WorldWideScience

Sample records for antioxidant diferulic acids

  1. Intestinal release and uptake of phenolic antioxidant diferulic acids

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Kroon, P A; Williamson, G

    2001-01-01

    Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester-linked to......Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester...... in oil. Our study also reveals that human and rat colonic microflora contain esterase activity able to release 5-5-, 8-O-4-, and 8-5-diferulic acids from model compounds and dietary cereal brans, hence providing a mechanism for release of dietary diferulates prior to absorption of the free acids....... In addition, cell-free extracts from human and rat small intestine mucosa exhibited esterase activity towards diferulate esters. Hence, we have shown that esterified diferulates can be released from cereal brans by intestinal enzymes, and that free diferulic acids can be absorbed and enter the circulatory...

  2. Intestinal release and uptake of phenolic antioxidant diferulic acids

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Kroon, P A; Williamson, G

    2001-01-01

    Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester-linked to......Diferulic acids are potent antioxidants and are abundant structural components of plant cell walls, especially in cereal brans. As such, they are part of many human and animal diets and may contribute to the beneficial effect of cereal brans on health. However, these phenolics are ester...... system. Our results suggest that the phenolic antioxidant diferulic acids are bioavailable. Udgivelsesdato: 2001-Aug-1...

  3. Astaxanthin diferulate as a bifunctional antioxidant

    DEFF Research Database (Denmark)

    Papa, T.B.R.; Pinho, V.D.; Nascimento, E.P. do

    2015-01-01

    Abstract Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(- 1)s(- 1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(- 1)s(- 1). The ferulate moiety in the astaxanthin diester is a better radical....... The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability....

  4. A novel feruloyl esterase from rumen microbial metagenome: Gene cloning and enzyme characterization in the release of mono- and diferulic acids

    Science.gov (United States)

    A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae4) was classified as a Type D feruloyl esterase based on its action on synthetic substrates and ability to release diferulates. The RuFae4 alone releas...

  5. Butylated caffeic acid: An efficient novel antioxidant

    Directory of Open Access Journals (Sweden)

    G. Shi

    2017-09-01

    Full Text Available A novel antioxidant, butylated caffeic acid (BCA was rationally designed by adding a tert-butyl group to caffeic acid, which was synthesized at a high yield (36.2% from 2-methoxy-4-methylphenol by a four-step reaction including Friedel-Crafts alkylation, bromine oxidation, ether bond hydrolysis and Knoevenagel condensation. Its antioxidant capacity was much stronger than common commercial antioxidant tert-butyl hydroquinone (TBHQ and its mother compound, caffeic acid, in both rancimat and deep frying tests. When investigated via the DPPH method, the antioxidant capacity of BCA was almost equal to TBHQ, but lower than caffeic acid. BCA could be a potentially strong antioxidant, especially for food processing at high temperatures such as deep frying and baking.

  6. Butylated caffeic acid: An efficient novel antioxidant

    International Nuclear Information System (INIS)

    Shi, G.; Liao, X.; Olajide, T.M.; Liu, J.; Jiang, X.; Weng, X.

    2017-01-01

    A novel antioxidant, butylated caffeic acid (BCA) was rationally designed by adding a tert-butyl group to caffeic acid, which was synthesized at a high yield (36.2%) from 2-methoxy-4-methylphenol (1) by a four-step reaction including Friedel-Crafts alkylation, bromine oxidation, ether bond hydrolysis and Knoevenagel condensation. Its antioxidant capacity was much stronger than common commercial antioxidant tert-butyl hydroquinone (TBHQ) and its mother compound, caffeic acid, in both rancimat and deep frying tests. When investigated via the DPPH method, the antioxidant capacity of BCA was almost equal to TBHQ, but lower than caffeic acid. BCA could be a potentially strong antioxidant, especially for food processing at high temperatures such as deep frying and baking. [es

  7. Characterization of diferuloylated pectic polysaccharides from quinoa (Chenopodium quinoa WILLD.).

    Science.gov (United States)

    Wefers, Daniel; Gmeiner, Bianca M; Tyl, Catrin E; Bunzel, Mirko

    2015-08-01

    In plants belonging to the order of Caryophyllales, pectic neutral side chains can be substituted with ferulic acid. The ability of ferulic acid to form intra- and/or intermolecular polysaccharide cross-links by dimerization was shown by the isolation and characterization of diferulic acid oligosaccharides from monocotyledonous plants. In this study, two diferulic acid oligosaccharides were isolated from the enzymatic hydrolyzate of seeds of the dicotyledonous pseudocereal quinoa by gel permeation chromatography and preparative HPLC and unambiguously identified by LC-MS(2) and 1D/2D NMR spectroscopy. The isolated oligosaccharides are comprised of 5-5- and 8-O-4-diferulic acid linked to the O2-position of the nonreducing residue of two (1→5)-linked arabinobioses. To get insight into the structure and the degree of phenolic acid substitution of the diferuloylated polysaccharides, polymeric sugar composition, glycosidic linkages, and polysaccharide-bound monomeric phenolic acids and diferulic acids were analyzed. This study demonstrates that diferulic acids are involved into intramolecular and/or intermolecular cross-linking of arabinan chains and may have a major impact on cell wall architecture of quinoa and other dicotyledonous plants of the order of Caryophyllales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Antioxidative Categorization of Twenty Amino Acids Based on Experimental Evaluation.

    Science.gov (United States)

    Xu, Naijin; Chen, Guanqun; Liu, Hui

    2017-11-27

    In view of the great importance bestowed on amino acids as antioxidants in oxidation resistance, we attempted two common redox titration methods in this report, including micro-potassium permanganate titration and iodometric titration, to measure the antioxidative capacity of 20 amino acids, which are the construction units of proteins in living organisms. Based on the relative intensities of the antioxidative capacity, we further conducted a quantitative comparison and found out that the product of experimental values obtained from the two methods was proven to be a better indicator for evaluating the relative antioxidative capacity of amino acids. The experimental results were largely in accordance with structural analysis made on amino acids. On the whole, the 20 amino acids concerned could be divided into two categories according to their antioxidative capacity. Seven amino acids, including tryptophan, methionine, histidine, lysine, cysteine, arginine and tyrosine, were greater in total antioxidative capacity compared with the other 13 amino acids.

  9. Comparison of the antioxidant effects of carnosic acid and synthetic antioxidants on tara seed oil.

    Science.gov (United States)

    Li, Zhan-Jun; Yang, Feng-Jian; Yang, Lei; Zu, Yuan-Gang

    2018-04-04

    In the present study, tara seed oil was obtained by supercritical fluid extraction and used to investigate the antioxidant strength of carnosic acid (CA) compared with conventional synthetic antioxidants. The antioxidants were added to the tara seed oil at 0.2 mg of antioxidant per gram of oil. The samples were then submitted to at 60 °C 15 days for an accelerated oxidation process, with samples taken regularly for analysis. After oxidation, the samples were analyzed to determine the peroxide value, thiobarbituric acid reactive substances, conjugated diene content, and free fatty acid content. CA was investigated at three purity levels (CA20, CA60, CA99), and compared with three synthetic antioxidants (butylatedhydroxyanisole, butylatedhydroxytoluene, and tert-butylhydroquinone). The oxidation indicators showed that CA was a strong antioxidant compared to the synthetic antioxidants. The antioxidant activities decreased in the order: tert-butylhydroquinone > CA99 > CA60 > CA20 > butylatedhydroxyanisole > butylatedhydroxytoluene. These results show that CA could be used to replace synthetic antioxidants in oil products, and should be safer for human consumption and the environment.

  10. Uric acid contributes greatly to hepatic antioxidant capacity besides protein.

    Science.gov (United States)

    Mikami, T; Sorimachi, M

    2017-12-20

    Uric acid is the end-product of purine nucleotide metabolism and an increase in uric acid concentration in the body results in hyperuricemia, ultimately leading to gout. However, uric acid is a potent antioxidant and interacts with reactive oxygen species (ROS) to be non-enzymatically converted to allantoin. Uric acid accounts for approximately 60 % of antioxidant capacity in the plasma; however, its contribution to tissue antioxidant capacity is unknown. In this study, the contribution of uric acid to tissue antioxidant capacity and its conversion to allantoin by scavenging ROS in tissue were examined. The results showed that a decrease in hepatic uric acid content via allopurinol administration significantly reduced hepatic total-radical trapping antioxidant parameter (TRAP) content in protein-free cytosol. Additionally, treating protein-free cytosol with uricase led to a further reduction of hepatic TRAP content. Allantoin was also detected in the solution containing protein-free cytosol that reacted with ROS. These findings suggest that in the absence of protein, uric acid contributes greatly to antioxidant capacity in the liver, where uric acid is converted to allantoin by scavenging ROS.

  11. Composition of antioxidants and amino acids in Stevia leaf infusions.

    Science.gov (United States)

    Periche, Angela; Koutsidis, Georgios; Escriche, Isabel

    2014-03-01

    Stevia, a non-caloric natural sweetener with beneficial properties and considerable antioxidants and amino acids, is increasingly consumed as an infusion. This work evaluates the influence of the conditions (temperature: 50, 70 or 90 °C and time: 1, 5, 20 or 40 min) applied to obtain Stevia infusions, on antioxidants (total phenols, flavonoids and antioxidant activity) and amino acids. The total concentration of the eleven amino acids found was 11.70 mg/g in dried leaves and from 6.84 to 9.11 mg/g per gram of Stevia in infusions. However, infusions showed higher levels of certain amino acids (alanine, asparagine, leucine and proline), and greater values of the three antioxidant parameters in comparison with dry leaves. Temperature had more influence (minimum values at 50 °C and maximum at 90 °C) than time in the case of antioxidants. At 90 °C there were no important increases in the extraction of antioxidant compounds after 5 min; each gram of Stevia had 117 mg trolox (total antioxidant activity), 90 mg gallic acid (total phenols) and 56 mg catechin equivalents (flavonoids). Varying the temperature and time conditions no notable differences were observed in the concentrations of the majority of amino acids. However, the infusion treatment at 90 °C for 5 min was the best, as it gave the highest yield of 8 of the 11 amino acids. Therefore, with respect to the compounds analyzed in this study, the best way to obtain Stevia leaf infusions is the same as the domestic process, almost boiling water for a short time.

  12. Rapid syntheses of dehydrodiferulates via biomimetic radical coupling reactions of ethyl ferulate.

    Science.gov (United States)

    Lu, Fachuang; Wei, Liping; Azarpira, Ali; Ralph, John

    2012-08-29

    Dehydrodimerization of ferulates in grass cell walls provides a pathway toward cross-linking polysaccharide chains limiting the digestibility of carbohydrates by ruminant bacteria and in general affecting the utilization of grass as a renewable bioresource. Analysis of dehydrodiferulates (henceforth termed diferulates) in plant cell walls is useful in the evaluation of the quality of dairy forages as animal feeds. Therefore, there has been considerable demand for quantities of diferulates as standards for such analyses. Described here are syntheses of diferulates from ethyl ferulate via biomimetic radical coupling reactions using the copper(II)-tetramethylethylenediamine [CuCl(OH)-TMEDA] complex as oxidant or catalyst. Although CuCl(OH)-TMEDA oxidation of ethyl ferulate in acetonitrile produced mixtures composed of 8-O-4-, 8-5-, 8-8- (cyclic and noncyclic), and 5-5-coupled diferulates, a catalyzed oxidation using CuCl(OH)-TMEDA as catalyst and oxygen as an oxidant resulted in better overall yields of such diferulates. Flash chromatographic fractionation allowed isolation of 8-8- and 5-5-coupled diferulates. 8-5-Diferulate coeluted with 8-O-4-diferulate but was separated from it via crystallization; the 8-O-4 diferulate left in the mother solution was isolated by rechromatography following a simple tetrabutylammonium fluoride treatment that converted 8-5-diferulate to another useful diferulate, 8-5-(noncyclic) diferulate. Therefore, six of the nine (5-5, 8-O-4, 8-5-c, 8-5-nc, 8-5-dc, 8-8-c, 8-8-nc, 8-8-THF, 4-O-5) diferulic acids that have to date been found in the alkaline hydrolysates of plant cell walls can be readily synthesized by the CuCl(OH)-TMEDA catalyzed aerobic oxidative coupling reaction and subsequent saponification described here.

  13. Plasma Ascorbic Acid and Non-Enzymatic Antioxidants Level in ...

    African Journals Online (AJOL)

    Free radicals have been implicated in the pathology of several diseases including cataract. Ascorbic acid functions as the major chain breaking antioxidant vitamin in the aqueous phase. Bilirubin, albumin and uric acid are regarded as natural antioxidants. There are conflicting reports on plasma concentrations of these ...

  14. Addition of anacardic acid as antioxidants in broiler chicken mortadella

    Directory of Open Access Journals (Sweden)

    Virgínia Kelly Gonçalves ABREU

    2015-09-01

    Full Text Available AbstractThe effect of anacardic acid on lipid stability and coloration of chicken mortadella was investigated. Antioxidants were added to chicken mortadellas, according to the treatments: no added antioxidant, 100 ppm butylated hydroxytoluene and 50, 100, 150 and 200 ppm anacardic acid. The mortadellas were stored for 90 days at 4 °C, and the analysis of lipid oxidation and color were performed. For TBARS, there was linear reduction with increased anacardic acid. According to the means test, 200 ppm anacardic acid provided the lower TBARS values. The redness decreased during storage, and, as reported by the means test, mortadella containing 200 ppm anacardic acid had lower values. The lightness of mortadellas decreased during storage. Also in accordance with the means test, mortadellas containing antioxidants had same lightness than control. The yellowness of mortadellas increased during storage. Thus, the anacardic acid is a potential natural antioxidant that could be included in chicken mortadella formulations before cooking.

  15. Production of starch with antioxidative activity by baking starch with organic acids.

    Science.gov (United States)

    Miwa, Shoji; Nakamura, Megumi; Okuno, Michiko; Miyazaki, Hisako; Watanabe, Jun; Ishikawa-Takano, Yuko; Miura, Makoto; Takase, Nao; Hayakawa, Sachio; Kobayashi, Shoichi

    2011-01-01

    A starch ingredient with antioxidative activity, as measured by the DPPH method, was produced by baking corn starch with an organic acid; it has been named ANOX sugar (antioxidative sugar). The baking temperature and time were fixed at 170 °C and 60 min, and the organic acid used was selected from preliminary trials of various kinds of acid. The phytic acid ANOX sugar preparation showed the highest antioxidative activity, but the color of the preparation was almost black; we therefore selected L-tartaric acid which had the second highest antioxidative activity. The antioxidative activity of the L-tartaric acid ANOX sugar preparation was stable against temperature, light, and enzyme treatments (α-amylase and glucoamylase). However, the activity was not stable against variations in water content and pH value. The antioxidative activity of ANOX sugar was stabilized by treating with boiled water or nitrogen gas, or by pH adjustment.

  16. Antioxidant capacity and phenolic acids of virgin coconut oil.

    Science.gov (United States)

    Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I

    2009-01-01

    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.

  17. Antioxidant and cyclooxygenase activities of fatty acids found in food.

    Science.gov (United States)

    Henry, Geneive E; Momin, Rafikali A; Nair, Muraleedharan G; Dewitt, David L

    2002-04-10

    Several commercially available C-8 to C-24 saturated and unsaturated fatty acids (1-29) were assayed for cyclooxygenase-I (COX-I) and cyclooxygenase-II (COX-II) inhibitory and antioxidant activities. Among the saturated fatty acids tested at 60 microg mL(-1), there was an increase in antioxidant activity with increasing chain length from octanoic acid to myristic acid (C-8-C-14) and a decrease thereafter. All unsaturated fatty acids tested at 60 microg mL(-1) showed good antioxidant activity except for undecylenic acid (12), cis-5-dodecenoic acid (13), and nervonic acid (29). The highest inhibitory activities among the saturated fatty acids tested on cyclooxygenase enzymes COX-I and COX-II were observed for decanoic acid to lauric acid (3-5) at 100 microg mL(-1). Similarly, among the unsaturated fatty acids tested, the highest activities were observed for cis-8,11,14-eicosatrienoic acid (25) and cis-13,16-docosadienoic acid (27) at 100 microg mL(-1).

  18. Spectroscopic studies on the antioxidant activity of ellagic acid

    Science.gov (United States)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  19. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    Science.gov (United States)

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  20. Beneficial effects of antioxidative lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hisako Nakagawa

    2017-01-01

    Full Text Available Oxidative stress is caused by exposure to reactive oxygen intermediates. The oxidative damage of cell components such as proteins, lipids, and nucleic acids one of the important factors associated with diabetes mellitus, cancers and cardiovascular diseases. This occurs as a result of imbalance between the generations of oxygen derived radicals and the organism’s antioxidant potential. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. To date, many studies have focused on food sources, nutrients, and components that exert antioxidant activity in worms, flies, mice, and humans. Probiotics, live microorganisms that when administered in adequate amounts provide many beneficial effects on the human health, have been attracting growing interest for their health-promoting effects, and have often been administered in fermented milk products. In particular, lactic acid bacteria (LAB are known to conferre physiologic benefits. Many studies have indicated the antioxidative activity of LAB. Here we review that the effects of lactic acid bacteria to respond to oxidative stress, is connected to oxidative-stress related disease and aging.

  1. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid

    Science.gov (United States)

    Goufo, Piebiep; Trindade, Henrique

    2014-01-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice. PMID:24804068

  2. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid.

    Science.gov (United States)

    Goufo, Piebiep; Trindade, Henrique

    2014-03-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.

  3. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid

    DEFF Research Database (Denmark)

    Meyer, Anne Merete Boye; Jacobsen, Charlotte Munch

    1996-01-01

    Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147.......Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147....

  4. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Key words: Antioxidant enzymes; Catharanthus roseus; indole alkaloids; phenolic metabolism; salicylic acid; salinity stress. Abbreviations: CAT - catalase; Chl - chlorophyll; Car - carotenoids; DTNB - 5,5-dithiobis-2-nitrobenzoic acid; GR - glutathione reductase; GST - Glutathione-S-transferase; H2O2 - hydrogen peroxide; ...

  5. Chitosan-caffeic acid-genipin films presenting enhanced antioxidant activity and stability in acidic media.

    Science.gov (United States)

    Nunes, Cláudia; Maricato, Élia; Cunha, Ângela; Nunes, Alexandra; da Silva, José A Lopes; Coimbra, Manuel A

    2013-01-02

    The use of chitosan films has been limited due to their high degradability in aqueous acidic media. In order to produce chitosan films with high antioxidant activity and insoluble in acid solutions caffeic acid was grafted to chitosan by a radical mechanism using ammonium cerium (IV) nitrate (60 mM). Genipin was used as cross-linker. This methodology originated films with 80% higher antioxidant activity than the pristine film. Also, these films only lost 11% of their mass upon seven days immersion into an aqueous solution at pH 3.5 under stirring. The films surface wettability (contact angle 105°), mechanical properties (68 MPa of tensile strength and 4% of elongation at break), and thermal stability for temperatures lower than 300 °C were not significantly influenced by the covalent linkage of caffeic acid and genipin to chitosan. Due to their characteristics, mainly higher antioxidant activity and lower solubility, these are promising materials to be used as active films. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Antioxidant activity of probiotic lactic acid bacteria isolated from Mongolian airag

    Directory of Open Access Journals (Sweden)

    E Uugantsetseg

    2014-12-01

    Full Text Available This research aimed to determine the antioxidant activity of probiotic lactic acid bacteria isolated from airag. In this study, 42 lactic acid bacteria were isolated from Mongolian airag. All isolates were identified by using morphological, biochemical and physiological methods. The isolated bacteria were studied for antagonistic effects on Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, 22 strains showed antibacterial activity. When we examined their probiotic properties such as bile acid tolerance and gastric acid tolerance, it is shown that only 6 bacterial strains can survive up to 3  hours in a pH 3.0 acid environment  and up to 8 hours in  0.3% bile acid environment. Selected probiotic strains were further identified to species by API 50CHL system. Antioxidant activity of  probiotic  strains were determined by 1,1-diphenyl-2 picrylhydrazyl (DPPH assay. While the antioxidant activity in cell free supernatant fluctuated between the range of 26.1-38.4%,  the antioxidant activity after 72 hours of fermentation in the whey fraction was between 17.23-55.12%. DOI: http://doi.dx.org/10.5564/mjc.v15i0.327 Mongolian Journal of Chemistry 15 (41, 2014, p73-78

  7. Uric acid, an important antioxidant contributing to survival in termites

    Science.gov (United States)

    Tasaki, Eisuke; Sakurai, Hiroki; Nitao, Masaru; Matsuura, Kenji; Iuchi, Yoshihito

    2017-01-01

    Reactive oxygen species (ROS) are generated spontaneously in all organisms and cause oxidative damage to biomolecules when present in excess. Accumulated oxidative damage accelerates aging; enhanced antioxidant capacity may be a positive factor for longevity. Recently, numerous studies of aging and longevity have been performed using short-lived animals, however, longevity mechanisms remain unknown. Here we show that a termite Reticulitermes speratus that is thought to be long-lived eusocial insect than other solitary insects uses large quantities of uric acid as an antioxidant against ROS. We demonstrated that the accumulation of uric acid considerably increases the free radical-scavenging activity and resistance against ultraviolet-induced oxidative stress in laboratory-maintained termites. In addition, we found that externally administered uric acid aided termite survival under highly oxidative conditions. The present data demonstrates that in addition to nutritional and metabolic roles, uric acid is an essential antioxidant for survival and contributes significantly to longevity. Uric acid also plays important roles in primates but causes gout when present in excess in humans. Further longevity studies of long-lived organisms may provide important breakthroughs with human health applications. PMID:28609463

  8. Antioxidant Activities of Selected Berries and Their Free, Esterified, and Insoluble-Bound Phenolic Acid Contents

    Science.gov (United States)

    2018-01-01

    To explore the potential of berries as natural sources of bioactive compounds, the quantities of free, esterified, and insoluble-bound phenolic acids in a number of berries were determined. In addition, the antioxidant activities of the berries were determined using 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, ferric reducing antioxidant power, and Trolox equivalent antioxidant capacity assays, in addition to determination of their metal ion chelating activities. Furthermore, several phenolic compounds were detected using high-performance liquid chromatography. Of the 6 tested berries, black chokeberry and blackberry exhibited the strongest antioxidant activities, and the various berry samples were found to contain catechin, caffeic acid, p-coumaric acid, epicatechin, vanillic acid, quercitrin, resveratrol, morin, naringenin, and apigenin. Moreover, the antioxidant activities and total phenolic contents of the fractions containing insoluble-bound phenolic acids were higher than those containing the free and esterified phenolic acids. The results imply that the insoluble-bound fractions of these berries are important natural sources of antioxidants for the preparation of functional food ingredients and preventing diseases associated with oxidative stress. PMID:29662846

  9. The substituent and solvent effects on the antioxidant activity of the ferulic acid derivations

    International Nuclear Information System (INIS)

    Najafi, M.; Bukhari, S.A.

    2014-01-01

    The antioxidant activity of ortho and meta substituted ferulic acid derivatives have been investigated in the gas phase and water. The reaction enthalpies of antioxidant activity of studied derivatives have been calculated and compared with corresponding values of ferulic acid. Results show that EWG substituents increase the BDE, IP, while EDG ones cause a rise in the PA. The ferulic acid derivatives with lowest BDE, IP and PA values were identified as the compounds with high antioxidant activity. Results show that the substituents at ortho position have high potential for synthesis of novel ferulic acid derivatives. Results show that ferulic acid derivatives can process their protective role via HAT and SPLET mechanism in gas phase and solvent, respectively. The calculated reaction enthalpies of the substituted ferulic acids have linear dependences with Hammett constants and EHOMO that can be utilized in the selection of suitable substituents for the synthesis of novel antioxidants based on ferulic acid. (author)

  10. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    Science.gov (United States)

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.

  11. Antioxidant poly(lactic-co-glycolic) acid nanoparticles made with α-tocopherol-ascorbic acid surfactant.

    Science.gov (United States)

    Astete, Carlos E; Dolliver, Debra; Whaley, Meocha; Khachatryan, Lavrent; Sabliov, Cristina M

    2011-12-27

    The goal of the study was to synthesize a surfactant made of α-tocopherol (vitamin E) and ascorbic acid (vitamin C) of antioxidant properties dubbed as EC, and to use this surfactant to make poly(lactic-co-glycolic) acid (PLGA) nanoparticles. Self-assembled EC nanostructures and PLGA-EC nanoparticles were made by nanoprecipitation, and their physical properties (size, size distribution, morphology) were studied at different salt concentrations, surfactant concentrations, and polymer/surfactant ratios. EC surfactant was shown to form self-assembled nanostructures in water with a size of 22 to 138 nm in the presence of sodium chloride, or 12 to 31 nm when synthesis was carried out in sodium bicarbonate. Polymeric PLGA-EC nanoparticles presented a size of 90 to 126 nm for 40% to 120% mass ratio PLGA to surfactant. For the same mass ratios, the PLGA-Span80 formed particles measured 155 to 216 nm. Span80 formed bilayers, whereas EC formed monolayers at the interfaces. PLGA-EC nanoparticles and EC showed antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay measurements using UV and EPR techniques, antioxidant activity which is not characteristic to commercially available Span80. The thiobarbituric acid reactive substances (TBARS) assay for lipid peroxidation showed that PLGA nanoparticles with EC performed better as antioxidants than the EC nanoassembly or the free vitamin C. Nanoparticles were readily internalized by HepG2 cells and were localized in the cytoplasm. The newly synthesized EC surfactant was therefore found successful in forming uniform, small size polymeric nanoparticles of intrinsic antioxidant properties.

  12. Comparison of Antioxidant Evaluation Assays for Investigating Antioxidative Activity of Gallic Acid and Its Alkyl Esters in Different Food Matrices.

    Science.gov (United States)

    Phonsatta, Natthaporn; Deetae, Pawinee; Luangpituksa, Pairoj; Grajeda-Iglesias, Claudia; Figueroa-Espinoza, Maria Cruz; Le Comte, Jérôme; Villeneuve, Pierre; Decker, Eric A; Visessanguan, Wonnop; Panya, Atikorn

    2017-08-30

    The addition of antioxidants is one of the strategies to inhibit lipid oxidation, a major cause of lipid deterioration in foods leading to rancidity development and nutritional losses. However, several studies have been reported that conventional antioxidant assays, e.g., TPC, ABTS, FRAP, and ORAC could not predict antioxidant performance in several foods. This study aimed to investigate the performance of two recently developed assays, e.g., the conjugated autoxidizable triene (CAT) and the apolar radical-initiated conjugated autoxidizable triene (ApoCAT) assays to predict the antioxidant effectiveness of gallic acid and its esters in selected food models in comparison with the conventional antioxidant assays. The results indicated that the polarities of the antioxidants have a strong impact on antioxidant activities. In addition, different oxidant locations demonstrated by the CAT and ApoCAT assays influenced the overall antioxidant performances of the antioxidants with different polarities. To validate the predictability of the assays, the antioxidative performance of gallic acid and its alkyl esters was investigated in oil-in-water (O/W) emulsions, bulk soybean oils, and roasted peanuts as the lipid food models. The results showed that only the ApoCAT assay could be able to predict the antioxidative performances in O/W emulsions regardless of the antioxidant polarities. This study demonstrated that the relevance of antioxidant assays to food models was strongly dependent on physical similarities between the tested assays and the food structure matrices.

  13. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise : Partition of ascorbic acid

    DEFF Research Database (Denmark)

    Meyer, A.S.; Jacobsen, Charlotte Munch

    1996-01-01

    The distribution of ascorbic acid between the lipid and aqueous phase was investigated in mayonnaises enriched with fish oil containing a synergistic antioxidant mixture of ascorbic acid, lecithin and gamma-tocopherol, i.e., the A/L/T system (Loliger and Saucy 1989). The ascorbic acid was found...... to be located in the aqueous phase indicating that the A/L/T system broke down in mayonnaises. Based on the hypothesis that synergistic antioxidant action between ascorbic acid, lecithin and tocopherol requires that the three components are in close assembly, the results offer an explanation as to why the A...

  14. Phenolic acids and antioxidant activity of wheat species: a review

    Directory of Open Access Journals (Sweden)

    Leváková Ľudmila

    2017-10-01

    Full Text Available Wheat (genus Triticum is considered to be an important source of polyphenols, plant secondary metabolites with numerous health-promoting effects. Many phytochemicals are responsible for the high antioxidant activity of whole grain products. However, there is a lack of information about composition of phenolic acids and their concentrations in different Triticum species. Despite the fact that the increased consumption of whole grain cereals and whole grain-based products has been closely related to reduced risk of chronic diseases, bioactive compounds found in whole grain cereals have not achieved as much attention as the bioactive compounds in vegetables and fruits. Recent studies have revealed that the content of bioactive compounds and antioxidant capacity of whole grain cereals have been regularly undervalued in the literature, because they contain more polyphenols and other phytochemicals than was reported in the past. Phenolic acids represent a large group of bioactive compounds in cereals. These compounds play a significant role in the possible positive effects of the human diet rich in whole grain cereals, especially in wheat and provide health benefits associated with demonstrably diminished risk of chronic disease development. Ferulic acid, the primary and the most abundant phenolic acid contained in wheat grain, is mainly responsible for the antioxidant activity of wheat, particularly bran fraction. In this paper, selected phenolic compounds in wheat, their antioxidant activity and health benefits related to consumption of whole grain cereals are reviewed.

  15. Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk

    DEFF Research Database (Denmark)

    Alemán, Mercedes; Bou, Ricard; Guardiola, Francesc

    2015-01-01

    The antioxidative effect of lipophilized caffeic acid was assessed in two different fish oil enriched food products: mayonnaise and milk. In both emulsion systems, caffeic acid esterified with fatty alcohols of different chain lengths (C1–C20) were better antioxidants than the original phenolic c...

  16. Folic acid content and antioxidant activity of different types of beers available in Hungarian retail.

    Science.gov (United States)

    Koren, Dániel; Orbán, Csaba; Galló, Nóra; Kun, Szilárd; Vecseri-Hegyes, Beáta; Kun-Farkas, Gabriella

    2017-04-01

    In this study 40 Hungarian retail beers were evaluated for folic acid content, antioxidant profile and physicochemical parameters. The physicochemical parameters, folic acid content and antioxidant activity of alcohol-free beers were the lowest. Folic acid content of beers aged with sour cherries showed high values, more than 0.4 mg/l and an alcohol-free beer-based mixed drink made with lemon juice contained more than 0.2 mg/l of folic acid. Dark beers and beers aged with sour cherries had the highest antioxidant activity probably owing to their high extract content, components released from the fruits and special malts. These results highlight the possibility of achieving adequate folic acid and relevant antioxidant intake without excessive alcohol and energy consumption by selecting appropriate beer types.

  17. Fulvic acid affects pepper antioxidant activity and fruit quality ...

    African Journals Online (AJOL)

    Fulvic acid has been considered as a valuable fertilizer for sustainable agriculture. The present investigation was undertaken to evaluate the effect of fulvic acid (FA) on antioxidant compounds and fruit quality of pepper under field conditions. Plants were grown in the Department of Horticulture Farm, Ferdowsi University of ...

  18. Characterization and antioxidant activity of gallic acid derivative

    Science.gov (United States)

    Malinda, Krissan; Sutanto, Hery; Darmawan, Akhmad

    2017-11-01

    Peroxidase enzyme was used to catalyze the dimerization process of gallic acid. The structure of the dimerization product was characterized by 1H NMR and LC-MS-MS. The mechanism of gallic acid dimerization was also discussed. It was proposed that ellagic acid was formed through an oxidative coupling mechanism that lead to the formation of a C-C bond and followed by an intramolecular Fischer esterification mechanism that lead to the formation of two C-O bonds. Moreover, the antioxidant activity of gallic acid and ellagic acid were also studied. Gallic acid and ellagic acid exhibited the DPPH radical scavenging activity with IC50 values of 13.2 μM and 15.9 μM, respectively.

  19. Synthesis and Antiradical/Antioxidant Activities of Caffeic Acid Phenethyl Ester and Its Related Propionic, Acetic, and Benzoic Acid Analoguesc

    Directory of Open Access Journals (Sweden)

    Mohamed Touaibia

    2012-12-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is a bioactive component isolated from propolis. A series of CAPE analogues was synthesized and their antiradical/antioxidant effects analyzed. The effect of the presence of the double bond and of the conjugated system on the antioxidant effect is evaluated with the analogues obtained from 3-(3,4-dihydroxyphenyl propanoic acid. Those obtained from 2-(3,4-dihydroxyphenyl acetic acid and 3,4-dihydroxybenzoic acid allow the evaluation of the effect of the presence of two carbons between the carbonyl and aromatic system.

  20. Phenolic acid profiles and antioxidant potential of Pelargonium sidoides callus cultures

    Czech Academy of Sciences Publication Activity Database

    Kumar, V.; Moyo, M.; Grúz, Jiří; Šubrtová, Michaela; van Staden, J.

    2015-01-01

    Roč. 77, DEC 23 (2015), s. 402-408 ISSN 0926-6690 Institutional support: RVO:61389030 Keywords : Antioxidants * Hydroxybenzoic acids * Hydroxycinnamic acids Subject RIV: EF - Botanics Impact factor: 3.449, year: 2015

  1. Antioxidant activity and profile fatty acids of jabuticaba seeds (Myrciaria cauliflora berg)

    International Nuclear Information System (INIS)

    Jorge, Neuza; Bruna Jorge Bertanha; Moreno Luzia, Debora Maria

    2011-01-01

    Numerous natural compounds found in fruits, grains and vegetables have antioxidant activity. This work aimed to characterize jabuticaba seeds (Myrciaria cauliflora berg) by proximate composition, antioxidant activity and fatty acids profile of their extracted oil. To obtain the extract, the dehydrated and triturated seeds were extracted with ethyl alcohol for 30 min, at a proportion of 1:3 of seeds: ethyl alcohol, under continuous agitation, at room temperature. Afterwards, the mixture was filtered and the supernatant dehydrated at 40 Celsius degrade aiming to determine, by direct weighing, the extracts dry matter yield. According to the results, the jabuticaba seeds are an important source of total carbohydrates, and also presented relevant antioxidant activity. In the jabuticaba seeds oil, a significant percentage of polyunsaturated fatty acids stood out, with linoleic and α-linolenic being the main component, essentials fatty acids.

  2. Antioxidant status of serum bilirubin and uric acid in patients with polymyositis and dermatomyositis.

    Science.gov (United States)

    Chen, Zhibo; Su, Zhongqian; Pang, Wanhui; Huang, Yuanyuan; Lin, Jie; Ding, Zhangna; Wu, Senmin; Xu, Shunyao; Quan, Weiwei; Zheng, Juzeng; Chen, Huale; Li, Zhengzheng; Li, Xiang; Li, Jia; Weng, Yiyun; Zhang, Xu

    2017-07-01

    Oxidative stress and variations in antioxidant status are implicated in the pathogenesis of inflammatory and autoimmune diseases. Polymyositis and dermatomyositis (PM/DM) are autoimmune diseases with inflammatory cells infiltrating into skeletal muscles, and the antioxidant status is still controversial. The aim of our study was to investigate the correlation between PM/DM and the antioxidant status of serum bilirubin (Tbil, Dbil and Ibil) and uric acid (UA). We measured serum concentrations of bilirubin (Tbil, Dbil and Ibil) and uric acid in 384 individuals, including 110 PM/DM patients and 274 healthy controls. We found that PM/DM patients had significantly lower serum concentrations of bilirubin (Tbil and Ibil) and uric acid than healthy controls, whether male or female. Also, after separately adjusting the covariances of age and gender, Tbil, Dbil, Ibil and UA were all relevant factors for PM/DM. Moreover, there were no significant differences in serum antioxidant molecule levels between PM and DM subgroups. Our study demonstrated the low serum levels of bilirubin and uric acid in patients with PM/DM. This suggested low antioxidant status in PM/DM patients with excessive oxidative stress.

  3. Physicochemical properties, fatty acid profile and antioxidant activity of peanut oil

    International Nuclear Information System (INIS)

    Shad, M.A.; Pervez, H.; Zafar, Z.I.

    2011-01-01

    The oil from seeds of 4 pea nut (Arachis hypogaea L.) varieties: Golden, Bari 2000, Mongphalla, and Mongphalli 334 cultivated in arid zones, was subjected to the comparative evaluation of its physicochemical properties, fatty acid profile and antioxidant activity. Pea nut seeds were found to be a rich source of crude fat (45.09-51.63 g/100 g dry weight). The physicochemical properties of the oil were investigated as specific gravity (0.915 +-0.008-0.918+-0.008), acid value (3.96+-0.22-4.95+-0.71 mg KOH/g oil), saponification value ( 226.40+-3.59-246.56+-2.04 mg KOH/g oil) and unsaponifiable matter (3.20 +- 0.23-4.20+-0.04 g/100 g oil). The higher amounts of unsaturated fatty acids (82.06-85.93%) were found to be present in each variety. A significant variation (p<0.05) was observed among the varieties regarding crude oil content, saponification value, oleic/linoleic (O/L) ratios, phenolic acid content and total antioxidant content. Golden was found to be high in oil content, O/L ratio, antioxidant profile and DPPH scavenging activity but low in iodine value. (author)

  4. Drying affects artemisinin, dihydroartemisinic acid, artemisinic acid, and the antioxidant capacity of Artemisia annua L. leaves.

    Science.gov (United States)

    Ferreira, Jorge F S; Luthria, Devanand L

    2010-02-10

    There is limited information on how postharvest drying of Artemisia annua affects artemisinin (ART) biosynthesis and A. annua antioxidant capacity. Antioxidants may boost the bioactivity of ART and the crop commercial value. We evaluated the effect of freeze, oven, shade, and sun drying, time of drying, and light intensity on the leaf concentration of ART, dihydroartemisinic acid (DHAA), artemisinic acid (AA), and on the leaf antioxidant capacity. Freeze-dried samples had the lowest ART concentrations as compared to the other drying methods. However, the ferric reducing antioxidant power assay showed that freeze- and oven-dried samples had similarly high antioxidant activities, which declined significantly after plants were shade- and sun-dried. Shade drying for 1, 2, and 3 weeks, under ambient or low light, did not change the ART content but significantly decreased the leaf antioxidant activity, mainly if sun-dried. A significant decrease (82% average) in DHAA was observed for all drying procedures as compared to freeze drying, with a simultaneous, significant increase in ART (33% average). The average bioconversion of DHAA to ART was 43% for oven- and shade-dried plants and 94% for sun-dried plants, reiterating the hypothesis that DHAA, not AA, is the main biosynthetic precursor of ART and suggesting that sun drying improves the bioconversion from DHAA to ART. Data also indicate that oven drying for 24 h at 45 degrees C can provide good levels of both ART and antioxidants in leaves. These findings are valuable for the commercial production of ART and of bioactive antioxidants that might synergize with the antimalarial and anticancer effects of ART when combined in traditional preparations to improve human and animal health.

  5. Impact of salicylic acid on antioxidants, biomass and osmotic ...

    African Journals Online (AJOL)

    USER

    2013-08-14

    Aug 14, 2013 ... Key words: Antioxidants, growth, salicylic acid, water stress. INTRODUCTION ... All abiotic stresses such as water deficit and salt stress cause increased ..... Shakirova F (2001). The role of hormonal changes in protective.

  6. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Landbo, A K; Christensen, L P

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...... investigated using an in vitro copper-catalyzed human LDL oxidation assay. The most abundant ferulic acid dehydrodimer (diFA) found in rye, 8-O-4-diFA, was a slightly better antioxidant than ferulic acid and p-coumaric acid. The antioxidant activity of the 8-5-diFA was comparable to that of ferulic acid......, but neither 5-5-diFA nor 8-5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 microM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts...

  7. Elucidating the Structure-Activity Relationships of the Vasorelaxation and Antioxidation Properties of Thionicotinic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2010-01-01

    Full Text Available Nicotinic acid, known as vitamin B3, is an effective lipid lowering drug and intense cutaneous vasodilator. This study reports the effect of 2-(1-adamantylthionicotinic acid (6 and its amide 7 and nitrile analog 8 on phenylephrine-induced contraction of rat thoracic aorta as well as antioxidative activity. It was found that the tested thionicotinic acid analogs 6-8 exerted maximal vasorelaxation in a dose-dependent manner, but their effects were less than acetylcholine (ACh-induced nitric oxide (NO vasorelaxation. The vasorelaxations were reduced, apparently, in both NG-nitro-L-arginine methyl ester (L-NAME and indomethacin (INDO. Synergistic effects were observed in the presence of L-NAME plus INDO, leading to loss of vasorelaxation of both the ACh and the tested nicotinic acids. Complete loss of the vasorelaxation was noted under removal of endothelial cells. This infers that the vasorelaxations are mediated partially by endothelium-induced NO and prostacyclin. The thionicotinic acid analogs all exhibited antioxidant properties in both 2,2-diphenyl-1-picrylhydrazyl (DPPH and superoxide dismutase (SOD assays. Significantly, the thionicotinic acid 6 is the most potent vasorelaxant with ED50 of 21.3 nM and is the most potent antioxidant (as discerned from DPPH assay. Molecular modeling was also used to provide mechanistic insights into the vasorelaxant and antioxidative activities. The findings reveal that the thionicotinic acid analogs are a novel class of vasorelaxant and antioxidant compounds which have potential to be further developed as promising therapeutics.

  8. Antioxidant capacity and amino acid profile of millet bran wine and the synergistic interaction between major polyphenols.

    Science.gov (United States)

    Guo, XiaoXuan; Sha, XiaoHong; Rahman, Ebeydulla; Wang, Yong; Ji, BaoPing; Wu, Wei; Zhou, Feng

    2018-03-01

    Millet bran, the by-product of millet processing industry, contains an abundance of phytochemicals, especially polyphenols. The main objective of this study was brewing antioxidant wine from millet bran, as well as the nutritional evaluation. The total polyphenol content of wine samples was determined by Folin-Ciocalteu colorimetric method, and the antioxidant capacity was evaluated by DPPH radical-scavenging capacity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP). Results showed that millet bran wine (MBW) contained as much as six times of total polyphenols compared with millet wine (MW), and performed considerably stronger antioxidant activity in DPPH, TEAC and FRAP assays. More than sixfold of total amino acids (AA) were found in MBW than in MW. Moreover, the indispensable AA and functional AA were also abundant in MBW. The major polyphenol compounds in MBW were identified using HPLC, including vanillic acid, syringic acid (SA), p -coumaric acid (CA) and ferulic acid (FA). They exhibited synergism in the antioxidant assays, especially the combinations of SA and CA, SA and FA. This study not only provides evidence for MBW as a nutraceutical with antioxidant activity, but also opens new avenues in the area of making comprehensive utilization of agricultural by-products.

  9. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors

    Science.gov (United States)

    Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping

    2011-07-01

    A database consisting of 214 tripeptides which contain either His or Tyr residue was applied to study quantitative structure-activity relationships (QSAR) of antioxidative tripeptides. Partial Least-Squares Regression analysis (PLSR) was conducted using parameters individually of each amino acid descriptor, including Divided Physico-chemical Property Scores (DPPS), Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic, Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index (ISA-ECI) and Z-scale, to describe antioxidative tripeptides as X-variables and antioxidant activities measured with ferric thiocyanate methods were as Y-variable. After elimination of outliers by Hotelling's T 2 method and residual analysis, six significant models were obtained describing the entire data set. According to cumulative squared multiple correlation coefficients ( R2), cumulative cross-validation coefficients ( Q2) and relative standard deviation for calibration set (RSD c), the qualities of models using DPPS, HESH, ISA-ECI, and VHSE descriptors are better ( R2 > 0.6, Q2 > 0.5, RSD c 0.44). Furthermore, the predictive ability of models using DPPS descriptor is best among the six descriptors systems (cumulative multiple correlation coefficient for predict set ( Rext2) > 0.7). It was concluded that the DPPS is better to describe the amino acid of antioxidative tripeptides. The results of DPPS descriptor reveal that the importance of the center amino acid and the N-terminal amino acid are far more than the importance of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (positively to activity) and electronic (negatively to activity) properties of the N-terminal amino acid are suggested to play the most important significance to activity, followed by the hydrogen bond (positively to activity) of the center amino acid. The N-terminal amino acid

  10. Hydroxycinnamic acid bound arabinoxylans from millet brans-structural features and antioxidant activity.

    Science.gov (United States)

    Bijalwan, Vandana; Ali, Usman; Kesarwani, Atul Kumar; Yadav, Kamalendra; Mazumder, Koushik

    2016-07-01

    Hydroxycinnamic acid bound arabinoxylans (HCA-AXs) were extracted from brans of five Indian millet varieties and response surface methodology was used to optimize the extraction conditions. The optimal condition to obtain highest yield of millet HCA-AXs was determined as follows: time 61min, temperature 66°C, ratio of solvent to sample 12ml/g. Linkage analysis indicated that hydroxycinnamic acid bound arabinoxylan from kodo millet (KM-HCA-AX) contained comparatively low branched arabinoxylan consisting of 14.6% mono-substituted, 1.2% di-substituted and 41.2% un-substituted Xylp residues. The HPLC analysis of millet HCA-AXs showed significant variation in the content of three major bound hydroxycinnamic acids (caffeic, p-coumaric and ferulic acid). The antioxidant activity of millet HCA-AXs were evaluated using three in vitro assay methods (DPPH, FRAP and β-carotene linoleate emulsion assays) which suggested both phenolic acid composition and structural characteristics of arabinoxylans could be correlated to their antioxidant potential, the detailed structural analysis revealed that low substituted KM-HCA-AX exhibited relatively higher antioxidant activity compared to other medium and highly substituted HCA-AXs from finger (FM), proso (PM), barnyard (BM) and foxtail (FOXM) millet. Copyright © 2016. Published by Elsevier B.V.

  11. Antioxidant activity of amino acids in soybean oil at frying temperature: Structural effects and synergism with tocopherols

    Science.gov (United States)

    The purpose of this study was to evaluate amino acids as natural antioxidants for frying. Twenty amino acids were added to soybean oil heated to 180 ºC, and the effects of amino acid structure on the antioxidant activity were investigated. Amino acids containing a thiol, a thioether, or an extra ami...

  12. Low antioxidant status of serum bilirubin, uric acid, albumin and creatinine in patients with myasthenia gravis.

    Science.gov (United States)

    Yang, Dehao; Su, Zhongqian; Wu, Shengjie; Bi, Yong; Li, Xiang; Li, Jia; Lou, Kangliang; Zhang, Hongyu; Zhang, Xu

    2016-12-01

    Oxidative stress and low antioxidant status play a major role in the pathogenesis of inflammatory and autoimmune diseases. Myasthenia gravis (MG) is an autoimmune condition targeting the neuromuscular junction, and its antioxidant status is still controversial. Our study aimed to investigate the correlation between the clinical characteristics of MG and the serum antioxidant status of bilirubin (Tbil, Dbil and Ibil), uric acid, albumin and creatinine. We measured serum antioxidant molecule levels of bilirubin (Tbil, Dbil and Ibil), uric acid, albumin and creatinine in 380 individuals, including 166 MG and 214 healthy controls. We found that MG patients had significantly lower serum levels of bilirubin (Tbil, Dbil and Ibil), uric acid, albumin and creatinine than healthy controls, whether male or female. Moreover, it was also shown in our study that uric acid, albumin and creatinine levels in patients with MG were correlated with disease activity and classifications performed by the Myasthenia Gravis Foundation of America. Our findings demonstrated that serum levels of bilirubin (Tbil, Dbil and Ibil), uric acid, albumin and creatinine were reduced in patients with MG. This suggested an active oxidative process in MG patients who had low antioxidant status.

  13. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk.

    Science.gov (United States)

    Khan, Imran Taj; Nadeem, Muhammad; Imran, Muhammad; Ayaz, Muhammad; Ajmal, Muhammad; Ellahi, Muhammad Yaqoob; Khalique, Anjum

    2017-08-24

    Antioxidant capacity of milk is largely due to vitamins A, E, carotenoids, zinc, selenium, superoxide dismutase, catalase, glutathione peroxidase and enzyme systems. Cow milk has antioxidant capacity while the antioxidant capacity of buffalo milk has been studied in a limited way. The information regarding the effect of pasteurization and boiling on antioxidant capacity of cow and buffalo milk is also scared. Cow and buffalo milk was exposed to two different heat treatments i.e. 65 °C for 30 min and boiling for 1 min. After heat treatments, milk samples were cooled down to 4 °C packaged in transparent 250 ml polyethylene PET bottles and stored at 4 °C for 6 days. Milk composition, total flavonoid content, total antioxidant capacity, reducing power, DPPH free radical scavenging activity, antioxidant activity in linoleic acid, vitamin C, A, E, selenium, Zinc, fatty acid profile, peroxide value and sensory characteristics were studied in raw, pasteurized and boiled cow and buffalo milk at 0, 3 and 6 days of storage period. Total antioxidant capacity (TAC) of raw, pasteurized and boiled milk for cow (42.1, 41.3 and 40.7%) and buffalo (58.4, 57.6 and 56.5%) samples was found, respectively. Reducing power (RP) of raw cow and buffalo milk was 6.74 and 13.7 while pasteurization and boiling did not showed significant effect on RP of both cow and buffalo milk. DPPH activity of raw, pasteurized and boiled milk for cow (24.3, 23.8 and 23.6%) and buffalo (31.8, 31.5 and 30.4%) samples was noted, respectively. Storage period up to 3 days was non-significant while DPPH assay after 6 days of storage period indicated significant decline in antioxidant activity of milk samples. Antioxidant activity in linoleic acid (AALA) of buffalo and cow milk were recorded 11.7 and 17.4%, respectively. Pasteurization and boiling did not showed any impact on antioxidant capacity of cow and buffalo milk. The Loss of vitamin C in pasteurization (40 and 42%) and boiling (82 and 61%) of

  14. Yoghurts with addition of selected vegetables: acidity, antioxidant properties and sensory quality.

    Science.gov (United States)

    Najgebauer-Lejko, Dorota; Grega, Tadeusz; Tabaszewska, Małgorzata

    2014-01-01

    Yoghurt is a fermented milk of unique sensory, nutritive and dietetic value offered in a variety of types and in different flavours. Vegetables belong to the group of food products rich in antioxidant substances (e.g., vitamin C, carotenoids, tocopherols, polyphenols) which regular consumption lowers the risk of many diseases including cancers and cardiovascular disorders. The aim of the present work was to manufacture and assess the acidity, sensory quality and antioxidant capacity of yoghurts with addition of selected vegetables during 2-week refrigerated storage. The vegetable preparations (carrot, pumpkin, broccoli and red sweet pepper) were added to the cow's milk fermented using DVS type yoghurt culture after initial cooling to 15-20°C in the amount of 10% (w/w). The following analyses were performed: determination of pH, titratable acidity, antioxidant activity by ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) method as well as sensory evaluation and were conducted after 1, 7 and 14 days of cold storage. The yoghurt supplementation with selected vegetables had no significant effect on the pH and titratable acidity level. The highest ability to scavenge DPPH radicals was stated for yoghurts with broccoli and red sweet pepper. The latter treatment gained the highest notes in sensory evaluation. All vegetable yoghurts were characterised by higher than the natural yoghurt FRAP values measured directly after production. However, the level of this parameter significantly decreased after storage. The red sweet pepper additive was the most beneficial regarding antioxidant properties and organoleptic acceptance of the studied yoghurts.

  15. Effects of organic acid supplementation on antioxidant capacity and ...

    African Journals Online (AJOL)

    Four commercial organic acids and a reference antibiotic, Neoxyval, were administered to commercial broilers to evaluate the efficacy of these products during pre- and post-challenge with Salmonella enterica subsp. enterica Typhimurium (S. Typhimurium) on selected indicators of their antioxidant status and immune ...

  16. Effects of salicylic acid on monoterpene production and antioxidant ...

    African Journals Online (AJOL)

    Salicylic acid (SA) plays important roles in plant defense responses. However, little is available about its effects on monoterpene responses. Therefore, monoterpene contents and antioxidant systems were measured three days after foliar application of SA with different concentrations in Houttuynia cordata. SA at low ...

  17. Emulsifying Property and Antioxidative Activity of Cuttlefish Skin Gelatin Modified with Oxidized Linoleic Acid and Oxidized Tannic Acid

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Wierenga, P.A.; Gruppen, H.

    2013-01-01

    Cuttlefish skin gelatins modified with oxidized linoleic acid (OLA) and oxidized tannic acid (OTA) were characterized and determined for emulsifying properties and antioxidative activity. Modification of gelatin with 5% OTA increased the total phenolic content and 1,1-diphenyl-2-picrylhydrazyl,

  18. Determination of free diferulic, disinapic and dicoumaric acids in plants and foods

    Czech Academy of Sciences Publication Activity Database

    Grúz, Jiří; Pospíšil, Jiří; Kozubíková, Hana; Pospíšil, Tomáš; Doležal, Karel; Bunzel, M.; Strnad, Miroslav

    2015-01-01

    Roč. 171, MAR 15 (2015), s. 280-286 ISSN 0308-8146 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Hydroxycinnamic and dicinnamic acids * Phenylpropanoids * Oxidative coupling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.052, year: 2015

  19. Modified Folin-Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants.

    Science.gov (United States)

    Berker, Kadriye Isil; Ozdemir Olgun, F Ayca; Ozyurt, Dilek; Demirata, Birsen; Apak, Resat

    2013-05-22

    The Folin-Ciocalteu (FC) method of performing a total phenolics assay, originally developed for protein determination, has recently evolved as a total antioxidant capacity assay but was found to be incapable of measuring lipophilic antioxidants due to the high affinity of the FC chromophore, that is, multivalent-charged phospho-tungsto-molybdate(V), toward water. Thus, the FC method was modified and standardized so as to enable simultaneous measurement of lipophilic and hydrophilic antioxidants in NaOH-added isobutanol-water medium. Optimal conditions were as follows: dilution ratio of aqueous FC reagent with iso-BuOH (1:2, v/v), final NaOH concentration of 3.5 × 10(-2) M, reaction time of 20 min, and maximum absorption wavelength of 665 nm. The modified procedure was successfully applied to the total antioxidant capacity assay of trolox, quercetin, ascorbic acid, gallic acid, catechin, caffeic acid, ferulic acid, rosmarinic acid, glutathione, and cysteine, as well as of lipophilic antioxidants such as α-tocopherol (vitamin E), butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, lauryl gallate, and β-carotene. The modified FC method reliably quantified ascorbic acid, whereas the conventional method could not. The modified method was reproducible and additive in terms of total antioxidant capacity values of constituents of complex mixtures such as olive oil extract and herbal tea infusion. The trolox equivalent antioxidant capacities of the tested antioxidant compounds correlated well with those found by the Cupric Reducing Antioxidant Capacity reference method.

  20. Antioxidant capacity and fatty acid profile of Centaurea kotschyi (Boiss. and Heldr.) Hayek var. persica (Boiss.) Wagenitz from Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Aktumseka, A.

    2011-07-01

    The antioxidant capacity of the methanolic extract and the fatty acid composition of C. kotschyi var. persica were investigated. Six different chemical methods were used to determine the antioxidant capacity. The fatty acid composition was analyzed using gas chromatography. The IC50 value of the extract was determined as 37.09 ig/ml (in the DPPH assay). In the {beta}carotene/linoleic acid system, the extract exhibited 65.22% inhibition against linoleic acid oxidation. The amount of total phenolic content and total antioxidant capacity were detected as 36.52 mg gallic acid equivalent (GAE)/g and 74.93 mg ascorbic acid equivalent (AE)/g, respectively. The major fatty acid in the composition of C. kotschyi var. persica was found to be C 18:3 u3 ({beta}-linolenic acid) by GC analysis. The results presented here indicate that C. kotschyi var. persica possess strong antioxidant properties. Therefore, the species can be used as a natural additive in food, cosmetic and pharmaceutical industries. (Author).

  1. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.

  2. Influence of rye flour enzymatic biotransformation on the antioxidant capacity and transepithelial transport of phenolic acids.

    Science.gov (United States)

    de Lima, Fabíola Aliaga; Martins, Isabela Mateus; Faria, Ana; Calhau, Conceição; Azevedo, Joana; Fernandes, Iva; Mateus, Nuno; Macedo, Gabriela Alves

    2018-03-01

    Phenolic acids have been reported to play a role on the antioxidant activity and other important biological activities. However, as most polyphenolics in food products are either bound to cellular matrices or present as free polymeric forms, the way they are absorbed has not been totally clear until now. Hydrolytic enzymes may act to increase functionalities in polyphenolic-rich foods, enhancing the bioaccessibility of phenolic compounds and minerals from whole grains. The aim of this study was to evaluate the action of tannin acyl hydrolase (tannase) on the total phenols, phenolic acid profile, antioxidant capacity and in vitro bioaccessibility of phenolic acids found in whole rye flour (RF). Besides increasing total phenols and the antioxidant capacity, tannase treatment increased the amounts of ferulic, sinapic and vanillic acids identified in RF, evidencing a new type of feruloyl esterase catalytic action of tannase. Vanillic and sinapic acids in tannase-treated whole rye flour (RFT) were higher than RF after in vitro gastrointestinal digestion, and higher amounts of transported vanillic acid through the Caco-2 monolayer were detected in RFT. However, the bioaccessibility and the transport efficiency of RF phenolic acids were higher than RFT. Underutilized crops like rye and rye-derived products may be an important source of phenolic acids. The tannase biotransformation, even influencing the total phenolics and antioxidant capacity of RF, did not increase the bioaccessibility of phenolic acids under the experimental conditions of this study.

  3. A comparison of antioxidant properties of uric acid, allantoin and allantoic acid

    Czech Academy of Sciences Publication Activity Database

    Papežíková, Ivana; Lojek, Antonín; Číž, Milan

    2007-01-01

    Roč. 101, č. 14 (2007), s247-S248 E-ISSN 1213-7103. [Mezioborová česko-slovenská toxikologická konference /12./. Praha, 11.06.2007-13.06.2007] R&D Projects: GA ČR(CZ) GP204/07/P539 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : uric acid * antioxidants * allantoin Subject RIV: BO - Biophysics

  4. Total lactic acid bacteria, antioxidant activity, and acceptance of synbiotic yoghurt with red ginger extract (Zingiberofficinale var. rubrum)

    Science.gov (United States)

    Larasati, B. A.; Panunggal, B.; Afifah, D. N.; Anjani, G.; Rustanti, N.

    2018-02-01

    Antioxidant related to oxidative stress can caused the metabolic disorders. A functional food that high in antioxidant can be use as the alternative prevention. The addition of red ginger extract in yoghurt could form a functional food, that high in antioxidant, synbiotic and fiber. The influence of red ginger extract on yoghurt synbiotic against lactic acid bacteria, antioxidant activity and acceptance were analyzed. This was an experimental research with one factor complete randomized design, specifically the addition of red ginger extract 0%; 0,1%; 0,3% and 0,5% into synbiotic yoghurt. Total plate count method used to analyze the lactic acid bacteria, 1-1-diphenyl-2-picrylhydrazyl (DPPH) method for antioxidant activity, and acceptance analyzed with hedonic test. The higher the dose of extract added to synbiotic yoghurt, the antioxidant activity got significantly increased (ρ=0,0001), while the lactic acid bacteria got insignificantly decreased (ρ=0,085). The addition of 0,5% red ginger extract obtained the antioxidant activity of 71% and 4,86 × 1013 CFU/ml on lactic acid bacteria, which the requirement for probiotic on National Standard of Indonesia is >107 CFU/ml. The addition of extract had a significant effect on acceptance (ρ=0,0001) in flavor, color, and texture, but not aroma (ρ=0,266). The optimal product in this research was the yoghurt synbiotic with addition of 0,1% red ginger extract. To summarize, the addition of red ginger extract in synbiotic yoghurt had significant effect on antioxidant activity, flavor, color, and texture, but no significant effect on lactic acid bacteria and aroma.

  5. Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds

    International Nuclear Information System (INIS)

    M’hiri, Nouha; Veys-Renaux, Delphine; Rocca, Emmanuel; Ioannou, Irina; Boudhrioua, Nourhéne Mihoubi; Ghoul, Mohamed

    2016-01-01

    Highlights: • Catechol and derived functions are responsible for flavonoids antioxidant activity. • Antioxidant activity of adsorbed molecules explains cathodic inhibition. • Orange peel extract inhibition is enhanced by the precipitation of a covering film. - Abstract: Chemical compounds of orange peel extracts were identified and their antioxidant activities were determined. The inhibiting effect on acidic steel corrosion brought by the extract and selected antioxidant compounds (neohesperidin, naringin, ascorbic acid) was evaluated separately by electrochemical methods. Whatever the extract concentration, a significant inhibition is observed, whereas selected antioxidant compounds show only a slight effect. Both electrochemical impedance spectroscopy results and scanning electron microscopy observations after immersion reveal that the inhibiting efficiency of orange peel extract is not only due to the antioxidant activity of its compounds but also to the precipitation of a surface film.

  6. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.

    Science.gov (United States)

    Xu, Haining; Zhang, Xiaoming; Karangwa, Eric; Xia, Shuqin

    2017-09-01

    Up to now, only limited research on enzymatic browning inhibition capacity (BIC) of Maillard reaction products (MRPs) has been reported and there are still no overall and systematic researches on MRPs derived from different amino acids. In the present study, BIC and antioxidant capacity, including 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and Fe 2+ reducing power activity, of the MRPs derived from 12 different amino acids and three reducing sugars were investigated. The MRPs of cysteine (Cys), cystine, arginine (Arg) and histidine (His) showed higher BIC compared to other amino acids. Lysine (Lys)-MRPs showed the highest absorbance value at 420 nm (A 420 ) but very limited BIC, whereas Cys-MRPs, showed the highest BIC and the lowest A 420 . The A 420 can roughly reflect the trend of BIC of MRPs from different amino acids, except Cys and Lys. MRPs from tyrosine (Tyr) showed the most potent antioxidant capacity but very limited BIC, whereas Cys-MRPs showed both higher antioxidant capacity and BIC compared to other amino acids. Partial least squares regression analysis showed positive and significant correlation between BIC and Fe 2+ reducing power of MRPs from 12 amino acids with glucose or fructose, except Lys, Cys and Tyr. The suitable pH for generating efficient browning inhibition compounds varies depending on different amino acids: acidic pH was favorable for Cys, whereas neutral and alkaline pH were suitable for His and Arg, respectively. Increasing both heating temperature and time over a certain range could improve the BIC of MRPs of Cys, His and Arg, whereas any further increase deteriorates their browning inhibition efficiencies. The types of amino acid, initial pH, temperature and time of the Maillard reaction were found to greatly influence the BIC and antioxidant capacity of the resulting MRPs. There is no clear relationship between BIC and the antioxidant capacity of MRPs when reactant type and processing parameters of the Maillard

  7. Fatty acids, phenols content, and antioxidant activity in Ibervillea sonorae callus cultures

    OpenAIRE

    Estrada-Zúñiga, M.E.; Arano-Varela, H.; Buendía-González, L.; Orozco-Villafuerte, J.

    2012-01-01

    Ibervillea sonorae callus cultures were established in order to produce fatty acids (lauric, myristic, pentadecanoic, palmitic and stearic acids) and phenolic compounds. Highest callus induction (100%) was obtained in treatments containing 2.32 or 4.65 μM Kinetin (KIN) with 2.26 or 6.80 μM 2,4-Dichlorophenoxyacetic acid (2,4-D). Highest fatty acids (FA) production (48.57 mg g-1), highest total phenol content (TPC; 57.1 mg gallic acid equivalents [GAE] g-1) and highest antioxidant activity (EC...

  8. EFFECT OF PHYSICAL EXERCISE ON LIPID PEROXIDATION AND ANTIOXIDANT ASCORBIC ACID DEFENSE

    Directory of Open Access Journals (Sweden)

    Ljiljana M. Popović

    2006-06-01

    Full Text Available Strenuous exercises greatly increase oxygen consumption in the whole body, especially in skeletal muscles. Large part of oxygen consumption is reduced to H2O and ATP, but smaller part (2-5% results in an increased leakage of electrons from the mitochondrial respiratory chain, forming various reactive oxygen species ─ ROS (O2˙¯, H2O2 i OH˙. These free radicals are capable of triggering a chain of damaging biochemical and physiological reactions (oxidative stress, lipid peroxidation,as a base for skeletal muscles damage after exercise. MDA (malondialdehide is a marker of exercise induced lipid peroxidation process. L–ascorbic acid is a major aqueous-phase antioxidant. To estimate antioxidant role of ascorbic acid we use rate between dehidroascorbate and ascorbate. In this paper those markers were determinated in 30 students, in rest and after treadmill running protocol (Bruce Treadmill Protocol. It was found that after the treadmill test , plasma MDA level had increased from 3,04 to 4,39 μM/L. Plasma ascorbic acid was also found to be higher after the treadmill test comparing to rest level (from 55,4 to 67,6 μM/L. DHA/A level in rest was 1,62 and after treadmill test it increased to 2,05. These results suggests that strenuous exercise increased process of lipid peroxidation, but in the same time increased ascorbic acid level in plasma and DHA/A rate indicates stronger antioxidant defense system.

  9. Antioxidant activity of probiotic lactic acid bacteria isolated from Mongolian airag

    OpenAIRE

    E Uugantsetseg; B Batjargal

    2014-01-01

    This research aimed to determine the antioxidant activity of probiotic lactic acid bacteria isolated from airag. In this study, 42 lactic acid bacteria were isolated from Mongolian airag. All isolates were identified by using morphological, biochemical and physiological methods. The isolated bacteria were studied for antagonistic effects on Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, 22 strains showed antibacterial activity. When we examined thei...

  10. In Silico Discovery of Novel Potent Antioxidants on the Basis of Pulvinic Acid and Coumarine Derivatives and Their Experimental Evaluation.

    Directory of Open Access Journals (Sweden)

    Rok Martinčič

    Full Text Available A pigment from the edible mushroom Xerocomus badius norbadione A, which is a natural derivative of pulvinic acid, was found to possess antioxidant properties. Since the pulvinic acid represents a novel antioxidant scaffold, several other derivatives were recently synthetized and evaluated experimentally, along with some structurally related coumarine derivatives. The obtained data formed the basis for the construction of several quantitative structure-activity and pharmacophore models, which were employed in the virtual screening experiments of compound libraries and for the prediction of their antioxidant activity, with the goal of discovering novel compounds possessing antioxidant properties. A final prioritization list of 21 novel compounds alongside 8 established antioxidant compounds was created for their experimental evaluation, consisting of the DPPH assay, 2-deoxyribose assay, β-carotene bleaching assay and the cellular antioxidant activity assay. Ten novel compounds from the tetronic acid and barbituric acid chemical classes displayed promising antioxidant activity in at least one of the used assays, that is comparable to or even better than some standard antioxidants. Compounds 5, 7 and 9 displayed good activity in all the assays, and were furthermore effective preventers of oxidative stress in human peripheral blood mononuclear cells, which are promising features for the potential therapeutic use of such compounds.

  11. SYNTHESIS AND STUDY OF ANTIOXIDANT ACTIVITY OF [(1-ARYL-5-FORMYL-1H-IMIDAZOLE-4-ILTHIO]PROPIONIC ACIDS

    Directory of Open Access Journals (Sweden)

    A. O. Palamar

    2014-12-01

    Full Text Available Introduction. Derivatives of imidazole belong to the promising group of compounds for antioxidant activity study, due to the series of recent publications. This is defined by special features of their structure, specific reactivity and significant potential of pharmacological action. Earlier during process of looking for new antioxidants we studied significant amount of imidazole derivatives, among which the [(1-aryl-5-formylimidazole-4-ilthio]acetic acids structurally modified by the formyl group and thioacetic acid fragment, are especially worth noting. The purpose of the study. Synthesis of [(1-aryl-5-formylimidazole-4-ilthio]propionic acids and comparison of their antioxidant effect with [(1-aryl-5-formylimidazole-4-ilthio]acetic acids with to identify prospects of in-depth study of the most active compounds as antioxidants. Materials and methods. The method based on interaction of available 4-chloro-5-formylimidazoles with thiopropionic acid was proposed for the synthesis of [(1-aryl-5-formylimidazole-4-ilthio]propionic acids. The reaction takes place in ethanol in presence of potassium hydroxide and leads to the target compounds with yields of 81-86%. The study of antioxidant activity of synthesized compounds was conducted in vitro by speed inhibition value of rats’ liver endogenous lipids ascorbate-dependent peroxide oxidation. It was determined by concentration of one of the final products of free radical oxidation of lipids (FROL – maleic aldehyde (MA in the investigated sample. Concentrations of synthesized compounds were chosen within concentrations which were studied for thiotriazolin (manufactured by corporation “Arterium”, Ukraine, solution for injection, 25 mg/ml. The results of the study and their discussion. Preparative method for the synthesis of [(1-aryl-5-formylimidazole-4-ilthio]propionic acids has been designed. Imidazolylthiopropionic acids have been synthesized; they are crystalline compounds, of light

  12. Effect of Storage Temperature on Vitamin C, Total Phenolics, UPLC Phenolic Acid Profile and Antioxidant Capacity of Eleven Potato (Solanum tuberosum Varieties

    Directory of Open Access Journals (Sweden)

    Joseph Hubert Yamdeu Galani

    2017-03-01

    Full Text Available Storage of potato tubers at low temperature affects their metabolism and may alter their phytochemical properties. There is a need to elucidate the changes in antioxidant compounds, activity and enzymes during storage of tubers. Eleven Indian potato varieties were evaluated for antioxidant parameters, after 0, 30, 60 and 90 days of storage at room temperature, 15 °C and 4 °C. Total phenolics (0.0786–0.1546 mg gallic acid equivalents⋅g−1 FW and vitamin C content (0.0828–0.2416 mg⋅g−1 FW varied among the varieties and were different with storage temperature; their levels fluctuated during storage but remained above the initial level until the last day of observation. Phenolic acid profiling by UPLC identified 12 compounds among which the most abundant was chlorogenic acid followed by gallic acid, sinapic acid and ellagic acid. Except para-coumaric acid which decreased at 4 °C, all the phenolic acids increased with storage. Caffeic acid, chlorogenic acid, protocatechuic acid and gallic acid mostly correlated with total phenolic content (r = 0.456, 0.482, 0.588 and 0.620, respectively. Antioxidant activity against both DPPH and ABTS radicals increased during the initial days of storage and then dropped to a level comparable or lower than the original value, irrespective of the storage temperature. Correlation study revealed that chlorogenic acid, gallic acid and ferulic acid mostly contributed to antioxidant activity. Activity of both antioxidant enzymes, superoxide dismutase and ascorbate peroxidase, increased initially but then decreased to values lower than the initial level and were not influenced by storage temperature. Correlation with antioxidant activity indicated that the enhancement of reactive oxygen scavenging species in cold stored tubers could result mainly from ascorbate peroxidase activity. Our results demonstrate that storage temperature adversely influences the metabolism and the content of

  13. Effects of feeding omega-3-fatty acids on fatty acid composition and quality of bovine sperm and on antioxidative capacity of bovine seminal plasma.

    Science.gov (United States)

    Gürler, Hakan; Calisici, Oguz; Calisici, Duygu; Bollwein, Heinrich

    2015-09-01

    The aim of the present study was to examine the effects of feeding alpha-linolenic (ALA) acid on fatty acid composition and quality of bovine sperm and on antioxidative capacity of seminal plasma. Nine bulls (ALA bulls) were fed with 800 g rumen-resistant linseed oil with a content of 50% linolenic acid and eight bulls with 400 g palmitic acid (PA bulls). Sperm quality was evaluated for plasma membrane and acrosome intact sperm (PMAI), the amount of membrane lipid peroxidation (LPO), and the percentage of sperm with a high DNA fragmentation index (DFI). Fatty acid content of sperm was determined using gas chromatography. Total antioxidant capacity, glutathione peroxidase, and superoxide dismutase activity were determined in seminal plasma. Feeding ALA increased (P acid (DHA) content in bulls whereas in PA bulls did not change. PMAI increased after cryopreservation in ALA bulls as well as in PA bulls during the experiment period (P fatty acids affect the antioxidant levels in seminal plasma. Both saturated as well as polyunsaturated fatty acids had positive effects on quality of cryopreserved bovine sperm, although the content of docosahexaenoic acid in sperm membranes increased only in ALA bulls. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. In Barrett's esophagus patients and Barrett's cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids.

    Science.gov (United States)

    Peng, Sui; Huo, Xiaofang; Rezaei, Davood; Zhang, Qiuyang; Zhang, Xi; Yu, Chunhua; Asanuma, Kiyotaka; Cheng, Edaire; Pham, Thai H; Wang, David H; Chen, Minhu; Souza, Rhonda F; Spechler, Stuart Jon

    2014-07-15

    Hydrophobic bile acids like deoxycholic acid (DCA), which cause oxidative DNA damage and activate NF-κB in Barrett's metaplasia, might contribute to carcinogenesis in Barrett's esophagus. We have explored mechanisms whereby ursodeoxycholic acid (UDCA, a hydrophilic bile acid) protects against DCA-induced injury in vivo in patients and in vitro using nonneoplastic, telomerase-immortalized Barrett's cell lines. We took biopsies of Barrett's esophagus from 21 patients before and after esophageal perfusion with DCA (250 μM) at baseline and after 8 wk of oral UDCA treatment. DNA damage was assessed by phospho-H2AX expression, neutral CometAssay, and phospho-H2AX nuclear foci formation. Quantitative PCR was performed for antioxidants including catalase and GPX1. Nrf2, catalase, and GPX1 were knocked down with siRNAs. Reporter assays were performed using a plasmid construct containing antioxidant responsive element. In patients, baseline esophageal perfusion with DCA significantly increased phospho-H2AX and phospho-p65 in Barrett's metaplasia. Oral UDCA increased GPX1 and catalase levels in Barrett's metaplasia and prevented DCA perfusion from inducing DNA damage and NF-κB activation. In cells, DCA-induced DNA damage and NF-κB activation was prevented by 24-h pretreatment with UDCA, but not by mixing UDCA with DCA. UDCA activated Nrf2 signaling to increase GPX1 and catalase expression, and protective effects of UDCA pretreatment were blocked by siRNA knockdown of these antioxidants. UDCA increases expression of antioxidants that prevent toxic bile acids from causing DNA damage and NF-κB activation in Barrett's metaplasia. Elucidation of this molecular pathway for UDCA protection provides rationale for clinical trials on UDCA for chemoprevention in Barrett's esophagus. Copyright © 2014 the American Physiological Society.

  15. Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach.

    Directory of Open Access Journals (Sweden)

    Amy G W Gong

    Full Text Available Ferulic acid, a phenolic acid derived mainly from a Chinese herb Angelica Sinensis Radix (ASR, was reported to reduce the formation of free radicals. Danggui Buxue Tang (DBT, a herbal decoction composing of Astragali Radix (AR and ASR, has been utilized for more than 800 years in China having known anti-oxidative property. Ferulic acid is a major active ingredient in DBT; however, the role of ferulic acid within the herbal mixture has not been resolved. In order to elucidate the function of ferulic acid within this herbal decoction, a ferulic acid-depleted herbal decoction was created and named as DBTΔfa. The anti-oxidative properties of chemically modified DBT decoction were systemically compared in cultured H9C2 rat cardiomyoblast cell line. The application of DBT and DBTΔfa into the cultures showed functions in (i decreasing the reactive oxygen species (ROS formation, detected by laser confocal; (ii increasing of the activation of Akt; (iii increasing the transcriptional activity of anti-oxidant response element (ARE; and (iv increasing the expressions of anti-oxidant enzymes, i.e. NQO1 and GCLM. In all scenario, the aforementioned anti-oxidative properties of DBTΔfa in H9C2 cells were significantly reduced, as compared to authentic DBT. Thus, ferulic acid could be an indispensable chemical in DBT to orchestrate multi-components of DBT as to achieve maximal anti-oxidative functions.

  16. Antioxidant activity, fatty acid profile and tocopherols of Tamarindus indica L. seeds

    Directory of Open Access Journals (Sweden)

    Débora Maria Moreno Luzia

    2011-06-01

    Full Text Available This study aimed to characterize Tamarindus indica L. seeds regarding its composition and to evaluate its antioxidant potential, fatty acid profile and content of tocopherols. In order to obtain the extract, the dried and crushed seeds were extracted with ethanol for 30 minutes in a 1:3 seeds: ethanol ratio under continuous stirring at room temperature. After that, the mixtures were filtered and subjected to roto-evaporation at 40 ºC in order to determine, through direct weighing, the dry matter yields of the extracts. According to the results, Tamarindus indica L. seeds showed high content of total carbohydrates (71.91% and offered relevant content and antioxidant activity of phenolic compounds. Tamarindus indica L. seeds oil presents high oxidative stability (15.83 hours and significant total tocopherol content (57.77 mg.kg-1, besides presenting a higher percentage of unsaturated fatty acids - the main component being linolenic (59.61%, which is considered an essential fatty acid.

  17. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation.

    Science.gov (United States)

    Martínez-Soto, Juan Carlos; Domingo, Joan Carles; Cordobilla, Begoña; Nicolás, María; Fernández, Laura; Albero, Pilar; Gadea, Joaquín; Landeras, José

    2016-12-01

    The purpose of this study was to evaluate the effect of docosahexaenoic acid (DHA) dietary supplementation on semen quality, fatty acid composition, antioxidant capacity, and DNA fragmentation. In this randomized, double blind, placebo-controlled, parallel-group study, 74 subjects were recruited and randomly assigned to either the placebo group (n=32) or to the DHA group (n=42) to consume three 500-mg capsules of oil per day over 10 weeks. The placebo group received 1,500 mg/day of sunflower oil and the DHA group 1,500 mg/day of DHA-enriched oil. Seminal parameters (semen volume, sperm concentration, motility, morphology, and vitality), total antioxidant capacity, deoxyribonucleic acid fragmentation, and lipid composition were evaluated prior to the treatment and after 10 weeks. Finally, 57 subjects were included in the study with 25 in the placebo group and 32 in the DHA group. No differences were found in traditional sperm parameters or lipid composition of the sperm membrane after treatment. However, an increase in DHA and Omega-3 fatty acid content in seminal plasma, an improvement in antioxidant status, and a reduction in the percentage of spermatozoa with deoxyribonucleic acid damage were observed in the DHA group after 10 weeks of treatment.

  18. Antioxidant Capacities of Fractions of Bamboo Shaving Extract and Their Antioxidant Components.

    Science.gov (United States)

    Gong, Jinyan; Huang, Jun; Xiao, Gongnian; Chen, Feng; Lee, Bolim; Ge, Qing; You, Yuru; Liu, Shiwang; Zhang, Ying

    2016-07-30

    This research was conducted for evaluation of antioxidant activities of four fractions from bamboo shavings extract (BSE) and their antioxidant components. The antioxidant capacities of BSE and four fractions on ABTS, DPPH, FRAP and total antioxidant capacity assays exhibited the following descending order: DF > n-butanol fraction (BF) > BSE ≈ ethyl acetate fraction (AF) > water fraction (WF). Among the identified phenolic compounds, caffeic acid exhibited the highest antioxidant capacities on DPPH, FRAP and total antioxidant capacity assays. An extremely significant positive correlation between the antioxidant activities with the contents of total flavonoids, total phenolic acids, or total phenolics was observed in this study. The result indicated that the bamboo shaving extract and its solvent fractions could act as natural antioxidants in light of their potent antioxidant activities.

  19. Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus.

    Science.gov (United States)

    Wei, Yunxiao; Liu, Zhenfeng; Su, Yujing; Liu, Donghong; Ye, Xingqian

    2011-03-01

    The effects of salicylic acid (SA) on the quality and antioxidant activity of asparagus stored at 18 ± 2 °C were investigated by analyzing the color, chlorophyll, shear force, and the activity of antioxidant compounds such as ascorbic acid, phenolics, flavonoids, 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity ferric reducing antioxidant power (FRAP), and polyamines (PAs). The results showed that SA improved the color and maintained the chlorophyll, phenolic, flavonoid, and ascorbic acid content of asparagus. High concentrations of SA caused a deterioration in asparagus would harm to color and had no effect on shear force within 6 d. SA induced the maximum concentration of phenolics in postharvest asparagus, promoted the increase in total flavonoids before 6 to 9 d, affected the antioxidant activity positively as indicated by the resultant increase in FRAP concentration; however, SA was only active with regard to DPPH scavenging activity within 6 d of treatment. Spermidine (Spd) is the most common form of PA in asparagus, and free putrescine (Put) contents increased over the first 3 d following harvest and then decreased. Spd and Spm concentrations evolved in a similar way and decreased during storage. Higher Spd and Spm contents in the SA pre-treatment Put was inhabited and its peaks appeared later.

  20. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria.

    Science.gov (United States)

    Rizzello, Carlo Giuseppe; Lorusso, Anna; Russo, Vito; Pinto, Daniela; Marzani, Barbara; Gobbetti, Marco

    2017-01-16

    Lactic acid bacteria strains, previously isolated from the same matrix, were used to ferment quinoa flour aiming at exploiting the antioxidant potential. As in vitro determined on DPPH and ABTS radicals, the scavenging activity of water/salt-soluble extracts (WSE) from fermented doughs was significantly (Pquinoa dough fermented with Lactobacillus plantarum T0A10. The corresponding WSE was subjected to Reverse Phase Fast Protein Liquid Chromatography, and 32 fractions were collected and subjected to in vitro assays. The most active fraction was resistant to further hydrolysis by digestive enzymes. Five peptides, having sizes from 5 to 9 amino acid residues, were identified by nano-Liquid Chromatography-Electrospray Ionisation-Mass Spectra/Mass Spectra. The sequences shared compositional features which are typical of antioxidant peptides. As shown by determining cell viability and radical scavenging activity (MTT and DCFH-DA assays, respectively), the purified fraction showed antioxidant activity on human keratinocytes NCTC 2544 artificially subjected to oxidative stress. This study demonstrated the capacity of autochthonous lactic acid bacteria to release peptides with antioxidant activity through proteolysis of native quinoa proteins. Fermentation of the quinoa flour with a selected starter might be considered suitable for novel applications as functional food ingredient, dietary supplement or pharmaceutical preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. ACID VALUE OF VEGETABLE OILS AND POULTRY FEED AS AFECTED BY STORAGE PERIOD AND ANTIOXIDANTS

    Directory of Open Access Journals (Sweden)

    Sohail Hassan Khan, Bashir Mahmood Bhatti and Rozina Sardar

    2001-09-01

    Full Text Available A study to assess acid values in soyabean, cotton seed and sunflower oil commonly used in poultry ration was conducted. It was observed that mean acid value of oils ~ept in open were significantly high (7.67 than oil kept in sealed form (1.296. The mean acid value was higher in soyabean oil (P<0.01 than the values in cotton seed oil and sunflower oil. While determining the effect of Santaquin, BHT and Oxistat as antioxidant, in the ration stored at 40 °C for 2 months, it was observed that the acid values in untreated control ration was 18.20 while with the added antioxidants were 4.88, 4.85 and 4.83, respectively showing a significant increase with each week of the storage.

  2. Functionalized ZnO Nanoparticles with Gallic Acid for Antioxidant and Antibacterial Activity against Methicillin-Resistant S. aureus

    Directory of Open Access Journals (Sweden)

    Joomin Lee

    2017-11-01

    Full Text Available In this study, we report a new multifunctional nanoparticle with antioxidative and antibacterial activities in vitro. ZnO@GA nanoparticles were fabricated by coordinated covalent bonding of the antioxidant gallic acid (GA on the surface of ZnO nanoparticles. This addition imparts both antioxidant activity and high affinity for the bacterial cell membrane. Antioxidative activities at various concentrations were evaluated using a 2,2′-azino-bis(ethylbenzthiazoline-6-sulfonic acid (ABTS radical scavenging method. Antibacterial activities were evaluated against Gram-positive bacteria (Staphylococcus aureus: S. aureus, including several strains of methicillin-resistant S. aureus (MRSA, and Gram-negative bacteria (Escherichia coli. The functionalized ZnO@GA nanoparticles showed good antioxidative activity (69.71%, and the bactericidal activity of these nanoparticles was also increased compared to that of non-functionalized ZnO nanoparticles, with particularly effective inhibition and high selectivity for MRSA strains. The results indicate that multifunctional ZnO nanoparticles conjugated to GA molecules via a simple surface modification process displaying both antioxidant and antibacterial activity, suggesting a possibility to use it as an antibacterial agent for removing MRSA.

  3. Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells

    Science.gov (United States)

    Goszcz, Katarzyna; Deakin, Sherine J.; Duthie, Garry G.; Stewart, Derek

    2017-01-01

    Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 μM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 μM concentrations of both were cytotoxic, but relatively low concentrations (100 nM–1 μM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations. PMID:29081896

  4. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.

    Science.gov (United States)

    Cirillo, Giuseppe; Hampel, Silke; Klingeler, Rüdiger; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Parisi, Ortensia Ilaria; Spizzirri, Umile Gianfranco; Picci, Nevio; Leonhardt, Albrecht; Ritschel, Manfred; Büchner, Bernd

    2011-02-01

    To prove the possibility of covalently functionalizing multi-walled carbon nanotubes (CNTs) by free radical grafting of gallic acid on their surface with the subsequent synthesis of materials with improved biological properties evaluated by specific in-vitro assays. Antioxidant CNTs were synthesized by radical grafting of gallic acid onto pristine CNTs. The synthesis of carbon nanotubes was carried out in a fixed-bed reactor and, after the removal of the amorphous carbon, the grafting process was performed. The obtained materials were characterized by fluorescence and Fourier transform infrared spectroscopy (FT-IR) analyses. After assessment of the biocompatibility and determination of the disposable phenolic group content, the antioxidant properties were evaluated in terms of total antioxidant activity and scavenger ability against 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and peroxyl radicals. Finally the inhibition activity on acetylcholinesterase was evaluated.   The covalent functionalization of CNTs with gallic acid was confirmed and the amount of gallic acid bound per g of CNTs was found to be 2.1±0.2 mg. Good antioxidant and scavenging properties were recorded in the functionalized CNTs, which were found to be able to inhibit the acetylcholinesterase with potential improved activity for biomedical and pharmaceutical applications. For the first time, a free radical grafting procedure was proposed as a synthetic approach for the covalent functionalization of CNTs with an antioxidant polyphenol. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  5. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers.

    Science.gov (United States)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang

    2016-07-01

    Functionalization of therapeutic carrier biomaterials can potentially provide additional benefits in drug delivery for disease treatment. Given that this modification determines final therapeutic efficacy of drug carriers, here, we investigate systematically the role of grafting amount of antioxidant gallic acid (GA) onto GN in situ gelling copolymers made of biodegradable gelatin and thermo-responsive poly(N-isopropylacrylamide) for intracameral delivery of pilocarpine in antiglaucoma treatment. As expected, increasing redox reaction time increased total antioxidant activities and free radical scavenging abilities of synthesized carrier biomaterials. The hydrophilic nature of antioxidant molecules strongly affected physicochemical properties of carrier materials with varying GA grafting amounts, thereby dictating in vitro release behaviors and mechanisms of pilocarpine. In vitro oxidative stress challenges revealed that biocompatible carriers with high GA content alleviated lens epithelial cell damage and reduced reactive oxygen species. Intraocular pressure and pupil diameter in glaucomatous rabbits showed correlations with GA-mediated release of pilocarpine. Additionally, enhanced pharmacological treatment effects prevented corneal endothelial cell loss during disease progression. Increasing GA content increased total antioxidant level and decreased nitrite level in the aqueous humor, suggesting a much improved antioxidant status in glaucomatous eyes. This work significantly highlights the dependence of physicochemical properties, drug release behaviors, and bioactivities on intrinsic antioxidant capacities of therapeutic carrier biomaterials for glaucoma treatment. Development of injectable biodegradable polymer depots and functionalization of carrier biomaterials with antioxidant can potentially provide benefits such as improved bioavailability, controlled release pattern, and increased therapeutic effect in intracameral pilocarpine administration for glaucoma

  6. Antioxidant capacity and contents of phenols, ascorbic acid, β-carotene and lycopene in lettuce

    OpenAIRE

    Zdravković Jasmina M.; Aćamović-Đoković Gordana S.; Mladenović Jelena D.; Pavlović Radoš M.; Zdravković Milan S.

    2014-01-01

    The antioxidant activity of three lettuce varieties (Lactuca sativa L.) Emerald, Vera and Neva, cultivated in two kinds of protected spaces, a glasshouse and a plastic greenhouse, under controlled conditions, was determined. The content of antioxidant compounds: total phenols, flavonoids, L-ascorbic acid, ß-carotene and lycopene, were determined in ethanolic extracts of the lettuce with spectrophotometric methods. The largest content of total phenols (78.98...

  7. Effect of high doses of L-ascorbic acid on the antioxidative/oxidative state in the rats

    DEFF Research Database (Denmark)

    Niemiec, T.; Sawosz, E.; Chwalibog, André

    2005-01-01

    The objective of this study was to determine the effects of mega-doses of vitamin C (0.3, 0.6 and 0.9% of diet) as a dietary supplement for rats on selected indices of the antioxidative/oxidative state in 40 growing Wistar rats (4x10). It was found that L-ascorbic acid and Total Antioxidative State...... (TAS) in plasma did not increase with increasing vitamin C supply. The results indicate that high doses of L-ascorbic acid (0.3 and 0.9 but not 0.6%) increased the concentration of this antioxidant in plasma. Supplementation of vitamin C above 0.3% to the diets had pro-oxidative effects on lipid...... structures, while application of 0.9% promoted oxidative degradation of rat livers....

  8. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q.; Chen, S.Y.; Deng, L.D.; Feng, L.P.; Huang, L.Z.; Yu, R.R. [Department of Pharmacy, Guilin Medical University, Guilin (China)

    2013-11-18

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05), and decreased expression of GLUT2 (by 60%, P<0.05) and pyruvate kinase (by 80%, P<0.05) mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.

  9. Determination of fruit characteristics, fatty acid profile and total antioxidant capacity of Mespilus germanica L. fruit

    Directory of Open Access Journals (Sweden)

    Hale Seçilmiş Canbay

    2015-11-01

    Full Text Available Objective: To determine fruit characteristics, fatty acid profile and total antioxidant capacitiy of first cultured Mespilus germanica L. Methods: A total of 15 fruits were taken randomly from four directions of adult trees. Then the physical and chemical properties of first cultured medlar fruit (Istanbul/Turkey were measured by using refractometer, colorimeter, spectrophotometer and gas chromatograph mass spectrometer, respectivly. Results: In the fruit studied, the results showed that palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid and behenic acid were the most abundant fatty acids (FAs, and the main FA was palmitic acid [(35.35 ± 1.20%]. The percentage of linoleic acid and stearic acid in this fruit oil were (29.10 ± 1.70% and (8.53 ± 0.25%, respectively. As a result of the analysis, the total antioxidant capacity of medlar fruit was (1.1 ± 0.2 mmol trolox equivalents/L. Conclusions: The present study has demonstrated the concentrations of FAs and the antioxidantive capacity of first cultured Istanbul medlar fruits by using many tested methods. It is proved that in our daily life, medlar fruit plays a significant role with its nutrition and health effect.

  10. Effects of intermittent acid rain on proline and antioxidant content on medicinal plant “Pereskia bleo”

    Science.gov (United States)

    Sulandjari; Dewi, W. S.

    2018-03-01

    Global warming due to CO2 and other greenhouse gas emissions from human activities have led to climate change and environmental degradation. The acid rain, with the pH of rainwater below 5.6, is a serious environmental problem. Arising from air pollution and potentially harmful to health, it can damage old buildings and distract the growth and physiological metabolism of sensitive plants. How does the influence of climate change on medicinal plants such as Pereskia bleo? The leaf of Pereskia bleo (Kunth) DC. contains high antioxidants with benefits for anti-cancer, anti-tumor, anti-rheumatic, and anti-inflammatory. This research aims to investigate the influence of acid rain on the proline level and antioxidant content of Pereskia bleo. Having been carried out from June to August in Jogjakarta, this study was conducted through the use of artificial acid rain with pH 5.8, 4.9, 3.7 and 2.9, by adding sulfate acid (H2SO4) to rainwater. The interval of intermittent watering acid rain to the plants is once a day, twice a day, and once in three days with three replications for six weeks. The results showed that Acid rain with a pH less than 4.9 and the intermittent interval of acid rain twice a day and once in three days significantly suppresses growth and chlorophyll content. In contrast, it increases the proline and antioxidant levels as a tolerant action of the plant.

  11. Effect of ellagic acid on some haematological, immunological and antioxidant parameters of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Mişe Yonar, S; Yonar, M E; Yöntürk, Y; Pala, A

    2014-10-01

    In this study, effect of ellagic acid on some haematological, immunological and antioxidant parameters in the blood and various tissues of rainbow trout (Oncorhynchus mykiss) were examined. Four groups of rainbow trout were fed experimental diets containing either no ellagic acid (control) or supplemented with ellagic acid at 50 mg/kg diet (EA-50), 100 mg/kg diet (EA-100) or 150 mg/kg diet (EA-150) for 21 days. Samples of the blood and tissue (liver, kidney and spleen) were collected at the end of the experiment and analysed for their haematological profile (the red blood cell count, the haemoglobin concentration and the haematocrit level), immune response (the white blood cell count, the oxidative radical production (NBT activity), the total plasma protein and total immunoglobulin level) and oxidant/antioxidant status (the malondialdehyde level, the superoxide dismutase, catalase and glutathione peroxidase activity as well as the reduced glutathione concentration). The findings of this study demonstrated that ellagic acid had a positive effect on the haematological parameters, the immune response and the antioxidant enzyme activities of the fish. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  12. Potent Antioxidative Activity of Lycopene: A Potential Role in Scavenging Hypochlorous Acid

    OpenAIRE

    Pennathur, Subramaniam; Maitra, Dhiman; Byun, Jaeman; Sliskovic, Inga; Abdulhamid, Ibrahim; Saed, Ghassan M.; Diamond, Michael P.; Abu-Soud, Husam M.

    2010-01-01

    Lycopene, a carotenoid found in tomatoes, is a proven anti-oxidant that may lower the risk of certain disorders including heart disease and cancer. Hypochlorous acid (HOCl) is an oxidant linked to tissue oxidation in cardiovascular disease and other inflammatory disorders through its ability to modify proteins, deoxyribonucleic acid, ribonucleic acid and lipids. Here we show that lycopene can function as a potent scavenger of HOCl at a wide range of concentrations that span various pathophysi...

  13. Comparison of antioxidant properties of uric acid and its catabolic products

    Czech Academy of Sciences Publication Activity Database

    Papežíková, Ivana; Lojek, Antonín; Číž, Milan

    2005-01-01

    Roč. 3, č. 1 (2005), S37 [Cells VI - Biological Days /18./. 24.10.2005-26.10.2005, České Budějovice] R&D Projects: GA ČR(CZ) GA524/04/0897 Institutional research plan: CEZ:AV0Z50040507 Keywords : antioxidant * uric acid * allantoin Subject RIV: BO - Biophysics

  14. Antioxidant, antimicrobial, cell viability and enzymatic inhibitory of antioxidant polymers as biological macromolecules.

    Science.gov (United States)

    Hashemi Gahruie, Hadi; Niakousari, Mehrdad

    2017-11-01

    Polymeric antioxidants such as Catechinaldehyde Polycondensates, Catechin-acelaldehydepolycondensates, Flavonoid-grafted chitosan fibers, Ferulate hydrogel, Dextran ferulate hydrogel, Starch-quercetin conjugate, Gallic acid- and Caffeic acid-functionalized chitosan, Gallic acid - chitosan conjugate, Poly(rutin), Gallic acid grafted chitosan, Dextran-Catechin Conjugate belong to biological macromolecules. These kinds of compounds have stronger antioxidant potential and pharmacokinetic activities, as compared to similar low molecular weight preservatives. Most of these compounds sources are either antioxidants with low molecules polymerization, or polymers conjugation such as synthetic or natural preservatives. Additives are well known as being an important ingredient of food products due to their strong preservative potential. Many researchers and industries attempt to find synthesize materials with the same antioxidant potential and higher stability than the similar compounds with low molecular weight. Recently, macromolecular antioxidants have received wide attention as food additives and dietary supplements in functional foods. It seems that the main usage of these compounds is in the food packaging industry. Most of these compounds have strong antioxidant, antimicrobial, cell viability and enzymatic inhibitory properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Antioxidant and DPPH (1,1-diphenyl-2-picrylhydrazyl Free Radical Scavenging Activities of Boniger Acid and Calix[4]arene Derivative

    Directory of Open Access Journals (Sweden)

    E. ERDEM

    2014-07-01

    Full Text Available Diazonium derivative of calix[4]arene has been synthesized using three different synthetic steps. Initially p-tert-butylcalix[4]arene was synthesized with the condensation reaction of p-tert-butylphenol and formaldehyde in basic conditions. Calix[4]arene was obtained after the debutylation reaction of p-tert-butylcalix[4]arene with AlCl3. Calix[4]arene reacted with diazonium salt of Böniger acid to yield the 5,17-[(Bis(azo-bis(5-hydroxy-2,7-naphthalenedisulfonicacid]-25,26,27,28-tetrahydroxy calix[4]arene which has eight free phenolic hydroxyl group. Reaction steps were shown in Fig.1.2,7-naphthalenedisulfonicacid]-25,26,27,28-tetrahydroxy calix[4]arene The antioxidant activity of the Böniger acid and calix[4]aren derivative were determined using β-karotene-linoleic acid system. Moreover, the free radical scavenging activity values were tested with DPPH free radical. The two compounds showed strong antioxidant activity. Total antioxidant activity of Böniger acid and calix[4]aren derivative was determined using β–carotenelinoleic acid model system and was found the antioxidant activity of 84.00% and 85.60 % respectively. The free radical scavenging activities were determined as 83.05% and 84.69 %. Results show that, two compounds has the antioxidant activity. The calix[4]aren derivaties has more higher activity then Boniger acid because of calix[4]aren derivative has much hydroxl groups.

  16. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method.

    Science.gov (United States)

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-07-27

    The major objective of this work was to develop a green and facile process to prepare gallic acid-chitosan conjugate and comprehensively evaluate the physicochemical properties and biological activities of an as-prepared water-soluble chitosan derivative. A free-radical-induced grafting approach using an ascorbic acid-hydrogen peroxide redox pair was adopted. The obtained conjugate was characterized by Fourier transform infrared spectroscopy, UV-vis, X-ray diffraction, and pKa analysis. The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulphonic acid (ABTS), reducing power, and oxygen-radical antioxidant-capacity assays. The results showed that the mass ratio of gallic acid to chitosan played a vital role in determining the grafting degree and ζ potential of the conjugates, with the ratio of 0.5:1 being the optimal ratio that resulted in the highest grafting degree. The antioxidant assays demonstrated that conjugation significantly improved the antioxidant activities, being dramatically higher than that of free chitosan. It was notable that the DPPH- and ABTS-scavenging activities of conjugate at 0.4 mg/mL reached the same level as the free gallic acid at the equivalent concentration. Our study demonstrated a green and facile synthesis approach to preparing a novel water-soluble chitosan derivative that may have promising potentials in the food industry.

  17. Butylated caffeic acid: An efficient novel antioxidant; Ácido cafeico butilado: un nuevo y eficaz antioxidante.

    Energy Technology Data Exchange (ETDEWEB)

    Shi, G.; Liao, X.; Olajide, T.M.; Liu, J.; Jiang, X.; Weng, X.

    2017-07-01

    A novel antioxidant, butylated caffeic acid (BCA) was rationally designed by adding a tert-butyl group to caffeic acid, which was synthesized at a high yield (36.2%) from 2-methoxy-4-methylphenol (1) by a four-step reaction including Friedel-Crafts alkylation, bromine oxidation, ether bond hydrolysis and Knoevenagel condensation. Its antioxidant capacity was much stronger than common commercial antioxidant tert-butyl hydroquinone (TBHQ) and its mother compound, caffeic acid, in both rancimat and deep frying tests. When investigated via the DPPH method, the antioxidant capacity of BCA was almost equal to TBHQ, but lower than caffeic acid. BCA could be a potentially strong antioxidant, especially for food processing at high temperatures such as deep frying and baking. [Spanish] Se diseñó razonadamente un nuevo antioxidante, el ácido cafeico butilado (BCA) mediante la adición de un grupo terc-butilo al ácido cafeico, que se sintetizó con un alto rendimiento (36,2%) a partir de 2-metoxi-4-metilfenol, reacción de Friedel-Crafts, oxidación de bromo, hidrólisis del enlace éter y condensación de Knoevenagel. Su capacidad antioxidante fué mucho más fuerte que la del antioxidante comercial mas común el terc-butil hidroquinona (TBHQ) y la de su compuesto madre el ácido cafeico, tanto en rancimat como en pruebas de fritura. Cuando se investigó mediante el método DPPH, la capacidad antioxidante de BCA fue casi igual a TBHQ, pero menor que la del ácido cafeico. BCA podría ser un fuerte antioxidante potencial, especialmente para el procesamiento de alimentos a alta temperatura, tales como freír y hornear.

  18. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise...... acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase...... by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic...

  19. The antioxidative effect of lipophilized rutin and dihydrocaffeic acid in fish oil enriched milk

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Petersen, Lone Kirsten; de Diego, Sara

    2012-01-01

    The antioxidative effect of phenolipids was evaluated in fish oil enriched milk emulsions as a model for a complex food system. Two different phenolipids modified from dihydrocaffeic acid (with C8 or C18:1) and rutin (with C12 or C16) were evaluated. Both dihydrocaffeate esters and rutin laurate...... provides new knowledge that can be used to develop new antioxidant strategies to protect foods against lipid oxidation. However, the results indicate that both optimization of alkyl chain length for each type of phenolic, and optimization for each type of emulsion will be necessary in order to get the best...... oxidative stability of an emulsion with these phenolipids. Use of efficient antioxidants may lower the amount of antioxidant needed to protect against lipid oxidation and may in addition decrease the costs....

  20. Contents of carboxylic acids and two phenolics and antioxidant activity of dried portuguese wild edible mushrooms.

    Science.gov (United States)

    Ribeiro, Barbara; Rangel, Joana; Valentão, Patrícia; Baptista, Paula; Seabra, Rosa M; Andrade, Paula B

    2006-11-01

    The organic acids and phenolics compositions of nine wild edible mushrooms species (Suillus bellini, Tricholomopsis rutilans, Hygrophorus agathosmus, Amanita rubescens, Russula cyanoxantha, Boletus edulis, Tricholoma equestre, Suillus luteus, and Suillus granulatus) were determined by HPLC-UV and HPLC-DAD, respectively. The antioxidant potential of these species was also assessed by using the DPPH* scavenging assay. The results showed that all of the species presented a profile composed of at least five organic acids: oxalic, citric, malic, quinic, and fumaric acids. In a general way, the pair of malic plus quinic acids were the major compounds. Only very small amounts of two phenolic compounds were found in some of the analyzed species: p-hydroxybenzoic acid (in A. rubescens, R. cyanoxantha, and T. equestre) and quercetin (in S. luteus and S. granulatus). All of the species exhibited a concentration-dependent scavenging ability against DPPH*. T. rutilans revealed the highest antioxidant capacity.

  1. COMPARATIVE EFFICIENCY OF DIFFERENT ANTIOXIDANTS ON FAT STABILITY IN BROILER RATIONS: THIOBARBITURIC ACID VALUES

    Directory of Open Access Journals (Sweden)

    Ghulam Mustafa, Fawad Ahmad, Arfan Yousaf and Asad Ullah Hyder

    2002-04-01

    Full Text Available Thiobarbituric acid (TBA value was significantly (P< 0.05 affected by storage period, fat levels and antioxidants but the interaction of these factors was non significant. TBA value increased with the increase in storage period, however, the increase was relatively less during first 14 days of storage then a significant increase in TBA was observed as the storage period prolonged. Rations containing 4% fat have greater TBA value than the rations containing 2 or 3% fat. There was also a significant difference on TBA value due to antioxidant and their levels. TBA value was lower in the rations containing ethoxyquin than BHT containing rations and the rations supplemented with oxistat had greater TBA value. At higher level of any antioxidant, TBA value decreased, however, the difference between TBA values at both levels is non significant. With the increase in storage period there was increase in TBA value at both the antioxidant level. Antioxidant had a significant effect on fat stability in TBA test. Antioxidant level at 2 and 3% fat had a non significant effect but at 4% fat level. Antioxidant level had a significant effect. However, TBA values increased significantly at both levels of antioxidant with the increase in fat levels.

  2. Effect of maceration duration on physicochemical characteristics, organic acid, phenolic compounds and antioxidant activity of red wine from Vitis vinifera L. Karaoglan.

    Science.gov (United States)

    Kocabey, N; Yilmaztekin, M; Hayaloglu, A A

    2016-09-01

    Effects of different maceration times (5, 10 and 15 days) on composition, phenolic compounds and antioxidant activities of red wines made from the Vitis vinifera L. Karaoglan grown in Malatya were investigated. Maceration duration changed some chemical constituents and color of Karaoglan red wines. A linear relationship was observed between antioxidant activity of wine and maceration duration. Major organic acid was tartaric acid which was at the highest concentration in wine macerated for 10 days. A total of 25 phenolic compounds was determined in wine samples. Within these phenolics; procyanidin B2, trans -caftaric acid, gallic acid, trans -caffeic acid, (+) catechin, (-) epicatechin and quercetin-3- O -glucoside were the most abundant phenolics regardless of maceration duration. In general, extended maceration duration resulted in increase in the concentration of phenolic compounds, reflecting the antioxidant activities of wine. In conclusion, the highest concentrations of total and individual phenolic compounds as well as antioxidant activities were found in wines macerated for 15 days.

  3. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice

    Science.gov (United States)

    Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.

    2010-12-01

    The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.

  4. Effect of lipophilization of dihydrocaffeic acid on its antioxidative properties in fish oil enriched emulsion

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; de Diego, Sara; Petersen, Lone Kristine

    oxidation than PUFAs from vegetable oils due to their highly polyunsaturated nature, it is necessary to develop methods to protect these PUFAs. Many food systems are emulsions. Due to the so-called polar paradox phenomenon, hydrophilic antioxidants may in many cases be better antioxidants in bulk oil than...... lipophilic compounds, whereas lipophilic antioxidants are more efficient than hydrophilic antioxidants in emulsions. This phenomenon has been explained by the affinity of the compounds towards the different phases in bulk oil and emulsions. The hydrophilic character of many naturally occurring antioxidants...... that generally, lipophilized dihydrocaffeic acid and rutin increased the oxidative stability of o/w emulsions and fish oil enriched milk compared with their parent compound. The results supported a cut-off effect in relation to the acyl chain length esterified to the phenolic compound. Octyl dihydrocaffeate (C8...

  5. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects.

    Science.gov (United States)

    de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Rasera, Gabriela Boscariol; Canniatti-Brazaca, Solange Guidolin; do Prado-Silva, Leonardo; Alvarenga, Verônica Ortiz; Sant'Ana, Anderson S; Shahidi, Fereidoon

    2017-12-15

    Peanut skin (PS) and meal from dry-blanched peanuts (MDBP) were evaluated as sources of phenolic compounds. PS rendered the highest total phenolic content, antioxidant capacity towards ABTS radical cation, DPPH and hydroxyl radicals as well as reducing power. Phenolic acids were present in PS and MDBP whereas proanthocyanidins and monomeric flavonoids were found only in PS as identified by HPLC-DAD-ESI-MS n . Procyanidin-rich extracts prevented oxidation in non-irradiated and gamma-irradiated fish model system. Both extracts inhibited the growth of gram-positive (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Geobacillus stearothermophilus) and gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli). Regardless of the strain, phenolic acid-rich extracts showed the lowest minimum inhibitory capacity (MIC); therefore presenting higher antibacterial effect. The MIC of phenolic acid-rich extracts (24-49μgphenolics/mL) was higher but comparable to Ampicillin (10μg/mL). Thus, phenolics in PS and MDBP may serve as antioxidants and antimicrobial compounds. Copyright © 2017. Published by Elsevier Ltd.

  6. Antioxidant profile of strawberry tree honey and its marker homogentisic acid in several models of oxidative stress.

    Science.gov (United States)

    Rosa, Antonella; Tuberoso, Carlo Ignazio Giovanni; Atzeri, Angela; Melis, Maria Paola; Bifulco, Ersilia; Dessì, Maria Assunta

    2011-12-01

    The antioxidant activity of several honeys was evaluated considering the different contribution of entire samples. The strawberry tree honey emerged as the richest in total phenols and the most active honey in the DPPH and FRAP tests, and could protect cholesterol against oxidative degradation (140°C). Homogentisic acid (2,5-dihydroxyphenylacetic acid, HGA), the main phenolic compound from strawberry tree honey, showed interesting antioxidant and antiradical activities, and protective effect against thermal-cholesterol degradation, comparable to those of well known antioxidants. Moreover, the pre-treatment with HGA significantly preserved liposomes and LDL from Cu(2+)-induced oxidative damage at 37°C for 2h, inhibiting the reduction of polyunsaturated fatty acids and cholesterol and the increase of their oxidative products. This phenol had no toxic effect in human intestinal epithelial Caco-2 cells within the concentration range tested (5-1000μM). HGA was able to pass through the Caco-2 monolayers, the apparent permeability coefficients (Papp) in the apical-to-basolateral and basolateral-to-apical direction were 3.48±1.22×10(-6) and 2.18±0.34×10(-6)cm/s, respectively, suggesting a passive diffusion pathway as the dominating process. The results of the work qualify HGA as natural antioxidant, able to exert a significant in vitro protective effect and to contribute to the strawberry tree honey antioxidant activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Alkyl chain length impacts the antioxidative effect of lipophilized ferulic acid in fish oil enriched milk

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Lyneborg, Karina Sieron; Villeneuve, Pierre

    2015-01-01

    Lipophilization of phenolics by esterification with fatty alcohols may alter their localization in an emulsion and thereby their antioxidant efficacy. In this study, synthesized unbranched alkyl ferulates were evaluated as antioxidants in fish oil enriched milk. Lipid oxidation was determined...... by peroxide values and concentration of volatile oxidation products. A cut-off effect in the antioxidant efficacy in relation to the alkyl chain length was observed. The most efficient alkyl ferulate was methyl ferulate followed by ferulic acid and butyl ferulate, whereas octyl ferulate was prooxidative...

  8. Antioxidant Activities of Lactic Acid Bacteria for Quality Improvement of Fermented Sausage.

    Science.gov (United States)

    Zhang, Yulong; Hu, Ping; Lou, Lijiao; Zhan, Jianlong; Fan, Min; Li, Dan; Liao, Qianwei

    2017-12-01

    Lactobacillus curvatus (SR6) and Lactobacillus paracasei (SR10-1) were assessed for their antioxidant activities and inoculated into sausages to investigate their effects on quality during fermentation. The results showed that L. curvatus SR6 had better DPPH• scavenging activity (59.67% ± 6.68%) and reducing power (47.31% ± 4.62%) and L. paracasei SR10-1 had better OH• scavenging activity (285.67% ± 2.00%) and anti-lipid peroxidation capacity (63.89% ± 0.93%). The superoxide dismutase activity of the cell culture fluid was greater than 47.00 U/mL, and the catalase activity of the cell-free extracts was greater than 1.00 U/mL. In the sausage model, lactic acid bacteria rapidly became the dominant microflora and reduced the moisture content, water activity, nitrite, and pH. The bacteria significantly enhanced the antioxidant activity of the sausage extracts, which improved the sensory characteristics and safety of the sausages. These results illustrate that both strains have excellent antioxidant activities and can be used as antioxidant starters in fermented meat products. The study illustrated the antioxidant and antioxidase activities of Lactobacillus curvatus SR6 and Lactobacillus paracasei SR10-1 and demonstrated the changes in the quality characteristics and antioxidant activities of fermented sausages. The findings provide valuable information for the meat industry on the application of functional starters in fermented meat products. © 2017 Institute of Food Technologists®.

  9. Indole-3-acetic acid/diol based pH-sensitive biological macromolecule for antibacterial, antifungal and antioxidant applications.

    Science.gov (United States)

    G, Chitra; D S, Franklin; S, Sudarsan; M, Sakthivel; S, Guhanathan

    2017-02-01

    Indole-3-acetic acid (IAA)/diol based pH-sensitive biopolymeric hydrogels with tunable biological properties (cytotoxicity, anti-oxidant and anti-fungal) have been synthesized via condensation polymerization. The present study focused on the synthesis of heterocyclic hydrogel using citric acid (CA), indole-3-acetic acid (IAA) and diethylene glycol (DEG) by condensation polymerization. The hydrogels revealed a pH-sensitive swelling behaviour, with increased swelling in acidic media, then turns to decreased the swelling in the basic media. The hydrogel samples were tested for antifungal activity against Aspergillus fumigates, Rhizopusoryzae and Candida albicans at different concentrations using ketoconazole as positive control and DMSO as negative control for antifungal activity. Antioxidant activity increasing nature in DPPH than NO radical compared with rutin and confirmed non toxic property using cytotoxicity analysis. The biopolymeric hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy, 1 H NMR, 13 C NMR, TGA, DSC followed by scanning electron microscopy (SEM). Such hydrogels with antioxidant properties is recommended for medical applications such as bandages, catheters, drains and tubes to prevent infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Evaluation of sanitizing efficacy of acetic acid on Piper betle leaves and its effect on antioxidant properties.

    Science.gov (United States)

    Singla, Richu; Ganguli, Abhijit; Ghosh, Moushumi; Sohal, Sapna

    2009-01-01

    The sanitizing efficacy of acetic acid and its effect on health beneficial properties of Piper betle leaves were determined. Betel leaves artificially inoculated with Aeromonas, Salmonella and Yersinia were subjected to organic acid (citric acid, acetic acid and lactic acid) treatment. Pathogen populations reduced by 4 log upon individual inoculation and up to 2 log in a mixed cocktail following treatment with 2% acetic acid during storage up to 20 h at 28 degrees C, indicating a residual antimicrobial effect on pathogen during storage. Antioxidant potential ethanolic extracts of both raw and treated P. betle leaves were assayed for free radical scavenging activities against 2,2-diphenyl-1-picryhydrazyl. Polyphenols, flavonoids and the reducing power of treated and untreated P. betle were also compared. No significant (P>0.05) changes were observed in antioxidant status; flavonoids, polyphenols and reducing power of treated betel leaves. Results indicate the feasibility of a simple intervention strategy for inactivating pathogens in edible leaves of P. betle.

  11. Characterization of Phytochemicals and Antioxidant Activities of Red Radish Brines during Lactic Acid Fermentation

    Directory of Open Access Journals (Sweden)

    Pu Jing

    2014-07-01

    Full Text Available Red radish (Raphanus L. pickles are popular appetizers or spices in Asian-style cuisine. However, tons of radish brines are generated as wastes from industrial radish pickle production. In this study, we evaluated the dynamic changes in colour properties, phenolics, anthocyanin profiles, phenolic acid composition, flavonoids, and antioxidant properties in radish brines during lactic acid fermentation. The results showed that five flavonoids detected were four anthocyanins and one kaempferol derivative, including pelargonidin-3-digluoside-5-glucoside derivatives acylated with p-coumaric acid, ferulic acid, p-coumaric and manolic acids, or ferulic and malonic acids. Amounts ranged from 15.5–19.3 µg/mL in total monomeric anthocyanins, and kaempferol-3,7-diglycoside (15–30 µg/mL. 4-Hydroxy-benzoic, gentisic, vanillic, syringic, p-coumaric, ferulic, sinapic and salicylic acids were detected in amounts that varied from 70.2–92.2 µg/mL, whereas the total phenolic content was 206–220 µg/mL. The change in colour of the brine was associated with the accumulation of lactic acid and anthocyanins. The ORAC and Fe2+ chelation capacity of radish brines generally decreased, whereas the reducing power measured as FRAP values was increased during the fermentation from day 5 to day 14. This study provided information on the phytochemicals and the antioxidative activities of red radish fermentation waste that might lead to further utilization as nutraceuticals or natural colorants.

  12. Antioxidant capacity, phenolic acids and caffeine contents of some commercial coffees available on the Romanian market.

    Science.gov (United States)

    Trandafir, Ion; Nour, Violeta; Ionica, Mira Elena

    2013-03-01

    In the present study a simple and highly sensitive RP-HPLC method has been established for simultaneous determination of chlorogenic acid, caffeic acid, vanillic acid and caffeine in coffee samples. The method has been applied to eight different coffees available on the Romanian market which were previously analysed concerning the total polyphenols content and antioxidant capacity. Reduction of the DPPH radical was used to determine the antioxidant capacity of the coffee extracts while the total polyphenols content was determined by spectrophotometry (Folin Ciocalteu's method). The total polyphenols content ranged from 1.98 g GAE/100 g to 4.19 g GAE/100 g while the caffeine content ranged from 1.89 g/100 g to 3.05 g/100 g. A large variability was observed in chlorogenic acid content of the investigated coffee samples which ranged between 0.6 and 2.32 g/100 g.

  13. Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Erben-Russ, Michael; Bors, Wolf; Saran, Manfred

    1987-01-01

    Linoleic acid peroxyl radicals (LOO) can be viewed as model intermediates occurring during lipid peroxidation processes. Formation and reactions of these species were investigated in aqueous alkaline solution using pulse radiolysis combined with kinetic spectroscopy. Irradiation of linoleic acid in N 2 O/O 2 -saturated solutions leads to a mixture of peroxyl radical isomers; reaction of 13-hydroperoxylinoleic acid (13-LOOH) with azide radicals in N 2 O-saturated solution produces 13-LOO radicals specifically. These peroxyl radicals cannot be observed directly, but their reactions with kaempferol and quercetin, acting as radical-scavenging antioxidants, produced strongly absorbing aroxyl radicals (ArO). The same aroxyl radicals were generated by OH and N 3 with rate constants exceeding 10 9 dm 3 mol -1 s -1 . Applying a reaction scheme that includes competing generation and decay reactions of both LOO and ArO radicals, individual rate constants were derived for LOO reactions with the phenols (> 10 7 dm 3 mol -1 s-? 1 ), with aroxyl radicals to form covalent adducts (> 10 8 dm 3 mol -1 s -1 ), as well as for their bimilecular decay (3.0 x 10 8 dm 3 mol -1 s -1 ). These results demonstrate high reactivity of fatty acid peroxyl radicals and flavone antioxidants in aqueous solution. (author)

  14. Effects of an acid/alkaline treatment on the release of antioxidants and cellulose from different agro-food wastes.

    Science.gov (United States)

    Vadivel, Vellingiri; Moncalvo, Alessandro; Dordoni, Roberta; Spigno, Giorgia

    2017-06-01

    The present investigation was aimed to evaluate the release of both antioxidants and cellulosic fibre from different agro-food wastes. Cost-effective and easily available agro-food residues (brewers' spent grains, hazelnut shells, orange peels and wheat straw) were selected and submitted to a double-step acid/alkaline fractionation process. The obtained acid and alkaline liquors were analysed for total phenols content and antioxidant capacity. The final fibre residue was analysed for the cellulose, lignin and hemicellulose content. The total phenols content and antioxidant capacity of the acid liquors were higher than the alkaline hydrolysates. Orange peels and wheat straw gave, respectively, the highest (19.70±0.68mg/g dm ) and the lowest (4.70±0.29mg/g dm ) total phenols release. Correlation between antioxidant capacity of the liquors and their origin depended on the analytical assay used to evaluate it. All the acid liquors were also rich in sugar degradation products (mainly furfural). HPLC analysis revealed that the most abundant phenolic compound in the acid liquors was vanillin for brewers' spent grains, hazelnut shells and wheat straw, and p-hydroxybenzoic acid for orange peels. Wheat straw served as the best raw material for cellulose isolation, providing a final residue with a high cellulose content (84%) which corresponded to 45% of the original cellulose. The applied process removed more than 90% of the hemicellulose fraction in all the samples, while delignification degree ranged from 67% (in hazelnut shells), to 93% (in brewers' spent grains). It was not possible to select a unique raw material for the release of highest levels of both total phenols and cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fluctuations in phenolic content, ascorbic acid and total carotenoids and antioxidant activity of fruit beverages during storage

    Directory of Open Access Journals (Sweden)

    C. Castro-López

    2016-09-01

    Full Text Available Stability of the total phenolic content, ascorbic acid, total carotenoids and antioxidant activity in eight fruit beverages was analyzed. The influence of storage temperature (4, 8 and 11 °C during the product shelf-life (20 days was evaluated. Pomegranate Juice presented the highest values for antioxidant activity by DPPH·− assay (552.93 ± 6.00 GAE μg mL−1, total carotenoids (3.18 ± 0.11 βCE μg mL−1, and total phenolic content (3967.07 ± 2.47 GAE μg mL−1; while Splash Blend recorded the highest levels of ascorbic acid (607.39 ± 2.13 AAE μg mL−1. The antioxidant capacity was stable at 4 and 8 °C for the first 8 days of storage; while carotenoids and ascorbic acid were slightly degraded through the storage time, possibly due to oxidation and/or reactions with other compounds. The results suggest that the observed variation during testing could be related to storage conditions of the final product.

  16. Phytochemical Analysis, Antioxidant Activity, Fatty Acids Composition, and Functional Group Analysis of Heliotropium bacciferum

    Directory of Open Access Journals (Sweden)

    Sohail Ahmad

    2014-01-01

    Full Text Available Heliotropium bacciferum is paramount in medicinal perspective and belongs to Boraginaceae family. The crude and numerous fractions of leaves, stem, and roots of the plant were investigated for phytochemical analysis and DPPH radical scavenging activity. Phytochemical analysis of crude and fractions of the plant revealed the presence of alkaloids, saponins, tannins, steroids, terpenoids, flavonoids, glycosides, and phenols. The antioxidant (free radical scavenging activity of various extracts of the Heliotropium bacciferum was resolute against 2,2-diphenyl-1-picrylhydrazyl (DPPH radical with the avail of UV spectrophotometer at 517 nm. The stock solution (1000 mg/mL and then several dilutions (50, 100, 150, 200, and 250 mg/mL of the crude and fractions were prepared. Ascorbic acid was used as a standard. The plant leaves (52.59 ± 0.84 to 90.74 ± 1.00, stem (50.19 ± 0.92 to 89.42 ± 1.10, and roots extracts (49.19 ± 0.52 to 90.01 ± 1.02 divulged magnificent antioxidant activities. For the ascertainment of the fatty acid constituents a gas chromatograph hyphenated to mass spectrometer was used. The essential fatty acids for growth maintenance such as linoleic acid (65.70%, eicosadienoic acid (15.12%, oleic acid (8.72%, and palmitic acid (8.14% were found in high percentage. The infrared spectra of all extracts of the plant were recorded by IR Prestige-21 FTIR model.

  17. Phytochemical analysis, antioxidant activity, fatty acids composition, and functional group analysis of Heliotropium bacciferum.

    Science.gov (United States)

    Ahmad, Sohail; Ahmad, Shabir; Bibi, Ahtaram; Ishaq, Muhammad Saqib; Afridi, Muhammad Siddique; Kanwal, Farina; Zakir, Muhammad; Fatima, Farid

    2014-01-01

    Heliotropium bacciferum is paramount in medicinal perspective and belongs to Boraginaceae family. The crude and numerous fractions of leaves, stem, and roots of the plant were investigated for phytochemical analysis and DPPH radical scavenging activity. Phytochemical analysis of crude and fractions of the plant revealed the presence of alkaloids, saponins, tannins, steroids, terpenoids, flavonoids, glycosides, and phenols. The antioxidant (free radical scavenging) activity of various extracts of the Heliotropium bacciferum was resolute against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical with the avail of UV spectrophotometer at 517 nm. The stock solution (1000 mg/mL) and then several dilutions (50, 100, 150, 200, and 250 mg/mL) of the crude and fractions were prepared. Ascorbic acid was used as a standard. The plant leaves (52.59 ± 0.84 to 90.74 ± 1.00), stem (50.19 ± 0.92 to 89.42 ± 1.10), and roots extracts (49.19 ± 0.52 to 90.01 ± 1.02) divulged magnificent antioxidant activities. For the ascertainment of the fatty acid constituents a gas chromatograph hyphenated to mass spectrometer was used. The essential fatty acids for growth maintenance such as linoleic acid (65.70%), eicosadienoic acid (15.12%), oleic acid (8.72%), and palmitic acid (8.14%) were found in high percentage. The infrared spectra of all extracts of the plant were recorded by IR Prestige-21 FTIR model.

  18. Phenolic acid composition and antioxidant properties of Malaysian honeys.

    Science.gov (United States)

    Khalil, M I; Alam, N; Moniruzzaman, M; Sulaiman, S A; Gan, S H

    2011-08-01

    The phenolic acid and flavonoid contents of Malaysian Tualang, Gelam, and Borneo tropical honeys were compared to those of Manuka honey. Ferric reducing/antioxidant power assay (FRAP) and the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical-scavenging activities were also quantified. All honey extracts exhibited high phenolic contents (15.21 ± 0.51- 42.23 ± 0.64 mg/kg), flavonoid contents (11.52 ± 0.27- 25.31 ± 0.37 mg/kg), FRAP values (892.15 ± 4.97- 363.38 ± 10.57 μM Fe[II]/kg), and high IC₅₀ of DPPH radical-scavenging activities (5.24 ± 0.40- 17.51 ± 0.51 mg/mL). Total of 6 phenolic acids (gallic, syringic, benzoic, trans-cinnamic, p-coumaric, and caffeic acids) and 5 flavonoids (catechin, kaempferol, naringenin, luteolin, and apigenin) were identified. Among the Malaysian honey samples, Tualang honey had the highest contents of phenolics, and flavonoids, and DPPH radical-scavenging activities. We conclude that among Malaysian honey samples, Tualang honey is the richest in phenolic acids, and flavonoid compounds, which have strong free radical-scavenging activities. © 2011 Institute of Food Technologists®

  19. Rotator cuff tendinopathy: is there a role for polyunsaturated Fatty acids and antioxidants?

    Science.gov (United States)

    Lewis, Jeremy S; Sandford, Fiona M

    2009-01-01

    Despite the lack of robust evidence, there has been a steady increase in the use of dietary supplements, including Omega 3 fatty acids and antioxidants, in the management of musculoskeletal conditions. One reason for this is that unsatisfactory outcomes with conventional treatments have lead sufferers to seek alternative solutions including the use of nutritional supplements. In the United Kingdom alone, the current supplement market is estimated to be over 300 pounds million per annum. One target market for nutritional supplements is tendinopathies including conditions involving the rotator cuff. This condition is debilitating and associated with considerable morbidity. Incidence increases with advancing age. High levels of cytokines, such as the pro-inflammatory interleukin 1 beta and vascular endothelial growth factor, have been reported within the bursa of patients with rotator cuff disease. There is also evidence that high concentrations of free-radical oxidants may also be involved in tendon pathology. Therefore, the possibility exists that dietary supplements may have a beneficial effect on tendon pathology, including that of the rotator cuff. A review was conducted to synthesize the available research literature on the histopathology of rotator cuff disease and the effectiveness of polyunsaturated fatty acids (PUFAs) and antioxidants on tendinopathies. A search was conducted using the MEDLINE, CINAHL, AMED, EMBASE, Cochrane, and PEDro databases using the terms "rotator cuff" and "tear/s" and "subacromial impingement syndrome," "burase," "bursitis," "tendinopathy," "tendinitis," "tendinosis," "polyunsaturated fatty acids," "PUFA," "Omega 3," "histopathology," "etiology," and "antioxidants." English language was an inclusion criterion. There were no randomized clinical trials found relating specifically to the rotator cuff. Only one trial was found that investigated the efficacy of PUFAs and antioxidants on tendinopathies. The findings suggest that some (low

  20. In vitro antioxidant and cytoprotective properties of Maillard reaction products from phloridzin-amino acid model systems.

    Science.gov (United States)

    Han, Linna; Li, Feng; Yu, Qijian; Li, Dapeng

    2018-01-01

    The aim of this study was to investigate in vitro antioxidant activities and cytoprotective effect of Maillard reaction products (MRPs) from phloridzin (Pz)-amino acid model systems. Their structures were also characterised by Fourier transform-infrared spectroscopy (FTIR). MRPs were prepared from the Pz-methionine (Met), Pz-lysine (Lys), Pz-isoleucine (Ile), Pz-histidine (His) or Pz-glutamic acid (Glu) model system. The Pz-Lys MRPs, rich in antioxidant potency, were subjected to ultrafiltration to yield four MRPs fractions with different molecular weights (Mw). The fraction with Mw 30-50 kDa had significantly (P Maillard reaction. The results obtained in this study may provide some basis for the purported health-promoting effects of MRPs and their potential application as antioxidant agents in food industry. Also, it is important for our understanding of the variation of bioactive substances in food during thermal processing. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Der Jiun Ooi

    2016-06-01

    Full Text Available Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF isolated from M. latifolia rhizome methanolic extract (RME contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  2. Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity.

    Science.gov (United States)

    Campanella, Daniela; Rizzello, Carlo Giuseppe; Fasciano, Cristina; Gambacorta, Giuseppe; Pinto, Daniela; Marzani, Barbara; Scarano, Nicola; De Angelis, Maria; Gobbetti, Marco

    2017-08-01

    This study aimed at using grape marc for the growth of lactic acid bacteria and bifidobacteria with the perspective of producing a functional ingredient having antioxidant activity. Lactobacillus plantarum 12A and PU1, Lactobacillus paracasei 14A, and Bifidobacterium breve 15A showed the ability to grow on grape marc (GM) based media. The highest bacterial cell density (>9.0 CFU/g) was found in GM added of 1% of glucose (GMG). Compared to un-inoculated and incubated control fermented GMG showed a decrease of carbohydrates and citric acid together with an increase of lactic acid. The content of several free amino acids and phenol compounds differed between samples. Based on the survival under simulated gastro-intestinal conditions, GMG was a suitable carrier of lactic acid bacteria and bifidobacteria strains. Compared to the control, cell-free supernatant (CFS) of fermented GMG exhibited a marked antioxidant activity in vitro. The increased antioxidant activity was confirmed using Caco-2 cell line after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. Supporting these founding, the SOD-2 gene expression of Caco-2 cells also showed a lowest pro-oxidant effect induced by the four CFS of GMG fermented by lactic acid bacteria and bifidobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effects of Gallic Acid and Cyclosporine A on Antioxidant Capacity and Cardiac Markers of Rat Isolated Heart After Ischemia/Reperfusion

    Science.gov (United States)

    Badavi, Mohammad; Sadeghi, Najmeh; Dianat, Mahin; Samarbafzadeh, Alireza

    2014-01-01

    Background: Myocardial infarction is one of the important causes of death during old ages. Gallic acid as an antioxidant or cyclosporine A (CsA) as inhibitor of mitochondrial permeability transition pore (mPTP) alone could prevent these complications to some extent, but their combination effect has not been investigated. Objectives: The aim of this study was to determine the combined effect of gallic acid and CsA on antioxidant capacity of isolated heart tissues during ischemia reperfusion. Materials and Methods: Eighty male Wistar rats were randomly assigned to different groups: sham, control (Ca, received saline, 1 mL/kg); 3 groups were pretreated with gallic acid (G1a: 7.5, G2a: 15, G3a: 30 mg/kg) for 10 days, and the other 3 groups were pretreated with gallic acid and received CsA (0.2 µM) for 10 minutes before induction of ischemia and during the first 10 minutes of reperfusion (G1b, G2b and G3b) and the last group received CsA alone (Cb). After 10 days of pretreatment, the heart was isolated and transferred to the Langendorff apparatus and exposed to 30 minutes ischemia followed by 60 minutes of reperfusion. After that cardiac markers and antioxidant enzymes were assessed in cardiac tissues. Results: Lactate dehydrogenase (LDH), Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activity increased and malondialdehyde (MDA) decreased in animals pretreated with gallic acid significantly. However, pretreatment with gallic acid followed by CsA during reperfusion improved the antioxidant capacity and cardiac marker enzymes and restored the lipid peroxidation more effective than gallic acid or CsA alone. Nevertheless, CsA did not change the cardiac marker enzymes significantly. Conclusions: Gallic acid and CsA combination improved antioxidant capacity and cell membrane integrity more than each one alone. Therefore, it can be a therapeutic approach to reduce the I/R injury. PMID:25068044

  4. Characteristics of Oxidative Storage Stability of Canola Fatty Acid Methyl Ester Stabilised with Antioxidants

    Directory of Open Access Journals (Sweden)

    Tirto Prakoso

    2012-11-01

    Full Text Available The storage effects on the oxidation characteristics of fatty acid methyl ester of canola oil (CME were investigated in this study. CME stabilised with two antioxidants, i.e. 2,6-di-tert-bytyl-p-cresol (BHT and 6,6-di-tert-butyl-2, 2’-methylendi-p-cresol (BPH, was stored at 20, 40 and 60°C. The oxidation stability data were measured by the Rancimat test method and it was found that both BHT and BPH addition increased the oxidation resistance of the CME. The results showed that when BPH or BHT was added at a concentration of 100 ppm, the oxidation induction period of the neat CME samples increased from 5.53 h to 6.93 h and 6.14 h, respectively. Comparing both antioxidants, BPH proved to be more effective in increasing the oxidation resistance when both antioxidants were added at the same concentration. Furthermore, the oxidation induction time decreased linearly with the storage time. It was shown that the oxidation occurred rapidly in the first 8 weeks of storage. Later, a kinetic study was undertaken and first-order kinetics were applied to explain the oxidation characteristics of the CME added with antioxidants. This kinetic study focused on exploiting the activation energy values obtained from the Arrhenius equations. Also, the oxidation effects on other quality parameters, including acid value, peroxide value, kinematic viscosity, and water content, were examined.

  5. Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: determination of antioxidant capacity.

    Science.gov (United States)

    Moniruzzaman, Mohammed; Yung An, Chua; Rao, Pasupuleti Visweswara; Hawlader, Mohammad Nurul Islam; Azlan, Siti Amirah Binti Mohd; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties.

  6. Comparative analysis of caffeoylquinic acids and lignans in roots and seeds among various burdock (Arctium lappa) genotypes with high antioxidant activity.

    Science.gov (United States)

    Liu, Jingyi; Cai, Yi-Zhong; Wong, Ricky Ngok Shun; Lee, Calvin Kai-Fai; Tang, Sydney Chi Wai; Sze, Stephen Cho Wing; Tong, Yao; Zhang, Yanbo

    2012-04-25

    Caffeoylquinic acids and lignans in the crude extracts of both roots and seeds from different burdock ( Arctium lappa L.) genotypes were simultaneously characterized and systematically compared by LC-MS and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS), and their antioxidant activities were also investigated. A total of 14 lignans were identified in burdock seeds and 12 caffeoylquinic acids in burdock roots. High levels of caffeoylquinic acids were also detected in burdock seeds, but only trace amounts of lignans were found in burdock roots. Burdock seeds contained higher concentrations of lignans and caffeoylquinic acids than burdock roots. Quantitative analysis of caffeoylquinic acids and lignans in roots and seeds of various burdock genotypes was reported for the first time. Great variations in contents of both individual and total phenolic compounds as well as antioxidant activities were found among different genotypes. Burdock as a root vegetable or medicinal plants possessed considerably stronger antioxidant activity than common vegetables and fruits.

  7. Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk.

    Science.gov (United States)

    Alemán, Mercedes; Bou, Ricard; Guardiola, Francesc; Durand, Erwann; Villeneuve, Pierre; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke

    2015-01-15

    The antioxidative effect of lipophilized caffeic acid was assessed in two different fish oil enriched food products: mayonnaise and milk. In both emulsion systems, caffeic acid esterified with fatty alcohols of different chain lengths (C1-C20) were better antioxidants than the original phenolic compound. The optimal chain length with respect to protection against oxidation was, however, different for the two food systems. Fish oil enriched mayonnaise with caffeates of medium alkyl chain length (butyl, octyl and dodecyl) added resulted in a better oxidative stability than caffeates with shorter (methyl) or longer (octadecyl) alkyl chains. Whereas in fish oil enriched milk emulsions the most effective caffeates were those with shorter alkyl chains (methyl and butyl) rather than the ones with medium and long chains (octyl, dodecyl, hexadecyl and eicosyl). These results demonstrate that there might be an optimum alkyl chain length for each phenolipid in each type of emulsion systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Association between the antioxidant uric acid and depression and antidepressant medication use in 96 989 individuals

    DEFF Research Database (Denmark)

    Wium-Andersen, M K; Kobylecki, C J; Afzal, S

    2017-01-01

    , income, body mass index, C-reactive protein, hemoglobin, triglycerides, cardiovascular disease, diabetes, and intake of meat and vegetables. Results were performed separately in each study and combined in a meta-analysis. RESULTS: In both studies, high uric acid was associated with lower risk......OBJECTIVE: In the last decade, several studies have suggested that depression is accompanied by increased oxidative stress and decreased antioxidant defenses. We tested the hypothesis that high levels of the antioxidant uric acid are associated with lower risk of hospitalization with depression...... of hospitalization as in-patient or out-patient with depression and antidepressant medication use. A doubling in uric acid was associated with an effect estimate of 0.57 (95% CI 0.49-0.65) and 0.77 (0.73-0.81) for hospitalization with depression and antidepressant medication use. The association was consistent...

  9. The study of antioxidants in grapevine seeds

    Directory of Open Access Journals (Sweden)

    Lenka Tomášková

    2017-01-01

    Full Text Available Grapevine seeds contain a large amount of antioxidant components, and are therefore recommended in the prevention and treatment of many diseases. For this research, we studied the antioxidant properties of grapevine seeds from the Marlen variety, as evidence suggests that these types have higher resistance against fungal diseases. Through high-performance liquid chromatography with UV/VIS detection, a total of 10 antioxidant components were selected for further investigation, specifically: catechin, epicatechin, rutin, quercitrin, quercetin, caftaric acid, caffeic acid, p-coumaric acid, ferulic acid, and gallic acid. The antioxidant activity was determinated spectrophotometrically through the adoption of three fundamentally different methods (the DPPH assay, the ABTS method, and the FRAP method. Using the Folin-Ciocalteu method, it was possible to determine the content of all the polyphenolic compounds. The results of the assessment antioxidant activity and the content of polyphenolic compounds were recalculated to gallic acid equivalents (GAE. The values of the antioxidant activity as determinated by the DPPH test were 6643 (±154 mg of GAE; 1984 (±88 mg of GAE when using the FRAP method; and 812 (±31 mg of GAE when the ABTS method was utilised. The content of the total polyphenolic compounds came to 6982 (±221 mg of GAE. The most abundant antioxidant was catechin, with a content of 115 mg.L-1, whilst the least represented compound was ferulic acid (0.139 mg.L-1. Overall, this study showed a high antioxidant potential of grapevine seeds. 

  10. Oxidative Stress in The Hippocampus During Experimental Seizures Can Be Ameliorated With The Antioxidant Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Ítala Mônica Sales Santos

    2009-01-01

    Full Text Available Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group, ascorbic acid (500 mg/kg, i.p., AA group, pilocarpine (400 mg/kg, i.p., pilocarpine group, and the association of ascorbic acid (500 mg/kg, i.p. plus pilocarpine (400 mg/kg, i.p., 30 min before of administration of ascorbic acid (AA plus pilocarpine group. After the treatments all groups were observed for 6 h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a

  11. In Vitro Antioxidant Activities of Phenols and Oleanolic Acid from Mango Peel and Their Cytotoxic Effect on A549 Cell Line

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    2018-06-01

    Full Text Available Mango peel, the main by-product of juice processing, possesses appreciable quantities of bioactive phenolic compounds and is worthy of further utilization. The present work reports for the first time the HPLC analysis and in vitro antioxidant evaluation of mango peel phenols (MPPs and their cytotoxic effect on the A549 lung cancer cell line. These results indicated that mango peel has the total phenolic content of 723.2 ± 0.93 mg·kg−1 dry mango peel (DMP, which consisted mainly of vanillic aldehyde, caffeic acid, chlorogenic acid, gallic acid, procyanidin B2 and oleanolic acid. Antioxidant assays showed that MPPs had strong antioxidant activities, with 92 ± 4.2% of DPPH radical scavenging rate, 79 ± 2.5% of ABTS radical inhibition rate and 4.7 ± 0.5 μM Trolox equivalents per kg−1 DMP of ferric reducing power. Gallic acid possess a stronger antioxidant capacity than other phenols. In vitro cytotoxic tests suggested that mango peel extract (MPE had an IC50 value of 15 mg·mL−1 and MPPs had a stronger inhibitory effect on the A549 cell line. Oleanolic acid exhibited the strongest cytotoxicity, with an IC50 value of 4.7 μM, which was similar with that of the positive control 5-fluorouracil.

  12. Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Erben-Russ, M.; Bors, W.; Saran, M.

    1987-09-01

    Linoleic acid peroxyl radicals (LOO) can be viewed as model intermediates occurring during lipid peroxidation processes. Formation and reactions of these species were investigated in aqueous alkaline solution using pulse radiolysis combined with kinetic spectroscopy. Irradiation of linoleic acid in N/sub 2/O/O/sub 2/-saturated solutions leads to a mixture of peroxyl radical isomers; reaction of 13-hydroperoxylinoleic acid (13-LOOH) with azide radicals in N/sub 2/O-saturated solution produces 13-LOO radicals specifically. These peroxyl radicals cannot be observed directly, but their reactions with kaempferol and quercetin, acting as radical-scavenging antioxidants, produced strongly absorbing aroxyl radicals (ArO). The same aroxyl radicals were generated by OH and N/sub 3/ with rate constants exceeding 10/sup 9/ dm/sup 3/ mol/sup -1/ s/sup -1/. Applying a reaction scheme that includes competing generation and decay reactions of both LOO and ArO radicals, individual rate constants were derived for LOO reactions with the phenols (> 10/sup 7/ dm/sup 3/ mol/sup -1/ s-./sup 1/), with aroxyl radicals to form covalent adducts (> 10/sup 8/ dm/sup 3/ mol/sup -1/ s/sup -1/), as well as for their bimilecular decay (3.0 x 10/sup 8/ dm/sup 3/ mol/sup -1/ s/sup -1/). These results demonstrate high reactivity of fatty acid peroxyl radicals and flavone antioxidants in aqueous solution.

  13. Comparative evaluation of volatiles, phenolics, sugars, organic acids and antioxidant properties of Sel-42 and Tainung papaya varieties.

    Science.gov (United States)

    Kelebek, Hasim; Selli, Serkan; Gubbuk, Hamide; Gunes, Esma

    2015-04-15

    The present study was designed to determine the phenolic compounds, organic acids, sugars, aroma profiles and antioxidant properties of Sel-42 and Tainung papayas grown in Turkey. High-performance liquid chromatography/electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS) method was used for the phenolic compounds analysis. Twelve phenolic compounds were identified and quantified in the samples. The total phenolic content of Sel-42 was clearly higher than that of Tainung. Protocatechuic acid-hexoside, gallic acid-deoxyhexoside, ferulic acid and chlorogenic acids were the most abundant phenolics in both cultivars. Aroma composition of papaya was analysed by gas chromatography-mass spectrometry (GC-MS). A total of 46 and 42 aroma compounds, including esters, alcohols, terpenes, lactones, acids, carbonyl compounds, and volatile phenols were identified in the Sel-42 and Tainung, respectively. The significant linear correlation was confirmed between the values for the total phenolic content and antioxidant activity of papaya extracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Changes in Salicylic Acid and Antioxidants during Induced Thermotolerance in Mustard Seedlings

    Science.gov (United States)

    Dat, James F.; Foyer, Christine H.; Scott, Ian M.

    1998-01-01

    Heat-acclimation or salicylic acid (SA) treatments were previously shown to induce thermotolerance in mustard (Sinapis alba L.) seedlings from 1.5 to 4 h after treatment. In the present study we investigated changes in endogenous SA and antioxidants in relation to induced thermotolerance. Thirty minutes into a 1-h heat-acclimation treatment glucosylated SA had increased 5.5-fold and then declined during the next 6 h. Increases in free SA were smaller (2-fold) but significant. Changes in antioxidants showed the following similarities after either heat-acclimation or SA treatment. The reduced-to-oxidized ascorbate ratio was 5-fold lower than the controls 1 h after treatment but recovered by 2 h. The glutathione pool became slightly more oxidized from 2 h after treatment. Glutathione reductase activity was more than 50% higher during the first 2 h. Activities of dehydroascorbate reductase and monodehydroascorbate reductase decreased by at least 25% during the first 2 h but were 20% to 60% higher than the control levels after 3 to 6 h. One hour after heat acclimation ascorbate peroxidase activity was increased by 30%. Young leaves appeared to be better protected by antioxidant enzymes following heat acclimation than the cotyledons or stem. Changes in endogenous SA and antioxidants may be involved in heat acclimation. PMID:9847121

  15. Antioxidant, anti-inflammatory and anti-septic potential of phenolic acids and flavonoid fractions isolated from Lolium multiflorum.

    Science.gov (United States)

    Choi, Ki-Choon; Son, Young-Ok; Hwang, Jung-Min; Kim, Beom-Tae; Chae, Minseon; Lee, Jeong-Chae

    2017-12-01

    Interest has recently renewed in using Lolium multiflorum Lam. (Poaceae) (called Italian ryegrass; IRG) silage as an antioxidant and anti-inflammatory diet. This study investigated the antioxidant, anti-inflammatory and anti-septic potential of IRG silage and identified the primary components in IRG active fractions. Total 16 fractions were separated from the chloroform-soluble extract of IRG aerial part using Sephadex LH-20 column before HPLC analysis. Antioxidant and anti-inflammatory activities of the fractions at doses of 0-100 μg/mL were investigated using various cell-free and cell-mediated assay systems. To explore anti-septic effect of IRG fractions, female ICR and BALB/c mice orally received 40 mg/kg of phenolic acid and flavonoid-rich active fractions F 7 and F 8 every other day for 10 days, respectively, followed by LPS challenge. The active fractions showed greater antioxidant and anti-inflammatory potential compared with other fractions. IC 50 values of F 7 and F 8 to reduce LPS-stimulated NO and TNF-α production were around 15 and 30 μg/mL, respectively. Comparison of retention times with authentic compounds through HPLC analysis revealed the presence of caffeic acid, ferulic acid, myricetin and kaempferol in the fractions as primary components. These fractions inhibited LPS-stimulated MAPK and NF-κB activation. Supplementation with F 7 or F 8 improved the survival rates of mice to 70 and 60%, respectively, in LPS-injected mice and reduced near completely serum TNF-α and IL-6 levels. This study highlights antioxidant, anti-inflammatory and anti-septic activities of IRG active fractions, eventually suggesting their usefulness in preventing oxidative damage and inflammatory disorders.

  16. A novel method for the determination of ascorbic acid and antioxidant capacity in Opuntia ficus indica using in vivo microdialysis.

    Science.gov (United States)

    Pretti, L; Bazzu, G; Serra, P A; Nieddu, G

    2014-03-15

    A simple and rapid method was developed for in vivo simultaneous determination of ascorbic-acid and antioxidant capacity in microdialysates from cladodes of Opuntia ficus-indica (L.) Miller. The method is verified in water-stressed plants, as compared with a well-watered test controls. The microdialysis probe construction and insertion procedure was specifically developed to minimise the tissue trauma of the plant and to obtain optimal dialysis performance. Microdialysis was performed using a flow rate of 3 μL/min and the samples were analysed by HPLC coupled to electrochemical detection of ascorbic-acid and DPPH-determined antioxidant capacity. Our data indicate exponential decay of the concentrations of the analysed compounds as a function of microdialysis sampling time. Water-stressed Opuntia show decreased ascorbic acid levels and increased the others antioxidants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effect of ultrasonic degradation of hyaluronic acid extracted from rooster comb on antioxidant and antiglycation activities.

    Science.gov (United States)

    Hafsa, Jawhar; Chaouch, Mohamed Aymen; Charfeddine, Bassem; Rihouey, Christophe; Limem, Khalifa; Le Cerf, Didier; Rouatbi, Sonia; Majdoub, Hatem

    2017-12-01

    Recently, low-molecular-weight hyaluronic acid (LMWHA) has been reported to have novel features, such as free radical scavenging activities, antioxidant activities and dietary supplements. In this study, hyaluronic acid (HA) was extracted from rooster comb and LMWHA was obtained by ultrasonic degradation in order to assess their antioxidant and antiglycation activities. Molecular weight (Mw) and the content of glucuronic acid (GlcA) were used as the index for comparison of the effect of ultrasonic treatment. The effects on the structure were determined by ultraviolet (UV) spectra and Fourier transform infrared spectra (FTIR). The antioxidant activity was determined by three analytical assays (DPPH, NO and TBARS), and the inhibitory effect against glycated-BSA was also assessed. The GlcA content of HA and LMWHA was estimated at about 48.6% and 47.3%, respectively. The results demonstrate that ultrasonic irradiation decreases the Mw (1090-181 kDa) and intrinsic viscosity (1550-473 mL/g), which indicate the cleavage of the glycosidic bonds. The FTIR and UV spectra did not significantly change before and after degradation. The IC 50 value of HA and LWMHA was 1.43, 0.76 and 0.36 mg/mL and 1.20, 0.89 and 0.17 mg/mL toward DPPH, NO and TBARS, respectively. Likewise LMWHA exhibited significant inhibitory effects on the AGEs formation than HA. The results demonstrated that the ultrasonic irradiation did not damage and change the chemical structure of HA after degradation; furthermore, decreasing Mw and viscosity of LMWHA after degradation may enhance the antioxidant and antiglycation activity.

  18. Interaction of phenolic antioxidants and hydroxyl radicals

    International Nuclear Information System (INIS)

    Wang Wenfeng; Luo Jian; Yao Side; Lian Zhirui; Zhang Jiashan; Lin Nianyun

    1992-01-01

    Based on pulse radiolysis of aqueous solutions of four phenolic antioxidants including green tea polyphenols, quercetin, caffeic acid and sinapic acid the rate constants for reactions of OH and the antioxidants were determined. And green tea polyphenols and quercetin are the strongest antioxidants

  19. Interaction of phenolic antioxidants and hydroxyl radicals

    International Nuclear Information System (INIS)

    Wang, W.F.; Luo, J.; Yao, S.D.; Lian, Z.R.; Zhang, J.S.; Lin, N.Y.

    1993-01-01

    Based on pulse radiolysis of aqueous solutions of four phenolic antioxidants including green tea polyphenols, quercetin, caffeic acid and sinapic acid the rate constants for reactions of OH and the antioxidants were determined. Green tea polyphenols and quercetin are the strongest antioxidants. (author)

  20. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  1. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity.

    Science.gov (United States)

    de Cristo Soares Alves, Aline; Mainardes, Rubiana Mara; Khalil, Najeh Maissar

    2016-03-01

    Gallic acid is an important polyphenol compound presenting various biological activities. The objective of this study was to prepare, characterize and evaluate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated or not with polysorbate 80 (PS80) containing gallic acid. Nanoparticles coated or not with PS80 were produced by emulsion solvent evaporation method and presented a mean size of around 225 nm, gallic acid encapsulation efficiency of around 26% and zeta potential of -22 mV. Nanoparticle formulations were stable during storage, except nanoparticles coated with PS80 stored at room temperature. In vitro release profile demonstrated a quite sustained gallic acid release from nanoparticles and PS80-coating decreased drug release. Cytotoxicity over red blood cells was assessed and gallic acid-loaded PLGA nanoparticles at all analyzed concentrations demonstrated lack of hemolysis, while PS80-nanoparticles containing gallic acid were cytotoxic only in higher concentrations. Antioxidant potential of nanoparticles containing gallic acid was assessed and PLGA uncoated nanoparticles presented greater efficacy than PS80-coated PLGA nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Antioxidant capacity and contents of phenols, ascorbic acid, β-carotene and lycopene in lettuce

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina M.

    2014-01-01

    Full Text Available The antioxidant activity of three lettuce varieties (Lactuca sativa L. Emerald, Vera and Neva, cultivated in two kinds of protected spaces, a glasshouse and a plastic greenhouse, under controlled conditions, was determined. The content of antioxidant compounds: total phenols, flavonoids, L-ascorbic acid, ß-carotene and lycopene, were determined in ethanolic extracts of the lettuce with spectrophotometric methods. The largest content of total phenols (78.98 ± 0.67 mg GAE/g of dry extract was found in ethanolic extract of the lettuce variety Neva cultivated in a plastic greenhouse, whereas the largest content of flavonoids (35.45 ± 0.95 mg RU/g of dry extract was displayed in the lettuce Emerald cultivated in a glasshouse. It was observed that the lettuce cultivated in the glasshouse contained a somewhat higher content of L-ascorbic acid than the lettuce same variety from plastic greenhouse. The content of lycopene in the examined lettuce is negligible, and the content of ß-carotene is low. On the other hand, the high content of phenolic components causes favourable antioxidant properties found in all varieties of examined lettuce. [Projekat Ministarstva nauke Republike Srbije, br. TR 31059: A new concept in breeding vegetable cultivars and hybrids designed for sustainable growing systems using biotechnological methods

  3. Antioxidant potential of water hyacinth (Eichornia crassipes): In vitro antioxidant activity and phenolic composition

    DEFF Research Database (Denmark)

    Surendraraj, A.; Farvin, Sabeena; Anandan, R.

    2013-01-01

    The aims of the present study were (a) to extract and quantify the main phenolic acids and tocopherols from the petiole, leaves, and flowers of Eichornia crassipes; (b) to evaluate the antioxidant capacity of the extracts in four in vitro systems (1,1-diphenyl-2-pycryl-hydrazyl [DPPH] radical...... and in the antioxidant activities of extracts from the various parts of E. crassipes. Out of the 11 phenolic acids analyzed, ethanolic extracts contained high amounts of gallic, protocatechuic, gentisic, and p-hydroxybenzoic acid, whereas, water extracts contained less amounts of a varied number of phenolic acids...... oil. Our results demonstrate that E. crassipes, an underutilized aquatic weed, could be a potential natural antioxidant source for food, feed, and pharmaceutical applications. © 2013 Copyright Taylor & Francis Group, LLC....

  4. Four New Dicaffeoylquinic Acid Derivatives from Glasswort (Salicornia herbacea L. and Their Antioxidative Activity

    Directory of Open Access Journals (Sweden)

    Jeong-Yong Cho

    2016-08-01

    Full Text Available Four new dicaffeoylquinic acid derivatives and two known 3-caffeoylquinic acid derivatives were isolated from methanol extracts using the aerial parts of Salicornia herbacea. The four new dicaffeoylquinic acid derivatives were established as 3-caffeoyl-5-dihydrocaffeoylquinic acid, 3-caffeoyl-5-dihydrocaffeoylquinic acid methyl ester, 3-caffeoyl-4-dihydrocaffeoylquinic acid methyl ester, and 3,5-di-dihydrocaffeoylquinic acid methyl ester. Their chemical structures were determined by nuclear magnetic resonance and electrospray ionization-mass spectroscopy (LC-ESI-MS. In addition, the presence of dicaffeoylquinic acid derivatives in this plant was reconfirmed by LC-ESI-MS/MS analysis. The isolated compounds strongly scavenged 1,1-diphenyl-2-picrylhydrazyl radicals and inhibited cholesteryl ester hydroperoxide formation during rat blood plasma oxidation induced by copper ions. These results indicate that the caffeoylquinic acid derivatives may partially contribute to the antioxidative effect of S. herbacea.

  5. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae) from Turkey.

    Science.gov (United States)

    Berber, Adnan; Zengin, Gokhan; Aktumsek, Abdurrahman; Sanda, Murad Aydin; Uysal, Tuna

    2014-03-01

    Adenocarpus complicatus is distributed throughout the Anatolian peninsula and is widely used for human and animal nutrition. The purpose of this work was to study the antioxidant properties and fatty acid composition of different parts of this plant (fruits and mixed materials). The species was collected from Golyuzu village of the Seydisehir district near Konya province, Turkey. Fruit and mixed parts obtained from this species were ground and a 15g sample was used to prepare methanolic extracts. Powdered plant samples were extracted with 100mL methanol in a mechanical shaker. The obtained extracts were filtered and concentrated to dryness under reduced pressure and were subsequently stored at -20 degrees C. Antioxidant components, namely total phenolic and flavonoid content, were detected for each extract using spectrophotometric methods. Antioxidant capacity was evaluated by various assays including phosphomolybdenum, DPPH free radical scavenging capacity, metal chelating activity, and ferric and cupric ion reducing power. The fatty acid profiles of plant parts were also determined by using gas chromatography. The total phenolic content of fruit (36.21mgGAE/g) was higher than that of mixed materials (13.79mgGAE/g). The methanolic extract of mixed material had higher amounts of flavonoid than fruit extract. The free radical scavenging activity of extracts was expressed as IC50 value (microg/mL) (amount required to inhibit DPPH radical formation by 50%). The lower IC50 value reflects better free radical scavenging action. The radical scavenging activity of the samples was compared with BHT, it showed the mixed material to be almost two times more potent than the fruit extract. However, BHT is an excellent free radical scavenger with an IC50 of 34.061 microg/mL. The ferric and cupric reducing power potentials of the extracts were expressed as EC50 value (the effective concentration at which the absorbance was 0.5). Fruit extract exhibited strong ferric reducing

  6. Evaluation of Antioxidant Activity, Polyphenolic Compounds, Amino Acids and Mineral Elements of Representative Genotypes of Lonicera edulis

    Directory of Open Access Journals (Sweden)

    Jiri Sochor

    2014-05-01

    Full Text Available The aim of this study was to evaluate the bioactive substances in 19 berry cultivars of edible honeysuckle (Lonicera edulis. A statistical evaluation was used to determine the relationship between the content of selected bioactive substances and individual cultivars. Regarding mineral elements, the content of sodium was measured using potentiometry and spectrophotometry. The content of selected polyphenolic compounds with high antioxidant activity was determined by a HPLC–UV/ED method. The total amount of polyphenols was determined by the Folin-Ciocalteu method. The antioxidant activity was determined using five methods (DPPH, FRAP, ABTS, FR and DMPD that differ in their principles. The content of 13 amino acids was determined by ion-exchange chromatography. The experimental results obtained for the different cultivars were evaluated and compared by statistical and bioinformatic methods. A unique feature of this study lies in the exhaustive analysis of the chosen parameters (amino acids, mineral elements, polyphenolic compounds and antioxidant activity during one growing season.

  7. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat

    Science.gov (United States)

    2013-01-01

    Background Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. Methods The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. Results The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010–11 & 2011–12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. Conclusion In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio

  8. Tear ascorbic acid levels and the total antioxidant status in contact lens wearers: A pilot study

    Directory of Open Access Journals (Sweden)

    Venkata Sai

    2009-01-01

    Full Text Available Aims: The tear ascorbate owing to its high concentration, functions as an effective antioxidant against the oxidative damage of cornea. Contact lens wearers (CLW are prone to oxidative stress due to the lens-induced hypoxic conditions. A pilot study was done to compare the tear ascorbic acid level and the total antioxidant capacity give as in normal and CLW. Materials and Methods: In this study 21 CLW (Mean age 23 ± 3 years ; M-2, F-19, who were daily wear users, with duration of wear not more than four years, along with age-matched 28 controls (Mean age 28 ± 3 ; M-15, F-13 were recruited in the study for collection of reflex tears using Schirmer′s strip. Ascorbic acid in tears was determined using high-performance liquid chromatography (HPLC, total antioxidant capacity (TAC and total protein assay by spectrophotometric analysis. Results: CLW showed no significant change in the tear ascorbic acid levels (0.4 ± 0.26 mM compared to the control subjects (0.61 ± 0.59 mM. The amount of ascorbic acid in tears did not correlate with the TAC or the total protein of the tears. The mean TAC in CLW was 0.69 ± 0.16 mM, with a total protein of 1.35 ± 0.46 mg/ml while in controls it was 0.7 ± 0.18 mM and 1.21 ± 0.47 mg/ml respectively . Conclusions: Soft contact lens wear did not show any significant change in tear ascorbic acid, TAC and total protein levels compared to controls.

  9. Is comfrey root more than toxic pyrrolizidine alkaloids? Salvianolic acids among antioxidant polyphenols in comfrey (Symphytum officinale L.) roots.

    Science.gov (United States)

    Trifan, Adriana; Opitz, Sebastian E W; Josuran, Roland; Grubelnik, Andreas; Esslinger, Nils; Peter, Samuel; Bräm, Sarah; Meier, Nadja; Wolfram, Evelyn

    2018-02-01

    Comfrey root preparations are used for the external treatment of joint distortions and myalgia, due to its analgesic and anti-inflammatory properties. Up to date, key activity-determining constituents of comfrey root extracts have not been completely elucidated. Therefore, we applied different approaches to further characterize a comfrey root extract (65% ethanol). The phenolic profile of comfrey root sample was characterized by HPLC-DAD-QTOF-MS/MS. Rosmarinic acid was identified as main phenolic constituent (7.55 mg/g extract). Moreover, trimers and tetramers of caffeic acid (isomers of salvianolic acid A, B and C) were identified and quantified for the first time in comfrey root. In addition, pyrrolizidine alkaloids were evaluated by HPLC-QQQ-MS/MS and acetylintermedine, acetyllycopsamine and their N-oxides were determined as major pyrrolizidine alkaloids in the comfrey root sample. Lastly, the antioxidant activity was determined using four assays: DPPH and ABTS radicals scavenging assays, reducing power assay and 15-lipoxygenase inhibition assay. Comfrey root extract exhibited significant antioxidant activities when compared to known antioxidants. Thus, comfrey root is an important source of phenolic compounds endowed with antioxidant activity which may contribute to the overall bioactivity of Symphytum preparations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Impact of Altitudes and Habitats on Valerenic Acid, Total Phenolics, Flavonoids, Tannins, and Antioxidant Activity of Valeriana jatamansi.

    Science.gov (United States)

    Jugran, Arun K; Bahukhandi, Amit; Dhyani, Praveen; Bhatt, Indra D; Rawal, Ranbeer S; Nandi, Shyamal K

    2016-07-01

    The changes in total phenolics, flavonoids, tannins, valerenic acid, and antioxidant activity were assessed in 25 populations of Valeriana jatamansi sampled from 1200 to 2775 m asl and four habitat types of Uttarakhand, West Himalaya. Significant (p analysis, and principal component analysis (PCA) identified Talwari, Jaberkhet, Manjkhali, and Khirshu populations as promising sources with higher phytochemicals and antioxidant activity. The results recommended that the identified populations with higher value of phytochemicals and antioxidants can be utilized for mass multiplication and breeding program to meet the domestic as well as commercial demand.

  11. Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters.

    Science.gov (United States)

    Pinela, José; Barros, Lillian; Antonio, Amilcar L; Carvalho, Ana Maria; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2016-04-08

    This study addresses the effects of gamma irradiation (1, 5 and 8 kGy) on color, organic acids, total phenolics, total flavonoids, and antioxidant activity of dwarf mallow (Malva neglecta Wallr.). Organic acids were analyzed by ultra fast liquid chromatography (UFLC) coupled to a photodiode array (PDA) detector. Total phenolics and flavonoids were measured by the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. The antioxidant activity was evaluated based on the DPPH(•) scavenging activity, reducing power, β-carotene bleaching inhibition and thiobarbituric acid reactive substances (TBARS) formation inhibition. Analyses were performed in the non-irradiated and irradiated plant material, as well as in decoctions obtained from the same samples. The total amounts of organic acids and phenolics recorded in decocted extracts were always higher than those found in the plant material or hydromethanolic extracts, respectively. The DPPH(•) scavenging activity and reducing power were also higher in decocted extracts. The assayed irradiation doses affected differently the organic acids profile. The levels of total phenolics and flavonoids were lower in the hydromethanolic extracts prepared from samples irradiated at 1 kGy (dose that induced color changes) and in decocted extracts prepared from those irradiated at 8 kGy. The last samples also showed a lower antioxidant activity. In turn, irradiation at 5 kGy favored the amounts of total phenolics and flavonoids. Overall, this study contributes to the understanding of the effects of irradiation in indicators of dwarf mallow quality, and highlighted the decoctions for its antioxidant properties.

  12. Analytical profiling of selected antioxidants and total antioxidant capacity of goji (Lycium spp.) berries.

    Science.gov (United States)

    Protti, Michele; Gualandi, Isacco; Mandrioli, Roberto; Zappoli, Sergio; Tonelli, Domenica; Mercolini, Laura

    2017-09-05

    Goji berries and derived products represent a relevant source of micronutrients, most of which are natural antioxidants and contribute to the high nutritional quality of these fruits. Three brands of dried goji berries have been analysed by a multidisciplinary approach to get an insight into both their content of selected antioxidants and their antioxidant capacity (AC). The former goal has been achieved by developing a liquid chromatographic method coupled to mass spectrometry and combined to a fast solid phase extraction. Several significant representative antioxidant compounds belonging to the following classes: flavonoids, flavan-3-ols, phenolic acids, amino acids and derivatives, and carotenoids have been taken into account. Quercetin and rutin were found to be the predominant flavonoids, chlorogenic acid was the most abundant phenolic acid and zeaxanthin was the major carotenoid. The AC of the goji berries has been evaluated by four analytical methods in order to estimate the contributions of different reactions involved in radicals scavenging. In particular, AC has been determined using 3 standardised methods (DPPH, ABTS, ORAC) and a recently proposed electrochemical method, which measures the scavenging activity of antioxidants towards OH radicals generated both by hydrogen peroxide photolysis and the Fenton reaction. The results obtained from chemical composition and antioxidant capacity assays confirm the high nutritional and commercial value of goji berries and highlight that the three brands do not exhibit significant differences. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace.

    Science.gov (United States)

    Walia, Mayanka; Rawat, Kiran; Bhushan, Shashi; Padwad, Yogendra S; Singh, Bikram

    2014-03-30

    Apple pomace is generated in huge quantities in juice-processing industries the world over and continuous efforts are being made for its inclusive utilization. In this study, apple seeds separated from industrial pomace were used for extraction of oil. The fatty acid composition, physicochemical and antioxidant as well as in vitro anticancer properties of extracted oil were studied to assess its suitability in food and therapeutic applications. The fatty acid composition of seed oil revealed the dominance of oleic (46.50%) and linoleic acid (43.81%). It had high iodine (121.8 g I 100 g⁻¹) and saponification value (184.91 mg KOH g⁻¹ oil). The acid value, refractive index and relative density were 4.28 mg KOH g⁻¹, 1.47 and 0.97 mg mL⁻¹, respectively. The antioxidant potential (IC₅₀) of apple seed oil was 40.06 µg mL⁻¹. Cytotoxicity of apple seed oil against CHOK1, SiHa and A549 cancer cell lines ranged between 0.5 ± 0.06% and 88.6 ± 0.3%. The physicochemical properties of apple seed oil were comparable with edible food oil, indicating its better stability and broad application in the food and pharmaceutical industries. Apple seed oil could be a good source of natural antioxidants. Also, the in vitro cytotoxic activity against specific cell lines exhibited its potential as an anticancer agent. © 2013 Society of Chemical Industry.

  14. Effect of Dietary n-3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    B. Guermouche

    2014-01-01

    Full Text Available The aim of this work was to determine the effect of dietary n-3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL, and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n-3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control or with the EPAX diet (enriched in n-3 PUFAs, by streptozotocin. The macrosomic pups were killed at birth (day 0 and at adulthood (day 90. Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC, hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n-3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation.

  15. Antioxidant and chelating capacity of Maillard reaction products in amino acid-sugar model systems: applications for food processing.

    Science.gov (United States)

    Mondaca-Navarro, Blanca A; Ávila-Villa, Luz A; González-Córdova, Aarón F; López-Cervantes, Jaime; Sánchez-Machado, Dalia I; Campas-Baypoli, Olga N; Rodríguez-Ramírez, Roberto

    2017-08-01

    Maillard reaction products (MRP) have gained increasing interest owing to their both positive and negative effects on human health. Aqueous amino acid-sugar model systems were studied in order to evaluate the antioxidant and chelating activity of MRP under conditions similar to those of food processing. Amino acids (cysteine, glycine, isoleucine and lysine) combined with different sugars (fructose or glucose) were heated to 100 and 130 °C for 30, 60 and 90 min. Antioxidant capacity was evaluated via ABTS and DPPH free radical scavenging assays, in addition to Fe 2+ and Cu 2+ ion chelating capacity. In the ABTS assay, the cysteine-fructose model system presented the highest antioxidant activity at 7.05 µmol mL -1 (130 °C, 60 min), expressed in Trolox equivalents. In the DPPH assay, the cysteine-glucose system presented the highest antioxidant activity at 3.79 µmol mL -1 (100 °C, 90 min). The maximum rate of chelation of Fe 2+ and Cu 2+ was 96.31 and 59.44% respectively in the lysine-fructose and cysteine-glucose systems (100 °C, 30 min). The model systems presented antioxidant and chelating activity under the analyzed temperatures and heating times, which are similar to the processing conditions of some foods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Phenolic acids, hydrolyzable tannins, and antioxidant activity of geopropolis from the stingless bee Melipona fasciculata Smith.

    Science.gov (United States)

    Dutra, Richard Pereira; Abreu, Bruno Vinicius de Barros; Cunha, Mayara Soares; Batista, Marisa Cristina Aranha; Torres, Luce Maria Brandão; Nascimento, Flavia Raquel Fernandes; Ribeiro, Maria Nilce Sousa; Guerra, Rosane Nassar Meireles

    2014-03-26

    Geopropolis is a mixture of plant resins, waxes, and soil produced by the stingless bee Melipona fasciculata Smith. This paper describes the antioxidant activity and chemical composition of geopropolis produced by M. fasciculata. The total phenolic content determined with the Folin-Ciocalteu reagent was highest in the ethyl acetate fraction and hydroalcoholic extract. Antioxidant activity was assayed by the in vitro DPPH, ABTS, and FRAP assays. The hydroalcoholic extract and fractions of geopropolis, except for the hexane fraction, exhibited antioxidant activity against DPPH, ABTS, and FRAP. The phenolic compounds were identified by HPLC-DAD-MS on the basis of the evaluation of their UV-vis absorption maxima (λmax) and mass spectral analysis. Eleven compounds belonging to the classes of phenolic acids and hydrolyzable tannins (gallotannins and ellagitannins) were tentatively identified. These compounds are responsible for the antioxidant activity and high phenolic content of geopropolis produced by M. fasciculata.

  17. Antioxidant activity of methanol extract of Helichrysum foetidum Moench.

    Science.gov (United States)

    Tirillini, Bruno; Menghini, Luigi; Leporini, Lidia; Scanu, Nadia; Marino, Stefania; Pintore, Giorgio

    2013-01-01

    Methanol extract of Helichrysum foetidum Moench (Asteraceae) was investigated for antioxidative properties. The antioxidant activities were investigated by 2,2'-azinobis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging, ß-carotene/linoleic acid assay, scavenging of hydrogen peroxide (HRPO test), superoxide anion scavenging (S.A.S. test) and hypochlorous acid scavenging (taurine test). The antioxidant activity was reported as IC50 and reveals Trolox-like antioxidative effects.

  18. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale

    Science.gov (United States)

    Kasprzak, Kamila; Oniszczuk, Tomasz; Waksmundzka-Hajnos, Monika; Nowak, Renata; Polak, Renata

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale (Brassica oleracea L. var. sabellica)—a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity. PMID:29507816

  19. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale

    Directory of Open Access Journals (Sweden)

    Kamila Kasprzak

    2018-01-01

    Full Text Available Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8% of kale (Brassica oleracea L. var. sabellica—a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol’s activity.

  20. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale.

    Science.gov (United States)

    Kasprzak, Kamila; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Waksmundzka-Hajnos, Monika; Olech, Marta; Nowak, Renata; Polak, Renata; Oniszczuk, Anna

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale ( Brassica oleracea L. var. sabellica )-a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans -caffeic, cis -caffeic, trans -p-coumaric, cis -p-coumaric, trans -ferulic, cis -ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans -sinapic, and cis -sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea . Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity.

  1. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae from Turkey

    Directory of Open Access Journals (Sweden)

    Adnan Berber

    2014-03-01

    Full Text Available Adenocarpus complicatus is distributed throughout the Anatolian peninsula and is widely used for human and animal nutrition. The purpose of this work was to study the antioxidant properties and fatty acid composition of different parts of this plant (fruits and mixed materials. The species was collected from Golyuzu village of the Seydisehir district near Konya province, Turkey. Fruit and mixed parts obtained from this species were ground and a 15g sample was used to prepare methanolic extracts. Powdered plant samples were extracted with 100mL methanol in a mechanical shaker. The obtained extracts were filtered and concentrated to dryness under reduced pressure and were subsequently stored at -20°C. Antioxidant components, namely total phenolic and flavonoid content, were detected for each extract using spectrophotometric methods. Antioxidant capacity was evaluated by various assays including phosphomolybdenum, DPPH free radical scavenging capacity, metal chelating activity, and ferric and cupric ion reducing power. The fatty acid profiles of plant parts were also determined by using gas chromatography. The total phenolic content of fruit (36.21mgGAE/g was higher than that of mixed materials (13.79mgGAE/g. The methanolic extract of mixed material had higher amounts of flavonoid than fruit extract. The free radical scavenging activity of extracts was expressed as IC50 value (μg/mL (amount required to inhibit DPPH radical formation by 50%. The lower IC50 value reflects better free radical scavenging action. The radical scavenging activity of the samples was compared with BHT, it showed the mixed material to be almost two times more potent than the fruit extract. However, BHT is an excellent free radical scavenger with an IC50 of 34.061μg/mL. The ferric and cupric reducing power potentials of the extracts were expressed as EC50 value (the effective concentration at which the absorbance was 0.5. Fruit extract exhibited strong ferric reducing

  2. Chemotherapeutic Impact Of Natural Antioxidant Flavonoids Gallic Acid Rutin Quercetin And Mannitol On Pathogenic Microbes And Their Synergistic Effect

    Directory of Open Access Journals (Sweden)

    Ganesh Ghosh

    2015-08-01

    Full Text Available Several studies suggest that natural flavonoids with antioxidants and can influence the response to chemotherapy as well as the development of adverse side effects that results from treatment with antineoplastic agents and Its prevalence over Multi drug resistant bacterial strain revived interest on Flavonoids. Synergistic effect is defined as passive interaction arises when two agents combine and together they exert an inhibitory effect that is greater than the sum of individual effect The new Synergistic therapy so that antioxidant are more effective in combination on multi drug resistant bacterial strain. Interaction between natural antioxidants and topoisomerase enzyme can be seen through Quercetin as a potent antimicrobial compound alone and in combination with other natural antioxidant like rutin. MICMBC result show antibacterial activity of the flavonoids were enhanced when used in combination against Staphylococcus aureus Bacillus cereus Bacillus subtilis Klebsiella pneumonae Escherichia coli as the test bacteria. The combination of rutin and quercetin rutin and gallic acid mannitol and gallic acid were much more effective than either flavonoid alone. Furthermore Its gave a good relation between these antioxidant compound and antimicrobial activity. Flavonoids as a chemotherapeutic agent and its Synergistic effect can be solution for various microbial disease conditions.

  3. An Ellagic Acid Derivative and Its Antioxidant Activity of Stem Bark Extracts of Syzygium polycephalum Miq. (Myrtaceae

    Directory of Open Access Journals (Sweden)

    Tukiran Tukiran

    2018-02-01

    Full Text Available The investigation of the Syzygium polycephalum Miq. (Myrtaceae aimed to assess the phytochemical contents and antioxidant activity of the chloroform fraction. In this study, the fraction was obtained from methanol extract of S. polycephalum stem bark partitionated by chloroform. An ellagic acid derivative was successively isolated from the chloroform fraction. The molecular structure of isolated compound was elucidated and established as 3,4,3’-tri-O-methylellagic acid through extensive spectroscopic studies including UV-Vis, FTIR, NMR and LC-MS analyses and by comparison with literature data. The finding of the isolated compound is the first time from the plant, although the isolated compound previously have been found in the other Syzygium species such as S. cumini together with ellagic acid and 3,3’-di-O-methylellagic acid. The chloroform fraction, isolated compound, and vitamin C showed antioxidant activity against 2,2’-diphenyl-1-picrylhydrazyl (DPPH with IC50 value of 163.6, 72.1, and 11.5 μg/mL, respectively.

  4. Evaluation of Antioxidant or Prooxidant Properties of Selected Amino Acids Using In Vitro Assays and in Oil-in-Water Emulsions Under Riboflavin Sensitization.

    Science.gov (United States)

    Ka, HyeJung; Yi, BoRa; Kim, Mi-Ja; Lee, JaeHwan

    2016-05-01

    The antioxidant properties of selected amino acids were tested using in vitro assays and oil-in-water (O/W) emulsions under riboflavin (RF) photosensitization. Headspace oxygen content, lipid hydroperoxides, and conjugated dienes were determined for the degree of oxidation. Riboflavin photosensitization was adapted as the oxidation driving force. In vitro assays showed that cysteine had the highest antioxidant properties followed by tryptophan and tyrosine. However, in O/W emulsions under RF photosensitization, tyrosine inhibited lipid oxidation whereas tryptophan acted as a prooxidant. Tryptophan accelerated the rates of oxidation in O/W emulsion without RF. The antioxidant properties of amino acids differed depending on the antioxidant determination methods, oxidation driving forces, and food matrices. © 2016 Institute of Food Technologists®

  5. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils.

    Science.gov (United States)

    Al Juhaimi, Fahad; Özcan, Mehmet Musa; Uslu, Nurhan; Ghafoor, Kashif

    2018-01-01

    In this study, the effect of drying temperature on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol content of citrus seeds and oils were studied. Kinnow mandarin seed, dried at 60 °C, exhibited the highest antioxidant activity. Orlendo orange seed had the maximum total phenolic content and α-tocopherol content, with a value of 63.349 mg/100 g and 28.085 mg/g (control samples), respectively. The antioxidant activity of Orlendo orange seed (63.349%) was higher than seeds of Eureka lemon (55.819%) and Kinnow mandarin (28.015%), while the highest total phenolic content was found in seeds of Kinnow mandarin, followed by Orlendo orange and Eureka lemon (113.132). 1.2-Dihydroxybenzene (13.171), kaempferol (10.780), (+)-catechin (9.341) and isorhamnetin (7.592) in mg/100 g were the major phenolic compounds found in Kinnow mandarin. Among the unsaturated fatty acids, linoleic acid was the most abundant acid in all oils, which varied from 44.4% (dried at 80 °C) to 46.1% (dried at 70 °C), from 39.0% (dried at 60 °C) to 40.0% (dried at 70 °C). The total phenolic content, antioxidant activity and phenolic compounds of citrus seeds and tocopherol content of seed oils were significantly affected by drying process and varied depending on the drying temperature.

  6. Effect of gibberellic acid on total antioxidant activity during Chenopodium rubrum L. ontogenesis invitro

    Directory of Open Access Journals (Sweden)

    Mitrović Aleksandra

    2009-01-01

    Full Text Available Total antioxidant activity (TAA represents the combined ability of diverse antioxidants present in a sample of plant material to scavenge free radicals. Chenopodium rubrum L. sel. 184 is a qualitatively short-day plant; as an early-flowering species, it is a suitable object for studying ontogenesis in vitro. We investigated the effect of GA3 (5 mg/l on TAA during C. rubrum ontogenesis under two different inductive photoperiodic regimes in vitro. Total antioxidant activ­ity does not change in different phases of C. rubrum ontogenesis under the same photoperiodic treatment. Exposure to continuous irradiation caused an increase of TAA in both C. rubrum plants and collected matured seeds. Gibberellic acid stimulated stem elongation, but did not affect leaf development or the number of matured seeds per plant, regardless of photoperiodic treatment; it induced a decrease of TAA in C. rubrum plants regardless of photoperiodic treatment or the phase of development, while it had no effect on TAA of matured seeds.

  7. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka).

    Science.gov (United States)

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Zhou, Jishu; Ye, Zhi; Lan, Ying

    2016-07-01

    The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Antioxidant capacity and fatty acid profile of Centaurea kotschyi (Boiss. & Heldr. Hayek var. persica (Boiss. Wagenitz from Turkey

    Directory of Open Access Journals (Sweden)

    Aktumsek, Abdurrahman

    2011-03-01

    Full Text Available The antioxidant capacity of the methanolic extract and the fatty acid composition of C. kotschyi var. persica were investigated. Six different chemical methods were used to determine the antioxidant capacity. The fatty acid composition was analyzed using gas chromatography. The IC50 value of the extract was determined as 37.09 μg/ml (in the DPPH assay. In the β-carotene/linoleic acid system, the extract exhibited 65.22% inhibition against linoleic acid oxidation. The amount of total phenolic content and total antioxidant capacity were detected as 36.52 mg gallic acid equivalent (GAE/g and 74.93 mg ascorbic acid equivalent (AE/g, respectively. The major fatty acid in the composition of C. kotschyi var. persica was found to be C 18:3 ω3 (α-linolenic acid by GC analysis. The results presented here indicate that C. kotschyi var. persica possess strong antioxidant properties. Therefore, the species can be used as a natural additive in food, cosmetic and pharmaceutical industries.La capacidad antioxidante de extractos metanólicos y composición de ácidos grasos de C. kotschyi var. pérsica fueron investigados. Seis métodos químicos diferentes fueron realizados para la determinación de la capacidad antioxidante. La composición de ácidos grasos fue analizada por cromatografía de gases. Los valores de IC50 de los extractos fueron 37.09 μg/ml (en el ensayo con DPPH. En el sistema β-carotene/ácido linoleico, el extracto mostró un 65.22% de inhibición frente a la oxidación del ácido linoleico. La cantidad total de contenido fenólico y capacidad antioxidante total fueron 36.52 mg equivalentes de ácido gallico (GAE/g y 74.93 mg equivalentes de ácido ascórbico (AE/g, respectivamente. El principal ácidos graso encontrado, por análisis de CG, en C. kotschyi var. pérsica fue el C 18:3 ω3 (ácido α-linolenico. Los resultados presentados aquí indican que C. kotschyi var. pérsica posee unas fuertes propiedades antioxidantes. Adem

  9. Uric acid but not apple polyphenols is responsible for the rise of plasma antioxidant activity after apple juice consumption in healthy subjects.

    Science.gov (United States)

    Godycki-Cwirko, Maciek; Krol, Maciej; Krol, Bogusław; Zwolinska, Anna; Kolodziejczyk, Krzysztof; Kasielski, Marek; Padula, Gianluca; Grebowski, Jacek; Grębocki, Jacek; Kazmierska, Paulina; Kazimierska, Paulina; Miatkowski, Marcin; Markowski, Jarosław; Nowak, Dariusz

    2010-08-01

    To determine whether (1) rapid consumption of 1 L of apple juice increases blood antioxidant capacity, measured as ferric-reducing ability of plasma (FRAP) and serum 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, and (2) apple polyphenols or fructose-induced elevation of plasma uric acid contributes to post-juice increase of blood antioxidant activity. The study involved 12 (mean age 32 ± 5 years, mean body weight 73 ± 7 kg) healthy nonsmoking subjects. Tested subjects consumed 1 L of clear apple juice and then FRAP; serum DPPH-scavenging activity, serum uric acid, and total plasma phenolics and quercetin levels were measured just before juice ingestion and 1, 2.5, and 4 hours after ingestion. This was repeated 3 times with 4-day intervals, but volunteers drank either 1 L of clear apple juice without polyphenols (placebo), or 1 L of cloudy apple juice (positive control), or 1 L of water (negative control) at the time. All juices had similar content of sugars (i.e., saccharose, glucose, and fructose) and precisely defined composition of phenolics and antioxidant activity. Consumption of all 3 juices transiently increased FRAP and serum DPPH-scavenging activity, with peak values at 1 hour post-juice ingestion. This was paralleled by the rise of serum uric acid, but no significant changes in plasma total phenolics and quercetin levels were observed after all dietary interventions. At the same time, no substantial differences were found between juices (especially between clear apple juice and clear apple juice without polyphenols) concerning the measured variables. A strong significant correlation was noted instead between serum uric acid and plasma antioxidant activity at all analyzed time points, before and after juice ingestion. Plasma total phenolics and quercetin levels were not associated with FRAP and serum DPPH radical-scavenging activity. We have demonstrated that rapid consumption of apple juice increased plasma antioxidant activity in

  10. Maternal and neonatal plasma antioxidant levels in normal pregnancy, and the relationship with fatty acid unsaturation

    NARCIS (Netherlands)

    Oostenbrug, G.S.; Mensink, R.P.; Al, M.D.M.; Houwelingen, A.C. van; Hornstra, G.

    1998-01-01

    During pregnancy, maternal plasma concentrations of the peroxidation-susceptible polyunsaturated fatty acids (polyenes) increase. In addition, the proportion of polyenes is higher in neonatal plasma than in maternal plasma. To study whether these increased amounts of polyenes affect antioxidant

  11. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    Directory of Open Access Journals (Sweden)

    Jiali Xing

    Full Text Available Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS, reducing power (RP, and inhibition of linoleic acid peroxidation (ILAP. Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs.

  12. Role of cellular antioxidants (glutathione and ascorbic acid) in the growth and development of wild carrot suspension cultures

    International Nuclear Information System (INIS)

    Earnshaw, B.A.

    1986-01-01

    Determinations of endogenous glutathione (GSH), glutathione disulfide (GSSG), ascorbic acid (AA) and dehydroascorbic acid (DHA) in proliferating and developing wild carrot cultures showed that lower levels of GSH and AA were associated with developing cultures. The GSSG and DHA levels did not account for the changes in the levels of antioxidants between proliferating and developing cultures. Studies were designed to test an observed auxin (2,4-Dichlorophenoxyacetic acid, 2,4-D)-antioxidant association. Two fractions (embryo and less developed) were obtained by screening developed cultures which were previously grown in the presence of 14 C-2, 4-D. The embryo fraction had a lower concentration of 14 C than the less developed fraction, supporting the association, since the two fractions showed this relationship with respect to GSH and AA concentrations. Determinations of GSH and AA levels of cells grown in various concentrations of 2,4-D showed the association, decreases in the 2,4-D concentration correlated with decreases in the GSH and AA concentrations. The existence of a respiratory pathway involving GSSG reductase, DHA reductase, and AA oxidase was investigated to test whether inhibition of AA oxidase by 2,4-D could explain the auxin-antioxidant association; however, AA oxidase activity was not detected

  13. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    Science.gov (United States)

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-11-01

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. The study aimed to determine whether uric acid could reduce end points associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  14. Studies on changes in fatty acid composition and content of endogenous antioxidants during gamma irradiation of rice seeds

    International Nuclear Information System (INIS)

    Ramarathnam, N.; Osawa, T.; Namiki, M.; Kawakishi, S.

    1989-01-01

    Accelerated aging effects, induced by y irradiation, were investigated on the fatty acid composition of lipids and on the content of endogenous antioxidants of four Indica and four Japonica rice seeds with and without intact hull. While the linoleic acid content of the phospholipids decreased gradually with the increase in irradiation doses, there was a corresponding increase in the linoleic acid content of the free fatty acids. Such changes were drastic, especially in the case of Japonica rice seeds irradiated without intact hull. However, the neutral lipids were found to be resistant to γ irradiation. The α-tocopherol content was found to decrease (markedly) in rice seeds irradiated with or without hull, especially in the Japonica rice seeds. At a dose of 15 kGy only traces of a-tocopherol could be detected in Japonica and Indica rice seeds irradiated with and without intact hull. Oryzanol, a relatively weaker anti-oxidant, was found to be more resistant to oxidative damage than a-tocopherol. At 15 kGy, the oryzanol content ranged from 59 μg to 170 μg/g lipid in rice seeds irradiated with intact hull, while the corresponding value for rice seeds irradiated without hull was 52 μg to 153 μg/g lipid. The overall susceptibility to oxidative damage was less in Indica rice seeds, indicating that the antioxidative defense system offered better protection in overcoming oxidative stress in Indica rice hull than in Japonica rice hull

  15. Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants

    Science.gov (United States)

    Wada, Naoki; Sakamoto, Toshio; Matsugo, Seiichi

    2015-01-01

    Mycosporine-like amino acids (MAAs) are water-soluble molecules that absorb UV-A and UV-B radiation and disperse the energy as heat. MAAs show great diversity in their molecular structures, which exhibit a range of molecular weights spanning 188 to 1050 Daltons. MAAs are utilized in a wide variety of organisms including prokaryotes and eukaryotic micro-organisms that inhabit aquatic, terrestrial, and marine environments. These features suggest that MAAs are stable and fundamental molecules that allow these organisms to live under UV irradiation. MAAs are thought to have been greatly important to ancient forms of life on Earth, functioning as a primary sunscreen to reduce short-wavelength light. Structurally different MAAs might have been developed in MAA-producing organisms during their environmental adaptation. Harmful irradiation directly damages biomolecules, including lipids, proteins and DNA, and induces oxidative stress through radical-propagating processes. Thus, MAAs are expected to play an additional role in the antioxidant system. This review focuses on MAAs with radical scavenging activities. To cover all the reported MAAs known thus far, we surveyed the CAS database and have summarized the structures and the chemical and physical properties of these MAAs, including their antioxidant activities. PMID:26783847

  16. Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Naoki Wada

    2015-09-01

    Full Text Available Mycosporine-like amino acids (MAAs are water-soluble molecules that absorb UV-A and UV-B radiation and disperse the energy as heat. MAAs show great diversity in their molecular structures, which exhibit a range of molecular weights spanning 188 to 1050 Daltons. MAAs are utilized in a wide variety of organisms including prokaryotes and eukaryotic micro-organisms that inhabit aquatic, terrestrial, and marine environments. These features suggest that MAAs are stable and fundamental molecules that allow these organisms to live under UV irradiation. MAAs are thought to have been greatly important to ancient forms of life on Earth, functioning as a primary sunscreen to reduce short-wavelength light. Structurally different MAAs might have been developed in MAA-producing organisms during their environmental adaptation. Harmful irradiation directly damages biomolecules, including lipids, proteins and DNA, and induces oxidative stress through radical-propagating processes. Thus, MAAs are expected to play an additional role in the antioxidant system. This review focuses on MAAs with radical scavenging activities. To cover all the reported MAAs known thus far, we surveyed the CAS database and have summarized the structures and the chemical and physical properties of these MAAs, including their antioxidant activities.

  17. Effect of calcium and salicylic acid on quality retention in relation to antioxidative enzymes in radish stored under refrigerated conditions.

    Science.gov (United States)

    Devi, Jomika; Bhatia, Surekha; Alam, M S; Dhillon, Tarsem Singh

    2018-03-01

    Effect of post harvest treatments with calcium chloride (CaCl 2 ) and salicylic acid (SA) on physiological and biochemical parameters in relation to activities of antioxidative enzymes were investigated in radish. Radish of variety Punjab Safed Mooli 2 was harvested, washed and treated with CaCl 2 (1, 1.5 and 2%) or SA (1, 1.5 and 2 mM). Treated as well as untreated radish were placed in open trays and stored under refrigerated (5 ± 1 °C, 90% RH) conditions for 42 days. Treatment of radish with CaCl 2 and SA slowed down changes in physiological weight, colour, total soluble solids, ascorbic acid, titrable acidity, total phenolics and antioxidant activity. Treated samples exhibited higher enhancement in activities of antioxidant enzymes viz. catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), peroxidase (POD), dehydroascorbate reductase (DHAR) and monodehydro-ascorbate reductase (MDHAR) than untreated samples. However SA was found to be more effective in slowing down the metabolic activities of radish as compared to CaCl 2 treatment. Among all the treatments, 1.5 mM SA maintained the quality parameters to greater extent probably by reducing the oxidative stress to larger extent due to highest activities of antioxidative enzymes and can be used to enhance the shelf life of radish during refrigerated storage.

  18. Conversion of Squid Pen to Homogentisic Acid via Paenibacillus sp. TKU036 and the Antioxidant and Anti-Inflammatory Activities of Homogentisic Acid

    Directory of Open Access Journals (Sweden)

    San-Lang Wang

    2016-10-01

    Full Text Available The culture supernatant of Paenibacillus sp. TKU036, a bacterium isolated from Taiwanese soils, showed high antioxidant activity (85% when cultured in a squid pen powder (SPP-containing medium at 37 °C for three days. Homogentisic acid (2,5-dihydroxyphenylacetic acid, HGA was isolated and found to be the major antioxidant in the culture supernatant of the SPP-containing medium fermented by Paenibacillus sp. TKU036. Tryptophan was also present in the culture supernatant. The results of high-performance liquid chromatography (HPLC fingerprinting showed that HGA and tryptophan were produced via fermentation but did not pre-exist in the unfermented SPP-containing medium. Neither HGA nor tryptophan was found in the culture supernatants obtained from the fermentation of nutrient broth or other chitinous material, i.e., medium containing shrimp head powder, by Paenibacillus sp. TKU036. The production of HGA via microorganisms has rarely been reported. In this study, we found that squid pen was a potential carbon and nitrogen source for Paenibacillus sp. Tryptophan (105 mg/L and HGA (60 mg/L were recovered from the culture supernatant. The isolated HGA was found to have higher antioxidant activity (IC50 = 6.9 μg/mL than α-tocopherol (IC50 = 17.6 μg/mL. The anti-inflammatory activity of the isolated HGA (IC50 = 10.14 μg/mL was lower than that of quercetin (IC50 = 1.14 μg/mL. As a result, squid pen, a fishery processing byproduct, is a valuable material for the production of tryptophan and the antioxidant and anti-inflammatory HGA via microbial conversion.

  19. Effect of "6"0Co-induced gamma radiation exposure and Jasmonic acid on antioxidant responses in Cowpea varieties

    International Nuclear Information System (INIS)

    Shukla, Pradeep Kumar; Bhagoji, Ravi; Ramteke, P.W.; Misra, Pragati; Maurice, Navodita

    2017-01-01

    Cowpea used to be the first crop harvested before the cereal crops are ready and therefore is referred to as 'hungry-season crop'. The gamma irradiation is known to increase nutritional values of food sources and also enhance and accelerate growth of certain vegetables Antioxidants are the metabolites, produced by the plant in response to different stress conditions e.g. radiation stress etc. Seeds of four cowpea varieties were treated with different doses of gamma radiation and effect of jasmonic acid (JA) on antioxidant response of cowpea was studied. The results showed that there was no linear correlation between application of JA and different antioxidant contents. (author)

  20. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    Science.gov (United States)

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits

    Science.gov (United States)

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested. PMID:21845104

  2. POLYPHENOLS, ASCORBIC ACID AND CAROTENOIDS CONTENTS AND ANTIOXIDANT PROPERTIES IN FRUITS OF CAPSICUM CHINENSE JACQ.

    Directory of Open Access Journals (Sweden)

    M. I. Mamedov

    2016-01-01

    Full Text Available Capsicum chinense Jacq. is the rich source of phytochemical substances, such as vitamin C, phenolic compounds, carotenoids, and occupies a significant place in the cooking of many peoples. The pigment composition, the amount of carotenoids, ascorbic acid and their contribution to the formation of antioxidant properties were studied. The total content of carotenoids and red/yellow pigments varied greatly among the accessions of C. chinense. The highest content of carotenoids 0.581 mg/g was observed in the varieties ‘Ognennaya Deva’ with the red fruit color in the phase of biological ripeness, where red pigments accumulated 56% more than in yellow ones. Fruits of accessions ‘Kolokolchik’ only accumulated yellow pigments, 0.318 mg/g. Presence of significant amount, 2.03 times as much red pigments as yellow ones in the variety ‘Trinidad Scorpion Chocolate’, with protein complex could cause the formation of a brown fruit color. Another tendency was observed in ‘Trinidad Dglahou’. The yellow pigment is 1.5 times as much amount as red, as estimated 0.119 mg/g of yellow and 0.077 mg/g of red pigment. The ascorbic acid content did not depend on the fruit color. Fruits of the ‘Ognennaya Deva’ accumulated the highest amount of ascorbic acid, 301 mg%. The maximum total antioxidant content, was detected in the variety ‘Ognennaya Deva’ 2.65 (TAC, mg.eq. GA/g. Analysis of the dependence of the content of thermo stable antioxidants to the total ones showed the contribution of the unstable antioxidants to thermal effects (particularly ascorbic acid on the level of 16%, on average. A comparative assessment of the pungency level and quantitative capsaicin content in the fruit was carried out by organoleptic, spectrophotometric and HPLC methods. The intervals of observed concentrations of capsaicin were 1.0-7.5 mg/g of dry weight (HPLC, the level of pungency on the Scoville scale was 17440-153120 SHU. There

  3. Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice.

    Science.gov (United States)

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2016-11-01

    The objective of this study was to evaluate different antioxidants for anthocyanin (ACY) retention in vitamin C fortified cranberry juice and assess its quality. Cranberry juice was fortified with 40-80mg/100mL vitamin C and added hesperidin, catechin, and gallic acid at different concentrations. Juice was pasteurized at 85°C for 1min and stored at 23°C for 16days. ACYs, vitamin C, color intensity, and browning index (BI) were evaluated at 2-day intervals. Gallic acid was found to be the most effective antioxidant against ACYs degradation and significantly (p<0.05) increased red color intensity by 37% and ACY concentration by 41%, compared to the control. After 16-day storage, the BI of gallic acid-added juice was significantly lower (0.80 vs 1.00) than the control juice. The outcome of this research provided a potential solution of using gallic acid to preserve a health-beneficial component (ACYs), and endogenous red color in cranberry juice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of dietary antioxidants, training, and performance correlates on antioxidant status in competitive rowers.

    Science.gov (United States)

    Braakhuis, Andrea J; Hopkins, Will G; Lowe, Timothy E

    2013-09-01

    The beneficial effects of exercise and a healthy diet are well documented in the general population but poorly understood in elite athletes. Previous research in subelite athletes suggests that regular training and an antioxidant-rich diet enhance antioxidant defenses but not performance. To investigate whether habitual diet and/or exercise (training status or performance) affect antioxidant status in elite athletes. Antioxidant blood biomarkers were assessed before and after a 30-min ergometer time trial in 28 male and 34 female rowers. The antioxidant blood biomarkers included ascorbic acid, uric acid, total antioxidant capacity (TAC), erythrocyte- superoxide dismutase, glutathione peroxidase (GPx), and catalase. Rowers completed a 7-d food diary and an antioxidant-intake questionnaire. Effects of diet, training, and performance on resting biomarkers were assessed with Pearson correlations, and their effect on exercise-induced changes in blood biomarkers was assessed by a method of standardization. With the exception of GPx, there were small to moderate increases with exercise for all markers. Blood resting TAC had a small correlation with total antioxidant intake (correlation .29; 90% confidence limits, ±.27), and the exercise-induced change in TAC had a trivial to small association with dietary antioxidant intake from vitamin C (standardized effect .19; ±.22), vegetables (.20; ±.23), and vitamin A (.25; ±.27). Most other dietary intakes had trivial associations with antioxidant biomarkers. Years of training had a small inverse correlation with TAC (-.32; ±.19) and a small association with the exercise-induced change in TAC (.27; ±.24). Training status correlates more strongly with antioxidant status than diet does.

  5. Adding of ascorbic acid to the culture medium influences the antioxidant status and some biochemical parameters in the hen granulosa cells.

    Science.gov (United States)

    Capcarova, M; Kolesarova, A; Kalafova, A; Bulla, J; Sirotkin, A V

    2015-07-01

    The aim of the present study was to determine the activity of superoxide dismutase (SOD), total antioxidant status (TAS) of the hen granulosa cells, and selected biochemical parameters, including calcium, phosphorus, sodium, potassium, glucose, cholesterol, proteins, in the culture medium of granulosa cells after exposing them to ascorbic acid in vitro conditions. Ovarian granulosa cells of hens were incubated with various doses of ascorbic acid (E1 0.09 mg/ml, E2 0.13 mg/ml, E3 0.17 mg/ml, E4 0.33 mg/ml, E5 0.5 mg/ml). Ascorbic acid did not manifest antioxidant potential and higher doses of ascorbic acid (0.17; 0.33 and 0.5 mg/ml) decreased the activity of SOD in granulosa cells. Vitamin application resulted in a significantly (pascorbic acid might be involved in the regulation of selected biochemical and physiological processes in ovarian granulosa cells.

  6. Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of ‘Ataulfo’ Mango Peel on LS180 Cells

    Directory of Open Access Journals (Sweden)

    Gustavo. R. Velderrain-Rodríguez

    2018-03-01

    Full Text Available Mango “Ataulfo” peel is a rich source of polyphenols (PP, with antioxidant and anti-cancer properties; however, it is unknown whether such antiproliferative activity is related to PP’s antioxidant activity. The content (HPLC-DAD, antioxidant (DPPH, FRAP, ORAC, and antiproliferative activities (MTT of free (FP and chemically-released PP from mango ‘Ataulfo’ peel after alkaline (AKP and acid (AP hydrolysis, were evaluated. AKP fraction was higher (µg/g DW in gallic acid (GA; 23,816 ± 284 than AP (5610 ± 8 of FR (not detected fractions. AKP fraction and GA showed the highest antioxidant activity (DPPH/FRAP/ORAC and GA’s antioxidant activity follows a single electron transfer (SET mechanism. AKP and GA also showed the best antiproliferative activity against human colon adenocarcinoma cells (LS180; IC50 (µg/mL 138.2 ± 2.5 and 45.7 ± 5.2 and mouse connective cells (L929; 93.5 ± 7.7 and 65.3 ± 1.2; Cheminformatics confirmed the hydrophilic nature (LogP, 0.6 and a good absorption capacity (75% for GA. Data suggests that GA’s antiproliferative activity appears to be related to its antioxidant mechanism, although other mechanisms after its absorption could also be involved.

  7. The content of total polyphenols, ascorbic acid and antioxidant activity in selected varieties of quince (Cydonia oblonga mill.

    Directory of Open Access Journals (Sweden)

    Judita Bystrická

    2017-01-01

    Full Text Available Quince fruit (Cydonia oblonga Miller is an important source of bioactive compounds, especially of polyphenolic compounds, phenolic acids, flavonoids also of minerals and vitamins. This compounds exhibit health promoting properties including antibacterial, anti-inflammatory, anticancer, antidiabetic and cardioprotective properties. Quine fruit have a high therapeutic value, can be used as good sources of antioxidants. This study provides some knowledge about content of total polyphenols, ascorbic acid and antioxidant activity in selected varieties of quince fruit samples. Four quince fruit cultivars (Semenáč, Konstantinopler Apfelquitte, Cydora Robusta, Mammut were analysed. The content of the total polyphenols (TPC was determined by the Folin-Ciocalteu reagent (FCR at 765 nm using spectrophotometer. Ascorbic acid (AsA content was determined using standard HPLC gradient method. Antioxidant activity (AA was measures using a compound DPPH˙(2.2-diphenyl-1-picrylhydrazyl. The content of (TPC in fresh samples of quince fruit ranged from 661 ±11.60 mg.kg-1 to 1044 ±11.03 mg.kg-1 and content of AsA were in interval from 151 ±0.58 mg.kg-1 to 215 ±0.75 mg.kg-1. The values of antioxidant activity in quince fruit samples were in range from 26.90 ±0.61% to 49.14 ±0.38%. Statistically significant highest content TPC, AsA and AA was recorded in cultivar Konstaninopler Apfelquitte and statistically lowest content was recorded in cultivar Semenáč. The content of TPC, AsA and AA beside the variety may be affected by many factors also climatic conditions and the agrochemical composition of the soil. 

  8. Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara, E-mail: rubianamainardes@hotmail.com

    2016-05-01

    Poly(lactic acid) (PLA) nanoparticles containing vanillin were prepared using an emulsion-solvent evaporation technique and were characterized and assessed for their in vitro antioxidant potential. Physicochemical properties of the nanoparticles were characterized by size, polydispersity index, zeta potential, encapsulation efficiency and stability. Solid state and thermal properties were assessed using X-ray diffraction and differential scanning calorimetry, while in vitro drug release profile was also evaluated. Results showed PLA nanoparticles having a characteristic amorphous structure, sizes in the range of 240 nm with high homogeneity in size distribution, zeta potential of − 22 mV and vanillin encapsulation efficiency of 41%. In vitro release study showed a slow and sustained release of vanillin governed by diffusion. Nanoparticles were stable over a period of three months. Antioxidant ability of the vanillin-loaded PLA nanoparticles in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was inferior to free vanillin and due to its prolonged release showed a profile that was both time and concentration dependent, while free vanillin showed concentration-dependent activity. The study concluded that PLA nanoparticles are potential carriers for vanillin delivery. - Highlights: • Vanillin was nanoencapsulated in poly(lactic acid) (PLA) nanoparticles. • Mean particle size was 240 nm and vanillin encapsulation efficiency was 41%. • A prolonged and biphasic vanillin release occurred with 20% released after 120 h. • Vanillin nanoparticles exhibited time/concentration dependent antioxidant activity.

  9. Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity

    International Nuclear Information System (INIS)

    Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-01-01

    Poly(lactic acid) (PLA) nanoparticles containing vanillin were prepared using an emulsion-solvent evaporation technique and were characterized and assessed for their in vitro antioxidant potential. Physicochemical properties of the nanoparticles were characterized by size, polydispersity index, zeta potential, encapsulation efficiency and stability. Solid state and thermal properties were assessed using X-ray diffraction and differential scanning calorimetry, while in vitro drug release profile was also evaluated. Results showed PLA nanoparticles having a characteristic amorphous structure, sizes in the range of 240 nm with high homogeneity in size distribution, zeta potential of − 22 mV and vanillin encapsulation efficiency of 41%. In vitro release study showed a slow and sustained release of vanillin governed by diffusion. Nanoparticles were stable over a period of three months. Antioxidant ability of the vanillin-loaded PLA nanoparticles in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was inferior to free vanillin and due to its prolonged release showed a profile that was both time and concentration dependent, while free vanillin showed concentration-dependent activity. The study concluded that PLA nanoparticles are potential carriers for vanillin delivery. - Highlights: • Vanillin was nanoencapsulated in poly(lactic acid) (PLA) nanoparticles. • Mean particle size was 240 nm and vanillin encapsulation efficiency was 41%. • A prolonged and biphasic vanillin release occurred with 20% released after 120 h. • Vanillin nanoparticles exhibited time/concentration dependent antioxidant activity.

  10. Antiulcerogenic Effect of Gallic Acid in Rats and its Effect on Oxidant and Antioxidant Parameters in Stomach Tissue

    Science.gov (United States)

    Sen, S.; Asokkumar, K.; Umamaheswari, M.; Sivashanmugam, A. T.; Subhadradevi, V.

    2013-01-01

    In the present study, we investigate the antiulcerogenic effect of gallic acid against aspirin plus pyrolus ligation-induced gastric ulcer in rats. Rats were treated with gallic acid (100 and 200 mg/kg) and famotidine (20 mg/kg) for 1 week, followed by induction of gastric ulcer using the aspirin plus pyrolus ligation model. At the end of 4 h after ligation, the rats were sacrificed and ulcer index, gastric juice volume, pH and other biochemical parameter of gastric juice were evaluated. Stomachs of rats were evaluated biochemically to determine oxidant and antioxidant parameters. Pretreatment with gallic acid significantly decreased ulcer index, gastric juice volume, free and total acidity, total protein, DNA content and increased pH and carbohydrates concentration. Gallic acid at a dose of 100 and 200 mg/kg exerted 69.7 and 78.9% ulcer inhibition, respectively. The levels of superoxide dismutase, catalase, reduced glutathione, glutathione reductase, glutathione peroxidise, glucose-6-phosphate dehydrogenase were increased while reduction in myeloperoxidase and lipid peroxidation were observed in the stomach tissues of the drug treated rats. The histopathological studies further confirmed the antiulcer activity of gallic acid. We conclude that the gallic acid possesses antiulcer effect and that these occur by a mechanism that involves attenuation of offensive factors, improvement of mucosal defensive with activation of antioxidant parameters and inhibition of some toxic oxidant parameters. PMID:24019562

  11. Effect of turmeric powder (Curcuma longa L. and ascorbic acid on antioxidant capacity and oxidative status in rabbit burgers after cooking

    Directory of Open Access Journals (Sweden)

    S. Mancini

    2016-06-01

    Full Text Available The aim of this study was to evaluate the effects of turmeric powder and ascorbic acid on lipid oxidation and antioxidant capacity in cooked rabbit burgers. The burgers were derived from 3 different formulations (C, control, with no additives; Tu with 3.5% of turmeric powder and AA with 0.1% of ascorbic acid and were stored at 4°C for 0 and 7 d and cooked. The lipid oxidation (thiobarbituric acid reactive substances [TBARS] and antioxidant capacity (2,2-azinobis-[3 ethylbenzothiazoline-6-sulfonic acid] {ABTS}, 1,1-diphenyl-2-pircydrazyl [DPPH] and ferric reducing ability [FRAP] were evaluated. A significant interaction between storage time and formulation (P<0.001 was observed for DPPH, FRAP and TBARS in cooked burgers. At day 0 and day 7, the DPPH value was higher in Tu and AA compared to C burgers. At day 0, C showed a lower level of FRAP than the Tu and AA burgers. At day 7, the FRAP values tended to decrease but remained significantly higher in Tu and AA compared to C burgers. Lipid oxidation at day 0 in Tu and AA showed lower TBARS values compared to C burgers. The addition of 3.5% turmeric powder in rabbit burgers exerts an antioxidant effect during storage and it seems more effective in controlling lipid oxidation than ascorbic acid after cooking.

  12. Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits.

    Science.gov (United States)

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.

  13. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test

    Directory of Open Access Journals (Sweden)

    Barros Marcelo P

    2012-06-01

    Full Text Available Abstract Background Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 ± 5.8 years old immediately before and 5 and 60 min after the exhaustive Wingate test. Results Maximum anaerobic power was improved by acute creatine supplementation (10.5 %, but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP, leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent and inherent antioxidant activity of creatine.

  14. Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes.

    Science.gov (United States)

    Dwivedi, S; Tripathi, R D; Tripathi, P; Kumar, A; Dave, R; Mishra, S; Singh, R; Sharma, D; Rai, U N; Chakrabarty, D; Trivedi, P K; Adhikari, B; Bag, M K; Dhankher, O P; Tuli, R

    2010-12-15

    Simulated pot experiments were conducted on four rice (Oryza sativa L.) genotypes (Triguna, IR-36, PNR-519, and IET-4786) to examine the effects of As(V) on amino acids and mineral nutrient status in grain along with antioxidant response to arsenic exposure. Rice genotypes responded differentially to As(V) exposure in terms of amino acids and antioxidant profiles. Total amino acid content in grains of all rice genotypes was positively correlated with arsenic accumulation. While, most of the essential amino acids increased in all cultivars except IR-36, glutamic acid and glycine increased in IET-4786 and PNR-519. The level of nonprotein thiols (NPTs) and the activities of superoxide dismutase (SOD; EC 1.15.1.1), glutathione reductase (GR; EC 1.6.4.2) and ascorbate peroxidase (APX; EC 1.11.1.11) increased in all rice cultivars except IET-4786. A significant genotypic variation was also observed in specific arsenic uptake (SAU; mg kg(-1)dw), which was in the order of Triguna (134) > IR-36 (71) > PNR-519 (53) > IET-4786 (29). Further, application of As(V) at lower doses (4 and 8 mg L(-1) As) enhanced the accumulation of selenium (Se) and other nutrients (Fe, P, Zn, and S), however, higher dose (12 mg L(-1) As) limits the nutrient uptake in rice. In conclusion, low As accumulating genotype, IET-4786, which also had significantly induced level of essential amino acids, seems suitable for cultivation in moderately As contaminated soil and would be safe for human consumption.

