pasquale Filannino

    Full Text Available Cactus pear (Opuntia ficus-indica L. is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05 on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05 of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05 higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The

  9. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties

    Science.gov (United States)

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties o