WorldWideScience

Sample records for antineutrino magnetic moment

  1. Production of W-+ with an anomalous magnetic moment via the collision of an ultrahigh-energy (anti)neutrino on a target nucleon

    CERN Document Server

    Rosado, A

    2003-01-01

    We discuss the production of W-+ bosons in deep inelastic processes (anti-nu)nu + nucleon --> l+- + W-+ + X, in the context of an electroweak model in which the vector boson self interactions may be different from those prescribed by the electroweak standard model. We present results which show the strong dependence of the cross section on the anomalous magnetic dipole moment kappa of the W+-. We show that even small deviations from the standard model value of kappa (kappa=1) could imply observable deviations in the cross section rates of W-+ production through the collision of an ultrahigh energy (anti)neutrino on a target nucleon.

  2. Calculation of reactor antineutrino spectra in TEXONO

    CERN Document Server

    Chen Dong Liang; Mao Ze Pu; Wong, T H

    2002-01-01

    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  3. KamLAND, solar antineutrinos and the solar magnetic field

    CERN Document Server

    Chauhan, B C; Torrente-Lujan, E; Chauhan, Bhag C.; Pulido, Joao

    2003-01-01

    In this work the possibility of detecting solar electron antineutrinos produced by a solar core magnetic field from the KamLAND recent observations is investigated. We find a scaling of the antineutrino probability with respect to the magnetic field profile in the sense that the same probability function can be reproduced by any profile with a suitable peak field value. In this way the solar electron antineutrino spectrum can be unambiguosly predicted. We use this scaling and the negative results indicated by the KamLAND experiment to obtain upper bounds on the solar electron antineutrino flux. We get $\\phi_{\\bar\

  4. Streched Magnetic Moments

    CERN Document Server

    Zamick, Larry

    2012-01-01

    We note that for a system of 2 nucleons in a stretched case (J=J1+J2) the magnetic moment of the combined system is the sum of the magnetic moments of the 2 constituents. In general there is no additive rule for g factors.

  5. Neutrino Magnetic Moment

    OpenAIRE

    Balantekin, A. B.

    2006-01-01

    Current experimental and observational limits on the neutrino magnetic moment are reviewed. Implications of the recent results from the solar and reactor neutrino experiments for the value of the neutrino magnetic moment are discussed. It is shown that spin-flavor precession in the Sun is suppressed.

  6. Effect of transition magnetic moments on collective supernova neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Gouvêa, André de; Shalgar, Shashank, E-mail: degouvea@northwestern.edu, E-mail: shashank@northwestern.edu [Department of Physics and Astronomy, Northwestern University, Evanston IL 60208-3112 (United States)

    2012-10-01

    We study the effect of Majorana transition magnetic moments on the flavor evolution of neutrinos and antineutrinos inside the core of Type-II supernova explosions. We find non-trivial collective oscillation effects relating neutrinos and antineutrinos of different flavors, even if one restricts the discussion to Majorana transition electromagnetic moment values that are not much larger than those expected from standard model interactions and nonzero neutrino Majorana masses. This appears to be, to the best of our knowledge, the only potentially observable phenomenon sensitive to such small values of Majorana transition magnetic moments. We briefly comment on the effect of Dirac transition magnetic moments and on the consequences of our results for future observations of the flux of neutrinos of different flavors from a nearby supernova explosion.

  7. Neutrino magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Chang, D. (Northwestern Univ., Evanston, IL (USA). Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL (USA)); Senjanovic, G. (Zagreb Univ. (Yugoslavia). Dept. of Theoretical Physics)

    1990-01-01

    We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.

  8. Supernova neutrino signals by liquid Argon detector and neutrino magnetic moment

    CERN Document Server

    Yoshida, Takashi; Kimura, Keiichi; Kawagoe, Shio; Kajino, Toshitaka; Yokomakura, Hidekazu

    2011-01-01

    We study electron-neutrino and electron-antineutrino signals from a supernova with strong magnetic field detected by a 100 kton liquid Ar detector. The change of neutrino flavors by resonant spin-flavor conversions, matter effects, and neutrino self-interactions are taken into account. Different neutrino signals, characterized by neutronization burst event and the total event numbers of electron-neutrinos and electron-antineutrinos, are expected with different neutrino oscillation parameters and neutrino magnetic moment. Observations of supernova neutrino signals by a 100 kton liquid Ar detector would constrain oscillation parameters as well as neutrino magnetic moment in either normal and inverted mass hierarchies.

  9. Magnetic Moment of $^{59}$Cu

    CERN Multimedia

    2002-01-01

    Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.

  10. New limits on neutrino magnetic moment through non-vanishing 13-mixing

    CERN Document Server

    Guzzo, Marcelo Moraes; Peres, Orlando Luis Goulart

    2012-01-01

    The relatively large value of neutrino mixing angle \\theta_{13} set by recent measurements allows us to use solar neutrinos to set a limit on neutrino magnetic moment involving second and third families, \\mu_{\\mu\\tau}. The existence of a random magnetic field in solar convective zone can produce a significant anti-neutrino flux when a non-vanishing neutrino magnetic moment is assumed. Even if we consider a vanishing neutrino magnetic moment involving the first family, electron anti-neutrinos are indirectly produced through the mixing between first and third families and non-vanishing \\mu_{\\mu\\tau}. Using KamLAND limits on the solar flux of electron anti-neutrino, we set the limit \\mu_{\\mu\\tau} < 0.5e-11 Bohr magneton for a reasonable assumption on the behavior of solar magnetic fields. This is the first time a limit on \\mu_{\\mu\\tau} is established in the literature and, interestingly enough, is comparable with the limits on neutrino magnetic moment involving the first neutrino family.

  11. Anomalous magnetic moment of anyons

    CERN Document Server

    Gat, G; Gat, Gil; Ray, Rashmi

    1994-01-01

    The anomalous magnetic moment of anyons is calculated to leading order in a 1/N expansion. It is shown that the gyromagnetic ratio g remains 2 to the leading order in 1/N. This result strongly supports that obtained in \\cite{poly}, namely that g=2 is in fact exact.

  12. Updating neutrino magnetic moment constraints

    CERN Document Server

    Canas, B C; Parada, A; Tortola, M; Valle, J W F

    2015-01-01

    In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Lambda_i as well as the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 x 10^-11 mu_B at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Lambda_1| < 5.6 x10^-11 mu_B, |Lambda_2| < 4.0 x 10^-11 mu_B, and |Lambda_3| < 3.1 x 10^-11 mu_B (90% C.L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a gl...

  13. Updating neutrino magnetic moment constraints

    Directory of Open Access Journals (Sweden)

    B.C. Cañas

    2016-02-01

    Full Text Available In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs, discussing both the constraints on the magnitudes of the three transition moments Λi and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1×10−11μB at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Λ1|≤5.6×10−11μB, |Λ2|≤4.0×10−11μB, and |Λ3|≤3.1×10−11μB (90% C.L., irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.

  14. The Results of Search for the Neutrino Magnetic Moment in GEMMA Experiment

    Directory of Open Access Journals (Sweden)

    A. G. Beda

    2012-01-01

    Full Text Available The result of the neutrino magnetic moment measurement at the Kalinin Nuclear Power Plant (KNPP with GEMMA spectrometer is presented. The antineutrino-electron scattering is investigated. A high-purity germanium detector with a mass of 1.5 kg placed at a distance of 13.9 m from the 3 GWth reactor core is exposed to the antineutrino flux of 2.7×1013 1/cm2/s. The recoil electron spectra taken in 18134 and 4487 hours for the reactor ON and OFF periods are compared. The upper limit for the neutrino magnetic moment μν<  2.9×10−11μB at 90% C.L. is derived from the data processing.

  15. GEMMA experiment: three years of the search for the neutrino magnetic moment

    CERN Document Server

    Beda, A G; Demidova, E V; Egorov, V G; Medvedev, D V; Shirchenko, M V; Starostin, A S; Vylov, Ts

    2009-01-01

    The result of the 3-year neutrino magnetic moment measurement at the Kalinin Nuclear Power Plant with the GEMMA spectrometer is presented. Antineutrino-electron scattering is investigated. A high-purity germanium detector of 1.5 kg placed at a distance of 13.9 m from the 3 GW(th) reactor core is used in the spectrometer. The antineutrino flux is 2.7E13 1/scm/s. The differential method is used to extract (nu-e) electromagnetic scattering events. The scattered electron spectra taken in 5184+6798 and 1853+1021 hours for the reactor ON and OFF periods are compared. The upper limit for the neutrino magnetic moment < 3.2E-11 Bohr magneton at 90% CL is derived from the data processing.

  16. Neutrino induced magnetic moment and spin precession

    Science.gov (United States)

    Ternov, A. I.

    2016-07-01

    When propagating through a dispersing medium, a massive neutrino acquires an induced magnetic moment that may give rise to a helicity flip in an external magnetic field with a larger probability than that caused by the anomalous magnetic moment. This phenomenon is investigated in the framework of relativistic quantum mechanics and of the generalized Bargmann-Michel-Telegdi equation.

  17. HELMHOLTZ COILS FOR MEASURING MAGNETIC MOMENTS

    Directory of Open Access Journals (Sweden)

    P. N. Dobrodeyev

    2013-01-01

    Full Text Available The optimal configuration of the double Helmholtz coils for measuring of the magnetic dipole moments was defined. It was determined that measuring coils should have round shape and compensative coils – the square one. Analytically confirmed the feasibility of the proposed configuration of these coils as primary transmitters of magnetic dipole moments.

  18. Magnetic moments in graphene with vacancies.

    Science.gov (United States)

    Chen, Jing-Jing; Wu, Han-Chun; Yu, Da-Peng; Liao, Zhi-Min

    2014-08-07

    Vacancies can induce local magnetic moments in graphene, paving the way to make magnetic functional graphene. Due to the interaction between magnetic moments and conduction carriers, the magnetotransport properties of graphene can be modulated. Here, the effects of vacancy induced magnetic moments on the electrical properties of graphene are studied via magnetotransport measurements and spin-polarized density functional theory calculations. We show by quantum Hall measurements that a sharp resonant Vπ state is introduced in the midgap region of graphene with vacancies, resulting in the local magnetic moment. The coupling between the localized Vπ state and the itinerant carrier is tuned by varying the carrier concentration, temperature, magnetic field, and vacancy density, which results in a transition between hopping transport and the Kondo effect and a transition between giant negative magnetoresistance (MR) and positive MR. This modulated magnetotransport is valuable for graphene based spintronic devices.

  19. Effective magnetic moment of neutrinos in strong magnetic fields

    CERN Document Server

    Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  20. Moments of inertia of relativistic magnetized stars

    OpenAIRE

    Konno, K

    2001-01-01

    We consider principal moments of inertia of axisymmetric, magnetically deformed stars in the context of general relativity. The general expression for the moment of inertia with respect to the symmetric axis is obtained. The numerical estimates are derived for several polytropic stellar models. We find that the values of the principal moments of inertia are modified by a factor of 2 at most from Newtonian estimates.

  1. Measurement of magnetic moment via optical transmission

    Energy Technology Data Exchange (ETDEWEB)

    Heidsieck, Alexandra, E-mail: aheidsieck@tum.de; Schmid, Daniel; Gleich, Bernhard

    2016-03-01

    The magnetic moment of nanoparticles is an important property for drug targeting and related applications as well as for the simulation thereof. However, the measurement of the magnetic moment of nanoparticles, nanoparticle–virus-complexes or microspheres in solution can be difficult and often yields unsatisfying or incomparable results. To measure the magnetic moment, we designed a custom measurement device including a magnetic set-up to observe nanoparticles indirectly via light transmission in solution. We present a simple, cheap device of manageable size, which can be used in any laboratory as well as a novel evaluation method to determine the magnetic moment of nanoparticles via the change of the optical density of the particle suspension in a well-defined magnetic gradient field. In contrast to many of the established measurement methods, we are able to observe and measure the nanoparticle complexes in their natural state in the respective medium. The nanoparticles move along the magnetic gradient and thereby away from the observation point. Due to this movement, the optical density of the fluid decreases and the transmission increases over time at the measurement location. By comparing the measurement with parametric simulations, we can deduce the magnetic moment from the observed behavior. - Highlights: • Performance of a direct detection camera in the context of off-axis electron holography has been evaluated. • A measurement device to indirectly observe magnetic nanoparticles (MNPs) is described. • MNPs can be observed in the respective medium via light transmission. • An evaluation method to determine the magnetic moment of the MNPs is presented. • The magnetic moment can be deduced from the observed change in optical density.

  2. How to Introduce the Magnetic Dipole Moment

    Science.gov (United States)

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  3. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-11-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  4. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Liu, Tao [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Marquard, Peter [Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany)

    2014-02-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  5. Anomalous magnetic moment with heavy virtual leptons

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Steinhauser, Matthias

    2013-01-01

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  6. Magnetic moment of {sup 48}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsubo, T., E-mail: tohtsubo@np.gs.niigata-u.ac.jp; Kawamura, Y.; Ohya, S. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Nishimura, K. [Toyama University, Faculty of Engineering (Japan); Muto, S. [Neutron Science Laboratory, KEK (Japan); Shinozuka, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan)

    2007-11-15

    Nuclear magnetic resonances were measured for {sup 48}Sc and {sup 44m}Sc oriented at 8 mK in an Fe host metal. The magnetic hyperfine splitting frequencies at an external magnetic field of 0.2 T were determined to be 63.22(11) MHz and 64.81(1) MHz for {sup 48}Sc and {sup 44m}Sc, respectively. With the known magnetic moment of {mu}({sup 44m}Sc)=+3.88 (1) {mu}{sub N}, the magnetic moment of {sup 48}Sc is deduced as {mu}({sup 44}Sc)=+3.785(12) {mu}{sub N}. The measured magnetic moment of {sup 48}Sc is discussed in terms of the shell model using the effective interactions.

  7. Magnetic moment nonconservation in magnetohydrodynamic turbulence models.

    Science.gov (United States)

    Dalena, S; Greco, A; Rappazzo, A F; Mace, R L; Matthaeus, W H

    2012-07-01

    The fundamental assumptions of the adiabatic theory do not apply in the presence of sharp field gradients or in the presence of well-developed magnetohydrodynamic turbulence. For this reason, in such conditions the magnetic moment μ is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width Δμ (defined as the half peak-to-peak difference in the particle magnetic moments) and the bounce frequency ω(b). We perform test-particle simulations to investigate magnetic moment behavior when resonance overlapping occurs and during the interaction of a ring-beam particle distribution with a broadband slab spectrum. We find that the changes of magnetic moment and changes of pitch angle are related when the level of magnetic fluctuations is low, δB/B(0) = (10(-3),10(-2)), where B(0) is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function f(α). This is a transient regime during which magnetic moment distribution f(μ) exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance grows linearly in time as in normal diffusion. With strong fluctuations f(α) becomes completely isotropic, spatial diffusion sets in, and the f(μ) behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.

  8. Magnetic moment densities in selected UTX compounds

    Energy Technology Data Exchange (ETDEWEB)

    Javorsky, P.; Schweizer, J.; Givord, F.; Boucherle, J.-X.; Andreev, A.V.; Divis, M.; Lelievre-Berna, E.; Sechovsky, V

    2004-07-15

    We present results of polarized neutron-diffraction studies of magnetization distribution in several isostructural UTX compounds. Besides the uranium magnetic moment, we observe a significant magnetization also on the transition-metal sites and in the interstitial region, close to the X-atom site. The values of the moments induced on the T-atoms in the U-T and T-X basal planes are rather similar for compounds with 3d-metals, UNiGa, UNiAl, and UCoAl, while a difference occurs in UPtAl. Our results are compared with literature data for URhAl and URuAl.

  9. Near-Field Magnetic Dipole Moment Analysis

    Science.gov (United States)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  10. Theory of the Muon Anomalous Magnetic Moment

    CERN Document Server

    Melnikov, Kirill

    2006-01-01

    The theory of the muon anomalous magnetic moment is "particle physics in a nutshell" and as such is interesting, exciting and difficult. The current precision of the experimental value for this quantity, improved significantly in the past several years due to experiment E821 at Brookhaven National Laboratory, is so high that a large number of subtle effects not relevant previously, become important for the interpretation of the experimental result. The theory of the muon anomalous magnetic moment is at the cutting edge of current research in particle physics and includes multiloop calculations in both QED and electroweak theory, precision low-energy hadron physics, isospin violations and scattering of light by light. Any deviation between the theoretical prediction and the experimental value might be interpreted as a signal of an as-yet-unknown new physics. This book provides a comprehensive review of the theory of the muon anomalous magnetic moment.

  11. Noncommutative magnetic moment of charged particles

    CERN Document Server

    Adorno, T C; Shabad, A E; Vassilevich, D V

    2011-01-01

    It has been argued, that in noncommutative field theories sizes of physical objects cannot be taken smaller than an elementary length related to noncommutativity parameters. By gauge-covariantly extending field equations of noncommutative U(1)_*-theory to the presence of external sources, we find electric and magnetic fields produces by an extended charge. We find that such a charge, apart from being an ordinary electric monopole, is also a magnetic dipole. By writing off the existing experimental clearance in the value of the lepton magnetic moments for the present effect, we get the bound on noncommutativity at the level of 10^4 TeV.

  12. The Anomalous Magnetic Moment of the Muon

    CERN Document Server

    Jegerlehner, Friedrich

    2008-01-01

    This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...

  13. Shuffle dislocation induced magnetic moment in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Sancho, M.P., E-mail: pilar@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid-CSIC, C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Juan, F. de; Vozmediano, M.A.H. [Instituto de Ciencia de Materiales de Madrid-CSIC, C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2010-05-15

    Graphene, a honeycomb arrangement of carbon atoms, is a promising material for nanoelectronics applications due to its unusual electronic properties. Recent experiments performed on suspended graphene indicate the existence of intrinsic defects on the samples. It is known that lattice defects such as vacancies or voids leaving unpaired atoms, lead to the formation of local magnetic moments (Vozmediano et al., 2005). The existence and ordering of these moments is largely determined by the bipartite character of the honeycomb lattice seen as two interpenetrating triangular sublattices. Dislocations made by pentagon-heptagon pairs or octagons with an unpaired atom have been studied recently and found to be stable in the graphene lattice (Carpio et al., 2008). These defects frustrate the sublattice structure and affect the magnetic properties of graphene. We study the magnetic properties of graphene in the presence of these defects. The system is described by a p{sub z} tight-binding model with electron-electron interactions modelled by a Hubbard term. Spin-polarized mean-field solutions are investigated within an unrestricted Hartree-Fock approximation.

  14. Magnetic resonance signal moment determination using the Earth's magnetic field

    Science.gov (United States)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  15. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  16. Quantum tunneling of the magnetic moment in a free nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    O' Keeffe, M.F. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Chudnovsky, E.M., E-mail: eugene.chudnovsky@lehman.cuny.edu [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Garanin, D.A. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States)

    2012-09-15

    We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: Black-Right-Pointing-Pointer We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. Black-Right-Pointing-Pointer The quantum phase diagram shows magnetic moment dependence on rotator shape and size. Black-Right-Pointing-Pointer Our work explains magnetic properties of free atomic clusters and magnetic molecules.

  17. Numerical modeling of higher order magnetic moments in UXO discrimination

    Science.gov (United States)

    Sanchez, V.; Yaoguo, L.; Nabighian, M.N.; Wright, D.L.

    2008-01-01

    The surface magnetic anomaly observed in unexploded ordnance (UXO) clearance is mainly dipolar, and consequently, the dipole is the only magnetic moment regularly recovered in UXO discrimination. The dipole moment contains information about the intensity of magnetization but lacks information about the shape of the target. In contrast, higher order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and to show its potential utility in UXO clearance, we present a numerical modeling study of UXO and related metallic objects. The tool for the modeling is a nonlinear integral equation describing magnetization within isolated compact objects of high susceptibility. A solution for magnetization distribution then allows us to compute the magnetic multipole moments of the object, analyze their relationships, and provide a depiction of the anomaly produced by different moments within the object. Our modeling results show the presence of significant higher order moments for more asymmetric objects, and the fields of these higher order moments are well above the noise level of magnetic gradient data. The contribution from higher order moments may provide a practical tool for improved UXO discrimination. ?? 2008 IEEE.

  18. Model Independent Naturalness Bounds on Magnetic Moments of Majorana Neutrinos

    OpenAIRE

    Gorchtein, Mikhail; Bell, Nicole F.; Ramsey-Musolf, Michael J.; Vogel, Petr; Wang, Peng

    2007-01-01

    We analyze the implications of neutrino masses for the magnitude of neutrino magnetic moments. By considering electroweak radiative corrections to the neutrino mass, we derive model-independent naturalness upper bounds on neutrino magnetic moments, generated by physics above the electroweak scale. For Majorana neutrinos, these bounds are weaker than present experimental limits if $\\mu_\

  19. Enhanced orbital magnetic moments in magnetic heterostructures with interface perpendicular magnetic anisotropy.

    Science.gov (United States)

    Ueno, Tetsuro; Sinha, Jaivardhan; Inami, Nobuhito; Takeichi, Yasuo; Mitani, Seiji; Ono, Kanta; Hayashi, Masamitsu

    2015-10-12

    We have studied the magnetic layer thickness dependence of the orbital magnetic moment in magnetic heterostructures to identify contributions from interfaces. Three different heterostructures, Ta/CoFeB/MgO, Pt/Co/AlOx and Pt/Co/Pt, which possess significant interface contribution to the perpendicular magnetic anisotropy, are studied as model systems. X-ray magnetic circular dichroism spectroscopy is used to evaluate the relative orbital moment, i.e. the ratio of the orbital to spin moments, of the magnetic elements constituting the heterostructures. We find that the relative orbital moment of Co in Pt/Co/Pt remains constant against its thickness whereas the moment increases with decreasing Co layer thickness for Pt/Co/AlOx, suggesting that a non-zero interface orbital moment exists for the latter system. For Ta/CoFeB/MgO, a non-zero interface orbital moment is found only for Fe. X-ray absorption spectra shows that a particular oxidized Co state in Pt/Co/AlOx, absent in other heterosturctures, may give rise to the interface orbital moment in this system. These results show element specific contributions to the interface orbital magnetic moments in ultrathin magnetic heterostructures.

  20. Bounds on neutrino magnetic moment tensor from solar neutrinos

    CERN Document Server

    Joshipura, A S; Joshipura, Anjan S.; Mohanty, Subhendra

    2002-01-01

    Solar neutrinos with non-zero magnetic moments will contribute to the electron scattering rates in the Super-Kamiokande experiment. The magnetic moment scattering events in Super-K can be accommodated in the standard VO or MSW solutions by a change of the parameter space of mass square difference and mixing angle-but the shifted neutrino parameters obtained from Super-K will (for some values of neutrino magnetic moments) become incompatible with the fits from SNO, Gallium and Chlorine experiments. We compute the upper bounds on the Dirac and Majorana magnetic moments of solar neutrinos by simultaneously fitting all the observed solar neutrino rates. The bounds the magnetic moment matrix elements are of the order of 10^{-10} Bohr magnetron.

  1. Measurement of the electric dipole moment and magnetic moment anomaly of the muon

    NARCIS (Netherlands)

    Onderwater, CJG

    2005-01-01

    The experimental precision of the anomalous magnetic moment of the muon has been improved to 0.5 part-per-million by the Brookhaven E821 experiment, similar to the theoretical uncertainty. In the same experiment, a new limit on the electric dipole moment of 2.8 x 10(-19) e-cm (95% CL) was set. The e

  2. Magnetic dipole moment of a moving electric dipole

    OpenAIRE

    Hnizdo, V.

    2012-01-01

    The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.

  3. Baryon magnetic moments in the background field method

    CERN Document Server

    Lee, F X; Zhou, L; Wilcox, W

    2005-01-01

    We present a calculation of the magnetic moments for the baryon octet and decuplet using the background-field method and standard Wilson gauge and fermion actions in the quenched approximation of lattice QCD. Progressively smaller static magnetic fields are introduced on a $24^4$ lattice at beta=6.0 and the pion mass is probed down to about 500 MeV. Magnetic moments are extracted from the linear response of the masses to the background field.

  4. Instability of strong magnetic field and neutrino magnetic dipole moment

    CERN Document Server

    Lee, Hyun Kyu

    2016-01-01

    Vacuum instability of the strong electromagnetic field has been discussed since long time ago. The instability of the strong electric field due to creation of electron pairs is one of the examples, which is known as Schwinger process. What matters are the coupling of particles to the electromagnetic field and the mass of the particle to be produced. The critical electric field for electrons in the minimal coupling is ~ m^2/e . Spin 1/2 neutral particles but with magnetic dipole moments can interact with the electromagnetic field through Pauli coupling. The instability of the particular vacuum under the strong magnetic field can be formulated as the emergence of imaginary parts of the effective potential. In this talk, the development of the imaginary part in the effective potential as a function of the magnetic field strength is discussed for the configurations of the uniform magnetic field and the inhomogeneous magnetic field. Neutrinos are the lightest particle(if not photon or gluon) in the "standard model...

  5. Transition magnetic moments between negative parity heavy baryons

    CERN Document Server

    Aliev, T M; Savci, M

    2015-01-01

    The transition magnetic moments between negative parity, spin-1/2 heavy baryons are studied in framework of the light cone QCD sum rules. By constructing the sum rules for different Lorentz structures, the unwanted contributions coming from negative (positive) to positive (negative) parity transitions are removed. It is found that the magnetic moments between neutral negative parity heavy $\\Xi_Q^{\\prime 0}$ and $\\Xi_Q^0$ baryons are very small. Magnetic moments of the $\\Sigma_Q \\to \\Lambda_Q$ and $ \\Xi_Q^{\\prime \\pm} \\to \\Xi_Q^\\pm$ transitions are quite large and can be measured in further experiments.

  6. Magnetic moment distributions in α-Fe nanowire array

    Institute of Scientific and Technical Information of China (English)

    LI; Fashen; (李发伸); REN; Liyuan; (任立元); NIU; Ziping; (牛紫平); WANG; Haixin; (王海新); WANG; Tao; (王涛)

    2003-01-01

    α-Fe nanowire array has been electrodeposited into anodic aluminum oxide template. The magnetic moment distributions, in the interior and near the extremities of α-Fe nanowire with 60 nm in diameter, have been studied by means of transmission Mossbauer spectroscopy (MS), conversion electron Mossbauer spectroscopy (CEMS) and micromagnetic simulation. Transmission Mossbauer spectrum (MS) shows that the magnetic moments, inside the α-Fe nanowire array, are well parallel to nanowire, while conversion electron Mossbauer spectrum (CEMS) reveals that the magnetic moments, near the extremities of nanowire, diverge from the long axis of wire, and the average diverging angle calculated by the intensity ratio ofthe 2,5 peaks is about 24.0°. Moreover, the magnetic moment distributions of different depths to the top of wire are counted using micromagnetic simulation, which indicates that, the interior magnetic moments are strictly parallel to nanowire, and the closer the magnetic moment to the top of wire, the larger the diverging angle. Magnetic measurement shows that this α-Fe nanowire array represents a strong magnetic anisotropy.

  7. Lunar magnetic field - Permanent and induced dipole moments

    Science.gov (United States)

    Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.

    1974-01-01

    Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.

  8. Is the magnetic anisotropy proportional to the orbital moment?

    Energy Technology Data Exchange (ETDEWEB)

    Skomski, R; Kashyap, A; Enders, A

    2011-04-01

    The relation between orbital moment and magnetic anisotropy is investigated by model calculations, which show that only a part of the spin-orbit coupling contributes to the anisotropy. A large part of the anisotropy energy, about 50% for iron series elements and nearly 100% for rare-earths, is stored in the nonrelativistic part of the Hamiltonian. A feature important for x-ray magnetic circular dichroism is that the orbital moment of heavy atoms rotates with the spin moment, whereas in light atoms, the orbital moment is recreated in each different direction. In the discussion, we consider three examples of current interest in different areas of magnetism, namely, spin-orbit coupling in Gd3+ and Eu2+, surface anisotropy of Nd2Fe14B, and multiferroic magnetization switching using rare-earths. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562445

  9. Magnetic dipole moments of the heavy tensor mesons in QCD

    CERN Document Server

    Aliev, T M; Savcı, M

    2015-01-01

    The magnetic dipole moments of the ${\\cal D}_2$, and ${\\cal D}_{S_2}$, ${\\cal B}_2$, and ${\\cal B}_{S_2}$ heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the $SU(3)$ flavor symmetry violation is about 10\\% in both $b$ and $c$ sectors.

  10. Magnetic dipole moment and keV neutrino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang, E-mail: geng@phys.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan (China); Takahashi, Ryo, E-mail: ryo.takahasi88@gmail.com [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2012-04-04

    We study magnetic dipole moments of right-handed neutrinos in a keV neutrino dark matter model. This model is a simple extension of the standard model with only right-handed neutrinos and a pair of charged particles added. One of the right-handed neutrinos is the candidate of dark matter with a keV mass. Some bounds on the dark matter magnetic dipole moment and model parameters are obtained from cosmological observations.

  11. Magnetic dipole moment and keV neutrino dark matter

    CERN Document Server

    Geng, Chao-Qiang

    2012-01-01

    We study magnetic dipole moments of right-handed neutrinos in a keV neutrino dark matter model. This model is a simple extension of the standard model with only right-handed neutrinos and a pair of charged particles added. One of the right-handed neutrinos is the candidate of dark matter with a keV mass. Some bounds on the dark matter magnetic dipole moment and model parameters are obtained from cosmological observations.

  12. Magnetic dipole moment estimates for an ancient lunar dynamo

    Science.gov (United States)

    Anderson, K. A.

    1983-01-01

    The four measured planetary magnetic moments combined with a recent theoretical prediction for dynamo magnetic fields suggests that no dynamo exists in the moon's interior today. For the moon to have had a magnetic moment in the past of sufficient strength to account for at least some of the lunar rock magnetism, the rotation would have been about twenty times faster than it is today and the radius of the fluid, conducting core must have been about 750 km. The argument depends on the validity of the Busse solution to the validity of the MHD problem of planetary dynamos.

  13. Magnetic moment and electric dipole moment of the {tau}-lepton

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Rodriguez, A [Facultad de Fisica, Universidad Autonoma de Zacatecas, Apartado Postal C-580, 98060 Zacatecas, Zacatecas (Mexico); Hernandez-Ruiz, M A [Facultad de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Codigo Postal 98600 Zacatecas, Zacatecas (Mexico); Luis-Noriega, L N [Facultad de Fisica, Universidad Autonoma de Zacatecas, Apartado Postal C-580, 98060 Zacatecas, Zacatecas (Mexico)

    2006-05-15

    Limits on the anomalous magnetic moment and the electric dipole moment of the {tau} lepton are calculated through the reaction e{sup +}e{sup -} {yields} {tau}{sup +}{tau}{sup -} {gamma} at the Z{sub 1}-pole and in the framework of a left-right symmetric model. The results are based on the recent data reported by the L3 Collaboration at CERN LEP. Due to the stringent limit of the model mixing angle {phi}, the effect of this angle on the dipole moments is quite small.

  14. Right-handed neutrino magnetic moments

    CERN Document Server

    Aparici, Alberto; Santamaria, Arcadi; Wudka, Jose

    2009-01-01

    We discuss the phenomenology of the most general effective Lagrangian, up to operators of dimension 5, build with standard model fields and interactions including right-handed neutrinos. In particular we find there is a dimension 5 electroweak moment operator of right-handed neutrinos, not discussed previously in the literature, which could have interesting phenomenological consequences.

  15. Antineutrino Oscillations in the Atmospheric Sector

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Alexander I. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for vμ → $\\bar{v}$μ transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |Δ$\\bar{m}$atm 2| = (3.36-0.40+0.46(stat) ± 0.06(syst)) x 10-3 eV2 and sin2(2$\\bar{θ}$23) = 0.860-0.12+0.11(stat) ± 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  16. Magnetic susceptibility, magnetization, magnetic moment and characterization of Carancas meteorite

    CERN Document Server

    Rosales, Domingo

    2015-01-01

    On September, 15th, 2007, in the community of Carancas (Puno, Peru) a stony meteorite formed a crater explosive type with a mean diameter of 13.5 m. some samples meteorite fragments were collected. The petrologic analysis performed corresponds to a meteorite ordinary chondrite H 4-5. In this paper we have analyzed the magnetic properties of a meteorite fragment with a proton magnetometer. Also in order to have a complete characterization of the Carancas meteorite and its crater, from several papers, articles and reports, we have made a compilation of the most important characteristics and properties of this meteorite.

  17. Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders

    DEFF Research Database (Denmark)

    Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav

    2011-01-01

    An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...

  18. Determination of the magnetic moment of $^{140}$Pr

    CERN Multimedia

    Kowalska, M; Kreim, K D; Krieger, A R; Litvinov, Y

    We propose to measure the nuclear magnetic moment of the neutron-deficient isotope $^{140}$Pr using collinear laser spectroscopy at the COLLAPS experiment. This nuclide is one of two nuclear systems for which a modulated electron capture decay has been observed in hydrogen-like ions in a storage ring. The firm explanation of the observed phenomenon is still missing but some hypotheses suggest an interaction of the unpaired electron with the surrounding magnetic fields of the ring. In order to verify or discard these hypotheses the magnetic moment of $^{140}$Pr is required since this determines the energy of the 1s hyperfine splitting.

  19. Bounds on the Tau Magnetic Moments Standard Model and Beyond

    CERN Document Server

    González-Sprinberg, G A; Vidal, J; Gonzalez-Sprinberg, Gabriel A.; Santamaria, Arcadi; Vidal, Jorge

    2001-01-01

    We obtain new bounds for the magnetic dipole moments of the tau lepton. These limits on the magnetic couplings of the tau to the electroweak gauge bosons (gamma, W, Z) are set in a model independent way using the most general effective Lagrangian with the SU(2)_L x U(1)_Y symmetry. Comparison with data from the most precise experiments at high energies shows that the present limits are more stringent than the previous published ones. For the anomalous magnetic moment the bounds are, for the first time, within one order of magnitude of the standard model prediction.

  20. The permanent and induced magnetic dipole moment of the moon

    Science.gov (United States)

    Russell, C. T.; Coleman, P. J., Jr.; Lichtenstein, B. R.; Schubert, G.

    1974-01-01

    Magnetic field observations with the Apollo 15 subsatellite have been used to deduce the components of both the permanent and induced lunar dipole moments in the orbital plane. The present permanent lunar magnetic dipole moment in the orbital plane is less than 1.3 times ten to the eighteenth power gauss-cu cm. Any uniformly magnetized near surface layer is therefore constrained to have a thickness-magnetization product less than 2.5 emu-cm per g. The induced moment opposes the external field, implying the existence of a substantial lunar ionosphere with a permeability between 0.63 and 0.85. Combining this with recent measures of the ratio of the relative field strength at the ALSEP and Explorer 35 magnetometers indicates that the global lunar permeability relative to the plasma in the geomagnetic tail lobes is between 1.008 and 1.03.

  1. Right-handed neutrino magnetic moments

    CERN Document Server

    Aparici, Alberto; Santamaria, Arcadi; Wudka, José

    2013-01-01

    We consider the most general dimension-five effective Lagrangian that can be built using only Standard Model fields plus right-handed neutrinos, and find that there exists a term that provides electroweak moments (i.e., couplings to the Z and photon) for the right-handed neutrinos. Such term has not been described previously in the literature. We discuss its phenomenology and the bounds that can be derived from LEP results and from the observation of the cooling process of red giants and supernovae.

  2. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    CERN Document Server

    Córsico, Alejandro H; Bertolami, Marcelo M Miller; Kepler, S O; García-Berro, Enrique

    2014-01-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. By comparing the theoretical rate of change of period expected for this star with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment. Our upper limit for the neutrino magnetic dipole moment is somewhat less restrictive than, but still compat...

  3. Magnetic moment conservation and particles acceleration in turbulence

    Science.gov (United States)

    Dalena, S.; Greco, A.; Matthaeus, W. H.

    2010-12-01

    The present work concerns the study of particle magnetic moment conservation in the presence of turbulent magnetic fields. As we know from the particle orbit theory, for slow temporal and spatial magnetic field variations(i.e. if their characteristic length and time are greater than the particle orbit diameter and the time spent by a particle to execute one orbit, respectively), the magnetic moment, defined as μ = (v^2⊥ /B) (averaged over the particle gyroperiod) is an adiabatic invariant and remains constant during particle motion. But in presence of a well developed magnetic turbulence μ can undergo rapid variations and might not be constant anymore. Of course, this fact could influence particle acceleration and could have a considerable implications in many astrophysical problems, such as coronal heating. In order to reproduce and extend some of the results obtained by Karimabadi et al. 1992, we study the interaction between ions and a single or a couple of electromagnetic waves. We varied both the wave frequency and the cosine of pitch angle at which particles are injected, in order to observe in this very simple case which is the limit for magnetic moment conservation. We also will reconsider the results of Dmitruk and Matthaeus (2006) regarding particle acceleration in turbulence, taking into account statistics of the magnetic moment (see also Lehe et al., 2010). Later we will add more waves to obtain a complete turbulent spectrum. The final aim of this research work is the understanding the behavior of particles magnetic moment during magnetic reconnection phenomena. H. Karimabadi, D. Krauss-Varban and T. Teresawa, JGR, 97, 13853, 1992. P. Dmitruk and W. H. Matthaeus, JGR, 11, A12110, 2006. R. Lehe, I. J. Parrish and E. Quataert, Astrophys. J. 707, 404, 2009.

  4. Magnetic Moment and Anisotropy of Individual Co Atoms on Graphene

    Science.gov (United States)

    Donati, F.; Dubout, Q.; Autès, G.; Patthey, F.; Calleja, F.; Gambardella, P.; Yazyev, O. V.; Brune, H.

    2013-12-01

    We report on the magnetic properties of single Co atoms on graphene on Pt(111). By means of scanning tunneling microscopy spin-excitation spectroscopy, we infer a magnetic anisotropy of K=-8.1meV with out-of-plane hard axis and a magnetic moment of 2.2μB. Co adsorbs on the sixfold graphene hollow site. Upon hydrogen adsorption, three differently hydrogenated species are identified. Their magnetic properties are very different from those of clean Co. Ab initio calculations support our results and reveal that the large magnetic anisotropy stems from strong ligand field effects due to the interaction between Co and graphene orbitals.

  5. The magnetic moments of the hidden-charm pentaquark states

    CERN Document Server

    Wang, Guang-Juan; Ma, Li; Liu, Xiang; Zhu, Shi-Lin

    2016-01-01

    The magnetic moment of a baryon state is an equally important dynamical observable as its mass, which encodes crucial information of its underlying structure. According to the different color-flavor structure, we have calculated the magnetic moments of the hidden-charm pentaquark states with $J^P={\\frac{1}{2}}^{\\pm}$, ${\\frac{3}{2}}^{\\pm}$, ${\\frac{5}{2}}^{\\pm}$ and ${\\frac{7}{2}}^{+}$ in the molecular model, the diquark-triquark model and the diquark-diquark-antiquark model respectively. Although a good description for the pentaquark mass spectrum and decay patterns has been obtained in all the three models, different color-flavor structures lead to different magnetic moments, which can be used to pin down their inner structures and distinguish various models.

  6. Lattice Calculation of the Strangeness Magnetic Moment of the Nucleon

    CERN Document Server

    Dong, S J; Williams, A G

    1998-01-01

    We report on a lattice QCD calculation of the strangeness magnetic moment of the nucleon. Our result is $G_M^s(0) = - 0.36 \\pm 0.20 $. The sea contributions from the u and d quarks are about 80% larger. However, they cancel to a large extent due to their electric charges, resulting in a smaller net sea contribution of $ - 0.097 \\pm 0.037 \\mu_N$ to the nucleon magnetic moment. As far as the neutron to proton magnetic moment ratio is concerned, this sea contribution tends to cancel out the cloud-quark effect from the Z-graphs and result in a ratio of $ -0.68 \\pm 0.04$ which is close to the SU(6) relation and the experiment. The strangeness Sachs electric mean-square radius $_E$ is found to be small and negative and the total sea contributes substantially to the neutron electric form factor.

  7. Effective particle magnetic moment of multi-core particles

    Energy Technology Data Exchange (ETDEWEB)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  8. Induced magnetic moment in noncommutative Chern-Simons scalar QED

    CERN Document Server

    Panigrahi, P K; Panigrahi, Prasanta K.

    2005-01-01

    We compute the one loop, $O(\\th)$ correction to the vertex in the noncommutative Chern-Simons theory with scalar fields in the fundamental representation. Emphasis is placed on the parity odd part of the vertex, since the same leads to the magnetic moment structure. We find that, apart from the commutative term, a $\\th$-dependent magnetic moment type structure is induced. In addition to the usual commutative graph, cubic photon vertices also give a finite $\\th$ dependent contribution. Furthermore, the two two-photon vertex diagrams, that give zero in the commutative case yield finite $\\th$ dependent terms to the vertex function.

  9. Magnetic Moments of Baryons with a Heavy Quark

    CERN Document Server

    Weigel, H

    2003-01-01

    We compute magnetic moments of baryons with a heavy quark in the bound state approach for heavy baryons. In this approach the heavy baryon is considered as a heavy meson bound to a light baryon. The latter is represented as a soliton excitation of light meson fields. We obtain the magnetic moments by sandwiching pertinent components of the electromagnetic current operator between the bound state wave--functions. We extract this current operator from the coupling to the photon field after extending the action to be gauge invariant.

  10. Magnetic moments of negative-parity baryons in QCD

    CERN Document Server

    Aliev, T M

    2014-01-01

    Using the most general form of the interpolating current for the octet baryons, the magnetic moments of the negative-parity baryons are calculated within the light-cone sum rules. The contributions coming from diagonal transitions of the positive-parity baryons, and also from non-diagonal transition between positive and negative-parity baryons are eliminated by considering the combinations of different sum rules corresponding to the different Lorentz structures. A comparison of our results on magnetic moments of the negative-parity baryons with the other approaches existing in literature is presented.

  11. Magnetic Moment of Proton Drip-Line Nucleus (9)C

    Science.gov (United States)

    Matsuta, K.; Fukuda, M.; Tanigaki, M.; Minamisono, T.; Nojiri, Y.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Harada, A.; Sasaki, M.

    1994-01-01

    The magnetic moment of the proton drip-line nucleus C-9(I(sup (pi)) = 3/2, T(sub 1/2) = 126 ms) has been measured for the first time, using the beta-NMR detection technique with polarized radioactive beams. The measure value for the magnetic moment is 1mu(C-9)! = 1.3914 +/- 0.0005 (mu)N. The deduced spin expectation value of 1.44 is unusually larger than any other ones of even-odd nuclei.

  12. Muon anomalous magnetic moment due to the brane stretching effect

    CERN Document Server

    Sawa, K

    2006-01-01

    We investigate the contribution of extra dimensions to muon anomalous magnetic moment using a 6-dimensional model. The approach analyzes the extent to which small brane fluctuations influence the magnetic moment. In particular, we assume that the fluctuations are static in time, which add the new potential terms to the schr{\\"o}dinger equation through the induced vierbein. This paper shows that the fluctuations result in the brane stretching effect due to the negative tension. The effect would be a capable of reproducing the appropriate order for the recent BNL measurements of the muon (g-2) deviation.

  13. A model for right-handed neutrino magnetic moments

    CERN Document Server

    Aparici, Alberto; Wudka, Jose

    2009-01-01

    A simple extension of the Standard Model providing Majorana magnetic moments to right-handed neutrinos is presented. The model contains, in addition to the Standard Model particles and right-handed neutrinos, just a singly charged scalar and a vector-like charged fermion. The phenomenology of the model is analysed and its implications in cosmology, astrophysics and lepton flavour violating processes are extracted. If light enough, the charged particles responsible for the right-handed neutrino magnetic moments could copiously be produced at the LHC.

  14. Noncommutative magnetic moment, fundamental length and lepton size

    CERN Document Server

    Adorno, T C; Shabad, A E; 10.1103/PhysRevD.86.027702

    2012-01-01

    Upper bounds on fundamental length are discussed that follow from the fact that a magnetic moment is inherent in a charged particle in noncommutative (NC) electrodynamics. The strongest result thus obtained for the fundamental lenth is still larger than the estimate of electron or muon size achieved following the Brodsky-Drell and Dehlmet approach to lepton compositeness. This means that NC electrodynamics cannot alone explain the whole existing descrepancy between the theoretical and experimental values of the muon magnetic moment. On the contrary, as measurements and calculations are further improved, the fundamental length estimate based on electron data may go down to match its compositeness radius.

  15. A magnetometer for estimating the magnetic moment of magnetic micro-particles

    Science.gov (United States)

    Punyabrahma, P.; Jayanth, G. R.

    2017-01-01

    Magnetic micro-particles find a variety of applications as actuators at the micrometer and nanometer length scales. While the actuation gain is directly proportional to their magnetic moment, there are relatively few technologies available to estimate the magnetic moment of individual magnetic particles. This paper proposes a magnetometer for direct measurement of the magnetic moment of ferromagnetic micro-particles. The magnetometer comprises a novel micro-scale force sensor capable of interacting with magnetic particles and deflecting in response to the force of interaction. It also comprises a high-resolution measurement system, a source of magnetizing field, and a nanopositioner. The principle of operation of the magnetometer is discussed and is shown to enable the determination of the magnetic moment even of the buried magnetic particles, and those of irregular geometry. Subsequently, the force sensor, the measurement system, and the magnetic field sources are designed, fabricated, and calibrated. Finally, the magnetometer is employed to measure the magnetic moments of both fixed and untethered permanent magnetic particles and also of a fixed soft ferromagnetic particle. In all cases, the estimated magnetic moment is shown to agree with the theoretical estimate with an average error of about 16%.

  16. The muon anomalous magnetic moment and the standard model

    NARCIS (Netherlands)

    Hertzog, David W.; Carey, R. M.; Efstathiadis, E.; Hare, M. F.; Huang, X.; Krienen, F.; Lam, A.; Logashenko, I.; Miller, J. P.; Paley, J.; Peng, Q.; Rind, O.; Roberts, B. L.; Sulak, L. R.; Trofimov, A.; Bennett, G. W.; Brown, H. N.; Bunce, G.; Danby, G. T.; Larsen, R.; Lee, Y. Y.; Meng, W.; Mi, J.; Morse, W. M.; Nikas, D.; Özben, C.; Prigl, R.; Semertzidis, Y. K.; Warburton, D.; Orlov, Y.; Grossmann, A.; zu Putlitz, G.; von Walter, P.; Debevec, P. T.; Deninger, W.; Gray, F. E.; Onderwater, C. J G; Polly, C.; Sossong, M.; Urner, D.; Yamamoto, A.; Jungmann, K.; Bousquet, B.; Cushman, P.; Duong, L.; Giron, S.; Kindem, J.; Kronkvist, I.; McNabb, R.; Qian, T.; Shagin, P.; Druzhinin, V. P.; Fedotovich, G. V.; Grigoriev, D.; Khazin, B. I.; Ryskulov, N. M.; Shatunov, Yu M.; Solodov, E.; Iwasaki, I.; Deng, H.; Deile, M.; Dhawan, S. K.; Farley, F. J M; Hughes, V. W.; Kawall, D.; Perdekamp, M. Grosse; Pretz, J.; Redin, S. I.; Sichtermann, E.; Steinmetz, A.

    2003-01-01

    The muon anomalous magnetic moment measurement, when compared with theory, can be used to test many extensions to the standard model. The most recent measurement made by the Brookhaven E821 Collaboration reduces the uncertainty on the world average of aμ to 0.7 ppm, comparable in precision to theory

  17. Magnetic moment measurement of β-emitter 12N

    Institute of Scientific and Technical Information of China (English)

    ZHENGYong-nan; ZHOUDong-mei; DUEn-peng; YUANDa-qing; ZUOYi; WANGZhi-qiang; LUOHai-long; M.Mihara; M.Fukuda; K.Matsuta; T.Minamisono; ZHUSheng-yun

    2003-01-01

    The magnetic moment of 12N(Iπ= +, T /2=11 ms) has been measured by the β-NMR method. The experiment was performed with the β-NMR and β-NQR facilities at the 5 MV Van de Graaff accelerator at Osaka University, Japan.

  18. Baryon magnetic moments in the effective quark Lagrangian approach

    NARCIS (Netherlands)

    Simonov, YA; Tjon, JA; Weda, J; Simonov, Yu A.

    2002-01-01

    An effective quark Lagrangian is derived from first principles through bilocal gluon field correlators. It is used to write down equations for baryons, containing both perturbative and nonperturbative fields. As a result one obtains magnetic moments of octet and decuplet baryons without the introduc

  19. Octet magnetic Moments and their sum rules in statistical model

    CERN Document Server

    Batra, M

    2013-01-01

    The statistical model is implemented to find the magnetic moments of all octet baryons. The well-known sum rules like GMO and CG sum rules has been checked in order to check the consistency of our approach. The small discrepancy between the results suggests the importance of breaking in SU(3) symmetry.

  20. Muon anomalous magnetic moment in string inspired extended family models

    CERN Document Server

    Kephart, T W

    2002-01-01

    We propose a standard model minimal extension with two lepton weak SU(2) doublets and a scalar singlet to explain the deviation of the measured anomalous magnetic moment of the muon from the standard model expectation. This scheme can be naturally motivated in string inspired models such as E_6 and AdS/CFT.

  1. Tuning the magnetic moments in zigzag graphene nanoribbons

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Vanin, Marco; Hu, Yibin;

    2012-01-01

    We report a systematic theoretical investigation of the effects of metal substrates on the local magnetic moments of zigzag graphene nanoribbons (ZGNRs). Representative metal surfaces of Au, Pt, Ni, Cu, Al, Ag, and Pd have been analyzed from atomic first principles. Results show that the local ma...

  2. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Córsico, A.H.; Althaus, L.G. [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata (Argentina); Bertolami, M.M. Miller [Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina); Kepler, S.O. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970, RS (Brazil); García-Berro, E., E-mail: acorsico@fcaglp.unlp.edu.ar, E-mail: althaus@fcaglp.unlp.edu.ar, E-mail: marcelo@MPA-Garching.MPG.DE, E-mail: kepler@if.ufrgs.br, E-mail: enrique.garcia-berro@upc.edu [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860, Castelldefels (Spain)

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  3. Gate-dependent orbital magnetic moments in carbon nanotubes

    DEFF Research Database (Denmark)

    Jespersen, Thomas Sand; Grove-Rasmussen, Kasper; Flensberg, Karsten;

    2011-01-01

    We investigate how the orbital magnetic moments of electron and hole states in a carbon nanotube quantum dot depend on the number of carriers on the dot. Low temperature transport measurements are carried out in a setup where the device can be rotated in an applied magnetic field, thus enabling...... accurate alignment with the nanotube axis. The field dependence of the level structure is measured by excited state spectroscopy and excellent correspondence with a single-particle calculation is found. In agreement with band structure calculations we find a decrease of the orbital magnetic moment...... with increasing electron or hole occupation of the dot, with a scale given by the band gap of the nanotube....

  4. Octet Magnetic Moments with Null Instantons and Semibosonized Nambu-Jona-Lasinio Model

    CERN Document Server

    Bukina, E N

    1999-01-01

    It is shown that the difference between the magnetic moment results in the quark model with null instantons and semibosonized Nambu-Jona-Lasinio model lies in the description of the magnetic moment of the $ \\Lambda$-hyperon.

  5. The Theoretical Prediction for the Muon Anomalous Magnetic Moment

    Science.gov (United States)

    Davier, Michel; Marciano, William J.

    2004-12-01

    This article reviews the standard-model prediction for the anomalous magnetic moment of the muon and describes recent updates of QED, electroweak, and hadronic contributions. Comparison of theory and experiment suggests a 2.4 difference if e+e hadrons data are used to evaluate the main hadronic effects, but a smaller discrepancy if hadronic decay data are employed. Implications of a deviation for "new physics" contributions, along with an outlook for future improvements in theory and experiment, are briefly discussed.

  6. QCD Sum Rules: Intercrossed Relations for Sigma^0 and Lambda Magnetic Moments

    CERN Document Server

    Özpineci, A; Zamiralov, V S

    2003-01-01

    New relations between QCD Borel sum rules for magnetic moments of Sigma^0 and Lambda hyperons are constructed. It is shown that starting from the sum rule for the Sigma^0 hyperon magnetic moment it is straightforward to obtain the corresponding sum rule for the Lambda hyperon magnetic moment et vice versa.

  7. Magnetic Moments of Octet Baryons in Hot and Dense Nuclear Matter

    CERN Document Server

    Singh, Harpreet; Dahiya, Harleen

    2016-01-01

    We have calculated the in-medium magnetic moments of octet baryons in the presence of hot and dense symmetric nuclear matter. Effective magnetic moments of baryons have been derived from medium modified quark masses within chiral SU(3) quark mean field model.Further, for better insight of medium modification of baryonic magnetic moments, we have considered the explicit contributions from the valence as well as sea quark effects. These effects have been successful in giving the description of baryonic magnetic moments in vacuum. The magnetic moments of baryons are found to vary significantly as a function of density of nuclear medium.

  8. Solar Neutrinos with Magnetic Moment Rates and Global Analysis

    CERN Document Server

    Pulido, J

    2002-01-01

    A statistical analysis of the solar neutrino data is presented assuming the solar neutrino deficit to be resolved by the resonant interaction of the neutrino magnetic moment with the solar magnetic field. Four field profiles are investigated, all exhibiting a rapid increase across the bottom of the convective zone, one of them closely following the requirements from recent solar physics investigations. First a 'rates only' analysis is performed whose best fits appear to be remarkably better than all fits from oscillations. A global analysis then follows with the corresponding best fits of a comparable quality to the LMA one. Despite the fact that the resonant spin flavour precession does not predict any day/night effect, the separate SuperKamiokande day and night data are included in the analysis in order to allow for a direct comparison with oscillation scenarios. Remarkably enough, the best fit for rates and global analysis which is compatible with most astrophysical bounds on the neutrino magnetic moment i...

  9. Screening of Local Magnetic Moment by Electrons of Disordered Graphene

    Institute of Scientific and Technical Information of China (English)

    SHI Li-Peng; XIONG Shi-Jie

    2009-01-01

    Based on the Anderson impurity model and self-consistent approach,we investigate the condition for the screening of a local magnetic moment by electrons in graphene and the influence of the moment on electronic properties of the system.The results of numerical calculations carried out on a finite sheet of graphene show that when the Fermi energy is above the single occupancy energy and below the double occupancy energy of the local impurity,a magnetic state is possible.A phase diagram in a parameter space spanned by the Coulomb energy U and the Fermi energy is obtained to distinguish the parameter regions for the magnetic and nonmagnetic states of the impurity.We find that the combined effect of the impurity and finite size effect results in a large charge density near the edges of the finite graphene sheet.The density of states exhibits a peak at the Dirac point which is caused by the appearance of the edge states localized at the zigzag edges of the sheet.

  10. Magnetic Moment of β-emitter 12B

    Institute of Scientific and Technical Information of China (English)

    M.Mihara; M.Fukuda; K.Matsuta; T.; Minamisono

    2002-01-01

    The magnetic moment of 12B(Iπ=1+, T1/2=20.2 ms) has been measured by the β-NMR method. Theexperiment was performed with our newly built β-NMR and β-NQR facilities. The nuclei 12B (Iπ=1+, T1/2=20.2 ms) were produced through the 11B(d, p) 12B reaction with adeuteron beam from the 2×1.7 MV tandem accelerator.The target was the natural B target (the

  11. Quark Mass Dependence of Nucleon Magnetic Moment and Charge Radii

    Institute of Scientific and Technical Information of China (English)

    MA Wei-Xing; ZHOU Li-Juan; GU Yun-Ting; PING Rong-Gang

    2005-01-01

    Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.

  12. Switching Time of Magnetic Moment Driven by Circularly Polarized Field

    Directory of Open Access Journals (Sweden)

    A.Yu. Polyakov

    2012-10-01

    Full Text Available The magnetization switching effect of the uniaxial nanoparticle driven by a circularly polarized in the plane perpendicular to the easy axis field in the presence of thermal fluctuations is studied. The frequency dependence of the magnetic moment switching time from one equilibrium state to another is investigated in details, indicating its resonant character and fundamental dependence on the direction of rotation of the field. The effect of precession mode on switching time is discussed. A comparative analysis of the switching time with a lifetime for precession modes is done in this paper. We study the influence of the damping parameter and the amplitude of the external field on the switching time.

  13. Magnetic Moment Fields in Dense Relativistic Plasma Interacting with Laser Radiations

    Directory of Open Access Journals (Sweden)

    B.Ghosh1* , S.N.Paul 1 , S.Bannerjee2 and C.Das3

    2013-04-01

    Full Text Available Theory of the generation of magnetic moment field from resonant interaction of three high frequency electromagnetic waves in un-magnetized dense electron plasma is developed including the relativistic change of electron mass. It is shown that the inclusion of relativistic effect enhances the magnetic moment field. For high intensity laser beams this moment field may be of the order of a few mega gauss. Such a high magnetic field can considerably affect the transport of electrons in fusion plasma

  14. Shell structure of potassium isotopes deduced from their magnetic moments

    CERN Document Server

    Papuga, J; Kreim, K; Barbieri, C; Blaum, K; De Rydt, M; Duguet, T; Garcia Ruiz, R F; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nortershauser, W; Rajabali, M M; Sanchez, R; Smirnova, N; Soma, V; Yordanov, D T

    2014-01-01

    $\\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\\\ \\\\ $\\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\\\ \\\\ $\\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\\\ \\\\ $\\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\\textit{ab initio}$ framework is al...

  15. Evidence For Intrinsic Magnetic Moments in Black Hole Candidates

    CERN Document Server

    Robertson, S L; Robertson, Stanley L.; Leiter, Darryl J.

    2002-01-01

    We show that the power law part of the quiescent x-ray emissions of neutron stars in low mass x-ray binaries is magnetospheric in origin. It can be very accurately calculated from rates of spin and the $\\sim 10^{3 - 4}$ times brighter luminosity at the transition to the hard spectral state. We establish that the spectral state transition for neutron stars is a magnetospheric propeller effect. We test the hypothesis that the similar spectral state switches and quiescent power law emissions of the black hole candidates might be magnetospheric effects. In the process we derive proposed magnetic moments and rates of spin for them and accurately predict their quiescent luminosities. We discuss other tests of the hypothesis and consider some attractive aspects of a unified magnetospheric model for low mass x-ray binaries. We also consider some of the changes that would be needed for strong-field gravity theories to accomodate intrinsic magnetic moments in collapsed objects.

  16. Muon Anomalous Magnetic Moment in a Supersymmetric U(1)' Model

    CERN Document Server

    Barger, V; Langacker, P; Lee, H S; Barger, Vernon; Kao, Chung; Langacker, Paul; Lee, Hye-Sung

    2005-01-01

    We study the muon anomalous magnetic moment a_\\mu = (g_\\mu - 2)/2 in a supersymmetric U(1)' model. The neutralino sector has extra components from the superpartners of the U(1)' gauge boson and the extra Higgs singlets that break the U(1)' symmetry. The theoretical maximum bound on the lightest neutralino mass is much smaller than that of the Minimal Supersymmetric Standard Model (MSSM) because of the mixing pattern of the extra components. In a U(1)' model where the U(1)' symmetry is broken by a secluded sector (the S-model), tan\\beta is required to be < 3 to have realistic electroweak symmetry breaking. These facts suggest that the a_\\mu prediction may be meaningfully different from that of the MSSM. We evaluate and compare the muon anomalous magnetic moment in this model and the MSSM and discuss the constraints on tan\\beta and relevant soft breaking terms. There are regions of the parameter space that can explain the experimental deviation of a_\\mu from the Standard Model calculation and yield an accept...

  17. Magnetic moments in a gadolinium iron garnet studied by soft-X-ray magnetic circular dichroism

    NARCIS (Netherlands)

    Rudolf, P.; Sette, F.; Tjeng, L.H.; Meigs, G.; Chen, C.T.

    1992-01-01

    The magnetic moments of Gd and Fe in gadolinium iron garnet (Gd3Fe5O12) were probed at 77 and 300 K by soft-X-ray magnetic circular dichroism (SXMCD) measurements at the GdMa4,5 and at the FeL2,3 absorption edges. The SXMCD signal at each edge allows one to independently determine the magnetic order

  18. The Gravitational Effects of a Celestial Body with Magnetic Charge and Moment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gravitational effects (precession of charge-less particles and deflection of light) in the gravitational field of a celestial body with magnetic charge and moment (CM)are investigated. We found that the magnetic charge always weakens the pure Schwarzschild effects, while the magnetic dipole moment deforms the effects in a more complicated way.

  19. Directional Antineutrino Detection

    Science.gov (United States)

    Safdi, B. R.; Suerfu, J.

    2014-12-01

    We propose the first truly directional antineutrino detector for antineutrinos near the threshold for the inverse beta decay (IBD) of hydrogen, with potential applications including the spatial mapping of geo-neutrinos, searches for stellar antineutrinos, and the monitoring of nuclear reactors. The detector consists of adjacent and separated target and neutron-capture layers. The IBD events, which result in a neutron and a positron, take place in the target layers. These layers are thin enough so that the neutrons escape without scattering elastically. The neutrons are detected in the thicker neutron-capture layers. The location of the IBD event is determined from the energy deposited by the positron as it slows in the medium and from the two gamma rays that come from the positron annihilation. Since the neutron recoils in the direction of the antineutrino's motion, a line may then be drawn between the IBD event location and the neutron-capture location to approximate the antineutrino's velocity. In some events, we may even measure the positron's velocity, which further increases our ability to reconstruct the antineutrino's direction of motion. Our method significantly improves upon previous methods by allowing the neutron to freely travel a long distance before diffusing and being captured. Moreover, our design is a straightforward modification of existing antineutrino detectors; a prototype could easily be built with existing technology. We verify our design through Monte Carlo simulations in Geant4, using commercially-available boron-loaded plastic scintillators for the target and neutron-capture layer materials. We are able to discriminate from background using multiple coincidence signatures within a short, ~microsecond time interval. We conclude that the detector could likely operate above ground with minimal shielding.

  20. On the origin of the giant magnetic moment of the Al-Mn quasicrystals

    Directory of Open Access Journals (Sweden)

    Bocharov P.V.

    2011-05-01

    Full Text Available Ab initio calculations of magnetic moments for icosahedral clusters contained in crystal structures Al10Mn3, Al5Co2, Al17Mn4 (Al13Cr4Si4-type fulfilled in the framework of Density Functional Theory. The AlMn cluster having the trigonal D3h symmetry with the triangle of Mn ions in the interior has the moment being equal to three magnetic moments of a single manganese ion (4.4 μB, the moment of the tetrahedral Td cluster with the Mn tetrahedron in the interior is equal approximately to twelve magnetic moments of the single manganese ion (15.5 μB. The magnetic moment of icosahedral Al-Co clusters having the same configuration is equal to zero. The magnetic moments of the rod assembled from the icosahedral clusters with the sequence Td D3h - Td was found to be 20.5 μB. This value permits to explain the giant magnetic moment of icosahedral and decagonal Al-Mn quasicrystals and gives the indirect evidence to the hierarchical model of the quasicrystals structure proposed by the authors recently. An arrangement of magnetic moment carriers in the interior of the aluminum shell of icosahedral clusters permits to suggest the interaction between contacting manganese ions as the main origin of the giant magnetic moment of the Al-Mn quasicrystals.

  1. A Pionic Hadron Explains the Muon Magnetic Moment Anomaly

    CERN Document Server

    Schiel, Rainer W

    2007-01-01

    Quantum electrodynamics is the most successful physical theory in history. Yet for several years a significant experimental discrepancy has existed. Calculations disagree with measurements of the muon's magnetic moment, which is a fundamental test of the theory. A new contribution hidden in plain view explains the current discrepancy. Mixing of the rho meson and pionium, the bound state atom of pion and anti-pion, must be treated as a new elementary particle, the second least-massive hadron. Surprisingly, the existence of the particle state is undeniable. Yet superposition of pionium and rho must contradict basic assumptions of pion physics, and may be the first case in which an orbitally asymmetric hadron has mass below the symmetric case, due to quark microstructure that cannot be described by pions at all.

  2. Improved Measurement of the Positive Muon Anomalous Magnetic Moment

    CERN Document Server

    Brown, H N; Carey, R M; Cushman, P B; Danby, G T; Debevec, P T; Deng, H; Deninger, W J; Dhawan, S K; Druzhinin, V P; Duong, L; Earle, W; Efstathiadis, E F; Fedotovich, G V; Farley, Francis J M; Giron, S; Gray, F; Grosse-Perdekamp, M; Grossmann, A; Haeberlen, U; Hare, M; Hazen, E S; Hertzog, D W; Hughes, V W; Iwasaki, M; Jungmann, Klaus; Kawall, D; Kawamura, M; Khazin, B I; Kindem, J; Krienen, F; Kronkvist, I J; Larsen, R; Lee, Y Y; Logashenko, I B; McNabb, R; Meng, W; Mi, J; Miller, J P; Morse, W M; Onderwater, Gerco; Orlov, Yu F; Ozben, C; Polly, C; Pai, C; Paley, J M; Pretz, J; Prigl, R; zu Putlitz, Gisbert; Redin, S I; Rind, O; Roberts, B L; Ryskulov, N M; Sedykh, S N; Semertzidis, Y K; Shatunov, Yu M; Solodov, E P; Sossong, M; Steinmetz, A; Sulak, Lawrence R; Timmermans, C; Trofimov, A V; Urner, D; Von Walter, P; Warburton, D; Winn, D; Yamamoto, A; Zimmerman, D

    2000-01-01

    A new measurement of the positive muon's anomalous magnetic moment has been made at the Brookhaven Alternating Gradient Synchrotron using the direct injection of polarized muons into the superferric storage ring. The angular frequency difference omega_{a} between the angular spin precession frequency omega_{s} and the angular orbital frequency omega_{c} is measured as well as the free proton NMR frequency omega_{p}. These determine R = omega_{a} / omega_{p} = 3.707~201(19) times 10^{-3}. With mu_{mu} / mu_{p} = 3.183~345~39(10) this gives a_{mu^+} = 11~659~191(59) times 10^{-10} (pm 5 ppm), in good agreement with the previous CERN and BNL measurements for mu^+ and mu^-, and with the standard model prediction.

  3. Highly Accurate Measurement of the Electron Orbital Magnetic Moment

    CERN Document Server

    Awobode, A M

    2015-01-01

    We propose to accurately determine the orbital magnetic moment of the electron by measuring, in a Magneto-Optical or Ion trap, the ratio of the Lande g-factors in two atomic states. From the measurement of (gJ1/gJ2), the quantity A, which depends on the corrections to the electron g-factors can be extracted, if the states are LS coupled. Given that highly accurate values of the correction to the spin g-factor are currently available, accurate values of the correction to the orbital g-factor may also be determined. At present, (-1.8 +/- 0.4) x 10-4 has been determined as a correction to the electron orbital g-factor, by using earlier measurements of the ratio gJ1/gJ2, made on the Indium 2P1/2 and 2P3/2 states.

  4. Interfacial tuning of perpendicular magnetic anisotropy and spin magnetic moment in CoFe/Pd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, D.-T., E-mail: ndthe82@gmail.com [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Meng, Z.L. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Tahmasebi, T. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, A-STAR (Agency for Science Technology and Research), 5 Engineering Drive 1, Singapore 117608 (Singapore); Yu, X. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Thoeng, E. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Yeo, L.H. [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rusydi, A., E-mail: phyandri@nus.edu.sg [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Han, G.C [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Teo, K.-L., E-mail: eleteokl@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2014-01-15

    We report on a strong perpendicular magnetic anisotropy in [CoFe 0.4 nm/Pd t]{sub 6} (t=1.0–2.0 nm) multilayers fabricated by DC sputtering in an ultrahigh vacuum chamber. Saturation magnetization, M{sub s}, and uniaxial anisotropy, K{sub u}, of the multilayers decrease with increasing the spacing thickness; with a M{sub s} of 155 emu/cc and a K{sub u} of 1.14×10{sup 5} J/m{sup 3} at a spacing thickness of t=2 nm. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements reveal that spin and orbital magnetic moments of Co and Fe in CoFe film decrease as a function of Pd thickness, indicating the major contribution of surface/interfacial magnetism to the magnetic properties of the film. - Highlights: • Strong perpendicular magnetic anisotropy essentially contributed by interfacial anisotropy. • Controllably magnetic properties with low M{sub s}, high K{sub u}, high P. • Interfacial magnetic moments modified by CoFe/Pd interfaces with strong spin–orbit coupling. • Narrow Bloch walls with Néel caps. • Superior magnetic characteristics for spin-torque applications.

  5. Measurement of the zero-field magnetic dipole moment of magnetizable colloidal silica spheres

    NARCIS (Netherlands)

    Claesson, E.M.; Erne, B.H.; Bakelaar, I.A.; Kuipers, B.W.M.; Philipse, A.P.

    2007-01-01

    The magnetic properties of dispersions of magnetic silica microspheres have been investigated by measuring the magnetization curves and the complex magnetic susceptibility as a function of frequency and field amplitude. The silica spheres appear to have a net permanent magnetic dipole moment, even i

  6. Kondo screening of the spin and orbital magnetic moments of Fe impurities in Cu

    Science.gov (United States)

    Joly, L.; Kappler, J.-P.; Ohresser, P.; Sainctavit, Ph.; Henry, Y.; Gautier, F.; Schmerber, G.; Kim, D. J.; Goyhenex, C.; Bulou, H.; Bengone, O.; Kavich, J.; Gambardella, P.; Scheurer, F.

    2017-01-01

    We use x-ray magnetic circular dichroism to evidence the effect of correlations on the local impurity magnetic moment in an archetypal Kondo system, namely, a dilute Cu:Fe alloy. Applying the sum rules on the Fe L2 ,3 absorption edges, the evolution of the spin and orbital moments across the Kondo temperature are determined separately. The spin moment presents a crossover from a nearly temperature-independent regime below the Kondo temperature to a paramagneticlike regime above. Conversely, the weak orbital moment shows a temperature-independent behavior in the whole temperature range, suggesting different Kondo screening temperature scales for the spin and orbital moments.

  7. Antineutrino Monitoring of Thorium Reactors

    CERN Document Server

    Akindele, Oluwatomi A; Norman, Eric B

    2015-01-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuels types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring.Thorium molten salt reactors (MSR) breed U-233, that if diverted constitute an IAEA direct use material. The antineutrino spectrum from the fission of U-233 has been determined, the feasibility of detecting the diversion of a significant quantity, 8 kg of U-233, within the IAEA timeliness goal of 30 days has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario at a 25 meter standoff by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos. It was found that the diversion of a signifi...

  8. A nonperturbative calculation of the electron's magnetic moment

    Science.gov (United States)

    Brodsky, S. J.; Franke, V. A.; Hiller, J. R.; McCartor, G.; Paston, S. A.; Prokhvatilov, E. V.

    2004-12-01

    In principle, the complete spectrum and bound-state wave functions of a quantum field theory can be determined by finding the eigenvalues and eigensolutions of its light-cone Hamiltonian. One of the challenges in obtaining nonperturbative solutions for gauge theories such as QCD using light-cone Hamiltonian methods is to renormalize the theory while preserving Lorentz symmetries and gauge invariance. For example, the truncation of the light-cone Fock space leads to uncompensated ultraviolet divergences. We present two methods for consistently regularizing light-cone-quantized gauge theories in Feynman and light-cone gauges: (1) the introduction of a spectrum of Pauli-Villars fields which produces a finite theory while preserving Lorentz invariance; (2) the augmentation of the gauge-theory Lagrangian with higher derivatives. In the latter case, which is applicable to light-cone gauge ( A=0), the A component of the gauge field is maintained as an independent degree of freedom rather than a constraint. Finite-mass Pauli-Villars regulators can also be used to compensate for neglected higher Fock states. As a test case, we apply these regularization procedures to an approximate nonperturbative computation of the anomalous magnetic moment of the electron in QED as a first attempt to meet Feynman's famous challenge.

  9. Measurement of Short Living Baryon Magnetic Moment using Bent Crystals at SPS and LHC

    CERN Document Server

    Burmistrov, L; Ivanov, Yu; Massacrier, L; Robbe, P; Scandale, W; Stocchi, A

    2016-01-01

    The magnetic moments of baryons containing u,d and s quarks have been extensively studied and measured. The experimental results are all obtained by a well-assessed method that consists in measuring the polarisation vector of the incoming particles and the precession angle when the particle is travelling through an intense magnetic field. The polarization is evaluated by analysing the angular distribution of the decay products. No measurement of magnetic moments of charm or beauty baryons (and τ leptons) has been performed so far. The main reason is the lifetimes of charm/beauty baryons, too short to measure the magnetic moment by standard techniques. Historically, the prediction of baryon magnetic moments was one of the striking successes of the quark model. The importance of the measurement of heavy quark magnetic moment is to test the possibility that the charmed and/or beauty quarks has an anomalous magnetic moment, arising if those quarks are composite objects. Measurements on magnetic moments of heav...

  10. Microscopic nature of ferro- and antiferromagnetic interface coupling of uncompensated magnetic moments in exchange bias systems.

    Science.gov (United States)

    Gruyters, M; Schmitz, D

    2008-02-22

    Exchange bias in layered CoO/Fe structures is investigated by x-ray resonant magnetic reflectivity (XRMR) measurements. Element-specific hysteresis loops are obtained from x-ray magnetic circular dichroism effects in the XRMR spectra. Evidence is provided for the existence of different types of uncompensated moments in the antiferromagnetic material. Explanations are given for the microscopic nature of these moments and the complex exchange interactions that determine the magnetization reversal in exchange bias systems.

  11. Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface.

    Science.gov (United States)

    Zhong, Shudan; Moore, Joel E; Souza, Ivo

    2016-02-19

    The current density j^{B} induced in a clean metal by a slowly-varying magnetic field B is formulated as the low-frequency limit of natural optical activity, or natural gyrotropy. Working with a multiband Pauli Hamiltonian, we obtain from the Kubo formula a simple expression for α_{ij}^{GME}=j_{i}^{B}/B_{j} in terms of the intrinsic magnetic moment (orbital plus spin) of the Bloch electrons on the Fermi surface. An alternate semiclassical derivation provides an intuitive picture of the effect, and takes into account the influence of scattering processes in dirty metals. This "gyrotropic magnetic effect" is fundamentally different from the chiral magnetic effect driven by the chiral anomaly and governed by the Berry curvature on the Fermi surface, and the two effects are compared for a minimal model of a Weyl semimetal. Like the Berry curvature, the intrinsic magnetic moment should be regarded as a basic ingredient in the Fermi-liquid description of transport in broken-symmetry metals.

  12. Tunability of Size and Magnetic Moment of Iron Oxide Nanoparticles Synthesized by Forced Hydrolysis

    Directory of Open Access Journals (Sweden)

    Ben Sutens

    2016-07-01

    Full Text Available To utilize iron oxide nanoparticles in biomedical applications, a sufficient magnetic moment is crucial. Since this magnetic moment is directly proportional to the size of the superparamagnetic nanoparticles, synthesis methods of superparamagnetic iron oxide nanoparticles with tunable size are desirable. However, most existing protocols are plagued by several drawbacks. Presented here is a one-pot synthesis method resulting in monodisperse superparamagnetic iron oxide nanoparticles with a controllable size and magnetic moment using cost-effective reagents. The obtained nanoparticles were thoroughly characterized by transmission electron microscopy (TEM, X-ray diffraction (XRD and Fourier transform infrared (FT-IR measurements. Furthermore, the influence of the size on the magnetic moment of the nanoparticles is analyzed by superconducting quantum interference device (SQUID magnetometry. To emphasize the potential use in biomedical applications, magnetic heating experiments were performed.

  13. Enhanced magnetic moment of ultrathin Co films measured by in situ electrodeposition in a SQUID

    Science.gov (United States)

    Topolovec, Stefan; Krenn, Heinz; Würschum, Roland

    2016-01-01

    A special electrochemical cell enabling in situ electrodeposition in a SQUID magnetometer is applied to study the magnetic moment of ultrathin Co films during growth on an Au(111) substrate. The in situ electrodeposition approach allows a total elimination of the magnetic background signal of the substrate, thus the magnetic moment which arises exclusively from the deposited Co film could be measured with monolayer sensitivity. The average thickness of the deposited Co films dav as determined from the transferred charge can be adjusted easily by varying the parameters of the electrodeposition. Hence, the magnetic moment of Co thin films could be determined in absolute terms as a function of the film thickness dav. For the first few atomic layers an enhancement of the magnetic moment per Co atom compared to the bulk could be observed, which increases steadily with lowering dav, reaching up to 40%.

  14. Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic pertubers

    Science.gov (United States)

    Kurz, Felix; Kampf, Thomas; Buschle, Lukas; Schlemmer, Heinz-Peter; Bendszus, Martin; Heiland, Sabine; Ziener, Christian

    2016-12-01

    In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.

  15. Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic pertubers

    Directory of Open Access Journals (Sweden)

    Felix Tobias Kurz

    2016-12-01

    Full Text Available In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.

  16. Fast inversion of Zeeman line profiles using central moments. II. Stokes V moments and determination of vector magnetic fields

    Science.gov (United States)

    Mein, P.; Uitenbroek, H.; Mein, N.; Bommier, V.; Faurobert, M.

    2016-06-01

    Context. In the case of unresolved solar structures or stray light contamination, inversion techniques using four Stokes parameters of Zeeman profiles cannot disentangle the combined contributions of magnetic and nonmagnetic areas to the observed Stokes I. Aims: In the framework of a two-component model atmosphere with filling factor f, we propose an inversion method restricting input data to Q , U, and V profiles, thus overcoming ambiguities from stray light and spatial mixing. Methods: The V-moments inversion (VMI) method uses shifts SV derived from moments of V-profiles and integrals of Q2, U2, and V2 to determine the strength B and inclination ψ of a magnetic field vector through least-squares polynomial fits and with very few iterations. Moment calculations are optimized to reduce data noise effects. To specify the model atmosphere of the magnetic component, an additional parameter δ, deduced from the shape of V-profiles, is used to interpolate between expansions corresponding to two basic models. Results: We perform inversions of HINODE SOT/SP data for inclination ranges 0 <ψ< 60° and 120 <ψ< 180° for the 630.2 nm Fe i line. A damping coefficient is fitted to take instrumental line broadening into account. We estimate errors from data noise. Magnetic field strengths and inclinations deduced from VMI inversion are compared with results from the inversion codes UNNOFIT and MERLIN. Conclusions: The VMI inversion method is insensitive to the dependence of Stokes I profiles on the thermodynamic structure in nonmagnetic areas. In the range of Bf products larger than 200 G, mean field strengths exceed 1000 G and there is not a very significant departure from the UNNOFIT results because of differences between magnetic and nonmagnetic model atmospheres. Further improvements might include additional parameters deduced from the shape of Stokes V profiles and from large sets of 3D-MHD simulations, especially for unresolved magnetic flux tubes.

  17. Hypernuclear Magnetic Moments and ∧-N Interaction in 17∧O

    Institute of Scientific and Technical Information of China (English)

    L(U) Hong-Feng

    2007-01-01

    Hypernuclear magnetic moment and ∧-N interaction in 17∧O has been studied within relativistic mean field theory.Without core polarization, the relativistic results are found to fit the Schmidt value well and not be sensitive to ∧-N interaction. The relativistic magnetic moment is enhanced with nearly equal contributions of the relativistic and free masses. When ∧ hyperon occupies the l = 0 or l = 1 orbit, the effect of ∧-N interaction on the magnetic moment of valence proton is different.

  18. Majorana Neutrino Magnetic Moment and Neutrino Decoupling in Big Bang Nucleosynthesis

    CERN Document Server

    Vassh, N; Balantekin, A B; Fuller, G M

    2015-01-01

    We examine the physics of the early universe when neutrinos (electron neutrino, muon neutrino, tau neutrino) possess transition magnetic moments. These extra couplings beyond the usual weak interaction couplings alter the way neutrinos decouple from the plasma of electrons/positrons and photons. We calculate how transition magnetic moment couplings modify neutrino decoupling temperatures, and then use a full weak, strong, and electromagnetic reaction network to compute corresponding changes in Big Bang Nucleosynthesis abundance yields. We find that light element observational constraints and other cosmological constraints may allow probes of neutrino transition magnetic moments which are not directly available in the laboratory.

  19. Baryon Magnetic Moment and Beta Decay Ratio in Colored Quark Cluster Model

    Institute of Scientific and Technical Information of China (English)

    HU Zheng-Feng; WANG Qing-Wu; DENG Jian-Liao; LEE Xi-Guo; DU Chun-Guang; WANG Yu-Zhu

    2008-01-01

    Baryon magnetic moments of p, n, ∑+, ∑-, 0, - and the beta decay ratios (GA/GV) of n → p, ∑- → n and 0 →∑+are calculated in a colored quark cluster model. With SU(3) breaking, the model gives a good fit to the experimental values of those baryon magnetic moments and the beta decay ratios. Our results show that the orbital motion has a significant contribution to the spin and magnetic moments of those baryons and the strange component in nucleon is small.

  20. On the Physical Origin of the Anomalous Magnetic Moment of Electron

    CERN Document Server

    Mandache, N B

    2013-01-01

    A simple physical insight into the origin of the magnetic moment anomaly of electron is presented. This approach is based on the assumption that the electromagnetic mass of the electron due to the electric field generated by electron charge in the exterior of the sphere of radius half of the Compton wavelength of the electron, does not contribute to the magnetic moment of the electron. This explanation is compatible with the well-known quantum electrodynamics approach. A formula is derived, which is similar to that obtained by quantum electrodynamics calculus of one loop contribution to anomalous part of the magnetic moment.

  1. Ultra-high Sensitivity Moment Magnetometry of Geological Samples Using Magnetic Microscopy

    CERN Document Server

    Lima, Eduardo A

    2016-01-01

    Paleomagnetically useful information is expected to be recorded by samples with moments up to three orders of magnitude below the detection limit of standard superconducting rock magnetometers. Such samples are now detectable using recently developed magnetic microscopes, which map the magnetic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities. However, realizing this potential requires the development of techniques for retrieving sample moments from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unresolved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by applying it to field maps generated from synthetic sources and also to field maps measured using a superco...

  2. Field Induced Magnetic Moments in a Metastable Iron-Mercury Alloy

    DEFF Research Database (Denmark)

    Pedersen, M.S.; Mørup, Steen; Linderoth, Søren;

    1996-01-01

    The magnetic properties of a metastable iron-mercury alloy have been investigated in the temperature range from 5 to 200 K by Mossbauer spectroscopy and magnetization measurements. At low temperature the magnetic moment per iron atom is larger than af alpha-Fe. The effective spontaneous magnetic...... moment for the iron-mercury alloy extrapolated to 0 K was found to be 2.40 Bohr magnetons per iron atom. By applying magnetic fields up to 12 T it was possible to further increase the magnetization. Mossbauer results showed that the high field susceptibility could not be explained by spin canting effects....... It was found that the field-induced increase of the magnetic moment in the metastable iron-mecury alloy was about 0.06 Bohr magnetons per iron atom in the temperature range from 5 to 200 K for a field change from 6 to 12 T....

  3. Re-creating Gauss's method for non-electrical absolute measurements of magnetic fields and moments

    Science.gov (United States)

    Van Baak, D. A.

    2013-10-01

    In 1832, Gauss made the first absolute measurements of magnetic fields and of magnetic moments in experiments that are straightforward and instructive to replicate. We show, using rare-earth permanent magnets and a variation of Gauss's technique, that the horizontal component of the ambient geomagnetic field, as well as the size of the magnetic moments of such magnets, can be found. The method shows the connection between the SI and cgs emu unit systems for these quantities and permits an absolute realization of the Ampere with considerable precision.

  4. Planar Hall ring sensor for ultra-low magnetic moment sensing

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Terki, Ferial; Kamara, Souleymanne

    2015-01-01

    The field sensitivity of a planar Hall effect (PHE) micro-ring type biosensor has been investigated as a function of magnetizing angle of the sensor material, for the sensing of low magnetic moment superparamagnetic labels. The field sensitivity is maximal at a magnetizing angle of α = 20......°. At this optimized magnetizing angle, the field sensitivity of a PHE sensor is about 3.6 times higher than that measured at the conventional configuration, α = 90°. This optimization enables the PHE-ring sensor to detect superparamagnetic biolabels with ultra-low magnetic moments down to 4 × 10-13 emu....

  5. Planar Hall ring sensor for ultra-low magnetic moment sensing

    Science.gov (United States)

    Hung, Tran Quang; Terki, Ferial; Kamara, Souleymanne; Kim, Kunwoo; Charar, Salam; Kim, CheolGi

    2015-04-01

    The field sensitivity of a planar Hall effect (PHE) micro-ring type biosensor has been investigated as a function of magnetizing angle of the sensor material, for the sensing of low magnetic moment superparamagnetic labels. The field sensitivity is maximal at a magnetizing angle of α = 20°. At this optimized magnetizing angle, the field sensitivity of a PHE sensor is about 3.6 times higher than that measured at the conventional configuration, α = 90°. This optimization enables the PHE-ring sensor to detect superparamagnetic biolabels with ultra-low magnetic moments down to 4 × 10-13 emu.

  6. X-ray detection of transient magnetic moments induced by a spin current in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Kukreja, R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Bonetti, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Chen, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Backes, D. [New York Univ. (NYU), New York, NY (United States); Acremann, Y. [ETH Zurich, Zurich (Switzerland); Katine, J. [HGST, a Western Digital Company, San Jose, CA (United States); Kent, A. D. [New York Univ. (NYU), New York, NY (United States); Durr, H. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ohldag, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stohr, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-24

    We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×10–5μB on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott’s two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4×10–3μB per atom. As a result, this reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow.

  7. A study of magnetic moments of CeRh3B2 by X-ray magnetic diffraction experiments

    Science.gov (United States)

    Ito, M.; Suzuki, K.; Tadenuma, T.; Nagayasu, R.; Sakurai, Y.; Onuki, Y.; Nishibori, E.; Sakata, M.

    2014-04-01

    X-ray magnetic diffraction experiments of a ferromagnetic rare-earth compound CeRh3B2 have been performed, and the spin and orbital magnetic form factors have been measured. Density distributions of the spin and orbital magnetic moments in real space have been obtained by using Maximum Entropy Method. Low peaks at Rh sites as well as high peaks at Ce sites are observed in these distribution maps. We have estimated the spin and orbital magnetic moments at the Ce and Rh sites in the distribution maps, and have obtained small but nonnegligible spin and orbital magnetic moments of Rh. This is probably the first experimental evidence showing existence of the spin and orbital moments of Rh in this compound.

  8. Enhanced Magnetic Moment of the Iron in a Metastable Iron-Mercury Alloy

    DEFF Research Database (Denmark)

    Pedersen, Michael Stanley; Mørup, Steen; Linderoth, S.;

    1996-01-01

    Ultrafine magnetic particles consisting of a metastable iron-mercury alloy have been investigated in the range 15 K to 200 K by Mossbauer spectroscopy and magnetization measurements. The effective magnetic moment of iron in the iron mercury alloy is found to be enhanced above the value for alpha-...

  9. Contribution to the neutrino magnetic moment coming from 2HDM in presence of magnetic fields

    CERN Document Server

    Tarazona, Carlos G; Moralesa, John; Castillo, Andrés

    2016-01-01

    The confirmation of the neutrino mass by oscillation phenomena converts the study of the magnetic dipole moment (MDM) of the neutrino, in vacuum and regions where existing external magnetic fields, a topic of particular interest from the theoretical point of view. The MDM has an implicit relation with neutrino masses, and this is a possible benchmark from new physics in the solution of open questions in neutrino physics. Besides we know that this kind of phenomena has significant consequences on cosmology and astrophysics, e.g., under the influence of combined effects of neutrinos in the compact objects formation and evolution of primordials magnetic fields. We calculate and analyze such effects introducing charged Higgs bosons based on the parameter space of several 2HDMs with and without flavor conservation in neutral currents.

  10. Measurement of the zero-field magnetic dipole moment of magnetizable colloidal silica spheres

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, E M; Erne, B H; Bakelaar, I A; Kuipers, B W M; Philipse, A P [Van' t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2007-01-24

    The magnetic properties of dispersions of magnetic silica microspheres have been investigated by measuring the magnetization curves and the complex magnetic susceptibility as a function of frequency and field amplitude. The silica spheres appear to have a net permanent magnetic dipole moment, even in zero field, which is increased significantly after a temporary exposure of the silica colloids to a saturating magnetic field. The magnetic properties of the microparticles in zero field are discussed in terms of the number and the orientations of the embedded nanoparticle dipoles along an easy axis of magnetization in the absence of an external field.

  11. Direct evidence of Ni magnetic moment in TbNi{sub 2}Mn—X-ray magnetic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Yu, D.H., E-mail: dyu@ansto.gov.au [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); Huang, Meng-Jie [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Wang, J.L. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia); Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Su, Hui-Chia; Lin, Hong-Ji; Chen, Chien-Te [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Campbell, S.J. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia)

    2014-12-15

    We have investigated the individual magnetic moments of Ni, Mn and Tb atoms in the intermetallic compound TbNi{sub 2}Mn in the Laves phase (magnetic phase transition temperature T{sub C} ∼131 K) by X-ray magnetic circular dichroism (XMCD) studies at 300 K, 80 K and 20 K. Analyses of the experimental results reveal that Ni atoms at 20 K in an applied magnetic field of 1 T carry an intrinsic magnetic moment of spin and orbital magnetic moment contributions 0.53±0.01 μ{sub B} and 0.05±0.01 μ{sub B}, respectively. These moment values are similar to those of the maximum saturated moment of Ni element. A very small magnetic moment of order <0.1 μ{sub B} has been measured for Mn. This suggests that Mn is antiferromagnetically ordered across the two nearly equally occupied sites of 16d and 8a. A magnetic moment of up to ∼0.3 μ{sub B} has been observed for the Tb atoms. Identification of a magnetic moment on the Ni atoms has provided further evidence for the mechanism of enhancement of the magnetic phase transition temperature in TbNi{sub 2}Mn compared with TbNi{sub 2} (T{sub C}∼37.5 K) and TbMn{sub 2} (T{sub C}∼54 K) due to rare earth–transition metal (R–T) and transition metal–transition metal (T–T) interactions. The behaviour of the X-ray magnetic circular dichroism spectra of TbNi{sub 2}Mn at 300 K, 80 K and 20 K – above and below the magnetic ordering temperature T{sub C} ∼131 K – is discussed. - Highlights: • We study the magnetic moment of TbNi{sub 2}Mn with XMCD. • We observe directly the Ni intrinsic magnetic moment in TbNi{sub 2}Mn. • We find that Mn ordered antiferromagnetically across the 16d and 8a sites. • We confirm the mechanism for increasing the magnetic phase transition temperature.

  12. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

    Institute of Scientific and Technical Information of China (English)

    YAO Jiang-Ming; L(U) Hong-Feng; Hillhouse Greg; MENG Jie

    2008-01-01

    Effects of core polarization and tensor coupling on the magnetic moments in 13Λ C,17Λ O,and 41Λ Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar,vector and tensor potentials.It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling.The Λ tensor potential reduces the spin-orbit splitting of PΛ states considerably.However,almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the Λ tensor potential in the electromagnetic current vertex.The deviations of magnetic moments for pΛ states from the Schmidt values are found to increase with nuclear mass number.

  13. Perihelion Precession in Gravitational Field of Center Mass with Electric Charge and Magnetic Moment

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; WANG Yong-Jiu

    2005-01-01

    With a perfect mathematical method by us, we obtain some expressions of the orbital effect for a test particle and some meaningful results in the gravitational field of the center mass with electric charge and magnetic moment.

  14. Classical electrodynamics in material media and relativistic transformation of magnetic dipole moment

    Science.gov (United States)

    Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.

    2016-09-01

    We consider the relativistic transformation of the magnetic dipole moment and disclose its physical meaning, shedding light on the related difficulties in the physical interpretation of classical electrodynamics in material media.

  15. Diagonal and transition magnetic moments of negative parity heavy baryons in QCD sum rules

    CERN Document Server

    Aliev, T M; Barakat, T; Savcı, M

    2015-01-01

    Diagonal and transition magnetic moments of the negative parity, spin-1/2 heavy baryons are studied in framework of the light cone QCD sum rules. By constructing the sum rules for different Lorentz structures, the unwanted contributions coming from negative (positive) to positive (negative) parity transitions are removed. It is obtained that the magnetic moments of all baryons, except $\\Lambda_b^0$, $\\Sigma_c^+$ and $\\Xi_c^{\\prime +}$, are quite large. It is also found that the transition magnetic moments between neutral negative parity heavy $\\Xi_Q^{\\prime 0}$ and $\\Xi_Q^0$ baryons are very small. Magnetic moments of the $\\Sigma_Q \\to \\Lambda_Q$ and $ \\Xi_Q^{\\prime \\pm} \\to \\Xi_Q^\\pm$ transitions are quite large and can be measured in further experiments.

  16. Light baryon magnetic moments and N -> Delta gamma transition in a Lorentz covariant chiral quark approach

    CERN Document Server

    Faessler, A; Holstein, Barry R; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Thomas; Holstein, Barry R.; Lyubovitskij, Valery E.; Nicmorus, Diana; Pumsa-ard, Kem

    2006-01-01

    We calculate magnetic moments of light baryons and N -> Delta gamma transition characteristics using a manifestly Lorentz covariant chiral quark approach for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons.

  17. First on-line $\\beta$-NMR on oriented nuclei magnetic dipole moments of the $\

    CERN Document Server

    Giles, T; Stone, N J; Van Esbroeck, K; White, G; Wöhr, A; Veskovic, M; Towner, I S; Mantica, P F; Prisciandaro, J I; Morrissey, D J; Fedosseev, V; Mishin, V I; Köster, U; Walters, W B

    2000-01-01

    The first fully on-line use of the angular distribution of $\\beta$ - emission in detection of NMR of nuclei oriented at low temperatures is reported. The magnetic moments of the single valence particle, intermediate mass, isotopes $^{67}$Ni($\

  18. New bounds on neutrino electric millicharge from GEMMA experiment on neutrino magnetic moment

    CERN Document Server

    Brudanin, Victor B; Starostin, Alexander S; Studenikin, Alexander I

    2014-01-01

    Using the new limit on the neutrino anomalous magnetic moment recently obtained by GEMMA experiment we get an order-of-magnitude estimation for possible new direct upper bound on the neutrino electric millicharge $\\mid q_{\

  19. Magnetic moment generation from non-minimal couplings in a scenario with Lorentz-symmetry violation

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H. [Universidade Federal do Espirito Santo (UFES), Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Universidade de Brasilia, International Center for Condensed Matter Physics, CP 04513, Brasilia, DF (Brazil); Grupo de Fisica Teorica Jose Leite Lopes, CP 91933, Petropolis, RJ (Brazil); Colatto, L.P. [CEFET-RJ UnED-Petropolis, Petropolis, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes, CP 91933, Petropolis, RJ (Brazil); Costa-Soares, T. [Universidade Federal de Juiz de Fora (UFJF), Colegio Tecnico Universitario, Juiz de Fora, MG (Brazil); Grupo de Fisica Teorica Jose Leite Lopes, CP 91933, Petropolis, RJ (Brazil); Helayel-Neto, J.A. [CBPF-Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes, CP 91933, Petropolis, RJ (Brazil); Orlando, M.T.D. [Universidade Federal do Espirito Santo (UFES), Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Grupo de Fisica Teorica Jose Leite Lopes, CP 91933, Petropolis, RJ (Brazil)

    2009-07-15

    This paper deals with situations that illustrate how the violation of Lorentz symmetry in the gauge sector may contribute to magnetic moment generation of massive neutral particles with spin-1/(2) and spin-1. The procedure we adopt here is based on Relativistic Quantum Mechanics. We work out the non-relativistic regime that follows from the wave equation corresponding to a certain particle coupled to an external electromagnetic field and a background that accounts for the Lorentz-symmetry violation, and we thereby read off the magnetic dipole moment operator for the particle under consideration. We keep track of the parameters that govern the non-minimal electromagnetic coupling and the breaking of Lorentz symmetry in the expressions we get for the magnetic moments in the different cases we contemplate. Our claim is that the tiny magnetic dipole moment of truly-elementary neutral particles might signal Lorentz-symmetry violation. (orig.)

  20. The magnetic moment of NiO nanoparticles determined by Mössbauer spectroscopy

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Hansen, Mikkel Fougt; Pedersen, Thomas

    2006-01-01

    We have studied the magnetic properties of 57Fe-doped NiO nanoparticles using Mössbauer spectroscopy and magnetization measurements. Two samples with different degrees of interparticle interaction were studied. In both samples the particles were characterized by high-resolution transmission...... electron microscopy and x-ray diffraction and found to be plate-shaped. Computer simulations showed that high-field Mössbauer data are very sensitive to the size of the uncompensated magnetic moment. From analyses of the Mössbauer spectra we have estimated that the size of the uncompensated magnetic moment...... is in accordance with a model based on random occupation of surface sites. The analyses of the magnetization data gave larger magnetic moments, but the difference can be explained by the different sensitivity of the two methods to a particle size distribution and by interactions between the particles, which may...

  1. The quantitative measurement of magnetic moments from phase images of nanoparticles and nanostructures – I. Fundamentals

    DEFF Research Database (Denmark)

    Beleggia, Marco; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2010-01-01

    An approach that can be used to measure the magnetic moment of a magnetized nanoparticle or nanostructure from an electron-optical phase image is introduced. The measurement scheme is based on integration of the gradient of the measured phase image within a circular boundary that contains...... the structure of interest. The quantity obtained is found to be directly proportional to the magnetic moment of the particle, with a constant of proportionality that does not depend on the particle's shape or magnetization state. The measurement of magnetic moments from both simulated and experimental phase...... images is demonstrated, and strategies are presented that can be utilized to overcome sources of error associated with, for example, the presence of neighboring magnetic particles and the perturbation of the holographic reference wave...

  2. The quantitative measurement of magnetic moments from phase images of nanoparticles and nanostructures-I. Fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Beleggia, Marco, E-mail: mb@cen.dtu.dk [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Kasama, Takeshi; Dunin-Borkowski, Rafal E. [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2010-04-15

    An approach that can be used to measure the magnetic moment of a magnetized nanoparticle or nanostructure from an electron-optical phase image is introduced. The measurement scheme is based on integration of the gradient of the measured phase image within a circular boundary that contains the structure of interest. The quantity obtained is found to be directly proportional to the magnetic moment of the particle, with a constant of proportionality that does not depend on the particle's shape or magnetization state. The measurement of magnetic moments from both simulated and experimental phase images is demonstrated, and strategies are presented that can be utilized to overcome sources of error associated with, for example, the presence of neighboring magnetic particles and the perturbation of the holographic reference wave.

  3. Generation of localized magnetic moments in the charge-density-wave state

    OpenAIRE

    Akzyanov, R. S.; Rozhkov, A. V.

    2014-01-01

    We propose a mechanism explaining the generation of localized magnetic moments in charge-density-wave compounds. Our model Hamiltonian describes an Anderson impurity placed in a host material exhibiting the charge-density wave. There is a region of the model's parameter space, where even weak Coulomb repulsion on the impurity site is able to localize the magnetic moment on the impurity. The phase diagram of a single impurity at T=0 is mapped. To establish the connection with experiment thermo...

  4. REC and NdFe magnetic moment irreversibility from temperature cycling

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, E.; Chin, J.W.G.; Shuman, D.

    1985-10-01

    Presented are the results of thermal cycling tests carried out on REC and NdFe samples, to determine the irreversible losses in room temperature open circuit magnetic moment. A stabilization prescription was developed for a REC alloy that will allow two 4 day/175/sup 0/C temperature cycles, which simulate two UHV bakeouts, with only a 0.35% average loss and a 0.65% loss variation in the room temperature open circuit magnetic moment after stabilization.

  5. Particle with spin 2 and anomalous magnetic moment in external electromagnetic and gravitational fields

    CERN Document Server

    Kisel, V V; Red'kov, V M

    2011-01-01

    Tensor 50-component form of the first order relativistic wave equation for a particle with spin 2 and anomalous magnetic moment is extended to the case of an arbitrary curved space-time geometry. An additional parameter considered in the presence of only electromagnetic field as related to anomalous magnetic moment, turns to determine additional interaction terms with external geometrical background through Ricci R_{kl} and Riemann R_{klmn} tensors.

  6. New limits on neutrino magnetic moments from low energy neutrino data

    CERN Document Server

    Canas, B C; Parada, A; Tortola, M; Valle, J W F

    2016-01-01

    Here we give a brief review on the current bounds on the general Majorana transition neutrino magnetic moments (TNMM) which cover also the conventional neutrino magnetic moments (NMM). Leptonic CP phases play a key role in constraining TNMMs. While the Borexino experiment is the most sensitive to the TNMM magnitudes, one needs complementary information from reactor and accelerator experiments in order to probe the complex CP phases.

  7. Temperature dependence of magnetic moments of nanoparticles and their dipole interaction in magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A.V.

    2015-01-15

    Magnetic susceptibility measurements were carried out for magnetite-based fluids over a wide temperature range. The fluids were stabilized with commonly used surfactants (fatty acids) and new surfactants (polypropylene glycol and tallow acids). The coefficients of temperature dependence of the particle magnetic moments were determined by fitting of the measured and calculated values of magnetic susceptibility. The influence of the inter-particle dipole–dipole interaction on the susceptibility was taken into account in the framework of A.O. Ivanov's model. The corrections for thermal expansion were determined by density measurements of the carrier fluid. The obtained values of temperature coefficients correlate to the solidification temperature of the fluid samples. For fluids with a low solidification temperature the value of the temperature coefficient of particle magnetization coincides with its value for bulk magnetite. - Highlights: • Susceptibility measurements made for magnetic fluids over a wide temperature range. • Temperature coefficients of particle magnetization found from susceptibility data. • The value of coefficients correlates to the solidification temperature of the fluid. • For the lowest solidification temperature the coefficient corresponds to that of bulk magnetite.

  8. About the parametrizations utilized to perform magnetic moments measurements using the transient field technique

    Science.gov (United States)

    Gómez, A. M.; Torres, D. A.

    2016-07-01

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  9. Quantum Effects on an Atom with a Magnetic Quadrupole Moment in a Region with a Time-Dependent Magnetic Field

    Science.gov (United States)

    Fonseca, I. C.; Bakke, K.

    2017-01-01

    The quantum description of an atom with a magnetic quadrupole moment in the presence of a time-dependent magnetic field is analysed. It is shown that the time-dependent magnetic field induces an electric field that interacts with the magnetic quadrupole moment of the atom and gives rise to a Landau-type quantization. It is also shown that a time-independent Schrödinger equation can be obtained, i.e., without existing the interaction between the magnetic quadrupole moment of the atom and the time-dependent magnetic field, therefore, the Schrödinger equation can be solved exactly. It is also analysed this system subject to scalar potentials.

  10. Two dimensional electron gas confined over a spherical surface: Magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, A; Crespo, P [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P. O. Box 155, Madrid 28230 (Spain) and Dpto. Fisica de Materiales, Universidad Complutense (Spain); Garcia, M A, E-mail: antonio.hernando@adif.es [Instituto de Ceramica y Vidrio, CSIC c/Kelsen, 5 Madrid 28049 (Spain)

    2011-04-01

    Magnetism of capped nanoparticles, NPs, of non-magnetic substances as Au and ZnO is briefly reviewed. The source of the magnetization is discussed on the light of recent X-ray magnetic circular dichroism experiments. As magnetic dichroism analysis has pointed out impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states. It is proposed that mesoscopic collective orbital magnetic moments induced at the surface states can account for the experimental magnetism characteristic of these nanoparticles. The total magnetic moment of the surface originated at the unfilled Fermi level can reach values as large as 10{sup 2} or 10{sup 3} Bohr magnetons.

  11. Application of Conformal Mapping to the determination of Magnetic Moment Distributions in typical Antidot Film Nanostructures

    CERN Document Server

    Schilling, Osvaldo F

    2008-01-01

    There has been an increasing technological interest on magnetic thin films containing antidot arrays of hexagonal or square symmetry. Part of this interest is related to the possibility of domain formation and pinning at the antidots boundaries. In this paper, we develop a method for the calculation of the magnetic moment distribution for such arrays which concentrates on the immediate vicinity of each antidot. For each antidot distribution (square or hexagonal) a suitable system of coordinates is defined to exploit the shape of the unit-cells of the overall nanostructure. The Landau-Lifshitz-Gilbert-Brown equations that govern the distribution of moments are rewritten in terms of these coordinates. The equilibrium moments orientation is calculated for each position in a Cartesian grid defined for these new coordinate systems, and then a conformal transformation is applied to insert the moment vectors into the actual unit-cell. The resulting vector maps display quite clearly regions of different moment orient...

  12. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W

    1958-01-01

    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  13. Constraining neutrino magnetic moment with solar neutrino data

    CERN Document Server

    Tortola, M A

    2003-01-01

    We use solar neutrino data to derive stringent bounds on Majorana neutrino transition moments (TMs). Such moments, if present, would contribute to the neutrino-electron scattering cross section and hence alter the signal observed in Super-Kamiokande. Using the latest solar neutrino data, combined with the results of the reactor experiment KamLAND, we perform a simultaneous fit of the oscillation parameters and TMs. Furthermore, we include data from the reactor experiments Rovno, TEXONO and MUNU in our analysis, improving significantly the current constraints on TMs. A comparison with previous works shows that our bounds are the strongest and most general results presented up to now. Finally, we perform a simulation of the future Borexino experiment and show that it will improve the bounds from today's data by order of magnitude.

  14. A prototype vector magnetic field monitoring system for a neutron electric dipole moment experiment

    CERN Document Server

    Nouri, N; Brown, M A; Carr, R; Filippone, B; Osthelder, C; Plaster, B; Slutsky, S; Swank, C

    2015-01-01

    We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements.

  15. Magnetic relaxation and correlating effective magnetic moment with particle size distribution in maghemite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pisane, K.L. [Department of Physics & Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Despeaux, E.C. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Seehra, M.S., E-mail: mseehra@wvu.edu [Department of Physics & Astronomy, West Virginia University, Morgantown, WV 26506 (United States)

    2015-06-15

    The role of particle size distribution inherently present in magnetic nanoparticles (NPs) is examined in considerable detail in relation to the measured magnetic properties of oleic acid-coated maghemite (γ-Fe{sub 2}O{sub 3}) NPs. Transmission electron microscopy (TEM) of the sol–gel synthesized γ-Fe{sub 2}O{sub 3} NPs showed a log-normal distribution of sizes with average diameter 〈D〉=7.04 nm and standard deviation σ=0.78 nm. Magnetization, M, vs. temperature (2–350 K) of the NPs was measured in an applied magnetic field H up to 90 kOe along with the temperature dependence of the ac susceptibilities, χ′ and χ″, at various frequencies, f{sub m}, from 10 Hz to 10 kHz. From the shift of the blocking temperature from T{sub B}=35 K at 10 Hz to T{sub B}=48 K at 10 kHz, the absence of any significant interparticle interaction is inferred and the relaxation frequency f{sub o}=2.6×10{sup 10} Hz and anisotropy constant K{sub a}=5.48×10{sup 5} erg/cm{sup 3} are determined. For TT{sub B}, the data of M vs. H up to 90 kOe at several temperatures are analyzed two different ways: (i) in terms of the modified Langevin function yielding an average magnetic moment per particle μ{sub p}=7300(500) μ{sub B}; and (ii) in terms of log-normal distribution of moments yielding 〈μ〉=6670 µ{sub B} at 150 K decreasing to 〈μ〉=6100 µ{sub B} at 300 K with standard deviations σ≃〈μ〉/2. It is argued that the above two approaches yield consistent and physically meaningful results as long as the width parameter, s, of the log-normal distribution is less than 0.83. - Highlights: • Magnetic properties of γ-Fe{sub 2}O{sub 3} nanoparticles, size=7.04(0.78)nm, are reported. • Attempt frequency f{sub o}=2.6×10{sup 10} Hz and no interparticle interactions are inferred. • M vs. H above T{sub B} analyzed using modified Langevin yields µ{sub p}≈7300 µ{sub B} per particle. • M vs. H above T

  16. Nuclear ground-state spin and magnetic moment of 21Mg

    CERN Document Server

    Krämer, J; De Rydt, M; Flanagan, K T; Geppert, Ch; Kowalska, M; Lievens, P; Neugart, R; Neyens, G; Nörtershäuser, W; Stroke, H H; Vingerhoets, P; Yordanov, D T

    2009-01-01

    We present the results of combined laser spectroscopy and nuclear magnetic resonance studies of 21Mg. The nuclear ground-state spin was measured to be I=5/2 with a magnetic moment of μ=−0.983(7)μN. The isoscalar magnetic moment of the mirror pair is evaluated and compared to the extreme single-particle prediction and to nuclear shell-model calculations. We determine an isoscalar spin expectation value of σ=1.15(2), which is significantly greater than the empirical limit of unity given by the Schmidt values of the magnetic moments. Shell-model calculations taking into account isospin non-conserving effects, are in agreement with our experimental results.

  17. Dynamic characteristics of the rotor in a magnetically suspended control moment gyroscope with active magnetic bearing and passive magnetic bearing.

    Science.gov (United States)

    Tang, Jiqiang; Xiang, Biao; Zhang, Yongbin

    2014-07-01

    For a magnetically suspended control moment gyroscope, stiffness and damping of magnetic bearing will influence modal frequency of a rotor. In this paper the relationship between modal frequency and stiffness and damping has been investigated. The mathematic calculation model of axial passive magnetic bearing (PMB) stiffness is developed. And PID control based on internal model control is introduced into control of radial active magnetic bearing (AMB), considering the radial coupling of axial PMB, a mathematic calculation model of stiffness and damping of radial AMB is established. According to modal analysis, the relationship between modal frequency and modal shapes is achieved. Radial vibration frequency is mainly influenced by stiffness of radial AMB; however, when stiffness increases, radial vibration will disappear and a high frequency bending modal will appear. Stiffness of axial PMB mainly affects the axial vibration mode, which will turn into high-order bending modal. Axial PMB causes bigger influence on torsion modal of the rotor.

  18. Reactor monitoring using antineutrino detectors

    Science.gov (United States)

    Bowden, N. S.

    2011-08-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.

  19. Magnetic moments in chemically ordered mass-selected CoPt and FePt clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, V., E-mail: Veronique.Dupuis@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Khadra, G.; Linas, S.; Hillion, A. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Gragnaniello, L. [Institute of Condensed Matter Physics, EPFL, CH-1015 Lausanne (Switzerland); Tamion, A.; Tuaillon-Combes, J.; Bardotti, L.; Tournus, F. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Otero, E.; Ohresser, P. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, F-91192 Gif-sur-Yvette Cedex (France); Rogalev, A.; Wilhelm, F. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France)

    2015-06-01

    By combining high photon flux and chemical selectivity, X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) have been used to study the magnetism of CoPt and FePt clusters before and after their transition to the chemically ordered L1{sub 0}-like phase. Compared to the bulk, we find larger magnetic spin and orbital moments of Fe, Co and Pt atoms in nanoalloys. - Highlights: • Study of magnetism on well-defined CoPt and FePt clusters embedded in carbon matrix • X-ray magnetic circular dichroism (XMCD) at each specific Fe, Co and Pt edges, before and after annealing to induce transition to the chemically L1{sub 0}-like phase. • Quantitative values of the spin and orbital magnetic moments of Co (resp. Fe) and Pt after the chemical ordering transition. • Specific nanoalloy effects.

  20. Magnetic moment of a single metal nanoparticle determined from the Faraday effect

    Science.gov (United States)

    Szczytko, Jacek; Vaupotič, Nataša; Madrak, Karolina; Sznajder, Paweł; Górecka, Ewa

    2013-03-01

    Optical properties of a composite material made of ferromagnetic metal nanoparticles embedded in a dielectric host are studied. We constructed an effective dielectric tensor of the composite material taking into account the orientational distribution of nanoparticle magnetic moments in external magnetic field. A nonlinear dependence of the optical rotation on magnetic field resulting from the reorientation of nanoparticles is demonstrated. The theoretical findings were applied to the magneto-optical experimental data of cobalt ferromagnetic nanoparticles embedded in a dielectric liquid host. The dependence of the Faraday rotation on Co-based ferromagnetic nanoparticles was measured as a function of the external magnetic field, varying the size of nanoparticles and the wavelength of light. The proposed approach enables quantitative determination of the magnetic moment and the plasma frequency of a single nanoparticle, and from this the size of the nonmagnetic shell of magnetic nanoparticles.

  1. On Intrinsic Magnetic Moments In Black Hole Candidates

    CERN Document Server

    Robertson, S L; Robertson, Stanley L.; Leiter, Darryl J.

    2003-01-01

    In previous work we found that many of the spectral properties of low mass x-ray binaries, including galactic black hole candidates could be explained by a magnetic propeller model that requires an intrinsically magnetized central object. Here we describe how the Einstein field equations of General Relativity and equipartition magnetic fields permit the existence of highly red shifted, extremely long lived, collapsing, radiating objects. We examine the properties of these collapsed objects and discuss characteristics that might lead to their confirmation as the source of black hole candidate phenomena.

  2. Vacuum effects in magnetic field with with account for fermion anomalous magnetic moment and axial-vector interaction

    Science.gov (United States)

    Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir

    2016-05-01

    We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.

  3. Magnetic Moment Formation in Graphene Detected by Scattering of Pure Spin Currents

    Science.gov (United States)

    Swartz, Adrian; McCreary, Kathy; Chen, Jen-Ru; Han, Wei; Fabian, Jaroslav; Kawakami, Roland

    2013-03-01

    Graphene's 2D nature and high surface sensitivity have led to fascinating predictions for induced spin-based phenomena through careful control of adsorbates, including the extrinsic spin Hall effect, band gap opening, and induced magnetism. By taking advantage of atomic scale control provided by MBE, we have investigated deposition of adsorbates and their interactions with graphene. Spin transport measurements performed in-situ during systematic introduction of atomic hydrogen demonstrated that hydrogen adsorbed on graphene forms magnetic moments that couple via exchange to the injected spin current. The observed behavior is quantitatively explained utilizing a phenomenological theory for scattering of pure spin currents by localized magnetic moments. Lattice vacancies show similar behavior, indicating that the moments originate from so called pz-orbital defects. On the other hand, experiments with charge impurity scatterers such as Mg and Au, are noticeably absent of features related to magnetic moment formation. Furthermore, we observe gate dependent effective exchange fields due to the spin-spin coupling between conduction electrons and magnetic moments, which are of interest for novel phenomena and spintronic functionality but have not been seen previously in graphene.

  4. The magnetic moments and electromagnetic form factors of the decuplet baryons in chiral perturbation theory

    CERN Document Server

    Li, Hao-Song; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin

    2016-01-01

    We have systematically investigated the magnetic moments and magnetic form factors of the decuplet baryons to the next-to-next-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. We also calculate the charge and magnetic dipole form factors of the decuplet baryons. Our results may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.

  5. Orbital magnetic moment instability at the spin reorientation transition of Nd2Fe14B

    Science.gov (United States)

    Garcia; Chaboy; Bartolome; Goedkoop

    2000-07-10

    Highly accurate soft-XMCD data recorded on a Nd2Fe14B single crystal, through the spin reorientation transition show that the average Fe orbital moment (a) is proportional to the macroscopic Fe anisotropy constant, and (b) diverges 15 K below the reorientation transition temperature. This divergence is indicative of a critical behavior and it is related to a tetragonal distortion. These results give experimental evidence of the mutual dependence between orbital moment, macroscopic magnetic anisotropy, and tetragonal distortion. Furthermore, it is argued that the critical behavior of the orbital moment is at the origin of similar divergences previously observed in Mossbauer and Hall-effect data.

  6. Limit On the Neutrino Magnetic Moment Using 1496 Days of Super-Kamiokande-i Solar Neutrino Data

    CERN Document Server

    Liu, D W; Fukuda, S; Fukuda, Y; Ishihara, K; Itow, Y; Koshio, Y; Minamino, A; Miura, M; Moriyama, S; Nakahata, M; Namba, T; Nambu, R; Obayashi, Y; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Yamada, S; Ishitsuka, M; Kajita, T; Kaneyuki, K; Nakayama, S; Okada, A; Ooyabu, T; Saji, C; Desai, S; Earl, M; Kearns, E; Messier, M D; Stone, J L; Sulak, L R; Walter, C W; Wang, W; Goldhaber, M; Barszczak, T; Casper, D; Cravens, J P; Gajewski, W; Kropp, W R; Mine, S; Smy, M B; Sobel, H W; Sterner, C W; Vagins, M R; Ganezer, K S; Hill, J; Keig, W E; Kim, J Y; Lim, I T; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Hayato, Y; Ichikawa, A K; Ishida, T; Ishii, T; Iwashita, T; Kameda, J; Kobayashi, T; Maruyama, T; Nakamura, K; Nitta, K; Oyama, Y; Sakuda, M; Totsuka, Y; Suzuki, A T; Hasegawa, M; Hayashi, K; Inagaki, T; Kato, I; Maesaka, H; Morita, T; Nakaya, T; Nishikawa, K; Sasaki, T; Ueda, S; Yamamoto, S; Haines, T J; Dazeley, S; Hatakeyama, S; Svoboda, R; Blaufuss, E; Goodman, J A; Guillian, G; Sullivan, G W; Turcan, D; Scholberg, K; Habig, A; Ackermann, M; Jung, C K; Kato, T; Kobayashi, K; Martens, K; Malek, M; Mauger, C; McGrew, C; Sharkey, E; Viren, B; Yanagisawa, C; Toshito, T; Mitsuda, C; Miyano, K; Shibata, T; Kajiyama, Y; Nagashima, Y; Takita, M; Yoshida, M; Kim, H I; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Choi, Y; Seo, H K; Gando, Y; Hasegawa, T; Inoue, K; Shirai, J; Suzuki, A; Koshiba, M; Hashimoto, T; Nakajima, Y; Nishijima, K; Ishino, H; Morii, M; Nishimura, R; Watanabe, Y; Kielczewska, D; Zalipska, J; Gran, R; Shiraishi, K K; Washburn, K; Wilkes, R J

    2004-01-01

    A search for a non-zero neutrino magnetic moment has been conducted using 1496 live days of solar neutrino data from {\\SK}. Specifically, we searched for distortions to the energy spectrum of recoil electrons arising from magnetic scattering due to a non-zero neutrino magnetic moment. In the absence of clear signal, we found $\\mu_{\

  7. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors.

    Science.gov (United States)

    Egan, R; Philippe, M; Wera, L; Fagnard, J F; Vanderheyden, B; Dennis, A; Shi, Y; Cardwell, D A; Vanderbemden, P

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).

  8. Magnetic moment of short lived {beta}-emitter {sup 24m}Al

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, D., E-mail: daiki@vg.phys.sci.osaka-u.ac.jp; Komurasaki, J.; Matsuta, K.; Mihara, M.; Matsumiya, R. [Osaka University, Department of Physics (Japan); Momota, S. [Kochi University of Technology (Japan); Ohtsubo, T. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, RI Center (Japan); Hirano, H. [Niigata University, Department of Physics (Japan); Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S. [National Institute of Radiological Sciences (Japan); Fukuda, M.; Ishikawa, D. [Osaka University, Department of Physics (Japan); Minamisono, T. [Fukui University of Technology (Japan); Watanabe, R.; Kubo, T. [Niigata University, Department of Physics (Japan); Nojiri, Y. [Kochi University of Technology (Japan); Alonso, J. R. [Lawrence Berkeley Laboratory (United States)

    2007-11-15

    The magnetic moment of short lived {beta}-emitter {sup 24m}Al (426 keV, I{sup {pi}} = 1{sup +}, T{sub 1/2} = 131 ms) has been measured by means of {beta}-NMR technique, for the first time. From the {beta}-NMR spectrum, the magnetic moment was determined as |{mu}({sup 24m}Al)|=(2.99{+-}0.09){mu}{sub N}. Combined with the known magnetic moment of the mirror partner {sup 24m}Na, the expectation value of < S{sub z} > is obtained to be (0.08 {+-} 0.12). These values are reproduced well by the shell model calculation.

  9. Spin magnetic moments from single atoms to small Cr clusters

    Energy Technology Data Exchange (ETDEWEB)

    Boeglin, C.; Decker, R.; Bulou, H.; Scheurer, F.; Chado, I. [IPCMS-GSI - UMR 7504, 67037 Strasbourg Cedex (France); Ohresser, P. [LURE, 91405 Orsay (France); Dhesi, S.S. [ESRF, BP 220, 38043 Grenoble Cedex (France); Present permanent address: Diamond Light Source, Chilton, Didcot OX11 0QX (United Kingdom); Gaudry, E. [LMCP, 4, place Jussieu, 75252 Paris (France); Lazarovits, B. [CCMS, T.U. Vienna, Gumpendorfstr. 1a, 1060 Wien (Austria)

    2005-07-01

    Morphology studies at the first stages of the growth of Cr/Au(111) are reported and compared to the magnetic properties of the nanostructures. We analyze by Scanning Tunneling Microscopy and Low Energy Electron Diffraction the Cr clusters growth between 200 K and 300 K. In the early stages of the growth the morphology of the clusters shows monoatomic high islands located at the kinks of the herringbone reconstructed Au(111) surface. By X-ray Magnetic Circular Dichroism performed on the Cr L{sub 2,3} edges it is shown that the temperature dependent morphology strongly influences the magnetic properties of the Cr clusters. We show that in the sub-monolayer regime Cr clusters are antiferromagnetic and paramagnetic when the size reaches the atomic limit. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Double-layered Aurivillius-type ferroelectrics with magnetic moments

    NARCIS (Netherlands)

    Missyul, A. B.; Zvereva, I. A.; Palstra, T. T. M.; Kurbakov, A. I.

    2010-01-01

    We have synthesized the double-layer Aurivillius phase Bi(2)LnNbTiO(9) where Ln = Nd-Gd, Bi. All compounds adopt the orthorhombic polar space group A2(I)am. The magnetic Ln-ion occupies the cuboctahedral position in the middle of the perovskite double-layer, and thus controls the octahedral tilt of

  11. SNO results and neutrino magnetic moment solution to the solar neutrino problem

    Indian Academy of Sciences (India)

    Debasish Majumdar

    2002-01-01

    We have analysed the solar neutrino data obtained from chlorine, gallium and Super-Kamiokande (SK) experiments (1258 days) and also the new results that came from Sudbury Neutrino Observatory (SNO) charge current (CC) and elastic scattering (ES) experiments considering that the solar neutrino deficit is due to the interaction of neutrino transition magnetic moment with the solar magnetic field. We have also analysed the moments of the spectrum of scattered electrons at SK. Another new feature in the analysis is that for the global analysis, we have replaced the spectrum by its centroid.

  12. Prediction of the anomalous magnetic moment of nucleon from the nucleon anomaly

    CERN Document Server

    Lin, Y C

    1995-01-01

    We construct the effective anomaly lagrangian involving nucleons and photons by using current-current coupling method. The contribution of this lagrangian to the anomalous magnetic moment of nucleon is purely isovector. The anomalous magnetic moment of proton, \\kappa_P, can be calculated from the this lagrangian and it is found to be \\kappa_P^{Theor.} = 1.77, which is in excellent agreement with the experimental value \\kappa_P^{Exp.} = 1.79. While the case of neutron, \\kappa_N^{Theor.} = -2.58 as compared to \\kappa_N^{Exp.} =-1.91, is less satisfactory, but the sign is correct.

  13. Leading-order decuplet contributions to the baryon magnetic moments in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Geng, L.S. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, 46071-Valencia (Spain); Camalich, J. Martin [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, 46071-Valencia (Spain)], E-mail: camalich@ific.uv.es; Vacas, M.J. Vicente [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, 46071-Valencia (Spain)

    2009-06-01

    We extend an earlier study of the baryon magnetic moments in chiral perturbation theory by the explicit inclusion of the spin-3/2 decuplet resonances. We find that the corrections induced by these heavier degrees of freedom are relatively small in a covariant framework where unphysical spin-1/2 modes are removed. Consequently, implementing the leading SU(3)-breaking corrections given by both the baryon and decuplet contributions, we obtain a description of the baryon-octet magnetic moments that is better than the Coleman-Glashow relations. Finally, we discuss the uncertainties and compare between heavy baryon and covariant approaches.

  14. Leading-order decuplet contributions to the baryon magnetic moments in Chiral Perturbation Theory

    CERN Document Server

    Geng, L S; Vacas, M J Vicente

    2009-01-01

    We extend an earlier study of the baryon magnetic moments in chiral perturbation theory by the explicit inclusion of the spin-3/2 decuplet resonances. We find that the corrections induced by these heavier degrees of freedom are relatively small in a covariant framework where unphysical spin-1/2 modes are removed. Consequently, implementing the leading SU(3)-breaking corrections given by both the baryon and decuplet contributions, we obtain a description of the baryon-octet magnetic moments that is better than the Coleman-Glashow relations. Finally, we discuss the uncertainties and compare between heavy baryon and covariant approaches.

  15. Dynamic circuit and Fourier series methods for moment calculation in electrodynamic repulsive magnetic levitation systems

    Science.gov (United States)

    Knowles, R.

    1982-07-01

    A general theory of moments for electrodynamic magnetic levitation systems has been developed using double Fourier series and dynamic circuit principles. Both employ Parseval's theorem using either wave constant derivatives or the polar waveconstant principle of the Fourier-Bessel/double Fourier series equivalence. A method for calculating angular derivatives of moments and forces is explained, and for all of these methods comparisons are made with experimental results obtained for single and split rail configurations. Extensions of dynamic circuit theory for tilted nonflat and circular magnets are also explained.

  16. Large anomalous magnetic moment in three-dimensional Dirac and Weyl semimetals

    Science.gov (United States)

    van der Wurff, E. C. I.; Stoof, H. T. C.

    2016-10-01

    We investigate the effect of Coulomb interactions on the electromagnetic response of three-dimensional Dirac and Weyl semimetals. In a calculation reminiscent of Schwinger's seminal work on quantum electrodynamics, we find three physically distinct effects for the anomalous magnetic moment of the relativisticlike quasiparticles in the semimetal. In the case of nonzero doping, the anomalous magnetic moment is finite at long wavelengths and typically orders of magnitude larger than Schwinger's result. We also find interesting effects of one of the three new Hamiltonian terms on the topological surface states at the interface between vacuum and a Weyl semimetal. We conclude that observation of these effects should be within experimental reach.

  17. Magnetic moment formation due to arsenic vacancies in LaFeAsO-derived superconductors.

    Science.gov (United States)

    Kikoin, Konstantin; Drechsler, Stefan-Ludwig; Koepernik, Klaus; Málek, Jiři; van den Brink, Jeroen

    2015-07-14

    Arsenic vacancies in LaFeAsO-derived superconductors are nominally non-magnetic defects. However, we find from a microscopic theory in terms of an appropriately modified Anderson-Wolff model that in their vicinity local magnetic moments form. They can arise because removing an arsenic atom breaks four strong, covalent bonds with the neighboring iron atoms. The moments emerging around an arsenic vacancy orient ferromagnetically and cause a substantial enhancement of the paramagnetic susceptibility in both the normal and superconducting state. The qualitative model description is supported by first principles band structure calculations of the As-vacancy related defect spectrum within a larger supercell.

  18. Ionization of hydrogen by neutrino magnetic moment, relativistic muon, and WIMP

    CERN Document Server

    Chen, Jiunn-Wei; Liu, Chien-Fu; Wu, Chih-Liang

    2013-01-01

    We studied the ionization of hydrogen by scattering of neutrino magnetic moment, relativistic muon, and weakly-interacting massive particle with a QED-like interaction. Analytic results were obtained and compared with several approximation schemes often used in atomic physics. As current searches for neutrino magnetic moment and dark matter have lowered the detector threshold down to the sub-keV regime, we tried to deduce from this simple case study the influence of atomic structure on the the cross sections and the applicabilities of various approximations. The general features being found will be useful for cases where practical detector atoms are considered.

  19. Transition magnetic moments and collective neutrino oscillations: three-flavor effects and detectability

    Energy Technology Data Exchange (ETDEWEB)

    Gouvêa, André de; Shalgar, Shashank, E-mail: degouvea@northwestern.edu, E-mail: shashank@northwestern.edu [Department of Physics and Astronomy, Northwestern University, Evanston IL 60208-3112 (United States)

    2013-04-01

    We demonstrate the non-negligible effect of transition magnetic moments on three-flavor collective oscillations of Majorana neutrinos in the core of type-II supernovae, within the single-angle approximation. We argue that data from a galactic supernova in conjunction with terrestrial experiments can potentially give us clues about the non-zero nature of neutrino transition magnetic moments if these are Majorana fermions, even if their values are as small as those predicted by the Standard Model augmented by nonzero neutrino Majorana masses.

  20. Prediction of magnetic moment collapse in ZrFe{sub 2} under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxu; Zhang, Wanli [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-04-28

    Electronic structure and magnetic properties of ZrFe{sub 2} in the cubic Laves phase are investigated by calculations based on density functional theory. The magnetic moment decreases with the increase of the hydrostatic pressure in an unusual way: Two-step magnetic collapse is predicted. The first one is a continuous change from 1.53 μ{sub B}/Fe to 0.63 μ{sub B}/Fe at about 3.6 GPa, and the other is from 0.25 μ{sub B}/Fe to the nonmagnetic state at about 15 GPa in a first order manner under the local spin density approximation of the exchange correlation potential. A metastable state with intermediate spin moment about 0.15 μ{sub B}/Fe may exist before that. We understand this process by the changes of density of states during it. The magnetic moment decreases under the pressure in the vicinity of the experimental lattice constant with dlnm/dp=−0.038 GPa{sup −1}. The spontaneous volume magnetostriction is 3.6%, which is huge enough to find potential applications in magnetostriction actuators and sensors. We suggest that the Invar effect of this compound may be understood when considering the magnetic moment variation according to the magnetostrictive model of Invar.

  1. Generation of localized magnetic moments in the charge-density-wave state

    Science.gov (United States)

    Akzyanov, Ramil S.; Rozhkov, Alexander V.

    2015-08-01

    We propose a mechanism explaining the generation of localized magnetic moments in charge-density-wave compounds. Our model Hamiltonian describes an Anderson impurity placed in a host material exhibiting the charge-density wave. There is a region of the model's parameter space, where even weak Coulomb repulsion on the impurity site is able to localize the magnetic moment on the impurity. The phase diagram of a single impurity at T = 0 is mapped. To establish the connection with experiment, the thermodynamic properties of a random impurity ensemble is studied. Magnetic susceptibility of the ensemble diverges at low temperature; heat capacity as a function of the magnetic field demonstrates pronounced low field peak. Both features are consistent with experiments on orthorhombic TaS3 and blue bronze.

  2. Anisotropic Open Cosmological Models of Spin Matter with Magnetic Moment

    Institute of Scientific and Technical Information of China (English)

    SHENLi-ming; SUNNai-jiang; 等

    2001-01-01

    We have derived a set of field equations for a Weyssenhoff spin fluid including magnetic interacton among the spinning particles prevailling in spatially homogeneous,but anisotropically cosmological models of Bianchi type V based on Einstein-Cartan theory.We analyze the field equations in three different equations of states specified by p=1(1/3)ρand p=0,The analytical solutions found are non-singular provided that the combined energy arising from matter spin and magnetic interaction among particles overcomes the anisotropy energy in the Universe,We have also deduced that the minimum particle numers for the radiation(p=(1/3)ρ) and matter(p=0) epochs are 1088 and 10108 respectively.the minimum particle number for the state p=ρ is 1096,leading to the conclusion that we must consider the existence of neutrinos and other creation of particles and anti-particles under torsion and strong gravitational field in the early Universe.

  3. Application of Laser Magnetic Resonance Spectroscopy to the Measurement of Electric Dipole Moment of Free Radicals

    Institute of Scientific and Technical Information of China (English)

    郭远清; 黄光明; 林洁丽; 段传喜; 李奉延; 李津蕊; 刘煜炎

    2001-01-01

    An intracavity CO laser magnetic resonance spectrometer with homogeneous dc electric field applied via a pairof parallel Stark plates in the absorption cell is used to measure the electric dipole moments of free radicals.Taking advantage of the high sensitivity and high resolution of this technique and the Stark effect, highlyresolved saturated absorption spectra of the ν = 1 - 0 transition of 15 N16 O in the ground state X2 П3/2 have beensuccessfully observed in the presence of a low electric field. The electric dipole moment of NO in the electronicground state is determined asμ = 0.1566 ± 14D (Debye) from the analysis of the observed spectra, confirmingthat, combined with the Stark field, the laser magnetic resonance technique can be an effective and reliableapproach for the precise measurement of electric dipole moments of free radicals, especially unstable ones.

  4. Magnetic dipole moment of the doubly closed-shell plus one proton nucleus $^{49}$Sc

    CERN Multimedia

    Gaulard, C V; Walters, W; Nishimura, K; Muto, S; Bingham, C R

    It is proposed to measure the magnetic moment of $^{49}$Sc by the Nuclear Magnetic Resonance on Oriented Nuclei (NMR-ON) method using the NICOLE on-line nuclear orientation facility. $^{49}$Sc is the neutron rich, doubly closed-shell, nucleus $^{48}$Ca plus one proton. Results will be used to deduce the effective g-factors in the $^{48}$Ca region with reference to nuclear structure and meson exchange current effects.

  5. Muon Anomalous Magnetic Moment in the Supersymmetric Models with and Without Right-Handed Neutrinos

    Institute of Scientific and Technical Information of China (English)

    FENG Tai-Fu; HUANG Tao; LI Xue-Qian; LIU Xiang; ZHANG Xin-Min

    2002-01-01

    We discuss the anomalous magnetic moment of muon in the minimal supersynmetric Inodel with andmeasured g - 2 value of muon in the E821 experiment and other experimental constraints on the lepton-flavor-violationprocesses, we carry out numerical analysis on the concerned observables in the minimal supergravity scenario.

  6. The Measurement of the Anomalous Magnetic Moment of the Muon at Fermilab

    NARCIS (Netherlands)

    Logashenko, I.; Grange, J.; Winter, P.; Carey, R. M.; Hazen, E.; Kinnaird, N.; Miller, J. P.; Mott, J.; Roberts, B. L.; Crnkovic, J.; Morse, W. M.; Sayed, H. Kamal; Tishchenko, V.; Druzhinin, V. P.; Shatunov, Y. M.; Bjorkquist, R.; Chapelain, A.; Eggert, N.; Frankenthal, A.; Gibbons, L.; Kim, S.; Mikhailichenko, A.; Orlov, Y.; Rider, N.; Rubin, D.; Sweigart, D.; Allspach, D.; Barzi, E.; Casey, B.; Convery, M. E.; Drendel, B.; Freidsam, H.; Johnstone, C.; Johnstone, J.; Kiburg, B.; Kourbanis, I.; Lyon, A. L.; Merritt, K. W.; Morgan, J. P.; Nguyen, H.; Ostiguy, J. -F.; Para, A.; Polly, C. C.; Popovic, M.; Ramberg, E.; Rominsky, M.; Soha, A. K.; Still, D.; Walton, T.; Yoshikawa, C.; Jungmann, K.; Onderwater, C. J. G.; Debevec, P.; Leo, S.; Pitts, K.; Schlesier, C.; Anastasi, A.; Babusci, D.; Corradi, G.; Hampai, D.; Palladino, A.; Venanzoni, G.; Dabagov, S.; Ferrari, C.; Fioretti, A.; Gabbanini, C.; Di Stefano, R.; Marignetti, S.; Iacovacci, M.; Mastroianni, S.; Di Sciascio, G.; Moricciani, D.; Cantatore, G.; Karuza, M.; Giovanetti, K.; Baranov, V.; Duginov, V.; Khomutov, N.; Krylov, V.; Kuchinskiy, N.; Volnykh, V.; Gaisser, M.; Haciomeroglu, S.; Kim, Y.; Lee, S.; Lee, M.; Semertzidis, Y. K.; Won, E.; Fatemi, R.; Gohn, W.; Gorringe, T.; Bowcock, T.; Carroll, J.; King, B.; Maxfield, S.; Smith, A.; Teubner, T.; Whitley, M.; Wormald, M.; Wolski, A.; Al-Kilani, S.; Chislett, R.; Lancaster, M.; Motuk, E.; Stuttard, T.; Warren, M.; Flay, D.; Kawall, D.; Meadows, Z.; Syphers, M.; Tarazona, D.; Chupp, T.; Tewlsey-Booth, A.; Quinn, B.; Eads, M.; Epps, A.; Luo, G.; McEvoy, M.; Pohlman, N.; Shenk, M.; de Gouvea, A.; Welty-Rieger, L.; Schellman, H.; Abi, B.; Azfar, F.; Henry, S.; Gray, F.; Fu, C.; Ji, X.; Li, L; Yang, H; Stockinger, D.; Cauz, D.; Pauletta, G.; Santi, L.; Baessler, S.; Frlez, E.; Pocanic, D.; Alonzi, L. P.; Fertl, M.; Fienberg, A.; Froemming, N.; Garcia, A; Hertzog, D. W.; Kammel, P.; Kaspar, J.; Osofsky, R.; Smith, M.; Swanson, E.; Lynch, K.

    2015-01-01

    The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment,

  7. Final report of the E821 muon anomalous magnetic moment measurement at BNL

    NARCIS (Netherlands)

    Bennett, GW; Bousquet, B; Brown, HN; Bunce, G; Carey, RM; Cushman, P; Danby, GT; Debevec, PT; Deile, M; Deng, H; Deninger, W; Dhawan, SK; Druzhinin, VP; Duong, L; Efstathiadis, E; Farley, FJM; Fedotovich, GV; Giron, S; Gray, FE; Grigoriev, D; Grosse-Perdekamp, M; Grossmann, A; Hare, MF; Hertzog, DW; Huang, [No Value; Hughes, VW; Iwasaki, M; Jungmann, Klaus-Peter; Kawall, D; Kawamura, M; Khazin, BI; Kindem, J; Krienen, F; Kronkvist, [No Value; Lam, A; Larsen, R.; Lee, YY; Logashenko, [No Value; McNabb, R; Meng, W; Mi, J; Miller, JP; Mizumachi, Y; Morse, WM; Nikas, D; Onderwater, Gerco; Orlov, Y; Ozben, CS; Paley, JM; Peng, Q; Polly, CC; Pretz, J; Prigl, R; Putlitz, GZ; Qian, T; Redin, SI; Rind, O; Roberts, BL; Ryskulov, N; Sedykh, S; Semertzidis, YK; Shagin, P; Shatunov, YM; Sichtermann, EP; Solodov, E; Sossong, M; Steinmetz, A; Sulak, LR; Timmermans, C; Trofimov, A; Urner, D; von Walter, P; Warburton, D; Winn, D; Yamamoto, A; Zimmerman, D

    2006-01-01

    We present the final report from a series of precision measurements of the muon anomalous magnetic moment, a(mu)=(g-2)/2. The details of the experimental method, apparatus, data taking, and analysis are summarized. Data obtained at Brookhaven National Laboratory, using nearly equal samples of positi

  8. Magnetic moments of baryons with null instanton in relation to SU[sub 6] model

    Energy Technology Data Exchange (ETDEWEB)

    Iwao, Syurei (Kanazawa Univ. (Japan). Faculty of Science)

    1993-10-01

    A dynamical symmetry breaking effect on the SU[sub 6] model for the magnetic moments of baryons is considered, based on the null instanton picture for them. A certain improvement of the fit to the available data is obtained. (author).

  9. The Strange Magnetic Moment of the Proton in the Chiral Quark Model

    OpenAIRE

    1998-01-01

    The strange magnetic moment of the proton is small in the chiral quark model, because of a near cancellation between the quantum fluctuations that involve kaons and $s$-quarks and loops that involve radiative transitions between strange vector mesons and kaons.

  10. Octet Baryon Magnetic Moments from Lattice QCD: Approaching Experiment from the Three-Flavor Symmetric Point

    CERN Document Server

    Parreno, Assumpta; Tiburzi, Brian C; Wilhelm, Jonas; Chang, Emmanuel; Detmold, William; Orginos, Kostas

    2016-01-01

    Lattice QCD calculations with background magnetic fields are used to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the SU(3) flavor-symmetric point, where the pion mass is ~ 800 MeV, and the other corresponding to a pion mass ~ 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units---the natural baryon magneton. This suggests that simple extrapolations can be used to determine magnetic moments at the physical point, and extrapolated results are found to agree with experiment within uncertainties. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-Nc limit of QCD are studied; and, in one case, the quark model prediction is sig...

  11. Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.

    1986-11-01

    Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment.

  12. Dynamic RKKY interaction between magnetic moments in graphene nanoribbons

    Science.gov (United States)

    Guimarães, F. S. M.; Duffy, J.; Costa, A. T.; Muniz, R. B.; Ferreira, M. S.

    2016-12-01

    Graphene has been identified as a promising material with numerous applications, particularly in spintronics. In this paper we investigate the peculiar features of spin excitations of magnetic units deposited on graphene nanoribbons and how they can couple through a dynamical interaction mediated by spin currents. We examine in detail the spin lifetimes and identify a pattern caused by vanishing density of states sites in pristine ribbons with armchair borders. Impurities located on these sites become practically invisible to the interaction but can be made accessible by a gate voltage or doping. We also demonstrate that the coupling between impurities can be turned on or off using this characteristic, which may be used to control the transfer of information in transistorlike devices.

  13. Prediction and evaluation of magnetic moments in T =1 /2 , 3/2, and 5/2 mirror nuclei

    Science.gov (United States)

    Mertzimekis, Theo J.

    2016-12-01

    The Buck-Perez analysis of mirror nuclei magnetic moments has been applied on an updated set of data for T =1 /2 ,3 /2 mirror pairs and attempted for the first time for T =5 /2 nuclei. The spin expectation value for mirror nuclei up to mass A =63 has been reexamined. The main purpose is to test Buck-Perez analysis effectiveness as a prediction and—more importantly—an evaluation tool of magnetic moments in mirror nuclei. In this scheme, ambiguous signs of magnetic moments are resolved, evaluations of moments with multiple existing measurements have been performed, and a set of predicted values for missing moments, especially for several neutron-deficient nuclei is produced. A resolution for the case of the 57Cu ground-state magnetic moment is proposed. Overall, the method seems to be promising for future evaluations and planning future measurements.

  14. CeRh3B2: A ferromagnet with anomalously large Ce 5d spin and orbital magnetic moments

    Science.gov (United States)

    Yaouanc, A.; Dalmas de Réotier, P.; Sanchez, J.-P.; Tschentscher, Th.; Lejay, P.

    1998-01-01

    We report a high-energy magnetic-Compton-scattering study performed on the ferromagnet CeRh3B2. This technique solely measures the electron spin magnetic moments. In contrast to a number of Ce intermetallics with nonmagnetic elements, the Ce 5d spin moment is found to be large and parallel to the Ce 4f spin moment. Therefore the Kondo effect does not play a key role for CeRh3B2. The inferred large Ce 5d orbital magnetic moment is a signature of the strong spin-orbit interaction for the Ce 5d band.

  15. Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    CERN Document Server

    Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T

    2010-01-01

    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.

  16. In-medium covariant propagator of baryons under a strong magnetic field: Effect of the intrinsic magnetic moments

    Science.gov (United States)

    Aguirre, R. M.; De Paoli, A. L.

    2016-11-01

    We obtain the covariant propagator at finite temperature for interacting baryons immersed in a strong magnetic field. The effect of the intrinsic magnetic moments on the Green function are fully taken into account. We make an expansion in terms of eigenfunctions of a Dirac field, which leads us to a compact form of its propagator. We present some simple applications of these propagators, where the statistical averages of nuclear currents and energy density are evaluated.

  17. Electromagnetic Currents and Magnetic Moments in $\\chi$EFT

    Energy Technology Data Exchange (ETDEWEB)

    Saori Pastore, Luca Girlanda, Rocco Schiavilla, Michele Viviani, Robert Wiringa

    2009-09-01

    A two-nucleon potential and consistent electromagnetic currents are derived in chiral effective field theory ($\\chi$EFT) at, respectively, $Q^{\\, 2}$ (or N$^2$LO) and $e\\, Q$ (or N$^3$LO), where $Q$ generically denotes the low-momentum scale and $e$ is the electric charge. Dimensional regularization is used to renormalize the pion-loop corrections. A simple expression is derived for the magnetic dipole ($M1$) operator associated with pion loops, consisting of two terms, one of which is determined, uniquely, by the isospin-dependent part of the two-pion-exchange potential. This decomposition is also carried out for the $M1$ operator arising from contact currents, in which the unique term is determined by the contact potential. Finally, the low-energy constants (LEC's) entering the N$^2$LO potential are fixed by fits to the $np$ S- and P-wave phase shifts up to 100 MeV lab energies. Three additional LEC's are needed to completely specify the $M1$ operator at N$^3$L

  18. Theory for the atomic shell structure of the cluster magnetic moment and magnetoresistance of a cluster ensemble

    Science.gov (United States)

    Jensen, P. J.; Bennemann, K. H.

    1995-12-01

    We present a simple theory for the cluster size dependence of the average cluster magnetic moment of transition metal clusters. Assuming a local environmental dependence of the atomic magnetic moments, the cluster magnetization exhibits a magnetic shell structure, reflecting the atomic structure of the cluster. Thus, the observed oscillations of the average cluster magnet moment may serve as a fingerprint of the cluster geometry. We also discuss the giant magnetoresistance (GMR) exhibited by an ensemble of magnetic clusters embedded in a metallic matrix. It is shown that the magnetic anisotropy affects strongly the magnetization of the cluster ensemble under certain conditions. Since the GMR depends on the cluster ensemble magnetization, it can be used to determine the cluster magnetic anisotropy energy.

  19. Evidence of Charge Transfer and Orbital Magnetic Moment in Multiferroic CuFeO2

    Science.gov (United States)

    Narumi, Yasuo; Nakamura, Tetsuya; Ikeno, Hidekazu; Terada, Noriki; Morioka, Takayuki; Saito, Kota; Kitazawa, Hideaki; Kindo, Koichi; Nojiri, Hiroyuki

    2016-11-01

    Soft X-ray absorption spectra (XAS) and magnetic circular dichroism (XMCD) of Fe and Cu L2,3 edges have been measured on the triangular lattice antiferromagnet CuFeO2. By applying sum rule analysis to the XMCD of Fe, the ratio of the orbital to spin magnetic moments is determined to be -0.071. Because the nominal valence of Fe in CuFeO2 was Fe3+ (3d5), the orbital magnetic moment was considered to be zero in the past. However, the present research demonstrates that the orbital magnetic moment of Fe takes a finite value and it is possibly due to Fe4+ (3d4), which is considered to be responsible for the strong magnetic anisotropy and the ferroelectricity. We compare the experimental results with the results of ab initio multiplet calculations based on the configuration interaction theory and discuss the anomalous electronic structures of Fe and Cu ions in CuFeO2.

  20. Magnetic Moments of Delta and Omega- baryons with dynamical clover fermions

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, Christopher; Orginos, Konstantinos; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2009-01-01

    We calculate the magnetic dipole moment of the Delta(1232) and Omega- baryons with 2+1-flavors of clover fermions on anisotropic lattices using a background magnetic field. This is the first dynamical calculation of these magnetic moments using a background field technique. The calculation for Omega- is done at the physical strange quark mass, with the result in units of the physical nuclear magneton µ_(Omega-) = -1.93(8)(12) (where the first error is statistical and the second is systematic) compared to the experimental number: -2.02(5). The Delta has been studied at three unphysical quark masses, corresponding to pion mass 366, 438, and 548 MeV. The pion-mass dependence is compared with the behavior obtained from chiral effective-field theory.

  1. (129) Xe and (131) Xe nuclear magnetic dipole moments from gas phase NMR spectra.

    Science.gov (United States)

    Makulski, Włodzimierz

    2015-04-01

    (3) He, (129) Xe and (131) Xe NMR measurements of resonance frequencies in the magnetic field B0=11.7586 T in different gas phase mixtures have been reported. Precise radiofrequency values were extrapolated to the zero gas pressure limit. These results combined with new quantum chemical values of helium and xenon nuclear magnetic shielding constants were used to determine new accurate nuclear magnetic moments of (129) Xe and (131) Xe in terms of that of the (3) He nucleus. They are as follows: μ((129) Xe) = -0.7779607(158)μN and μ((131) Xe) = +0.6918451(70)μN . By this means, the new 'helium method' for estimations of nuclear dipole moments was successfully tested. Gas phase NMR spectra demonstrate the weak intermolecular interactions observed on the (3) He and (129) Xe and (131) Xe shielding in the gaseous mixtures with Xe, CO2 and SF6 .

  2. Matter-induced magnetic moment and neutrino helicity rotation in external fields

    Science.gov (United States)

    Ternov, Alexei I.

    2016-11-01

    The induced magnetic moment that arises due to the propagation of neutrinos in a dispersive medium can affect the dynamics of the neutrino spin in an external electromagnetic field. In particular, it can cause a helicity flip of a massive neutrino in a magnetic field. In some astrophysical media, this helicity transition mechanism could be more effective than a similar process caused by the anomalous magnetic moment of the neutrino. If the neutrino energy is sufficiently high, the two helicity transition mechanisms mentioned above can compensate each other. Then a helicity flip in an external field will not occur. Calculations are carried out using both the methods of relativistic quantum mechanics and the quasiclassical Bargmann-Michel-Telegdi equation.

  3. Decoherence-governed magnetic-moment dynamics of supported atomic objects

    Science.gov (United States)

    Gauyacq, Jean-Pierre; Lorente, Nicolás

    2015-11-01

    Due to the quantum evolution of molecular magnetic moments, the magnetic state of nanomagnets can suffer spontaneous changes. This process can be completely quenched by environment-induced decoherence. However, we show that for typical small supported atomic objects, the substrate-induced decoherence does change the magnetic-moment evolution but does not quell it. To be specific and to compare with experiment, we analyze the spontaneous switching between two equivalent magnetization states of atomic structures formed by Fe on Cu2N/Cu (1 0 0), measured by Loth et al (2012 Science 335 196-9). Due to the substrate-induced decoherence, the Rabi oscillations proper to quantum tunneling between magnetic states are replaced by an irreversible decay of long characteristic times leading to the observed stochastic magnetization switching. We show that the corresponding switching rates are small, rapidly decreasing with system’s size, with a 1/T thermal behavior and in good agreement with experiments. Quantum tunneling is recovered as the switching mechanism at extremely low temperatures below the μK range for a six-Fe-atom system and exponentially lower for larger atomic systems. The unexpected conclusion of this work is that experiments could detect the switching of these supported atomic systems because their magnetization evolution is somewhere between complete decoherence-induced stability and unobservably fast quantum-tunneling switching.

  4. Revisiting magnetism of capped Au and ZnO nanoparticles: Surface band structure and atomic orbital with giant magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Antonio; Crespo, Patricia [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P.O. Box 155, 28230 Madrid (Spain); Dept. Fisica de Materiales, Universidad Complutense, Madrid (Spain); Garcia, Miguel Angel [Instituto de Ceramica y Vidrio, CSIC, C/ Kelsen, 5, Madrid 28049 (Spain); Coey, Michael [Trinity College Dublin, Dublin (Ireland); Ayuela, Andres; Echenique, Pedro Miguel [Centro de Fisica de Materiales, CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Fac. de Quimicas, Universidad del Pais Vasco UPV-EHU, 20018 San Sebastian (Spain)

    2011-10-15

    In this article we review the exotic magnetism of nanoparticles (NPs) formed by substances that are not magnetic in bulk as described with generality in Section 1. In particular, the intrinsic character of the magnetism observed on capped Au and ZnO NPs is analysed. X-ray magnetic circular dichroism (XMCD) analysis has shown that the magnetic moments are intrinsic and lie in the Au and Zn atoms, respectively, as analysed in Section 2, where the general theoretical ideas are also revisited. Since impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states, the anomalous magnetic response is analysed in terms of the surface band in Section 3. Finally, Section 4 summarizes our last theoretical proposal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. $H \\rightarrow \\tau^+ \\tau^- \\gamma$ as a Probe of the $\\tau$ Magnetic Dipole Moment

    CERN Document Server

    Galon, Iftah; Tait, Tim M P

    2016-01-01

    Low energy observables involving the Standard Model fermions which are chirality-violating, such as anomalous electromagnetic moments, necessarily involve an insertion of the Higgs in order to maintain $SU(2) \\times U(1)$ gauge invariance. As the result, the properties of the Higgs boson measured at the LHC impact our understanding of the associated low-energy quantities. We illustrate this feature with a discussion of the electromagnetic moments of the $\\tau$-lepton, as probed by the rare decay $H \\rightarrow \\tau^+ \\tau^- \\gamma$. We assess the feasibility of measuring this decay at the LHC, and show that the current bounds from lower energy measurements imply that $13~\\rm{TeV}$ running is very likely to improve our understanding of new physics contributing to the anomalous magnetic moment of the tau.

  6. Magnetic moment of single vortices in YBCO nano-superconducting particle: Eilenberger approach

    Science.gov (United States)

    Zakharchuk, I.; Sharafeev, A.; Belova, P.; Safonchik, M.; Traito, K. B.; Lähderanta, E.

    2013-12-01

    Temperature dependence of single vortex magnetic moment in nanosize superconducting particles is investigated in the framework of quasiclassical Eilenberger approach. Such nanoparticles can be used for preparation of high-quality superconducting thin films with high critical current density. In contrast to bulk materials where the vortex magnetic moment is totally determined by flux quantum, in nano-sized specimens (with characteristic size, D, much less than effective penetration depth, λeff) the quantization rule is violated and magnetic moment is proportional to D2/λ2eff(T). Due to strong repulsion between vortices in nanoparticles only a single vortex can be trapped in them. Because of small size of particles the screening current of the vortex is located near the vortex core where the current is quite high and comparable to depairing currents. Therefore, the superconducting electron density, ns, depends on the current value and the distance from the vortex core. This effect is especially important for superconductors having gap nodes, such as YBCO. The current dependence of ns in nanoparticles is analogous to the Volovik effect in flux-line lattice in bulk samples. The magnitude of the effect can be obtained by comparing the temperature dependence of magnetic moment in the vortex and in the Meissner states. In the last case the value of screening current is small and superconducting response to the external field is determined by London penetration depth. Because of importance of nonlinear and nonlocal effects, the quantum mechanical Eilenberger approach is applied for description of the vortex in nanoparticles. The flattening of 1/λ2eff(T) dependence has been found. A comparison of the theoretical results with experimental magnetization data in Meissner and mixed states of YBCO nanopowders has been done. The presence of nonlinear and nonlocal effects in vortex current distribution is clearly visible. The obtained results are important for the description

  7. Research Update: Plentiful magnetic moments in oxygen deficient SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Bezanilla, Alejandro, E-mail: alejandrolb@gmail.com [Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439 (United States); Ganesh, P. [Center for Nanophase Materials Science, Oak Ridge National Laboratory, One Bethel Valley Road, Tennessee 37831 (United States); Littlewood, Peter B. [Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439 (United States); James Franck Institute, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-10-01

    Correlated band theory is employed to investigate the magnetic and electronic properties of different arrangements of oxygen di- and tri-vacancy clusters in SrTiO{sub 3}. Hole and electron doping of oxygen deficient SrTiO{sub 3} yields various degrees of magnetization as a result of the interaction between localized magnetic moments at the defect sites. Different kinds of Ti atomic orbital hybridization are described as a function of the doping level and defect geometry. We find that magnetism in SrTiO{sub 3−δ} is sensitive to the arrangement of neighbouring vacancy sites, charge carrier density, and vacancy-vacancy interaction. Permanent magnetic moments in the absence of vacancy doping electrons are observed. Our description of the charged clusters of oxygen vacancies widens the previous descriptions of mono- and multi-vacancies and points out the importance of the controlled formation at the atomic level of defects for the realization of transition metal oxide based devices with a desirable magnetic performance.

  8. In-gas-cell laser spectroscopy for magnetic dipole moment of $^{199}$Pt toward $N=$ 126

    CERN Document Server

    Hirayama, Y; Watanabe, Y X; Jeong, S C; Jung, H S; Kakiguchi, Y; Kimura, S; Moon, J Y; Oyaizu, M; Park, J H; Schury, P; Wada, M; Miyatake, H

    2016-01-01

    Magnetic dipole moment and mean-square charge radius of $^{199}$Pt ($I^{\\pi}=$ 5/2$^-$) have been evaluated for the first time from the investigation of the hyperfine splitting of the $\\lambda_1=$ 248.792 nm transition by in-gas-cell laser ionization spectroscopy. Neutron-rich nucleus $^{199}$Pt was produced by multi-nucleon transfer reaction at the KISS where the nuclear spectroscopy in the vicinity of $N=$ 126 is planed from the aspect of an astrophysical interest as well as the nuclear structure. Measured magnetic dipole moment $+$0.63(13)$\\mu_{\\rm N}$ is consistent with the systematics of those of nuclei with $I^{\\pi}=$ 5/2$^-$. The deformation parameter $|^{1/2}|$ evaluated from the isotope shift indicates the gradual shape change to spherical shape of platinum isotopes with increasing neutron number toward $N=$ 126.

  9. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    Science.gov (United States)

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-03-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices.

  10. Orbital magnetic moment and extrinsic spin Hall effect for iron impurities in gold

    Science.gov (United States)

    Shick, Alexander B.; Kolorenč, Jindřich; Janiš, Václav; Lichtenstein, Alexander I.

    2011-09-01

    We report electronic structure calculations of an iron impurity in a gold host. The spin, orbital, and dipole magnetic moments were investigated using the local density approximation (LDA) + U correlated band theory. We show that the around-mean-field LDA + U reproduces the x-ray magnetic circular dichroism (XMCD) experimental data well and does not lead to the formation of a large orbital moment on the Fe atom. Furthermore, exact diagonalization of the multiorbital Anderson impurity model with the full Coulomb interaction matrix and the spin-orbit coupling is performed in order to estimate the spin Hall angle. The obtained value γS≈0.025 suggests that there is no giant extrinsic spin Hall effect due to scattering on iron impurities in gold.

  11. Fermion-Antifermion Condensate Contribution to the Anomalous Magnetic Moment of a Fundamental Dirac Fermion

    CERN Document Server

    Elias, V; Elias, Victor; Sprague, Kevin

    1998-01-01

    We consider the contribution of fermion-antifermion condensates to the anomalous magnetic moment of a fermion in a vacuum in which such condensates exist. The real part of the condensate contribution to the anomalous magnetic moment is shown to be zero. A nonzero imaginary part is obtained below the kinematic threshold for intermediate fermion-antifermion pairs. The calculation is shown to be gauge-parameter independent provided a single fermion mass characterizes both the fermion propagator and condensate-sensitive contributions, suggestive of a dynamically-generated fermion mass. The nonzero imaginary part is then argued to correspond to the kinematic production of the intermediate-state Goldstone bosons anticipated from a chiral-noninvariant vacuum. Finally, speculations are presented concerning the applicability of these results to quark electromagnetic properties.

  12. High-Precision Measurements of the Bound Electron’s Magnetic Moment

    Directory of Open Access Journals (Sweden)

    Sven Sturm

    2017-01-01

    Full Text Available Highly charged ions represent environments that allow to study precisely one or more bound electrons subjected to unsurpassed electromagnetic fields. Under such conditions, the magnetic moment (g-factor of a bound electron changes significantly, to a large extent due to contributions from quantum electrodynamics. We present three Penning-trap experiments, which allow to measure magnetic moments with ppb precision and better, serving as stringent tests of corresponding calculations, and also yielding access to fundamental quantities like the fine structure constant α and the atomic mass of the electron. Additionally, the bound electrons can be used as sensitive probes for properties of the ionic nuclei. We summarize the measurements performed so far, discuss their significance, and give a detailed account of the experimental setups, procedures and the foreseen measurements.

  13. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, João Pessoa, PB 58051-970 (Brazil)

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  14. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    CERN Document Server

    Fonseca, I C

    2016-01-01

    Based on the single particle approximation [V. F. Dmitriev {\\it et al}, Phys. Rev. C {\\bf50}, 2358 (1994), C.-C. Chen, Phys. Rev. A {\\bf51}, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  15. Magnetic moments of heavy baryons in the relativistic three-quark model

    CERN Document Server

    Faessler, A; Ivanov, M A; Körner, J G; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.

    2006-01-01

    The magnetic moments of ground state single, double and triple heavy baryons containing charm or bottom quarks are calculated in a relativistic three-quark model, which, in the heavy quark limit, is consistent with Heavy Quark Effective Theory and Heavy Hadron Chiral Perturbation Theory. The internal quark structure of baryons is modeled by baryonic three-quark currents with a spin-flavor structure patterned according to standard covariant baryonic wave functions and currents used in QCD sum rule calculations.

  16. Magnetic moments of $J^P = {3\\over 2}^-$ baryons in QCD

    CERN Document Server

    Aliev, T M

    2014-01-01

    The magnetic moments of the low lying, negative parity, spin-3/2 baryons are calculated within the light cone QCD sum rules method. The contributions coming from the positive parity, spin-3/2 baryons, as well as from the positive and negative parity spin-1/2 baryons are eliminated by constructing combinations of various invariant amplitudes corresponding to the coefficients of the different Lorentz structures.

  17. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment.

    Science.gov (United States)

    Fonseca, I C; Bakke, K

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  18. Leading-order hadronic contributions to the electron and tau anomalous magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian; Pientka, Grit [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Jansen, Karl [NIC, DESY, Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, P.O.Box 27456, Nicosia (Cyprus); Rheinische Friedrich-Wilhelms-Universitaet Bonn, Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2016-08-15

    The leading hadronic contributions to the anomalous magnetic moments of the electron and the τ-lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions. The results presented are based on the quark-connected contribution to the hadronic vacuum polarisation function. The continuum limit is taken and systematic uncertainties are quantified. Full agreement with results obtained by phenomenological analyses is found. (orig.)

  19. Masses and magnetic moments of ground-state baryons in covariant baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vicente-Vacas, M J

    2012-01-01

    We report on some recent developments in our understanding of the light-quark mass dependence and the SU(3) flavor symmetry breaking corrections to the magnetic moments of the ground-state baryons in a covariant formulation of baryon chiral perturbation theory, the so-called EOMS formulation. We show that this covariant ChPT exhibits some promising features compared to its heavy-baryon and infrared counterparts.

  20. N=2-Maxwell-Chern-Simons Model with Anomalous Magnetic Moment Coupling via Dimensional Reduction

    CERN Document Server

    Christiansen, H R; Helayël-Neto, José A; Mansur, L R; Nogueira, A L M A

    1999-01-01

    An N=1--supersymmetric version of the Cremmer-Scherk-Kalb-Ramond model with non-minimal coupling to matter is built up both in terms of superfields and in a component-field formalism. By adopting a dimensional reduction procedure, the N=2--D=3 counterpart of the model comes out, with two main features: a genuine (diagonal) Chern-Simons term and an anomalous magnetic moment coupling between matter and the gauge potential.

  1. Using baryon octet magnetic moments and masses to fix the pion cloud contribution

    CERN Document Server

    Gross, Franz; Tsushima, K

    2009-01-01

    Using SU(3) symmetry to constrain the pion BB' couplings, assuming SU(3) breaking comes only from one-loop pion cloud contributions, and using the the covariant spectator theory to describe the photon coupling to the quark core, we show how the experimental masses and magnetic moments of the baryon octet can be used to set a model independent constraint on the strength of the pion cloud contributions to the octet, and hence the nucleon, form factors at Q2=0.

  2. Spin and orbital moments of Co-carbide nanoparticles for permanent magnet applications

    Science.gov (United States)

    Arena, D. A.; Sterbinsky, G. E.; Carroll, K. J.; Yoon, H.; Meng, S.; Huba, Z. J.; Carpenter, E. E.

    2014-03-01

    Many efforts are currently devoted to the development of rare earth free permanent magnets (REFPMs). In newly developed permanent magnet materials, examination of the atomic scale magnetic properties is critical to gaining knowledge of the mechanisms of magnetism and hence furthering the development of these materials. X-ray magnetic circular dichroism (XMCD) is a core-level technique ideally suited for such studies as it provides element-specific information on magnetic properties. We present an XMCD study of the REFPM nanoparticulate Co-carbide using a new high-field end-station at beamline U4B of the National Synchrotron Light Source. This end-station facilitates measurement of XMCD spectra from magnetically hard materials. The Co-Carbide nanoparticles (NPs) under study are synthesized via wet chemical methods, which can lead to differences between the atomic and magnetic structures of the surface and bulk of NPs. To separate the determination of the surface and bulk magnetic properties we have combined our XMCD measurements with in-situ surface treatment. Preliminary measurements of Co L-edge XMCD spectra and element specific hysteresis point to the role of the Co orbital and spin moments in the establishment of the high coercive field and (BH)max in Co-carbide NPs.

  3. Quantitative Evaluation of the Total Magnetic Moments of Colloidal Magnetic Nanoparticles: A Kinetics-based Method.

    Science.gov (United States)

    Liu, Haiyi; Sun, Jianfei; Wang, Haoyao; Wang, Peng; Song, Lina; Li, Yang; Chen, Bo; Zhang, Yu; Gu, Ning

    2015-06-08

    A kinetics-based method is proposed to quantitatively characterize the collective magnetization of colloidal magnetic nanoparticles. The method is based on the relationship between the magnetic force on a colloidal droplet and the movement of the droplet under a gradient magnetic field. Through computational analysis of the kinetic parameters, such as displacement, velocity, and acceleration, the magnetization of colloidal magnetic nanoparticles can be calculated. In our experiments, the values measured by using our method exhibited a better linear correlation with magnetothermal heating, than those obtained by using a vibrating sample magnetometer and magnetic balance. This finding indicates that this method may be more suitable to evaluate the collective magnetism of colloidal magnetic nanoparticles under low magnetic fields than the commonly used methods. Accurate evaluation of the magnetic properties of colloidal nanoparticles is of great importance for the standardization of magnetic nanomaterials and for their practical application in biomedicine.

  4. LaCoO3 (LCO) - Dramatic changes in Magnetic Moment in fields to 500T

    Science.gov (United States)

    Lee, Y.; Harmon, B. N.

    LCO has attracted great attention over the years (>2000 publications) because of its unusual magnetic properties; although in its ground state at low temperatures it is non-magnetic. A recent experiment[1] in pulsed fields to 500T showed a moment of ~1.3μB above 140T, and above ~270T the magnetization rises, reaching ~3.8μB by 500T. We have performed first principles DFT calculations for LCO in high fields. Our earlier calculations[2] explained the importance of a small rhombohedral distortion in the ground state that leads to a suppression of the 1.3μB moment for fields below ~140T. By allowing fairly large atomic displacements in high fields, moments of ~4μB are predicted. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division under Contract No. DE-AC02-07CH11358.

  5. Leading-order hadronic contributions to the lepton anomalous magnetic moments from the lattice

    Directory of Open Access Journals (Sweden)

    Burger Florian

    2016-01-01

    Full Text Available The hadronic leading-order (hlo contribution to the lepton anomalous magnetic moments alhlo of the Standard Model leptons still accounts for the dominant source of the uncertainty of the Standard Model estimates. We present the results of an investigation of the hadronic leading order anomalous magnetic moments of the electron, muon and tau lepton from first principles in twisted mass lattice QCD. With lattice data for multiple pion masses in the range 230MeV ≲ mPS ≲ 490 MeV, multiple lattice volumes and three lattice spacings we perform the extrapolation to the continuum and to the physical pion mass and check for all systematic uncertainties in the lattice calculation. As a result we calculate alhlo for the three Standard Model leptons with controlled statistical and systematic error in agreement with phenomenological determinations using dispersion relations and experimental data. In addition, we also give a first estimate of the hadronic leading order anomalous magnetic moments from simulations directly at the physical value of the pion mass.

  6. Search For Non-zero Neutrino Magnetic Moments Using Super-kamiokande-i Solar Neutrino Data

    CERN Document Server

    Liu, D

    2005-01-01

    Non-zero neutrino magnetic moments would mean new physics beyond the standard model. Therefore a search for a nonzero neutrino magnetic moment has been conducted using the high statistic 1496 live day solar neutrino data from Super-Kamiokande-I. The search looked for distortions to the energy spectrum of recoil electrons from ν-e elastic scattering. A nonzero neutrino magnetic moment would cause an increase of event rates at lower energies. In the absence of clear signal, we found μν ≤ 3.6 × 10−10 μB at 90% C.L. by fitting to the Super-Kamiokande (Super-K) day/night energy spectra. The fitting took into account the effect of neutrino oscillations on the shape of energy spectra. With the results from other neutrino experiments constraining the oscillation parameter region, a limit of μν ≤ 1.1 × 10 −10 μB at 90% C.L. was obtained.

  7. Leading-order hadronic contributions to the lepton anomalous magnetic moments from the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian [OakLabs GmbH, Hennigsdorf (Germany); Feng, Xu [Columbia University, New York, NY (United States). Dept. of Physics; Jansen, Karl [DESY Zeuthen (Germany). NIC; Petschlies, Marcus [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik; Pientka, Grit [Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Renner, Dru B. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-11-15

    The hadronic leading-order (hlo) contribution to the lepton anomalous magnetic moments a{sup hlo}{sub l} of the Standard Model leptons still accounts for the dominant source of the uncertainty of the Standard Model estimates. We present the results of an investigation of the hadronic leading order anomalous magnetic moments of the electron, muon and tau lepton from first principles in twisted mass lattice QCD. With lattice data for multiple pion masses in the range 230 MeVmagnetic moments from simulations directly at the physical value of the pion mass.

  8. Measurement of the magnetic moment in a cold worked 304 stainless steel using HTS SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Park, D.G. [Korea Atomic Energy Research Institute, Yusung P.O. Box 105, Taejon 305-600 (Korea, Republic of)], E-mail: dwkim1@kaeri.re.kr; Kim, D.W.; Angani, C.S. [Korea Atomic Energy Research Institute, Yusung P.O. Box 105, Taejon 305-600 (Korea, Republic of); Timofeev, V.P. [B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Science of Ukraine, 47 Lenin Ave, Kharkov 61103 (Ukraine); Cheong, Y.M. [Korea Atomic Energy Research Institute, Yusung P.O. Box 105, Taejon 305-600 (Korea, Republic of)

    2008-10-15

    The magnetic properties of stainless steel have been investigated using a radio frequency (RF) high-temperature superconductivity (HTS) SQUID (Superconducting QUantum Interference Device)-based susceptometer. The nuclear grade 304 stainless steel is nonmagnetic at a normal condition but it changes to a partially ferromagnetic state associated with martensitic transformation under a plastic deformation. The magnetic moment of the 304 stainless steels was increased with an increasing cold work rate, and decreased with an increasing annealing temperature. The change of mechanical properties such as yield strength and ultimate tensile strength (UTS) are also analyzed in terms of deformation-induced martensitic transformation.

  9. Analogue of the quantum Hall effect for neutral particles with magnetic dipole moment

    Science.gov (United States)

    Ribeiro, L. R.; Passos, E.; Furtado, C.; Sergeenkov, S.

    2017-03-01

    In this paper we investigate a possibility for the existence of an analog of the Quantum Hall Effect for neutral particles with a permanent magnetic moment μ in the presence of crossed inhomogeneous magnetic and electric fields. We predict the appearance of Hall conductivity σH = (e2 / h) ν (μ) with the Landau filling factor ν (μ) ∝μ2. The estimates of the model parameters suggest quite an optimistic possibility to experimentally verify this prediction in optically trapped clouds of atomic BEC.

  10. Magnetic dipole moments of High-K isomeric states in Hf isotopes

    CERN Multimedia

    Walters, W; Nishimura, K; Bingham, C R

    2007-01-01

    It is proposed to make precision measurements of the magnetic moments of 5 multi-quasi-particle K-isomers in Hf nuclei by the Nuclear Magnetic Resonance of Oriented Nuclei (NMR/ON) technique using the NICOLE on-line nuclear orientation facility and exploiting the unique HfF$_{3}$ beams recently available at ISOLDE. Results will be used to extract single-particle and collective g-factors of the isomeric states and their excitations and to shed new light on their structure.

  11. Probing the Pu4 + magnetic moment in PuF4 with 19F NMR spectroscopy

    Science.gov (United States)

    Capan, Cigdem; Dempsey, Richard J.; Sinkov, Sergey; McNamara, Bruce K.; Cho, Herman

    2016-06-01

    The magnetic fields produced by Pu4 + centers have been measured by 19F NMR spectroscopy to elucidate the Pu-F electronic interactions in polycrystalline PuF4. Spectra acquired at applied fields of 2.35 and 7.05 T reveal a linear scaling of the 19F line shape. A model is presented that treats the line broadening and shifts as due to dipolar fields produced by Pu valence electrons in localized noninteracting orbitals. Alternative explanations for the observed line shape involving covalent Pu-F bonding, superexchange interactions, and electronic configurations with enhanced magnetic moments are considered.

  12. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    NARCIS (Netherlands)

    van Rijssel, Jozef; Kuipers, Bonny W M; Erne, Ben

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal d

  13. Perpendicular magnetic anisotropy with enhanced orbital moments of Fe adatoms on a topological surface of Bi2Se3.

    Science.gov (United States)

    Ye, Mao; Kuroda, Kenta; Takeda, Yukiharu; Saitoh, Yuji; Okamoto, Kazuaki; Zhu, Si-Yuan; Shirai, Kaito; Miyamoto, Koji; Arita, Masashi; Nakatake, Masashi; Okuda, Taichi; Ueda, Yoshifumi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Kimura, Akio

    2013-06-12

    We have found a perpendicular magnetic anisotropy of iron adatoms on a surface of the prototypical three-dimensional topological insulator Bi2Se3 by using x-ray magnetic circular dichroism measurements. The orbital magnetic moment of Fe is strongly enhanced at lower coverage, where angle-resolved photoemission spectroscopy shows coexistence of non-trivial topological states at the surface.

  14. Magnetic and Distribution of Magnetic Moments in Amorphous Fe89.7P10.3Alloy Nanowire Arrays

    Institute of Scientific and Technical Information of China (English)

    SHI Hui-Gang; XUE De-Sheng

    2008-01-01

    Binary amorphous Fe89.7P10.3 alloy nanowire arrays in diameter of about 40nm and length of about 3μm have been fabricated in an anodic aluminium oxide template by electrodeposition.Magnetic properties of the samples are investigated by mean of vibrating sample magnetometer,transmission M(o)ssbauer spectroscopy and conversion electron M(o)ssbauer spectroscopy at room temperature.It is found that the nanowire arrays have obvious perpendicular magnetic anisotropy,and are ferromagnetic at room temperature,with its M(o)ssbauer spectra consisting of six broad lines.The average anglas between the Fe magnetic moment and the wire axis are about 14°inside and 28°at the end of the amorphous Fe89.7P10.3 alloy nanowire arrays,respectively.The magnetic behaviour is decided by the shape anisotropy and the dipolar interaction between wires.In addition,the magnetic moments distribution is theoretically demonstrated by using the symmetric fanning mechanism of the spheres chain model.

  15. Magnetic and quadrupole moments of neutron deficient $^{58-62}$Cu isotopes

    CERN Document Server

    Flanagan, K T; Blaum, K; Forest, D H; Stroke, H H; Kramer, J; Kreim, K; De Rydt, M; Geppert, C; Sanchez, R; Honma, M; Krieger, A; Papuga, J; Billowes, J; Vingerhoets, P; Nortershauser, W; Bissell, M L; Neyens, G; Rajabali, M M; Yordanov, D T; Cheal, B; Neugart, R; Procter, T J

    2011-01-01

    This paper reports on the ground state nuclear moments measured in (58-62)Cu using collinear laser spectroscopy at the ISOLDE facility. The quadrupole moments for (58-60)Cu have been measured for the first time as Q ((58)Cu) = 15(3) efm(2), Q ((59)Cu) = -19.3(19) efm(2), Q((60)Cu) = +11.6(12) efm(2) and with higher precision for (61.62)Cu as Q ((61)Cu) = -21.1(10) efm(2), Q((62)Cu) = -2.2(4) efm(2). The magnetic moments of (58.59)Cu are measured with a higher precision as(IL)((58)Cu) = +0.570(2)(ILN) and (IL)((59)Cu) = +1.8910(9)(ILN). The experimental nuclear moments are compared to large-scale shell-model calculations with the GXPF1 and GXPF1A effective interactions, allowing the softness of the (56)Ni core to be studied. (C) 2011 Published by Elsevier B.V.

  16. Switchable magnetic moment in cobalt-doped graphene bilayer on Cu(111): An ab initio study

    Science.gov (United States)

    Souza, Everson S.; Scopel, Wanderlã L.; Miwa, R. H.

    2016-06-01

    In this work, we have performed an ab initio theoretical investigation of substitutional cobalt atoms in the graphene bilayer supported on the Cu(111) surface (Co/GBL/Cu). Initially, we examined the separated systems, namely, graphene bilayer adsorbed on Cu(111) (GBL/Cu) and a free standing Co-doped GBL (Co/GBL). In the former system, the GBL becomes n -type doped, where we map the net electronic charge density distribution along the GBL-Cu(111) interface. The substitutional Co atom in Co/GBL lies between the graphene layers, and present a net magnetic moment mostly due to the unpaired Co-3 dz2 electrons. In Co/GBL/Cu, we found that the Cu(111) substrate rules (i) the energetic stability, and (ii) the magnetic properties of substitutional Co atoms in the graphene bilayer. In (i), the substitutional Co atom becomes energetically more stable lying on the GBL surface, and in (ii), the magnetic moment of Co/GBL has been quenched due to the Cu(111) → Co/GBL electronic charge transfer. We verify that such a charge transfer can be tuned upon the application of an external electric field, and thus mediated by a suitable change on the electronic occupation of the Co-dz2 orbitals, we found a way to switch-on and -off the magnetization of the Co-doped GBL adsorbed on the Cu(111) surface.

  17. AGM2015: Antineutrino Global Map 2015

    CERN Document Server

    Usman, Shawn M; Dye, Stephen T; McDonough, William F; Learned, John G

    2015-01-01

    Every second greater than $10^{25}$ antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth's surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically a...

  18. Magnetic moment for the negative parity $\\Lambda \\to \\Sigma^0$ transition in light cone QCD sum rules

    CERN Document Server

    Aliev, T M

    2015-01-01

    The magnetic moment of the $\\Lambda \\to \\Sigma^0$ transition between negative parity, baryons is calculated in framework of the QCD sum rules approach, using the general form of the interpolating currents. The pollution arising from the positive--to--positive, and positive to negative parity baryons are eliminated by constructing the sum rules for different Lorentz structures. Nonzero value of the considered magnetic moment can be attributed to the violation of the $SU(3)$ symmetry.

  19. Magnetic moment of $X_Q$ state with $J^{PC}=1^{+\\pm}$ in light cone QCD sum rules

    CERN Document Server

    Agamaliev, A K; Savcı, M

    2016-01-01

    The magnetic moments of the recently observed resonance $X_b(5568)$ by DO Collaboration and its partner with charm quark are calculated in the framework of the light cone QCD sum rules, by assuming that these resonances are represented as tetra--quark states with quantum numbers $J^{PC}=1^{+\\pm}$. The magnetic moment can play critical role in determination of the quantum numbers, as well as giving useful information about the inner structure of these mesons.

  20. Nd-doped ZnO monolayer: High Curie temperature and large magnetic moment

    Science.gov (United States)

    Tan, Changlong; Sun, Dan; Zhou, Long; Tian, Xiaohua; Huang, Yuewu

    2016-10-01

    We performed first-principles calculations within density-functional theory to study the structural, electronic, and magnetic properties of Nd-doped ZnO monolayer. The calculated results reveal that Nd-doped ZnO monolayer exhibits stable room temperature ferromagnetism with a large saturation magnetic moment of 3.99 μB per unit in ZnO monolayer. The magnetic property is contributed to the localized f sates of Nd atoms. When two Zn atoms are substituted by two Nd dopants, they tend to form ferromagnetic (FM) coupling and the estimated Curie temperature is higher than room temperature. More interesting, the impurity bands appear within the band gap of ZnO monolayer due to the introduction of Nd dopant. Our results may provide a reference for modifying the material property of ZnO monolayer and are promising as nanoscale building block in spintronic devices.

  1. Magnetic Moment and Band Structure Analysis of Fe, Co, Ni-modified Graphene-nano- ribbon

    OpenAIRE

    Ota, Norio

    2014-01-01

    Magnetic properties and band characteristics of graphene-nano-ribbon (GNR) modified by Fe, Co, and Ni were analyzed by the first principles DFT calculation. Typical unit cell is [C32H2Fe1], [C32H2Co1] and [C32H2Ni1] respectively. The most stable spin state was Sz=4/2 for Fe-modified GNR, whereas Sz=3/2 for Co-case and Sz=2/2 for Ni-case. Atomic magnetic moment of Fe, Co and Ni were 3.63, 2.49 and 1.26 {\\mu}B, which were reduced values than that of atomic Hund-rule due to magnetic coupling wit...

  2. Realizing high magnetic moments in fcc Fe nanoparticles through atomic structure stretch.

    Science.gov (United States)

    Baker, S H; Roy, M; Thornton, S C; Binns, C

    2012-05-02

    We describe the realization of a high moment state in fcc Fe nanoparticles through a controlled change in their atomic structure. Embedding Fe nanoparticles in a Cu(1-x)Au(x) matrix causes their atomic structure to switch from bcc to fcc. Extended x-ray absorption fine structure (EXAFS) measurements show that the structure in both the matrix and the Fe nanoparticles expands as the amount of Au in the matrix is increased, with the data indicating a tetragonal stretch in the Fe nanoparticles. The samples were prepared directly from the gas phase by co-deposition, using a gas aggregation source and MBE-type sources respectively for the nanoparticle and matrix materials. The structure change in the Fe nanoparticles is accompanied by a sharp increase in atomic magnetic moment, ultimately to values of ~2.5 ± 0.3 μ(B)/atom .

  3. Reactor antineutrinos and nuclear physics

    Science.gov (United States)

    Balantekin, A. B.

    2016-11-01

    Short-baseline reactor neutrino experiments successfully measured the neutrino parameters they set out to measure, but they also identified a shape distortion in the 5-7 MeV range as well as a reduction from the predicted value of the flux. Nuclear physics input into the calculations of reactor antineutrino spectra needs to be better refined if this anomaly is to be interpreted as due to sterile neutrino states.

  4. Heavy lepton contribution to the anomalous magnetic moment of the muon and the electron at four loops in QED

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander; Liu, Tao; Marquard, Peter; Steinhauser, Matthias [Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany)

    2013-07-01

    We present results for the QED contribution from a heavy lepton loop to the anomalous magnetic moment of the muon and the electron. Exploiting the strong hierarchy between the tau, muon and electron masses (m{sub τ} >>m{sub μ} >>m{sub e}), we use the method of asymptotic expansion which leads to on-shell and vacuum integrals up to three and four loops, respectively. Analytic results are presented up to four loops for the muon anomalous moment involving virtual τ-lepton loops and for the electron magnetic moment involving τ- and μ-lepton loops.

  5. Magnetic Tunnel Junctions Incorporating a Near-Zero-Moment Ferromagnetic Semiconductor

    Science.gov (United States)

    Warring, H.; Trodahl, H. J.; Plank, N. O. V.; Natali, F.; Granville, S.; Ruck, B. J.

    2016-10-01

    We present a fully semiconductor-based magnetic tunnel junction that uses spin-orbit coupled materials made of intrinsic ferromagnetic semiconductors. Unlike more common approaches, one of the electrodes consists of a near-zero magnetic-moment ferromagnetic semiconductor, samarium nitride, with the other electrode composed of the more conventional ferromagnetic semiconductor gadolinium nitride. Fabricated tunnel junctions show a magnetoresistance as high as 200%, implying strong spin polarization in both electrodes. In contrast to conventional tunnel junctions, the resistance is largest at high fields, a direct result of the orbital-dominant magnetization in samarium nitride that requires that the spin in this electrode must align opposite to that in the gadolinium nitride when the magnetization is saturated. The magnetoresistance at intermediate fields is controlled by the formation of a twisted magnetization phase in the samarium nitride, a direct result of the orbital-dominant ferromagnetism. Thus, an alternative type of functionality can be brought to magnetic tunnel junctions by the use of different electrode materials, in contrast to the usual focus on tuning the barrier properties.

  6. Tilted-foil polarisation and magnetic moments of mirror nuclei at ISOLDE

    CERN Document Server

    Bordeanu, C; Thundiyamkulathu Baby, L; Lindroos, M

    2002-01-01

    We report here on the first measurement in an experimental program initiated at the ISOLDE facility at CERN for the measurement of magnetic moments of short-lived radionuclides. The 60~keV ISOLDE beam from the GPS separator is boosted in energy by a 200~kV high-voltage platform, on which the whole experiment is mounted, in order to achieve sufficiently high energy for transmission through the foils of a tilted-foil setup. The 520~keV $^{23}$Mg(2$^+$) nuclei are polarized by the tilted foil technique and the resulting 0$^o$ - 180$^o$ $\\beta$- asymmetry is monitored as a function of the frequency of an rf-applied perturbing magnetic field in an NMR setup.\\\\ In this experiment, earlier asymmetry measurements were confirmed and an NMR resonance was observed, corresponding to a preliminary value of the magnetic moment of 0.533(6) n.m., in agreement with a previous measurement. The measured asymmetry as function of NMR frequency and the fitted resonance curve are presented in the figure. During the e...

  7. (83)Kr nuclear magnetic moment in terms of that of (3)He.

    Science.gov (United States)

    Makulski, Włodzimierz

    2014-08-01

    High resolution NMR spectroscopy was applied to precisely determine the (83)Kr nuclear magnetic dipole moment on the basis of new results available for nuclear magnetic shielding in krypton and helium-3 atoms. Small amounts of (3)He as the solutes and (83)Kr as the buffer gas were observed in (3)He and (83)Kr NMR spectra at the constant external field, B0 = 11.7578 T. In each case, the resonance frequencies (ν(He) and ν(Kr)) were linearly dependent on the density of gaseous solvent. The extrapolation of experimental points to the zero density of gaseous krypton allowed for the evaluation of both resonance frequencies free from intermolecular interactions. By combining these measurements with the recommended (83)Kr chemical shielding value, the nuclear magnetic moment could be determined with much better precision than ever before, μ((83)Kr) = -0.9707297(32)μN, with the improvement due to the greater accuracy of the spectral data.

  8. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    Science.gov (United States)

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN.

  9. Spin flip of neutrinos with magnetic moment in core-collapse supernova

    CERN Document Server

    Lychkovskiy, Oleg

    2009-01-01

    Neutrino with magnetic moment can experience a chirality flip while scattering off charged particles. This effect may lead to important consequences for the dynamics and the neutrino signal of the core-collapse supernova. It is known that if neutrino is a Dirac fermion, then nu_L->nu_R transition induced by the chirality flip leads to the emission of sterile right-handed neutrinos. The typical energies of these neutrinos are rather high, E ~ (100-200)MeV. Neutrino spin precession in the magnetic field either inside the collapsing star or in the interstellar space may lead to the backward transition, nu_R->nu_L. Both possibilities are known to be interesting. In the former case high-energy neutrinos can deliver additional energy to the supernova envelope, which can help the supernova to explode. In the latter case high-energy neutrinos may be detected simultaneously with the "normal" supernova neutrino signal, which would be a smoking gun for the Dirac neutrino magnetic moment. We report the results of the cal...

  10. Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. [Thermoremanent Magnetization implications for lunar magnetic field

    Science.gov (United States)

    Srnka, L. J.

    1976-01-01

    The acquisition of thermoremanent magnetization (TRM) by a cooling spherical shell is studied for internal magnetizing dipole fields, using Runcorn's (1975) theorems on magnetostatics. If the shell cools progressively inward, inner regions acquire TRM in a net field composed of the dipole source term plus a uniform field due to the outer magnetized layers. In this case, the global dipole moment and external remanent field are nonzero when the whole shell has cooled below the Curie point and the source dipole has disappeared. The remanent field outside the shell is found to depend on the thickness, radii, and cooling rate of the shell, as well as the coefficient of TRM and the intensity of the magnetizing field. Some implications for the moon's remanent dipole moment are discussed.

  11. Bounds on tau neutrino magnetic moment and charge radius from Super-K and SNO observations

    CERN Document Server

    Joshipura, A S; Joshipura, Anjan S.; Mohanty, Subhendra

    2001-01-01

    Neutrinos can scatter electrons in water detectors through their magnetic moments and charge radii in addition to the charged and neutral currents channels. The recent solar neutrino charged current event rates announced by SNO with the earlier solar and atmospheric neutrino observations from Super-Kamiokande allows us to put upper bounds of $\\mu < 10^{-31} cm^2$ on the neutrino charge radii. For the electron and muon neutrinos these bounds are comparable with existing bounds but for tau neutrinos these bounds are three orders of magnitude more stringent than earlier terrestrial bounds. These bounds are independent of any specific model of neutrino oscillations.

  12. Magnetic Moment and Spin of the Extremely Proton-Rich Nucleus {sup 23}Al

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp; Nakashima, Y.; Nagatomo, T.; Mihara, M.; Kumashiro, S.; Fujiwara, H.; Ogura, M.; Fukuda, M.; Minamisono, T. [Osaka University, Department of Physics (Japan); Sumikama, T. [RIKEN (Japan); Ozawa, A. [University of Tsukuba, Institute of Physics (Japan); Yamada, K. [Rikkyo University, College of Science (Japan); Momota, S.; Nojiri, Y. [Tosayamada, Kochi University of Technology (Japan); Ota, M.; Ohtsubo, T.; Izumikawa, T. [Niigata University, Department of Physics (Japan); Yoshida, K. [RIKEN (Japan); Minamisono, K. [TRIUMF (Canada); Suzuki, T. [Saitama University, Department of Physics (Japan)

    2004-12-15

    The g-factor of the exteremely proton-rich nucleus {sup 23}Al(T{sub 1/2} 0.47 s) has been measured for the first time, applying {beta}-NMR technique on this nucleus implanted in Si. The obtained vertical bar g vertical bar (1.58 {+-} 0.2) suggests that the spin of the ground state of {sup 23}Al is 5 / 2. The magnetic moment is determined as vertical bar {mu} vertical bar (3.95 {+-} 0.55) {mu}{sub N}.

  13. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Liu, Tao [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Marquard, Peter [Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany)

    2014-06-27

    We compute the next-to-next-to-leading order hadronic contribution to the muon anomalous magnetic moment originating from the photon vacuum polarization. The corresponding three-loop kernel functions are calculated using asymptotic expansion techniques which lead to analytic expressions. Our final result, a{sub μ}{sup had,NNLO}=1.24±0.01×10{sup −10}, has the same order of magnitude as the current uncertainty of the leading order hadronic contribution and should thus be included in future analyses.

  14. Higher-order hadronic and heavy-lepton contributions to the anomalous magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2014-07-15

    We report about recent results obtained for the muon anomalous magnetic moment. Three-loop kernel functions have been computed to obtain the next-to-next-to-leading-order hadronic vacuum polarization contributions. The numerical result, a{sub μ}{sup had,NNLO} = 1.24 ± 0.01 x 10{sup -10}, is of the same order of magnitude as the current uncertainty from the hadronic contributions. For heavy-lepton corrections, analytical results are obtained at four-loop order and compared with the known results.

  15. Higher-order hadronic and heavy-lepton contributions to the anomalous magnetic moment

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Steinhauser, Matthias

    2014-01-01

    We report about recent results obtained for the muon anomalous magnetic moment. Three-loop kernel functions have been computed to obtain the next-to-next-to-leading-order hadronic vacuum polarization contributions. The numerical result, $a_\\mu^{\\rm{had,NNLO}}=1.24\\pm 0.01 \\times 10^{-10}$, is of the same order of magnitude as the current uncertainty from the hadronic contributions. For heavy-lepton corrections, analytical results are obtained at four-loop order and compared with the known results.

  16. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Steinhauser, Matthias

    2014-01-01

    We compute the next-to-next-to-leading order hadronic contribution to the muon anomalous magnetic moment originating from the photon vacuum polarization. The corresponding three-loop kernel functions are calculated using asymptotic expansion techniques which lead to analytic expressions. Our final result, $a_\\mu^{\\rm had,NNLO} = 1.24 \\pm 0.01 \\times 10^{-10}$, has the same order of magnitude as the current uncertainty of the leading order hadronic contribution and should thus be included in future analyses.

  17. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2014-03-15

    We compute the next-to-next-to-leading order hadronic contribution to the muon anomalous magnetic moment originating from the photon vacuum polarization. The corresponding three-loop kernel functions are calculated using asymptotic expansion techniques which lead to analytic expressions. Our final result, a{sup had,NNLO}{sub μ} = 1.24 ± 0.01 x 10{sup -10}, has the same order of magnitude as the current uncertainty of the leading order hadronic contribution and should thus be included in future analyses.

  18. Leading SU(3)-breaking corrections to the baryon magnetic moments in chiral perturbation theory.

    Science.gov (United States)

    Geng, L S; Camalich, J Martin; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-11-28

    We calculate the baryon magnetic moments using covariant chiral perturbation theory (chiPT) within the extended-on-mass-shell renormalization scheme. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3)-breaking effects coming from the lowest-order loops. This success is in dramatic contrast with previous attempts at the same order using heavy-baryon chiPT and covariant infrared chiPT. We also analyze the source of this improvement with particular attention to the comparison between the covariant results.

  19. Shape and magnetic moment dependence of the dipolar field in Mn12-acetate

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    There is a small fraction of fast-relaxation species in Mn12-acetate, which is utilized to determine the dipolar field of Mn12. Here we report an easier way to precisely obtain the dipolar field by measuring the M-H curves above the blocking temperature of fastrelaxation species. We found that there is a simple linear relationship between the magnetic moment and dipolar field; besides the dipolar field is also dependent on the sample shape, which is consistent with the numerical calculation.

  20. SU(3)-breaking corrections to the baryon-octet magnetic moments in chiral perturbation theory

    CERN Document Server

    Camalich, J Martin; Geng, L S; Vacas, M J Vicente

    2009-01-01

    We report a calculation of the baryon magnetic moments using covariant chiral perturbation theory within the extended-on-mass-shell renormalization scheme including intermediate octet and decuplet contributions. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3) breaking effects coming from the lowest-order loops. We compare with previous attempts at the same order using heavy-baryon and covariant infrared chiral perturbation theory, and discuss the source of the differences.

  1. A 17 keV neutrino and large magnetic moment solution of the solar neutrino puzzle

    Science.gov (United States)

    Akhmedov, E. Kh.; Senjanovic, G.; Tao, Zhijian; Berezhiani, Z. G.

    1992-08-01

    Zee-type models with Majorons naturally incorporate the 17 keV neutrino but in their minimal version fail to simultaneously solve the solar neutrino puzzle. If there is a sterile neutrino state, a particularly simple solution is found to the solar neutrino problem, which besides nu(sub 17) predicts a light Zeldovich-Konopinski-Mahmoud neutrino nu(sub light) = nu(sub e) + nu(sub mu)(sup c) with a magnetic moment being easily as large as 10(exp -11)(mu)(sub B) through the Barr-Freire-Zee mechanism.

  2. 17 keV neutrino and large magnetic moment solution of the solar neutrino puzzle

    Science.gov (United States)

    Akhmedov, Eugeni Kh.; Berezhiani, Zurab G.; Senjanović, Goran; Tao, Zhijian

    1993-01-01

    Zee-type models with majorons naturally incorporate the 17 keV neutrino but in their minimal version fail to simultaneously solve the solar neutrino puzzle. If there is a sterile neutrino state, we find a particularly simple solution to the solar neutrino problem, which besides ν17 predicts a light Zeldovich-Konopinski-Mahmoud neutrino νlight = νe + νcμ with a magnetic moment being easily as large as 10 -11μB through the Barr-Freire-Zee mechanism.

  3. Explaining muon magnetic moment and AMS-02 positron excess in a gauged horizontal symmetric model

    CERN Document Server

    Tomar, Gaurav

    2015-01-01

    We extended the standard model with a fourth generation of fermions to explain the discrepancy in the muon magnetic moment and to describe the positron excess observed by AMS-02 experiment. We introduce a gauged $SU(2)_{HV}$ horizontal symmetry between the muon and the 4th generation lepton families and identified the 4th generation right-handed neutrino as the dark matter with mass $\\sim 700$ GeV. The dark matter annihilates through $SU(2)_{HV}$ gauge boson into final states $(\\mu^+ \\mu^-)$ and $(\

  4. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    Science.gov (United States)

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-02-04

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  5. Time-Reversal Symmetry Violation in Molecules Induced by Nuclear Magnetic Quadrupole Moments

    Science.gov (United States)

    Flambaum, V. V.; DeMille, D.; Kozlov, M. G.

    2014-09-01

    Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T, P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T, P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T, P-odd effects in the molecules TaN, ThO, ThF+, HfF+, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T, P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T, P-odd nuclear forces, on the proton, neutron, and quark EDMs, on quark chromo-EDMs, and on the QCD θ term and CP-violating quark interactions.

  6. Directed magnetic field induced assembly of high magnetic moment cobalt nanowires

    DEFF Research Database (Denmark)

    Srivastava, Akhilesh Kumar; Madhavi, S.; Ramanujan, R.V.

    2010-01-01

    A directed magnetic field induced assembly technique was employed to align two phase (h.c.p. + f.c.c.) cobalt nanoparticles in a mechanically robust long wire morphology. Co nanoparticles with an average size of 4.3 nm and saturation magnetization comparable to bulk cobalt were synthesized...

  7. Anomalous properties of a large magnetic moment in a fourfold potential

    CERN Document Server

    Vernier, N

    2003-01-01

    An experimental study of magnetic moments placed in a fourfold potential is presented here. The system used is a monocrystal of LiY sub 0 sub . sub 9 sub 9 Dy sub 0 sub . sub 0 sub 1 F sub 4 , where the only magnetic ions are the Dy sup 3 sup + ions. From static magnetic susceptibility measurements, it is shown that the Dy sup 3 sup + ion has an easy magnetization plane, with an additional anisotropy in the easy plane. Low frequency electron paramagnetic resonance experiments are presented here and up to nine resonance lines have been found. Some of them are in agreement with known properties of the Dy sup 3 sup + ion in LiY sub 0 sub . sub 9 sub 9 Dy sub 0 sub . sub 0 sub 1 F sub 4 , but others cannot be explained within the framework of the commonly used effective Hamiltonian. The behaviour of these new lines is consistent with a magnetic tunnelling effect. Finally, spin echoes have been observed, allowing the determination of the relaxation time T sub 2 and the coupling coefficient for several orientations...

  8. Magnetic moments of 33Mg in the time-odd relativistic mean field approach

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The configuration-fixed deformation constrained relativistic mean field approach with time-odd component has been applied to investigate the ground state properties of 33Mg with effective interaction PK1.The ground state of 33Mg has been found to be prolate deformed,β2=0.23,with the odd neutron in 1/2[330] orbital and the energy -251.85 MeV which is close to the data -252.06 MeV.The magnetic moment -0.9134 μN is obtained with the effective electromagnetic current which well reproduces the data -0.7456 μN self-consistently without introducing any parameter.The energy splittings of time reversal conjugate states,the neutron current,the energy contribution from the nuclear magnetic potential,and the effect of core polarization are discussed in detail.

  9. Series expansion of the photon self-energy in QED and the photon anomalous magnetic moment

    CERN Document Server

    Rojas, H Perez; Chavez, S Villalba

    2008-01-01

    We start from the analytical expression of the eigenvalues $\\kappa^{(i)}$ of the photon self-energy tensor in an external constant magnetic field $B$ calculated by Batalin Shabad in the Furry representation, and in the one-loop approximation. We expand in power series of the external field and in terms of the squared photon transverse momentum $z_2$ and (minus) transverse energy $z_1=k^2-z_2$, in terms of which are expressed $\\kappa^{(i)}$. A general expression is given for the photon anomalous magnetic moment $\\mu_{\\gamma}>0$ in the region of transparency, below the first threshold for pair creation, and it is shown that it is positive, i.e. paramagnetic. The results of the numerical calculation for $\\mu_{\\gamma}>0$ are displayed in a region close to the threshold.

  10. Magnetic field component demonstration for a neutron electric dipole moment search

    Science.gov (United States)

    Slutsky, Simon

    2016-09-01

    A neutron electric dipole moment (EDM) search at the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) will probe with a sensitivity of EDM will appear as a variation in the precession frequency correlated with the electric field. Magnetic field gradients must be kept below 10 pT/cm to mitigate false EDMs produced by the geometric phase effect and to maximize the neutron spin-relaxation lifetime. I will discuss a prototype magnetic shielding system, including a nearly-hermetic superconducting lead shield, built to demonstrate the required gradients at 1/3-scale of the final experiment. Additionally, the system will evaluate the eddy current heating due to RF fields produced by a proposed neutron-``spin-dressing'' technique.

  11. Large anisotropic Fe orbital moments in perpendicularly magnetized Co2FeAl Heusler alloy thin films revealed by angular-dependent x-ray magnetic circular dichroism

    Science.gov (United States)

    Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji

    2013-09-01

    Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.

  12. AGM2015: Antineutrino Global Map 2015.

    Science.gov (United States)

    Usman, S M; Jocher, G R; Dye, S T; McDonough, W F; Learned, J G

    2015-09-01

    Every second greater than 10(25) antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth's surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth's total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors.

  13. AGM2015: Antineutrino Global Map 2015

    Science.gov (United States)

    Usman, S. M.; Jocher, G. R.; Dye, S. T.; McDonough, W. F.; Learned, J. G.

    2015-09-01

    Every second greater than 1025 antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth’s surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth’s total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors.

  14. First-Principles Study of the Local Magnetic Moment on a N-Doped Cu2O(111)Surface

    Institute of Scientific and Technical Information of China (English)

    王治

    2011-01-01

    First-principles calculations based on density functional theory within the generalized gradient approximation are used to study on magnetism in N-doped Cu2O.It is interesting that nitrogen does not induce magnetism in bulk Cu2O,while shows a total magnetism moment of 1.0μB at the Cu2O(111)surface,which is mainly localized on the doped N atoms.The local magnetic moment at the N-doped Cu2O(111)surface can be explained in terms of the surface state.%First-principles calculations based on density functional theory within the generalized gradient approximation are used to study on magnetism in N-doped C112O. It is interesting that nitrogen does not induce magnetism in bulk Cu2O, while shows a total magnetism moment of 1.0μB at the C112O (111) surface, which is mainly localized on the doped JV atoms. The local magnetic moment at the N-doped Cu2O (111) surface can be explained in terms of the surface state.

  15. Limits on the neutrino magnetic moment using 1496 days of Super-Kamiokande-I solar neutrino data.

    Science.gov (United States)

    Liu, D W; Ashie, Y; Fukuda, S; Fukuda, Y; Ishihara, K; Itow, Y; Koshio, Y; Minamino, A; Miura, M; Moriyama, S; Nakahata, M; Namba, T; Nambu, R; Obayashi, Y; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Yamada, S; Ishitsuka, M; Kajita, T; Kaneyuki, K; Nakayama, S; Okada, A; Ooyabu, T; Saji, C; Desai, S; Earl, M; Kearns, E; Messier, M D; Stone, J L; Sulak, L R; Walter, C W; Wang, W; Barszczak, T; Casper, D; Cravens, J P; Gajewski, W; Kropp, W R; Mine, S; Smy, M B; Sobel, H W; Sterner, C W; Vagins, M R; Ganezer, K S; Hill, J; Keig, W E; Kim, J Y; Lim, I T; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Hayato, Y; Ichikawa, A K; Ishida, T; Ishii, T; Iwashita, T; Kameda, J; Kobayashi, T; Maruyama, T; Nakamura, K; Nitta, K; Oyama, Y; Sakuda, M; Totsuka, Y; Suzuki, A T; Hasegawa, M; Hayashi, K; Inagaki, T; Kato, I; Maesaka, H; Morita, T; Nakaya, T; Nishikawa, K; Sasaki, T; Ueda, S; Yamamoto, S; Haines, T J; Dazeley, S; Hatakeyama, S; Svoboda, R; Blaufuss, E; Goodman, J A; Guillian, G; Sullivan, G W; Turcan, D; Scholberg, K; Habig, A; Ackermann, M; Jung, C K; Kato, T; Kobayashi, K; Martens, K; Malek, M; Mauger, C; McGrew, C; Sharkey, E; Viren, B; Yanagisawa, C; Toshito, T; Mitsuda, C; Miyano, K; Shibata, T; Ishii, J; Kajiyama, Y; Kuno, Y; Nagashima, Y; Takita, M; Yoshida, M; Kim, H I; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Choi, Y; Seo, H K; Gando, Y; Hasegawa, T; Inoue, K; Shirai, J; Suzuki, A; Koshiba, M; Hashimoto, T; Nakajima, Y; Nishijima, K; Ishino, H; Morii, M; Nishimura, R; Watanabe, Y; Kielczewska, D; Zalipska, J; Gran, R; Shiraishi, K K; Washburn, K; Wilkes, R J

    2004-07-09

    A search for a nonzero neutrino magnetic moment has been conducted using 1496 live days of solar neutrino data from Super-Kamiokande-I. Specifically, we searched for distortions to the energy spectrum of recoil electrons arising from magnetic scattering due to a nonzero neutrino magnetic moment. In the absence of a clear signal, we found micro(nu)neutrino oscillation on the shapes of energy spectra. With additional information from other solar neutrino and KamLAND experiments constraining the oscillation region, a limit of micro(nu)

  16. Electron contribution to the muon anomalous magnetic moment at four loops

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Smirnov, Alexander; Smirnov, Vladimir; Steinhauser, Matthias

    2016-01-01

    We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections (see Ref. \\cite{Kurz:2015bia}) the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a by-product we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order includin...

  17. Electron contribution to the muon anomalous magnetic moment at four loops

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Smirnov, Alexander V. [Moscow State Univ. (Russian Federation). Scientific Research Computing Center; Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik

    2016-02-15

    We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a by-product we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order including massive closed electron and tau loops, which we also calculated using the method of asymptotic expansion.

  18. Electron contribution to the muon anomalous magnetic moment at four loops

    Science.gov (United States)

    Kurz, Alexander; Liu, Tao; Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2016-03-01

    We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections (see Ref. [1]), the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher-order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a byproduct, we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order including massive closed electron and tau loops, which we also calculated using the method of asymptotic expansion.

  19. Markov-Yukawa Transversality On Covariant Null-Plane Baryon Form Factor And Magnetic Moments

    CERN Document Server

    Mitra, A N

    2001-01-01

    The baryon-$qqq$ vertex function governed by the Markov-Yukawa Transversality Principle ($MYTP$), is formulated via the Covariant Null-Plane Ansatz ($CNPA$) as a 3-body generalization of the corresponding $q{\\bar q}$ problem, and employed to calculate the proton e.m. form factor and baryon octet magnetic moments.The e.m. coupling scheme is specified by letting the e.m. field interact by turn with the `spectator' while the two interacting quarks fold back into the baryon. The $S_3$ symmetry of the matrix element is preserved in all d.o.f.'s together. The $CNPA$ formulation ensures, as in the $q{\\bar q}$ case, that the loop integral is free from the Lorentz mismatch disease of covariant instantaneity ($CIA$), while the simple trick of `Lorentz completion'ensures a Lorentz invariant structure. The $k^{-4}$ scaling behaviour at large $k^2$ is reproduced. And with the infrared structure of the gluonic propagator attuned to spectroscopy, the charge radius of the proton comes out at $0.96 fm$. The magnetic moments o...

  20. Leading-order hadronic contributions to the lepton anomalous magnetic moments from the lattice

    CERN Document Server

    Burger, Florian; Jansen, Karl; Petschlies, Marcus; Pientka, Grit; Renner, Dru B

    2015-01-01

    The hadronic leading-order (hlo) contribution to the lepton anomalous magnetic moments $a_l^\\mathrm{hlo}$ of the Standard Model leptons still accounts for the dominant source of the uncertainty of the Standard Model estimates. We present the results of an investigation of the hadronic leading order anomalous magnetic moments of the electron, muon and tau lepton from first principles in twisted mass lattice QCD. With lattice data for multiple pion masses in the range $230 \\mathrm{~MeV} \\lesssim m_{PS} \\lesssim 490 \\mathrm{~MeV}$, multiple lattice volumes and three lattice spacings we perform the extrapolation to the continuum and to the physical pion mass and check for all systematic uncertainties in the lattice calculation. As a result we calculate $a_{l}^\\mathrm{hlo}$ for the three Standard Model leptons with controlled statistical and systematic error in agreement with phenomenological determinations using dispersion relations and experimental data. In addition, we also give a first estimate of the hadronic...

  1. Magnetic moments of JP = 3/2+ decuplet baryons using statistical model

    CERN Document Server

    Kaur, Amanpreet

    2015-01-01

    A suitable wave function for baryon decuplet is framed with inclusion of sea containing quark- gluon Fock states. Relevant operator formalism is applied to calculate magnetic moments of JP = 3 2 + baryon decuplet. Statistical model assumes decomposition of baryonic state in various quark-gluon Fock states such as jqqqijgi; jqqqijggi; jqqqijgggi with possibility gluon emitting qq pairs condensates due to the subprocesses like g , qq; g , gg and g , qg where qq = uu; dd; ss. Statistical approach and detailed balance principle in combination is used to find the relative probabilities of these Fock states in avor, spin and color space. The total number of partons (sea) in this formalism are restricted to three gluons due to limited free energy of gluon and suppressed number of strange quark-antiquark pairs. The combined approach is used to calculate the magnetic moments, importance of strangeness in the sea (scalar, vector and tensor). Our approach has confirmed the scalar-tensor sea dominancy over vector sea. Va...

  2. Magnetic Moments and Electromagnetic Radii of Nucleon and △(1232) in an Extended Goldstone-Boson-Exchange Model

    Institute of Scientific and Technical Information of China (English)

    HE Jun; DONG Yu-Bing

    2005-01-01

    We derive the exchange currents of pseudoscalar, vector, and scalar mesons from Feynman diagrams, and use them to calculate the magnetic form factors of nucleon and △(1232). The magnetic moments and electromagnetic radii are obtained by using those form factors and the parameters determined from the masses of nucleon and △(1232).We find the magnetic moments and electromagnetic radii of nucleon and △(1232) can be produced very well in the extended Goldstone-Boson-exchange model in which all of pseudoscalar, vector, and scalar meson nonet are included.The magnetic moments of △(1232) are closer to experiment values and results from lattice calculation than the results obtained by the model without other mesons except for pion and sigma.

  3. Measurement of Magnetic Moment at the Atomic Scale in a High TC Molecular Based Magnet

    NARCIS (Netherlands)

    Arrio, M.-A.; Sainctavit, Ph.; Cartier dit Moulin, Ch.; Brouder, Ch.; Groot, F.M.F. de; Mallah, T.; Verdaguer, M.

    2001-01-01

    The molecular-based magnet Cs^(I) [Ni^(II) Cr^(III) (CN)6]-2H2O is a ferromagnetic with a Curie temperature TC ) 90 K. Its structure consists of face-centered cubic lattice of Ni^(II) ions connected by Cr(CN)6 entities. We have recorded X-ray magnetic circular dichroism (XMCD) at nickel L2,3 edges.

  4. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Grange, Joseph M. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.

  5. The Coupling Characteristic Investigation of Double-Gimbal Magnetically Suspended Control Moment Gyro Used on Agile Maneuver Spacecraft

    Directory of Open Access Journals (Sweden)

    Peiling Cui

    2015-01-01

    Full Text Available Double-gimbal magnetically suspended CMG is a novel attitude control actuator for the agile maneuver spacecraft. Taking the double-gimbal magnetically suspended control moment gyro used on agile maneuver spacecraft as the research object, the dynamic model of the magnetically suspended rotor, the inner gimbal, and the outer gimbal of double-gimbal magnetically suspended control moment gyro is built. The nonlinear coupling characteristic between the rotor, the gimbal, and the spacecraft is given. It can be seen that the motion of magnetically suspended rotor does not only rely on magnetic bearing force but also suffer from the influence of gimbal servo system and spacecraft motion. The coupling torque includes the gyro coupling torque and the inertial coupling torque. The work in this paper provides the foundation for further studies.

  6. Magnetic moments in odd-A Cd isotopes and coupling of particles with zero-point vibrations

    Science.gov (United States)

    Mishev, S.; Voronov, V. V.

    2015-10-01

    Background: The coupling of the last nucleon with configurations in the ground state of the even-even core is known to augment the single quasiparticle fragmentation pattern. In a recent experimental study by Yordanov et al. the values of the magnetic dipole and electric quadrupole moments of the 11 /2- state in a long chain of Cd isotopes were found to follow a simple trend which we try to explain by means of incorporating long-range correlations in the ground state. Purpose: Our purpose is to study the influence of ground-state correlations (GSCs) on the magnetic moments and compare our results with the data for the odd-A Cd isotopes. Method: In order to evaluate if the additional correlations have bearing on the magnetic moments we employ an extension to the quasiparticle-phonon model (QPM) which takes into account quasiparticle ⊗phonon configurations in the ground state of the even-even core affecting the structure of the odd-A nucleus wave function. Results: It is shown that the values for the magnetic moments which the applied QPM extension yields deviate further from the Schmidt values. The latter is in agreement with the measured values for the Cd isotopes. Conclusions: The GSCs exert significant influence on the magnetic dipole moments and reveal a potential for reproducing the experimental values for the studied cadmium isotopes.

  7. Fen (n=1–6) clusters chemisorbed on vacancy defects in graphene: Stability, spin-dipole moment, and magnetic anisotropy

    KAUST Repository

    Haldar, Soumyajyoti

    2014-05-09

    In this work, we have studied the chemical and magnetic interactions of Fen (n=1–6) clusters with vacancy defects (monovacancy to correlated vacancies with six missing C atoms) in a graphene sheet by ab initio density functional calculations combined with Hubbard U corrections for correlated Fe-d electrons. It is found that the vacancy formation energies are lowered in the presence of Fe, indicating an easier destruction of the graphene sheet. Due to strong chemical interactions between Fe clusters and vacancies, a complex distribution of magnetic moments appear on the distorted Fe clusters which results in reduced averaged magnetic moments compared to the free clusters. In addition to that, we have calculated spin-dipole moments and magnetic anisotropy energies. The calculated spin-dipole moments arising from anisotropic spin density distributions vary between positive and negative values, yielding increased or decreased effective moments. Depending on the cluster geometry, the easy axis of magnetization of the Fe clusters shows in-plane or out-of-plane behavior.

  8. A Study of Neutron Star Structure in Strong Magnetic Fields that includes Anomalous Magnetic Moments

    Institute of Scientific and Technical Information of China (English)

    Guang-Jun Mao; Akira Iwamoto; Zhu-Xia Li

    2003-01-01

    We study the effect of strong magnetic fields on the structure of neutronstar. We find that if the interior field is on the same order as the surface fieldcurrently observed, then the influences of the field on the star's mass and radius arenegligible; if the field is as large as that estimated from the scalar virial theorem,then considerable effects will be induced. The maximum mass of the star will beincreased substantially while the central density is greatly reduced. The radius ofa magnetic star can be larger by about 10% ~ 20% than a nonmagnetic star of thesame mass.

  9. Influence of Non—Magnetic Substitutional Atoms on Spontaneous Moment and Curie Temperature of Ce2Co17Compounds

    Institute of Scientific and Technical Information of China (English)

    胡社军; 刘正义; 等

    2002-01-01

    The structure and magnetic properties of Ce2Co17-xMx(M=Ga,Al and Si)compounds for Mcomcentrations up to x=5 were studied by means of X-ray diffraction and magnetic measurements,The experimental results show that the Curie temperatures and Co spontaneous magnetization decrease significantly with increasing the addition of non-magnetic substitutional atoms,and that Si which has a minimum solid solubility ic Ce2Co17causes a largest reduction of Curie temperature,spontaneous magnetization and moment perCo atom compared with Ga and Al.

  10. Influence of Non-Magnetic Substitutional Atoms on Spontaneous Moment and Curie Temperature of Ce2Co17 Compounds

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The structure and magnetic properties of Ce2Co17-xMx(M=Ga,Al and Si) compounds for M concentrations up to x=5 were studied by means of X-ray diffraction and magnetic measurements. The experimental results show that the Curie temperatures and Co spontaneous magnetization decrease significantly with increasing the addition of non-magnetic substitutional atoms, and that Si which has a minimum solid solubility in Ce2Co17 causes a largest reduction of Curie temperature, spontaneous magnetization and moment per Co atom compared with Ga and Al.