  15. Protective effects of a topical antioxidant complex containing vitamins C and E and ferulic acid against ultraviolet irradiation-induced photodamage in Chinese women.

    Science.gov (United States)

    Wu, Yan; Zheng, Xin; Xu, Xue-Gang; Li, Yuan-Hong; Wang, Bin; Gao, Xing-Hua; Chen, Hong-Duo; Yatskayer, Margarita; Oresajo, Christian

    2013-04-01

    The objective of the study was to investigate whether a topical antioxidant complex containing vitamins C and E and ferulic acid can protect solar-simulated ultraviolet irradiation (ssUVR)-induced acute photodamage in human skin. Twelve healthy female Chinese subjects were enrolled in this study. Four unexposed sites on dorsal skin were marked for the experiment. The products containing antioxidant complex and vehicle were applied onto 2 sites, respectively, for 4 consecutive days. On day 4, the antioxidant complex-treated site, the vehicle-treated site, and the untreated site (positive control) received ssUVR (5 times the minimal erythema dose). The fourth site (negative control) received neither ssUVR nor treatment. Digital photographs were taken, and skin color was measured pre- and postirradiation. Skin biopsies were obtained 24 hours after exposure to ssUVR, for hematoxylin and eosin and immunohistochemical staining. A single, 5 times the minimal erythema dose of ssUVR substantially induced large amounts of sunburn cell formation, thymine dimer formation, overexpression of p53 protein, and depletion of CD1a+ Langerhans cells. The antioxidant complex containing vitamins C and E and ferulic acid conferred significant protection against biological events compared with other irradiated sites. A topical antioxidant complex containing vitamins C and E and ferulic acid has potential photoprotective effects against ssUVR-induced acute photodamage in human skin.

  16. The Antioxidant Additive Approach for Alzheimer's Disease Therapy: New Ferulic (Lipoic) Acid Plus Melatonin Modified Tacrines as Cholinesterases Inhibitors, Direct Antioxidants, and Nuclear Factor (Erythroid-Derived 2)-Like 2 Activators.

    Science.gov (United States)

    Benchekroun, Mohamed; Romero, Alejandro; Egea, Javier; León, Rafael; Michalska, Patrycja; Buendía, Izaskun; Jimeno, María Luisa; Jun, Daniel; Janockova, Jana; Sepsova, Vendula; Soukup, Ondrej; Bautista-Aguilera, Oscar M; Refouvelet, Bernard; Ouari, Olivier; Marco-Contelles, José; Ismaili, Lhassane

    2016-11-10

    Novel multifunctional tacrines for Alzheimer's disease were obtained by Ugi-reaction between ferulic (or lipoic acid), a melatonin-like isocyanide, formaldehyde, and tacrine derivatives, according to the antioxidant additive approach in order to modulate the oxidative stress as therapeutic strategy. Compound 5c has been identified as a promising permeable agent showing excellent antioxidant properties, strong cholinesterase inhibitory activity, less hepatotoxicity than tacrine, and the best neuroprotective capacity, being able to significantly activate the Nrf2 transcriptional pathway.

  17. Rosmarinic acid and antioxidant enzyme activities in Lavandula vera MM cell suspension culture: a comparative study.

    Science.gov (United States)

    Georgiev, Milen; Abrashev, Radoslav; Krumova, Ekaterina; Demirevska, Klimentina; Ilieva, Mladenka; Angelova, Maria

    2009-11-01

    The growth and intracellular protein content of lavender (Lavandula vera MM) cell suspension culture was followed along with some antioxidant defense system members-non-enzymatic (rosmarinic acid) and enzymatic [superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6)]. It was found that the media content and the cultivation mode strongly influenced the production of plant defense compounds as well as the ratio between non-enzymatic and enzymatic ones. The bioreactor culture contains about two times more rosmarinic acid, superoxide dismutase, and catalase compared to the shake-flask cultivation. These findings are discussed with respect to the relative stress levels and plant antioxidant orchestra system. It was concluded that investigated defense system components (enzymatic and non-enzymatic) were closely associated in a complex balance. The three isoenzyme forms of SOD (Cu/ZnSOD, FeSOD, and MnSOD) in the cells of Lavandula vera were revealed by polyacrylamide gel electrophoresis analysis, and the FeSOD isoform exhibited highest activity.

  18. Mathematical Evaluation of the Amino Acid and Polyphenol Content and Antioxidant Activities of Fruits from Different Apricot Cultivars

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2011-09-01

    Full Text Available Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L. cultivated in Lednice (climatic area T4, South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin, was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis. The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.

  19. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors.

    Science.gov (United States)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J; Borges, Fernanda

    2018-01-01

    Alzheimer's disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN 1 (catechol derivative), and AntiOxBEN 2 (pyrogallol derivative) and compounds 15-18 , which have longer spacers. Compounds AntiOxBEN 1 and 15 , with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC 50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC 50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively). Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17 , no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN 1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  20. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Catarina Oliveira

    2018-04-01

    Full Text Available Alzheimer's disease (AD is a multifactorial age-related disease associated with oxidative stress (OS and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative, and AntiOxBEN2 (pyrogallol derivative and compounds 15–18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively, while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively. Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y and human hepatocarcinoma (HepG2 cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  1. Hydroxybenzoic acid derivatives as dual-target ligands: mitochondriotropic antioxidants and cholinesterase inhibitors

    Science.gov (United States)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J.; Borges, Fernanda

    2018-04-01

    Alzheimer’s disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy towards AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative), and AntiOxBEN2 (pyrogallol derivative) and compounds 15-18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a ten-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 nM, respectively). Interestingly, molecular modelling data pointed towards bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Αβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favourable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related disease

  2. Radical-Scavenging Activity of Thiols, Thiobarbituric Acid Derivatives and Phenolic Antioxidants Determined Using the Induction Period Method for Radical Polymerization of Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2012-04-01

    Full Text Available The radical-scavenging activities of two thiols, eight (thiobarbituric acid derivatives and six chain-breaking phenolic antioxidants were investigated using the induction period method for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2’-azobisisobutyronitrile (AIBN and monitored by differential scanning calorimetry (DSC. The induction period (IP for the thiols 2-mercaptoethanol (ME and 2-mercapto-1-methylimidazole (MMI was about half that for phenolic antioxidants. Except for the potent inhibitor 5,5-dimethyl-2-thiobarbituric acid (3, the IP for thiobarbituric acid derivatives was about one tenth of that for phenolic antioxidants. The IP for 1,3,5-trimethyl-2-thiobarbituric acid (1 and 5-allyl-1, 3-dimethyl-2-thiobarbituric acid (7 was less than that of the control, possibly due to inhibition by a small amount of atmospheric oxygen in the DSC container. The ratio of the chain inhibition to that of chain propagation (CI/CP for the thiols and thiobarbituric acid compounds except for 1, 3 and 7 was about 10 times greater or greater than that for phenolic compounds. A kinetic chain length (KCL about 10% greater than that of the control was observed for 1, suggesting that 1 had chain transfer reactivity in the polymerization of MMA. The average molecular weight of polymers formed from thiobarbituric acid derivatives is discussed.

  3. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel.

    Science.gov (United States)

    Lin, Jau-Tien; Liu, Shih-Chun; Hu, Chao-Chin; Shyu, Yung-Shin; Hsu, Chia-Ying; Yang, Deng-Jye

    2016-01-01

    Roasting treatment increased levels of unsaturated fatty acids (linoleic, oleic and elaidic acids) as well as saturated fatty acids (palmitic and stearic acids) in almond (Prunus dulcis) kernel oils with temperature (150 or 180 °C) and duration (5, 10 or 20 min). Nonetheless, higher temperature (200 °C) and longer duration (10 or 20 min) roasting might result in breakdown of fatty acids especially for unsaturated fatty acids. Phenolic components (total phenols, flavonoids, condensed tannins and phenolic acids) of almond kernels substantially lost in the initial phase; afterward these components gradually increased with roasting temperature and duration. Similar results also observed for their antioxidant activities (scavenging DPPH and ABTS(+) radicals and ferric reducing power). The changes of phenolic acid and flavonoid compositions were also determined by HPLC. Maillard reaction products (estimated with non-enzymatic browning index) also increased with roasting temperature and duration; they might also contribute to enhancing the antioxidant attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of antioxidant on biodiesel properties under accelerated oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adriano Sant' ana; Carvalho, Maria Wilma N.C.; Silva, Flavio Luiz Honorato da; Lima, Ezenildo Emanuel de [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencia e Tecnologia; Silva, Everson de Lima [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola; Dantas, Hermeval Jales [Universidade Federal de Campina Grande (CTRN/UFCG), PB (Brazil). Centro de Tecnologia e Recursos Naturais

    2008-07-01

    This work aimed to study the effect of antioxidant tert-butyl hydroquinone (TBHQ) on oxidative stability of biodiesel. The effect of antioxidant was analyzed under aspects such as acid value, specific gravity, dynamic viscosity and FTIR spectroscopy. According to the results, the degraded samples treated with antioxidant presented the lowest values for acid value, specific mass and dynamic viscosity. FTIR spectra showed that the degraded samples treated with antioxidant have increased their oxidative stability, while those without antioxidant had an increase in the stretch band of hydroxyl (OH). (author)

  5. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits

    Directory of Open Access Journals (Sweden)

    Muhammad Redzuan Hairuddin

    2011-07-01

    Full Text Available The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L., mango (Mangifera indica L., papaya (Carica papaya L., muskmelon (Cucumis melo L., and watermelon Citruluss lanatus (Thunb. were investigated. Significant (p < 0.05 differences, for the amounts of total phenolic compounds (TPC, were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05 change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05 higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05 but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.

  6. Research on an antioxidant capacity of honeys

    Directory of Open Access Journals (Sweden)

    Elżbieta Hołderna-Kędzia

    2012-12-01

    Full Text Available Human organism is exposed to harmful action of free radicals which are produced as well endogenically as egzogenically. The oxidation activity of free radicals can lead to the conversion of systemic biomolecules. As a consequence, there is a threat of, many severe diseases. Antioxidative agents which occur in natural products (also in honey raise a possibility of protection against the harmful action of above mentioned radicals. Polyphenolic compounds - flavonoids, phenolic acids and ascorbic acid - are the most important antioxidative agents. The research of many authors proves that honey, given orally, shows an antioxidative activity. The level of antioxidative agents in serum after the consumption of honey is high and surpasses the antioxidative activity of tea. Dark honeys (honeydew and heather have considerably higher antioxidative activity in comparison to light ones (acacia, lime, polyfloral.

  7. Riboflavin Phototransformation on the Changes of Antioxidant Capacities in Phenolic Compounds.

    Science.gov (United States)

    Song, Juhee; Seol, Nam Gyu; Kim, Mi-Ja; Lee, JaeHwan

    2016-08-01

    Eight phenolic compounds including: p-coumaric acid, vanillic acid, caffeic acid, chlorogenic acid, trolox, quercetin, curcumin, and resveratrol were treated with riboflavin (RF) photosensitization and in vitro antioxidant capacities of the mixtures were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2' azino bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays. Mixtures containing p-coumaric acid and vanillic acid under RF photosensitization showed increases in ferric ion reducing ability and radical scavenging activity of DPPH, whereas mixtures of other compounds had decreases in both radical scavenging ability and ferric reducing antioxidant power. Hydroxycoumaric acid and conjugated hydroxycoumaric and coumaric acids were tentatively identified from RF photosensitized p-coumaric acid, whereas dimmers of vanillic acid were tentatively identified from RF photosensitized vanillic acid. RF photosensitization may be a useful method to enhance antioxidant properties like ferric ion reducing abilities of some selected phenolic compounds. © 2016 Institute of Food Technologists®

  8. Antioxidant food supplements in human health

    National Research Council Canada - National Science Library

    Packer, Lester; Hiramatsu, Midori; Yoshikawa, Toshikazu

    1999-01-01

    ... of many of nature's antioxidant substances; grapes: starting source for red wine production; rich in antioxidants; onions: rich source of the bioflavonoid quercetin. This book is printed on acid-...

  9. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers.

    Science.gov (United States)

    Apak, Reşat; Güçlü, Kubilay; Ozyürek, Mustafa; Bektaşoğlu, Burcu; Bener, Mustafa

    2010-01-01

    Tests measuring the combined antioxidant effect of the nonenzymatic defenses in biological fluids may be useful in providing an index of the organism's capability to counteract reactive species known as pro-oxidants, resist oxidative damage, and combat oxidative stress-related diseases. The selected chromogenic redox reagent for the assay of human serum should be easily accessible, stable, selective, and respond to all types of biologically important antioxidants such as ascorbic acid, alpha-tocopherol, beta-carotene, reduced glutathione (GSH), uric acid, and bilirubin, regardless of chemical type or hydrophilicity. Our recently developed cupric reducing antioxidant capacity (CUPRAC) spectrophotometric method for a number of polyphenols and flavonoids using the copper(II)-neocuproine reagent in ammonium acetate buffer is now applied to a complete series of plasma antioxidants for the assay of total antioxidant capacity of serum, and the resulting absorbance at 450 nm is recorded either directly (e.g., for ascorbic acid, alpha-tocopherol, and glutathione) or after incubation at 50 degrees C for 20 min (e.g., for uric acid, bilirubin, and albumin), quantitation being made by means of a calibration curve. The lipophilic antioxidants, alpha-tocopherol and beta-carotene, are assayed in dichloromethane. Lipophilic antioxidants of serum are extracted with n-hexane from an ethanolic solution of serum subjected to centrifugation. Hydrophilic antioxidants of serum are assayed in the centrifugate after perchloric acid precipitation of proteins. The CUPRAC molar absorptivities, linear ranges, and TEAC (trolox equivalent antioxidant capacity) coefficients of the serum antioxidants are established, and the results are evaluated in comparison with the findings of the ABTS/TEAC reference method. The intra- and inter-assay coefficients of variation (CVs) are 0.7 and 1.5%, respectively, for serum. The CUPRAC assay proved to be efficient for glutathione and thiol-type antioxidants

  10. Antioxidant and cytotoxic activity of mono- and bissalicylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Đurendić Evgenija A.

    2014-01-01

    Full Text Available A simple synthesis of mono- and bis-salicylic acid derivatives 1-10 by the transesterification of methyl salicylate (methyl 2-hydroxybenzoate with 3-oxapentane-1,5-diol, 3,6- dioxaoctane-1,8-diol, 3,6,9-trioxaundecane-1,11-diol, propane-1,2-diol or 1-aminopropan- 2-ol in alkaline conditions is reported. All compounds were tested in vitro on three malignant cell lines (MCF-7, MDA-MB-231, PC-3 and one non-tumor cell line (MRC- 5. Strong cytotoxicity against prostate PC-3 cancer cells expressed compounds 3, 4, 6, 9 and 10, all with the IC50 less than 10 μmol/L, which were 11-27 times higher than the cytotoxicity of antitumor drug doxorubicin. All tested compounds were not toxic against the non-tumor MRC-5 cell line. Antioxidant activity of the synthesized derivatives was also evaluated. Compounds 2, 5 and 8 were better OH radical scavengers than commercial antioxidants BHT and BHA. The synthesized compounds showed satisfactory scavenger activity, which was studied by QSAR modeling. A good correlation between the experimental variables IC50 DPPH and IC50 OH and MTI (molecular topological indices molecular descriptors and CAA (accessible Connolly solvent surface area for the new compounds 1, 3, and 5 was observed.

  11. Antioxidative and antiradical properties of plant phenolics.

    Science.gov (United States)

    Sroka, Zbigniew

    2005-01-01

    The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.

  12. Modulation of the Antioxidant System Efficacy in Irradiated Rats Supplemented with Vitamin B12 cobalamin and Folic Acid

    International Nuclear Information System (INIS)

    Omran, M.F.; Abu-Zied, N.M.

    2006-01-01

    The present study has been performed to investigate the possible curative and protective role of supplemented vitamin B 12 and folic acid in the irradiation induced changes in certain biochemical parameters in hepatic tissue and blood. The biochemical analysis was done at one and fourteen days post irradiation. The data revealed serious effects of radiation exposure on the membrane integrity as reflected by increased serum potassium associated with decreased sodium levels. Oxidation of lipid and protein with antioxidant disorders were recorded after radiation exposure as reflected by increased contents of carbonyl and Gamma glutamyl transferase. The results showed significant increase in the level of lipid peroxide product (malonaldehyde) and significant decrease in the level of antioxidant defense system (glutathione, glutathione peroxidase, super oxid dismutase, catalase and glucose-6-phospate dehydrogenase) after one and fourteen day's supplementation with vitamin B 12 and folic acid. Supplemented of vitamin B 12 and folic acid before radiation exposure attenuated the harmful effects of irradiation on the most chosen parameters. The beneficial role of supplemented vitamin B 12 and folic acid may be related to its ability in quenching free radicals scavenging reactive oxygen species and improving regeneration in the biological tissues

  13. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Wei

    Full Text Available Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans.The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%. Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans.This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods.

  14. HPLC PROFILING OF PHENOLIC ACIDS AND FLAVONOIDS AND EVALUATION OF ANTI-LIPOXYGENASE AND ANTIOXIDANT ACTIVITIES OF AQUATIC VEGETABLE LIMNOCHARIS FLAVA.

    Science.gov (United States)

    Ooh, Keng-fei; Ong, Hean-Chooi; Wong, Fai-Chu; Chai, Tsun-Thai

    2015-01-01

    Limnocharis flava is an edible wetland plant, whose phenolic acid and flavonoid compositions as well as bioactivities were underexplored. This study analyzed the profiles of selected hydroxybenzoic acids, hydroxycinnamic acids and flavonoids in the aqueous extracts of L. flava leaf, rhizome and root by high performance liquid chromatography (HPLC). Anti-lipoxygenase and antioxidant (iron chelating, 2,2-diphenyl-l-picrylhydrazyl (DPPH) radical scavenging, and nitric oxide (NO) scavenging) activities of the extracts were also evaluated. Leaf extract had the highest phenolic contents, being most abundant in p-hydroxybenzoic acid (3861.2 nmol/g dry matter), ferulic acid (648.8 nmol/g dry matter), and rutin (4110.7 nmol/g dry matter). Leaf extract exhibited the strongest anti-lipoxygenase (EC50 6.47 mg/mL), iron chelating (EC50 6.65 mg/mL), DPPH scavenging (EC50 15.82 mg/mL) and NO scavenging (EC50 3.80 mg/mL) activities. Leaf extract also had the highest ferric reducing ability. This is the most extensive HPLC profiling of phenolic acids and flavonoids in L.flava to date. In conclusion, L. flava leaf is a source of health-promoting phenolics, anti-lipoxygenase agents and antioxidants.

  15. Antioxidant Constituents of Cotoneaster melanocarpus Lodd.

    Directory of Open Access Journals (Sweden)

    Adelheid H. Brantner

    2013-10-01

    Full Text Available The aim of this study was the evaluation of the antioxidant capacity of Cotoneaster melanocarpus Lodd. and the identification of antioxidant active constituents of this plant. C. melanocarpus Lodd. is a shrub indigenous to Mongolia and used in Traditional Mongolian Medicine as a styptic. Before extraction, the plant material was separated into three parts: young sterile shoots, older stems and leaves. All these parts were extracted with water, methanol, ethyl acetate, dichloromethane and hexane, successively. The methanolic extract of the sterile shoots showed the highest antioxidant activity in the DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging assay (IC50 30.91 ± 2.97 µg/mL. This active extract was further analyzed with chromatographic methods. TLC fingerprinting and HPLC indicated the presence of the flavonol glycosides quercetin-3-O-rutinoside (rutin, quercetin-3-O-galactoside (hyperoside and quercetin-3-O-glucoside (isoquercetin, ursolic acid as well as chlorogenic acid, neochlorogenic acid and cryptochlorogenic acid. The findings were substantiated with LC-MS. All identified compounds have antioxidant properties and therefore contribute to the radical scavenging activity of the whole plant.

  16. Isolation of an Antioxidative Substance Produced by Aspergillus repens.

    Science.gov (United States)

    Yagi, R; Doi, M

    1999-01-01

    The acidic fraction of an extract of the culture liquid of Aspergillus repens MA0197 showed strong antioxidative activity when tested by the ferric thiocyanate and TBA methods. Chromatographic purification of this acidic fraction gave an active substance identified as Neoechinulin A. This compound showed higher antioxidative activity than α-tocopherol and could be expected to act as an antioxidant in Katsuobushi.

  17. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses.

    Science.gov (United States)

    Li, Shi-Weng; Zeng, Xiao-Ying; Leng, Yan; Feng, Lin; Kang, Xiao-Hu

    2018-06-08

    In vitro experiments were performed to determine whether auxin can mediate the formation of adventitious roots in response to heavy metal and drought stresses using a model rooting plant, mung bean [Vigna radiata (L.) Wilczek]. The treatments with CdCl 2 or mannitol alone significantly inhibited the formation and growth of adventitious roots in mung bean seedlings. In contrast, when CdCl 2 or mannitol was applied together with indole-3-butyric acid (IBA), IBA considerably cancelled the inhibition of adventitious rooting by stresses. Treatment with CdCl 2 or mannitol alone significantly increased the soluble protein and malondialdehyde (MDA) contents. CdCl 2 and mannitol stress each induced differentially significant changes in the activities of antioxidative enzyme and antioxidant levels during adventitious rooting. Notably, both CdCl 2 and mannitol stress strongly reduced the peroxidase (POD) and ascorbate peroxidase (APX) activities and glutathione (GSH) and phenols levels. Catalase and superoxide dismutase (SOD) activity were enhanced by CdCl 2 but reduced by mannitol. CdCl 2 increased the ascorbate acid (ASA) level, which was decreased by mannitol. Furthermore, when CdCl 2 or mannitol was applied together with IBA, IBA counteracted the CdCl 2 - or mannitol-induced increase or decrease in certain antioxidants, MDA, and antioxidative enzymes. These results suggest that Cd and mannitol stress inhibition of adventitious rooting is associated with the regulation of antioxidative enzymes and antioxidants in cells to defense the oxidative stress. Moreover, IBA alleviates the effects of Cd and mannitol stress on the rooting process partially through the regulation of antioxidative defense systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Antioxidant activity of Arbutus unedo leaves.

    Science.gov (United States)

    Pabuçcuoğlu, A; Kivçak, B; Baş, M; Mert, T

    2003-09-01

    The ethanol and methanol extracts of Arbutus unedo leaves were screened for antioxidant activity. The antioxidant activity was determined by an improved assay based on the decolorization of the radical monocation of [2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] (ABTS). The ethanol and methanol extract of A. unedo leaves displayed potent antioxidant activity.

  19. Phenolic content and antioxidant activities of burr parsley (Caucalis platycarpos L.).

    Science.gov (United States)

    Plazonić, Ana; Mornar, Ana; Maleš, Željan; Kujundžić, Nikola

    2013-07-22

    Since C. platycarpos contains a wide variety of antioxidants, in the present study total flavonoid and phenolic acid content as well as antioxidative activity of various C. platycarpos extracts were investigated. The results obtained show a significant polyphenol content and antioxidant activity of the investigated plant. Moreover, a positive correlation between antioxidant activity and content of flavonoids and phenolic acids was found, indicating the responsibility of these compounds for the antioxidant effectiveness of C. platycarpos extracts and making C. platycarpos a good potential source of natural antioxidants.

  20. Investigation of antioxidant interactions between Radix Astragali and Cimicifuga foetida and identification of synergistic antioxidant compounds.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available The medicinal plants of Huang-qi (Radix Astragali and Sheng-ma (Cimicifuga foetida demonstrate significantly better antioxidant effects when used in combination than when used alone. However, the bioactive components and interactional mechanism underlying this synergistic action are still not well understood. In the present study, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay was employed to investigate the antioxidant capacity of single herbs and their combination with the purpose of screening synergistic antioxidant compounds from them. Chromatographic isolation was performed on silica gel, Sephadex LH-20 columns and HPLC, and consequently to yield formononetin, calycosin, ferulic acid and isoferulic acid, which were identified by their retention time, UV λmax, MS and MS/MS data. The combination of isoferulic acid and calycosin at a dose ratio of 1∶1 resulted in significant synergy in scavenging DPPH radicals and ferric reducing antioxidant power (FRAP assay. Furthermore, the protective effects of these four potential synergistic compounds were examined using H2O2-induced HepG2 Cells bioassay. Results revealed that the similar synergy was observed in the combination of isoferulic acid and calycosin. These findings might provide some theoretical basis for the purported synergistic efficiency of Huang-qi and Sheng-ma as functional foods, dietary supplements and medicinal drugs.

  1. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils

    Directory of Open Access Journals (Sweden)

    MARIA E.A. PINTO

    2017-08-01

    Full Text Available ABSTRACT Fatty acid methyl esters (FAMEs were obtained from vegetable oils of soybean, corn and sunflower. The current study was focused on evaluating the antifungal activity of FAMEs mainly against Paracoccidioides spp., as well as testing the interaction of these compounds with commercial antifungal drugs and also their antioxidant potential. FAMEs presented small IC50 values (1.86-9.42 μg/mL. All three FAMEs tested showed antifungal activity against isolates of Paracoccidioides spp. with MIC values ranging from 15.6-500 µg/mL. Sunflower FAMEs exhibited antifungal activity that extended also to other genera, with an MIC of 15.6 μg/mL against Candida glabrata and C. krusei and 31.2 μg/mL against C. parapsilosis. FAMEs exhibited a synergetic effect with itraconazole. The antifungal activity of the FAMEs against isolates of Paracoccidioides spp. is likely due to the presence of methyl linoleate, the major compound present in all three FAMEs. The results obtained indicate the potential of FAMEs as sources for antifungal and antioxidant activity.

  2. Antioxidant activity of salts of 2-(5-R-4-amino-1,2,4-triazole-3-ylthioacetic acid

    Directory of Open Access Journals (Sweden)

    Ye. S. Pruglo

    2017-12-01

    Full Text Available Antioxidants are chemical structures that prevent the oxidation of other chemicals. They protect key cell components by neutralizing the harmful effect of free radicals which are natural products of cell metabolism. Oxidative stress leads to serious cell damage which results in various human diseases such as Alzheimer's disease, Parkinson's disease, atherosclerosis, cancer, arthritis, neurodegenerative disorders etc. The deficiency of antioxidants in food also leads to oxidative stress, which indicates a lack of antioxidant substances consumed by humans. Therefore, the search of substances that could not only prevent but also increase the resistance of the human body to active forms of oxygen or nitrogen and interfere with the processes of oxidative stress is an important task of medicine and pharmacy. The purpose of this work was to study the antioxidant activity (AOA of salts of 2-(5-R-4-R-4H-1,2,4-triazole-3-ylthioacetic acids with non-enzymatic initiation of free radical oxidation and to establish laws concerning chemical structure and biological effects of the studied substances. Materials and methods. Original derivatives of 1,2,4-triazole were used in the series of screening studies. The antioxidant activity of the compounds in vitro was determined according to the methodical recommendations of the State Pharmacological Center MoH Ukraine using the method of non-enzymatic initiation of lipid peroxide oxidation. Results. Dimethylammonium salt of 2-(4-amino-5-(2-bromophenyl-1,2,4-triazole-3-ylthioacetic acid (3c possessed with a high AOA which reduced the content of TBK-AP by 54,95% ( р˂0,001. Derivatives of 4-amino-1,2,4-triazole had the most distinct AOA containing С5 carbon atoms 2-bromophenyl substituent. Thus, methylammonium salt 3b reduced the TBK-AP content by 80,31 (p˂0,001 which exceeds the reference ascorbic acid by 45,05% and the prototype thiotriazoline by 36,64%. Considering the data of experimental studies it was found

  3. Antioxidative activity of Geranium macrorrhizum

    NARCIS (Netherlands)

    Miliauskas, G.; Beek, van T.A.; Venskutonis, P.R.; Linssen, J.P.H.; Waard, de P.

    2004-01-01

    The composition of radical-scavenging compounds from Geranium macrorrhizum leaves was analyzed and the antioxidative activities of various extracts was determined. Seven compounds, namely gallic acid, ellagic acid, 4-galloyl quinic acid, the flavonoid quercetin and three of its glycosides,

  4. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt-based assay.

    Science.gov (United States)

    Chen, L X; Hu, D J; Lam, S C; Ge, L; Wu, D; Zhao, J; Long, Z R; Yang, W J; Fan, B; Li, S P

    2016-01-08

    Snow chrysanthemum (Coreopsis tinctoria Nutt.), a world-widely well-known flower tea material, has attracted more and more attention because of its beneficial health effects such as antioxidant activity and special flavor. In this study, a high performance liquid chromatography coupled with diode array detection and mass spectrometry (HPLC-DAD-MS) and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt (ABTS) based assay was employed for comparison and identification of antioxidants in different samples of snow chrysanthemum. The results showed that snow chrysanthemum flowers possessed the highest while stems presented the lowest antioxidant capacities. Fourteen detected peaks with antioxidant activity were temporarily identified as 3,4',5,6,7-pentahydroxyflavanone-O-hexoside, chlorogenic acid, 2R-3',4',8-trihydroxyflavanone-7-O-glucoside, flavanomarein, flavanocorepsin, flavanokanin, quercetagitin-7-O-glucoside, 3',5,5',7-tetrahydroxyflavanone-O-hexoside, marein, maritimein, 1,3-dicaffeoylquinic acid, coreopsin, okanin and acetyl-marein by comparing their UV spectra, retention times and MS data with standards or literature data. Antioxidants existed in snow chrysanthemum are quite different from those reported in Chrysanthemum morifolium, a well-known traditional beverage in China, which indicated that snow chrysanthemum may be a promising herbal tea material with obvious antioxidant activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    Science.gov (United States)

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest

  6. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L. Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    Directory of Open Access Journals (Sweden)

    Pasquale Filannino

    Full Text Available Cactus pear (Opuntia ficus-indica L. is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05 on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05 of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05 higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The

  7. Determination of Some Physicochemical Properties, Fatty Acid Composition and Antioxidant Capacity, of Organic and Conventional Milk in Turkey Produced

    Directory of Open Access Journals (Sweden)

    Bayram Ürkek

    2018-04-01

    Full Text Available In this study, determination of effect of production systems (conventional and organic and time of milk collection on some physicochemical properties, fatty acids and antioxidant capacity of conventional and organic raw milk in produced Turkey were aimed. In this research, the milk samples was collected from nine conventional farms and nine organic farms at bimonthly years for one year. Fatty acid composition, antioxidant capacity, total phenolic matter, dry matter, fat, protein, ash, titratable acidity (lactic acid % and pH values of organic and conventional milk were investigated. According to results of this research, the mean values of conventional and organic milk samples respectively for dry matter, fat, protein, ash, specific gravity, acidity and pH was determined as 12.06-11.97%, 3.67-3.50%, 3.33-3.34%, 0.67-0.66%, 1.0381-1.0381 g mL-1, 0.18-0.16% and 6.67-6.73, respectively. Conjugated linoliec acid proportions changed between 1.39% and 2.87% in organic milk, between 1.67% and 2.96% in conventional milk. Consequently, the farm production type did not have effects on the milk compassion (dry matter, fat, protein and ash, fatty acid composition, EC50 and total phenolic compounds. On the other hand, the significant variations in the fat, protein, fatty acid proportions, EC50, inhibition and total phenolic compound values were determined as regarding time of milk collection.

  8. A Comparative Study of the Radical-scavenging Activity of the Phenolcarboxylic Acids Caffeic Acid, p-Coumaric Acid, Chlorogenic Acid and Ferulic Acid, With or Without 2-Mercaptoethanol, a Thiol, Using the Induction Period Method

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2008-10-01

    Full Text Available Phenolcarboxylic acid antioxidants do not act in vivo as radical-scavengers in isolation, but rather together with GSH (glutathione, a coantioxidant, they constitute an intricate antioxidant network. Caffeic acid, p-coumaric acid, ferulic acid and chlorogenic acid with or without 2-mercaptoethanol (ME, as a substitute for GSH, was investigated by the induction period (IP method for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN, a source of alkyl radicals, R. and benzoyl peroxide (BPO, a source of peroxy radicals, PhCOO. using differential scanning calorimetry (DSC. Upon PhCOO. radical scavenging, the stoichiometric factors (n, number of free radical trapped by one mole of antioxidant for caffeic acid, ferulic acid, p-coumaric acid and chlorogenic acid were 2.4, 1.8, 1.7 and 0.9, whereas upon R. radical scavenging, the corresponding values were 1.3, 1.2, 1.0 and 0.8, respectively. Antioxidants with n values close to 2 suggest the stepwise formation of semiquinone radicals and quinones. By contrast, those with n values close to 1 suggest the formation of dimers after single-electron oxidation, possibly due to recombination of corresponding aryloxy radicals. The ratio of the rate constant of inhibition to that of propagation (kinh/kp declined in the order chlorogenic acid > p-coumaric acid > ferulic acid > caffeic acid. The ratio of the observed IP for the phenolcarboxylic acid/2-mercapto-ethanol (ME mixture (1:1 molar ratio (A to the calculated IP (the simple sum of phenol acid antioxidant and ME (B was investigated. Upon R. scavenging, the caffeic acid or p-coumaric acid/ME mixture was A/B > 1, particularly the former was 1.2, suggesting a synergic effect. By contrast, upon PhCOO. scavenging, the corresponding mixture was A/B < 1, particularly the latter was 0.7, suggesting an antagonistic effect. Upon both radicals scavenging, the A/B for the ferulic acid or chlorogenic acid

  9. Ferulic acid modification enhances the anti-oxidation activity of natural Hb in vitro.

    Science.gov (United States)

    Qi, Donglai; Li, Qian; Chen, Chen; Wang, Xiang

    2018-03-13

    During the development of artificial red blood cell (RBC) substitutes, oxidation side reaction is one of the major factors that hinder the application of haemoglobin (Hb)-based oxygen carriers (HBOCs). In order to avoid oxidation toxicity, we designed and prepared natural Hb conjugated with ferulic acid (FA) via simple chemical modification. In addition, the thiol groups on Hb surface were increased via the reaction of Hb with 2-iminothiolane (2-IT) and then modified with FA for the study of anti-oxidant ability. It was showed that Hb modified with FA (FA-Hb) had similar oxygen-binding capacity to natural Hb. Moreover, the anti-oxidant ability of FA-Hb in vitro in different systems was superior to natural Hb and in proportion to the degree of modification of FA. The results indicate that FA-Hb might have the potential to serve as a novel oxygen carrier with the capacity to reduce oxidative side reaction.

  10. Phenolic Content and Antioxidant Activities of Burr Parsley (Caucalis platycarpos L.

    Directory of Open Access Journals (Sweden)

    Željan Maleš

    2013-07-01

    Full Text Available Since C. platycarpos contains a wide variety of antioxidants, in the present study total flavonoid and phenolic acid content as well as antioxidative activity of various C. platycarpos extracts were investigated. The results obtained show a significant polyphenol content and antioxidant activity of the investigated plant. Moreover, a positive correlation between antioxidant activity and content of flavonoids and phenolic acids was found, indicating the responsibility of these compounds for the antioxidant effectiveness of C. platycarpos extracts and making C. platycarpos a good potential source of natural antioxidants.

  11. Ethylenediaminetetraacetic acid induces antioxidant and anti-inflammatory activities in experimental liver fibrosis.

    Science.gov (United States)

    González-Cuevas, J; Navarro-Partida, J; Marquez-Aguirre, A L; Bueno-Topete, M R; Beas-Zarate, C; Armendáriz-Borunda, J

    2011-01-01

    Experimental liver fibrosis induced by carbon tetrachloride (CCl(4)) is associated with oxidative stress, lipid peroxidation, and inflammation. This work was focused on elucidating the anti-inflammatory and antioxidant effects of ethylenediaminetetraacetic acid (EDTA) in this model of hepatotoxicity. Wistar male rats were treated with CCl(4) and EDTA (60, 120, or 240 mg/kg). Morphometric analyses were carried out in Masson's stained liver sections to determine fibrosis index. Coagulation tests prothrombin time (PT) and partial thromboplastin time (PTT) were also determined. Gene expression for transforming growth factor beta (TGF-beta1), alpha1(I) procollagen gene (alpha1 Col I), tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and superoxide dismutase (SOD) was monitored by real-time PCR. Antioxidant effect of EDTA was measured by its effects on lipid peroxidation; biological activity of ceruloplasmin (Cp), SOD, and catalase (Cat) were analyzed by zymography assays. Animals with CCl(4)-hepatic injury that received EDTA showed a decrement in fibrosis (20%) and lipid peroxidation (22%). The mRNA expression for TNF-alpha (55%), TGF-beta1 (50%), IL-6 (52%), and alpha1 Col I (60%) was also decreased. This group of animals showed increased Cp (62%) and SOD (25%) biological activities. Coagulation blood tests, Cat activity, and gene expression for SOD were not modified by EDTA treatment. This study demonstrates that EDTA treatment induces the activity of antioxidant enzymes, decreases lipid peroxidation, hepatic inflammation, and fibrosis in experimental liver fibrosis induced by CCl(4).

  12. Phenolic Acids Profiles and Cellular Antioxidant Activity in Tortillas Produced from Mexican Maize Landrace Processed by Nixtamalization and Lime Extrusion Cooking.

    Science.gov (United States)

    Gaxiola-Cuevas, Nallely; Mora-Rochín, Saraid; Cuevas-Rodriguez, Edith Oliva; León-López, Liliana; Reyes-Moreno, Cuauhtémoc; Montoya-Rodríguez, Alvaro; Milán-Carrillo, Jorge

    2017-09-01

    Phenolic acids profiles, chemical antioxidant activities (ABTS and ORAC), as well as cellular antioxidant activity (CAA) of tortilla of Mexican native maize landraces elaborated from nixtamalization and lime cooking extrusion processes were studied. Both cooking procedures decreased total phenolics, chemicals antioxidant activity when compared to raw grains. Extruded tortillas retained 79.6-83.5%, 74.1-77.6% and 79.8-80.5% of total phenolics, ABTS and ORAC values, respectively, compared to 47.8-49.8%, 41.3-42.3% and 43.7-44.4% assayed in traditional tortillas, respectively. Approximately 72.5-88.2% of ferulic acid in raw grains and their tortillas were in the bound form. Regarding of the CAA initially found in raw grains, the retained percentage for traditional and extruded tortillas ranged from 47.4 to 48.7% and 72.8 to 77.5%, respectively. These results suggest that Mexican maize landrace used in this study could be considered for the elaboration of nixtamalized and extruded food products with nutraceutical potential.

  13. Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS.

    Science.gov (United States)

    Wang, Jin; Cao, Xianshuang; Jiang, Hao; Qi, Yadong; Chin, Kit L; Yue, Yongde

    2014-12-17

    Hibiscus sabdariffa has gained attention for its antioxidant activity. There are many accessions of H. sabdariffa in the world. However, information on the quantification of antioxidant compounds in different accessions is rather limited. In this paper, a liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS) method for simultaneous determination of five antioxidant compounds (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, and isoquercitrin) in H. sabdariffa leaves was developed. The method was validated for linearity, sensitivity, precision, repeatability and accuracy. The validated method has been successfully applied for determination of the five analytes in eight accessions of H. sabdariffa. The eight accessions of H. sabdariffa were evaluated for their antioxidant activities by DPPH free radical scavenging assay. The investigated accessions of H. sabdariffa were rich in rutin and exhibited strong antioxidant activity. The two accessions showing the highest antioxidant activities were from Cuba (No. 2) and Taiwan (No. 5). The results indicated that H. sabdariffa leaves could be considered as a potential antioxidant source for the food industry. The developed LC-Q-TOF-MS method is helpful for quality control of H. sabdariffa.

  14. Determination of Antioxidant, Anticholinesterase, Tyrosinase Inhibitory Activities and Fatty Acid Profiles of 10 Anatolian Klasea Cass. Species

    Directory of Open Access Journals (Sweden)

    Gülsen Tel

    2016-01-01

    Full Text Available In search of new natural fatty acid sources, extract of 10 different Turkish Klasea species were studies. Fatty acids of Klasea species were studied by GC and GC-MSD. Oleic acid (4.8-45.8%, palmitic acid (15.6-51.8%, linoleic acid (0.3-45.5%, palmitoleic acid (0.8-28.4% and linolenic acid (15.6-34.6% were the main fatty acids elucidated. All extracts were also subjected to acetylcholinesterase, butyrylcholinesterase, tyrosinase, β-carotene-linoleic acid, DPPH • scavenging, CUPRAC and ferrous ion-chelating ability activities. Total flavonoid and phenolic contents were determined as quercetin and pyrocatechol equivalents. All extracts showed significant antioxidant activity in all tests, except hexane extracts of K. serratuloides and K. cerinthifolia that showed weak inhibition against BChE and AChE. The hexane extract of K. coriaceae and methanol extract of K. serratuloides exhibited notable tyrosinase inhibitory activity.

  15. Evaluation of antioxidant potential of Brazilian rice cultivars

    Directory of Open Access Journals (Sweden)

    Sylvio Vicentin Palombini

    2013-12-01

    Full Text Available This study quantified the fatty acids and evaluated the proximate composition, antioxidant activity (using the Quencher procedure, and total phenolic compound concentrations in Brazilian rice cultivars. The cultivars studied showed high amounts of unsaturated fatty acids, such as linoleic and oleic acid. The ratios of polyunsaturated and saturated fatty acids obtained were high. Regarding the antioxidant activity, the best results were found using the ABTS method and the worst in the DPPH assay. The results of the DPPH and FRAP assays showed the highest correlation. The antioxidant capacity results obtained were also much higher than those reported for other varieties worldwide. Therefore, the Quencher procedure is highly suitable for application in cereals such as rice, especially when combined with the ABTS radical capture method.

  16. Antioxidative activity of 3,4-dihydroxyplienylacetic acid and α-tocopherol on the triglyceride matrix of olive oil. Effect of acidity.

    Directory of Open Access Journals (Sweden)

    Blekas, Georgios

    1998-02-01

    Full Text Available Minor constituents of virgin olive oil are important for the remarkable stability of the oil in autoxidation, but the exact role and the extent to which each antioxidant factor contributes to the total antioxidant effect has not been thoroughly Investigated. In this study the role of α-tocopherol is explored at various acidity levels and at low concentrations of ortho-diphenols. A substrate of olive oil triacylglycerols devoid of prooxidant or antioxidant constituents was prepared from refined olive oil by column chromatography To tills substrate, slightly oxidized, the additives (oleic acid, 3,4-dihydroxyphenylacetic acid and α-tocopherol were added and the stability was assessed by periodical measurements of peroxide values. It was found that free fatty adds reduce mainly the protective activity of the ortho-diphenol. It is also concluded that α-tocopherol has a synergistic effect with the ortho-diphenols and contributes significantly to the retardation of peroxide formation. This is Important for oils poor in ortho-diphenols.

    Los constituyentes menores del aceite de oliva virgen son importantes para la notable estabilidad del aceite en la autooxidación, pero el papel exacto y el alcance con que cada factor antioxidante contribuye al efecto antioxidante total no ha sido investigado a fondo. En este estudio el papel del α-tocoferol es examinado a varios niveles de acidez y a baja concentraciones de o-difenoles. Un sustrato de triacilgliceroles de aceite de oliva desprovisto de constituyentes prooxidantes o antioxidantes fue preparado a partir de aceite de oliva refinado mediante cromatografía en columna. A este sustrato, un poco oxidado, los aditivos (ácido oleico, ácido 3,4-dihidroxifenilacético y α-tocoferol fueron añadidos y la estabilidad fue calculada mediante medidas periódicas del índice de peróxido. Se encontró que los ácidos grasos libres reducen principalmente la actividad protectora de los orto-difenoles. Se

  17. Nutraceutical Antioxidants as Novel Neuroprotective Agents

    Directory of Open Access Journals (Sweden)

    Daniel A. Linseman

    2010-11-01

    Full Text Available A variety of antioxidant compounds derived from natural products (nutraceuticals have demonstrated neuroprotective activity in either in vitro or in vivo models of neuronal cell death or neurodegeneration, respectively. These natural antioxidants fall into several distinct groups based on their chemical structures: (1 flavonoid polyphenols like epigallocatechin 3-gallate (EGCG from green tea and quercetin from apples; (2 non-flavonoid polyphenols such as curcumin from tumeric and resveratrol from grapes; (3 phenolic acids or phenolic diterpenes such as rosmarinic acid or carnosic acid, respectively, both from rosemary; and (4 organosulfur compounds including the isothiocyanate, L-sulforaphane, from broccoli and the thiosulfonate allicin, from garlic. All of these compounds are generally considered to be antioxidants. They may be classified this way either because they directly scavenge free radicals or they indirectly increase endogenous cellular antioxidant defenses, for example, via activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2 transcription factor pathway. Alternative mechanisms of action have also been suggested for the neuroprotective effects of these compounds such as modulation of signal transduction cascades or effects on gene expression. Here, we review the literature pertaining to these various classes of nutraceutical antioxidants and discuss their potential therapeutic value in neurodegenerative diseases.

  18. The effects of antioxidants on the content of polyunsaturated fatty acids in the hen's egg.

    Science.gov (United States)

    Kassab, A; Abrams, J T; Sainsbury, D W

    1979-01-01

    In experiments to see whether, in the possible interests of human health, the polyunsaturated fatty acid (PUFA) content of the chicken's egg can be increased by nutritional means, three strains of hen, light, medium, and heavy, each at the peak of lay, were first fed a basal, commercial, low-fat diet. The hens were then transferred to one of the following diets: basal + safflower oil (SO); basal + SO + butylated hydroxytoluene; or basal + SO + dl-a-toco-pheryl acetate. The diets were designated "Blank", "BHT", and "Vitamin E", respectively, the second and third containing the added antioxidants. The eggs produced were weighed, and their yolks weighed and analysed for lipid components. Additional of SO (7.5%) to the basal diet led to the PUFA content of the yolk lipids rising by 15.4% (linoleic acid, 14.1%), the magnitude of the increases being unaffected by the antioxidants. Diet "BHT" produced larger eggs and yolks than the other diets, but the proportion of yolk was the same on the three types of feed. The total cholesterol content of egg yolks was significantly affected neither by diet, nor by strain or age of hen. The implications of these results are discussed.

  19. Diabetic nephropathy and antioxidants.

    Science.gov (United States)

    Tavafi, Majid

    2013-01-01

    Oxidative stress has crucial role in pathogenesis of diabetic nephropathy (DN). Despite satisfactory results from antioxidant therapy in rodent, antioxidant therapy showed conflicting results in combat with DN in diabetic patients. Directory of Open Access Journals (DOAJ), Google Scholar,Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Treatment of DN in human are insufficient with rennin angiotensin system (RAS) blockers, so additional agent ought to combine with this management. Meanwhile based on DN pathogenesis and evidences in experimental and human researches, the antioxidants are the best candidate. New multi-property antioxidants may be improved human DN that show high power antioxidant capacity, long half-life time, high permeability to mitochondrion, improve body antioxidants enzymes activity and anti-inflammatory effects. Based on this review and our studies on diabetic rats, rosmarinic acid a multi-property antioxidant may be useful in DN patients, but of course, needs to be proven in clinical trials studies.

  20. Exogenously applied abscisic acid to Yan73 (V. vinifera) grapes enhances phenolic content and antioxidant capacity of its wine.

    Science.gov (United States)

    Xi, Zhu-Mei; Meng, Jiang-Fei; Huo, Shan-Shan; Luan, Li-Ying; Ma, Li-Na; Zhang, Zhen-Wen

    2013-06-01

    Yan73 is a 'teinturier' red wine variety cultivated in China and widely used in winemaking to strengthen red wine colour. The objective of this study was to evaluate the effect of exogenous abscisic acid (ABA) applied to the grapevine cluster on the antioxidant capacity and phenolic content of the wine made from Yan73. Two hundred mg/l ABA was applied on Yan73 grapevine cluster during veraison. As they mature, these ABA-treated and untreated grape berries were transformed into wines, respectively, and the phenolic content and antioxidant capacity of these wines were compared. The results showed that phenolic content (total phenolics, tannins, flavonoids and anthocyanins) and antioxidant capacity were higher in the wine produced with ABA-treated Yan73 grapes than those in the wine from untreated grapes. Compared to Cabernet Sauvignon wine, Yan73 wine had higher phenolic content and stronger antioxidant capacity. These strongly suggest that exogenously applied ABA to Yan73 grapes can enhance phenolic content and antioxidant capacity of its wine, and Yan73 wine has the higher utilization value and potential for development.

  1. Extraction, fatty acid profile and antioxidant activity of sesame extract (Sesamum Indicum L.

    Directory of Open Access Journals (Sweden)

    R. H. R. Carvalho

    2012-06-01

    Full Text Available This article carried out the extraction of sesame oil by using three extraction techniques: supercritical fluid extraction (SFE, Soxhlet and sequential extraction. The SFE was performed using supercritical carbon dioxide (SC-CO2 as solvent and ethanol as cosolvent. Tests were performed at 20 MPa, 35ºC and a flow rate of 2.5 g CO2/min with a total extraction time of 210 minutes. The Soxhlet extraction was performed for 8 hours, using petroleum ether and ethanol as solvents, until the exhaustion of the oil contained in the seeds. The sequential extraction used ethyl ether, ethanol and water as solvents. The Soxhlet extraction was the most effective (58.93%, while the SFE technique obtained 26.47% as the best result. The antioxidant activity (AA was determined by the β-carotene/linoleic acid system, with good oxidation inhibition percentages (29.32-83.49% for all the extracts. The main fatty acids (FA in sesame oil were oleic and linoleic acids.

  2. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  3. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay.

    Science.gov (United States)

    Qwele, K; Hugo, A; Oyedemi, S O; Moyo, B; Masika, P J; Muchenje, V

    2013-03-01

    The present study determined the chemical composition, fatty acid (FA) content and antioxidant capacity of meat from goats supplemented with Moringa oleifera leaves (MOL) or sunflower cake (SC) or grass hay (GH). The meat from goat supplemented with MOL had higher concentrations of total phenolic content (10.62±0.27 mg tannic acid equivalent E/g). The MOL significantly scavenged 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic-acid (ABTS) radical to 93.51±0.19% (93.51±0.19%) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical to 58.95±0.3% than other supplements. The antioxidative effect of MOL supplemented meat on catalase (CAT), reduced glutathione (GSH), superoxide dismutase (SOD) and lipid oxidation (LO) was significantly (Pmeat from goat feed on grass hay or those supplemented with sunflower seed cake. The present study indicated that the anti-oxidative potential of MOL may play a role in improving meat quality (chemical composition, colour and lipid stability). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Antioxidant activity of the microalga Spirulina maxima

    Directory of Open Access Journals (Sweden)

    M.S. Miranda

    1998-08-01

    Full Text Available Spirulina maxima, which is used as a food additive, is a microalga rich in protein and other essential nutrients. Spirulina contains phenolic acids, tocopherols and ß-carotene which are known to exhibit antioxidant properties. The aim of the present study was to evaluate the antioxidant capacity of a Spirulina extract. The antioxidant activity of a methanolic extract of Spirulina was determined in vitro and in vivo. The in vitro antioxidant capacity was tested on a brain homogenate incubated with and without the extract at 37oC. The IC50 (concentration which causes a 50% reduction of oxidation of the extract in this system was 0.18 mg/ml. The in vivo antioxidant capacity was evaluated in plasma and liver of animals receiving a daily dose of 5 mg for 2 and 7 weeks. Plasma antioxidant capacity was measured in brain homogenate incubated for 1 h at 37oC. The production of oxidized compounds in liver after 2 h of incubation at 37oC was measured in terms of thiobarbituric acid reactant substances (TBARS in control and experimental groups. Upon treatment, the antioxidant capacity of plasma was 71% for the experimental group and 54% for the control group. Data from liver spontaneous peroxidation studies were not significantly different between groups. The amounts of phenolic acids, a-tocopherol and ß-carotene were determined in Spirulina extracts. The results obtained indicate that Spirulina provides some antioxidant protection for both in vitro and in vivo systems.

  5. Comparison of bee products based on assays of antioxidant capacities.

    Science.gov (United States)

    Nakajima, Yoshimi; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Mishima, Satoshi; Hara, Hideaki

    2009-02-26

    Bee products (including propolis, royal jelly, and bee pollen) are popular, traditional health foods. We compared antioxidant effects among water and ethanol extracts of Brazilian green propolis (WEP or EEP), its main constituents, water-soluble royal jelly (RJ), and an ethanol extract of bee pollen. The hydrogen peroxide (H2O2)-, superoxide anion (O2.-)-, and hydroxyl radical (HO.)- scavenging capacities of bee products were measured using antioxidant capacity assays that employed the reactive oxygen species (ROS)-sensitive probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) or aminophenyl fluorescein (APF). The rank order of antioxidant potencies was as follows: WEP > EEP > pollen, but neither RJ nor 10-hydroxy-2-decenoic acid (10-HDA) had any effects. Concerning the main constituents of WEP, the rank order of antioxidant effects was: caffeic acid > artepillin C > drupanin, but neither baccharin nor coumaric acid had any effects. The scavenging effects of caffeic acid were as powerful as those of trolox, but stronger than those of N-acetyl cysteine (NAC) or vitamin C. On the basis of the present assays, propolis is the most powerful antioxidant of all the bee product examined, and its effect may be partly due to the various caffeic acids it contains. Pollen, too, exhibited strong antioxidant effects.

  6. Polyphenol Contents and Antioxidant Properties of Medlar (Mespilus germanica L.

    Directory of Open Access Journals (Sweden)

    İlhami Gülçin

    2011-01-01

    Full Text Available Medlar is the fruit of Mespilus germanica L. in the family of Rosaceae. The present study outlines that the native medlar (Mespilus germanica L. fruits an extremely rich source of antioxidants. In this study, antioxidant and antiradical property of medlar fruits were evaluated. Total phenolics and flavonoids amounts in lyophilized extract of medlar (LEM fruits were calculated as gallic acid and quercetin equivalents, respectively. Antioxidant and radical scavenging activity of LEM were investigated using different in vitro assays including 1,1-diphenyl-2-picryl-hydrazyl (DPPH∙, N,N-dimethyl-p-phenylenediamine (DMPD •+, and superoxide anion radicals (O 2 •- scavenging activity, hydrogen peroxide (H 2O 2, ferric ions (Fe 3+ and cupric ions (Cu 2+ reducing ability, Fe 3+-TPTZ reducing ability, ferrous ions (Fe 2+ chelating activity as trolox equivalent. In addition, quantitative amounts of caffeic acid, ferulic acid, syringic acid, ellagic acid, quercetin, α-tocopherol, pyrogallol, p-hydroxybenzoic acid, vanillin, p-coumaric acid, gallic acid and ascorbic acid in LEM were detected by high performance liquid chromatography and tandem mass spectrometry (LC-MS/MS. The presence of these antioxidant compounds can be considered as a quality parameter for edible medlar fruits.

  7. Polyphenol composition and antioxidant activity of Kei-apple (Dovyalis caffra) juice.

    Science.gov (United States)

    Loots, Du Toit; van der Westhuizen, Francois H; Jerling, Johann

    2006-02-22

    The polyphenolic and ascorbate (ASC) components as well as the antioxidant capacity of Kei-apple (Dovyalis caffra) juice were analyzed and compared to three other fruit juices. The Kei-apple juice had significantly the highest total polyphenolic concentrations (1013 mg gallic acid equivalent/L), and solid phase (C(18)) fractionation identified the majority of these polyphenols to be phenolic acids. The Kei-apple juice also had significantly the highest ASC concentrations (658 mg/L), which showed exceptional heat stability with very little conversion to dehydroascorbate (DHA). Antioxidant capacities of both the unfractionated fruit juices and their solid phase-extracted fractions, as determined by oxygen radical absorbance capacity and ferric reducing antioxidant power analyses, correlated well to the polyphenol concentrations. Gas chromatography-mass spectrometry analyses showed caffeic acid as the most abundant polyphenol present (128.7 mg/L) in the Kei-apple juice; it contributed to 63% of the total antioxidant capacity (of all of the individual compounds identified). Other notable polyphenols identified in higher concentrations included p-coumaric acid, p-hydroxyphenylacetic acid, and protocatechuic acid. Our results therefore support the putative high antioxidant value linked to this fruit and better define this potential in terms of the major antioxidants that exist in the Kei-apple.

  8. Identification, determination, and study of antioxidative activities of hesperetin and gallic acid in hydro-alcoholic extract from flowers of Eriobotrya japonica (Lindl.

    Directory of Open Access Journals (Sweden)

    Amir Hossein Esmaeili

    2014-06-01

    Full Text Available Objectives: Eriobotrya japonica belongs to the Rosaceae. Studies have shown that the flowers of this plant are rich in phenolic and flavonoid compounds. Accorrdingly, the evaluation of antioxidative effects of Eriobotrya japonica Flower Extract (EJFE have been performed in vitro. Material and Methods: In this study, to investigate the influences of components of EJFE on its antioxidative activity, extract was prepared using hydro-alcoholic (25:75 V/V solvent and the antioxidative activity of the extract was evaluated based on the scavenging of various radicals (DPPH and H2O2 by spectrophotometric method and chelating of ferrous ions by ferrozine reagent. Results: HPLC analysis of the Eriobotrya japonica Flower Extract (EJFE revealed hesperetin and gallic acid as the major antioxidants. When the content of total flavonoid and polyphenolic compounds in the flower extract of this plant was examined, a significantly higher level of total polyphenols was found in Eriobotrya japonica flower extract. Conclusion: Results demonstrate that the high ability to scavenge free radicals, reducing power, and Fe+2chelating activity exerted by the EJFE were due to the high content of hesperetin and gallic acid in the flowers.

  9. Influence of Fruit Ripening on Color, Organic Acid Contents, Capsaicinoids, Aroma Compounds, and Antioxidant Capacity of Shimatogarashi (Capsicum frutescens).

    Science.gov (United States)

    Manikharda; Takahashi, Makoto; Arakaki, Mika; Yonamine, Kaoru; Hashimoto, Fumio; Takara, Kensaku; Wada, Koji

    2018-01-01

    Shimatogarashi (Capsicum frutescens) is a typical chili pepper domesticated in southern Japan. Important traits of Shimatogarashi peppers, such as color; proportion of organic acids, capsaicinoids, and aromatic compounds; and antioxidant activity in three stages of maturity (green (immature), orange (turning), and red (mature) stages) were characterized. The results indicated that the concentration of organic acids, including ascorbic, citric, and malic acid, increased during ripening. In addition, the amount of capsaicinoids, which are responsible for the pungent taste of chili peppers, increased as the fruit matured to the orange and red stages. The volatile compound profile of Shimatogarashi was dominated by the presence of esters, which mainly contributed to fruity notes. The total amount of volatile compounds analyzed by gas chromatography-headspace solid-phase microextraction (GC-HS-SPME), especially esters, decreased as the fruit changed in color from green to red. This was in contrast to the amount of terpenoids, especially limonene, which increased at the red stage, denoting a change in flavor from fruity to a more citrus-like aroma. Based on the total phenolic content (TPC), the oxygen radical absorbance capacity (ORAC) and the diphenylpicrylhydrazyl (DPPH) free radical method, the antioxidant capacity of Shimatogarashi showed an increase at the mature red stage. However, while the red stage showed higher pungency and antioxidant capacity as well as an attractive color, the results of aromatic compound analysis revealed that the immature green stage had the advantages of having pleasant fruity smell, making it suitable for use in condiments.

  10. Sacha Inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytoserols, phenolic compounds and antioxidant capacity

    NARCIS (Netherlands)

    Chirinos, R.; Zuloeta, G.; Pedreschi Plasencia, R.P.

    2013-01-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A

  11. Safety and Efficacy of Dextran-Rosmarinic Acid Conjugates as Innovative Polymeric Antioxidants in Skin Whitening: What Is the Evidence?

    Directory of Open Access Journals (Sweden)

    Ortensia I. Parisi

    2017-08-01

    Full Text Available Background: Melanins are high molecular weight pigments responsible for the mammalian skin and hair colour and play a key role in skin protection from UV radiation; however, their overproduction and excessive accumulation lead to pigmentation problems including melasma, freckles, uneven colouring, and age spots. Therefore, the modulation of melanin synthesis represents a critical issue in medicine and cosmetology. In the present study, an innovative polymeric antioxidant to be used as skin whitening agent is developed by the conjugation of dextran with rosmarinic acid. Methods: Dextran-rosmarinic acid conjugates (DEX-RA were synthesized in a one-pot method starting from Origanum vulgare aqueous leaf extract and dextran. The total polyphenol content and the antioxidant activity were assessed by Folin-Ciocalteau assay and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH and bleaching tests, respectively. The efficacy of DEX-RA was evaluated by inhibition of tyrosinase activity, in vitro diffusion and stability studies and in vivo studies. The biocompatibility of the conjugates was investigated by 3-[4,5-Dimethylthiaoly]-2,5-diphenyltetrazoliumbromide (MTT and EPISKIN™ model. Results: Efficacy and safety studies confirmed the antioxidant and tyrosinase inhibitory activities and the biocompatibility of the synthesized conjugates. Conclusion: The polymeric conjugates, comparing to the free antioxidant, show a long-lasting efficacy combined to an enhanced stability resulting in an improved performance of the cosmetic formulations prepared using this innovative whitening agent as a bioactive ingredient.

  12. Effect of abscisic acid on biochemical constituents, enzymatic and non enzymatic antioxidant status of lettuce (Lactuca sativa L. under varied irrigation regimes

    Directory of Open Access Journals (Sweden)

    Mohamed A. Al Muhairi

    2015-12-01

    Full Text Available Economically important vegetable crop lettuce (Lactuca sativa L. of family Asteraceae was selected for the present investigation. It is being cultivated in UAE due to its commercial importance. In lettuce cultivation, the major problem is the requirement of large quantities of irrigation water. The present study was aimed to reduce the water consumption of lettuce cultivation; for that, a varied irrigation regime was used with the application of abscisic acid (ABA. The parameters studied were biochemical constituents, antioxidant potential and antioxidant enzymes’ activities in lettuce plants under drought stress and its response to ABA under stress. Drought stress caused an increase in the biochemical constituents like proline and amino acid contents when compared with control and also increased under individual ABA treatments and treatments under drought stress. The non-enzymatic antioxidant molecules like ascorbate and α-tocopherol showed significant increase under drought condition in lettuce. ABA slightly reduced these contents. The antioxidant enzymes like superoxide dismutase, catalase and peroxidase showed significant increase under drought condition and ABA caused significant enhancement in these antioxidant enzymes under drought stress and also in unstressed conditions, thereby protecting the plants from the deleterious effects of drought stress. From the results of this investigation, it can be concluded that ABA in 10 mg g−1 can be used as a potential tool to minimise the drought stress effects in lettuce cultivation.

  13. Effect of Azadirachta indica leaves extract on acetic acid-induced colitis in rats:Role of antioxidants, free radicals and myeloperoxidase

    Directory of Open Access Journals (Sweden)

    Ghatule RR

    2012-10-01

    Full Text Available Objective: To evaluate the healing effects of extract of dried leaves of Azadirachta indica (Neem on acetic acid-induced colitis in rats. Neem tree is known as ‘arishtha ’ in Sanskrit, meaning ‘reliever of sicknesses ’. Methods: 50% ethanolic extract of Azadirachta indica leaves was administered orally, once daily for 14 days in rats after the induction of colitis with acetic acid and 500 mg/kg dose of extract was found to have an optimal effect against acetic acid-induced colonic damage score, weight and adhesions (Macroscopic. Effect of Azadirachta indica extract was then further studied on various physical (mucous/blood in stool, food and water intake and body weight changes, colonic mucosal damage and inflammation (microscopic, antibacterial and biochemical parameters viz. i antioxidants (superoxide dismutase, catalase and reduced glutathione and ii free radicals (nitric oxide and lipid peroxidation and myeloperoxidase (acute inflammatory marker activities in acetic acid-induced colitis. Results: Azadirachta indica extract decreased colonic mucosal damage and inflammation (macroscopic and microscopic, mucous/bloody diarrhea, fecal frequency and increased body weight. Azadirachta indica extract showed intestinal antibacterial activity and enhanced the antioxidants but decreased free radicals and myeloperoxidase activities. Acute toxicity study indicated no mortality or other ANS or CNS related adverse effects even with 5.0 g/kg dose (10 times of effective dose indicating its safety. Conclusions: Azadirachta indica seemed to be safe and effective in colitis by its predominant effect on promoting antioxidant status and decreasing intestinal bacterial load, free radicals and myeloperoxidase responsible for tissue damage and delayed healing.

  14. Omega-3 fatty acids, phenolic compounds and antioxidant characteristics of chia oil supplemented margarine.

    Science.gov (United States)

    Nadeem, Muhammad; Imran, Muhammad; Taj, Imran; Ajmal, Muhammad; Junaid, Muhammad

    2017-05-31

    Chia (Salvia hispanica L.) is known as power house of omega fatty acids which has great health benefits. It contains up to 78% linolenic acid (ω-3) and 18% linoleic acid (ω-6), which could be a great source of omega-3 fatty acids for functional foods. Therefore, in this study, margarines were prepared with supplementation of different concentrations of chia oil to enhance omega-3 fatty acids, antioxidant characteristics and oxidative stability of the product. Margarines were formulated from non-hydrogenated palm oil, palm kernel and butter. Margarines were supplemented with 5, 10, 15 and 20% chia oil (T 1 , T 2 , T 3 and T 4 ), respectively. Margarine without any addition of chia oil was kept as control. Margarine samples were stored at 5 °C for a period of 90 days. Physico-chemical (fat, moisture, refractive index, melting point, solid fat index, fatty acids profile, total phenolic contents, DPPH free radical scavenging activity, free fatty acids and peroxide value) and sensory characteristics were studied at the interval of 45 days. The melting point of T 1 , T 2 , T 3 and T 4 developed in current investigation were 34.2, 33.8, 33.1 and 32.5 °C, respectively. The solid fat index of control, T 1 , T 2 , T 3 and T 4 were 47.21, 22.71, 20.33, 18.12 and 16.58%, respectively. The α-linolenic acid contents in T 1 , T 2 , T 3 and T 4 were found 2.92, 5.85, 9.22, 12.29%, respectively. The concentration of eicosanoic acid in T 2 , T 3 and T 4 was 1.82, 3.52, 6.43 and 9.81%, respectively. The content of docosahexanoic acid in T 2 , T 3 and T 4 was present 1.26, 2.64, 3.49 and 5.19%, respectively. The omega-3 fatty acids were not detected in the control sample. Total phenolic contents of control, T 1 , T 2 , T 3 and T 4 samples were 0.27, 2.22, 4.15, 7.23 and 11.42 mg GAE/mL, respectively. DPPH free radical scavenging activity for control, T 1 , T 2 , T 3 and T 4 was noted 65.8, 5.37, 17.82, 24.95, 45.42 and 62.8%, respectively. Chlorogenic acid, caffeic acid

  15. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes.

    Science.gov (United States)

    Tang, Yao; Li, Xihong; Chen, Peter X; Zhang, Bing; Hernandez, Marta; Zhang, Hua; Marcone, Massimo F; Liu, Ronghua; Tsao, Rong

    2015-05-01

    Composition of fatty acids, tocopherols, tocotrienols, and carotenoids, and their contribution to antioxidant activities were investigated in seeds of three coloured quinoa cultivars (white, red and black). The major components and individual compounds were significantly different, and their concentrations were higher in darker seeds (p tocopherol content ranged from 37.49 to 59.82 μg/g and mainly consisted of γ-tocopherol. Trace amount of α- and β-tocotrienols was also found. Black quinoa had the highest vitamin E followed by red and white quinoas. Carotenoids, mainly trans-lutein (84.7-85.6%) and zeaxanthin were confirmed for the first time in quinoa seeds, and the concentration was also the highest in black seeds. The antioxidant activities of lipophilic extracts were positively correlated with polyunsaturated fatty acids, total carotenoids and total tocopherols. Copyright © 2014. Published by Elsevier Ltd.

  16. Response of antioxidant system of tomato to water deficit stress and its interaction with ascorbic acid

    Directory of Open Access Journals (Sweden)

    Fatemeh Daneshmand

    2014-03-01

    Full Text Available Environmental stresses including water deficit stress may produce oxidants such as reactive oxygen species that damage the membrane structure in plants. Among the antioxidants, ascorbic acid has a critical role in the cell and scavenges reactive oxygen species. In this research, effects of ascorbic acid at two levels (0 and 10 mM and water deficit stress based on 3 levels of field capacity (100, 60 and 30% were studied in tomato plants. Both levels of stress increased lipid peroxidation, reduced the amount of ascorbic acid and glutathione and increased the activity of enzymes superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase and reduced the growth parameters. Ascorbic acid treatment, reduced lipid peroxidation, increased ascorbic acid and glutathione levels and decreased the activity of superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase and guaiacol peroxidase and positive effects of ascorbic acid treatment appeared to improve the plant growth parameters.

  17. Hen Egg as an Antioxidant Food Commodity: A Review.

    Science.gov (United States)

    Nimalaratne, Chamila; Wu, Jianping

    2015-09-24

    Intake of antioxidants through diet is known to be important in reducing oxidative damage in cells and improving human health. Although eggs are known for their exceptional, nutritional quality, they are not generally considered as antioxidant foods. This review aims to establish the importance of eggs as an antioxidant food by summarizing the current knowledge on egg-derived antioxidants. Eggs have various natural occurring compounds including the proteins ovalbumin, ovotransferrin and lysozyme in egg white, as well as phosvitin, carotenoids and free aromatic amino acids in egg yolk. Some lipophilic antioxidants such as vitamin E, carotenoids, selenium, iodine and others can be transferred from feed into egg yolk to produce antioxidant-enriched eggs. The bioactivity of egg antioxidants can be affected by food processing, storage and gastrointestinal digestion. Generally thermal processing methods can promote loss of antioxidant properties in eggs due to oxidation and degradation, whereas gastrointestinal digestion enhances the antioxidant properties, due to the formation of new antioxidants (free amino acids and peptides). In summary, in addition to its well-known nutritional contribution to our diet, this review emphasizes the role of eggs as an important antioxidant food.

  18. Fatty acid composition and antioxidant activity of oils from two cultivars of Cantaloupe extracted by supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, M.; Mariod, A.; Bagalkotkar, G.; Ling, H. S

    2010-07-01

    The effect of supercritical fluid extraction (SFE) fractionation of three oil fractions (1st, 2nd, 3rd fraction) on the fatty acid composition and antioxidant activity of oils from two cultivars of cantaloupe were investigated. Rock melon oil (RMO) and Golden Langkawi oil (GLO) were extracted using SFE and the major fatty acids for both cultivars were linoleic, oleic, palmitic, and stearic acid. The SFA decreased from 15.78 to 14.14% in RMO 1st fraction, and MUFA decreased from 18.30 to 16.56% in RMO 2nd fraction, while PUFA increased from 65.9 to 69.30% in RMO 3rd fraction. On the other hand SFA decreased from 16.35 to 13.91% in GLO 1{sup s}t fraction, and MUFA decreased from 17.50 to 15.57% in GLO 2nd fraction, while PUFA increased from 66.15 to 70.52% in GLO 3rd fraction. The different fractions of the two oils showed high antioxidant activity in reducing the oxidation of {beta}-carotene in beta-carotene bleaching assay (BCB) and the quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH). (Author) 41 refs.

  19. Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves

    Directory of Open Access Journals (Sweden)

    Toong Long Jeng

    2015-12-01

    Full Text Available Caffeoylquinic acid (CQA derivatives are known to possess antioxidative potential and have many beneficial effects on human health. The present study compared the CQA contents and antioxidant activities of aerial parts of sweet potato plants. The effects of drying methods (freeze drying, and drying at 30°C, 70°C, and 100°C on these two parameters of the first fully expanded leaves were also assessed. The results indicated that the CQA derivatives were detectable in leaves, stem, and flowers of sweet potato plants (varied from 39.34 mg/g dry weight to 154.05 mg/g dry weight, with the leaves (particularly expanding and first fully expanded leaves containing more CQA derivatives than other aerial plant parts. The expanding and first fully expanded leaves also exhibited greater antioxidant activities than other aerial plant parts, possibly due to their higher contents of CQA derivatives. Drying method significantly affected the content of CQA derivatives in dried sweet potato leaf tissues. Drying treatments at both 70°C and 100°C significantly reduced the CQA derivative content and antioxidant activity in the first fully expanded leaves. Among the tested drying methods, the freeze-drying method demonstrated the preservation of the highest amount of CQA derivatives (147.84 mg/g and antioxidant property. However, 30°C cool air drying was also a desirable choice (total CQA derivative content was reduced to only 129.52 mg/g, compared to 70°C and 100°C hot air drying, for commercial-scale processing of sweet potato leaves, if the higher operation cost of freeze drying was a major concern.

  20. Antioxidant effect of mono- and dihydroxyphenols in sunflower oil with different levels of naturally present tocopherols

    Science.gov (United States)

    Hrádková, Iveta; Merkl, Roman; Šmidrkal, Jan; Kyselka, Jan; Filip, Vladimír

    2013-01-01

    Antioxidant properties of mono- and dihydroxyphenolic acids and their alkyl esters were examined, with emphasis on the relationship between their molecular structure and antioxidant activity. Test media with different tocopherol level were used for determining the oxidative stability: original refined sunflower oil (total tocopherols 149.0 mg/kg), partially tocopherol-stripped sunflower oil (total tocopherols 8.7 mg/kg) and distilled fatty acid methyl esters (FAME) as a tocopherol-free medium. The chemical reaction of tocopherols with diazomethane tested for the purpose to eliminate their antioxidant activity failed due to the negligible degree of methylation of hydroxyl group in the tocopherol molecule. Caffeic acid and protocatechuic acid (3,4-dihydroxyphenolic acids) and their alkyl esters were found to be more active antioxidants than monohydroxyphenolic acid (p-hydroxybenzoic acid), 2,5-dihydroxyphenolic acid (gentisic acid), 3-methoxy-4-hydroxyphenolic acids (vanillic and ferulic acids) and their corresponding alkyl esters. Naturally present tocopherols in refined sunflower oil proved to have a synergistic effect on gentisic acid but not on its alkyl esters. In contrast, tocopherols showed an antagonistic effect on alkyl esters of caffeic acid, because their protection factors decreased with increasing level of tocopherols in the test medium. Moreover, the antioxidant activity of these alkyl esters decreased with increasing length of their alkyl chain in conformity with the polar paradox hypothesis. Practical applications: Tocopherols as naturally present antioxidants influence considerably the antioxidant activity of other antioxidants added to plant oils used as a test medium. Distilled fatty acid methyl esters prepared from refined sunflower oil may serve as an optimal tocopherol-free test medium. Some alkyl esters of phenolic acids were evaluated to be applicable as natural more lipophilic antioxidants in comparison with phenolic acids. PMID:23997655

  1. Comparison of bee products based on assays of antioxidant capacities

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-02-01

    Full Text Available Abstract Background Bee products (including propolis, royal jelly, and bee pollen are popular, traditional health foods. We compared antioxidant effects among water and ethanol extracts of Brazilian green propolis (WEP or EEP, its main constituents, water-soluble royal jelly (RJ, and an ethanol extract of bee pollen. Methods The hydrogen peroxide (H2O2-, superoxide anion (O2·--, and hydroxyl radical (HO·- scavenging capacities of bee products were measured using antioxidant capacity assays that employed the reactive oxygen species (ROS-sensitive probe 5-(and-6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA or aminophenyl fluorescein (APF. Results The rank order of antioxidant potencies was as follows: WEP > EEP > pollen, but neither RJ nor 10-hydroxy-2-decenoic acid (10-HDA had any effects. Concerning the main constituents of WEP, the rank order of antioxidant effects was: caffeic acid > artepillin C > drupanin, but neither baccharin nor coumaric acid had any effects. The scavenging effects of caffeic acid were as powerful as those of trolox, but stronger than those of N-acetyl cysteine (NAC or vitamin C. Conclusion On the basis of the present assays, propolis is the most powerful antioxidant of all the bee product examined, and its effect may be partly due to the various caffeic acids it contains. Pollen, too, exhibited strong antioxidant effects.

  2. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties.

    Science.gov (United States)

    Ghelichi, Sakhi; Shabanpour, Bahareh; Pourashouri, Parastoo; Hajfathalian, Mona; Jacobsen, Charlotte

    2018-03-01

    Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees of hydrolysis (DH). Gas chromatography of fatty acid methyl esters revealed that common carp roe oil contained high levels of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry indicated that enzymatic hydrolysis of defatted roe yielded higher content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited antioxidant activity both in vitro and in 5% roe oil-in-water emulsions and inhibited the growth of certain bacterial strains. Common carp roe could be a promising source of unsaturated fatty acids and functional bioactive agents. Unsaturated fatty acid-rich oil extracted from common carp roe can be delivered into food systems by roe oil-in-water emulsions fortified by functional, antioxidant, and antibacterial hydrolysates from the defatted roe. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. COMPARATIVE EFFICIENCY OF DIFFERENT ANTIOXIDANTS ON FAT STABILITY IN BROILER RATIONS: THIOBARBITURIC ACID VALUES

    OpenAIRE

    Ghulam Mustafa, Fawad Ahmad, Arfan Yousaf and Asad Ullah Hyder

    2002-01-01

    Thiobarbituric acid (TBA) value was significantly (P< 0.05) affected by storage period, fat levels and antioxidants but the interaction of these factors was non significant. TBA value increased with the increase in storage period, however, the increase was relatively less during first 14 days of storage then a significant increase in TBA was observed as the storage period prolonged. Rations containing 4% fat have greater TBA value than the rations containing 2 or 3% fat. There was also a sign...

  4. Potential of Lichen Compounds as Antidiabetic Agents with Antioxidative Properties: A Review

    Science.gov (United States)

    Karunaratne, Veranja

    2017-01-01

    The advancement in the knowledge of potent antioxidants has uncovered the way for greater insight in the treatment of diabetic complications. Lichens are a rich resource of novel bioactive compounds and their antioxidant potential is well documented. Herein we review the antidiabetic potential of lichens which have received considerable attention, in the recent past. We have correlated the antidiabetic and the antioxidant potential of lichen compounds. The study shows a good accordance between antioxidant and antidiabetic activity of lichens and points out the need to look into gathering the scarce and scattered data on biological activities for effective utilization. The review establishes that the lichen extracts, especially of Parmotrema sp. and Ramalina sp. have shown promising potential in both antidiabetic and antioxidant assays. Ubiquitous compounds, namely, zeorin, methylorsellinate, methyl-β-orcinol carboxylate, methyl haematommate, lecanoric acid, salazinic acid, sekikaic acid, usnic acid, gyrophoric acid, and lobaric acid have shown promising potential in both antidiabetic as well as antioxidant assays highlighting their potential for effective treatment of diabetic mellitus and its associated complications. The available compilation of this data provides the future perspectives and highlight the need for further studies of this potent herbal source to harvest more beneficial therapeutic antidiabetic drugs. PMID:28491237

  5. Content of Phenolic Compounds and Antioxidant Capacity in Fruits of Apricot Genotypes

    Directory of Open Access Journals (Sweden)

    Helena Skutkova

    2010-09-01

    Full Text Available Research on natural compounds is increasingly focused on their effects on human health. In this study, we were interested in the evaluation of nutritional value expressed as content of total phenolic compounds and antioxidant capacity of new apricot (Prunus armeniaca L. genotypes resistant against Plum pox virus (PPV cultivated on Department of Fruit Growing of Mendel University in Brno. Fruits of twenty one apricot genotypes were collected at the onset of consumption ripeness. Antioxidant capacities of the genotypes were determined spectrometrically using DPPH• (1,1-diphenyl-2-picryl-hydrazyl free radicals scavenging test, TEAC (Trolox Equivalent Antioxidant Capacity, and FRAP (Ferric Reducing Antioxidant Powermethods. The highest antioxidant capacities were determined in the genotypes LE-3228 and LE-2527, the lowest ones in the LE-985 and LE-994 genotypes. Moreover, close correlation (r = 0.964 was determined between the TEAC and DPPH assays. Based on the antioxidant capacity and total polyphenols content, a clump analysis dendrogram of the monitored apricot genotypes was constructed. In addition, we optimized high performance liquid chromatography coupled with tandem electrochemical and spectrometric detection and determined phenolic profile consisting of the following fifteen phenolic compounds: gallic acid, 4-aminobenzoic acid, chlorogenic acid, ferulic acid, caffeic acid, procatechin, salicylic acid, p-coumaric acid, the flavonols quercetin and quercitrin, the flavonol glycoside rutin, resveratrol, vanillin, and the isomers epicatechin, (–- and (+- catechin.

  6. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System

    Directory of Open Access Journals (Sweden)

    Seyed Fazel Nabavi

    2016-04-01

    Full Text Available Gallic acid (3,4,5-trihydroxybenzoic acid, GA is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG, possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate, in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD and catalase (Cat activity, thiobarbituric acid-reactive substances (TBARS and reduced glutathione (GSH levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress.

  7. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System.

    Science.gov (United States)

    Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-04-28

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress.

  8. Effects of polymannuronate on performance, antioxidant capacity, immune status, cecal microflora, and volatile fatty acids in broiler chickens.

    Science.gov (United States)

    Zhu, Wenhui; Li, Defa; Wang, Jianhong; Wu, Hui; Xia, Xuan; Bi, Wanghua; Guan, Huashi; Zhang, Liying

    2015-03-01

    The aim of this study was to assess the effects of purified polymannuronate (PM) obtained from marine brown algae on the performance, antioxidant capacity, immune status, and cecal fermentation profile of broiler chickens. In a 42 d experiment, 540 (average BW 43.77±1.29 g) 1-d-old Arbor Acres male broilers were randomly divided into 5 treatments with 6 replicates of 18 chicks and fed a corn and soybean meal (SBM)-based diet supplemented with 0, 1, 2, 3, or 4 g/kg polymannuronate. Adding polymannuronate to the broiler chickens' diets resulted in a significantly increased ADG and improved feed conversion compared with the control treatment. From d 1 to 42, the ADG of broilers fed 1, 2, 3, or 4 g/kg of polymannuronate was increased by 2.58, 4.33, 4.20, and 3.47%, respectively. Furthermore, parameters related to immune status, antioxidant capacity, and composition of the cecal microflora in broiler chickens fed the polymannuronate-containing diets were altered compared with broiler chickens fed a diet without polymannuronate. Supplementation with polymannuronate significantly increased the concentrations of lactic acid and acetic acid in the cecum compared with the control group. The results indicate that polymannuronate has the potential to improve broiler chicken immune status, antioxidant capacity, and performance. © 2015 Poultry Science Association Inc.

  9. Cooking methods employing natural anti-oxidant food additives effectively reduced concentration of nephrotoxic and carcinogenic aristolochic acids in contaminated food grains.

    Science.gov (United States)

    Li, Weiwei; Chan, Chi-Kong; Wong, Yee-Lam; Chan, K K Jason; Chan, Ho Wai; Chan, Wan

    2018-10-30

    Emerging evidence suggests that aristolochic acids (AA) produced naturally by a common weed Aristolochia clematitis in the cultivation fields is contaminating the food products in Balkan Peninsula and acting as the etiological agent in the development of Balkan endemic nephropathy. In this study, we investigated the combined use of natural anti-oxidative "food additives" and different cooking methods to find a solution for the widespread contamination of AA in food products. The results indicated that the addition of healthy dietary supplements (such as cysteine, glutathione, ascorbic acid, citric acid and magnesium) during cooking, is a highly efficient method in lowering the concentration of AA in the final food products. Because previous observation indicated one of the toxicological mechanisms by which AA exert its toxicity is to induce oxidative stress in internal organs, it is anticipated that these added anti-oxidants will also help to attenuate the nephrotoxicity of AA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Antioxidant activity of the microalga Spirulina maxima

    OpenAIRE

    Miranda M.S.; Cintra R.G.; Barros S.B.M.; Mancini-Filho J.

    1998-01-01

    Spirulina maxima, which is used as a food additive, is a microalga rich in protein and other essential nutrients. Spirulina contains phenolic acids, tocopherols and ß-carotene which are known to exhibit antioxidant properties. The aim of the present study was to evaluate the antioxidant capacity of a Spirulina extract. The antioxidant activity of a methanolic extract of Spirulina was determined in vitro and in vivo. The in vitro antioxidant capacity was tested on a brain homogenate incubated ...

  11. GALLIC ACID: A PHENOLIC ACID AND ITS ANTIOXIDANT ACTIVITY FROM STEM BARK OF CHLOROFORM EXTRACTS OF SYZYGIUM LITORALE (BLUME AMSHOFF (MYRTACEAE

    Directory of Open Access Journals (Sweden)

    Tukiran Tukiran

    2016-11-01

    Full Text Available A phenolic acid had been isolated from chloroform soluble fractions of a methanol extract of stem bark of Syzygium litorale, Fam. Myrtaceae. The structure of the isolated compound was elucidated and established as gallic acid through extensive spectroscopic studies (UV-Vis, FTIR, and NMR and by comparison with literature data and authentic sample. This is the first report of the isolation of compound from this plant, although it has previously been found in Myrtaceae family such as S. aromaticum, S. cumini, S. polyanthum, S. cordatum, etc. The chloroform fraction, isolated compound, and vitamin C showed very strong antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH with IC50 value of 23.2, 7.5, and 12.5 mg/mL, respectively.

  12. Electrochemical Behavior and Antioxidant and Prooxidant Activity of Natural Phenolics

    Directory of Open Access Journals (Sweden)

    Marija Todorović

    2007-10-01

    Full Text Available We have investigated the electrochemical oxidation of a number natural phenolics (salicylic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, protocatechuic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, caffeic acid, quercetin and rutin using cyclic voltammetry. The antioxidant properties of these compounds were also studied. A structural analysis of the tested phenolics suggests that multiple OH substitution and conjugation are important determinants of the free radical scavenging activity and electrochemical behavior. Compounds with low oxidation potentials (Epa lower than 0.45 showed antioxidant activity, whereas compounds with high Epa values (>0.45 act as prooxidants.

  13. Performance of Different Natural Antioxidant Compounds in Frying Oil

    Directory of Open Access Journals (Sweden)

    Buket Aydenız

    2016-01-01

    Full Text Available In this study, the natural green tea extract, purified lycopene, purified resveratrol and purified γ-oryzanol were added into peanut oil and their antioxidant performances were evaluated during frying. Moreover, the sensory properties of fried dough were evaluated to determine the consumption feasibility. All natural antioxidants led to significant increase in the stability of the oil samples. The ranges of measurements in the treatment groups were as follows: free acidity 0.1–2.9 g of oleic acid per 100 g of oil, conjugated dienes 0.01–0.40 g per 100 g of oil, total polar material 8.8–73.8 g per 100 g of oil, total phenolics 0.1–4.2 mg of gallic acid equivalents per 100 g of oil, and antioxidant capacity 0.5–11.0 mM of Trolox equivalents per 100 g of oil. The fatty acid and sterol compositions indicated that antioxidant supplementation could slow the oxidative degradation of unsaturated fatty acids and reduce trans-acid formation. Frying oil enriched with purified γ-oryzanol had higher sterol levels than the other enriched oil samples. The obtained quality of oil protection was in descending order: purified γ-oryzanol, green tea extract and purified lycopene.

  14. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps.

    Science.gov (United States)

    Hassimotto, Neuza Mariko Aymoto; Genovese, Maria Inés; Lajolo, Franco Maria

    2005-04-20

    Fruits, vegetables, and commercial frozen pulps (FP) consumed in the Brazilian diet were analyzed for antioxidant activities using two different methods, one that determines the inhibition of copper-induced peroxidation of liposome and another based on the inhibition of the co-oxidation of linoleic acid and beta-carotene. The anthocyanin-rich samples showed the highest, concentration-dependent, antioxidant activities in both systems. In the liposome system, at both 10 and 50 microM gallic acid equivalent (GAE) addition levels, the neutral and acidic flavonoids of red cabbage, red lettuce, black bean, mulberry, Gala apple peel, jambolao, acai FP, mulberry FP, and the acidic flavonoids of acerola FP showed the highest antioxidant activities (>85% inhibition). In the beta-carotene bleaching system, the samples cited above plus red guava gave inhibition values >70%. On the other hand, some samples showed pro-oxidant activity in the liposome system coincident with a low antioxidant activity in the beta-carotene system. There was no relationship between total phenolics content, vitamin C, and antioxidant activity, suggesting that the antioxidant activity is a result of a combination of different compounds having synergic and antagonistic effects.

  15. Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves.

    Science.gov (United States)

    Jeng, Toong Long; Lai, Chia Chi; Liao, Ting Chen; Lin, Su Yue; Sung, Jih Min

    2015-12-01

    Caffeoylquinic acid (CQA) derivatives are known to possess antioxidative potential and have many beneficial effects on human health. The present study compared the CQA contents and antioxidant activities of aerial parts of sweet potato plants. The effects of drying methods (freeze drying, and drying at 30°C, 70°C, and 100°C) on these two parameters of the first fully expanded leaves were also assessed. The results indicated that the CQA derivatives were detectable in leaves, stem, and flowers of sweet potato plants (varied from 39.34 mg/g dry weight to 154.05 mg/g dry weight), with the leaves (particularly expanding and first fully expanded leaves) containing more CQA derivatives than other aerial plant parts. The expanding and first fully expanded leaves also exhibited greater antioxidant activities than other aerial plant parts, possibly due to their higher contents of CQA derivatives. Drying method significantly affected the content of CQA derivatives in dried sweet potato leaf tissues. Drying treatments at both 70°C and 100°C significantly reduced the CQA derivative content and antioxidant activity in the first fully expanded leaves. Among the tested drying methods, the freeze-drying method demonstrated the preservation of the highest amount of CQA derivatives (147.84 mg/g) and antioxidant property. However, 30°C cool air drying was also a desirable choice (total CQA derivative content was reduced to only 129.52 mg/g), compared to 70°C and 100°C hot air drying, for commercial-scale processing of sweet potato leaves, if the higher operation cost of freeze drying was a major concern. Copyright © 2014. Published by Elsevier B.V.

  16. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

    Science.gov (United States)

    Betbeder, Didier; Lipka, Emmanuelle; Howsam, Mike; Carpentier, Rodolphe

    2015-01-01

    Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity. PMID

  17. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice.

    Science.gov (United States)

    Shao, Yafang; Hu, Zhanqiang; Yu, Yonghong; Mou, Renxiang; Zhu, Zhiwei; Beta, Trust

    2018-01-15

    Soluble-free, soluble-conjugated, insoluble-bound phenolics and antioxidant activity, flavonoid (TFC), proanthocyanidins (TPAC), anthocyanins and minerals of fifteen whole rice grains with different colors were investigated. Soluble-free protocatechuic and vanillic acids were only quantified in black rice, which had the most quantities. Non-pigmented rice had no detectable conjugated protocatechuic and 2,5-dihydroxybenzoic acids both of which were found in black and red rice, respectively. The main bound phenolic acids were ferulic and p-coumaric, as well as 2,5-dihydroxybenzoic in red rice and protocatechuic and vanillic acids in black rice. Soluble-conjugated phenolics, TFC, and anthocyanins were negatively correlated with L ∗ , b ∗ , C and H° values. TPAC was positively correlated with a ∗ (Pblack rice groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore.

    NARCIS (Netherlands)

    Rezk, BM; Haenen, GR; Vijgh, van der W.J.F.

    2003-01-01

    The presumed protective effect of folic acid on the pathogenesis of cardiovascular, hematological and neurological diseases and cancer has been associated with the antioxidant activity of folic acid. Peroxynitrite (PON) scavenging activity and inhibition of lipid peroxidation (LPO) of the

  19. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-04-01

    Full Text Available Phenolic and flavonoid compounds are secondary metabolites of plants which possess various activities such as anti-inflammatory, analgesic, anti-diabetes and anticancer effects. It has been established that these compounds can scavenge free radicals produced in the body. Because of this ability, not only the plants containing phenolic and flavonoid compounds but also, the pure compounds are used in medicinal products for prevention and treatment of many disorders. Considering that the golden aim of the pharmaceutical industries is using the most effective compounds with lower concentrations, determination of the best combination of the compounds with synergistic effects is important. In the present study, synergistic antioxidant effects of four phenolic compounds including caffeic acid, gallic acid, rosmarinic acid, chlorogenic acid and two flavonoids,  rutin and quercetin, have been investigated by FRAP (Ferric Reducing Antioxidant Power method. The synergistic effect was assessed by comparing the experimental antioxidant activity of the mixtures with calculated theoretical values and the interactions of the compounds were determined. The results showed that combination of gallic acid and caffeic acid demonstrated considerable synergistic effects (137.8% while other combinations were less potent. Among examined substances, rutin was the only one which had no effect on the other compounds. The results of ternary combinations of compounds demonstrated antagonistic effects in some cases. This was more considerable in mixture of rutin, caffeic acid, rosmarinic acid (-21.8%, chlorogenic acid, caffeic acid, rosmarinic acid (-20%, rutin, rosmarinic acid, gallic acid (-18.5% and rutin, chlorogenic acid, caffeic acid (-15.8%, while, combination of quercetin, gallic acid, caffeic acid (59.4% and quercetin, gallic acid, rutin (55.2% showed the most synergistic effects. It was concluded that binary and ternary combination of quercetin, rutin, caffeic acid

  20. Total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut mango (Mangifera indica L., cv. Tommy Atkin) as affected by infrared heat treatment.

    Science.gov (United States)

    Sogi, D S; Siddiq, M; Roidoung, S; Dolan, K D

    2012-11-01

    Mango (Mangifera indica L.) is a major tropical fruit that has not been exploited for fresh-cut or minimally processed products on a scale similar to apples, pineapples, or melons. The objective of this study was to investigate the effect of infrared (IR) treatment on total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut cubes from 'Tommy Atkin' mangoes. Mango cubes were IR treated (5, 10, 15 min) and evaluated at 4-d intervals during 16-d storage at 4 ± 1 °C. Total phenolics, carotenoids, and ascorbic acid content in fresh-cut control mango cubes were 43.33, 1.37, and 15.97 mg/100 g FW, respectively. IR treatments increased total phenolics (59.23 to 71.16 mg/100 g FW) and decreased ascorbic acid (12.14 to 15.38 mg/100 g, FW). Total carotenoids showed a mixed trend (1.13 to 1.66 mg/100 g, FW). The IR treatment showed a significant positive impact on antioxidant properties (μM TE/100 g, FW) of mango cubes, as assayed by ABTS (261.5 compared with 338.0 to 416.4), DPPH (270.5 compared with 289.4 to 360.5), and ORAC (6686 compared with 8450 to 12230). Total phenolics, carotenoids, ascorbic acid, and antioxidant capacity decreased over 16-d storage. However, IR treated samples had consistently higher ABTS, DPPH, and total phenolics during storage. It was demonstrated that IR treatment can be effectively used in improving antioxidant properties of fresh-cut mangoes with minimal effect on the visual appearance. Various methods/treatments are in use for extending the quality of fresh-cut fruits, including mild heat treatment. This study explored the application of infrared (IR) heat for processing fresh-cut mango cubes and evaluated its effect on vitamin C and antioxidant capacity during 16-d storage. This is the first study reporting on the use of IR heat in fresh-cut fruits. IR treatment was shown to be effective in retaining antioxidant properties of fresh-cut mango cubes with minimal effect on the visual appearance. © 2012 Institute

  1. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans.

    Science.gov (United States)

    Liang, Ningjian; Lu, Xiaonan; Hu, Yaxi; Kitts, David D

    2016-01-27

    The chlorogenic acid isomer profile and antioxidant activity of both green and roasted coffee beans are reported herein using ATR-FTIR spectroscopy combined with chemometric analyses. High-performance liquid chromatography (HPLC) quantified different chlorogenic acid isomer contents for reference, whereas ORAC, ABTS, and DPPH were used to determine the antioxidant activity of the same coffee bean extracts. FTIR spectral data and reference data of 42 coffee bean samples were processed to build optimized PLSR models, and 18 samples were used for external validation of constructed PLSR models. In total, six PLSR models were constructed for six chlorogenic acid isomers to predict content, with three PLSR models constructed to forecast the free radical scavenging activities, obtained using different chemical assays. In conclusion, FTIR spectroscopy, coupled with PLSR, serves as a reliable, nondestructive, and rapid analytical method to quantify chlorogenic acids and to assess different free radical-scavenging capacities in coffee beans.

  2. Quantitative HPLC Analysis of Rosmarinic Acid in Extracts of "Melissa officinalis" and Spectrophotometric Measurement of Their Antioxidant Activities

    Science.gov (United States)

    Canelas, Vera; da Costa, Cristina Teixeira

    2007-01-01

    The students prepare tea samples using different quantities of lemon balm leaves ("Melissa officinalis") and measure the rosmarinic acid contents by an HPLC-DAD method. The antioxidant properties of the tea samples are evaluated by a spectrophotometric method using a radical-scavenging assay with DPPH. (2,2-diphenyl-1-picrylhydrazyl). Finally the…

  3. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kume, Toshiaki; Izumi, Yasuhiko [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Simoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Park, Si-Bum [Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Hirata, Takashi [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Rehabilitation, Shijonawategakuen University, 5-11-10, Hojo, Daitou-shi, Osaka 574-0011 (Japan); Sugawara, Tatsuya, E-mail: sugawara@kais.kyoto-u.ac.jp [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  4. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    International Nuclear Information System (INIS)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-01-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  5. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats

    DEFF Research Database (Denmark)

    Jimenez-Escrig, A.; Dragsted, Lars Ove; Daneshvar, Bahram

    2003-01-01

    Artichoke (Cynara scolymus L.), an edible vegetable from the Mediterranean area, is a good source of natural antioxidants such as vitamin C, hydroxycinnamic acids, and flavones. The antioxidant activity of aqueous-organic extracts of artichoke were determined using three methods: (a) free radical 2...

  6. Seasonal Variations of the Antioxidant Composition in Ground Bamboo Sasa argenteastriatus Leaves

    Directory of Open Access Journals (Sweden)

    Youzuo Zhang

    2012-02-01

    Full Text Available Sasa argenteastriatus, with abundant active compounds and high antioxidant activity in leaves, is a new leafy bamboo grove suitable for exploitation. To utilize it more effectively and scientifically, we investigate the seasonal variations of antioxidant composition in its leaves and antioxidant activity. The leaves of Sasa argenteastriatus were collected on the 5th day of each month in three same-sized sample plots from May 2009 to May 2011. The total flavonoids (TF: phenolics (TP and triterpenoid (TT of bamboo leaves were extracted and the contents analyzed by UV-spectrophotometer. Our data showed that all exhibited variations with the changing seasons, with the highest levels appearing in November to March. Antioxidant activity was measured using DPPH and FRAP methods. The highest antioxidant activity appeared in December with the lowest in May. Correlation analyses demonstrated that TP and TF exhibited high correlation with bamboo antioxidant activity. Eight bamboo characteristic compounds (orientin, isoorientin, vitexin, homovitexin and p-coumaric acid, chlorogenic acid, caffeic acid, ferulic acid were determined by RP-HPLC synchronously. We found that chlorogenic acid, isoorientin and vitexin are the main compounds in Sasa argenteastriatus leaves and the content of isovitexin and chlorogenic acid showed a similar seasonal variation with the TF, TP and TT. Our results suggested that the optimum season for harvesting Sasa argenteastriatus leaves is between autumn and winter.

  7. Structure and Antioxidant Activity of Polyphenols Derived from Propolis

    Directory of Open Access Journals (Sweden)

    Anna Kurek-Górecka

    2013-12-01

    Full Text Available Propolis is a potential source of natural antioxidants such as phenolic acids and flavonoids. Its wide biological effects have been known and used since antiquity. In the modern world natural substances are sought which would be able to counteract the effects of antioxidative stress, which underlies many diseases, such as cancer, diabetes and atherosclerosis. This paper aims to present the antioxidative activity of phenolic acids and flavonoids present in Polish propolis and the relationship between their chemical structure and antioxidative activity influencing its medicinal properties. Data concerning the biological activity of propolis are summarized here, including its antibacterial, anti-inflammatory, anticarcinogenic, antiatherogenic, estrogenic effects, as well as AIDS- counteracting and reparative-regenerative function.

  8. Improvement of Chia Seeds with Antioxidant Activity, GABA, Essential Amino Acids, and Dietary Fiber by Controlled Germination Bioprocess.

    Science.gov (United States)

    Gómez-Favela, Mario Armando; Gutiérrez-Dorado, Roberto; Cuevas-Rodríguez, Edith Oliva; Canizalez-Román, Vicente Adrián; Del Rosario León-Sicairos, Claudia; Milán-Carrillo, Jorge; Reyes-Moreno, Cuauhtémoc

    2017-12-01

    Chia (Salvia hispanica L.) plant is native from southern Mexico and northern Guatemala. Their seeds are a rich source of bioactive compounds which protect consumers against chronic diseases. Germination improves functionality of the seeds due to the increase in the bioactive compounds and associated antioxidant activity. The purpose of this study was to obtain functional flour from germinated chia seeds under optimized conditions with increased antioxidant activity, phenolic compounds, GABA, essential amino acids, and dietary fiber with respect to un-germinated chia seeds. The effect of germination temperature and time (GT = 20-35 °C, Gt = 10-300 h) on protein, lipid, and total phenolic contents (PC, LC, TPC, respectively), and antioxidant activity (AoxA) was analyzed by response surface methodology as optimization tool. Chia seeds were germinated inside plastic trays with absorbent paper moisturized with 50 mL of 100 ppm sodium hypochlorite dissolution. The sprouts were dried (50 °C/8 h) and ground to obtain germinated chia flours (GCF). The prediction models developed for PC, LC, TPC, and AoxA showed high coefficients of determination, demonstrating their adequacy to explain the variations in experimental data. The highest values of PC, LC, TPC, and AoxA were obtained at two different optimal conditions (GT = 21 °C/Gt = 157 h; GT = 33 °C/Gt = 126 h). Optimized germinated chia flours (OGCF) had higher PC, TPC, AoxA, GABA, essential amino acids, calculated protein efficiency ratio (C-PER), and total dietary fiber (TDF) than un-germinated chia seed flour. The OGCF could be utilized as a natural source of proteins, dietary fiber, GABA, and antioxidants in the development of new functional beverages and foods.

  9. Purification and Characterization of Antioxidant Peptide from Sunflower Protein Hydrolysate

    Directory of Open Access Journals (Sweden)

    Xi-Qun Zheng

    2010-01-01

    Full Text Available Sunflower proteins were hydrolyzed with Flavourzyme for the production of antioxidant peptide. DEAE-Sepharose Fast Flow, Sephadex G-25 gel filtration chromatography and reversed-phase HPLC were consecutively employed to purify a novel sunflower antioxidant peptide, and the ability to inhibit the autoxidation of pyrogallol was expressed as the antioxidative activity of the peptide. The amino acid sequence was identified as Ala-Cys-Ala-His-Asp-Lys-Val by a Q-Tof2 mass spectrometer. This novel peptide exhibited a high antioxidative activity of 79.42 U/mL, which is expected to protect against oxidative damage in living systems in relation to aging and carcinogenesis. Higher antioxidative activities were presumed mainly due to the presence of hydrophobic amino acids in its sequence.

  10. Nira acidity and antioxidant activity of Palm sugar in Sumowono Village

    Science.gov (United States)

    Winarni, Sri; Arifan, Fahmi; Wisnu Broto, RTD.; Fuadi, Ariza; Alviche, Lola

    2018-05-01

    The palm sugar not only has potential as natural sweetener but also has antioxidant. The purpose of this study was to analyze antioxidant and pH of the nira in palm sugar. The sample in this study was palm sugar from 6 different production sites. Test of antioxidant activity used DPPH method (1.1-diphenyl-2-picrylhydrazyl) with a wavelength of 517 nm. The value of absorbance solution was measured using spectrophotometry and the value of effective concentration (IC50) was counted. The pH test was measured using a pH meter. Pearson’s correlation test revealed r=-0.045 with significant value 0.932 (>0.005). There was no correlation between pH value and antioxidant activity of palm sugar. IC50 value of palm sugar in Sumowono village revealed that it had a strong antioxidant activity (50 μg/ml - 100 μg/ml) that is 74,73 μg/ml 83.94 μg/ml 82.31 μg/ml 83.94 μg/ml 86.10 μg/ml 82.13 μg/ml 89.17 μg/ml 89.71 μg/ml 89.17 μg/ml and 84.84 μg/ml). Lower IC50 values indicate higher antioxidant activity. Palm sugar with the best antioxidant activity came from the production sites which had IC50 values of 74.73 μg/ml. Potential antioxidants can be optimized by making improvements to the processing system.

  11. Bioactive phytochemicals and antioxidant activity in fresh and dried lychee fractions1

    Directory of Open Access Journals (Sweden)

    Estela de Rezende Queiroz

    Full Text Available Fruit of the lychee cv. Bengal are approximately 50% peel and seeds, which are discarded. These by-products have antioxidant compounds which are capable of blocking the harmful effects of free radicals in the body. Bioactive compounds (ascorbic acid, beta-carotene, lycopene and phenols and antioxidant activity were evaluated in different extracts, both fresh and dried at 45 °C, of the skin, pulp and seeds of the lychee, which were subjected to principal component analysis to clarify which of the compounds are responsible for this activity. Principal component analysis explained 82.90% of the variance of the antioxidant profile of the lychee. The peel displayed higher levels of phenols, ascorbic acid, beta-carotene and antioxidant activity, while the seeds stood out due to their levels of lycopene. With drying, there was a decrease in the levels of ascorbic acid and beta-carotene and in antioxidant activity, with an increase in the levels of phenols and lycopene. The antioxidant activity found in the peel and seeds of the lychee is high, and is mainly due to ascorbic acid and beta-carotene, as demonstrated by principal component analysis, allowing the use of these fractions as sources of natural antioxidants.

  12. Antioxidant status in acute asthmatic attack in children

    International Nuclear Information System (INIS)

    Al-Abdulla, N.O.; Al-Naama, L.M.; Hassan, M.K.

    2010-01-01

    Objectives: To determine the oxidant - antioxidant imbalance in asthmatic children, by measuring the levels of malondialdehyde (MDA) as an oxidant marker of lipid peroxidation as well as antioxidant compounds like vitamin C, vitamin E and uric acid and to investigate whether their concentrations are associated with more severe asthma. Methods: This case controlled prospective study was conducted on 219 children aged 1-12 years, attending Basra Maternity and Children Hospital. Included were 98 asthmatic children during acute attack and 121 non asthmatic, apparently healthy children. Serum malondialdehyde (MDA) as an oxidant marker of lipid peroxidation, and vitamin C, vitamin E and uric acid (as antioxidants) were estimated in asthmatic children during acute attack and compared with non-asthmatic children. Results: Asthmatic children during exacerbation of their asthma have significant lower serum levels of antioxidant compounds like vitamin C, vitamin E and uric acid (p<0.001) and significantly high malondialdehyde as compared with the controls. MDA was significantly elevated (P< 0.001), while that of vitamin C, vitamin E and uric acid were significantly decreased with increasing severity of asthmatic attack (P<0.001). A significant negative correlation between MDA with vitamin C (P<0.05, r = - 0.44) was observed in severe asthmatic attacks. Conclusion: Asthmatic patients during acute attack suffer a high degree of reactive oxygen species formation causing considerable oxidative stress that is indicated by the high level of oxidants (MDA) and low level of antioxidants. (author)

  13. Evaluation of antioxidant potential of citrus peel extracts

    International Nuclear Information System (INIS)

    Chatha, S.A.S.; Hussain, A.I.; Asi, M.R.

    2011-01-01

    The antioxidant potential of different solvent extracts of three different locally grown citrus varieties; grape fruit, lemon and mussambi, was assessed using some antioxidant assays like estimation of total phenolic contents (TPC), total flavonoids contents (TFC), percentage inhibition of linoleic acid oxidation and DPPH free radical scavenging capacity. The yield of extracts was found in the range of 17.92-30.8%. TPC, TFC, percent inhibition of linoleic acid oxidation and DPPH radical scavenging capacity of different citrus peel extracts were found in range of 2.72 - 3.77 g/100g as Gallic Acid Equivalent (GAE), 2.20-2.98 g/100g as Catechine Equivalent (CE), 68.20 - 91.78% and 19.53 - 41.88 mg/mL, respectively. Statistical analysis showed significant (p < 0.05) variations in the yield and antioxidant potentials of the extracts with respect to different species and solvent systems. From the results it is reasonable to say that methanolic extracts of citrus peels have exhibited varying degree of antioxidant potentials. (author)

  14. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  15. Antiradical and antioxidant activities of new bio-antioxidants.

    Science.gov (United States)

    Kancheva, V D; Saso, L; Angelova, S E; Foti, M C; Slavova-Kasakova, A; Daquino, C; Enchev, V; Firuzi, O; Nechev, J

    2012-02-01

    Antioxidants could be promising agents for management of oxidative stress-related diseases. New biologically active compounds, belonging to a rare class of natural lignans with antiangiogenic, antitumoral and DNA intercalating properties, have been recently synthesized. These compounds are benzo[kl]xanthene lignans (1,2) and dihydrobenzofuran neolignans (3,4). The radical scavenging and chain-breaking antioxidant activities of compounds 1-4 were studied by applying different methods: radical scavenging activity by DPPH rapid test, chain-breaking antioxidant activity and quantum chemical calculations. All studied compounds were found to be active as DPPH scavengers but reaction time with DPPH and compounds' concentrations influenced deeply the evaluation. The highest values of radical scavenging activity (%RSAmax) and largest rate constants for reaction with DPPH were obtained for compounds 2 and 3. Comparison of %RSAmax with that of standard antioxidants DL-α-tocopherol (TOH), caffeic acid (CA) and butylated hydroxyl toluene (BHT) give the following new order of %RSA max: TOH (61.1%) > CA (58.6%) > 3 (36.3%) > 2 (28.1%) > 4 (6.7%) > 1 (3.6%) = BHT (3.6%). Chain-breaking antioxidant activities of individual compounds (0.1-1.0 mM) and of their equimolar binary mixtures (0.1 mM) with TOH were determined from the kinetic curves of lipid autoxidation at 80 °C. On the basis of a comparable kinetic analysis with standard antioxidants a new order of the antioxidant efficiency (i.e., protection factor, PF) of compounds 1-4 were obtained: 2 (7.2) ≥ TOH (7.0) ≥ CA (6.7) > 1 (3.1) > 3 (2.2) > ferulic acid FA (1.5) > 4 (0.6); and of the antioxidant reactivity (i.e. inhibition degree, ID): 2 (44.0) > TOH (18.7) > CA (9.3) > 1 (8.4) > 3 (2.8) > FA (1.0) > 4 (0.9). The important role of the catecholic structure in these compounds, which is responsible for the high chain-breaking antioxidant activity, is discussed and a reaction

  16. Sugar cane stillage: a potential source of natural antioxidants.

    Science.gov (United States)

    Caderby, Emma; Baumberger, Stéphanie; Hoareau, William; Fargues, Claire; Decloux, Martine; Maillard, Marie-Noëlle

    2013-11-27

    Biorefinery of sugar cane is the first economic activity of Reunion Island. Some sugar cane manufactured products (juice, syrup, molasses) have antioxidant activities and are sources of both phenolic compounds and Maillard Reaction Products (MRP). The study aimed to highlight the global antioxidant activity of sugar cane stillage and understand its identity. Chromatographic fractionation on Sephadex LH-20 resin allowed the recovery of a MRP-rich fraction, responsible for 58 to 66% of the global antioxidant activity according to the nature of the sugar cane stillage (DPPH test), and a phenolic compounds-rich fraction for 37 to 59% of the activity. A good correlation was recorded between the antioxidant activity of the sugar cane stillage and its content in total reducing compounds amount (Folin-Ciocalteu assay), among them 2.8 to 3.9 g/L of phenolic compounds (in 5-caffeoylquinic acid equivalent). Preliminary experiments by HPLC-DAD-MS allowed to identify several free phenolic acids and gave clues to identify esters of quinic acids.

  17. Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities.

    Science.gov (United States)

    Zhang, Bing; Deng, Zeyuan; Tang, Yao; Chen, Peter; Liu, Ronghua; Ramdath, D Dan; Liu, Qiang; Hernandez, Marta; Tsao, Rong

    2014-10-15

    Understanding the profile of lipophilic phytochemicals in lentils is necessary to better understand the health benefits of lentils. The fatty acid, carotenoid and tocopherol compositions and antioxidant activities of the lipophilic extracts of 20 lentil cultivars (10 red and 10 green) were therefore examined. Lentils contained 1.52-2.95% lipids, of which 77.5-81.7% were unsaturated essential fatty acids. Total tocopherols ranged from 37 to 64μg/g DW, predominantly γ-tocopherol (96-98% of the tocopherol content), followed by δ- and α-tocopherol. trans-Lutein was the primary and major carotenoid (64-78%) followed by trans-zeaxanthin (5-13%). Carotenoids and tocopherols showed weak correlation with 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity (r=0.4893 and 0.3259, respectively), but good correlation when combined (r=0.6688), suggesting they may act synergistically. Carotenoids were found to contribute the most to the strong antioxidant activity measured by photochemiluminescence (PCL) assay. Results from this study contribute to the development of lentil cultivars and related functional foods with increased health benefits. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  18. Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity.

    Science.gov (United States)

    Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-05-01

    Poly(lactic acid) (PLA) nanoparticles containing vanillin were prepared using an emulsion-solvent evaporation technique and were characterized and assessed for their in vitro antioxidant potential. Physicochemical properties of the nanoparticles were characterized by size, polydispersity index, zeta potential, encapsulation efficiency and stability. Solid state and thermal properties were assessed using X-ray diffraction and differential scanning calorimetry, while in vitro drug release profile was also evaluated. Results showed PLA nanoparticles having a characteristic amorphous structure, sizes in the range of 240 nm with high homogeneity in size distribution, zeta potential of -22 mV and vanillin encapsulation efficiency of 41%. In vitro release study showed a slow and sustained release of vanillin governed by diffusion. Nanoparticles were stable over a period of three months. Antioxidant ability of the vanillin-loaded PLA nanoparticles in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was inferior to free vanillin and due to its prolonged release showed a profile that was both time and concentration dependent, while free vanillin showed concentration-dependent activity. The study concluded that PLA nanoparticles are potential carriers for vanillin delivery. Copyright © 2016. Published by Elsevier B.V.

  19. The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats.

    Science.gov (United States)

    Ince, Sinan; Kucukkurt, Ismail; Cigerci, Ibrahim Hakki; Fatih Fidan, A; Eryavuz, Abdullah

    2010-07-01

    The aims of this study were to clarify the effects of high dietary supplementation with boric acid and borax, called boron (B) compounds, on lipid peroxidation (LPO), antioxidant activity, some vitamin levels, and DNA damage in rats. Thirty Sprague Dawley male rats were divided into three equal groups: the animals in the first group (control) were fed with a standard rodent diet containing 6.4 mg B/kg, and the animals in the experimental group were fed with a standard rodent diet added with a supra-nutritional amount of boric acid and borax (100 mg B/kg) throughout the experimental period of 28 days. The B compounds decreased malondialdehyde (MDA), DNA damage, the protein carbonyl content (PCO) level in blood, and glutathione (GSH) concentration in the liver, Cu-Zn superoxide dismutase (SOD), and catalase (CAT) activity in the kidney. The B compounds increased GSH concentration in blood and the vitamin C level in plasma. Consequently, our results demonstrate that B supplementation (100 mg/kg) in diet decreases LPO, and enhances the antioxidant defense mechanism and vitamin status. There are no differences in oxidant/antioxidant balance and biochemical parameters except for serum vitamin A and liver GSH concentration, between the boron compounds used in this study. Crown Copyright 2010. Published by Elsevier GmbH. All rights reserved.

  20. Polyphenolic content and antioxidant activity of some wild Saudi Arabian Asteraceae plants.

    Science.gov (United States)

    Shahat, Abdelaaty A; Ibrahim, Abeer Y; Elsaid, Mansour S

    2014-07-01

    To study the antioxidant properties of crude extract of different Asteraceae plants. The antioxidant properties of six extracts were evaluated using different antioxidant tests, including free radical scavenging, reducing power, metal chelation, superoxide anion radical scavenging, total antioxidant capacity and inhibition of lipid peroxidation activities. Picris cyanocarpa (P. cyanocarpa) and Anthemis deserti (A. deserti) had powerful antioxidant properties as radical scavenger, reducing agent and superoxide anion radical scavenger while Achillia fragrantissima (A. fragrantissima) and Artemissia monosperma (A. monosperma) were the most efficient as ion chelator (100% at 100, 200 and 400 μg/mL) A. fragrantissima and Rhantarium appoposum (R. appoposum) showed 100% inhibition on peroxidation of linoleic acid emulsion at 200 and 400 μg/mL, while butylatedhydroxy toluene and ascorbic acid showed 100 and 95% inhibition percentage at 400 μg/mL, respectively. Those various antioxidant activities were compared to standard antioxidants such as butylated hydroxyl toluene and ascorbic acid. In most tests P. cyanocarpa and A. deserti had powerful antioxidant properties as radical scavenger, reducing agent and superoxide anion radical scavenger. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  1. Gastroprotective Effect of Ginger Rhizome (Zingiber officinale Extract: Role of Gallic Acid and Cinnamic Acid in H+, K+-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism

    Directory of Open Access Journals (Sweden)

    Siddaraju M. Nanjundaiah

    2011-01-01

    Full Text Available Zinger officinale has been used as a traditional source against gastric disturbances from time immemorial. The ulcer-preventive properties of aqueous extract of ginger rhizome (GRAE belonging to the family Zingiberaceae is reported in the present study. GRAE at 200 mg kg−1 b.w. protected up to 86% and 77% for the swim stress-/ethanol stress-induced ulcers with an ulcer index (UI of 50 ± 4.0/46 ± 4.0, respectively, similar to that of lansoprazole (80% at 30 mg kg−1 b.w. Increased H+, K+-ATPase activity and thiobarbituric acid reactive substances (TBARS were observed in ulcer-induced rats, while GRAE fed rats showed normalized levels and GRAE also normalized depleted/amplified anti-oxidant enzymes in swim stress and ethanol stress-induced animals. Gastric mucin damage was recovered up to 77% and 74% in swim stress and ethanol stress, respectively after GRAE treatment. GRAE also inhibited the growth of H. pylori with MIC of 300 ± 38 μg and also possessed reducing power, free radical scavenging ability with an IC50 of 6.8 ± 0.4 μg mL−1 gallic acid equivalent (GAE. DNA protection up to 90% at 0.4 μg was also observed. Toxicity studies indicated no lethal effects in rats fed up to 5 g kg−1 b.w. Compositional analysis favored by determination of the efficacy of individual phenolic acids towards their potential ulcer-preventive ability revealed that between cinnamic (50% and gallic (46% phenolic acids, cinnamic acid appear to contribute to better H+, K+-ATPase and Helicobacter pylori inhibitory activity, while gallic acid contributes significantly to anti-oxidant activity.

  2. The prooxidant-antioxidant homeostasis in Guinea pigs after exposure to fractionated low-low X-radiation and correction of its disturbances with antioxidant complex treatment

    International Nuclear Information System (INIS)

    Baraboj, V.A.; Olejnik, S.A.; Blyum, I.A.; Khmelevskij, Yu.V.

    1994-01-01

    The state of prooxidant-antioxidant homeostasis in Guinea pigs exposed to whole-body fractionated X-irradiation (5 fractions of 0.2 Gy at a 24 hr interval, up to total dose of 1.0 Gy, at a dose rate of 0.425 R/min) and a possibility of its disturbance correction with the complex of vitamins C, E and P was studied. Accumulation of primary and secondary lipid peroxidation products, decrease of the ascorbic acid content, increase of the content of its oxidized forms (dehydroascorbic acid and diketogulonic acid) in radiosensitive and radioresistant organs were found. Antioxidant complex administration reduced the disturbances of prooxidant-antioxidant homeostasis, but did not provide complete normalization

  3. Antioxidant properties and efficacies of synthesized alkyl caffeates, ferulates, and coumarates

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Durand, Erwann; Laguerre, Mickaël

    2014-01-01

    Caffeic, ferulic, and coumaric acids were lipophilized with saturated fatty alcohols (C1-C20). The antioxidant properties of these hydroxycinnamic acids and their alkyl esters were evaluated in various assays. Furthermore, the antioxidant efficiency of the compounds was evaluated in a simple o/w ...

  4. Effect of consumption of tomato juice enriched with n-3 polyunsaturated fatty acids on the lipid profile, antioxidant biomarker status, and cardiovascular disease risk in healthy women.

    Science.gov (United States)

    García-Alonso, F J; Jorge-Vidal, V; Ros, G; Periago, M J

    2012-06-01

    We compared the effects of consumption of n-3 polyunsaturated fatty acids (PUFA)-enriched tomato juice versus plain tomato juice on the serum lipid profile and levels of biomarkers related to antioxidant status and cardiovascular disease (CVD) risk in women. Eighteen healthy women participated in a 2-week intervention trial involving the daily intake of 500 mL of n-3 PUFA-enriched juice (n = 11) or plain tomato juice (n = 7). Each serving of enriched juice provided 250 mg of eicosapentaenoic acid (EPA) plus docosahexanoic acid (DHA). Both juices provided natural antioxidant compounds such as phenolics (181 mg) and lycopene (26.5 mg). Intervention with the enriched juice had no effect on the lipid profile, and serum levels of triglycerides and cholesterol (total, LDL, and HDL) remained unchanged. The serum antioxidant status improved following juice intake, as revealed by an increase in total antioxidant capacity and a slight decrease in lipid peroxidation. The serum levels of homocysteine, a cardiovascular risk factor, decreased following n-3 PUFA-enriched juice consumption. A decrease in vascular adhesion molecule 1 (VCAM-1) levels was also noted after intake of either plain or enriched tomato juice, whereas intercellular adhesion molecule 1 (ICAM-1) levels only decreased following intake of the enriched juice. Overall, stronger positive amelioration of CVD risk factors was observed following the intake of n-3 PUFA-enriched juice than after plain tomato juice consumption, which suggested a possible synergistic action between n-3 PUFAs and tomato antioxidants.

  5. Phytochemical composition and antioxidant capacity of Cordia dichotoma seeds.

    Science.gov (United States)

    Tian, Shuge; Liu, Feng; Zhang, Xuejia; Upur, Halmuart

    2014-09-01

    This study aims to determine the phytochemical composition and antioxidant activity of air-dried Cordia dichotoma seeds. Total polyphenolic content was analyzed via the Folin-Ciocalteu method. Total triterpenoid content and amino acids was analyzed colorimetrically. The rosmarinic acid content was examined using high-performance liquid chromatography tandem mass spectrometry. The ethanolic extracts contained polyphenolic compounds (1.0%), triterpenoids (0.075%), amino acids (1.39%), and rosmarinic acid (0.0028%). The results from this study indicate that C. dichotoma seeds are a rich source of polyphenolic compounds and amino acids, which can be used for quality assessment. The ethanolic extract of C. dichotoma seeds has good antioxidant capacity.

  6. Phytochemicals and Antioxidant Capacity from Nypa fruticans Wurmb. Fruit

    Science.gov (United States)

    Prasad, Nagendra; Yang, Bao; Kong, Kin Weng; Khoo, Hock Eng; Sun, Jian; Azlan, Azrina; Ismail, Amin; Romli, Zulfiki Bin

    2013-01-01

    Nypa fruticans Wurmb. is one of the important underutilized fruit of Malaysia, which lacks scientific attention. Total phenolics, flavonoid content, and antioxidant capacities from endosperm extracts of Nypa fruticans (unripe and ripe fruits) were evaluated. Endosperm extract of unripe fruits (EEU) exhibited the highest phenolics (135.6 ± 4.5 mg GAE/g), flavonoid content (68.6 ± 3.1 RE/g), and antioxidant capacity. Free radical scavenging capacity of EEU as assessed by 2-2′-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radicals showed inhibitory activity of 78 ± 1.2% and 85 ± 2.6%, respectively. Beta carotene bleaching coefficient of EEU was higher (2550 ± 123), when compared to endosperm extract of ripe fruits (1729 ± 172). Additionally, EEU exhibited high antioxidant capacity by phosphomolybdenum method and ferric reducing antioxidant power values. Eight phenolic compounds from Nypa fruticans endosperm extracts were identified and quantified by ultra-high-performance liquid chromatography. Chlorogenic acid, protocatechuic acid, and kaempferol were the major phenolic compounds. Thus this fruit could be used as a potential source of natural antioxidant. PMID:23710209

  7. Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids

    Directory of Open Access Journals (Sweden)

    Truong Ngoc Minh

    2016-09-01

    Full Text Available Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of “Chian Xen Queen” contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight. The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes.

  8. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Fadhlaoui, Mariem; Couture, Patrice

    2016-01-01

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  9. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    Energy Technology Data Exchange (ETDEWEB)

    Fadhlaoui, Mariem; Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca

    2016-11-15

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  10. An in vitro model to test relative antioxidant potential: Ultraviolet-induced lipid peroxidation in liposomes

    International Nuclear Information System (INIS)

    Pelle, E.; Maes, D.; Padulo, G.A.; Kim, E.K.; Smith, W.P.

    1990-01-01

    Since antioxidants have been shown to play a major role in preventing some of the effects of aging and photoaging in skin, it is important to study this phenomenon in a controlled manner. This was accomplished by developing a simple and reliable in vitro technique to assay antioxidant efficacy. Inhibition of peroxidation by antioxidants was used as a measure of relative antioxidant potential. Liposomes, high in polyunsaturated fatty acids (PUFA), were dispersed in buffer and irradiated with ultraviolet (UV) light. Irradiated liposomes exhibited a significantly higher amount of hydroperoxides than liposomes containing antioxidants in a dose- and concentration-dependent manner. Lipid peroxidation was determined spectrophotometrically by an increase in thiobarbituric acid reacting substances. To further substantiate the production of lipid peroxides, gas chromatography was used to measure a decrease in PUFA substrate. In order of decreasing antioxidant effectiveness, the following results were found among lipophilic antioxidants: BHA greater than catechin greater than BHT greater than alpha-tocopherol greater than chlorogenic acid. Among hydrophilic antioxidants, ascorbic acid and dithiothreitol were effective while glutathione was ineffective. In addition, ascorbic acid was observed to act synergistically with alpha-tocopherol, which is in agreement with other published reports on the interaction of these two antioxidants. Although peroxyl radical scavengers seem to be at a selective advantage in this liposomal/UV system, these results demonstrate the validity of this technique as an assay for measuring an antioxidant's potential to inhibit UV-induced peroxidation

  11. Antioxidant and Antiradical Properties of Selected Flavonoids and Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Zübeyir Huyut

    2017-01-01

    Full Text Available Phenolic compounds and flavonoids are known by their antioxidant properties and one of the most important sources for humans is the diet. Due to the harmful effects of synthetic antioxidants such as BHA and BHT, natural novel antioxidants have become the focus of attention for protecting foods and beverages and reducing oxidative stress in vivo. In the current study, we investigated the total antioxidant, metal chelating, Fe3+ and Cu2+ reduction, and free radical scavenging activities of some phenolic and flavonoid compounds including malvin, oenin, ID-8, silychristin, callistephin, pelargonin, 3,4-dihydroxy-5-methoxybenzoic acid, 2,4,6-trihydroxybenzaldehyde, and arachidonoyl dopamine. The antioxidant properties of these compounds at different concentrations (10–30 μg/mL were compared with those of reference antioxidants such as BHA, BHT, α-tocopherol, and trolox. Each substance showed dose-dependent antioxidant activity. Furthermore, oenin, malvin, arachidonoyl dopamine, callistephin, silychristin, and 3,4-dihydroxy-5-methoxybenzoic acid exhibited more effective antioxidant activity than that observed for the reference antioxidants. These results suggest that these novel compounds may function to protect foods and medicines and to reduce oxidative stress in vivo.

  12. Concomitant ingestion of lactic acid bacteria and black tea synergistically enhances flavonoid bioavailability and attenuates d-galactose-induced oxidative stress in mice via modulating glutathione antioxidant system.

    Science.gov (United States)

    Zhao, Danyue; Shah, Nagendra P

    2016-12-01

    Black tea (BT) has been positively linked to improved redox status, while its efficacy is limited due to the low bioavailability of BT flavonoids. In addition to the direct antioxidant activity, flavonoids regulate redox balance via inducing endogenous antioxidants, particularly glutathione (GSH) and GSH-dependent antioxidant enzymes. This work first examined the effect of lactic acid bacteria (LAB) and BT alone or in combination on flavonoid bioavailability and metabolism; next, the effect of LAB-fermented BT diet in attenuating oxidative stress in mice and the underlying mechanisms were studied. Phenolic profiles of plasma, urine and feces from healthy mice consuming plain yogurt, BT milk (BTM) or BT yogurt (BTY) were acquired using LC-MS/MS. Plasma antioxidant capacity, lipid peroxidation level, content of nonprotein thiols and expression of GSH-related antioxidant enzymes and Nrf2 were examined in d-galactose-treated mice. Total flavonoid content in plasma following a single dose of BTY attained 0.657 μmol/l, increased by 50% compared with the BTM group. Increased excretion of phenolic metabolite and hippuric acid in urine and feces indicated enhanced metabolism of flavonoids in BTY-fed mice. In the second study, 8-week concomitant LAB-BT treatment of oxidatively stressed mice effectively restored plasma antioxidant capacity and GSH levels, and mitigated lipid peroxidation, which were associated with significant induction of GSH-dependent antioxidant enzymes and nuclear accumulation of Nrf2. Our results demonstrated the effect of LAB fermentation in enhancing BT flavonoid bioavailability in vivo. The synergistic antioxidant efficacy of LAB-BT diet implied its therapeutic potential in enhancing antioxidant defenses and protecting organisms from oxidative damage. Copyright © 2016. Published by Elsevier Inc.

  13. Antioxidant properties of selected fruit cultivars grown in Sri Lanka.

    Science.gov (United States)

    Silva, K D R R; Sirasa, M S F

    2018-01-01

    Extracts of twenty locally available Sri Lankan fruits were analysed for 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferrous reducing antioxidant power (FRAP), total phenolic content (TPC), total flavonoid content (TFC) and vitamin C content. The results showed that gooseberry (Phyllanthus emblica 'local') exhibited the highest DPPH scavenging activity (111.25mg ascorbic acid equivalent antioxidant capacity (AEAC)/g), FRAP (1022.05μmol FeSO 4 /g), TPC (915.7mg gallic acid equivalents (GAE)/100g), TFC (873.2mg catechin equivalents (CE)/100g) and vitamin C (136.8mg ascorbic acid equivalents (AAE)/100g), respectively. Sugar apple (Annona squamosa 'local') and star fruit (Averrhoa carambola 'Honey Sweet') obtained the second and third highest antioxidant activities in terms of rankings of FRAP, DPPH activities, TPC, TFC and vitamin C content. Strong correlation between vitamin C, TPC and TFC with FRAP and DPPH showed their contribution to antioxidant capacity. Among the selected fruits, underutilized fruit cultivar gooseberry showed the highest overall antioxidant potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Antioxidants in bakery products: a review.

    Science.gov (United States)

    Nanditha, B; Prabhasankar, P

    2009-01-01

    Fats impart taste and texture to the product but it is susceptible to oxidation leading to the development of rancidity and off-flavor. Since ancient times it has been in practice to use antioxidants in foods. Discovery of synthetic antioxidants has revolutionized the use of antioxidants in food. The effect of these antioxidants in bakery products were reviewed and found to be effective in enhancing the shelf life. Animal experimental studies have shown that some of the synthetic antioxidants had toxigenic, mutagenic, and carcinogenic effects. Hence there is an increasing demand for the use of natural antioxidants in foods, especially in bakery products. Some of the natural antioxidants such as alpha-tocopherol, beta-carotene, and ascorbic acid were already used in bakery products. These natural antioxidants are found to be effective in enhancing the shelf life of bakery products but not to the extent of synthetic antioxidants. Baking processing steps may lower the antioxidative activity but techniques such as encapsulation of antioxidants can retain their activity. Antioxidative activity of the plant extracts such as garcinia, curcumin, vanillins, and mint were reviewed but studies on their role in bakery products were limited or very few. Hence there is a wide scope for study under this direction in depth.

  15. Determination of total antioxidant capacity by a new spectrophotometric method based on Ce(IV) reducing capacity measurement.

    Science.gov (United States)

    Ozyurt, Dilek; Demirata, Birsen; Apak, Resat

    2007-02-28

    Dietary antioxidants widely found in fruits and vegetables may serve the task of reducing oxidative damage in humans induced by free radicals and reactive oxygen species under 'oxidative stress' conditions. The aim of this work is to develop a simple, low-cost, sensitive, and diversely applicable indirect spectrophotometric method for the determination of total antioxidant capacity of several plants. The method is based on the oxidation of antioxidants with cerium(IV) sulfate in dilute sulfuric acid at room temperature. The Ce(IV) reducing capacity of the sample is measured under carefully adjusted conditions of oxidant concentration and pH such that only antioxidants and not other organic compounds would be oxidized. The spectrophotometric determination of the remaining Ce(IV) was performed after completion of reaction with antioxidants. Quercetin and gallic acid were used as standards for flavonoids and phenolic acids, respectively, and results of antioxidant measurements were reported as trolox equivalents. The developed procedure was successfully applied to the assay of total antioxidant capacity due to simple compounds such as trolox, quercetin, gallic acid, ascorbic acid, catechin, naringin, naringenin, caffeic acid, chlorogenic acid, ferulic acid, and p-coumaric acid, and due to phenolic acids and flavonoids in the arieal parts of nettle (Urtica Dioica L.). Blank correction of significantly absorbing plant extracts at 320nm could be made with the aid of spectrophotometric titration. Plant selection was made in respect to high antioxidant content, and extraction was made with water. The proposed method was reproducible, and the trolox equivalent antioxidant capacities (TEAC coefficients) of the tested antioxidant compounds were correlated to those found by reference methods such as ABTS and CUPRAC. Since the TEAC coefficients found with the proposed method of naringin-naringenin and rutin-catechin pairs were close to each other, this Ce(IV)-based assay

  16. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Latorres, J M; Rios, D G; Saggiomo, G; Wasielesky, W; Prentice-Hernandez, C

    2018-02-01

    Protein hydrolysates from white shrimp ( Litopenaeus vannamei ) with different degrees of hydrolysis (DH-10 and 20%) were prepared using the enzymes Alcalase 2.4 L and Protamex. The hydrolysates were evaluated for amino acid composition, solubility, foaming properties, emulsifying and antioxidant activity. All the hydrolysates showed high concentrations of Glutamic Acid, Aspartic acid, Arginine, Glycine, Lysine, Proline. It was found that the increase in the production of negatively charged amino acids was related to increase in DH. The hydrophobic amino acids were higher for hydrolysates obtained with Alcalase (10% DH) and Protamex (20% DH). The results indicated that higher degree of hydrolysis showed positive relation with the protein solubility of the hydrolysates, while negatively influenced foam and emulsification properties. The antioxidant properties presented by the white shrimp protein hydrolysates were influenced by the composition and peptides size. Hydrolysates with higher peptide chain showed the highest antioxidant power for the 2,2-Diphenyl-1-picrylhydrazyl radical scavenging and reducing power, while hydrolysates with lower peptide chain showed higher antioxidant power for 2,2'-azinobis (3-ethylbenzothiazoline sulfonic acid) radical scavenging. All hydrolysates showed dose-dependent antioxidant activities. Therefore, the results of the present study suggest that white shrimp is a potential source of protein hydrolysates as bioactive ingredients for the use in the formulation of functional foods as well as natural antioxidants in lipid food systems.

  17. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress.

    Science.gov (United States)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. Copyright © 2016. Published by Elsevier Inc.

  18. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley.

    Science.gov (United States)

    El-Zaeddi, Hussein; Calín-Sánchez, Ángel; Nowicka, Paulina; Martínez-Tomé, Juan; Noguera-Artiaga, Luis; Burló, Francisco; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A

    2017-07-01

    The effects of a preharvest treatment with malic (MA), oxalic (OA), or acetylsalicylic (ASA) acid at three concentrations (1, 2 and 3mM) on the bioactivity and antioxidant capacity of coriander, dill, and parsley were investigated. The antioxidant capacity of the herbs extracts was assayed by spectrophotometric methods by using three different analytical methods: ORAC, FRAP, and ABTS; the effects of treatments were very positive in coriander, produced intermediate results in dill, and no effects were found in parsley plants. Polyphenol compounds were identified by LC-MS-QTof and quantified by UPLC-PDA-FL. Thirty phenolic compounds were identified in these three herbs. The major compounds were (i) coriander: dimethoxycinnamoyl hexoside and quercetin-3-O-rutinoside, (ii) dill: neochlorogenic acid and quercetin glucuronide, and (iii) parsley: apigenin-7-apiosylglucoside (apiin) and isorhamnetin-3-O-hexoside. The application of these three organic acids favored the accumulation of phenolic compounds in coriander plants, but had no significant positive effects on dill and parsley. The treatments leading to the best results in all three plants were the application of MA or OA at 1mM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antibacterial and Antioxidant Activities of Acid and Bile Resistant Strains of Lactobacillus fermentum Isolated from Miang

    Directory of Open Access Journals (Sweden)

    Srikanjana Klayraung

    2009-12-01

    Full Text Available Miang is a kind of traditional fermented tea leaves, widely consumed in northern Thailand as a snack. It contains several kinds of Lactobacilli spp. The aim of this study was to isolate strains of Lactobacillus fermentum from miang and to investigate their antibacterial and antioxidant activities. The agar spot and well assays were used for determination of antibacterial power. The antibacterial mechanism was investigated by cell morphologic change under scanning electron microscope (SEM. Antioxidant activity was studied by means of free radical scavenging and ferric reducing power assays. The acid and bile screening tests indicated that L. fermentum FTL2311 and L. fermentum FTL10BR presented antibacterial activity against several pathogenic bacteria: Listeria monocytogenes DMST 17303, Salmonella Typhi DMST 5784, Shigella sonnei DMST 561 (ATCC 11060and Staphylococcus aureus subsp. aureus DMST 6512 (ATCC 6538Ptm. The results from SEM suggested that the antibacterial action was due to the destruction of cell membrane which consequently caused the pathogenic cell shrinking or cracking. The antioxidant study suggested that both L. fermentum FTL2311 and L. fermentum FTL10BR strains could liberate certain substances that possessed antioxidant activity expressed as trolox equivalent antioxidant capacity (TEAC and equivalent concentration (EC values for free radical scavenging and reducing mechanisms, respectively. The supernatant of L. fermentum FTL2311 broth revealed TEAC and EC values of 22.54±0.12 and 20.63±0.17 µM.mg-1 respectively, whereas that of L. fermentum FTL10BR yielded TEAC and EC values of 24.09±0.12 and 21.26±0.17 µM.mg-1 respectively. These two strains isolated from miang present high potential as promising health-promoting probiotics.

  20. In vitro antioxidant potential and deoxyribonucleic acid protecting activity of CNB-001, a novel pyrazole derivative of curcumin

    Directory of Open Access Journals (Sweden)

    Richard L Jayaraj

    2014-01-01

    Full Text Available Background: Free radicals are underpinned to initiate cascade of toxic events leading to oxidative stress and resultant cell death in many neurodegenerative disorders. Now-a-days antioxidants have become mandatory in the treatment of various diseases apart from the drug′s modes of action. CNB-001, a novel hybrid molecule synthesized by combining curcumin and cyclohexyl bisphenol A is known to possess various biological activities, but the antioxidative property of the compound has not yet been elucidated. Aim: The present study is aimed to analyze various free radicals scavenging by employing in vitro antioxidant assays and to evaluate the deoxyribonucleic acid (DNA protecting the ability of CNB-001 against hydroxyl radicals. Materials and methods: The in vitro antioxidant potential of CNB-001 was evaluated by analyzing its ability to scavenge DPPH, ABTS, nitric oxide, superoxide, hydrogen peroxide, superoxide anion, hydroxyl, hydrogen peroxide radicals and reducing power using spectroscopic method. The DNA protecting activity of CNB-001 was also evaluated on pUC19 plasmid DNA subjected to hydroxyl radicals using standard agarose gel electrophoresis. Results: From the assays, it was observed that CNB-001 scavenged free radicals effectively in a dose dependent manner. CNB-001 scavenged 2,2-diphenyl-1-picrylhydrazyl (IC50 = 44.99 μg/ml, 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (IC50 = 17.99 μg/ml, nitric oxide (IC50 = 1.36 μg/ml, superoxide radical (IC50 = 77.17 μg/ml, hydrogen peroxide (IC50 = 492.7 μg/ml, superoxide (IC50 = 36.92 μg/ml and hydroxyl (IC50 = 456.5 μg/ml radicals effectively and the reducing power was found to be 11.53 μg/ml. CNB-001 showed considerable protecting activity against plasmid DNA (pUC19 strand scission by ·OH at dose dependent manner. Conclusion: Results from these assays concluded that CNB-001 has a good antioxidant potential by reducing reactive oxygen and reactive nitrogen radicals and it

  1. Chemical structure, comparison antioxidant capacity and separation antioxidant of hen, duck and quail egg white protein hydrolysate

    Science.gov (United States)

    Fatah, A.; Meihu, M.; Ning, Q.; Setiani, B. E.; Bintoro, V. P.

    2018-01-01

    Amino acid linkages as proteins are nutritional substance which important for diet intake. Purification protein procesing undergo heating procedure process followed by additional of proteolytic enzymes or acid had been resulting in protein hydrolysates. A protein hydrolysate describe as many free amino acids bound together through a complex mixture of peptides. Egg white protein hydrolysates is one of subject interested to study for human health or industry product. The objectives of the research are to determine and identification the antioxidant derived from egg white hydrolysate protein. Identification of chemical structure of albumen and albumen protein hydrolysate was examine using IR Spectrophotometry. While comparison of antioxidant capacity and antioxidant separation egg albumen was also investigate using FTIR method (Fourier Transform Infrared Spectroscopy). Hen, duck and quail albumen egg white and on hydrolisate form were used as research materials. The results were showing that different time and enzyme of hydrolysis were not influence at secondary structure of hydrolysate albumen protein. Phytochemical content such as alcohol and hydroxyl compound which have potential as functional group of antioxidant were detected in all of the samples. Their results of radical scavenging activities samples hydrolyzed by pepsin were respectively 89.40%, 50.25% and 85.13%. Whereas the radical scavenging activities of hydrolysates hydrolyzed by papain were 72.85%, 61% and 76.45% respectively.

  2. Evaluation of Chemical Constituents and Antioxidant Activity of Coconut Water (Cocus nucifera L. and Caffeic Acid in Cell Culture

    Directory of Open Access Journals (Sweden)

    JOAO L.A. SANTOS

    2013-09-01

    Full Text Available Coconut water contains several uncharacterized substances and is widely used in the human consumption. In this paper we detected and quantified ascorbic acid and caffeic acid and total phenolics in several varieties of coconut using HPLS/MS/MS (25.8 ± 0.6 µg/mL and 1.078 ± 0.013 µg/mL and 99.7 µg/mL, respectively, in the green dwarf coconut water, or 10 mg and 539 µg and 39.8 mg for units of coconut consumed, 500 ± 50 mL. The antioxidant potential of four coconut varieties (green dwarf, yellow dwarf, red dwarf and yellow Malaysian was compared with two industrialized coconut waters and the lyophilized water of the green dwarf variety. All varieties were effective in scavenging the DPPH radical (IC50=73 µL and oxide nitric (0.1 mL with an IP of 29.9% as well as in inhibiting the in vitro production of thiobarbituric acid reactive substances (1 mL with an IP of 34.4%, highlighting the antioxidant properties of the green dwarf which it is the most common used. In cell culture, the green dwarf water was efficient in protecting against oxidative damages induced by hydrogen peroxide.

  3. Studying the loading effect of acidic type antioxidant on amorphous silica nanoparticle carriers

    Science.gov (United States)

    Ravinayagam, Vijaya; Rabindran Jermy, B.

    2017-06-01

    The study investigates the suitable nanosilica carriers to transport acidic type cargo molecules for potential targeted drug delivery application. Using phenolic acidic type antioxidant gallic acid (GA) as model compound, the present study investigates the loading effect of GA (0.3-15.9 mmol GA g-1 support) on textural characteristics of amorphous silica nanoparticles such as Q10 silica (1D), structured two-dimensional Si-MCM-41 (2D), and three-dimensional Si-SBA-16 (3D). The variation in the nature of textures after GA loading was analyzed using X-ray diffraction, N2 adsorption, FT-IR, scanning electron microscopy with energy dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy. Among the nanocarriers, high adsorption of GA was found in the following order: Si-SBA-16 (3D)˜Si-KIT-6 (3D) > Si-MCM-41 (2D) > ultralarge pore FDU-12 (ULPFDU-12; 3D) > Q10 (1D)˜mesostructured cellular silica foam (MSU-F). 3D-type silicas Si-SBA-16 and KIT-6 were shown to maintain structural integrity at acidic condition (pH ˜3) and accommodate GA in non-crystalline form. In the case of ULPFDU-12 and MSU-F cellular foam, only crystalline deposition of GA occurs with a significant variation in the surface area and pore volume. [Figure not available: see fulltext.

  4. Mitochondrion-Permeable Antioxidants to Treat ROS-Burst-Mediated Acute Diseases

    Directory of Open Access Journals (Sweden)

    Zhong-Wei Zhang

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a crucial role in the inflammatory response and cytokine outbreak, such as during virus infections, diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. Therefore, antioxidant is an important medicine to ROS-related diseases. For example, ascorbic acid (vitamin C, VC was suggested as the candidate antioxidant to treat multiple diseases. However, long-term use of high-dose VC causes many side effects. In this review, we compare and analyze all kinds of mitochondrion-permeable antioxidants, including edaravone, idebenone, α-Lipoic acid, carotenoids, vitamin E, and coenzyme Q10, and mitochondria-targeted antioxidants MitoQ and SkQ and propose astaxanthin (a special carotenoid to be the best antioxidant for ROS-burst-mediated acute diseases, like avian influenza infection and ischemia-reperfusion. Nevertheless, astaxanthins are so unstable that most of them are inactivated after oral administration. Therefore, astaxanthin injection is suggested hypothetically. The drawbacks of the antioxidants are also reviewed, which limit the use of antioxidants as coadjuvants in the treatment of ROS-associated disorders.

  5. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC-MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products.

  6. Accumulation of solvent-soluble and solvent-insoluble antioxidant phenolics in edible bean sprouts: implication of germination

    Directory of Open Access Journals (Sweden)

    Ren-You Gan

    2016-08-01

    Full Text Available Background: Edible bean sprouts are popular fresh vegetables widely recognized for their nutritional quality. However, while their antioxidant capacity and phenolic composition in both solvent-soluble and solvent-insoluble extracts has not been systematically evaluated. Methods: The antioxidant capacity and phenolic composition in both solvent-soluble and solvent-insoluble fractions of 12 cultivars of edible bean sprouts were evaluated, and relationships of antioxidant capacity and total phenolic content were also analyzed. Results: Sprouts demonstrated a wide range of antioxidant capacity and total phenolic content, with lower but substantial antioxidant capacity and total phenolic content in the solvent-insoluble fractions. Highest levels were found in the green mung bean sprout. Phenolic compounds, such as catechin, ellagic acid, ferulic acid, gallic acid and p-coumaric acid were widely detected in these sprouts. Additionally, a positive correlation was discovered between antioxidant capacity and total phenolic content in these edible bean sprouts. Conclusions: Germination generally resulted in the accumulation of antioxidant phenolics in the most edible bean sprouts. Edible bean sprouts with high antioxidant phenolics can be valuable natural sources of dietary antioxidants for the prevention of oxidative stress-related chronic diseases.

  7. Antioxidant activities of Physalis peruviana.

    Science.gov (United States)

    Wu, Sue-Jing; Ng, Lean-Teik; Huang, Yuan-Man; Lin, Doung-Liang; Wang, Shyh-Shyan; Huang, Shan-Ney; Lin, Chun-Ching

    2005-06-01

    Physalis peruviana (PP) is a widely used medicinal herb for treating cancer, malaria, asthma, hepatitis, dermatitis and rheumatism. In this study, the hot water extract (HWEPP) and extracts prepared from different concentrations of ethanol (20, 40, 60, 80 and 95% EtOH) from the whole plant were evaluated for antioxidant activities. Results displayed that at 100 mug/ml, the extract prepared from 95% EtOH exhibited the most potent inhibition rate (82.3%) on FeCl2-ascorbic acid induced lipid peroxidation in rat liver homogenate. At concentrations 10-100 microg/ml, this extract also demonstrated the strongest superoxide anion scavenging and inhibitory effect on xanthine oxidase activities. In general, the ethanol extracts revealed a stronger antioxidant activity than alpha-tocopherol and HWEPP. Compared to alpha-tocopherol, the IC50 value of 95% EtOH PP extract was lower in thiobarbituric acid test (IC50=23.74 microg/ml vs. 26.71 microg/ml), in cytochrome c test (IC50=10.40 microg/ml vs. 13.39 microg/ml) and in xanthine oxidase inhibition test (IC50=8.97 microg/ml vs. 20.68 microg/ml). The present study concludes that ethanol extracts of PP possess good antioxidant activities, and the highest antioxidant properties were obtained from the 95% EtOH PP.

  8. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    International Nuclear Information System (INIS)

    Ahn, D.U.; Nam, K.C.

    2004-01-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid

  9. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  10. Wheat bread enriched with green coffee - In vitro bioaccessibility and bioavailability of phenolics and antioxidant activity.

    Science.gov (United States)

    Świeca, Michał; Gawlik-Dziki, Urszula; Dziki, Dariusz; Baraniak, Barbara

    2017-04-15

    The potential bioaccessibility and bioavailability of phenolics, caffeine and antioxidant activity of wheat bread enriched with green coffee were studied. Supplementation enhanced nutraceutical potential by improving phenolic content and lipid protecting capacity. The simulated-digestion-released phenolics (mainly caffeic acid, syringic acid and vanillic acid) from bread, also caused significant qualitative changes (chlorogenic acids were cleaved and significant amounts of caffeic acid and ferulic acid were determined). Compared to the control, for the bread with 1% and 5% of the functional component the contents of phenolics were 1.6 and 3.33 times higher. Also, an approximately 2.3-fold increase in antioxidant activity was found in bread containing 5% of the supplement. The compounds responsible for antioxidant potential have high bioaccessibility but poor bioavailability. The qualitative composition of the phenolic fraction has a key role in developing the antioxidant potential of bread; however, caffeine and synergism between antioxidants are also important considerations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil

    Directory of Open Access Journals (Sweden)

    Seme Youssef Reda

    2011-06-01

    Full Text Available In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG and Differential Scanning Calorimetry (DSC analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene, BHA (2, 3-tert-butyl-4-methoxyphenol, TBHQ (tertiary butyl hydroquinone, PG (propyl gallate - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.

  12. Lactic Acid Bacterial Starter Culture with Antioxidant and γ-Aminobutyric Acid Biosynthetic Activities Isolated from Flatfish-Sikhae Fermentation.

    Science.gov (United States)

    Won, Yeong Geol; Yu, Hyun-Hee; Chang, Young-Hyo; Hwang, Han-Joon

    2015-12-01

    The aim of this study is to select a lactic acid bacterial strain as a starter culture for flatfish-Sikhae fermentation and to evaluate its suitability for application in a food system. Four strains of lactic acid bacteria isolated from commercial flatfish-Sikhae were identified and selected as starter culture candidates through investigation of growth rates, salt tolerance, food safety, and functional properties such as antioxidative and antimicrobial activities. The fermentation properties of the starter candidates were also examined in food systems prepared with these strains (candidate batch) in comparison with a spontaneous fermentation process without starter culture (control batch) at 15°C. The results showed that the candidate YG331 batch had better fermentation properties such as viable cell count, pH, and acidity than the other experimental batches, including the control batch. The results are expressed according to selection criteria based on a preliminary sensory evaluation and physiochemical investigation. Also, only a small amount of histamine was detected with the candidate YG331 batch. The radical scavenging activity of the candidate batches was better compared with the control batch, and especially candidate YG331 batch showed the best radical scavenging activity. Also, we isolated another starter candidate (identified as Lactobacillus brevis PM03) with γ-aminobutyric acid (GABA)-producing activity from commercial flatfish-Sikhae products. The sensory scores of the candidate YG331 batch were better than those of the other experimental batches in terms of flavor, color, and overall acceptance. In this study, we established selection criteria for the lactic acid bacterial starter for the flatfish-Sikhae production and finally selected candidate YG331 as the most suitable starter.

  13. Alkyl caffeates as antioxidants in O/W emulsions: Impact of emulsifier type and endogenous tocopherols

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Villeneuve, Pierre; Jacobsen, Charlotte

    2017-01-01

    , the aim was to evaluate the impact of emulsifiers (Citrem and Tween80) and presence of endogenous tocopherols on the efficacies of caffeic acid and caffeates (C1–C20) as antioxidants in emulsions. Lipid oxidation was evaluated during storage and partitioning of caffeic acid and caffeates was estimated...... by measuring their concentrations in the aqueous phase. Partitioning of caffeic acid and caffeates was influenced by emulsifier type and the presence of endogenous tocopherols. Caffeic acid was the most efficient antioxidant in Citrem and Tween stabilized emulsions in the presence of endogenous tocopherol....... In contrast, for Tween stabilized emulsions, caffeic acid acted as a prooxidant and the evaluated caffeates acted as strong antioxidants in the absence of endogenous tocopherol. Thus, when endogenous tocopherol was present lipophilization of caffeic acid did not increase its efficacy as an antioxidant...

  14. Antioxidant activity measurement and potential antioxidant peptides exploration from hydrolysates of novel continuous microwave-assisted enzymolysis of the Scomberomorus niphonius protein.

    Science.gov (United States)

    Huang, Yipeng; Ruan, Guihua; Qin, Zhijun; Li, Haiyun; Zheng, Yanjie

    2017-05-15

    A novel continuous microwave-assisted enzymatic digestion (cMAED) method is proposed for the digestion of protein from Scomberomorus niphonius to obtain potential antioxidant peptides. In this study, bromelain was found to have a high capacity for the digestion of the Scomberomorus niphonius protein. The following cMAED conditions were investigated: protease species, microwave power, temperature, bromelain content, acidity of the substrate solution, and incubation time. At 400W, 40°C, 1500U·g -1 bromelain, 20% substrate concentration, pH 6.0 and 5min incubation, the degree of hydrolysis and total antioxidant activity of the hydrolysates were 15.86% and 131.49μg·mL -1 , respectively. The peptide analyses showed that eight of the potential antioxidant peptide sequences, which ranged from 502.32 to 1080.55Da with 4-10 amino acid residues, had features typical of well-known antioxidant proteins. Thus, the new cMAED method can be useful to obtain potential antioxidant peptides from protein sources, such as Scomberomorus niphonius. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Synthesis and Application of a New Amphiphilic Antioxidant.

    Science.gov (United States)

    Soliman, Hanaa M; Arafat, Shaker M; Basuny, Amany M; Shattory, Y El-

    2017-11-01

    A new amphiphilic antioxidant (tannyl stearate) derived from reaction of tannic acid with stearic acid was synthesized in order to improve tannic acid solubility in lipid materials. This reaction gives many products having different degree of esterification (tannyl mono, di, tri, tetra, penta, hexa, hepta……stearate) which were separated using silica gel column chromatography and tentative identification was carried out using thin layer chromatography (TLC). The intrinsic viscosities (η) were used to differentiate between the different molecular weight of the produced esters 1) . Tannyl penta stearate is assumed to be the most suitable amphiphilic antioxidant derivative, where those derivatives with less degree of esterification would be less soluble in fat, and those of higher degree of esterification would exhaust more hydroxyl group that cause decreases of antioxidant activity. The structure of tannyl penta stearate was approved depending on its chemical analysis and spectral data (IR, H 1 NMR,). The emulsification power of tannyl penta stearate was then determined according to method described by El-Sukkary et al. 2) , in order to prove its amphiphilic property. Then tannyl penta stearate was tested for its antioxidant and radical scavenging activities in three different manners, those are, lipid oxidation in sunflower oil using Rancimat, (DPPH) free radical scavenging and total antioxidant activity. {Pure tannic acid (T), butylhydroxyanisol (BHA) and butylhydroxytoluene (BHT) were used as reference antioxidant radical saving compounds}. Then tannyl penta stearate was added to sunflower oil, frying process was carried out and all physicochemical parameters of the oil were considered, and compared to other reference antioxidant in order to study the effect of this new antioxidant toward oil stability. Acute oral toxicity of the tannyl penta stearate was carried out using albino mice of 21-25 g body weight to determine its safety according to the method

  16. Phenolics content and antioxidant capacity of commercial red fruit juices

    Directory of Open Access Journals (Sweden)

    Mitić Milan N.

    2011-01-01

    Full Text Available The content of phenolics: total phenols (TP, flavonoids (TF, anthocyanins (TA and hydroxicinnamic acid as well as the total antioxidant capacity (TAC in nine commercial red fruit juices (sour cherry, black currant, red grape produced in Serbia were evaluated. The total compounds content was measured by spectrophotometric methods, TAC was determined using DPPH assays, and individual anthocyanins and hydroxycinnamic acids was determined using HPLC-DAD methods. Among the examined fruit juices, the black currant juices contained the highest amounts of all groups of the phenolics and exhibited strong antioxidant capacity. The amount of anthocyanins determined by HPLC method ranged from 92.36 to 512.73 mg/L in red grape and black currant juices, respectively. The anthocyanins present in the investigated red fruit juices were derivatives of cyanidin, delphinidin, petunidin, peonidin and malvidin. The predominant phenolic acid was neoclorogenic acid in sour cherry, caffeic acid in black currant, and p-coumaric acid in black grape juices. Generally, the red fruit juices produced in the Serbia are a rich source of the phenolic, which show evident antioxidant capacity.

  17. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China.

    Science.gov (United States)

    Liu, Feng-Xia; Fu, Shu-Fang; Bi, Xiu-Fang; Chen, Fang; Liao, Xiao-Jun; Hu, Xiao-Song; Wu, Ji-Hong

    2013-05-01

    Four principal mango cultivars (Tainong No.1, Irwin, JinHwang and Keitt) grown in southern China were selected, and their physico-chemical and antioxidant properties were characterized and compared. Of all the four cultivars, Tainong No.1 had highest content of total phenols, ρ-coumaric acid, sinapic acid, quercetin, titratable acidity, citric acid, malic acid, fructose, higher antioxidant activities (DPPH, FRAP) and L(*), lower pH, PPO activity and individual weight. Keitt mangoes showed significantly (pmangoes exhibited significantly (pmango cultivars to be differentiated clearly based on all these physico-chemical and antioxidant properties determined in the study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effect of Thermal Processing and Maceration on the Antioxidant Activity of White Beans

    Science.gov (United States)

    Huber, Karina; Brigide, Priscila; Bretas, Eloá Bolis; Canniatti-Brazaca, Solange Guidolin

    2014-01-01

    Phenolic compounds, which naturally occur in beans, are known to have antioxidant activity, which may be partially lost during the processing of this legume. This study evaluated the effect of thermal processing and maceration on the phenolic acid and flavonoids profile and content and on the antioxidant activity of white beans. According to the results obtained from the 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) method, there were no significant differences among treatment groups analysed. When was using 1,1-diphenyl-2-pycrylhydrazyl method (DPPH), beans cooked without maceration present the higher antioxidant activity, and raw beans the lower. The phenolic acids found in greater amounts were gallic acid and chlorogenic acid. Kaempferol was only detected in the soaked and cooked samples; catechin and kaempferol-3-rutinoside were found in the highest concentrations. Quercetin and kaempferol-3-glucoside were not affected by the cooking process, either with or without maceration. In general, the heat treatment increased the antioxidant activity. PMID:24991931

  19. Comparative Antioxidant, Antiproliferative and Apoptotic Effects of ...

    African Journals Online (AJOL)

    Purpose: To determine and compare the antioxidant, antiproliferative and apoptotic effects of leaf infusions of Ilex laurina ... Both plant infusions inhibited viability and cell growth of SW480 and SW620 cells. .... 100 g of dry extract, from a gallic acid calibration curve [9]. ..... antioxidant capacity and in vitro inhibition of colon.

  20. Identification, stress tolerance, and antioxidant activity of lactic acid bacteria isolated from tropically grown fruits and leaves.

    Science.gov (United States)

    Fessard, Amandine; Bourdon, Emmanuel; Payet, Bertrand; Remize, Fabienne

    2016-07-01

    From 6 samples of tropically grown fruits and leaves, 10 lactic acid bacteria belonging Leuconostoc, Weissella, and Lactobacillus species were isolated and identified by 16S rRNA gene sequencing and (GTG)5 fingerprinting. Acidification kinetics determined from BHI broth cultures showed genus-related patterns. In particular, Weissella cibaria appeared to act as a potent acidifier. Tolerance of isolates to acid, oxidative, or salt stress was highly variable and strain dependent. Isolate S14 (Leuconostoc pseudomesenteroides) growth was not affected by the presence of 0.05% H2O2, while Lactobacillus spp. isolates (S17 and S29) were the most tolerant to pH 4.5. The growth of 4 isolates, S5 (Leuconostoc mesenteroides), S14 and S10 (Leuconostoc pseudomesenteroides), and S27 (W. cibaria), was not affected by 5% NaCl. Nutritional beneficial properties were examined through measurement of antioxidant activities of short-term fermented pineapple juice, such as LDL oxidation and polyphenol content, and through exopolysaccharide formation from sucrose. Two isolates, S14 and S27, increased the antioxidant capacity of pineapple juice. The robust capacity of W. cibaria and of Leuconostoc pseudomesenteroides for vegetable lactic fermentation aimed to ameliorate food nutritional and functional quality was highlighted.

  1. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents A beta(25-35)-induced reduction in BPRP in PC12 cells

    NARCIS (Netherlands)

    Lin, Yan-Hua; Liu, Ai-Hua; Wu, Hong-Li; Westenbroek, Christel; Song, Qian-Liu; Yu, He-Ming; Ter Horst, Gert J.; Li, Xue-Jun; Li, Xiang-yi

    2006-01-01

    Several lines of evidence support that beta-amyloid (A beta)-induced neurotoxicity is mediated through the generation of reactive oxygen species (ROS) and elevation of intracellular calcium. Salvianolic acid B (Sal B), the major and most active anti-oxidant from Salvia miltiorrhiza. protects diverse

  2. Antioxidant activity of Vitex agnus-castus L. extracts.

    Science.gov (United States)

    Sağlam, Hüsniye; Pabuçcuoğlu, Aysun; Kivçak, Bijen

    2007-11-01

    The ethanol, n-hexane and water extracts of Vitex agnus-castus L. leaves and fruits were screened for antioxidant activity. The antioxidant activity of plant extracts was determined by an improved assay based on the decolorization of the radical monocation of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS.+). The water and ethanol extracts showed stronger antioxidant activity than the n-hexane extracts. Copyright (c) 2007 John Wiley & Sons, Ltd.

  3. The Antioxidant Cofactor Alpha-Lipoic Acid May Control Endogenous Formaldehyde Metabolism in Mammals

    Directory of Open Access Journals (Sweden)

    Anastasia V. Shindyapina

    2017-12-01

    Full Text Available The healthy human body contains small amounts of metabolic formaldehyde (FA that mainly results from methanol oxidation by pectin methylesterase, which is active in a vegetable diet and in the gastrointestinal microbiome. With age, the ability to maintain a low level of FA decreases, which increases the risk of Alzheimer's disease and dementia. It has been shown that 1,2-dithiolane-3-pentanoic acid or alpha lipoic acid (ALA, a naturally occurring dithiol and antioxidant cofactor of mitochondrial α-ketoacid dehydrogenases, increases glutathione (GSH content and FA metabolism by mitochondrial aldehyde dehydrogenase 2 (ALDH2 thus manifests a therapeutic potential beyond its antioxidant property. We suggested that ALA can contribute to a decrease in the FA content of mammals by acting on ALDH2 expression. To test this assumption, we administered ALA in mice in order to examine the effect on FA metabolism and collected blood samples for the measurement of FA. Our data revealed that ALA efficiently eliminated FA in mice. Without affecting the specific activity of FA-metabolizing enzymes (ADH1, ALDH2, and ADH5, ALA increased the GSH content in the brain and up-regulated the expression of the FA-metabolizing ALDH2 gene in the brain, particularly in the hippocampus, but did not impact its expression in the liver in vivo or in rat liver isolated from the rest of the body. After ALA administration in mice and in accordance with the increased content of brain ALDH2 mRNA, we detected increased ALDH2 activity in brain homogenates. We hypothesized that the beneficial effects of ALA on patients with Alzheimer's disease may be associated with accelerated ALDH2-mediated FA detoxification and clearance.

  4. Activity-Guided Isolation of Antioxidant Compounds from Andrographis stenophylla Leaf

    Directory of Open Access Journals (Sweden)

    Neelaveni Thangavel

    2010-01-01

    Full Text Available The antioxidant potency of various extracts of Andrographis stenophylla leaf was evaluated in vitro using ferric thiocyanate method. Reductive ability and free radical scavenging activity of the extracts were also investigated. Amounts of phenolic compounds in each of the extracts were determined using Folin-Ciocalteau reagent and compared to observe the correlation between antioxidant activities and total phenolic content. Methanol extract exhibited maximum antioxidant activity and was found to contain 2% of total phenolic compounds. Methanol extract was subjected to column chromatographic separation over silica gel G using ethyl acetate: formic acid: acetic acid: water. Fractions thus obtained were screened for their antioxidant activity. Among the eleven fractions screened, fraction C was more active than the standard butylated hydroxyanisole. Fraction C on further fractionation with n-butanol: acetic acid: water afforded two flavanoids namely acacetine and isosakuranetine. Fraction A was also shown to possess good antioxidant activity which was developed using TLC and indicated the presence of a terpenoid, Andrographolide. The structures of the isolated compounds were confirmed by UV, IR, MS, 1H and 13C NMR spectral data. This is the first report wherein Andrographolide, Acacetine and Isosakuranetine are isolated from Andrographis stenophylla leaf.

  5. Total antioxidant capacity in children with acute appendicitis.

    Science.gov (United States)

    Kaya, M; Boleken, M E; Kanmaz, T; Erel, O; Yucesan, S

    2006-02-01

    This study aimed to investigate antioxidant capacity by using a novel automated method in children with acute appendicitis. Blood samples were obtained from consecutive patients with acute appendicitis (appendicitis group, n = 12) and acute abdominal pain due to non surgical disease (non-appendicitis group, n = 11), and from patients with inguinal hernia (healthy group, n = 12) as the control group. At admission, total antioxidant capacity (TAC) levels of plasma were evaluated in all patients by a method recently developed by Erel. Four other major individual plasma antioxidant components, the levels of total protein, albumin, uric acid and bilirubin, were also evaluated. Total antioxidant capacity in patients with acute appendicitis was statistically compared with the two other groups. While the TAC level in the appendicitis group was significantly greater than in the non-appendicitis group, no significant difference was found in healthy groups (p 0.05, 1.94 +/- 0.38, 1.40 +/- 0.36, and 1.99 +/- 0.35 respectively). Individual components of total antioxidant capacity, i.e. total protein, albumin, uric acid and bilirubin concentrations, were also higher in the patients with acute appendicitis than those of the other two control groups. Our data show that children with acute appendicitis do not have deficient blood plasma antioxidant capacity. These results provide evidence that acute appendicitis results in more induction of antioxidative response than non-surgical diseases.

  6. Radiolysis: an efficient method of studying radicalar antioxidant mechanisms

    International Nuclear Information System (INIS)

    Gardes-Albert, M.; Jore, D.

    1998-01-01

    The use of the radiolysis method for studying radicalar antioxidant mechanisms offers the different following possibilities: 1- quantitative evaluation of antioxidant activity of molecules soluble in aqueous or non aqueous media (oxidation yields, molecular mechanisms, rate constants), 2- evaluation of the yield of prevention towards polyunsaturated fatty acids peroxidation, 3- evaluation of antioxidant activity towards biological systems such as liposomes or low density lipoproteins (LDL), 4- simple comparison in different model systems of drags effect versus natural antioxidants. (authors)

  7. Antioxidant capacity, fatty acids profile, and descriptive sensory analysis of table olives as affected by deficit irrigation.

    Science.gov (United States)

    Cano-Lamadrid, Marina; Hernández, Francisca; Corell, Mireia; Burló, Francisco; Legua, Pilar; Moriana, Alfonso; Carbonell-Barrachina, Ángel A

    2017-01-01

    The influence of three irrigation treatments (T0, no stress; T1, soft stress; and, T2, moderate stress) on the key functional properties [fatty acids, sugar alcohols, organic acids, minerals, total polyphenols content (TPC), and antioxidant activity (AA)], sensory quality, and consumers' acceptance of table olives, cv. 'Manzanilla', was evaluated. A soft water stress, T1, led to table olives with the highest oil and dry matter contents, with the highest intensities of key sensory attributes and slightly, although not significant, higher values of consumer satisfaction degree. Besides, RDI in general (T1 and T2) slightly increased green colour, the content of linoleic acid, but decreased the content of phytic acid and some minerals. The soft RDI conditions are a good option for the cultivation of olive trees because they are environmentally friendly and simultaneously maintain or even improve the functionality, sensory quality, and consumer acceptance of table olives. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Anti-cancer and antioxidant properties of phenolics isolated from ...

    African Journals Online (AJOL)

    Results: The extract contained 36.02 ± 0.24 mg of gallic acid equiv/g dry ... Keywords: Toona sinensis, Phenolics, Antioxidants, HepG2 cells, Anti- ... EXPERIMENTAL .... Figure 2: Time kinetics and dose-response of hydrophilic antioxidant ...

  9. [Exploration on feasibility of introducing bioassay method into quality evaluation of Chinese herbal medicines by studying on the correlation between antioxidant activity of Prunella vulgaris and its total phenolic acids content for example].

    Science.gov (United States)

    Feng, Wei-Hong; Li, Chun; Xin, Wei-Mei; Lin, Li-Mei; Xia, Bo-Hou; Rong, Li-Xin; Yang, Li-Xin; Yi, Hong; Zhang, Yong-Xin; Chen, Liang-Mian; Wang, Zhi-Min

    2016-07-01

    This paper aims to investigate the correlation between the antioxidant activity of Prunella vulgaris and its total phenolic acids content by measuring the antioxidant activity of different sources and different organs of P. vulgaris and the total contents of protocatechuic acid, protocatechuic aldehyde, caffeic acid, salviaflaside and rosmarinic acid in these samples. Using the 50% methanol extract of P. vulgaris samples as the research object, DPPH method and HPLC method were used respectively to determine the antioxidant activities and the total contents of the above-mentioned five analytes in P. vulgaris samples. 0.5 mL of 50% methanol extract of P. vulgaris reacts with 0.1 mmol•L⁻¹ DPPH ethanol solution for 60 min, then the absorbance of the reaction solution was measured at 517 nm, scavenging rate and IC₅₀ values were calculated by the absorbance and the sample concentration for evaluating the antioxidant activity. HPLC analysis was made on a C₁₈ Epic column, with acetonitrile-0.1% formic acid aqueous solution as mobile phase (gradient elution), and the detection wavelength was set at 280 nm. The correlation between the antioxidant capacity of different habitats and different organs of P. vulgaris and the total contents of five kinds of phenolic acids was analyzed by partial least squares method. The reaction dose-response range of 50% methanol extract of P. vulgaris with 0.1 mmol•L⁻¹ DPPH ethanol solution was 0.300-1.65 g•L⁻¹. When the quantities of potocatechuic acid, protocatechuic aldehyde, caffeic acid, salviaflaside and rosmarinic acid were respectively in 0.007 84-0.980, 0.011 5-1.44, 0.008 64-1.08, 0.080 0-1.00 and 0.079 8-0.998 μg range, their quantities were in good linear relationship with the corresponding peak areas. The average recovery of 5 components were 97.76%, 96.88%, 100.3%, 102.1%, 104.5%, with RSD of 1.8%, 1.6%, 1.7%, 1.6% and 1.7%, respectively. In a certain range of crude drug quantity, the antioxidant activity

  10. Supercritical Carbon Dioxide Extraction of Seed Oil from Winter Melon (Benincasa hispida and Its Antioxidant Activity and Fatty Acid Composition

    Directory of Open Access Journals (Sweden)

    Ali Ganjloo

    2013-01-01

    Full Text Available In the present study, supercritical carbon dioxide (SC-CO2 extraction of seed oil from winter melon (Benincasa hispida was investigated. The effects of process variables namely pressure (150–300 bar, temperature (40–50 °C and dynamic extraction time (60–120 min on crude extraction yield (CEY were studied through response surface methodology (RSM. The SC-CO2 extraction process was modified using ethanol (99.9% as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE and ultrasound assisted extraction (UAE. It was found that the antioxidant activity of the extract obtained by SC-CO2 extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO2 extraction conditions.

  11. Constituents and Antioxidant Activity of Bleeding Sap from Various Xinjiang Grapes.

    Science.gov (United States)

    Le, Lv; Umar, Anwar; Iburaim, Arkin; Moore, Nicholas

    2017-10-01

    Wine grape sap or bleeding sap of grapes (GBS) is commonly used in Xinjiang (China) for therapeutic aims. Do variations in composition related to region and variety affect its properties? GBS samples originating in various parts of Xinjiang (Turpan, Hotan, Kashgar, and Atush) were tested for phenols and polyphenols, polysaccharides, saponin, proteins, individual amino acids, and minerals. Their antioxidant activity was measured using ascorbic acid as reference. Polyphenol content varied from 2.6 to 6.6 mg/L, polysaccharides 18.3-816 mg/L, saponin 6.25-106 mg/L, and protein 3.0-22.4 mg/L. Mineral elements and amino acids ranged from 6.20 to 201.2 mg/L and 0.06-118.7 mg/L, respectively. ·OH scavenging ability varied from 70% to over 90%, higher than Vitamin C. Grapes from Turpan had lower antioxidant activity than other grapes even though the polyphenol content was generally higher. Bleeding sap of Xinjiang grape is rich in amino acids, polysaccharides, polyphenols, and protein. The contents are different according to the origin, related possibly to species, climate, and environment. Antioxidant effects were not correlated with polyphenol content. Antioxidant activity of plants or plant extracts is often associated with polyphenolsBleeding sap of grapes has strong antioxidant propertiesBleeding sap from different grape varieties from different parts of Xinjiang (China) had different polyphenol concentrationsThere was no correlation of polyphenol concentrations with antioxidant activity. Abbreviations used: GBS: Bleeding sap of grapes; PITC: phenyl isothiocyanate.

  12. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: metal binding as a general antioxidant mechanism.

    Science.gov (United States)

    García, Carla R; Angelé-Martínez, Carlos; Wilkes, Jenna A; Wang, Hsiao C; Battin, Erin E; Brumaghim, Julia L

    2012-06-07

    Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders.

  13. Antioxidant activity directed isolations form punica granatum

    International Nuclear Information System (INIS)

    Siddiqi, R.; Saeed, M.G.; Sayeed, S.A.

    2012-01-01

    The extracts derived from pomegranate juice following antioxidant activity directed isolation were screened for their antioxidant activity through their ability to scavenge 2,2- diphenyl-l-picrylhydrazyl (DPPH) radicals. Only fractions which exhibited >50 / 0 DPPH scavenging effect at each step of isolation were selected for further purification and their ability to reduce peroxide formation (peroxide value) in heated com oil. Phytochemical analysis of the pure compounds finally obtained, revealed the presence of pelargonidin-3- galactose (Pg-3-galactose), cyanidin-3-glucose (Cy-3-Glucose), gallic acid, quercetin and myricetin in the fractions exhibiting >50% DPPH scavenging potential. The order of antioxidant activity of these pure compounds by DPPH method was found to be gallic acid> quercetin> myricetin> Cy-3-galactose> Pg-3-Glucose while order with respect to reduction in peroxide value (PV) was the reverse of DPPH. (author)

  14. Antioxidant attributes of four lamiaceae essential oils

    International Nuclear Information System (INIS)

    Hussain, A.I.; Anwar, A.; Iqbal, T.; Bhatti, I.A.

    2011-01-01

    The present study was conducted to investigate the antioxidant and radical scavenging activities of essential oils of four Lamiaceae plants i.e. Pogostemon cablin, Lavandula angustifolia, Melissa officinalis, and Salvia officinalis native to Pakistan. The essential oil contents from the aerial parts of P. cablin, L. angustifolia, M. officinalis and S. officinalis were found to be 1.98, 0.58, 0.25 and 0.46%, respectively. The principal chemical constituent established in P. cablin L. angustifolia, M. officinalis, and S. officinalis essential oils, were patchouli alcohol, linalool, citronellal, and 1,8-cineol, respectively. The antioxidant activity was evaluated by scavenging of 2,2-diphenyl-1-picryl hydrazyl radical (DPPH), percent inhibition of linoleic acid oxidation and bleaching beta-carotene in linoleic acid system. The essential oils possessed appreciable antioxidant and radical scavenging activities revealing potential for therapeutic applications. (author)

  15. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Kusunoki, Chisato; Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi; Nishio, Yoshihiko; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2013-01-01

    Highlights: ► Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. ► EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. ► Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. ► Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H 2 O 2 -induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  16. Polyphenols of Salix aegyptiaca modulate the activities of drug metabolizing and antioxidant enzymes, and level of lipid peroxidation.

    Science.gov (United States)

    Nauman, Mohd; Kale, R K; Singh, Rana P

    2018-03-07

    Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and

  17. Post-Harvest Induced Production of Salvianolic Acids and Significant Promotion of Antioxidant Properties in Roots of Salvia miltiorrhiza (Danshen

    Directory of Open Access Journals (Sweden)

    Guo-Jun Zhou

    2014-05-01

    Full Text Available Danshen, the dried roots of Salvia miltiorrhiza, is an extremely valued Traditional Chinese Medicine. Previously, we have demonstrated that salvianolic acid B (SaB, the important bioactive ingredient in this herb, was a post-harvest product. Here, we further reported that all salvianolic acids (SAs in the roots were post-harvest products of the drying process. In addition, the results of various radical scavenging activity assays, including lipid peroxidation (1, DPPH (2, hydroxyl (3 and superoxide (4, were significantly increased along with the accumulation of total salvianolic acids in the process. The contents of chemical targets and antioxidant activities both reached the highest value under thermal treatment at 130 °C for 80 min. In this dehydration period, contents of SaB, and sum of nine SAs increased from 0.01% to 5.51%, and 0.20% to 6.61%; and IC50 of antioxidant activity decreased from 4.85 to 2.69 (1; 7.75 to 0.43 (2; 2.57 to 1.13 (3 and 17.25 to 1.10 mg/mL. These results further supported the hypothesis that the newly harvested plant roots were still physiologically active and the secondary metabolites might be produced due to dehydration stress after harvest. Our findings supplied an important and useful theoretical basis for promoting the quality of Danshen and other medicinal plant materials.

  18. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering.

    Science.gov (United States)

    Shao, Yafang; Xu, Feifei; Sun, Xiao; Bao, Jinsong; Beta, Trust

    2014-01-15

    This study investigated differences in total phenolic content (TPC), antioxidant capacity, and phenolic acids in free, conjugated and bound fractions of white (unpolished), red and black rice at 1-, 2-, and 3-weeks of grain development after flowering and at maturity. Unlike the TPC (mg/100g) of white rice (14.6-33.4) and red rice (66.8-422.2) which was significantly higher at 1-week than at later stages, the TPC of black rice (56.5-82.0) was highest at maturity. The antioxidant capacity measured by DPPH radical scavenging and ORAC methods generally followed a similar trend as TPC. Only black rice had detectable anthocyanins (26.5-174.7mg/100g). Cyanidin-3-glucoside (C3G) and peonidin-3-glucoside (P3G) were the main anthocyanins in black rice showing significantly higher levels at 2- and 3-weeks than at 1-week development and at maturity. At all stages, the phenolic acids existed mainly in the bound form as detected by HPLC and confirmed by LC-MS/MS. Black rice (20.1-31.7mg/100g) had higher total bound phenolic acids than white rice and red rice (7.0-11.8mg/100g). Protocatechuic acid was detected in red rice and black rice with relatively high levels at 1-week development (1.41mg/100g) and at maturity (4.48mg/100g), respectively. Vanillic acid (2.4-5.4mg/100g) was detected only in black rice where it peaked at maturity. p-Coumaric acid (black rice. Ferulic acid (4.0-17.9mg/100g), the most abundant bound phenolic acid, had an inconsistent trend with higher levels being observed in black rice where it peaked at maturity. Isoferulic acid levels (0.8-1.6mg/100g) were generally low with slightly elevated values being observed at maturity. Overall black rice had higher total bound phenolic acids than white and red rice while white rice at all stages of development after flowering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of antioxidant activity of caffeic acid with cyclodextrins using ground mixture method

    Directory of Open Access Journals (Sweden)

    Ryota Shiozawa

    2018-01-01

    Full Text Available In the current study, we prepared a ground mixture (GM of caffeic acid (CA with α-cyclodextrin (αCD and with β-cyclodextrin (βCD, and then comparatively assessed the physicochemical properties and antioxidant capacities of these GMs. Phase solubility diagrams indicated that both CA/αCD and CA/βCD formed a complex at a molar ratio of 1/1. In addition, stability constants suggested that CA was more stable inside the cavity of αCD than inside the cavity of βCD. Results of powder X-ray diffraction (PXRD indicated that the characteristic diffraction peaks of CA and CD disappeared and a halo pattern was produced by the GMs of CA/αCD and CA/βCD (molar ratios = 1/1. Dissolution testing revealed that both GMs had a higher rate of dissolution than CA alone did. Based on the 1H-1H NOESY NMR spectra for the GM of CA/αCD, the vinylene group of the CA molecule appeared to be included from the wider to the narrower rim of the αCD ring. Based on spectra for the GM of CA/βCD, the aromatic ring of the CA molecule appeared to be included from the wider to the narrower rim of the βCD ring. This suggests that the structures of the CA inclusion complexes differed between those involving αCD rings and those involving βCD rings. Results of a DPPH radical-scavenging activity test indicated that the GM of CA/αCD had a higher antioxidant capacity than that of the GM of CA/βCD. The differences in the antioxidant capacities of the GMs of CA/αCD and CA/βCD are presumably due to differences in stability constants and structures of the inclusion complexes.

  20. Antioxidant status of neonates exposed in utero to tobacco smoke.

    Science.gov (United States)

    Fayol, L; Gulian, J M; Dalmasso, C; Calaf, R; Simeoni, U; Millet, V

    2005-01-01

    To investigate the influence of maternal smoke exposure on neonatal and maternal antioxidant status, 39 mothers who were active smokers, 14 mothers exposed to environmental tobacco smoke (ETS), 17 controls, and their newborns were included in a prospective, controlled study. Plasma total antioxidant capacity, measured as total radical-trapping antioxidant parameter (TRAP) and ferric reducing antioxidant power (FRAP), and concentrations of specific antioxidants were measured in cord and in maternal blood. A similar, significant increase in ceruloplasmin concentration was observed in neonates born to actively smoking mothers and in those born to ETS exposed mothers. Uric acid and TRAP concentrations were significantly increased in ETS-exposed newborns and their mothers, compared to newborns and mothers from the active smoking and no-exposure groups with a trend towards increased uric acid, TRAP and FRAP concentrations being observed in the active smokers group. Neonatal and maternal antioxidant concentrations correlated significantly, except for ceruloplasmin. Cord blood vitamin A, E and C concentrations were unaffected by smoke exposure. These results show that maternal active smoking as well as ETS exposure significantly affect neonatal and maternal antioxidant status. Copyright (c) 2005 S. Karger AG, Basel

  1. Evaluation of Antioxidant Properties of Phenolics Extracted from Ananas comosus L.

    Directory of Open Access Journals (Sweden)

    Adhikarimayum HARIPYAREE

    2010-06-01

    Full Text Available Phenolics were extracted from the fruit tissues of Ananas comosus L. var. queen, cv. �Meitei Keehom�, a variety of pineapple grown in Manipur, India, after skin peeling, purified and their antioxidant properties were analyzed. The antioxidant properties were assessed based on the ability of fruit phenolics in absolute methanol to scavenge DPPH, superoxide anion radicals and hydroxyl radicals and compared to antioxidant compounds like ascorbic acid and pyragallol. Pineapple fruit phenolics scavenged DPPH, superioxide anion radicals and hydroxyl radicals in a dose dependent way. In DPPH assay, the IC50 values of pineapple phenolics, ascorbic acid and pyragallol were 12.2?g/ml, 17.82?g/ml and 15.92?g/ml respectively. In superoxide anion and hydroxyl radical scavenging activities, the IC50 values of pineapple phenolics were 11.42?g/ml and 55.292?g/ml, for ascorbic acid 49.62?g/ml, 48.52?g/ml and that of pyragallol was 15.672?g/ml and 60.62?g/ml. The IC50 value was lowest in pineapple phenolics than ascorbic acid and pyragallol in DPPH and superoxide anion assays. But it is higher than ascorbic acid and lower than pyragallol in hydroxyl radical assay. The lower the IC50 values, the higher the antioxidant activities. The phenolics extracted from this variety of pineapple exhibit excellent free radical scavenging activity. The result shows that pineapple and its active constituents may be used in further antioxidative therapy.

  2. Evaluation of Antioxidant Properties of Phenolics Extracted from Ananas comosus L.

    Directory of Open Access Journals (Sweden)

    Adhikarimayum HARIPYAREE

    2010-06-01

    Full Text Available Phenolics were extracted from the fruit tissues of Ananas comosus L. var. queen, cv. Meitei Keehom, a variety of pineapple grown in Manipur, India, after skin peeling, purified and their antioxidant properties were analyzed. The antioxidant properties were assessed based on the ability of fruit phenolics in absolute methanol to scavenge DPPH, superoxide anion radicals and hydroxyl radicals and compared to antioxidant compounds like ascorbic acid and pyragallol. Pineapple fruit phenolics scavenged DPPH, superioxide anion radicals and hydroxyl radicals in a dose dependent way. In DPPH assay, the IC50 values of pineapple phenolics, ascorbic acid and pyragallol were 12.2?g/ml, 17.82?g/ml and 15.92?g/ml respectively. In superoxide anion and hydroxyl radical scavenging activities, the IC50 values of pineapple phenolics were 11.42?g/ml and 55.292?g/ml, for ascorbic acid 49.62?g/ml, 48.52?g/ml and that of pyragallol was 15.672?g/ml and 60.62?g/ml. The IC50 value was lowest in pineapple phenolics than ascorbic acid and pyragallol in DPPH and superoxide anion assays. But it is higher than ascorbic acid and lower than pyragallol in hydroxyl radical assay. The lower the IC50 values, the higher the antioxidant activities. The phenolics extracted from this variety of pineapple exhibit excellent free radical scavenging activity. The result shows that pineapple and its active constituents may be used in further antioxidative therapy.

  3. Antioxidant activity of selected phenols estimated by ABTS and FRAP methods

    Directory of Open Access Journals (Sweden)

    Izabela Biskup

    2013-09-01

    Full Text Available Introduction: Phenols are the most abundant compounds in nature. They are strong antioxidants. Too high level of free radicals leads to cell and tissue damage, which may cause asthma, Alzheimer disease, cancers, etc. Taking phenolics with the diet as supplements or natural medicines is important for homeostasis of the organism. Materials and methods: The ten most popular water soluble phenols were chosen for the experiment to investigate their antioxidant properties using ABTS radical scavenging capacity assay and ferric reducing antioxidant potential (FRAP assay. Results and discussion: Antioxidant properties of selected phenols in the ABTS test expressed as IC50 ranged from 4.332 μM to 852.713 μM (for gallic acid and 4- hydroxyphenylacetic acid respectively. Antioxidant properties in the FRAP test are expressed as μmol Fe2 /ml. All examined phenols reduced ferric ions at concentration 1.00 x 10-3 mg/ml. Both methods are very useful for determination of antioxidant capacity of water soluble phenols.

  4. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review.

    Science.gov (United States)

    Chalamaiah, M; Dinesh Kumar, B; Hemalatha, R; Jyothirmayi, T

    2012-12-15

    The fish processing industry produces more than 60% by-products as waste, which includes skin, head, viscera, trimmings, liver, frames, bones, and roes. These by-product wastes contain good amount of protein rich material that are normally processed into low market-value products, such as animal feed, fish meal and fertilizer. In view of utilizing these fish industry wastes, and for increasing the value to several underutilised fish species, protein hydrolysates from fish proteins are being prepared by several researchers all over the world. Fish protein hydrolysates are breakdown products of enzymatic conversion of fish proteins into smaller peptides, which normally contain 2-20 amino acids. In recent years, fish protein hydrolysates have attracted much attention of food biotechnologists due to the availability of large quantities of raw material for the process, and presence of high protein content with good amino acid balance and bioactive peptides (antioxidant, antihypertensive, immunomodulatory and antimicrobial peptides). Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Antioxidant activities of various fruits and vegetables produced in Taiwan.

    Science.gov (United States)

    Huang, Hui-Yu; Chang, Chen-Kang; Tso, Tim K; Huang, Ju-Jen; Chang, Wei-Wei; Tsai, Ying-Chieh

    2004-08-01

    Fruits and vegetables have been known to contain a variety of antioxidant components. It has been suggested that antioxidants may protect biomolecules from oxidative damage and therefore be associated with reduced risks of cardiovascular disease and certain cancer. The antioxidant abilities of various parts of eight common fruits and vegetables produced in Taiwan were investigated, including tomato, guava, squash, tangerine, wax gourd, pineapple, chayote, and eggplant. Squash, wax gourd, tomato, and guava seeds showed the highest antioxidant activities in thiobarbituric acid assay. Wax guard and squash seeds showed the highest antioxidant activities in iodometric assay. At the level of 1 g fresh sample, low-density lipoprotein peroxidation was inhibited by at least 90% by tomato meat, guava meat, squash seed, wax gourd meat, core, and seed, and eggplant skin. The total phenolic content was significantly correlated with antioxidant activities measured by thiobarbituric acid (r=0.715, P<0.01) and iodometric (r=0.749, P<0.01) assays. The results of this study could be used for development of merchandise with potential health benefits from agricultural products.

  6. The Effect of E-Selen Antioxidant on the Fatty Acids Content of the Homogenate of Unirradiated and Irradiated Pupae of Ceratitis Capitata

    International Nuclear Information System (INIS)

    Zaghloul, Y.S.; Abbassy, S.A.; Elakhdar, E.A.H.; Elakhdar, E.A.H.

    2011-01-01

    As antioxidant E-selen was added to the larval artificial diets of the Mediterranean fruit fly, Ceratitis capitata. The produced full grown pupae were exposed to gamma rays at dose rate of 90 Gy. The fatty acid contents of the normal and irradiated insects were analyzed to test to what extent, the uptake of the antioxidant will ameliorate the physiological damage induced to the medfly pupae, as a result of their exposure to irradiation. The results obtained by using Gas-liquid chromatography of fatty acid methyl esters, showed the palmitic and oleic acids to be the most predominant fatty acids in all pupal homogenates in both normal and irradiated pupae, either by the uptake of doses of the E-selen or without. The uptake of E-Selen with a dose of 0.3 mg led to a complete absence of the lauric and myristic acids in the homogenates of the unirradiated pupae of the medfly. This absence of lauric and myristic acids was accompanied by a decrease in the concentrations of the palmitic and linoleic acids reaching 25.17% and 32.98%, respectively as compared to pupae without the uptake of antioxidant. The concentrations of both the stearic and oleic acids showed an obvious increment reaching 199.22% and 58.94%, respectively, relative to those reared on the defined media and no added E.Selen. Exposure of the pupae to a dose of 90 Gy, resulted in an increment in the concentrations of the saturated lauric and myristic acid reaching 96.77% and 34.07%, respectively, relative to the untreated ones. While, at the same dose level, there were decrements in the concentrations of the palmitic, stearic, oleic and linoleic acids with percentages reaching 6.4, 9.22, 3.65 and 1.15%, respectively as compared to unirradiated controls. Irradiation of the pupae with sterilizing dose (90 Gy) after up taking the E-Selen in their larval diets, led to the increase of the concentrations of lauric, oleic and linoleic acids by ratios of 16.82, 8.84 and 29.26%, respectively as compared to their

  7. New aspects of the antioxidant properties of phenolic acids: a combined theoretical and experimental approach.

    Science.gov (United States)

    Anouar, E; Kosinová, P; Kozlowski, D; Mokrini, R; Duroux, J L; Trouillas, P

    2009-09-21

    Ferulic acid is widely distributed in the leaves and seeds of cereals as well as in coffee, apples, artichokes, peanuts, oranges and pineapples. Like numerous other natural polyphenols it exhibits antioxidant properties. It is known to act as a free radical scavenger by H atom transfer from the phenolic OH group. In the present joint experimental and theoretical studies we studied a new mechanism to explain such activities. Ferulic acid can indeed act by radical addition on the alpha,beta-double bond. On the basis of the identification of metabolites formed in an oxidative radiolytic solution and after DFT calculations, we studied the thermodynamic and kinetic aspects of this reaction. Addition and HAT reactions were treated as competitive reactions. The possibility of dimer formation was also investigated from a theoretical point of view; the high barriers we obtained contribute to explaining why we did not observe those compounds as major radiolytic compounds. The DPPH free radical scavenging capacity of ferulic acid and the oxidative products was measured and is discussed on the basis of DFT calculations (BDEs and spin densities).

  8. Oxidative stress and antioxidant status in beta-thalassemia heterozygotes

    Directory of Open Access Journals (Sweden)

    Luciana de Souza Ondei

    2013-01-01

    Full Text Available Background: Several studies have evaluated the oxidant and antioxidant status of thalassemia patients but most focused mainly on the severe and intermediate states of the disease. Moreover, the oxidative status has not been evaluated for the different beta-thalassemia mutations. Objective: To evaluate lipid peroxidation and Trolox equivalent antioxidant capacity in relation to serum iron and ferritin in beta thalassemia resulting from two different mutations (CD39 and IVS-I-110 compared to individuals without beta-thalassemia. Methods: One hundred and thirty subjects were studied, including 49 who were heterozygous for beta-thalassemia and 81 controls. Blood samples were subjected to screening tests for hemoglobin. Allele-specific polymerase chain reaction was used to confirm mutations for beta-thalassemia, an analysis of thiobarbituric acid reactive species was used to determine lipid peroxidation, and Trolox equivalent antioxidant capacity evaluations were performed. The heterozygous beta-thalassemia group was also evaluated for serum iron and ferritin status. Results: Thiobarbituric acid reactive species (486.24 ± 119.64 ng/mL and Trolox equivalent antioxidant capacity values (2.23 ± 0.11 mM/L were higher in beta-thalassemia heterozygotes compared to controls (260.86 ± 92.40 ng/mL and 2.12 ± 0.10 mM/L, respectively; p-value < 0.01. Increased thiobarbituric acid reactive species values were observed in subjects with the CD39 mutation compared with those with the IVS-I-110 mutation (529.94 ± 115.60 ng/mL and 453.39 ± 121.10 ng/mL, respectively; p-value = 0.04. However, average Trolox equivalent antioxidant capacity values were similar for both mutations (2.20 ± 0.08 mM/L and 2.23 ± 0.12 mM/L, respectively; p-value = 0.39. There was no influence of serum iron and ferritin levels on thiobarbituric acid reactive species and Trolox equivalent antioxidant capacity values. Conclusion: This study shows an increase of oxidative stress and

  9. Antioxidant activity and controlled drug delivery potential of tragacanth gum-cl- poly (lactic acid-co-itaconic acid) hydrogel.

    Science.gov (United States)

    Gupta, Vinod Kumar; Sood, Swadeep; Agarwal, Shilpi; Saini, Adesh K; Pathania, Deepak

    2018-02-01

    Tragacanth gum-cl-poly (lactic acid-co-itaconic acid) (TG-cl-p(LA-co-IA)) hydrogel is synthesized through graft copolymerization reaction using microwave assisted technique. The synthesized hydrogel was characterised using various analytical and characterization techniques such as FTIR, FESEM, XRD, TGA, TEM and SEM. It was observed that, the maximum percentage swelling (P s ) of the hydrogel was 311.61% after 6h at room temperature and 298.06% after 3h at 60°C and TG-cl-p(LA-co-IA) exhibited highest Amoxicillin loading (73%) in double distilled waterafter 24h. From the controlled release studies, it was evident that maximum drug release of about 96% took place at pH 2.2=after 6h. The synthesized hydrogel also showed mild antioxidant properties and 43.85% of free radical scavenging was occurred at a concentration of 640μg/mL and hence it can be effectively used to reduce the oxidative stresses. In addition to this, the antibacterial studies also showed that it is more effective against S. aureus. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of antioxidants on thiobarbituric acid reactive substances of mechanically de boned chicken meat irradiated with ionizing radiation: cobalt-60 and electron beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Azevedo, Heliana de; Pomarico Neto, Walter; Roque, Claudio Vitor; Brusqui, Armando Luiz, E-mail: hgomes@cnen.gov.b, E-mail: pbrito@cnen.gov.b, E-mail: cvroque@cnen.gov.b, E-mail: abrusqui@cnen.gov.b [Brazilian Nuclear Energy Commission (LAPOC/CNEN), Pocos de Caldas, MG (Brazil); Haguiwara, Marcia Mayumi Harada; Miyagusku, Luciana, E-mail: marciamh@ital.gov.b, E-mail: lucianam@ital.gov.b [Food Technology Institute (ITAL), SP (Brazil). Meat Technology Center

    2011-07-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 - A1 (0.3% Sodium Polyphosphate and Sodium Erythorbate 0.05%) and Antioxidant 2 - A2 (Rosemary Extract 0.02% and {alpha}-Tocopherol 0.01%). The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (Cn/I), with antioxidant A1 and non-irradiated (A1n/I), with antioxidant A2 and non-irradiated (A2n/I) without antioxidant and irradiated in Cobalt-60 source (CCo), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). Each 100 g sample was conditioned in a transparent, low density polyethylene oxygen permeable bag, frozen overnight at a temperature of -18 +- 1 deg C in a chamber, and irradiated in this state, maintaining the temperature low with dry ice. The samples were irradiated with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy.h{sup -1}) and electron beam (2.9 kGy.s{sup -1}). After this process, the samples were evaluated during the refrigeration period (2 +- 1 deg C) for 11 days for the following analysis: total psychotropic bacteria count, thiobarbituric acid reactive substances (TBARS). The addition of antioxidants was able to reduce lipid oxidation caused by the irradiation. There were no differences between the radiation sources used in the same parameters. The better antioxidants mixture in the TBARS reducing it was rosemary extract and {alpha}-tocopherol (A2). (author)

  11. Effect of antioxidants on thiobarbituric acid reactive substances of mechanically de boned chicken meat irradiated with ionizing radiation: cobalt-60 and electron beam sources

    International Nuclear Information System (INIS)

    Brito, Poliana de Paula; Azevedo, Heliana de; Pomarico Neto, Walter; Roque, Claudio Vitor; Brusqui, Armando Luiz; Haguiwara, Marcia Mayumi Harada; Miyagusku, Luciana

    2011-01-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 - A1 (0.3% Sodium Polyphosphate and Sodium Erythorbate 0.05%) and Antioxidant 2 - A2 (Rosemary Extract 0.02% and α-Tocopherol 0.01%). The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (Cn/I), with antioxidant A1 and non-irradiated (A1n/I), with antioxidant A2 and non-irradiated (A2n/I) without antioxidant and irradiated in Cobalt-60 source (CCo), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). Each 100 g sample was conditioned in a transparent, low density polyethylene oxygen permeable bag, frozen overnight at a temperature of -18 +- 1 deg C in a chamber, and irradiated in this state, maintaining the temperature low with dry ice. The samples were irradiated with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy.h -1 ) and electron beam (2.9 kGy.s -1 ). After this process, the samples were evaluated during the refrigeration period (2 +- 1 deg C) for 11 days for the following analysis: total psychotropic bacteria count, thiobarbituric acid reactive substances (TBARS). The addition of antioxidants was able to reduce lipid oxidation caused by the irradiation. There were no differences between the radiation sources used in the same parameters. The better antioxidants mixture in the TBARS reducing it was rosemary extract and α-tocopherol (A2). (author)

  12. Total antioxidant/oxidant status in meningism and meningitis.

    Science.gov (United States)

    Aycicek, Ali; Iscan, Akin; Erel, Ozcan; Akcali, Mustafa; Selek, Sahbettin

    2006-12-01

    The objective of this study was to investigate the antioxidant/oxidant status of serum and cerebrospinal fluid in children with meningismus and acute bacterial meningitis. Twenty-three children (age range, 0.75 to 9 years) with fever and meningeal signs that required analysis of the cerebrospinal fluid, but no cytologic or biochemical evidence of meningitis in their serum and cerebrospinal fluid, constituted the meningismus group. Thirty-one children (age range, 0.5 to 10 years) with acute bacterial meningitis constituted the meningitis group. Twenty-nine healthy children (age range, 0.5 to 11 years) were recruited as control subjects. Antioxidant status (ascorbic acid, albumin, thiol, uric acid, total bilirubin, total antioxidant capacity, catalase and ceruloplasmin concentrations) and oxidant status (lipid hydroperoxide and total oxidant status) were measured. The serum antioxidant status was lower, and oxidant status levels higher in both meningitis and meningismus subjects than in the control children (P antioxidant status was lower, and serum oxidant status was higher in children in the meningismus and meningitis groups, whereas cerebrospinal fluid oxidant status was higher in the meningismus group than in the meningitis group.

  13. Antioxidant activity of phenolic acids and esters present in red wine on human Low-Density Lipoproteins

    Science.gov (United States)

    Urizzi, P.; Monje, M.-C.; Souchard, J.-P.; Abella, A.; Chalas, J.; Lindenbaum, A.; Vergnes, L.; Labidalle, S.; Nepveu, F.

    1999-01-01

    To evaluate the antioxidant activity of different phenolic acids and their esters, three types of experiments have been used. Electron paramagnetic resonance (EPR) quantitative analysis was carried out using the acetaldehyde/xanthine oxidase system and Fenton's reaction to generate superoxide and hydroxyl radicals, respectively. In a second test, hydroperoxides generated by Cu2+-catalysed oxidation of low density lipoproteins (LDL) were quantified by a modified iodometric method. In a third assay, LDL were oxidized with Esterbauer's method and modified LDL species were quantified by HPLC. The results show that the esterified phenolic derivatives present a better antioxidant activity, on the lipoperoxidation of LDL, than the corresponding phenolic acids. Trois expériences ont été menées afin d'évaluer l'activité antioxydante de différents acides et de leurs esters. Une analyse quantitative par résonance paramagnétique électronique (RPE) a été réalisée en utilisant le système acétaldéhyde/xanthine oxydase et la réaction de Fenton générant, respectivement, les radicaux superoxyde et hydroxyle. Dans un second test, les hydroperoxydes générés par une réaction d'oxydation des lipoprotéines de basse densité (LDL) catalysée par Cu2+ ont été quantifiés par une méthode iodométrique modifiée. Dans une troisième étude, les LDL ont été oxydées par la méthode d'Esterbauer et les espèces oxydées ont été quantifiées par HPLC. Les résultats montrent que les dérivés estérifiés présentent une activité antioxydante contre la lipoperoxydation des LDL bien plus importante que celle des acides phénoliques correspondants.

  14. Study of antioxidant capacity of different parts of two south Algerian ...

    African Journals Online (AJOL)

    In this study the antioxidant capacity of ethanolic EE and water WE extracts from different parts (calyx, peel, and pulp) of eggplant (Solanum melongena L) were evaluated using cyclic voltammetry. The antioxidant capacity of different parts of eggplant was measured using ascorbic acid equivalent antioxidant capacity assays ...

  15. Activity-Guided Identification of in Vitro Antioxidants in Beer.

    Science.gov (United States)

    Spreng, Stefan; Hofmann, Thomas

    2018-01-24

    In order to locate the key antioxidants contributing to oxidative stability of beer, activity-guided fractionation in combination with the oxygen radical absorbance capacity (ORAC) assay, hydrogen peroxide scavenging (HPS) assay, and linoleic acid (LA) assay was applied to a pilsner-type beer. LC-MS and 1D/2D NMR experiments led to the identification of a total of 31 antioxidants, among which 3-methoxy-4-hydroxyphenyl-β-d-glucopyranoside (tachioside), 4-(2-formylpyrrol-1-yl)butyric acid, 4-[2-formyl-5-(hydroxymethyl)pyrrol-1-yl]butyric acid, n-multifidol-3-O-β-d-glucoside, quercetin-3-O-(6″-malonyl)-glucoside, 4-feruloylquinic acid, syringaresinol, saponarin, and hordatines A-C have been isolated from beer for the first time. On a molar comparison, the hordatines A-C, saponarin, and quercetin-3-O-β-d-(6″-malonyl)glucoside were evaluated with the highest antioxidant activities of all identified beer constituents, reaching values of 10-17.5 (ORAC), 2.0-4.1 (HPS), and 1.1-6.1 μmol TE/μmol (LA) for hordatines A-C.

  16. Microbial Biotransformation of a Polyphenol-Rich Potato Extract Affects Antioxidant Capacity in a Simulated Gastrointestinal Model

    Directory of Open Access Journals (Sweden)

    Joelle Khairallah

    2018-03-01

    Full Text Available A multistage human gastrointestinal model was used to digest a polyphenol-rich potato extract containing chlorogenic acid, caffeic acid, ferulic acid, and rutin as the primary polyphenols, to assess for their microbial biotransformation and to measure changes in antioxidant capacity in up to 24 h of digestion. The biotransformation of polyphenols was assessed by liquid chromatography–mass spectrometry. Antioxidant capacity was measured by the ferric reducing antioxidant power (FRAP assay. Among the colonic reactors, parent (polyphenols were detected in the ascending (AC, but not the transverse (TC or descending (DC colons. The most abundant microbial phenolic metabolites in all colonic reactors included derivatives of propionic acid, acetic acid, and benzoic acid. As compared to the baseline, an earlier increase in antioxidant capacity (T = 8 h was seen in the stomach and small intestine vessels as compared to the AC (T = 16 h and TC and DC (T = 24 h. The increase in antioxidant capacity observed in the DC and TC can be linked to the accumulation of microbial smaller-molecular-weight phenolic catabolites, as the parent polyphenolics had completely degraded in those vessels. The colonic microbial digestion of potato-based polyphenols could lead to improved colonic health, as this generates phenolic metabolites with significant antioxidant potential.

  17. Effects of antioxidants on lipid peroxide formation in irradiated synthetic diets

    International Nuclear Information System (INIS)

    Wills, E.D.

    1980-01-01

    The effects of the antioxidants, vitamin E, propyl gallate, 2-t-butyl-4-methoxy phenol (BHA), 2,6-di-t-butyl-4-methoxy phenol (BHT), nor-dihydroguaiaretic acid (NDGA) and diphenyl-p-phenylene diamine (DPPD) in concentrations ranging between 0.001 per cent and 0.1 per cent have been tested on lipid peroxide formation in synthetic diet mixtures containing herring oil (10 per cent) mixed with starch (90 per cent) irradiated with γ-ray doses of 100 to 2000 krad. On a weight basis NDGA, DPPD, BHA and BHT were most effective and vitamin E and propyl gallate were least effective. An antioxidant concentration of 0.01 per cent normally protected against peroxide formation after a dose of 500 krad but if the dose was increased to 1000 or 2000 krad, much higher doses of antioxidant, up to 0.1 per cent, were required to give protection. Antioxidants prevented peroxide developing during post-irradiation storage even when added after irradiation. Antioxidants were partially or completely destroyed by irradiation with doses of 100 krad or more. The percentage of total antioxidant destroyed depended on the concentration; much greater destruction occurred in dilute solutions than in concentrated solutions. Vitamin E and propyl gallate were most sensitive whereas NDGA was relatively resistant. Antioxidant destruction was much enhanced if irradiation was carried out in presence of herring oil. Free radicals formed in unsaturated fatty acids of the herring oil are believed to be responsible. Lecithin and citric acid, which have been described as antioxidant synergists when added with vitamin E, caused a limited enhancement of its antioxidant action against radiation-induced peroxidation. (author)

  18. Effects of administration of beta-carotene, ascorbic acid, persimmons, and pods on antioxidative ability in UV-irradiated ODS rats.

    Science.gov (United States)

    Hosotani, Keisuke; Yoshida, Minoru; Kitagawa, Masahiro

    2005-07-01

    To evaluate the effects of supplementing diets with carotenoid and ascorbic acid (AsA) on the antioxidative ability of Osteogenic Disorder-Shionogi (ODS) rats, we added synthetic beta-carotene (betaC), AsA, and powders of persimmon (Ka) and pods (Po) containing betaC and AsA to the diet and obtained the following results. The urinary 8-hydroxydeoxyguanosine (8-OHdG) concentration was low in the -betaC.AsA and +AsA groups but high in the +betaC.AsA, +Ka, and +Po groups. The thiobarbituric acid-reactive substances (TBARS) in both the liver and skin were higher in the -betaC.AsA group than in the +betaC.AsA group and were low in the +Ka and +Po groups. As antioxidant enzymes, glutathione peroxidase (GSH-Px) activity was high in the +betaC.AsA group, low in the -beta3C.AsA group in both the skin and liver, and also high in the + Ka and +Po group in the liver. Superoxide dismutase (SOD) activity was high in the -betaC.AsA group and low in the +betaC.AsA and +Ka groups in both the skin and liver. Catalase (CAT) activity in the liver was low in the -betaC.AsA, +AsA, and +betaC groups and high in the +betaC.AsA and +Po groups. These results confirmed that the administration of betaC, AsA, and persimmons and pods increases antioxidative ability in the skin and liver of ultraviolet-b(UV-B)-irradiated ODS rats.

  19. Application of radiobiological techniques in studying antioxidant mechanisms: evaluation of their radioprotective, antioxidative and antiviral activities

    International Nuclear Information System (INIS)

    Hmamouchi, M.

    2000-01-01

    In the medical field, the oxidation phenomenon is the source of several pathologies (diabetes, cystic fibrosis, cancers,...). The natural oxidants are used as food preserving and skin ageing moderators. Several plant extracts with antioxidant activity were studied, this important antioxidant activity is probably due to their richness of compounds: polyphenols, phenolic acids, tocopherols, carotenoids, flavonoids,... Many techniques for evaluation and reactional mechanism study of the antioxidative activity are used. After selection, extraction, fractionation, activity screening, chemical analyses of molecules contained in the best active extracts, biological properties research of isolated redox pharmacophore, we have : - determined the structure of active products by spectroscopy and chromatography; - studied the antioxidative properties by EPR and spin trapping of the obtained extracts and molecules. The results of this first part of our work consists in evaluating the antioxidative degree of a great number of natural active principles, extracted from moroccan plants and pur obtained products. The second part consists in studying the action mechanisms using the LDL labelling (F. M.)

  20. Effect of antioxidants on the quality of irradiated sausages prepared with turkey thigh meat.

    Science.gov (United States)

    Du, M; Ahn, D U

    2002-08-01

    The effects of antioxidants on the flavor and color of electron-beam-irradiated turkey sausages were studied. Sausages were prepared from turkey thigh meat, NaCl (2.0%), phosphate (0.5%), water (10%), and one of five antioxidant treatments (none, vitamin E, sesamol, rosemary extract, or gallic acid at 0.02%). Sausages were stuffed and cooked in an 85 C smokehouse to an internal temperature of 74 C, then chilled and sliced to 1.5-cm thickness, and vacuum-packaged. Packaged sausages were randomly divided into three groups and irradiated at 0, 1.5 or 3.0 kGy, using an electron beam. Volatiles, color, 2-TBA-reactive substances values, and sensory characteristics were analyzed. The antioxidant effect of sesamol was the highest, followed by vitamin E and gallic acid; rosemary extract had the weakest antioxidant effect. Irradiation induced red color in sausages, but addition of gallic acid, rosemary extract, or sesamol reduced it. Gallic acid was very effective in lowering the redness of irradiated and nonirradiated sausages. The redness (a*) values of sausages with added gallic acid that were irradiated at 0, 1.5, and 3.0 kGy were 1.49,2.03, and 2.29, respectively, whereas those of control sausages under the same irradiation conditions were 2.58, 2.81, and 3.25, respectively. The reduction of redness in irradiated sausages by antioxidants was not related to CO, because antioxidants had no effect on CO production by irradiation. The amount of total volatiles was decreased significantly by antioxidants, but antioxidants had minimal effect on the off-flavor of turkey sausages induced by irradiation.

  1. Phenolic Profile and Antioxidant Activity of Methanolic Extract of Carduus acicularis Bertol. (Asteraceae

    Directory of Open Access Journals (Sweden)

    Iliya Zh. Slavov

    2016-06-01

    Full Text Available Phenolic acid and flavonoid profiles of Carduus acicularis were investigated for the first time. Eleven phenolic acids and eight flavonoids were identified and quantified in the inflorescences, by high performance liquid chromatography. The main phenolic compounds were found to be: sinapic acid (930.41 ± 21.72 µg/g dw, chlorogenic acid (582.66 ± 13.60 µg/g dw, rutin (545.65 ± 12.82 µg/g dw, apigenin (478.75 ± 11.38 µg/g dw, luteolin (288.46 ± 6.86 µg/g dw and myricetin (276.32 ± 5.21 µg/g dw. The antioxidant activity of methanolic extract of inflorescences has been investigated, employing four different established testing systems: scavenging activity on 2,2-diphenil-1-picrylhydrazyl (DPPH, 2,2’-azinobis-(3-ethyl-benzothiazoline-6-sulfonate (ABTS radical cation decolorization assay, ferric reducing antioxidant power (FRAP and copper reduction antioxidant assays (FRAP. The highest antioxidant activity values were measured by the ABTS assay, among all performed methods.

  2. Enzymatic extraction of star gooseberry (Phyllanthus acidus) juice with high antioxidant level

    Science.gov (United States)

    Loan, Do Thi Thanh; Tra, Tran Thi Thu; Nguyet, Ton Nu Minh; Man, Le Van Viet

    2017-09-01

    Ascorbic acid and phenolic compounds are main antioxidants in star gooseberry (Phyllanthus acidus) fruit. In this study, Pectinex Ultra SP-L preparation with pectinase activity was used in the extraction of star gooseberry juice. The effects of pectinase concentration and biocatalytic time on the content of ascorbic acid, phenolic compounds and antioxidant activity of the fruit juice were firstly investigated. Response surface methodology was then used to optimize the conditions of enzymatic extraction for maximizing the antioxidant activity of the star gooseberry juice. The optimal pectinase concentration and biocatalytic time were 19 polygalacturonase units per 100g pulp dry weight and 67 min, respectively under which the maximal antioxidant activity achieved 5595±6 µmol Trolox equivalent per 100g juice dry weight. On the basis of kinetic model of second-order extraction, the extraction rate constant of ascorbic acid and phenolic compounds in the enzymatic extraction increased approximately 21% and 157%, respectively in comparison with that in the conventional extraction. Application of pectinase preparation to the fruit juice extraction was therefore potential for improvement in antioxidant level of the product.

  3. α-Lipoic acid antioxidant treatment limits glaucoma-related retinal ganglion cell death and dysfunction.

    Directory of Open Access Journals (Sweden)

    Denise M Inman

    Full Text Available Oxidative stress has been implicated in neurodegenerative diseases, including glaucoma. However, due to the lack of clinically relevant models and expense of long-term testing, few studies have modeled antioxidant therapy for prevention of neurodegeneration. We investigated the contribution of oxidative stress to the pathogenesis of glaucoma in the DBA/2J mouse model of glaucoma. Similar to other neurodegenerative diseases, we observed lipid peroxidation and upregulation of oxidative stress-related mRNA and protein in DBA/2J retina. To test the role of oxidative stress in disease progression, we chose to deliver the naturally occurring, antioxidant α-lipoic acid (ALA to DBA/2J mice in their diet. We used two paradigms for ALA delivery: an intervention paradigm in which DBA/2J mice at 6 months of age received ALA in order to intervene in glaucoma development, and a prevention paradigm in which DBA/2J mice were raised on a diet supplemented with ALA, with the goal of preventing glaucoma development. At 10 and 12 months of age (after 4 and 11 months of dietary ALA respectively, we measured changes in genes and proteins related to oxidative stress, retinal ganglion cell (RGC number, axon transport, and axon number and integrity. Both ALA treatment paradigms showed increased antioxidant gene and protein expression, increased protection of RGCs and improved retrograde transport compared to control. Measures of lipid peroxidation, protein nitrosylation, and DNA oxidation in retina verified decreased oxidative stress in the prevention and intervention paradigms. These data demonstrate the utility of dietary therapy for reducing oxidative stress and improving RGC survival in glaucoma.

  4. Effect of the Antioxidant Lipoic Acid in Aortic Phenotype in a Marfan Syndrome Mouse Model

    Directory of Open Access Journals (Sweden)

    Maria C. Guido

    2018-01-01

    Full Text Available Marfan syndrome (MFS cardiovascular manifestations such as aortic aneurysms and cardiomyopathy carry substantial morbidity/mortality. We investigated the effects of lipoic acid, an antioxidant, on ROS production and aortic remodeling in a MFS mgΔloxPneo mouse model. MFS and WT (wild-type 1-month-old mice were allocated to 3 groups: untreated, treated with losartan, and treated with lipoic acid. At 6 months old, echocardiography, ROS production, and morphological analysis of aortas were performed. Aortic ROS generation in 6-month-old MFS animals was higher at advanced stages of disease in MFS. An unprecedented finding in MFS mice analyzed by OCT was the occurrence of focal inhomogeneous regions in the aortic arch, either collagen-rich extremely thickened or collagen-poor hypotrophic regions. MFS animals treated with lipoic acid showed markedly reduced ROS production and lower ERK1/2 phosphorylation; meanwhile, aortic dilation and elastic fiber breakdown were unaltered. Of note, lipoic acid treatment associated with the absence of focal inhomogeneous regions in MFS animals. Losartan reduced aortic dilation and elastic fiber breakdown despite no change in ROS generation. In conclusion, oxidant generation by itself seems neutral with respect to aneurysm progression in MFS; however, lipoic acid-mediated reduction of inhomogeneous regions may potentially associate with less anisotropy and reduced chance of dissection/rupture.

  5. ANTIOXIDANT POTENCY OF WATER KEFIR

    Directory of Open Access Journals (Sweden)

    Muneer Alsayadi M.S.

    2013-06-01

    Full Text Available Reactive oxygen species (ROS have strong relationship with several diseases. Many fermented foods were reported to be important sources for antioxidant compounds. Antioxidant activity of water kefir never reported in the scientific literature. The objective of this study was to detect and investigate the antioxidant potency of water kefir. Water kefir was prepared by fermentation of sugar solution with kefir grains for 24h. Antioxidant activity of fresh water kefir drink and its extract with (0.125–5 mg/ml was evaluated using 2,2,-diphenyl-1-pricrylhydrozyl (DPPH scavenging method, and inhibition of ascorbate autoxidation and the reducing power of water kefir were determined, Butylated hydroxyanisole (BHA and ascorbic acid were used for comparison. Water kefir demonstrated great ability to DPPH scavenging ranged (9.88-63.17%. And inhibit ascorbate oxidation by (6.08-25.57% increased in consequent with concentration raising. These results prime to conclude that water kefir could be promisor source of natural antioxidants with good potency in health developing.

  6. HERBAL REMEDIES AS ANTIOXIDANTS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Manoj S. Charde

    2012-01-01

    Full Text Available The primary cause of degenerative disease is not due to damaging free radicals, but rather it is due to the requirement of highly ordered cell biochemistry becoming disordered due to insufficient cellular energy to maintain the normal state of order. There is a complex defense system in the body, in which vitamins, minerals, amino acids and certain enzymes play a central role called the antioxidant system. Antioxidants are weapons for combating free radicals and mop up damaging chemicals in the body and guard against many chronic diseases. Heart disease, arthritis, cancer and many other common chronic diseases derive from the same source: fortuitous mutations caused largely by free radicals. Under optimum conditions, cells are protected against free radicals and lipid per oxidation. Antioxidants are substances, which react chemically with free radicals and render them harmless and at the same time break the vicious circle, which involves the decomposition of fatty acids & proteins, the creation of new free radicals and eventual cell death. Because free radical damage accumulates with age, people should start supplementing with antioxidants early to achieve long-term benefits. The scientific community has begun to unveil some of  the  mysteries surrounding this topic, and the media has begun whetting our thirst for knowledge.

  7. Polyphenol oxidase activity and antioxidant properties of Yomra apple (Malus communis L.) from Turkey.

    Science.gov (United States)

    Can, Zehra; Dincer, Barbaros; Sahin, Huseyin; Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi

    2014-12-01

    In this study, firstly, antioxidant and polyphenol oxidase (PPO) properties of Yomra apple were investigated. Seventeen phenolic constituents were measured by reverse phase-high-performance liquid chromatography (RP-HPLC). Total phenolic compounds (TPCs), ferric reducing antioxidant power (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activities were performed to measure antioxidant capacity. Some kinetic parameters (Km, Vmax), and inhibition behaviors against five different substrates were measured in the crude extract. Catechin and chlorogenic acid were found as the major components in the methanolic extract, while ferulic acid, caffeic acid, p-hydroxybenzoic acid, quercetin and p-coumaric acid were small quantities. Km values ranged from 0.70 to 10.10 mM in the substrates, and also 3-(4-hydroxyphenyl) propanoic acid (HPPA) and L-DOPA showed the highest affinity. The inhibition constant of Ki were ranged from 0.05 to 14.90 mM against sodium metabisulphite, ascorbic acid, sodium azide and benzoic acid, while ascorbic acid and sodium metabisulphite were the best inhibitors.

  8. DNA Damage Protecting Activity and Antioxidant Potential of Launaea taraxacifolia Leaves Extract.

    Science.gov (United States)

    Adinortey, Michael Buenor; Ansah, Charles; Weremfo, Alexander; Adinortey, Cynthia Ayefoumi; Adukpo, Genevieve Etornam; Ameyaw, Elvis Ofori; Nyarko, Alexander Kwadwo

    2018-01-01

    The leaf extract of Launaea taraxacifolia commonly known as African Lettuce is used locally to treat dyslipidemia and liver diseases, which are associated with oxidative stress. Methanol extract from L. taraxacifolia leaves was tested for its antioxidant activity and its ability to protect DNA from oxidative damage. In vitro antioxidant potential of the leaf extract was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO), and hydroxyl (OH) radical scavenging assays. Ferric reducing power, total antioxidant capacity (TAC), metal chelating, and anti-lipid peroxidation ability of the extract were also examined using gallic acid, ascorbic acid, citric acid, and ethylenediaminetetraacetic acid as standards. L. taraxacifolia leaves extract showed antioxidant activity with IC 50 values of 16.18 μg/ml (DPPH), 123.3 μg/ml (NO), 128.2 μg/ml (OH radical), 97.94 μg/ml (metal chelating), 80.28 μg/ml (TAC), and 23 μg/ml (anti-lipid peroxidation activity). L. taraxacifolia leaves extract exhibited a strong capability for DNA damage protection at 20 mg/ml concentration. These findings suggest that the methanolic leaf extract of L. taraxacifolia could be used as a natural antioxidant and also as a preventive therapy against diseases such as arteriosclerosis associated with DNA damage.

  9. Chemical Composition and Antioxidant Activity in Different Tissues of Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Shiva Ram Bhandari

    2015-01-01

    Full Text Available This research was conducted to evaluate glucosinolate profiles, vitamin C, total phenol, total flavonoid, and free sugar (glucose, fructose, and sucrose content, fatty acid composition, and antioxidant activity in floret and leaf of six cauliflower and broccoli cultivars. The level of chemical constituents as well as antioxidants significantly varied among crop types, cultivars, and their different parts, in that phytochemicals such as glucosinolate were statistically higher in florets compared with leaves in both broccoli and cauliflower cultivars. In contrast, total flavonoid and free sugar were found at higher levels in the leaf parts. The Asia purple cultivar exhibited statistically higher vitamin C (649.7 mg·100 g−1, total phenol (1345.2 mg·GAE 100 g−1, and total flavonoid (632.7 mg·CE 100 g−1 contents and consequently had the highest antioxidant activity (1.12 mg·mL−1 in its florets, while Baeridom and Bridal had the highest total glucosinolate (9.66 µmol·g−1 and free sugar (318.6 mg·g−1 contents, respectively compared with other cultivars. Likewise, the major fatty acids were palmitic (23.52%–38.42%, linoleic (13.09%–18.97%, and linolenic (26.32%–51.80% acids, which comprised the highest compositional ratio (more than 50% of polyunsaturated fatty acids (PUFAs in most cultivars. Among the antioxidants, total phenol exhibited the most significant positive correlation (r = 0.698 ** with antioxidant activity, followed by vitamin C (r = 0.522 ** and total flavonoid (r = 0.494 **, indicating their significant contributions to total antioxidant activity.

  10. Radioprotective effects of antioxidative plant flavonoids in mice

    International Nuclear Information System (INIS)

    Shimoi, Kayoko; Masuda, Shuichi; Shen, Bingrong; Furugori, Michiyo; Kinae, Naohide

    1996-01-01

    Radioprotective effects of tea infusions and plant flavonoids were investigated by using the micronucleus test for anticlastogenic activity and the thiobarbituric acid assay for antioxidative activity. A single gastric intubation of rooibos tea (Aspalathus linearis) infusion at 1 ml per mouse 2 h prior to γ-ray irradiation (1.5 Gy) reduced the frequency of micronucleated reticulocytes (MNRETs). After the fractionation of rooibos tea infusion, the flavonoid fraction was found to be most anticlastogenic and antioxidative. From this fraction, luteolin was isolated as an effective component. Then, anticlastogenic effects of 12 flavonoids containing luteolin and their antioxidative activities against lipid peroxidation by Fenton's reagent were examined. A good correlation (r=0.717) was observed between both activities. Luteolin showed the most effective potency. A gastric intubation of luteolin (10 μmol/kg) 2 h prior to γ-ray irradiation (6 Gy) suppressed lipid peroxidation in mouse bone marrow and spleen and a trend of protective effect of luteolin against the decrease of endogenous ascorbic acid in mouse bone marrow after γ-ray irradiation (3 Gy) was observed. These results suggest that plant flavonoids, which show antioxidative potency in vitro, work as antioxidants in vivo and their radioprotective effects may be attributed to their scavenging potency towards free radicals such as hydroxyl radicals. Therefore, the flavonoids contained in tea, vegetables and fruits seem to be important as antioxidants in the human diet

  11. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols

    Directory of Open Access Journals (Sweden)

    Hongnan Sun

    2018-01-01

    Full Text Available The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics.

  12. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols

    Science.gov (United States)

    Sun, Hongnan; Mu, Bona; Song, Zhen; Ma, Zhimin

    2018-01-01

    The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS) of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics. PMID:29643978

  13. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, Chisato, E-mail: yosizaki@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Nishio, Yoshihiko [Division of Diabetes, Metabolism and Endocrinology, Department of Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kashiwagi, Atsunori; Maegawa, Hiroshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  14. Evolution of antioxidant capacity during storage of selected fruits and vegetables.

    Science.gov (United States)

    Kevers, Claire; Falkowski, Michael; Tabart, Jessica; Defraigne, Jean-Olivier; Dommes, Jacques; Pincemail, Joël

    2007-10-17

    Interest in the consumption of fresh fruits and vegetables is, to a large extent, due to its content of bioactive nutrients and their importance as dietary antioxidants. Among all of the selected fruits and vegetables, strawberries and black grapes have relatively high antioxidant capacities associated with high contents of total phenolic compounds, ascorbic acid, and flavonols. More interesting, the results of this study indicated that in most fruits and vegetables storage did not affect negatively the antioxidant capacity. Better, in some cases, an increase of the antioxidant capacity was observed in the days following their purchase, accompanied by an increase in phenolic compounds. In general, fruits and vegetables visually spoil before any significant antioxidant capacity loss occurs except in banana and broccoli. When ascorbic acid or flavonoids (aglycons of flavonols and anthocyanins) were concerned, the conclusions were similar. Their content was generally stable during storage.

  15. Asparagus Root Regulates Cholesterol Metabolism and Improves Antioxidant Status in Hypercholesteremic Rats

    Directory of Open Access Journals (Sweden)

    Nishant P. Visavadiya

    2009-01-01

    Full Text Available Hyperlipidemia/hypercholesteremia are major risk factors for atherosclerosis and cardiovascular diseases. Root of Asparagus racemosus (AR is widely used in Ayurvedic system of medicine in India and is known for its steroidal saponin content. This study was designed to investigate the hypocholesteremic and antioxidant potential of AR root in both normo- and hypercholesteremic animals. Normal and hypercholesteremic male albino rats were administered with root powder of AR (5 and 10 g% dose levels along with normal and hypercholesteremic diets, respectively, for a duration of 4 weeks. Plasma and hepatic lipid profiles, fecal sterol, bile acid excretion and hepatic antioxidant activity were assessed. Inclusion of AR root powder in diet, resulted in a dose-dependant reduction in plasma and hepatic lipid profiles, increased fecal excretion of cholesterol, neutral sterol and bile acid along with increases in hepatic HMG-CoA reductase activity and bile acid content in hypercholesteremic rats. Further, AR root also improved the hepatic antioxidant status (catalase, SOD and ascorbic acid levels. No significant changes in lipid and antioxidant profiles occurred in the normocholesteremic rats administered with AR root powder. AR root appeared to be useful as a dietary supplement that offers a protection against hyperlipidemia/hypercholesteremia in hypercholesteremic animals. The results of the present study indicate that the potent therapeutic phyto-components present in AR root i.e. phytosterols, saponins, polyphenols, flavonoids and ascorbic acid, could be responsible for increased bile acid production, elimination of excess cholesterol and elevation of hepatic antioxidant status in hypercholesteremic conditions.

  16. Antioxidant and cytotoxicity effects of seed oils from edible fruits

    OpenAIRE

    Olubunmi Atolani; Joshua Omere; C.A. Otuechere; A. Adewuyi

    2012-01-01

    Objective: To propose a natural remedy for the some acute diseases the fatty acids profile, antioxidant and cytotoxicity potentials of seed oils from natural sources have been examined. Methods: The fatty acids profile of seed oils from sweet orange, grape, lime and watermelon obtained by soxhlet extraction were trans-esterified and examined by gas chromatography-mass spectrometry (GC-MS). The antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl assay were examined and compared with ga...

  17. Breast milk provides better antioxidant power than does formula.

    Science.gov (United States)

    Aycicek, Ali; Erel, Ozcan; Kocyigit, Abdurrahim; Selek, Sahbettin; Demirkol, Mehmet Resit

    2006-06-01

    We examined the effect of breast milk on plasma total antioxidant capacity (TAC), total peroxide (TP), and oxidative stress index (OSI), which are biomarkers of oxidative status. Fifty-four healthy term infants 3 to 6 mo of age were fed breast milk or a cow's milk modified formula. Plasma TAC, vitamin C, albumin, bilirubin, and uric acid levels were measured as indexes of antioxidative markers. Plasma TP levels were measured as an oxidative stress marker. The OSI was calculated to assess oxidative status. No significant differences were observed between groups with respect to growth or anthropometric measurements. Plasma uric acid, total protein, and albumin concentrations were slightly higher in the breast-fed group than in the formula-fed group. There was a positive correlation between infant's age and serum albumin levels; between TAC and plasma uric acid, albumin, and total bilirubin; and between plasma iron and TP levels in both groups (r > 0.256, P antioxidant power than does formula.

  18. Phenolic Profiles and Antioxidant Activity of Germinated Legumes

    Directory of Open Access Journals (Sweden)

    Do Tan Khang

    2016-04-01

    Full Text Available Bioactive compounds, which are naturally produced in plants, have been concerned with the food and pharmaceutical industries because of the pharmacological effects on humans. In this study, the individual phenolics of six legumes during germination and antioxidant capacity from sprout extracts were determined. It was found that the phenolic content significantly increased during germination in all legumes. Peanuts showed the strongest antioxidant capacity in both the DPPH• (1,1-diphenyl-2-picrylhydrazyl method and the reducing power assay (32.51% and 84.48%, respectively. A total of 13 phenolic acids were detected and quantified. There were 11 phenolic constituents identified in adzuki beans; 10 in soybeans; 9 in black beans, mung beans, and white cowpeas; and 7 compounds in peanuts. Sinapic acid and cinnamic acid were detected in all six legume sprouts, and their quantities in germinated peanuts were the highest (247.9 µg·g−1 and 62.9 µg·g−1, respectively. The study reveals that, among the investigated legumes, germinated peanuts and soybeans obtained maximum phenolics and antioxidant capacity.

  19. Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity.

    Science.gov (United States)

    Chandrasekara, Anoma; Shahidi, Fereidoon

    2010-06-09

    Soluble and insoluble-bound phenolic extracts of several varieties of millet (kodo, finger, foxtail, proso, pearl, and little millets) whole grains were evaluated for their phenolic contents and antioxidative efficacy using trolox equivalent antioxidant capacity (TEAC), reducing power (RP), and beta-carotene-linoleate model system as well as ferrous chelating activity. In addition, ferulic and p-coumaric acids were present in soluble and bound phenolic fractions of millets, and their contents were determined using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). Kodo millet had the highest total phenolic content, whereas proso millet possessed the least. All millet varieties showed high antioxidant activities, although the order of their efficacy was assay dependent. HPLC analysis of millet phenolic extracts demonstrated that the bound fractions contained more ferulic and p-coumaric acids compared to their soluble counterparts. The results of this study showed that soluble as well as bound fractions of millet grains are rich sources of phenolic compounds with antioxidant, metal chelating, and reducing power. The potential of whole millets as natural sources of antioxidants depends on the variety used. The importance of the insoluble bound fraction of millet as a source of ferulic acid and p-coumaric acid was established, and their contribution to the total phenolic content must be taken into account in the assessment of the antioxidant activity of millets.

  20. Antioxidant Capacity and Metal Content of Physalis Peruviana L. Fruit Sold in Markets

    Directory of Open Access Journals (Sweden)

    Ayse Eken

    2014-12-01

    Full Text Available Aim: The dietary intake of medicinal food with antioxidant activity and required amounts of trace elements is important to pursue good healthy life. In our study, we aimed to determine the antioxidant capacity and metal content of goldenberry (Physalis peruviana L. fruit sold in markets in Kayseri. Material and Method: The antioxidant capacity of P. peruviana fruit was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay. The DPPH radical scavenger capacity of the methanol extract of fruit was compared with known antioxidants such as ascorbic acid, gallic acid, and butylated hydroxytoluene (BHT as references. The metal content of P. peruviana fruit was measured by using atomic absorption spectrometer (AAS. Results: The fruit of P. peruviana was found to possess DPPH free radical scavenging activity but the antioxidant capacity was lower than the standard substances. Inhibitory concentration 50% (IC50 values of P. peruviana, ascorbic acid, gallic acid, and BHT were determined as 32 mg/ml, 3.8 mg/ml, 3.51 mg/ml, and 1.21 mg/ml, respectively. As a result of the analysis by AAS, it was observed that P. peruviana fruit contented plentiful trace elements and the content of heavy metal was small amount or not detected. Discussion: These observations suggest that the fruit of P. peruviana has a potential source of antioxidant and trace elements of natural origin.

  1. Antioxidant and prooxidant properties of caffeine, theobromine and xanthine.

    Science.gov (United States)

    Azam, Sonish; Hadi, Naghma; Khan, Nizam Uddin; Hadi, Sheikh Mumtaz

    2003-09-01

    Caffeine, along with its catabolic products theobromine and xanthine, is a key component of tea and coffee. These compounds are structurally similar to uric acid, a known antioxidant which is present in blood at relatively high concentrations, but also shows prooxidant activity. In view of the structural similarity between uric acid and caffeine and its metabolites, we studied the antioxidant and prooxidant properties of these compounds. Antioxidant activity was determined by measuring the quenching effect of the compounds on oxidative DNA degradation by a hydroxyl radical generating system. Prooxidant activity was studied by measuring the ability of the compounds to oxidatively degrade DNA in the presence of copper ions. Caffeine, theobromine and xanthine have a quenching effect on the production of hydroxyl radicals, as well as on oxidative DNA breakage by hydroxyl radicals. Consistent with previous observations that many known antioxidants of plant origin are also capable of prooxidant action, the purine alkaloids also show oxidative DNA breakage in the presence of transition metal ions. The alkaloid caffeine and its catabolic products theobromine and xanthine exhibit both antioxidant and prooxidant properties. The results lead to the observation that caffeine and its metabolites may also contribute to the overall antioxidant and chemopreventive properties of caffeine-bearing beverages, such as tea.

  2. Influence of salicylic and succinic acids on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Miroshnichenko N.N.

    2011-05-01

    Full Text Available The influence of treatment of millet (Panicum miliaceum L. seeds with the solutions of salicylic and succinic acids on the heat resistance of plantlets and activity of antioxidant enzymes – superoxide dismutase (SOD, catalase and peroxidase – in them have been investigated. In the micro-field experiment the influence of these acids on the millet yield was estimated. The action of salicylic (10 μM and succinic (1 mM acids caused the increase of plantlets resistance to the damaging heating that expressed in the rise of relative quantity of survived plantlets in 5 days after heating at the temperature of 47°С and in the reduced content of lipid peroxidation product malonic dialdehyde during the poststress period. The increase of activity of SOD, catalase and peroxidase took place in millet plantlets under the influence of salicylic and succinic acids. The increase of productivity of millet grain under the action of salicylic and succinic acids on 13,3-52,0 and 6,4-38,8% respectively depending on weather conditions in the field experiments was noted.

  3. Antioxidant Activities of Total Pigment Extract from Blackberries

    Directory of Open Access Journals (Sweden)

    Jiechao Liu

    2005-01-01

    Full Text Available Total pigment has been extracted from blackberries and its antioxidant activity against lipid peroxidation and scavenging capacities towards superoxide anion radicals, hydroxyl radicals and nitrite in different in vitro systems have been investigated. The total pigment extract from blackberries (TPEB exhibited strong antioxidant activity against lipid peroxidation in a linoleic acid model system and scavenging capacities towards superoxide anion radicals, generated by a pyrogallol autoxidation system or by an illuminating riboflavin system, hydroxyl radicals generated by Fenton reaction, and nitrite. Furthermore, the antioxidant activities were correlated with the concentrations of the TPEB. In the test concentration range, the maximum inhibition percentage against linoleic acid peroxidation was 98.32 % after one week’s incubation, and the maximum scavenging percentages for the free radicals and nitrite inhibition in the above reactive systems reached 90.48, 96.48, 93.58 and 98.94 %, respectively. The TPEB is a natural, edible colorant with excellent antioxidant activities and health benefits and it seems to be applicable in both healthy food and medicine.

  4. Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity

    Science.gov (United States)

    Munteanu, Bogdanel Silvestru; Aytac, Zeynep; Pricope, Gina M.; Uyar, Tamer; Vasile, Cornelia

    2014-10-01

    The antibacterial property of silver nanoparticles (Ag-NPs) and the antioxidant activity of Vitamin E have been combined by incorporation of these two active components within polylactic acid (PLA) nanofibers via electrospinning (PLA/Ag-NP/VitaminE nanofibers). The morphological and structural characterizations of PLA/Ag-NP/VitaminE nanofibers were performed by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and X-ray diffraction. The average fiber diameter was 140 ± 60 nm, and the size of the Ag-NP was 2.7 ± 1.5 nm. PLA/Ag-NP/VitaminE nanofibers inhibited growth of Escherichia coli, Listeria monocytogenes and Salmonella typhymurium up to 100 %. The amount of released Ag ions from the nanofibers immersed in aqueous solution was determined by Inductively Coupled Plasma Mass Spectrometry, and it has been observed that the release of Ag ions was kept approximately constant after 10 days of immersion. The antioxidant activity of PLA/Ag-NP/VitaminE nanofibers was evaluated according to DPPH (2,2-diphenyl-1-picrylhydrazyl) method and determined as 94 %. The results of the tests on fresh apple and apple juice indicated that the PLA/Ag/VitaminE nanofiber membrane actively reduced the polyphenol oxidase activity. The multifunctional electrospun PLA nanofibers incorporating Ag-NP and Vitamin E may be quite applicable in food packaging due to the extremely large surface area of nanofibers along with antibacterial and antioxidant activities. These materials could find application in food industry as a potential preservative packaging for fruits and juices.

  5. Antioxidant activity evaluation of new dosage forms as vehicles for dehydrated vegetables.

    Science.gov (United States)

    Romero-de Soto, María Dolores; García-Salas, Patricia; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio; Fernández-Campos, Francisco; Clares-Naveros, Beatriz

    2013-06-01

    A dehydrated vegetables mixture loaded in four pharmaceutical dosage forms as powder, effervescent granulate, sugar granulate and gumdrops were investigated for their antioxidant capacity using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging capacity assay, oxygen radical absorbance capacity assay and ferric reducing antioxidant potential assay. Total phenolic content of dehydrated vegetables powder mixture was also measured by the Folin-Ciocalteu method, so as to evaluate its contribution to their total antioxidant function. The effect of different temperatures on stability of these systems after 90 days storage was also evaluated. These formulations presented strong antioxidant properties and high phenolic content (279 mg gallic acid equivalent/g of sample) and thus could be potential rich sources of natural antioxidants. Antioxidant properties differed significantly among selected formulations (p forms are new and innovative approach for vegetable intakes in population with special requirements providing an improvement in the administration of vegetables and fruits.

  6. Effects of boiling and in vitro gastrointestinal digestion on the antioxidant activity of Sonchus oleraceus leaves.

    Science.gov (United States)

    Mawalagedera, S M M R; Ou, Zong-Quan; McDowell, Arlene; Gould, Kevin S

    2016-03-01

    Leaves of Sonchus oleraceus L. are especially rich in phenolic compounds and have potent extractable antioxidants. However, it is not known how their antioxidant activity changes after cooking and gastrointestinal digestion. We recorded the profile of phenolics and their associated antioxidant activity in both raw and boiled S. oleraceus leaf extracts after in vitro gastric and intestinal digestion, and quantified their antioxidant potentials using Caco-2 and HepG2 cells. Boiling significantly diminished the oxygen radical absorbance capacity (ORAC) and concentrations of ascorbate and chicoric acid in the soluble fractions. In contrast, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and concentrations of caftaric and chlorogenic acids were unaffected. Phenolics in the soluble fraction were absorbed into cultured human cells and exerted antioxidant activity. Only chlorogenic acid content remained stable during gastrointestinal digestion. S. oleraceus appears to be an excellent dietary source of phenolic antioxidants.

  7. Phenolic compounds, bioactive content and antioxidant capacity of the fruits of mulberry (Morus spp. germplasm in Turkey

    Directory of Open Access Journals (Sweden)

    Gundogdu Muttalip

    2017-12-01

    Full Text Available The study was carried out in 2014 and 2015, and aimed to determine some important biochemical and antioxidant characteristics of the fruits of mulberry (Morus spp. cultivars and genotypes found in Malatya (Turkey. Phenolic compounds (protocatechuic acid, vanillic acid, ellagic acid, rutin, quercetin, gallic acid, catechin, chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid, o-coumaric acid, phloridzin and ferulic acid, organic acids, sugars, vitamin C and antioxidant capacity were analyzed in sampled fruits. The results showed that most of the biochemical content and antioxidant capacities of the cultivars and genotypes were significantly different from one another (p < 0.05. Among the phenolic compounds, rutin (118.23 mg 100 g-1, gallic acid (36.85 mg 100 g-1, and chlorogenic acid (92.07 mg 100 g-1 were determined to have the highest values for most of the fruit samples. Malic acid and citric acid were dominant among the organic acids for all the cultivars and genotypes except 44-Nrk-05. Glucose was measured as a more abundant sugar than fructose and sucrose in all samples. Antioxidant capacity, on the other hand, varied between 6.17 and 21.13 μmol TE g-1 among the cultivars and genotypes analyzed.

  8. Composition of phenolic compounds and antioxidant attributes of Cyclea gracillima Diels extracts

    Directory of Open Access Journals (Sweden)

    Jau-Tien Lin

    2018-01-01

    Full Text Available Cyclea gracillima Diels is a Taiwanese native medicinal herb. However, there are currently few relevant reports on its biochemical activity. In this study, the antioxidant attributes of the ethanol and hot water extracts of this herb were assayed using in vitro models, including the following: 2,2-diphenyl-1-(2,4,6-trinitrophenyl-hydrazyl radical scavenging, Trolox equivalent antioxidant capacity, reducing power, and chelating ferrous ions. The following biochemical models were also assayed: inhibition of human low density lipoprotein oxidation, inhibition of human erythrocyte hemolysis, and scavenging oxygen radicals in human blood. The composition and content of flavonoids and phenolic acids in these extracts were also analyzed. The results showed that these extracts with high polyphenol levels presented remarkable antioxidant effects in all assays, especially when extracted with ethanol. Six phenolic acids (mainly ferulic acid, sinapic acid, and syringic acid and 12 flavonoids (mainly narigenin, myricetin, naringin, and apigenin were found in these extracts.

  9. Fatty acid composition and natural antioxidant capacity of ten Serbian linseed cultivars

    Directory of Open Access Journals (Sweden)

    Čolović Dušica S.

    2015-01-01

    Full Text Available Literature data about nutritional characteristics of linseed cultivars from some specific geographical area or country is scarce. For that very reason, following paper is presenting fatty acid (FA compositions and antioxidant capacity of lipid-soluble (ACL components of ten native linseed cultivars from Serbia. These characteristics can be interesting, especially due to the increasing trend of linseed usage in human diet. Presented results show that there were statistically significant (p<0.05 differences between linseed kernels in FA composition. Negative correlation was found between FA C18:0 and α-linolenic acid (ALA. The cultivar with the highest ACL value was No. 10 (342.66 μmol trolox/kg d.m., meaning that it had very strong protection against oxidation of polyunsaturated FAs. Nevertheless, correlation between ACL and polyunsaturated FA content in cultivars was not statistically significant (p=0.84. ACL of the samples did not depend on FA composition of linseed, but it might depend on characteristics of a specific cultivar. The aforementioned results show potential usage in storage of linseeds or its products, while FA composition of linseed kernels might be one of criteria for authentication of linseed origin, and can be of great help in future selection of the cultivars, depending on purpose of linseed production.

  10. Patients undergoing long-term treatment with antihypertensive eye drops responded positively with respect to their ocular surface disorder to oral supplementation with antioxidants and essential fatty acids.

    Science.gov (United States)

    Galbis-Estrada, Carmen; Pinazo-Durán, Maria D; Cantú-Dibildox, Jorge; Marco-Ramírez, Carla; Díaz-Llópis, Manuel; Benítez-del-Castillo, Javier

    2013-01-01

    Glaucoma and dry eye disorders (DEDs) are frequent comorbidities. The antioxidant and anti-inflammatory properties of essential polyunsaturated fatty acids have been extensively studied in relation to eye diseases. Our objective was to determine the effects of oral supplementation with a combined formulation of antioxidants and essential polyunsaturated fatty acids on expression of cytokines and chemokines in tears from patients with DEDs or primary open-angle glaucoma (POAG). Participants (n = 97) were distributed into three groups: (1) individuals with nonsevere DEDs (DEDG), (2) individuals with nonadvanced POAG (POAGG), and (3) healthy controls. These groups were randomized into two subgroups: one received a daily antioxidant and essential polyunsaturated fatty acid supplement (two pills) for 3 months (+S), and the other did not (-NS). Participants were interviewed and ophthalmologically examined. Concentrations of specific cytokines and chemokines in reflex tears were determined by multiplexed particle-based flow cytometry. The data were analyzed statistically (SPSS version 15.0). Comparison of the results from the DEDG and POAGG patients showed significant differences in tear expression of granulocyte-macrophage colony-stimulating factor (P = 0.008), tumor necrosis factor α (P = 0.005), vascular endothelial growth factor (P = 0.038), interleukin-4 (P = 0.030), and interleukin-6 (P = 0.044). The main signs and symptoms of dry eyes such as dryness, burning, photophobia, eye heaviness, and blurred vision, as well as positive changes in eyelashes, hair, nails and skin, were significantly improved in DEDG +S and POAGG +S patients relative to unsupplemented patients. Inflammation biomarkers were differentially expressed in glaucomatous tears, but the differences changed upon antioxidant/essential polyunsaturated fatty acid supplementation. Chronic instillation of antihypertensive eye drops must be considered for integrating protocols to glaucoma standards of care.

  11. Design and straightforward synthesis of novel galloyl phytosterols with excellent antioxidant activity.

    Science.gov (United States)

    Fu, Yuanqing; Zhang, Yan; Hu, Huiying; Chen, Ying; Wang, Rong; Li, Duo; Liu, Songbai

    2014-11-15

    Novel galloyl phytosterols were rationally designed by incorporation of gallic acid into phytosterols through straightforward esterification. The esterification was successfully achieved by coupling of gallic acid and phytosterols through a mild chemical Steglich esterification reaction that is more straightforward than the enzymatic method. The identity of the newly synthesized galloyl phytosterols was confirmed by NMR, HPLC-MS and IR spectroscopies. Further evaluation of the novel galloyl phytosterols with radical scavenging, ferrous ion chelating, and Rancimat methods revealed its excellent antioxidant activities that are comparable to the most potent fat-soluble antioxidants. This novel antioxidant offers an intriguing solution for naturally derived antioxidants and will have great potential application as antioxidant in food industry. The methods developed in this study will be valuable for development of other phenolic phytosterols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Antioxidant activities of aqueous extract from Stevia rebaudiana stem waste to inhibit fish oil oxidation and identification of its phenolic compounds.

    Science.gov (United States)

    Yu, Hui; Yang, Gangqiang; Sato, Minoru; Yamaguchi, Toshiyasu; Nakano, Toshiki; Xi, Yinci

    2017-10-01

    We investigated the potential for exploiting Stevia rebaudiana stem (SRS) waste as a source of edible plant-based antioxidants finding for the first time that the hot water extract of SRS had significantly higher antioxidant activity against fish oil oxidation than that of the leaf, despite SRS extract having lower total phenolic content, DPPH radical scavenging activity and ORAC values. To locate the major antioxidant ingredients, SRS extract was fractionated using liquid chromatography. Five phenolic compounds (primary antioxidant components in activity-containing fractions) were identified by NMR and HR-ESI-MS: vanillic acid 4-O-β-d-glucopyranoside (1), protocatechuic acid (2), caffeic acid (3), chlorogenic acid (4) and cryptochlorogenic acid (5). Further analysis showed that, among compounds 2-5, protocatechuic acid had the highest capacity to inhibit peroxides formation, but exhibited the lowest antioxidant activities in DPPH and ORAC assays. These results indicate that SRS waste can be used as strong natural antioxidant materials in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Plants as natural antioxidants for meat products

    Science.gov (United States)

    Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M.

    2017-09-01

    The meat industry is demanding antioxidants from natural sources to replace synthetic antioxidants because of the negative health consequences or beliefs regarding some synthetic ones. Plants materials provide good alternatives. Spices and herbs, generally used for their flavouring characteristics, can be added to meat products in various forms: whole, ground, or as isolates from their extracts. These natural antioxidants contain some active compounds, which exert antioxidative potential in meat products. This antioxidant activity is most often due to phenolic acids, phenolic diterpenes, flavonoids and volatile oils. Each of these compounds often has strong H-donating activity, thus making them extremely effective antioxidants; some compounds can chelate metals and donate H to oxygen radicals, thus slowing oxidation via two mechanisms. Numerous studies have demonstrated the efficacy of natural antioxidants when used in meat products. Based on this literature review, it can be concluded that natural antioxidants are added to fresh and processed meat and meat products to delay, retard, or prevent lipid oxidation, retard development of off-flavours (rancidity), improve colour stability, improve microbiological quality and extend shelf-life, without any damage to the sensory or nutritional properties.

  14. Antioxidant activity of alstonia Angustifolia ethanolic leaf extract

    Science.gov (United States)

    Rahim, Nurhidayah Ab; Zakaria, Noorzafiza; Dzulkarnain, Syarifah Masyitah Habib; Azahar, Nazar Mohd Zabadi Mohd; Abdulla, Mahmood Ameen

    2017-10-01

    In current study, the ability of the ethanolic extract of Alstonia angustifolia in scavenging free radicals was assessed by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and hydrogen peroxide (H2O2) radical scavenging assay. The results suggested that the ethanolic extract of A. angustifolia leaves has a notable antioxidant activity. In FRAP assay, it showed that the extract have higher total antioxidant activity with FRAP value is 1868.33 µM/g Fe (ii) dry mass ± 0.15 than the control, quercetin with FRAP value is 1336.9 µM/g Fe (II) dry mass ± 0.12 and ascorbic acid with FRAP value is 1720 µM/g Fe (II) dry mass ± 0.02. For DPPH assay, the IC50 value of the extract is 384.77 while the IC50 value of standards of ascorbic acid and quercetin are 18.07 µg/ml and 39.60 µg/ml, respectively. For H2O2 scavenging assay, the IC50 value for the extract was discovered to be 186.77 µg/ml compared to standard ascorbic acid 466.56 µg/ml. Thus, the study suggests that A. angustifolia ethanolic leaf extract has a good origin of natural antioxidants and might be beneficial in impeding the oxidative stress progression thus averting diseases that related to free radicals.

  15. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity, Antioxidant Properties, Phenolic Content and Amino Acid Profiles of Fucus spiralis L. Protein Hydrolysate Fractions

    Directory of Open Access Journals (Sweden)

    Lisete Paiva

    2017-10-01

    Full Text Available Food protein-derived hydrolysates with multi-bioactivities such as antihypertensive and antioxidant properties have recently received special attention since both activities can play significant roles in preventing cardiovascular diseases. This study reports, for the first time, the angiotensin I-converting enzyme (ACE-inhibition and antioxidant properties of ultrafiltrate fractions (UF with different molecular weight ranges (<1, 1–3 and ≥3 kDa obtained from Fucus spiralis protein hydrolysate (FSPH digested with cellulase–bromelain. The amino acids profile, recovery yield, protein, peptide and total phenolic contents of these FSPH-UF, and the in vitro digestibility of F. spiralis crude protein were also investigated. FSPH-UF ≥3 kDa presented remarkably higher ACE-inhibition, yield, peptide and polyphenolic (phlorotannins contents. Antioxidant analysis showed that FSPH-UF <1 kDa and ≥3 kDa exhibited significantly higher scavenging of 2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion-chelating (FIC activity. FSPH-UF ≥3 kDa had also notably higher ferric reducing antioxidant power (FRAP. Strong correlations were observed between ACE-inhibition and antioxidant activities (FIC and FRAP. The results suggest that ACE-inhibition and antioxidant properties of FSPH-UF may be due to the bioactive peptides and polyphenols released during the enzymatic hydrolysis. In conclusion, this study shows the potential use of defined size FSPH-UF for the prevention/treatment of hypertension and/or oxidative stress-related diseases.

  16. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    Science.gov (United States)

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  17. Cross-sectional study of antioxidant status in normotensive and ...

    African Journals Online (AJOL)

    concentration of all antioxidants except uric acid were significantly lower during pregnancy when compared with controls (t= 2.06; p<0.01). In the normotensive group of pregnant women, vitamin C was the only antioxidant that showed significant higher concentration when the second trimester concentration and third ...

  18. Chlorogenic acid and caffeic acid are absorbed in humans

    NARCIS (Netherlands)

    Olthof, Margreet R.; Hollman, Peter C H; Katan, Martijn B.

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the

  19. Rate of antioxidant degradation and color variations in dehydrated apples as related to water activity.

    Science.gov (United States)

    Lavelli, Vera; Vantaggi, Claudia

    2009-06-10

    Dehydrated apples were studied to evaluate the effects of water activity on the stability of their antioxidants and color. Apples were freeze-dried, ground, then equilibrated, and stored at eight water activity levels, ranging from 0.058 to 0.747, at 40 degrees C. Their contents of hydroxycinnamic acids, dihydrochalcones, catechin, epicatechin, polymeric flavan-3-ols, and hydroxymethylfurfural, their antioxidant activity values, and their Hunter colorimetric parameters were analyzed at different storage times. Antioxidant degradation followed pseudo-first-order kinetics and was accelerated by increasing the water activity. The order of antioxidant stability in the products at water activity levels below 0.316 was catechin, epicatechin, and ascorbic acid acid acid; however, in the products at water activity levels above 0.316, the degradation of all antioxidants was very fast. The hydroxymethylfurfural formation rate increased exponentially during storage, especially at high water activity levels. The antioxidant activity of the dehydrated apples decreased during storage, consistent with antioxidant loss. The variations of the colorimetric parameters, namely, lightness (L*), redness (a*), and yellowness (b*), followed pseudo-zero-order kinetics and were accelerated by increasing water activity. All analytical indices indicated that the dehydrated apples were stable at water activity levels below 0.316, with the degradation rate accelerating upon exposure to higher relative humidities. Above 0.316, a small increase in water activity of the product would sharply increase the degradation rate constants for both antioxidant and color variations.

  20. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress.

    Science.gov (United States)

    Li, Shi-Weng; Leng, Yan; Feng, Lin; Zeng, Xiao-Ying

    2014-01-01

    In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.

  1. Investigation of Gelatin Polypeptides of Jellyfish (Rhopilema esculentum for Their Antioxidant Activity in vitro

    Directory of Open Access Journals (Sweden)

    Yong-Liang Zhuang

    2010-01-01

    Full Text Available Jellyfish gelatin was hydrolyzed by different proteases to obtain antioxidative polypeptides. The gelatin hydrolysate obtained by progressive hydrolysis using trypsin and Properase E exhibited the highest hydrolysis degree and antioxidant activity. Three series of gelatin polypeptides (SCP1, SCP2 and SCP3 were obtained by ultrafiltrating the gelatin hydrolysate through molecular mass cut-off membranes of 10, 6 and 2 kDa, respectively. Amino acid composition analysis showed that SCP3 had the highest total hydrophobic amino acid content. The in vitro antioxidant tests demonstrated that SCP2 had the strongest hydroxyl radical and hydrogen peroxide scavenging activities and metal chelating ability, while SCP3 showed the highest reducing power, antioxidant activity in linoleic acid emulsion system and superoxide anion radical scavenging activity. The results support the feasibility of jellyfish gelatin as a natural antioxidant polypeptide provider, and enzymatic hydrolysis and ultrafiltration could be potent future processing technologies to utilize the abundant jellyfish resource.

  2. Antimicrobial and antioxidant activity of lemon balm Kombucha

    Directory of Open Access Journals (Sweden)

    Velićanski Aleksandra S.

    2007-01-01

    Full Text Available Kombucha is a beverage traditionally produced by metabolic activity of yeasts and acetic acid bacteria. The antimicrobial activity of lemon balm kombucha as well as of particular control samples was determined by agar-well diffusion method. Antioxidant activity on stable 1,1-diphenyl-2-picrylhydrazyl radicals of lemon balm kombucha and lemon balm tea was determined by electron spin resonance spectroscopy. Acetic acid, Kombucha samples and heat-denaturated kombucha showed significant antimicrobial activity against bacteria. However, there was no activity against yeasts and moulds. Kombucha showed higher antioxidant activity than tea sample for all applied sample volumes.

  3. How the multiple antioxidant properties of ascorbic acid affect lipid oxidation in oil-in-water emulsions.

    Science.gov (United States)

    Uluata, Sibel; McClements, D Julian; Decker, Eric A

    2015-02-18

    Lipid oxidation is a serious problem for oil-containing food products because it negatively affects shelf life and nutritional composition. An antioxidant strategy commonly employed to prevent or delay oxidation in foods is to remove oxygen from the closed food-packaging system. An alternative technique is use of an edible oxygen scavenger to remove oxygen within the food. Ascorbic acid (AA) is a particularly promising antioxidant because of its natural label and multiple antioxidative functions. In this study, AA was tested as an oxygen scavenger in buffer and an oil-in-water (O/W) emulsion. The effects of transition metals on the ability of AA to scavenge oxygen were determined. Headspace oxygen decrease less than 1% in the medium-chain triacylglycerol (MCT) O/W emulsion system (pH 3 and 7). AA was able to almost completely remove dissolved oxygen (DO) in a buffered solution. Transition metals (Fe(2+) and Cu(+)) significantly accelerated the degradation of AA; however, iron and copper only increased DO depletion rates, by 10.6-16.4% from day 1 to 7, compared to the control. AA (2.5-20 mM) decreased DO in a 1% O/W emulsion system 32.0-64.0% and delayed the formation of headspace hexanal in the emulsion from 7 to over 20 days. This research shows that, when AA is used in an O/W emulsion system, oxidation of the emulsion system can be delay by multiple mechanisms.

  4. Methanol Extracts of 28 Hieracium Species from the Balkan Peninsula - Comparative LC-MS Analysis, Chemosystematic Evaluation of their Flavonoid and Phenolic Acid Profiles and Antioxidant Potentials.

    Science.gov (United States)

    Milutinović, Violeta; Niketić, Marjan; Ušjak, Ljuboš; Nikolić, Dejan; Krunić, Aleksej; Zidorn, Christian; Petrović, Silvana

    2018-01-01

    Hieracium s. str. represents one of the largest and most complex genera of flowering plants. As molecular genetics seems unlikely to disentangle intricate relationships within this reticulate species complex, analysis of flavonoids and phenolic acids, known as good chemosystematic markers, promise to be more reliable. Data about pharmacological activity of Hieracium species are scarce. Evaluation of the chemosystematic significance of flavonoids and phenolic acids of methanol extracts of aerial flowering parts of 28 Hieracium species from the Balkans. Additionally, investigation of antioxidant potentials of the extracts. Comparative qualitative and quantitative analysis of flavonoids and phenolic acids was performed by LC-MS. Multivariate statistical data analysis included non-metric multidimensional scaling (nMDS), unweighted pair-group arithmetic averages (UPGMA) and principal component analysis (PCA). Antioxidant activity was evaluated using three colorimetric tests. Dominant phenolics in almost all species were luteolin type flavonoids, followed by phenolic acids. Although the investigated Hieracium species share many compounds, the current classification of the genus was supported by nMDS and UPGMA analyses with a good resolution to the group level. Hieracium naegelianum was clearly separated from the other investigated species. Spatial and ecological distances of the samples were likely to influence unexpected differentiation of some groups within H. sect. Pannosa. The vast majority of dominant compounds significantly contributed to differences between taxa. The antioxidant potential of the extracts was satisfactory and in accordance with their phenolics composition. Comparative LC-MS analysis demonstrated that flavonoids and phenolic acids are good indicators of chemosystematic relationships within Hieracium, particularly between non-hybrid species and groups from the same location. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley

  5. Inhibitory mechanism against oxidative stress of caffeic acid

    Directory of Open Access Journals (Sweden)

    Farhan Ahmed Khan

    2016-10-01

    Full Text Available The purpose of this article is to summarize the reported antioxidant activities of a naturally abundant bioactive phenolic acid, caffeic acid (CA, 3,4-dihydroxycinnamic acid, so that new avenues for future research involving CA can be explored. CA is abundantly found in coffee, fruits, vegetables, oils, and tea. CA is among the most potential and abundantly found in nature, hydroxycinnamic acids with the potential of antioxidant behavior. Reactive oxygen species produced as a result of endogenous processes can lead to pathophysiological disturbances in the human body. Foods containing phenolic substances are a potential source for free radical scavenging; these chemicals are known as antioxidants. This review is focused on CA's structure, availability, and potential as an antioxidant along with its mode of action. A brief overview of the literature published about the prooxidant potential of caffeic acid as well as the future perspectives of caffeic acid research is described. CA can be effectively employed as a natural antioxidant in various food products such as oils.

  6. Determination of antioxidant activity in methanolic and chloroformic ...

    African Journals Online (AJOL)

    Administrator

    2011-06-06

    Jun 6, 2011 ... ... of plants and/or food containing antioxidant agents may help the body to ..... capability to been used in food systems to preserve food quality. ... essential oil, carnosic acid, rosmarinic acid and sesamol. Food. Chem. 110(1): ...

  7. Total oxidant/antioxidant status in jaundiced newborns before and after phototherapy.

    Science.gov (United States)

    Aycicek, Ali; Erel, Ozcan

    2007-01-01

    To assess the effect of phototherapy on serum oxidant and antioxidant status in hyperbilirubinemic full-term newborns. Thirty-four full-term infants from 3 to 10 days of age exposed to phototherapy were studied. The serum antioxidant status was assessed by measuring the total antioxidant capacity (TAC) and individual antioxidant components: vitamin C, uric acid, albumin, thiol contents and total bilirubin. The oxidant status was assessed by determining the total oxidant status (TOS), oxidative stress index (OSI) and individual oxidant components: malondialdehyde (MDA), and lipid hydroperoxide levels. Vitamin C, uric acid, total bilirubin and MDA concentration were significantly lower, whereas serum TOS, lipid hydroperoxide and OSI levels were significantly higher after phototherapy (p total bilirubin and MDA (r = 0.434, p = 0.001). Although the MDA level was reduced after phototherapy, phototherapy has a negative impact on numerous parts of the oxidant/antioxidant defense system in jaundiced full-term newborns, exposing them to potential oxidative stress.

  8. Phenolipids as antioxidants in emulsified systems

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Bayrasy, Christelle; Laguerre, Mickäel

    Lipid oxidation is a major issue in foods containing LC PUFA and substantial efforts have been made to protect lipids against oxidation. Recent studies carried out with phenolipids (lipophilized phenolics) in emulsified systems have shown that increased lipophilicity did not necessarily lead...... antioxidant effect has been shown to be influenced by the specific phenolic compound and the type of emulsion. The overall aim for our work was to evaluate phenolipids with different lipophilicity as antioxidants in emulsified food. In the study presented here caffeic, ferulic and coumaric acid were selected...... along with their corresponding alkyl esters (C4-C20). The methods used to evaluate the antioxidative effect of the different phenolipids were the CAT assay (o/w emulsion), antioxidant assays (DPPH, Iron chelating and reducing power) and partitioning studies. Moreover, the results from the CAT assay...

  9. Evaluation of Antioxidant Properties and Phenolic Composition of Fruit Tea Infusions

    Directory of Open Access Journals (Sweden)

    Saliha Şahin

    2013-09-01

    Full Text Available The popularity of fruit tea is increasing in the world because of its antioxidant properties and attractive taste. The aim of this study was to determine and compare the antioxidant property and phenolic composition of 16 different fruit teas. The antioxidant property and total phenol content of fruit teas depending on the extraction condition (water temperature were examined using the ABTS (2,2-azinobis[3-ethylbenzothiazoline-6-sulphonic acid] method and the Folin-Ciocalteu method, respectively. The contents of total flavonoid and total anthocyanin of fruit teas was determined by using the UV/Vis spectrophotometric method. The phenolic composition was determined and quantified by using high performance liquid chromatography and photodiode array detection (HPLC-PDA. The highest total phenol content and antioxidant capacity were determined in pomegranate (I. The highest contents of total flavonoid and total anthocyanin were determined in peach (III and blackberry (I, respectively. Chlorogenic acid, quercetin, myricetin, rutin, rosmarinic acid and ferulic acid were determined in fruit teas. A water temperature of 100 °C was the most effective to extract the highest contents of total phenols, total flavonoids, total anthocyanins and the highest antioxidant capacity in 16 different fruit teas. The purpose of this study was to determine the effect of water temperature on the extraction and quantify the various phenolic compounds in fruit teas by HPLC method for industrial application in producing the extracts.

  10. The antioxidant activity test by using DPPH method from the white tea using different solvents

    Science.gov (United States)

    Darmajana, Doddy A.; Hadiansyah, Firman; Desnilasari, Dewi

    2017-11-01

    The solvents used in this study are: aquades, ethanol and glacial acetic acid. The raw material as the source of antioxidants is white tea. Pure Quercetin is used as a comparing antioxidant. The treatment design was the solvent type for extraction, while the antioxidant activity was tested using DPPH method, with IC50 as the reference of antioxidant activity value. The results of antioxidant activity tests with three different solvent types are IC50 of 22,499 µg/mL for aquades, IC50 of 13,317 µg/mL for Ethanol and IC50 of 60,555 µg/mL for Glacial Acetic Acid. As a control of the standard antioxidant activity value of Quercetin is 4,313 µg/mL.

  11. Investigation of free amino acid, total phenolics, antioxidant activity and purine alkaloids to assess the health properties of non-Camellia tea

    Directory of Open Access Journals (Sweden)

    Wu Bi

    2016-03-01

    Full Text Available To find novel functional beverages from folk teas, 33 species of frequently used non-Camellia tea (plants other than Camellia were collected and compared with Camellia tea (green tea, pu-erh tea and black tea for the first time. Data are reported here on the quantities of 20 free amino acids (FAAs and three purine alkaloids (measured by UHPLC, total polyphenols (measured by Folin-Ciocalteu assay, and antioxidant activity (DPPH. The total amounts of FAAs in non-Camellia tea (0.62–18.99 mg/g are generally less than that of Camellia tea (16.55–24.99 mg/g. However, for certain FAAs, the quantities were much higher in some non-Camellia teas, such as γ-aminobutyric acid in teas from Ampelopsis grossedentata, Isodon serra and Hibiscus sabdariffa. Interestingly, theanine was detected in tea from Potentilla fruticosa (1.16±0.81 mg/g. Furthermore, the content of polyphenols in teas from A. grossedentata, Acer tataricum subsp. ginnala are significantly higher than those from Camellia tea; teas from I. serra, Pistacia chinensis and A. tataricum subsp. ginnala have remarkable antioxidant activities similar to the activities from green tea (44.23 μg/mL. Purine alkaloids (caffeine, theobromine and theophylline were not detected in non-Camellia teas. The investigation suggest some non-Camellia teas may be great functional natural products with potential for prevention of chronic diseases and aging, by providing with abundant polyphenols, antioxidants and specific FAAs.

  12. Investigation of free amino acid, total phenolics, antioxidant activity and purine alkaloids to assess the health properties of non-Camellia tea.

    Science.gov (United States)

    Bi, Wu; He, Chunnian; Ma, Yunyun; Shen, Jie; Zhang, Linghua Harris; Peng, Yong; Xiao, Peigen

    2016-03-01

    To find novel functional beverages from folk teas, 33 species of frequently used non-Camellia tea (plants other than Camellia) were collected and compared with Camellia tea (green tea, pu-erh tea and black tea) for the first time. Data are reported here on the quantities of 20 free amino acids (FAAs) and three purine alkaloids (measured by UHPLC), total polyphenols (measured by Folin-Ciocalteu assay), and antioxidant activity (DPPH). The total amounts of FAAs in non-Camellia tea (0.62-18.99 mg/g) are generally less than that of Camellia tea (16.55-24.99 mg/g). However, for certain FAAs, the quantities were much higher in some non-Camellia teas, such as γ-aminobutyric acid in teas from Ampelopsis grossedentata, Isodon serra and Hibiscus sabdariffa. Interestingly, theanine was detected in tea from Potentilla fruticosa (1.16±0.81 mg/g). Furthermore, the content of polyphenols in teas from A. grossedentata, Acer tataricum subsp. ginnala are significantly higher than those from Camellia tea; teas from I. serra, Pistacia chinensis and A. tataricum subsp. ginnala have remarkable antioxidant activities similar to the activities from green tea (44.23 μg/mL). Purine alkaloids (caffeine, theobromine and theophylline) were not detected in non-Camellia teas. The investigation suggest some non-Camellia teas may be great functional natural products with potential for prevention of chronic diseases and aging, by providing with abundant polyphenols, antioxidants and specific FAAs.

  13. Gallic Acid Content in Taiwanese Teas at Different Degrees of Fermentation and Its Antioxidant Activity by Inhibiting PKCδ Activation: In Vitro and in Silico Studies.

    Science.gov (United States)

    Kongpichitchoke, Teeradate; Chiu, Ming-Tzu; Huang, Tzou-Chi; Hsu, Jue-Liang

    2016-10-12

    Teas can be classified according to their degree of fermentation, which has been reported to affect both the bioactive components in the teas and their antioxidative activity. In this study, four kinds of commercial Taiwanese tea at different degrees of fermentation, which include green (non-fermented), oolong (semi-fermented), black (fully fermented), and Pu-erh (post-fermented) tea, were profiled for catechin levels by using high performance liquid chromatography (HPLC). The result indicated that the gallic acid content in tea was directly proportional to the degree of fermentation in which the lowest and highest gallic acid content were 1.67 and 21.98 mg/g from green and Pu-erh tea, respectively. The antioxidative mechanism of the gallic acid was further determined by in vitro and in silico analyses. In vitro assays included the use of phorbol ester-induced macrophage RAW264.7 cell model for determining the inhibition of reactive oxygen species (ROS) production, and PKCδ and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit (p47) activations. The results showed that only at a concentration of 5.00 μM could gallic acid significantly ( p gallic acid could block PKCδ activation by occupying the phorbol ester binding sites of the protein.

  14. Pigment identification and antioxidant properties of red dragon fruit ...

    African Journals Online (AJOL)

    In the antioxidant properties determination, there were 86.10 mg of total polyphenolic compound in 0.50 g of dried dragon fruit extract using the total polyphenol assay which expresses gallic acid as equivalent. The reducing power assay further confirmed the antioxidant activity present in dragon fruit where the reducing ...

  15. Chemometric profile, antioxidant and tyrosinase inhibitory activity of Camel's foot creeper leaves (Bauhinia vahlii).

    Science.gov (United States)

    Panda, Pritipadma; Dash, Priyanka; Ghosh, Goutam

    2018-03-01

    The present study is the first effort to a comprehensive evaluation of antityrosinase activity and chemometric analysis of Bauhinia vahlii. The experimental results revealed that the methanol extract of Bauhinia vahlii (BVM) possesses higher polyphenolic compounds and total antioxidant activity than those reported elsewhere for other more conventionally and geographically different varieties. The BVM contain saturated fatty acids such as hexadecanoic acid (10.15%), octadecanoic acid (1.97%), oleic acid (0.61%) and cis-vaccenic acid (2.43%) along with vitamin E (12.71%), α-amyrin (9.84%), methyl salicylate (2.39%) and β-sitosterol (17.35%), which were mainly responsible for antioxidant as well as tyrosinase inhibitory activity. Tyrosinase inhibitory activity of this extract was comparable to that of Kojic acid. These findings suggested that the B. vahlii leaves could be exploited as potential source of natural antioxidant and tyrosinase inhibitory agent, as well.

  16. Bivariate Correlation Analysis of the Chemometric Profiles of Chinese Wild Salvia miltiorrhiza Based on UPLC-Qqq-MS and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Xiaodan Zhang

    2018-02-01

    Full Text Available To better understand the mechanisms underlying the pharmacological actions of Salvia miltiorrhiza, correlation between the chemical profiles and in vitro antioxidant activities in 50 batches of wild S. miltiorrhiza samples was analyzed. Our ultra-performance liquid chromatography–tandem mass spectrometry analysis detected twelve phenolic acids and five tanshinones and obtained various chemical profiles from different origins. In a principal component analysis (PCA and cluster analysis, the tanshinones cryptotanshinone, tanshinone IIA and dihydrotanshinone I exhibited higher weights in PC1, whereas the phenolic acids danshensu, salvianolic acids A and B and lithospermic acid were highly loaded in PC2. All components could be optimized as markers of different locations and might be suitable for S. miltiorrhiza quality analyses. Additionally, the DPPH and ABTS assays used to comprehensively evaluate antioxidant activities indicated large variations, with mean DPPH and ABTS scavenging potencies of 32.24 and 23.39 μg/mL, respectively, among S. miltiorrhiza extract solutions. Notably, samples that exceeded the mean IC50 values had higher phenolic acid contents. A correlation analysis indicated a strong correlation between the antioxidant activities and phenolic acid contents. Caffeic acid, danshensu, rosmarinic acid, lithospermic acid and salvianolic acid B were major contributors to antioxidant activity. In conclusion, phenolic compounds were the predominant antioxidant components in the investigated plant species. These plants may be sources of potent natural antioxidants and beneficial chemopreventive agents.

  17. Oxidative Stress in Dog with Heart Failure: The Role of Dietary Fatty Acids and Antioxidants

    Directory of Open Access Journals (Sweden)

    Emmanuelle Sagols

    2011-01-01

    Full Text Available In dogs with heart failure, cell oxygenation and cellular metabolism do not work properly, leading to the production of a large amount of free radicals. In the organism, these free radicals are responsible of major cellular damages: this is oxidative stress. However, a suitable food intake plays an important role in limiting this phenomenon: on the one hand, the presence of essential fatty acids in the composition of membranes decreases sensitivity of cells to free radicals and constitutes a first protection against the oxidative stress; on the other hand, coenzyme Q10, vitamin E, and polyphenols are antioxidant molecules which can help cells to neutralize these free radicals.

  18. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds.

    Science.gov (United States)

    Dos Santos, Mary de Fátima Guedes; Mamede, Rosa Virginia Soares; Rufino, Maria do Socorro Moura; de Brito, Edy Sousa; Alves, Ricardo Elesbão

    2015-09-07

    The Amazon region has many sources of fruits, especially native ones not yet explored, but which have some potential for use, as is the case with certain palms. The objective of this study was to evaluate the content of bioactive compounds and total antioxidant capacities of fruits from native palms from the Brazilian Amazon. The fruits of five palm species (bacaba, buriti, inajá, pupunha, and tucumã) were evaluated for levels of ascorbic acid, anthocyanins, yellow flavonoids, total carotenoids, and total extractable polyphenols, as well as the total antioxidant capacities. The fruits had high contents of extractable total polyphenols, especially bacaba and tucumã (941.56 and 158.98 mg of galic acid·100g(-1)), total carotenoids in the case of tucumã and buriti (7.24 and 4.67 mg·100g(-1)), and anthocyanins in bacaba (80.76 mg·100g(-1)). As for the antioxidant capacity, bacaba had the highest total antioxidant activity by the Oxygen Radical Antioxidant Capacity (ORAC) (194.67 µM·Trolox·g(-1)), 2,2-diphenyl-1-picrylhydrazyl (DPPH) (47.46 g·pulp·g(-1) DPPH), and β-carotene/linoleic acid (92.17% Oxidation Inhibition (O.I) methods. Bacaba phenolic profile revealed the presence of cyanidin-3-O-rutinoside and other flavonoids. The palm fruits studied can be considered good sources of bioactive compounds, some containing higher amounts than that of commonly consumed fruits. Total extractable polyphenols and anthocyanins were directly correlated to antioxidant activity in these fruits.

  19. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Mary de Fátima Guedes dos Santos

    2015-09-01

    Full Text Available The Amazon region has many sources of fruits, especially native ones not yet explored, but which have some potential for use, as is the case with certain palms. The objective of this study was to evaluate the content of bioactive compounds and total antioxidant capacities of fruits from native palms from the Brazilian Amazon. The fruits of five palm species (bacaba, buriti, inajá, pupunha, and tucumã were evaluated for levels of ascorbic acid, anthocyanins, yellow flavonoids, total carotenoids, and total extractable polyphenols, as well as the total antioxidant capacities. The fruits had high contents of extractable total polyphenols, especially bacaba and tucumã (941.56 and 158.98 mg of galic acid·100g−1, total carotenoids in the case of tucumã and buriti (7.24 and 4.67 mg·100g−1, and anthocyanins in bacaba (80.76 mg·100g−1. As for the antioxidant capacity, bacaba had the highest total antioxidant activity by the Oxygen Radical Antioxidant Capacity (ORAC (194.67 µM·Trolox·g−1, 2,2-diphenyl-1-picrylhydrazyl (DPPH (47.46 g·pulp·g−1 DPPH, and β-carotene/linoleic acid (92.17% Oxidation Inhibition (O.I methods. Bacaba phenolic profile revealed the presence of cyanidin-3-O-rutinoside and other flavonoids. The palm fruits studied can be considered good sources of bioactive compounds, some containing higher amounts than that of commonly consumed fruits. Total extractable polyphenols and anthocyanins were directly correlated to antioxidant activity in these fruits.

  20. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice.

    Science.gov (United States)

    Pang, Yuehan; Ahmed, Sulaiman; Xu, Yanjie; Beta, Trust; Zhu, Zhiwei; Shao, Yafang; Bao, Jinsong

    2018-02-01

    Total phenolic content (TPC), individual phenolic acid and antioxidant capacity of whole grain and bran fraction 18 rices with different bran color were investigated. The levels of TPC in bound fractions were significantly higher than those in the free fractions either in the whole grains or brans. The main bound phenolic acids in white rice samples were ferulic acid, p-coumaric acid, and isoferulic acid, and in pigmented rice samples were ferulic acid, p-coumaric acid, and vanillic acid. The protocatechuic acid and 2,5-dihydroxybenzoic acid were not detected in white samples. The content of gallic acid, protocatechuic acid, 2,5-dihydroxybenzoic acid, ferulic acid, sinapic acid had significantly positive correlations with TPC and antioxidant capacity. This study found much wider diversity in the phenolics and antioxidant capacity in the whole grain and brans of rice, and will provide new opportunities to further improvement of rice with enhanced levels of the phytochemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Patients undergoing long-term treatment with antihypertensive eye drops responded positively with respect to their ocular surface disorder to oral supplementation with antioxidants and essential fatty acids

    Directory of Open Access Journals (Sweden)

    Galbis-Estrada C

    2013-06-01

    Full Text Available Carmen Galbis-Estrada,1,* Maria D Pinazo-Durán,1,* Jorge Cantú-Dibildox,2 Carla Marco-Ramírez,1 Manuel Díaz-Llópis,1,3 Javier Benítez-del-Castillo21Ophthalmic Research Unit Santiago Grisolia, Department of Surgery/Ophthalmology, Faculty of Medicine, University of Valencia, Valencia, Spain; 2Department of Ophthalmology, Hospital of Jerez, Jerez de la Frontera, Cádiz, Spain; 3University and Polytechnic Hospital La Fe, Valencia, Spain*These authors contributed equally to this workBackground: Glaucoma and dry eye disorders (DEDs are frequent comorbidities. The antioxidant and anti-inflammatory properties of essential polyunsaturated fatty acids have been extensively studied in relation to eye diseases.Objective: Our objective was to determine the effects of oral supplementation with a combined formulation of antioxidants and essential polyunsaturated fatty acids on expression of cytokines and chemokines in tears from patients with DEDs or primary open-angle glaucoma (POAG.Methods: Participants (n = 97 were distributed into three groups: (1 individuals with nonsevere DEDs (DEDG, (2 individuals with nonadvanced POAG (POAGG, and (3 healthy controls. These groups were randomized into two subgroups: one received a daily antioxidant and essential polyunsaturated fatty acid supplement (two pills for 3 months (+S, and the other did not (−NS. Participants were interviewed and ophthalmologically examined. Concentrations of specific cytokines and chemokines in reflex tears were determined by multiplexed particle-based flow cytometry. The data were analyzed statistically (SPSS version 15.0.Results: Comparison of the results from the DEDG and POAGG patients showed significant differences in tear expression of granulocyte-macrophage colony-stimulating factor (P = 0.008, tumor necrosis factor α (P = 0.005, vascular endothelial growth factor (P = 0.038, interleukin-4 (P = 0.030, and interleukin-6 (P = 0.044. The main signs and symptoms of dry eyes such

  2. Efficient solvent extraction of antioxidant-rich extract from a tropical diatom, Chaetoceros calcitrans (Paulsen Takano 1968

    Directory of Open Access Journals (Sweden)

    Su Chern Foo

    2015-10-01

    Conclusions: Methanol was the recommended solvent for the production of antioxidant rich extract from C. calcitrans. Both carotenoids and phenolic acids were found to be positively correlated to the antioxidant capacities of C. calcitrans. Lead bioactives confirmed by subsequent high performance liquid chromatography studies were fucoxanthin, gallic acid and protocatechuic acid.

  3. Test for antioxidant ability by scavenging long-lived mutagenic radicals in mammalian cells and by blood test with intentional radicals: an application of gallic acid

    International Nuclear Information System (INIS)

    Kumagai, Jun; Kawaura, Tomoko; Miyazaki, Tetsuo; Prost, Michel; Prost, Emmanuelle; Watanabe, Masami; Quetin-Leclercq, J.Joeelle

    2003-01-01

    Antioxidant ability of gallic acid (GA) are determined both by electron spin resonance measurement of long-lived radicals produced in γ-ray irradiated Syrian golden hamster embryo cells with GA and by hemolysis measurement with GA when blood cells are submitted to radicals. Scavenging properties of GA are determined by the reaction rate constant with long-lived mutagenic radicals in the cells while the blood test allows to analyze the global effects of this compound: radical scavenger+metal ion chelator+regeneration of intra- and extra-cellular antioxidant

  4. Influence of In vitro Digestion on Antioxidative Activity of Coconut ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidative stability of coconut meat protein hydrolysates (CMPHs) in the gastrointestinal tract, and evaluate the changes in antioxidant activity, amino acid composition and molecular weight distribution of CMPHs during gastrointestinal (GI )digestion. Methods: A two-stage in vitro digestion ...

  5. An automatic on-line 2,2-diphenyl-1-picrylhydrazyl-high performance liquid chromatography method for high-throughput screening of antioxidants from natural products.

    Science.gov (United States)

    Lu, Yanzhen; Wu, Nan; Fang, Yingtong; Shaheen, Nusrat; Wei, Yun

    2017-10-27

    Many natural products are rich in antioxidants which play an important role in preventing or postponing a variety of diseases, such as cardiovascular and inflammatory disease, diabetes as well as breast cancer. In this paper, an automatic on-line 2,2-diphenyl-1-picrylhydrazyl-high performance liquid chromatography (DPPH-HPLC) method was established for antioxidants screening with nine standards including organic acids (4-hydroxyphenylacetic acid, p-coumaric acid, ferulic acid, and benzoic acid), alkaloids (coptisine and berberine), and flavonoids (quercitrin, astragalin, and quercetin). The optimal concentration of DPPH was determined, and six potential antioxidants including 4-hydroxyphenylacetic acid, p-coumaric acid, ferulic acid, quercitrin, astragalin, and quercetin, and three non-antioxidants including benzoic acid, coptisine, and berberine, were successfully screened out and validated by conventional DPPH radical scavenging activity assay. The established method has been applied to the crude samples of Saccharum officinarum rinds, Coptis chinensis powders, and Malus pumila leaves, consecutively. Two potential antioxidant compounds from Saccharum officinarum rinds and five potential antioxidant compounds from Malus pumila eaves were rapidly screened out. Then these seven potential antioxidants were purified and identified as p-coumaric acid, ferulic acid, phloridzin, isoquercitrin, quercetin-3-xyloside, quercetin-3-arabinoside, and quercetin-3-rhamnoside using countercurrent chromatography combined with mass spectrometry and their antioxidant activities were further evaluated by conventional DPPH radical scavenging assay. The activity result was in accordance with that of the established method. This established method is cheap and automatic, and could be used as an efficient tool for high-throughput antioxidant screening from various complex natural products. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Acetylcholinesterase Inhibitory and Antioxidant Properties of Euphorbiacharacias Latex

    Directory of Open Access Journals (Sweden)

    Francesca Pintus

    2013-03-01

    Full Text Available The aim of the present study was to evaluate the acetylcholinesterase inhibitory capacity and the antioxidant properties of extracts of Euphorbia characias latex, a Mediterranean shrub. We performed a new extraction method involving the use of the trichloroacetic acid. The extract showed high antioxidant activity, was rich in total polyphenolic and flavonoid content and exhibited substantial inhibition of acetylcholinesterase activity.

  7. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods.

    Science.gov (United States)

    Celik, Saliha Esin; Ozyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat

    2010-06-15

    Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g., fats, lipids, proteins, and DNA) from the damage of reactive oxygen species (ROS). Solvent effect is a crucial parameter on the chemical behaviour of antioxidant compounds but there has been limited information regarding its role on antioxidant capacity and its assays. Therefore, the present study was undertaken to investigate the total antioxidant capacity (TAC) of some certain lipophilic and hydrophilic antioxidants, measured in different solvent media such as ethanol (EtOH) (100%), methanol (MeOH) (100%), methanol/water (4:1, v/v), methanol/water (1:1, v/v), dichloromethane (DCM)/EtOH (9:1, v/v). The cupric reducing antioxidant capacity (CUPRAC) values of selected antioxidants were experimentally reported in this work as trolox equivalent antioxidant capacity (TEAC), and compared to those found by reference TAC assays, i.e., 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)/persulphate (ABTS/persulphate) and ferric reducing antioxidant power (FRAP) methods. The TAC values of synthetic mixtures of antioxidants were experimentally measured as trolox equivalents and compared to those theoretically found by making use of the principle of additivity of absorbances assuming no chemical interaction between the mixture constituents. Possible synergistic (e.g., BHT and BHA in DCM/EtOH) or antagonistic behaviours of these synthetic mixtures were investigated in relation to solvent selection.

  8. Lipidomic and Antioxidant Response to Grape Seed, Corn and Coconut Oils in Healthy Wistar Rats

    Directory of Open Access Journals (Sweden)

    Abraham Wall-Medrano

    2017-01-01

    Full Text Available Specialty oils differ in fatty acid, phytosterol and antioxidant content, impacting their benefits for cardiovascular health. The lipid (fatty acid, phytosterol and antioxidant (total phenolics, radical scavenging capacity profiles of grapeseed (GSO, corn (CO and coconut (CNO oils and their physiological (triacylglycerides, total and HDL-cholesterol and antioxidant capacity (FRAP in serum and fatty acid and phytosterol hepatic deposition and genomic (HL, LCAT, ApoA-1 and SR-BP1 mRNA hepatic levels responses after their sub-chronic intake (10% diet for 28 days was examined in healthy albino rats. Fatty acid, phytosterol and antioxidant profiles differed between oils (p ≤ 0.01. Serum and hepatic triacylglycerides and total cholesterol increased (p ≤ 0.01; serum HDL-Cholesterol decreased (p < 0.05; but serum FRAP did not differ (p > 0.05 in CNO-fed rats as compared to CO or GSO groups. Hepatic phytosterol deposition was higher (+2.2 mg/g; p ≤ 0.001 in CO- than GSO-fed rats, but their fatty acid deposition was similar. All but ApoA-1 mRNA level increased in GSO-fed rats as compared to other groups (p ≤ 0.01. Hepatic fatty acid handling, but not antioxidant response, nor hepatic phytosterol deposition, could be related to a more efficient reverse-cholesterol transport in GSO-fed rats as compared to CO or CNO.

  9. Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in l-arginine–Induced Acute Pancreatitis: An Experimental Study on Rats

    Science.gov (United States)

    Cikman, Oztekin; Soylemez, Omer; Ozkan, Omer Faruk; Kiraz, Hasan Ali; Sayar, Ilyas; Ademoglu, Serkan; Taysi, Seyithan; Karaayvaz, Muammer

    2015-01-01

    The aim of this study was to investigate the possible protective role of antioxidant treatment with syringic acid (SA) on l-arginine–induced acute pancreatitis (AP) using biochemical and histopathologic approaches. A total of 30 rats were divided into 3 groups. The control group received normal saline intraperitoneally. The AP group was induced by 3.2 g/kg body weight l-arginine intraperitoneally, administered twice with an interval of 1 hour between administrations. The AP plus SA group, after having AP induced by 3.2 g/kg body weight l-arginine, was given SA (50 mg kg−1) in 2 parts within 24 hours. The rats were killed, and pancreatic tissue was removed and used in biochemical and histopathologic examinations. Compared with the control group, the mean pancreatic tissue total oxidant status level, oxidative stress index, and lipid hydroperoxide levels were significantly increased in the AP group, being 30.97 ± 7.13 (P < 0.05), 1.76 ± 0.34 (P < 0.0001), and 19.18 ± 4.91 (P < 0.01), respectively. However, mean total antioxidant status and sulfhydryl group levels were significantly decreased in the AP group compared with the control group, being 1.765 ± 0.21 (P < 0.0001) and 0.21 ± 0.04 (P < 0.0001), respectively. SA reduces oxidative stress markers and has antioxidant effects. It also augments antioxidant capacity in l-arginine–induced acute toxicity of pancreas in rats. PMID:26011211

  10. Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in l-arginine-Induced Acute Pancreatitis: An Experimental Study on Rats.

    Science.gov (United States)

    Cikman, Oztekin; Soylemez, Omer; Ozkan, Omer Faruk; Kiraz, Hasan Ali; Sayar, Ilyas; Ademoglu, Serkan; Taysi, Seyithan; Karaayvaz, Muammer

    2015-05-01

    The aim of this study was to investigate the possible protective role of antioxidant treatment with syringic acid (SA) on l-arginine-induced acute pancreatitis (AP) using biochemical and histopathologic approaches. A total of 30 rats were divided into 3 groups. The control group received normal saline intraperitoneally. The AP group was induced by 3.2 g/kg body weight l-arginine intraperitoneally, administered twice with an interval of 1 hour between administrations. The AP plus SA group, after having AP induced by 3.2 g/kg body weight l-arginine, was given SA (50 mg kg(-1)) in 2 parts within 24 hours. The rats were killed, and pancreatic tissue was removed and used in biochemical and histopathologic examinations. Compared with the control group, the mean pancreatic tissue total oxidant status level, oxidative stress index, and lipid hydroperoxide levels were significantly increased in the AP group, being 30.97 ± 7.13 (P < 0.05), 1.76 ± 0.34 (P < 0.0001), and 19.18 ± 4.91 (P < 0.01), respectively. However, mean total antioxidant status and sulfhydryl group levels were significantly decreased in the AP group compared with the control group, being 1.765 ± 0.21 (P < 0.0001) and 0.21 ± 0.04 (P < 0.0001), respectively. SA reduces oxidative stress markers and has antioxidant effects. It also augments antioxidant capacity in l-arginine-induced acute toxicity of pancreas in rats.

  11. In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae) are a Source of Antioxidant Phenolics.

    Science.gov (United States)

    Contreras, Rodrigo A; Köhler, Hans; Pizarro, Marisol; Zúiga, Gustavo E

    2015-04-09

    The antioxidant activity and phenolic composition of six in vitro cultured blueberry seedlings were determined. Extracts were prepared in 85% ethanol from 30 days old in vitro cultured plants and used to evaluate the antioxidant capacities that included Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazin (DPPH•) scavenging ability, total polyphenols (TP) and the partial phenolic composition performed by high performance liquid chromatography with diode array detector (HPLC-DAD), liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS (ESI-QqQ)). All ethanolic extracts from in vitro blueberry cultivars displayed antioxidant activity, with Legacy, Elliott and Bluegold cultivars being the most active. In addition, we observed a positive correlation between phenolic content and antioxidant activity. Our results suggest that the antioxidant activity of the extracts is related to the content of chlorogenic acid myricetin, syringic acid and rutin, and tissue culture of blueberry seedlings is a good tool to obtain antioxidant extracts with reproducible profile of compounds.

  12. In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae are a Source of Antioxidant Phenolics

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Contreras

    2015-04-01

    Full Text Available The antioxidant activity and phenolic composition of six in vitro cultured blueberry seedlings were determined. Extracts were prepared in 85% ethanol from 30 days old in vitro cultured plants and used to evaluate the antioxidant capacities that included Ferric reducing antioxidant power (FRAP and 1,1-diphenyl-2-picrylhydrazin (DPPH• scavenging ability, total polyphenols (TP and the partial phenolic composition performed by high performance liquid chromatography with diode array detector (HPLC-DAD, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS (ESI-QqQ. All ethanolic extracts from in vitro blueberry cultivars displayed antioxidant activity, with Legacy, Elliott and Bluegold cultivars being the most active. In addition, we observed a positive correlation between phenolic content and antioxidant activity. Our results suggest that the antioxidant activity of the extracts is related to the content of chlorogenic acid myricetin, syringic acid and rutin, and tissue culture of blueberry seedlings is a good tool to obtain antioxidant extracts with reproducible profile of compounds.

  13. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications.

    Science.gov (United States)

    Mathew, Sindhu; Abraham, T Emilia

    2004-01-01

    Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.

  14. Comparative polyphenolic content and antioxidant activities of Genista tinctoria L. and Genistella sagittalis (L.) Gams (Fabaceae).

    Science.gov (United States)

    Hanganu, Daniela; Olah, Neli Kinga; Benedec, Daniela; Mocan, Andrei; Crisan, Gianina; Vlase, Laurian; Popica, Iulia; Oniga, Ilioara

    2016-01-01

    The aim of this study was focused on the polyphenolic composition and antioxidant capacity of Genista tinctoria L. and Genistella sagittalis (L.) Gams. A qualitative and quantitative characterization of the main phenolic compounds from the extracts were carried out using a HPLC-MS method. The total polyphenolic and flavonoid content was spectrophotometrically determined. The antioxidant activity towards various radicals generated in different systems was evaluated usingDPPH bleaching method, Trolox equivalent antioxidant capacity assay (TEAC) and Oxygen radical absorbance capacity (ORAC), and all indicated that G. tinctoria extract was more antioxidant than G. sagittalis extract.That was in good agreement with the total polyphenolic and flavonoidic content.Chlorogenic acid, p-coumaric acid, isoquercitrin and apigenin were identified in bothspecies. Caffeic acid, ferulic acid, hyperoside, rutin, quercitrin and luteolin were found only in G. tinctoria, while quercetin was determined in G. sagittalis.

  15. Ascorbic acid improves the antioxidant activity of European grape juices by improving the juices' ability to inhibit lipid peroxidation of human LDL in vitro

    DEFF Research Database (Denmark)

    Landbo, Anne-Katrine Regel; Meyer, Anne Boye Strunge

    2001-01-01

    . Red grape juice concentrate inhibited lipid peroxidation of LDL by prolonging the lag phase by 2.7 times relative to a control when evaluated at a total phenolic concentration of 10 muM gallic acid equivalents (GAE). Both red grape juices tested blocked lipid peroxidation of LDL at 20 muM GAE. White.......96, P acid alone did not exert antioxidant activity towards LDL, but combinations of 5 muM ascorbic acid with 5 muM GAE juice phenols eliminated the prooxidant activity of white grape juice, and significantly...

  16. Oxidant-antioxidant imbalance in horses infected with equine infectious anaemia virus.

    Science.gov (United States)

    Bolfă, Pompei Florin; Leroux, Caroline; Pintea, Adela; Andrei, Sanda; Cătoi, Cornel; Taulescu, Marian; Tăbăran, Flaviu; Spînu, Marina

    2012-06-01

    This study assesses the impact of equine infectious anaemia virus (EIAV) infection on the oxidant/antioxidant equilibrium of horses. Blood samples from 96 Romanian horses aged 1-25 years, were divided into different groups according to their EIAV-infection status, age, and time post-seroconversion. The effect of infection on oxidative stress was estimated by measuring enzymatic antioxidants (superoxide dismutase [SOD], glutathione peroxidase [GPx] and catalase), non-enzymatic antioxidants (uric acid and carotenoids), and lipid peroxidation (malondialdehyde [MDA]). Infection modified the oxidant/antioxidant equilibrium in the horses, influencing GPx and uric acid levels (P5 years old, represented the most vulnerable category in terms of oxidative stress, followed by recently infected animals <5 years old. The results of this study are novel in implicating EIAV infection in the development of oxidative stress in horses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Amazonian Buriti oil: chemical characterization and antioxidant potential

    Energy Technology Data Exchange (ETDEWEB)

    Speranza, P.; Oliveira Falcao, A. de; Alves Macedo, J.; Silva, L.H.M. da; Rodrigues, A.M. da C.; Alves Macedo, G.

    2016-07-01

    Buriti oil is an example of an Amazonian palm oil of economic importance. The local population uses this oil for the prevention and treatment of different diseases; however, there are few studies in the literature that evaluate its properties. In this study, detailed chemical and antioxidant properties of Buriti oil were determined. The predominant fatty acid was oleic acid (65.6%) and the main triacylglycerol classes were tri-unsaturated (50.0%) and di-unsaturated-mono-saturated(39.3%) triacylglycerols. The positional distribution of the classes of fatty acids on the triacylglycerol backbone indicated a saturated and unsaturated fatty acid relationship similar in the three-triacylglycerol positions. All tocopherol isomers were present, with a total content of 2364.1 mg·kg−1. α-tocopherol constitutes 48% of the total tocopherol content, followed by γ- tocopherol (45%). Total phenolic (107.0 mg gallic acid equivalent·g−1 oil) and β-carotene (781.6 mg·kg−1) were particularly high in this oil. The highest antioxidant activity against the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) was obtained at an oil concentration of 50 mg·mL−1 (73.15%). The antioxidant activity evaluated by the Oxygen Radical Absorbance Capacity (ORAC) was 95.3 μmol Trolox equivalent·g−1 oil. These results serve to present Buriti oil as an Amazonian resource for cosmetic, food and pharmaceuticals purposes. (Author)

  18. Total polyphenolic contents and in vitro antioxidant properties of eight Sida species from Western Ghats, India.

    Science.gov (United States)

    Subramanya, M D; Pai, Sandeep R; Upadhya, Vinayak; Ankad, Gireesh M; Bhagwat, Shalini S; Hegde, Harsha V

    2015-01-01

    Sida L., is a medicinally important genus, the species of which are widely used in traditional systems of medicine in India. Pharmacologically, roots are known for anti-tumor, anti-HIV, hepatoprotective, and many other properties. Phenolic antioxidants help in reducing oxidative stress occurring during treatment of such diseases. The study aimed to evaluate and compare polyphenol contents and antioxidant properties of eight selected species of Sida from Western Ghats, India. Methanolic root extracts (10% w/v) of Sida species, viz., S. acuta, S. cordata, S. cordifolia, S. indica, S. mysorensis, S. retusa, S. rhombifolia, and S. spinosa were analyzed. Sida cordifolia possessed highest total phenolic content (TPC: 1.92 ± 0.10 mg Caffeic Acid Equivalent/g and 2.13 ± 0.11 mg Tannic Acid Equivalant/g), total flavonoid content (TF: 2.60 ± 0.13 mg Quercetin Equivalent/g) and also possessed highest antioxidant activities in 2,2-diphenylpicrylhydrazyl (DPPH) radical scavenging (51.31 ± 2.57% Radical Scavenging Activity, (RSA); Trolox Equivalent Antioxidant Capacity: 566.25 ± 28.31μM; Ascorbic acid Equivalent Antioxidant Capacity: 477.80 ± 23.89 μM) and Ferric Reducing Antioxidant Power assays (TEAC: 590.67 ± 29.53 μM; AEAC: 600.67 ± 30.03 μM). Unlike DPPH and Ferric Reducing Antioxidant Power (FRAP) activity, 2, 2'-Azinobis (3-ethyl Benzo Thiazoline-6-Sulfonic acid) ABTS(+) antioxidant activity was highest in S. indica (TEAC: 878.44 ± 43.92 μM; AEAC 968.44 ± 48.42 μM). It was significant to note that values of AEAC (μM) for all the antioxidant activities analyzed were higher than that of TEAC. The high contents of phenolic compounds in the root extracts of selected Sida species have direct correlation with their antioxidant properties. Conclusively, roots of S. cordifolia can be considered as the potential source of polyphenols and antioxidants.

  19. Relationship between oxidizable fatty acid content and level of antioxidant glutathione peroxidases in marine fish

    Science.gov (United States)

    Grim, Jeffrey M.; Hyndman, Kelly A.; Kriska, Tamas; Girotti, Albert W.; Crockett, Elizabeth L.

    2011-01-01

    SUMMARY Biological membranes can be protected from lipid peroxidation by antioxidant enzymes including catalase (CAT) and selenium-dependent glutathione peroxidases 1 and 4 (GPx1 and GPx4). Unlike GPx1, GPx4 can directly detoxify lipid hydroperoxides in membranes without prior action of phospholipase A2. We hypothesized that (1) GPx4 is enhanced in species that contain elevated levels of highly oxidizable polyunsaturated fatty acids (PUFA) and (2) activities of antioxidant enzymes are prioritized to meet species-specific oxidative stresses. In this study we examined (i) activities of the oxidative enzyme citrate synthase (CS) and antioxidant (CAT, GPx1 and GPx4) enzymes, (ii) GPx4 protein expression, and (iii) phospholipid composition in livers of five species of marine fish (Myxine glutinosa, Petromyzon marinus, Squalus acanthias, Fundulus heteroclitus and Myoxocephalus octodecemspinosus) that contain a range of PUFA. GPx4 activity was, on average, 5.8 times higher in F. heteroclitus and S. acanthias than in the other three marine fish species sampled. Similarly, activities of CAT and GPx1 were highest in S. acanthias and F. heteroclitus, respectively. GPx4 activity for all species correlates with membrane unsaturation, as well as oxidative activity as indicated by CS. These data support our hypothesis that GPx4 level in marine fish is a function, at least in part, of high PUFA content in these animals. GPx1 activity was also correlated with membrane unsaturation, indicating that marine species partition resources among glutathione-dependent defenses for protection from the initial oxidative insult (e.g. H2O2) and to repair damaged lipids within biological membranes. PMID:22031739

  20. Antioxidant constituents of almond [Prunus dulcis (Mill.) D.A. Webb] hulls.

    Science.gov (United States)

    Takeoka, Gary R; Dao, Lan T

    2003-01-15

    Almond hulls (Nonpareil variety) were extracted with methanol and analyzed by reversed phase HPLC with diode array detection. The extract contained 5-O-caffeoylquinic acid (chlorogenic acid), 4-O-caffeoylquinic acid (cryptochlorogenic acid), and 3-O-caffeoylquinic acid (neochlorogenic acid) in the ratio 79.5:14.8:5.7. The chlorogenic acid concentration of almond hulls was 42.52 +/- 4.50 mg/100 g of fresh weight (n = 4; moisture content = 11.39%). Extracts were tested for their ability to inhibit the oxidation of methyl linoleate at 40 degrees C. At an equivalent concentration (10 microg/1 g of methyl linoleate) almond hull extracts had higher antioxidant activity than alpha-tocopherol. At higher concentrations (50 microg/1 g of methyl linoleate) almond hull extracts showed increased antioxidant activity that was similar to chlorogenic acid and morin [2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one] standards (at the same concentrations). These data indicate that almond hulls are a potential source of these dietary antioxidants. The sterols (3beta,22E)-stigmasta-5,22-dien-3-ol (stigmasterol) and (3beta)-stigmast-5-en-3-ol (beta-sitosterol) (18.9 mg and 16.0 mg/100 g of almond hull, respectively) were identified by GC-MS of the silylated almond hull extract.

  1. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties

    OpenAIRE

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary s...

  2. In vitro antioxidant assay of selected aqueous plant extracts and their polyherbal formulation

    Directory of Open Access Journals (Sweden)

    Ganga Raju M.

    2015-04-01

    Full Text Available To support the use of selected plant extracts in Ayurveda, naturopathy, the antioxidant potential of the aqueous extract of Vincarosea (VR, Gymnemasylvestre (GS, Tinosporacordifolia (TC and Emblicaofficinalis (EO and their mixture (PHF of Indian origin was investigated for in vitro antioxidant activity by using in vitro models like superoxide, hydroxyl radical scavenging activity and lipid peroxide inhibition assay. The results were compared with standard (ascorbic acid, a known antioxidant. The various phytoconstituents identified in the above selected plants extracts were poly phenols, flavonoids, terpenoids, tannins, alkaloids. The terpenoids were reported to protect lipids, blood and body fluids against the attack of free radicals, some types of reactive oxygen, hydroxylic groups, peroxides and superoxide radicals. The presence of these phytoconstituents in selected plants might be responsible for antioxidant activity with that of known antioxidant ascorbic acid.

  3. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components

    Directory of Open Access Journals (Sweden)

    Hong Xie

    2018-01-01

    Full Text Available Tibetan tea (Kangzhuan is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea (LATT was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+-catechin, (−-catechin gallate (CG, (−-epicatechin gallate (ECG, and (−-epigallocatechin gallate. Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO• scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG. Gallic acid and the four catechins were also suggested to chelate Fe2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC−ESI−Q−TOF−MS/MS analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts. In a flow cytometry assay, (+-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H+-transfer, and Fe2+-chelating pathways to exhibit

  4. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components.

    Science.gov (United States)

    Xie, Hong; Li, Xican; Ren, Zhenxing; Qiu, Weimin; Chen, Jianlan; Jiang, Qian; Chen, Ban; Chen, Dongfeng

    2018-01-24

    Tibetan tea (Kangzhuan) is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea ( LATT ) was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+)-catechin, (-)-catechin gallate ( CG ), (-)-epicatechin gallate ( ECG ), and (-)-epigallocatechin gallate). Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG . Gallic acid and the four catechins were also suggested to chelate Fe 2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF) products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts). In a flow cytometry assay, (+)-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H⁺-transfer, and Fe 2+ -chelating pathways to exhibit antioxidative or

  5. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

    Directory of Open Access Journals (Sweden)

    Betbeder D

    2015-08-01

    Full Text Available Didier Betbeder,1–4 Emmanuelle Lipka,1,2,5 Mike Howsam,6 Rodolphe Carpentier1–3 1U995-LIRIC, Inserm (Institut National de la Recherche Médicale, Lille, France; 2U995-LIRIC, CHRU de Lille, Lille, France; 3U995-LIRIC, Faculté de Médecine, Université de Lille, Lille, France; 4Faculté des Sciences du Sport, Université d’Artois, Arras, France; 5Faculté de Pharmacie, Université de Lille, Lille, France; 6Faculté de Pharmacie, Université de Lille, Centre Universitaire de Mesures et d’Analyses, Lille, France Purpose: Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin.Method: We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C.Results: In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching

  6. Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings.

    Science.gov (United States)

    Yadav, Poonam; Kaur, Ravdeep; Kanwar, Mukesh Kumar; Sharma, Anket; Verma, Vinod; Sirhindi, Geetika; Bhardwaj, Renu

    2018-01-01

    The aim of the present study was to explore the effect of exogenous application of castasterone (CS) on physiologic and biochemical responses in Brassica juncea seedlings under copper (Cu) stress. Seeds were pre-soaked in different concentrations of CS and grown for 7 days under various levels of Cu. The exposure of B. juncea to higher levels of Cu led to decrease of morphologic parameters, with partial recovery of length and fresh weight in the CS pre-treated seedlings. Metal content was high in both roots and shoots under Cu exposure while the CS pre-treatment reduced the metal uptake. Accumulation of hydrogen peroxide (H 2 O 2 ) and superoxide anion radical (O 2 - ) were chosen as stress biomarker and higher levels of H 2 O 2 (88.89%) and O 2 - (62.11%) showed the oxidative stress in metal treated B. juncea seedlings, however, CS pre-treatment reduced ROS accumulation in Cu-exposed seedlings. The Cu exposures lead to enhance the plant's enzymatic and non-enzymatic antioxidant system. It was observed that enzymatic activities of ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), glutathione perxoidase (GPOX) and gultrathione-s-transferase increased while activity of monodehydroascorbate reductase (MDHAR) decreased under Cu stress. The pre-treatment with CS positively affected the activities of enzymes. RT-PCR analysis showed that mRNA transcript levels were correlated with total enzymatic activity of DHAR, GR, GST and GSH. Increase in the gene expression of DHAR (1.85 folds), GR (3.24 folds), GST-1 (2.00 folds) and GSH-S (3.18 folds) was noticed with CS pre-treatment. Overall, the present study shows that Cu exposure induced severe oxidative stress in B. juncea plants and exogenous application of CS improved antioxidative defense system by modulating the ascorbate-glutathione cycle and amino acid metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Antioxidant Generation during Coffee Roasting: A Comparison and Interpretation from Three Complementary Assays

    Directory of Open Access Journals (Sweden)

    Sebastian E. W. Opitz

    2014-11-01

    Full Text Available Coffee is a major source of dietary antioxidants; some are present in the green bean, whereas others are generated during roasting. However, there is no single accepted analytical method for their routine determination. This paper describes the adaption of three complementary assays (Folin-Ciocalteu (FC, ABTS and ORAC for the routine assessment of antioxidant capacity of beverages, their validation, and use for determining the antioxidant capacities of extracts from coffee beans at different stages in the roasting process. All assays showed a progressive increase in antioxidant capacity during roasting to a light roast state, consistent with the production of melanoidins having a higher antioxidant effect than the degradation of CGAs. However, the three assays gave different numbers for the total antioxidant capacity of green beans relative to gallic acid (GA, although the range of values was much smaller when chlorogenic acid (CGA was used as reference. Therefore, although all three assays indicated that there was an increase in antioxidant activity during coffee roasting, and the large differences in responses to GA and CGA illustrate their different sensitivities to different types of antioxidant molecule.

  8. Improved production of poly-γ-glutamic acid by Bacillus subtilis D7 isolated from Doenjang, a Korean traditional fermented food, and its antioxidant activity.

    Science.gov (United States)

    Lee, Na-Ri; Lee, Sang-Mee; Cho, Kwang-Sik; Jeong, Seong-Yun; Hwang, Dae-Youn; Kim, Dong-Seob; Hong, Chang-Oh; Son, Hong-Joo

    2014-06-01

    The objectives of this study was to improve poly-γ-glutamic acid (γ-PGA) production by Bacillus subtilis D7 isolated from a Korean traditional fermented food and to assess its antioxidant activity for applications in the cosmetics and pharmaceutical industries. Strain D7 produced γ-PGA in the absence of L-glutamic acid, indicating L-glutamic acid-independent production. However, the addition of L-glutamic acid increased γ-PGA production. Several tricarboxylic acid cycle intermediates and amino acids could serve as the metabolic precursors for γ-PGA production, and the addition of pyruvic acid and D-glutamic acid to culture medium improved the yield of γ-PGA markedly. The maximum yield of γ-PGA obtained was 24.93 ± 0.64 g/l in improved medium, which was about 5.4-fold higher than the yield obtained in basal medium. γ-PGA was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (46.8 ± 1.5 %), hydroxyl radical scavenging activity (52.0 ± 1.8 %), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging activity (42.1 ± 1.8 %), nitric oxide scavenging activity (35.1 ± 1.3 %), reducing power (0.304 ± 0.008), and metal chelating activity (91.3 ± 3.5 %). These results indicate that γ-PGA has a potential use in the food, cosmetics, and biomedical industries for the development of novel products with radical scavenging activity. As far as we are aware, this is the first report to describe the antioxidant activityof γ-PGA produced by bacteria.

  9. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan

    Science.gov (United States)

    Mulberry trees are distributed throughout Pakistan. Besides the use of mulberry in forage and food for animals, it is also used as herbal medicine. The ojbective of this study was to determine phenolic acids profile, sugar content, and the antioxidant activity of the leaves and fruits of three mulb...

  10. Changes in antioxidant and metabolite profiles during production of tomato paste

    NARCIS (Netherlands)

    Capanoglu, E.; Beekwilder, M.J.; Boyacioglu, D.; Hall, R.D.; Vos, de C.H.

    2008-01-01

    Tomato products and especially concentrated tomato paste are important sources of antioxidants in the Mediterranean diet. Tomato fruit contain well-known antioxidants such as vitamin C, carotenoids, flavonoids, and hydroxycinnamic acids. The industrial processing of this fruit into tomato paste

  11. Antioxidative properties of harmane and beta-carboline alkaloids.

    Science.gov (United States)

    Tse, S Y; Mak, I T; Dickens, B F

    1991-07-15

    beta-Carboline alkaloids are derived as a result of condensation between indoleamine (e.g. tryptamine) and short-chain carboxylic acid (e.g. pyruvic acid) or aldehyde (e.g. acetaldehyde), a reaction that occurs readily at room temperature. These compounds have been found endogenously in human and animal tissues and may be formed as a byproduct of secondary metabolism: their endogenous functions however, are not well understood. Indoles and tryptophan derivatives exhibit antioxidative actions by scavenging free radicals and forming resonance stabilized indolyl radicals. Harmane and related compounds exhibited concentration-dependent inhibition of lipid peroxidation (measured as thiobarbiturate reactive products) in a hepatic microsomal preparation incubated with either enzymatic dependent (Fe3+ ADP/NADPH) or non-enzymatic dependent (Fe3+ ADP/dihydroxyfumarate) oxygen radical producing systems. Alkaloids with hydroxyl substitution and a partially desaturated pyridyl ring were found to have the highest antioxidative potencies. Substitution of a hydroxyl group by a methoxyl group at the 6-position resulted in a decrease of greater than 10-fold in the antioxidative activities. Harmane showed high efficacy in an enzymatic system but low efficacy in a non-enzymatic system. The antioxidative effects of harmane in the former system may be attributed to its ability to inhibit oxidative enzymes in the microsomal system. These results suggest that beta-carbolines may also serve as endogenous antioxidants.

  12. Studying anti-oxidative properties of inclusion complexes of α-lipoic acid with γ-cyclodextrin in single living fission yeast by confocal Raman microspectroscopy

    Science.gov (United States)

    Noothalapati, Hemanth; Ikarashi, Ryo; Iwasaki, Keita; Nishida, Tatsuro; Kaino, Tomohiro; Yoshikiyo, Keisuke; Terao, Keiji; Nakata, Daisuke; Ikuta, Naoko; Ando, Masahiro; Hamaguchi, Hiro-o.; Kawamukai, Makoto; Yamamoto, Tatsuyuki

    2018-05-01

    α-lipoic acid (ALA) is an essential cofactor for many enzyme complexes in aerobic metabolism, especially in mitochondria of eukaryotic cells where respiration takes place. It also has excellent anti-oxidative properties. The acid has two stereo-isomers, R- and S- lipoic acid (R-LA and S-LA), but only the R-LA has biological significance and is exclusively produced in our body. A mutant strain of fission yeast, Δdps1, cannot synthesize coenzyme Q10, which is essential during yeast respiration, leading to oxidative stress. Therefore, it shows growth delay in the minimal medium. We studied anti-oxidant properties of ALA in its free form and their inclusion complexes with γ-cyclodextrin using this mutant yeast model. Both free forms R- and S-LA as well as 1:1 inclusion complexes with γ-cyclodextrin recovered growth of Δdps1 depending on the concentration and form. However, it has no effect on the growth of wild type fission yeast strain at all. Raman microspectroscopy was employed to understand the anti-oxidant property at the molecular level. A sensitive Raman band at 1602 cm-1 was monitored with and without addition of ALAs. It was found that 0.5 mM and 1.0 mM concentrations of ALAs had similar effect in both free and inclusion forms. At 2.5 mM ALAs, free forms inhibited the growth while inclusion complexes helped in recovered. 5.0 mM ALA showed inhibitory effect irrespective of form. Our results suggest that the Raman band at 1602 cm-1 is a good measure of oxidative stress in fission yeast.

  13. Study on the Efficiency of Grape Seed Meals Used as Antioxidants in Layer Diets Enriched with Polyunsaturated Fatty Acids Compared with Vitamin E

    Directory of Open Access Journals (Sweden)

    M Olteanu

    Full Text Available ABSTRACT The 4-week study was conducted with 180 Lohmann Brown layers (52 weeks of age. The layers were assigned to three groups (C, E1 and E2. The basal diet (group C consisted mainly of corn, soybean meal and corn gluten, and contained 19% crude protein and 11.58 MJ/kg metabolizable energy. The diets for groups E1 and E2 differed from group C by the inclusion of 5% flax meal and of dietary antioxidants. The concentration of α-linolenic acid in the fat of E1 and E2 diets was almost 10 times higher than in group C. E1 diet was supplemented with vitamin E (100 mg/kg feed, DM, while E2 diet was supplemented with 2% grape seed meal (polyphenols: 630.890 µg gallic acid equivalents/g sample; flavonoids: 5.065 µg rutin equivalents/g sample; antioxidant capacity: 28.468 mM trolox equivalents/g sample. The antioxidant capacity of E2 was higher than in C, but lower than in E1. Haugh units of the eggs (18 eggs/group harvested during the last experimental week were not significantly different among groups. The ω-6/ω-3 polyunsaturated fatty acids (PUFAs ratio in the fat from the eggs was 4.46 ± 0.11 (E1 and 4.52 ± 0.21 (E2, three times lower (p<0.05 than the control group (14.70 ± 0.43. In group E1 in particular, but also in group E2, the concentration of total polyphenols in the egg yolk was higher (p<0.05 than in group C.

  14. Effect of antioxidants on thiobarbituric acid reactive substances, psychrotrophic bacteria and functional properties of mechanically deboned chicken meat irradiated with Cobalto-60 and electron beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Azevedo, Heliana de; Roque, Claudio Vitor; Pomarico Neto, Walter, E-mail: hgomes@cnen.gov.br, E-mail: pbrito@cnen.gov.br, E-mail: cvroque@cnen.gov.br, E-mail: abrusqui@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Mourao, Gerson Barreto; Orlando, Eduardo Adilson; Miyagusku, Luciana, E-mail: marciamh@ital.sp.gov.br, E-mail: eduardo.orlando@ital.sp.gov.br [Instituto de Tecnologia dos Alimentos (ITAL), Campinas, SP (Brazil)

    2013-07-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 (Sodium Polyphosphate and Sodium Ascorbate and Antioxidant 2 (Rosemary Extract and α-Tocopherol. The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (C), with antioxidant A1 and non-irradiated (A1), with antioxidant A2 and non-irradiated (A2) without antioxidant and irradiated in Cobalt-60 source (Co), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). The samples was conditioned in a transparent, low density frozen overnight at a temperature of -18 ± 1 deg C in a chamber, and irradiated in this state with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy/h) and electron beam (7.86 kGy/s). After this process, the samples were evaluated during the refrigeration period (2 ± 1 deg C) for 11 days for the following analysis: total psychrotrophic bacteria count and thiobarbituric acid reactive substances (TBARS) and the analysis of functional properties were performed after the irradiation process. The use of the combination of rosemary antioxidant and α-tocopherol were able to significantly decrease TBARS values caused by the irradiation of samples in MDCM cobalt-60 sources and electron beam, and show a synergetic effect to processing with ionizing radiation to reduce of psychrotrophic bacteria count. The use of irradiation processing of MDCM did not negatively affect the functional properties studied. (author)

  15. Effect of antioxidants on thiobarbituric acid reactive substances, psychrotrophic bacteria and functional properties of mechanically deboned chicken meat irradiated with Cobalto-60 and electron beam sources

    International Nuclear Information System (INIS)

    Brito, Poliana de Paula; Azevedo, Heliana de; Roque, Claudio Vitor; Pomarico Neto, Walter

    2013-01-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 (Sodium Polyphosphate and Sodium Ascorbate and Antioxidant 2 (Rosemary Extract and α-Tocopherol. The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (C), with antioxidant A1 and non-irradiated (A1), with antioxidant A2 and non-irradiated (A2) without antioxidant and irradiated in Cobalt-60 source (Co), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). The samples was conditioned in a transparent, low density frozen overnight at a temperature of -18 ± 1 deg C in a chamber, and irradiated in this state with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy/h) and electron beam (7.86 kGy/s). After this process, the samples were evaluated during the refrigeration period (2 ± 1 deg C) for 11 days for the following analysis: total psychrotrophic bacteria count and thiobarbituric acid reactive substances (TBARS) and the analysis of functional properties were performed after the irradiation process. The use of the combination of rosemary antioxidant and α-tocopherol were able to significantly decrease TBARS values caused by the irradiation of samples in MDCM cobalt-60 sources and electron beam, and show a synergetic effect to processing with ionizing radiation to reduce of psychrotrophic bacteria count. The use of irradiation processing of MDCM did not negatively affect the functional properties studied. (author)

  16. The antioxidant capacity of erythrocyte concentrates is increased during the first week of storage and correlated with the uric acid level.

    Science.gov (United States)

    Bardyn, M; Maye, S; Lesch, A; Delobel, J; Tissot, J-D; Cortés-Salazar, F; Tacchini, P; Lion, N; Girault, H H; Prudent, M

    2017-10-01

    Red blood cells (RBCs) suffer from lesions during cold storage, depending in part on their ability to counterbalance oxidative stress by activating their antioxidant defence. The aim of this study was to monitor the antioxidant power (AOP) in erythrocyte concentrates (ECs) during cold storage. Six ECs were prepared in saline-adenine-glucose-mannitol (SAGM) additive solution and followed during 43 days. The AOP was quantified electrochemically using disposable electrode strips and compared with results obtained from a colorimetric assay. Haematological data, data on haemolysis and the extracellular concentration of uric acid were also recorded. Additionally, a kinetic model was developed to extract quantitative kinetic data on the AOP behaviour. The AOP of total ECs and their extracellular samples attained a maximum after 1 week of storage prior to decaying and reaching a plateau, as shown by the electrochemical measurements. The observed trend was confirmed with a colorimetric assay. Uric acid had a major contribution to the extracellular AOP. Interestingly, the AOP and uric acid levels were linked to the sex of the donors. The marked increase in AOP during the first week of storage suggests that RBCs are impacted early by the modification of their environment. The AOP behaviour reflects the changes in metabolism activity following the adjustment of the extracellular uric acid level. Knowing the origin, interdonor variability and the effects of the AOP on the RBCs could be beneficial for the storage quality, which will have to be further studied. © 2017 International Society of Blood Transfusion.

  17. Radioprotective effect of antioxidants on human blood lymphocytes

    International Nuclear Information System (INIS)

    Wang Mingsuo; Gu Xuandi; Zhu Genbo; Feng Jixing; Su Liaoyuan

    1991-09-01

    By using an improved fluorometric method with 2-thiobarbituric acid (TBA) as fluorometric agent, the antiradiation effects of four kinds of antioxidants on 60 Co γ-ray irradiation inducing final products of lipid peroxides (LPO), i.e. malodialdehyde (MDA) content changes in human blood lymphocytes, were investigated with LPO value as an indicator. The results of the experiment were as following: (1)The radioprotective effect of exogenous antioxidants added to human blood lymphocytes on radiation-induced LPO damage of cellular membrane were remarkable; (2)The radioprotective beneficial sequences of four kinds of antioxidants were arranged like this: SOD > VE >VC, Se 4+ ; (3)Radioprotective effects of antioxidants on radiation-induced damage varied especially with the property of antioxidants, drug concentration, and pretreatment and monitoring time, etc., as well as irradiated dosage and various kinds of incubated cells. In addition, the mechanism of these antioxidants as radioprotectants on human blood lymphocytes is discussed in connection with LPO damage and radioprotection

  18. Antioxidant activity potential of gamma irradiated carrageenan

    International Nuclear Information System (INIS)

    Abad, Lucille V.; Relleve, Lorna S.; Racadio, Charles Darwin T.; Aranilla, Charito T.; De la Rosa, Alumanda M.

    2013-01-01

    The antioxidant capacity of irradiated κ-, ι-, λ-carrageenans were investigated using the hydroxyl radical scavenging assay, reducing power assay and DPPH radical scavenging capacity assay. The degree of oxidative inhibition increased with increasing concentration and dose. The type of carrageenan had also an influence on its antioxidant activity which followed the order of lambda< iota< kappa. Increase in oxidative property with radiation dose can be attributed mainly to the depolymerization of the carrageenans with corresponding increase in reducing sugar. The antioxidant properties of these carrageenan oligomers were lower than that of ascorbic acid and galactose sugar. - Highlights: • The antioxidant capacity of gamma irradiated κ-, ι-, λ-carrageenans increased with increasing concentration and dose. • The type of carrageenan had an influence on its antioxidant activity which followed the order of lambda< iota< kappa. • Increase in oxidative property with radiation dose can be attributed mainly to the depolymerization of the carrageenans with corresponding increase in reducing sugar

  19. Analgesic, Anti-Inflammatory, and Antioxidant Activities of Byrsonima duckeana W. R. Anderson (Malpighiaceae

    Directory of Open Access Journals (Sweden)

    Maria Christina dos Santos Verdam

    2017-01-01

    Full Text Available Background. Byrsonima is a promising neotropical genus, rich in flavonoids and triterpenes, with several proven pharmacological properties. Nevertheless, Byrsonima duckeana W. R. Anderson is an Amazonian species almost not studied. Objective. To assess the antioxidant, anti-inflammatory, and analgesic activities of Byrsonima duckeana leaves. Materials and Methods. We analyzed an ethanol extract and its fractions for polyphenol content and UHPLC-MS/MS, phosphomolybdenum, DPPH, TBARS antioxidant tests, formalin-induced pain, carrageenan-induced peritonitis, acetic acid-induced abdominal writhings, and hot plate assays. Results. All the samples showed high polyphenol content and antioxidant capacity in the phosphomolybdenum, DPPH, and TBARS tests. We identified ethyl gallate, quinic acid, gallic acid, catechin, epicatechin, quercetrin, and quercetin in the samples. B. duckeana was able to reduce leukocyte migration in the carrageenan-induced peritonitis by 43% and the licking time in the formalin test by 57%. In the acetic acid-induced writhing test, the chloroform (FCL and ethyl acetate (FEA fractions were the most active samples. FEA was selected for the hot plate test, where all the dosages tested (5, 50, and 200 mg·kg−1 showed significant analgesic activity. Conclusion. B. duckeana has interesting analgesic and antioxidant activities, due to its high phenolic content, especially phenolic acids.

  20. Standardization of Tragopogon graminifolius DC. Extract Based on Phenolic Compounds and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Farzaei

    2014-01-01

    Full Text Available Tragopogon graminifolius DC. (TG, Compositae family, is traditionally used for the treatment of various diseases like gastrointestinal and hepatic disorders. The aim of the present study is to standardize extracts from TG used for preparation of different dosage forms in traditional Iranian medicine (TIM based on phenolic compounds. For this purpose, total phenolic content and some phenolic compounds were determined in ethanolic extracts from aerial part and root of TG by HPLC method. Furthermore, antioxidant activity was evaluated using DPPH-HPLC methods. Caffeic acid, gallic acid, ρ-coumaric acid, ferulic acid, and catechin were detected in root and aerial part of TG. ρ-Coumaric acid (6.357 ± 0.014 mg·g−1 was dominant phenolic compound in aerial part followed by ferulic acid (1.24 ± 0.018 mg·g−1. Also, ρ-coumaric acid (2.685 ± 0.031 mg·g−1 was highly abundant in root, followed by catechin (2.067 ± 0.021 mg·g−1. Antioxidant activity of root extract (460.45 ± 0.78 µg Vit.E.E·mL−1 was better than that of aerial part. Generally, phenolic compounds are one of the major constituents of TG and could be used as markers for standardization of dosage forms prepared from this plant. Also, TG demonstrated significant antioxidant activity using DPPH-HPLC method. Phenolic compounds of TG may be responsible for its marked antioxidant properties.

  1. Antioxidant Phenolic Compounds of Cassava (Manihot esculenta from Hainan

    Directory of Open Access Journals (Sweden)

    Haofu Dai

    2011-12-01

    Full Text Available An activity-directed fractionation and purification process was used to isolate antioxidant components from cassava stems produced in Hainan. The ethyl acetate and n-butanol fractions showed greater DPPH˙and ABTS·+ scavenging activities than other fractions. The ethyl acetate fraction was subjected to column chromatography, to yield ten phenolic compounds: Coniferaldehyde (1, isovanillin (2, 6-deoxyjacareubin (3, scopoletin (4, syringaldehyde (5, pinoresinol (6, p-coumaric acid (7, ficusol (8, balanophonin (9 and ethamivan (10, which possess significant antioxidant activities. The relative order of DPPH· scavenging capacity for these compounds was ascorbic acid (reference > 6 > 1 > 8 > 10 > 9 > 3 > 4 > 7 > 5 > 2, and that of ABTS·+ scavenging capacity was 5 > 7 > 1 > 10 > 4 > 6 > 8 > 2 > Trolox (reference compound > 3 > 9. The results showed that these phenolic compounds contributed to the antioxidant activity of cassava.

  2. Films and edible coatings containing antioxidants - a review

    Directory of Open Access Journals (Sweden)

    Kaliana Sitonio Eça

    2014-06-01

    Full Text Available The incorporation of natural antioxidants into films and edible coatings can modify their structure, improving their functionality and applicability in foods, such as in fresh-cut fruits. This paper reviews the more recent literature on the incorporation of antioxidants from several sources into films and edible coatings, for application in fruits and vegetables. The use of synthetic antioxidants in foods has been avoided due to their possible toxic effects. Instead, a wide range of natural antioxidants (such as essential oils and plant extracts, as well as pure compounds, like ascorbic acid and α-tocopherol have been incorporated into edible films and coatings to improve their bioactive properties. Films and coatings containing added antioxidants help to preserve or enhance the sensory properties of foods and add value to the food products by increasing their shelf life.

  3. Antioxidant status of dog aqueous humor after extracapsular lens extraction

    Directory of Open Access Journals (Sweden)

    Barros P.S.M.

    2003-01-01

    Full Text Available We determined the antioxidant status of the aqueous humor after extracapsular lens extraction in 14 mongrel dogs weighing about 10 kg. The animals were examined by slit lamp biomicroscopy, applanation tonometry and indirect ophthalmoscopy. One eye was submitted to conventional extracapsular lens extraction and the other was used as control. Samples of aqueous humor were obtained by anterior chamber paracentesis before and at days 1, 2, 3, 7 and 15 after surgery. Total antioxidant status was determined as the capacity of aqueous humor to inhibit free radical generation by 2,2-azobis(2-amidopropane chlorine. Ascorbic acid concentration was measured by HPLC with UV detection. Protein content was determined with the biuret reagent. Statistical analysis was performed by ANOVA followed by the Tukey-Kramer test. Protein concentration increased from 0.61 to 22 mg/ml 24 h after surgery. These levels were maintained and returned to normal at day 7. Total antioxidant capacity was reduced from 50 to about 30 min until day 3 and at day 7 it was equal to control. Ascorbic acid levels were reduced from 252 to about 110 µM and then returned to control values at day 15. Considering the importance of ascorbic acid concentration in aqueous humor for the maintenance of the antioxidant status of the anterior segment of the eye, the decrease of antioxidant defenses suggests that the surgical procedures promote an oxidative stress condition in the eye.

  4. ANTIOXIDANT ACTIVITY OF ETHANOLIC EXTRACT FROM RUMEX CRISTATUS DC

    Directory of Open Access Journals (Sweden)

    Sibel KAHRAMAN

    2013-01-01

    Full Text Available Plants have been used for many years as a source of traditional medicine to treat various diseases and conditions. R. cristatus DC (Polygonaceae is widely spread in Turkey and used as both herbal medicine and food. This study examined the antioxidant activities of ethanolic extract of R. cristatus DC using different tests. The antioxidant activity of ethanolic extract of R. cristatus leaves was analyzed for total phenolic, flavonoid, ascorbic acid and β-carotene contents, reducing power and DPPH radical scavenging activity. The results were compared with natural and synthetic antioxidants. The results suggest that consumption of R. cristatus DC can be beneficial effects due to its antioxidant properties

  5. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers.

    Science.gov (United States)

    Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew

    2016-07-01

    The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions.

    Science.gov (United States)

    Piljac-Zegarac, J; Belscak, A; Piljac, A

    2009-06-01

    Antioxidant capacity and polyphenolic content of leaf infusions prepared from six highbush blueberry cultivars (Vaccinium corymbosum L.), one wild lowbush blueberry cultivar (Vaccinium myrtillus L.), and one commercially available mix of genotypes were determined. In order to simulate household tea preparation conditions, infusions were prepared in water heated to 95 degrees C. The dynamics of extraction of polyphenolic antioxidants were monitored over the course of 30 minutes. Extraction efficiency, quantified in terms of the total phenol (TP) content, and antioxidant capacity of infusions, evaluated by the ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays, were compared with cultivar type and extraction time. The 30-minute infusions exhibited the highest TP content and antioxidant capacity according to all three assays. Wild blueberry infusion had the highest TP content (1,879 mg/L gallic acid equivalents [GAE]) and FRAP values (20,050 microM). The range of TP values for 30-minute infusions was 394-1,879 mg/L GAE with a mean of 986 mg/L GAE across cultivars; FRAP values fell between 3,015 and 20,050 microM with a mean of 11,234 microM across cultivars. All 30-minute infusions exhibited significant scavenging capacity for DPPH(*) and ABTS(*+) radicals, comparable to different concentrations of catechin, gallic acid, and 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid. Overall, tested infusions showed significant reducing capacity as well as radical scavenging potential, which places blueberry leaf tea high on the list of dietary sources of antioxidants.

  7. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition.

    Science.gov (United States)

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2012-10-08

    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  8. Antioxidants Potential of the Filamentous Fungi (Mucor circinelloides).

    Science.gov (United States)

    Hameed, Ahsan; Hussain, Syed Ammar; Yang, Junhuan; Ijaz, Muhammad Umair; Liu, Qing; Suleria, Hafiz Ansar Rasul; Song, Yuanda

    2017-10-07

    Three important strains of Mucor circinelloides grown in complete and minimal media for specified period (72 h, 120 h and 168 h) under submerged fermentation conditions were investigated for their potential antioxidants/secondary metabolite production. All mycelial extracts demonstrated effective antioxidant activities in terms of β-carotene/linoleic acid bleaching, radical scavenging, reduction of metal ions and chelating abilities against ferrous ions. Different extraction methods and solvent systems affected the recovery yield and antioxidant activities of the extracts significantly ( p ≤ 0.05). Ethanolic extracts were found to be rich source of antioxidant components and subsequently more effective in antioxidant properties. Fermentation period and media used also significantly affected ( p ≤ 0.05) the antioxidant production and the resulting antioxidant properties. The (ethanolic) extracts of all the strains from late exponential growth phase (120 h) showed highest antioxidant production with topmost reducing, chelating and radical scavenging capabilities. Strain MC277.49 was found to be the highest producer of antioxidants followed by MC108.16 and WJ11. Phenolic compounds were detected significantly in higher ( p ≤ 0.05) amount succeeded by the condensed tannins and flavonoids. Total phenol content of each extract was attributed to overall antioxidant capacity. Submerged fermentation with nutritional stress conditions were found to be excellent way of producing surplus amount of natural antioxidants/secondary metabolites with their vast potential commercial application in food and pharmaceutical industries.

  9. Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging.

    Science.gov (United States)

    Ramos, Marina; Jiménez, Alfonso; Peltzer, Mercedes; Garrigós, María C

    2014-11-01

    Novel nano-biocomposite films based on poly (lactic acid) (PLA) were prepared by incorporating thymol, as the active additive, and modified montmorillonite (D43B) at two different concentrations. A complete thermal, structural, mechanical and functional characterization of all nano-biocomposites was carried out. Thermal stability was not significantly affected by the addition of thymol, but the incorporation of D43B improved mechanical properties and reduced the oxygen transmission rate by the formation of intercalated structures, as suggested by wide angle X-ray scattering patterns and transmission electron microscopy images. The addition of thymol decreased the PLA glass transition temperature, as the result of the polymer plasticization, and led to modification of the elastic modulus and elongation at break. Finally, the amount of thymol remaining in these formulations was determined by liquid chromatography (HPLC-UV) and the antioxidant activity by the DPPH spectroscopic method, suggesting that the formulated nano-biocomposites could be considered a promising antioxidant active packaging material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Dietary olive oil effect on antioxidant status and fatty acid profile in the erythrocyte of 2,4-D- exposed rats

    Directory of Open Access Journals (Sweden)

    Nakbi Amel

    2010-08-01

    Full Text Available Abstract Background Oxidative stress produced by reactive oxygen species (ROS has been linked to the development of several diseases such as cardiovascular, cancer, and neurodegenerative diseases. This study investigates the possible protective effect of extra virgin olive oil (EVOO, lipophilic fraction (OOLF and hydrophilic fraction (OOHF on oxidative stress and fatty acid profile of erythrocytes in 2,4-D treated rats. Methods Male Wistar rats were divided randomly into eight groups: control (C, (2,4-D at a dose of 5 mg/kg b.w., (2,4-D/EVOO was given 2,4-D plus EVOO, (2,4-D/OOHF that received 2,4-D plus hydrophilic fraction, (2,4-D/OOLF treated with 2,4-D plus lipophilic fraction, (EVOO that received only EVOO, (OOHF was given hydrophilic fraction and (OOLF treated with lipophilic fraction. These components were daily administered by gavages for 4 weeks. Results 2,4-D treatment lead to decrease of antioxidant enzyme activities, namely, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx and glutathione reductase (GR associated with a higher amount of MDA level. Erythrocyte membranes' fatty acid composition was also significantly modified with 2,4-D exposure. EVOO and hydrophilic fraction supplemented to rats with or not 2,4-D treatment enhanced the antioxidant enzyme activities and reduced the MDA level. However, lipophilic fraction did not show any improvement in oxidative damage induced by 2,4-D in spite its richness in MUFA and vitamins. Conclusion EVOO administered to 2,4-D-treated rats protected erythrocyte membranes against oxidative damage by means of preventing excessive lipid peroxidation to increase the MUFA composition and increase maintaining antioxidants enzymes at normal concentrations.

  11. Antioxidant activity of Sempervivum tectorum and its components.

    Science.gov (United States)

    Sentjurc, Marjeta; Nemec, Marjana; Connor, Henry D; Abram, Veronika

    2003-04-23

    The antioxidant properties of components of leaf extracts of the evergreen plant, Sempervivum tectorum (ST), have been evaluated using UV irradiated liposomal systems containing the spin trap 5-(diethoxyphosphoryl)-5-methyl-pyrroline-N-oxide. Decreases in free radical activity in the liposomal systems as measured by electron paramagnetic resonance (EPR) spectroscopy demonstrate that the lipophilic ST juice components, kaempferol (KA) and kaempferol-3-glucoside (KG) contribute significantly to the antioxidant properties of the juice. EPR spectral simulation established the presence of oxygen and carbon centered free radical adducts. The mixtures with low pH, citric and malic acid, and ST juice reveal increased EPR signals from oxygen centered radicals in comparison to the control, pointing to the important role of pH in oxygen radical formation. Parallel assays that measured thiobarbituric acid related substances confirm the antioxidant effects of KA and KG and explain the results of spin trapping experiments complicated by low pH's.

  12. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment.

    Science.gov (United States)

    Escriche, Isabel; Kadar, Melinda; Juan-Borrás, Marisol; Domenech, Eva

    2014-01-01

    Total antioxidant activity, physicochemical parameters, and the profile of flavonoids and phenolic acid compounds were evaluated for: their ability to distinguish between the botanical origins of four types of Spanish honey, the impact of industrial thermal treatment, and the effect of the year of collection. Citrus honey had the lowest levels of all the analysed variables, then rosemary and polyfloral, and honeydew the highest ones. Botanical origin affects the profile of flavonoids and phenolic compounds sufficiently to permit discrimination thanks to the predominance of particular compounds such as: hesperetin (in citrus honey); kaempferol, chrysin, pinocembrin, caffeic acid and naringenin (in rosemary honey) and myricetin, quercetin, galangin and particularly p-coumaric acid (in honeydew honey). The impact of industrial thermal treatments is lower than the expected variability as a consequence of the year of collection, though neither factor has enough influence to alter these constituent compounds to the point of affecting the discrimination of honey by botanical origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Isolation and identification of phenolic antioxidants in black rice bran.

    Science.gov (United States)

    Jun, Hyun-Il; Shin, Jae-Wook; Song, Geun-Seoup; Kim, Young-Soo

    2015-02-01

    Black rice bran contains phenolic compounds of a high antioxidant activity. In this study, the 40% acetone extract of black rice bran was sequentially fractionated to obtain 5 fractions. Out of the 5 fractions, ethyl acetate fraction was subfractionated using the Sephadex LH-20 chromatography. The antioxidant activity of phenolic compounds in the extracts was investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, 2,2-azino-bis-(3-ethylenebenzothiozoline-6-sulfonic acid) (ABTS) radical cation assay, reducing power. The subfraction 2 from ethyl acetate fraction had the highest total phenolic contents (TPC) (816.0 μg/mg) and the lowest EC50 values (47.8 μg/mL for DPPH radical assay, 112.8 μg/mL for ABTS radical cation assay, and 49.2 μg/mL for reducing power). These results were 3.1, 1.3, and 2.6 times lower than those of butylated hydroxytoluene (BHT), respectively. At a concentration of 100 μg/mL, the antioxidant activity and TPC of various extracts was closely correlated, with correlation coefficients (R(2) ) higher than 0.86. The major phenolic acid in subfraction 2 was identified as ferulic acid (178.3 μg/mg) by HPLC and LC-ESI/MS/MS analyses. Our finding identified ferulic acid as a major phenolic compound in black rice bran, and supports the potential use of black rice bran as a natural source of antioxidant. © 2015 Institute of Food Technologists®

  14. Feeding rumen-protected gamma-aminobutyric acid enhances the immune response and antioxidant status of heat-stressed lactating dairy cows.

    Science.gov (United States)

    Cheng, Jianbo; Zheng, Nan; Sun, Xianzhi; Li, Songli; Wang, Jiaqi; Zhang, Yangdong

    2016-08-01

    This experiment was conducted to investigate the effects of rumen-protected gamma-aminobutyric acid (GABA) on immune function and antioxidant status in heat-stressed dairy cows. Sixty Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized block design. The treatments consisted of 0 (control), 40, 80, or 120mg of GABA/kg DM from rumen-protected GABA. The trial lasted 10 weeks. The average temperature-humidity indices at 0700, 1400 and 2200h were 78.4, 80.2 and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA. As the GABA increased, the immunoglobulin (Ig) A and IgG contents and the proportions of CD4(+) and CD8(+) T lymphocytes increased linearly (Pheat-stressed dairy cows can improve their immune function and antioxidant activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD).

    Science.gov (United States)

    Tokarz, Paulina; Kaarniranta, Kai; Blasiak, Janusz

    2013-10-01

    Cells in aerobic condition are constantly exposed to reactive oxygen species (ROS), which may induce damage to biomolecules, including proteins, nucleic acids and lipids. In normal circumstances, the amount of ROS is counterbalanced by cellular antioxidant defence, with its main components-antioxidant enzymes, DNA repair and small molecular weight antioxidants. An imbalance between the production and neutralization of ROS by antioxidant defence is associated with oxidative stress, which plays an important role in the pathogenesis of many age-related and degenerative diseases, including age-related macular degeneration (AMD), affecting the macula-the central part of the retina. The retina is especially prone to oxidative stress due to high oxygen pressure and exposure to UV and blue light promoting ROS generation. Because oxidative stress has an established role in AMD pathogenesis, proper functioning of antioxidant defence may be crucial for the occurrence and progression of this disease. Antioxidant enzymes play a major role in ROS scavenging and changes of their expression or/and activity are reported to be associated with AMD. Therefore, the enzymes in the retina along with their genes may constitute a perspective target in AMD prevention and therapy.

  16. The effects of bud load and regulated deficit irrigation on sugar, organic acid, phenolic compounds and antioxidant activity of Razakı table grape berries

    Directory of Open Access Journals (Sweden)

    Tangolar Semih

    2015-01-01

    Full Text Available This study aims at assessing the effects of increased bud load and irrigation applications on berry quality of the Razakı table grape. Two Regulated Deficit Irrigation (RDI having different irrigation levels (RDI-I and RDI-II based on the growth stages, in addition to a non-irrigated control treatment together with two different bud load practices (K-normal and 2K-two-fold buds of the normal were examined for their effects on quality attributes such as sugar and organic acids contents, phenolic compounds as well as antioxidant capacity of the berries. The non-irrigated vines had highest sugar level (198.86 g/kg in the first year (2013 of the experiment whilst the sugar content of the berries was increased with irrigation (RDI-II in 2014. However the highest organic acid (7.10 g/kg was recorded from the RDI-II treatment in 2013 whereas those of from non-irrigated vines were highest (7.81 g/kg in 2014. Considering the sugar and organic acid content of the berries, bud load effects were not significant. The total phenolic acids were higher under non-irrigated and 2K bud load conditions. Antioxidant activity of berries was increased with RDI-I irrigation and 2K practices in the first year (2013 although no significant effect was recorded in the second year of the experiment. In all applications, glucose among the sugars, tartaric acid among the organic acids, catechin and epicatechin among the phenolic compounds were detected to be higher compared to other components in berries.

  17. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins

    Directory of Open Access Journals (Sweden)

    Marwa Yousr

    2015-12-01

    Full Text Available Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF. Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y and tryptophan (W, in sequences identified by LC-MS as WYGPD (EYGF-23 and KLSDW (EYGF-33, contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56 was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69% and IC50 value (3.35 mg/mL. The SDNRNQGY peptide (10 mg/mL had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL. In addition, YPSPV in (EYGF-33 (10 mg/mL had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  18. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins.

    Science.gov (United States)

    Yousr, Marwa; Howell, Nazlin

    2015-12-07

    Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF). Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS) in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y) and tryptophan (W), in sequences identified by LC-MS as WYGPD (EYGF-23) and KLSDW (EYGF-33), contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56) was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69%) and IC50 value (3.35 mg/mL). The SDNRNQGY peptide (10 mg/mL) had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL). In addition, YPSPV in (EYGF-33) (10 mg/mL) had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  19. Development of a PEGylated-Based Platform for Efficient Delivery of Dietary Antioxidants Across the Blood-Brain Barrier.

    Science.gov (United States)

    Fernandes, Carlos; Pinto, Miguel; Martins, Cláudia; Gomes, Maria João; Sarmento, Bruno; Oliveira, Paulo J; Remião, Fernando; Borges, Fernanda

    2018-05-16

    The uptake and transport of dietary antioxidants remains the most important setback for their application in therapy. To overcome the limitations, a PEGylated-based platform was developed to improve the delivery properties of two dietary hydroxycinnamic (HCA) antioxidants-caffeic and ferulic acids. The antioxidant properties of the new polymer-antioxidant conjugates (PEGAntiOxs), prepared by linking poly(ethylene glycol) (PEG) to the cinnamic acids by a one-step Knovenagel condensation reaction, were evaluated. PEGAntiOxs present a higher lipophilicity than the parent compounds (caffeic and ferulic acids) and similar, or higher, antioxidant properties. PEGAntiOxs were not cytotoxic at the tested concentrations in SH-SY5Y, Caco-2, and hCMEC/D3 cells. By contrast, cytotoxic effects in hCMEC/D3 and SH-SY5Y cells were observed, at 50 and 100 μM, for caffeic and ferulic acids. PEGAntiOxs operate as antioxidants against several oxidative stress-cellular inducers in a neuronal cell-based model, and were able to inhibit glycoprotein-P in Caco-2 cells. PEGAntiOxs can cross hCMEC/D3 monolayer cells, a model of the blood-brain barrier (BBB) endothelial membrane. In summary, PEGAntiOxs are valid antioxidant prototypes that can uphold the antioxidant properties of HCAs, reduce their cytotoxicity, and improve their BBB permeability. PEGAntiOxs can be used in the near future as drug candidates to prevent or slow oxidative stress associated with neurodegenerative diseases.

  20. Phenolic Profiles and Antioxidant Activity of Lotus Root Varieties

    Directory of Open Access Journals (Sweden)

    Yang Yi

    2016-06-01

    Full Text Available Lotus root attracts increasing attention mainly because of its phenolic compounds known as natural antioxidants. Its thirteen varieties were systematically analyzed on the content, distribution, composition and antioxidant activity of phenolic compounds for a better understanding of this aquatic vegetable. The respective mean contents of total phenolics in their flesh, peel and nodes were 1.81, 4.30 and 7.35 mg gallic acid equivalents (GAE/g fresh weight (FW, and those of total flavonoids were 3.35, 7.69 and 15.58 mg rutin equivalents/g FW. The phenolic composition determined by a high-performance liquid chromatography method varied significantly among varieties and parts. The phenolics of flesh were mainly composed of gallocatechin and catechin; those of peel and node were mainly composed of gallocatechin, gallic acid, catechin and epicatechin. The antioxidant activities of phenolic extracts in increasing order were flesh, peel and node; their mean concentrations for 50% inhibition of 2,2-diphenyl-1-picrylhydrazyl radical were 46.00, 26.43 and 21.72 µg GAE/mL, and their mean values representing ferric reducing antioxidant power were 75.91, 87.66 and 100.43 µg Trolox equivalents/100 µg GAE, respectively. “Zoumayang”, “Baheou”, “No. 5 elian” and “Guixi Fuou” were the hierarchically clustered varieties with relatively higher phenolic content and stronger antioxidant activity as compared with the others. Especially, their nodes and peels are promising sources of antioxidants for human nutrition.