  11. The spin and orbital contributions to the total magnetic moments of free Fe, Co, and Ni clusters

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Jennifer; Tombers, Matthias; Wüllen, Christoph van; Niedner-Schatteburg, Gereon, E-mail: gns@chemie.uni-kl.de [Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Peredkov, Sergey; Eberhardt, Wolfgang [Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany and DESY-CFEL, Notkestr. 85, 22607 Hamburg (Germany); Neeb, Matthias [Helmholtz-Zentrum für Materialien und Energie, BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Palutke, Steffen; Martins, Michael; Wurth, Wilfried [Institut für Experimentalphysik, Universität Hamburg, Luruper Chausee 149, 22761 Hamburg (Germany)

    2015-09-14

    We present size dependent spin and orbital magnetic moments of cobalt (Co{sub n}{sup +}, 8 ≤ n ≤ 22), iron (Fe{sub n}{sup +}, 7 ≤ n ≤ 17), and nickel cluster (Ni{sub n}{sup +}, 7 ≤ n ≤ 17) cations as obtained by X-ray magnetic circular dichroism (XMCD) spectroscopy of isolated clusters in the gas phase. The spin and orbital magnetic moments range between the corresponding atomic and bulk values in all three cases. We compare our findings to previous XMCD data, Stern-Gerlach data, and computational results. We discuss the application of scaling laws to the size dependent evolution of the spin and orbital magnetic moments per atom in the clusters. We find a spin scaling law “per cluster diameter,” ∼n{sup −1/3}, that interpolates between known atomic and bulk values. In remarkable contrast, the orbital moments do likewise only if the atomic asymptote is exempt. A concept of “primary” and “secondary” (induced) orbital moments is invoked for interpretation.

  12. Covariant Spectator Theory of np scattering: Deuteron magnetic moment and form factors

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Franz L. [JLAB

    2014-06-01

    The deuteron magnetic moment is calculated using two model wave functions obtained from 2007 high precision fits to $np$ scattering data. Included in the calculation are a new class of isoscalar $np$ interaction currents which are automatically generated by the nuclear force model used in these fits. After normalizing the wave functions, nearly identical predictions are obtained: model WJC-1, with larger relativistic P-state components, gives 0.863(2), while model WJC-2 with very small $P$-state components gives 0.864(2) These are about 1\\% larger than the measured value of the moment, 0.857 n.m., giving a new prediction for the size of the $\\rho\\pi\\gamma$ exchange, and other purely transverse interaction currents that are largely unconstrained by the nuclear dynamics. The physical significance of these results is discussed, and general formulae for the deuteron form factors, expressed in terms of deuteron wave functions and a new class of interaction current wave functions, are given.

  13. The muon magnetic moment in the ${\\rm{2HDM}}$: complete two-loop result

    CERN Document Server

    Cherchiglia, Adriano; Stöckinger, Dominik; Stöckinger-Kim, Hyejung

    2016-01-01

    We study the ${\\rm{2HDM}}$ contribution to the muon anomalous magnetic moment $a_\\mu$ and present the complete two-loop result, particularly for the bosonic contribution. We focus on the Aligned ${\\rm{2HDM}}$, which has general Yukawa coupling constants and is more general than the type I, II, X, Y models. The result is expressed with physical parameters: three Higgs boson masses, Yukawa couplings, two mixing angles, and one quartic potential parameter. We show that the result can be split into several parts, each of which has a simple parameter dependence, and we document the general behavior. Taking into account constraints on parameters, we find that the full ${\\rm{2HDM}}$ contribution to $a_\\mu$ can accommodate the current experimental value, and the complete two-loop bosonic result contribution can amount to $(2\\cdots 4)\\times 10^{-10}$, more than the future experimental uncertainty.

  14. High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon.

    Science.gov (United States)

    Häffner, H; Beier, T; Hermanspahn, N; Kluge, H J; Quint, W; Stahl, S; Verdú, J; Werth, G

    2000-12-18

    We present a new experimental value for the magnetic moment of the electron bound in hydrogenlike carbon (12C5+): g(exp) = 2.001 041 596 (5). This is the most precise determination of an atomic g(J) factor so far. The experiment was carried out on a single 12C5+ ion stored in a Penning trap. The high accuracy was made possible by spatially separating the induction of spin flips and the analysis of the spin direction. The current theoretical value amounts to g(th) = 2.001 041 591 (7). Together experiment and theory test the bound-state QED contributions to the g(J) factor of a bound electron to a precision of 1%.

  15. The muon magnetic moment in the 2HDM: complete two-loop result

    Science.gov (United States)

    Cherchiglia, Adriano; Kneschke, Patrick; Stöckinger, Dominik; Stöckinger-Kim, Hyejung

    2017-01-01

    We study the 2HDM contribution to the muon anomalous magnetic moment a μ and present the complete two-loop result, particularly for the bosonic contribution. We focus on the Aligned 2HDM, which has general Yukawa couplings and contains the type I, II, X, Y models as special cases. The result is expressed with physical parameters: three Higgs boson masses, Yukawa couplings, two mixing angles, and one quartic potential parameter. We show that the result can be split into several parts, each of which has a simple parameter dependence, and we document their general behavior. Taking into account constraints on parameters, we find that the full 2HDM contribution to a μ can accommodate the current experimental value, and the complete two-loop bosonic contribution can amount to (2⋯4) × 10-10, more than the future experimental uncertainty.

  16. Masses and magnetic moments of triple heavy flavour baryons in hypercentral model

    Indian Academy of Sciences (India)

    Bhavin Patel; Ajay Majethiya; P C Vinodkumar

    2009-04-01

    Triple heavy flavour baryons are studied using the hypercentral description of the three-body system. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index . The ground state ($J^{P} = \\dfrac{1}{2}^{+}$ and $\\dfrac{3}{2}^{+}$) masses of heavy flavour baryons are computed for different power index, starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value with respect to variation in p beyond the power index > 1.0. Using the spin-flavour structure of the constituting quarks and by defining effective mass of the confined quarks within the baryons, the magnetic moments are computed with no additional free parameters.

  17. Three-loop QED vacuum polarization and the four-loop muon anomalous magnetic moment

    CERN Document Server

    Baikov, P A

    1995-01-01

    Three--loop contributions to massive QED vacuum polarization are evaluated by a combination of analytical and numerical techniques. The first three Taylor coefficients, at small q^2, are obtained analytically, using d\\/--dimensional recurrence relations. Combining these with analytical input at threshold, and at large q^2, an accurate Pad\\'e approximation is obtained, for all q^2. Inserting this in the one--loop diagram for the muon anomalous magnetic moment, we find reasonable agreement with four--loop, single--electron--loop, muon--anomaly contributions, recently re--evaluated by Kinoshita, using 8--dimensional Monte--Carlo integration. We believe that our new method is at least two orders of magnitude more accurate than the Monte--Carlo approach, whose uncertainties appear to have been underestimated, by a factor of 6.

  18. Four-flavour leading hadronic contribution to the muon anomalous magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [KEK National High Energy Physics, Tsukuba (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)

    2013-11-15

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sup hvp}{sub {mu}}, arising from quark-connected Feynman graphs. It is based on ensembles featuring N{sub f}=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a{sup hvp}{sub {mu}}. Our final result involving an estimate of the systematic uncertainty a{sup hvp}{sub {mu}}=6.74(21)(18) x 10{sup -8} shows a good overall agreement with these computations.

  19. Leading SU(3)-breaking corrections to the baryon magnetic moments in Chiral Perturbation Theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We calculate the baryon magnetic moments using covariant Chiral Perturbation Theory ($\\chi$PT) within the Extended-on-mass-shell (EOMS) renormalization scheme. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3) breaking effects coming from the lowest-order loops. This success is in dramatic contrast with previous attempts at the same order using Heavy Baryon (HB) $\\chi$PT and covariant Infrared (IR) $\\chi$PT. We also analyze the source of this improvement with particular attention on the comparison between the covariant results, and conclude that SU(3) baryon $\\chi$PT coverges better within the EOMS renormalization scheme.

  20. Magnetic moment of $^{17}$Ne using beta -NMR and tilted foil polarization

    CERN Document Server

    Baby, L T; Hass, M; Haas, H; Weissman, L; Brown, B A

    2004-01-01

    We report on the measurement of the magnetic moment of the ground state of /sup 17/Ne. Radioactive /sup 17/Ne nuclei were delivered from the high resolution mass separator at ISOLDE onto a high voltage platform at -200 kV and were polarized using the tilted foil polarization method. The polarized nuclei were implanted into a Pt stopper situated in a liquid-helium cooled beta -NMR apparatus and the asymmetry destruction of the ensuing beta rays was monitored as a function of the rf frequency applied to the polarized nuclei. The measured value of mu = 0.74 +or- 0.03 affirms the nu p/sub 1/2//sup - / nature of the ground state of /sup 17/Ne and is compared to shell model calculations. (10 refs).

  1. Mass and magnetic dipole moment of negative-parity heavy baryons with spin-3/2

    Science.gov (United States)

    Azizi, K.; Sundu, H.

    2017-01-01

    We calculate the mass and residue of the heavy spin-3/2 negative-parity baryons with single heavy bottom or charm quark by use of a two-point correlation function. We use the obtained results to investigate the diagonal radiative transitions among the baryons under consideration. In particular, we compute corresponding transition form factors via light cone QCD sum rules, which are then used to obtain the magnetic dipole moments of the heavy spin-3/2 negative-parity baryons. We remove the pollutions coming from the positive-parity spin-3/2 and positive/negative-parity spin-1/2 baryons by constructing sum rules for different Lorentz structures. We compare the results obtained with the existing theoretical predictions.

  2. Neutrino transition magnetic moments within the non-standard neutrino-nucleus interactions

    Science.gov (United States)

    Papoulias, D. K.; Kosmas, T. S.

    2015-07-01

    Tensorial non-standard neutrino interactions are studied through a combined analysis of nuclear structure calculations and a sensitivity χ2-type of neutrino events expected to be measured at the COHERENT experiment, recently planned to operate at the Spallation Neutron Source (Oak Ridge). Potential sizeable predictions on transition neutrino magnetic moments and other electromagnetic parameters, such as neutrino milli-charges, are also addressed. The non-standard neutrino-nucleus processes, explored from nuclear physics perspectives within the context of quasi-particle random phase approximation, are exploited in order to estimate the expected number of events originating from vector and tensor exotic interactions for the case of reactor neutrinos, studied with TEXONO and GEMMA neutrino detectors.

  3. Final results on the neutrino magnetic moment from the MUNU experiment

    CERN Document Server

    Daraktchieva, Z; Avenier, M; Broggini, C; Busto, J; Cerna, C; Juget, F R; Koang, D H; Lamblin, J; Lebrun, D; Link, O; Puglierin, G; Stutz, A; Tadsen, A; Vuilleumier, J L; Zacek, V

    2005-01-01

    The MUNU detector was designed to study neutrino-electron elastic scattering at low energy. The central component is a Time Projection Chamber filled with CF4 gas, surrounded by an anti-Compton detector. The experiment was carried out at the Bugey (France) nuclear reactor. In this paper we present the final analysis of the data recorded at 3 bar and 1 bar pressure. Both the energy and the scattering angle of the recoil electron are measured. From the 3 bar data a new upper limit on the neutrino magnetic moment was derived. At 1 bar electron tracks down to 150 keV were reconstructed, demonstrating the potentiality of the experimental technique for future applications in low energy neutrino physics.

  4. Radiative corrections to the magnetic moments of the proton and the neutron

    CERN Document Server

    Kaiser, N

    2016-01-01

    We estimate the radiative corrections of order $\\alpha/\\pi$ to the magnetic moments of the proton and the neutron. The photon-loop diagram of the vertex-correction type is evaluated with phenomenological nucleon vector form factors. Infrared-finiteness and gauge-invariance require the inclusion of the wave-function renormalization factor from the self-energy diagram. Using recent empirical form factor parametrizations the corrections amount to $\\delta\\kappa_p= -3.42 \\cdot 10^{-3}$ and $\\delta\\kappa_n= 1.34 \\cdot 10^{-3}$. We study also the effects from photon-loops with internal $\\Delta(1232)$-isobars. For two customary versions of the $\\Delta N\\gamma $-vertex and spin-3/2 propagator, these radiative corrections have values of $\\delta\\kappa_p^{(\\Delta)}= (-0.9,\\, 0.0)\\!\\cdot\\! 10^{-3}$ and $\\delta\\kappa_n^{(\\Delta)} = (1.2,\\,-0.8)\\!\\cdot\\! 10^{-3}$, respectively.

  5. Reactor monitoring and safeguards using antineutrino detectors

    CERN Document Server

    Bowden, N S

    2008-01-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

  6. Enhancement of the Co magnetic moment in bcc Co1-xMnx on MgO

    Science.gov (United States)

    Snow, Ryan; Bhatkar, Harsh; N'diaye, Alpha; Arenholz, Elke; Idzerda, Yves; Montana State University Team; Lawrence Berkeley National Laboratries Team

    Using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (MCD), we show that the elemental Co moment for MBE grown thin films of bcc Co1-xMnx grown on MgO(001) is enhanced by 40% to a maximum value of 2.1 μB at x =0.24. The net Mn moment is found to align parallel with Co for all concentrations and remains roughly constant until x =0.3, then drops steadily, up to x =0.7, where the total moment of the film abruptly collapses to zero. Using a low-concentration Mn moment of 3.0 μB, the average magnetization lies directly on the Slater-Pauling (SP) curve for concentrations up to about x =.25, where it reaches a maximum moment of 2.3 μB /atom. This peak is slightly shifted and the slope is steeper on the high-Mn concentration side of the peak relative to the standard SP curve. This is in stark contrast to the fcc CoMn and hcp CoCr bulk behavior which shows only a rapid total moment reduction with Mn concentration. This material is based upon work supported by the National Science Foundation under Grant ECCS-1542210. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Con.

  7. Effect of electron-electron interaction on the magnetic moment and susceptibility of a parabolic GaAs quantum dot

    Science.gov (United States)

    Boda, Aalu; Kumar, D. Sanjeev; Sankar, I. V.; Chatterjee, Ashok

    2016-11-01

    The problem of a parabolically confined two-dimensional semiconductor GaAs quantum dot with two interacting electrons in the presence of an external magnetic field and the spin-Zeeman interaction is studied using a method of numerical diagonalization. The energy spectrum is calculated as a function of the magnetic field. The magnetic moment (M) and the magnetic susceptibility (χ) show zero temperature diamagnetic peaks due to the exchange induced singlet-triplet transitions. The position and the number of these peaks depend both on the confinement strength of the quantum dot and the strength of the electron-electron interaction (β) .

  8. Synthesis of high magnetic moment soft magnetic nanocomposite powders for RF filters and antennas

    Science.gov (United States)

    Chinnasamy, Chins; Malallah, Yaaqoub; Jasinski, Melania M.; Daryoush, Afshin S.

    2015-04-01

    Fe60Co40 alloy nanoparticles with an average particle size of 30 nm were successfully synthesized in gram scale batches using the modified polyol process. The X-ray diffraction and microstructure studies clearly show the formation of the alloy nanoparticles. The saturation magnetization for the gram scale synthesized Fe60Co40 alloy nanoparticles is in the range of 190-205 emu/g at room temperature. The as-synthesized nanoparticles were used to fabricate transmission lines on FR4 substrate to perform radio frequency (RF) characterization of the nanoparticles at ISM RF bands of interest (all in GHz range). The complex permeability extraction of composite Fe60Co40 nanoparticles were performed using perturbation technique applied to microstrip transmission lines by relative measurement of full two port scattering parameter with respect to a baseline FR4 substrate. The extracted results show attractive characteristics for small size antennas and filters.

  9. Daya Bay Antineutrino Detector Gas System

    CERN Document Server

    Band, H R; Chu, M-C; Heeger, K M; Kwok, M W; Shih, K; Wise, T; Xiao, Q

    2012-01-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experiment. This constant flush also prevents the infiltration of radon or other contaminants into these detecting liquids keeping the internal backgrounds low. Since the Daya Bay antineutrino detectors are immersed in the large water pools of the muon veto system, other gas volumes are needed to protect vital detector cables or gas lines. These volumes are also purged with dry gas. Return gas is monitored for oxygen content and humidity to provide early warning of potentially damaging leaks. The design and performance of the Daya...

  10. Reactor Antineutrinos: From Confusion to Clarity

    Science.gov (United States)

    Dwyer, Dan

    2016-09-01

    Antineutrinos emitted by nuclear reactors have been a powerful tool for particle physics, demonstrating the existence of these weakly-interacting particles as well as their flavor oscillation. Despite these successes, our understanding of the total flux and energy spectra of reactor antineutrinos has been fraught with problems. I will give a brief overview of the unexpected developments in this field, and discuss upcoming measurements of antineutrinos, beta decays, and nuclear fission which are relevant to these questions. These measurements are expected to clarify many currently murky issues, including the hypothetical oscillation of reactor antineutrinos to sterile states. The results should also provide a unique perspective into the nuclear physics of fission reactors. DOE OHEP DE-AC02-05CH11231.

  11. Web Application for Modeling Global Antineutrinos

    CERN Document Server

    Barna, Andrew

    2015-01-01

    Electron antineutrinos stream freely from rapidly decaying fission products within nuclear reactors and from long-lived radioactivity within Earth. Those with energy greater than 1.8 MeV are regularly observed by several kiloton-scale underground detectors. These observations estimate the amount of terrestrial radiogenic heating, monitor the operation of nuclear reactors, and measure the fundamental properties of neutrinos. The analysis of antineutrino observations at operating detectors or the planning of projects with new detectors requires information on the expected signal and background rates. We present a web application for modeling global antineutrino energy spectra and detection rates for any surface location. Antineutrino sources include all registered nuclear reactors as well as the crust and mantle of Earth. Visitors to the website may model the location and power of a hypothetical nuclear reactor, copy energy spectra, and analyze the significance of a selected signal relative to background.

  12. Correlation of magnetic moments and angular momenta for stars and planets

    CERN Document Server

    Dolginov, A

    2016-01-01

    The observed correlation of the angular momenta $L^{ik}$ and magnetic moments $\\mu_{lm}$ of celestial bodies (the Sun, planets and stars) was discussed by many authors but without any explanation. In this paper a possible explanation of this phenomenon is suggested. It is shown that the function $\\Phi_{lm} =(\\eta/r_g)L^{ik}R_{iklm}$ satisfy Maxwell equations and can be considered as a function which determine the electro-magnetic properties of rotating heavy bodies. The $R_{iklm}$ is the Riemann tensor, which determines the gravitational field of the body, $r_g$ is the gravitational radius of the body, and $\\eta$ is the constant which has to be determined by observations. The field $\\Phi_{lm}$ describe the observed $\\mu \\leftrightarrow L$ correlation. In particular the function $\\Phi_{l0}$ describe the electric field created by rotating heavy bodies. It is possible that the observed electric field of the Earth is created by the Earth rotation

  13. Squids, snakes, and polarimeters: A new technique for measuring the magnetic moments of polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, P.R.; Luccio, A.U.; Shea, T.J.; Tsoupas, N. [Brookhaven National Laboratory, Upton, New York 11973 (United States of America); Goldberg, D.A. [Lawrence Berkeley Laboratory, Berkeley, California (United States of America)

    1997-01-01

    Effective polarimetry at high energies in hadron and lepton synchrotrons has been a long-standing and difficult problem. In synchrotrons with polarized beams it is possible to cause the direction of the polarization vector of a given bunch to alternate at a frequency which is some subharmonic of the rotation frequency. This can result in the presence of lines in the beam spectrum which are due only to the magnetic moment of the beam and which are well removed from the various lines due to the charge of the beam. The magnitude of these lines can be calculated from first principles. They are many orders of magnitude weaker than the Schottky signals. Measurement of the magnitude of one of these lines would be an absolute measurement of beam polarization. For measuring magnetic field, the Superconducting Quantum Interference Device, or squid, is about five orders of magnitude more sensitive than any other transducer. Using a squid, such a measurement might be accomplished with the proper combination of shielding, pickup loop design, and filtering. The resulting instrument would be fast, non-destructive, and comparatively cheap. In addition, techniques developed in the creation of such an instrument could be used to measure the Schottky spectrum in unprecedented detail. We present specifics of a polarimeter design for the Relativistic Heavy Ion Collider (RHIC) and briefly discuss the possibility of using this technique to measure polarization at high-energy electron machines like LEP and HERA. {copyright} {ital 1997 American Institute of Physics.}

  14. Measurement of Magnetic Field Uniformity For a Neutron Electric Dipole Moment Detector with New Lead Endcaps

    Science.gov (United States)

    Kulkarni, Anita; Filippone, Bradley; Slutsky, Simon; Swank, Christopher; Carr, Robert; Osthelder, Charles; Biswas, Aritra; Molina, Daniel

    2016-09-01

    Over the last several decades, physicists have been measuring the neutron electric dipole moment (nEDM) with greater and greater sensitivity. The latest experiment we are developing will have 100 times more sensitivity than the previous leading experiment. A nonzero nEDM could, among other consequences, explain the presence of more matter than antimatter in the universe. To measure the nEDM with high accuracy, it is necessary to have a very uniform magnetic field inside the detector since non-uniformities can create false signals via the geometric phase effect. One way to improve field uniformity is to add superconducting lead endcaps to the detector, which constrain the fields at their surfaces to be parallel to them. Here, we test how the endcaps improve field uniformity by measuring the magnetic field at various points in a 1/3-scale experimental volume, inferring what the field must be at all other points, and calculating gradients in the field. This knowledge could help guide further steps needed to improve field uniformity and characterize limitations to the sensitivity of nEDM measurements for the full-scale experiment. Rose Hills Foundation, National Science Foundation Grant 1506459, and Department of Energy.

  15. Structural, magnetic, and electronic properties of high moment FeCo nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zehani, K., E-mail: zehani@icmpe.cnrs.fr [CMTR, ICMPE, UMR7182, CNRS – Université Paris Est Créteil, 2-8 rue Henri Dunant, F-94320 Thiais (France); Bez, R. [CMTR, ICMPE, UMR7182, CNRS – Université Paris Est Créteil, 2-8 rue Henri Dunant, F-94320 Thiais (France); LMOP, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Boutahar, A. [LPMMAT, Université Hassan II, Faculté des Sciences Ain Chock, B.P.5366 Maârif, Route d’El Jadida, km-8, Casablanca (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Lassri, H. [LPMMAT, Université Hassan II, Faculté des Sciences Ain Chock, B.P.5366 Maârif, Route d’El Jadida, km-8, Casablanca (Morocco); Moscovici, J. [CMTR, ICMPE, UMR7182, CNRS – Université Paris Est Créteil, 2-8 rue Henri Dunant, F-94320 Thiais (France); Mliki, N. [LMOP, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Bessais, L. [CMTR, ICMPE, UMR7182, CNRS – Université Paris Est Créteil, 2-8 rue Henri Dunant, F-94320 Thiais (France)

    2014-04-05

    projected density of state functions, as well as the magnetic moment for different atoms in Fe{sub 55}Co{sub 45} alloys and cobalt ferrite.

  16. Neutrino Data and Neutrino-Antineutrino Transition

    CERN Document Server

    Alexeyev, E N

    2005-01-01

    A problem, whether a neutrino-antineutrino transition could be responsible for the muon neutrino deficit found in underground experiments (Super-Kamiokande, MACRO, Soudan 2) and in the accelerator long-baseline K2K experiment, is discussed in this paper. The intention of the work is not consideration of concrete models for muon neutrino-antineutrino transition but a desire to attract an attention to another possibility of understanding the nature of the measured muon neutrino deficit in neutrino experiments.

  17. The hadronic light-by-light contribution to the muon anomalous magnetic moment and renormalization group for EFT

    Directory of Open Access Journals (Sweden)

    Abyaneh Mehran Zahiri

    2012-12-01

    Full Text Available We give a short overview of the theory of the muon anomalous magnetic moment with emphasis on the hadronic light-by-light and the pion loop contribution. We explain the difference between the hidden local symmetry and full VMD pion loop and discuss leading logarithms in the anomalous sector of 2-flavour chiral perturbation theory.

  18. The hadronic light-by-light contribution to the muon anomalous magnetic moment and renormalization group for EFT

    CERN Document Server

    Bijnens, Johan

    2012-01-01

    We give a short overview of the theory of the muon anomalous magnetic moment with emphasis on the hadronic light-by-light and the pion loop contribution. We explain the difference between the hidden local symmetry and full VMD pion loop and discuss leading logarithms in the anomalous sector of 2-flavour chiral perturbation theory.

  19. Bounds on the magnetic moment of the τ-neutrino via the process e+e-→v(v)γ

    Institute of Scientific and Technical Information of China (English)

    C.Aydin; M.Bayar; N.Kilic

    2008-01-01

    Using Breit-Wigner resonance relation,bounds on the magnetic moment of the tau-neutrino are calculated through the reaction e+e-→v(v)γ at the neutral boson pole in the framework of a superstringinspired E6 model which has one extra low-energy neutral gauge boson and a LRSM.

  20. Hadronic contributions to the muon anomalous magnetic moment Workshop. $(g-2)_{\\mu}$: Quo vadis? Workshop. Mini proceedings

    CERN Document Server

    Benayoun, Maurice; Blum, Tom; Caprini, Irenel; Colangelo, Gilberto; Czyż, Henryk; Denig, Achim; Dominguez, Cesareo A; Eidelman, Simon; Fischer, Christian S; Gauzzi, Paolo; Guo, Yuping; Hafner, Andreas; Hayakawa, Masashi; Herdoiza, Gregorio; Hoferichter, Martin; Huang, Guangshun; Jansen, Karl; Jegerlehner, Fred; Kloss, Benedikt; Kubis, Bastian; Liu, Zhiqing; Marciano, William; Masjuan, Pere; Meyer, Harvey B; Mibe, Tsutomu; Nyffeler, Andreas; Pascalutsa, Vladimir; Pauk, Vladyslav; Pennington, Michael R; Peris, Santiago; Redmer, Christoph F; Sanchez-Puertas, Pablo; Shwartz, Boris; Solodov, Evgeny; Stoeckinger, Dominik; Teubner, Thomas; Unverzagt, Marc; Vanderhaeghen, Marc; Wolke, Magnus

    2014-01-01

    We present the mini-proceedings of the workshops Hadronic contributions to the muon anomalous magnetic moment: strategies for improvements of the accuracy of the theoretical prediction and $(g-2)_{\\mu}$: Quo vadis?, both held in Mainz from April 1$^{\\rm rst}$ to 5$^{\\rm th}$ and from April 7$^{\\rm th}$ to 10$^{\\rm th}$, 2014, respectively.

  1. Antineutrino monitoring of spent nuclear fuel

    CERN Document Server

    Brdar, Vedran; Kopp, Joachim

    2016-01-01

    Military and civilian applications of nuclear energy have left a significant amount of spent nuclear fuel over the past 70 years. Currently, in many countries world wide, the use of nuclear energy is on the rise. Therefore, the management of highly radioactive nuclear waste is a pressing issue. In this letter, we explore antineutrino detectors as a tool for monitoring and safeguarding nuclear waste material. We compute the flux and spectrum of antineutrinos emitted by spent nuclear fuel elements as a function of time, and we illustrate the usefulness of antineutrino detectors in several benchmark scenarios. In particular, we demonstrate how a measurement of the antineutrino flux can help to re-verify the contents of a dry storage cask in case the monitoring chain by conventional means gets disrupted. We then comment on the usefulness of antineutrino detectors at long-term storage facilities such as Yucca mountain. Finally, we put forward antineutrino detection as a tool in locating underground "hot spots" in ...

  2. Experimental Determination of the Antineutrino Spectrum of the Fission Products of $^{238}$U

    CERN Document Server

    Haag, N; Hofmann, M; Oberauer, L; Potzel, W; Schreckenbach, K; Wagner, F M

    2013-01-01

    An experiment was performed at the scientific neutron source FRM II in Garching to determine the cumulative antineutrino spectrum of the fission products of $^{238}$U. This was achieved by irradiating target foils of natural uranium with a thermal and a fast neutron beam and recording the emitted $\\beta$-spectra with a gamma-suppressing electron-telescope. The obtained $\\beta$-spectrum of the fission products of $^{235}$U was normalized to the data of the magnetic spectrometer BILL of $^{235}$U. This method strongly reduces systematic errors in the $^{238}$U measurement. The $\\beta$-spectrum of $^{238}$U was converted into the corresponding antineutrino spectrum. The final $\\bar\

  3. Single-Molecule Magnetism, Enhanced Magnetocaloric Effect, and Toroidal Magnetic Moments in a Family of Ln4 Squares.

    Science.gov (United States)

    Das, Chinmoy; Vaidya, Shefali; Gupta, Tulika; Frost, Jamie M; Righi, Mattia; Brechin, Euan K; Affronte, Marco; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2015-10-26

    Three cationic [Ln4 ] squares (Ln=lanthanide) were isolated as single crystals and their structures solved as [Dy4 (μ4 -OH)(HL)(H2 L)3 (H2 O)4 ]Cl2 ⋅(CH3 OH)4 ⋅(H2 O)8 (1), [Tb4 (μ4 -OH)(HL)(H2 L)3 (MeOH)4 ]Cl2 ⋅(CH3 OH)4 ⋅(H2 O)4 (2) and [Gd4 (μ4 -OH)(HL)(H2 L)3 (H2 O)2 (MeOH)2 ]Br2 ⋅(CH3 OH)4 ⋅(H2 O)3 (3). The structures are described as hydroxo-centered squares of lanthanide ions, with each edge of the square bridged by a doubly deprotonated H2 L(2-) ligand. Alternating current magnetic susceptibility measurements show frequency-dependent out-of-phase signals with two different thermally assisted relaxation processes for 1, whereas no maxima in χM " appears above 2.0 K for complex 2. For 1, the estimated effective energy barrier for these two relaxation processes is 29 and 100 K. Detailed ab initio studies reveal that complex 1 possesses a toroidal magnetic moment. The ab initio calculated anisotropies of the metal ions in complex 1 were employed to simulate the magnetic susceptibility by using the Lines model (POLY_ANISO) and this procedure yields J1 =+0.01 and J2 =-0.01 cm(-1) for 1 as the two distinct exchange interactions between the Dy(III) ions. Similar parameters are also obtained for complex 1 (and 2) from specific heat measurements. A very weak antiferromagnetic super-exchange interaction (J1 =-0.043 cm(-1) and g=1.99) is observed between the metal centers in 3. The magnetocaloric effect (MCE) was estimated by using field-dependent magnetization and temperature-dependent heat-capacity measurements. An excellent agreement is found for the -ΔSm values extracted from these two measurements for all three complexes. As expected, 3 shows the largest -ΔSm variation (23 J Kg(-1)  K(-1) ) among the three complexes. The negligible magnetic anisotropy of Gd indeed ensures near degeneracy in the (2S+1) ground state microstates, and the weak super-exchange interaction facilitates dense population of low-lying excited states, all of

  4. Theory of anisotropic diamagnetism, local moment magnetization and carrier spin-polarization in Pb1-EuTe

    Indian Academy of Sciences (India)

    R C Patnaik; R K Das; R L Hota; G S Tripathi

    2001-10-01

    We present theoretical analyses of anisotropic lattice diamagnetism, magnetization due to magnetic ions and carrier spin-polarization in the diluted magnetic semiconductor, Pb1-EuTe. The lattice diamagnetism results from orbital susceptibility due to inter band effects and spin-orbit contributions. The spin-orbit contribution is found to be dominant. However, both the contributions show pronounced anisotropy. With increase inx, the diamagnetism decreases. We consider contributions from randomly distributed isolated magnetic ions and clusters of pairs and triads for the local moment magnetization. The isolated magnetic-ion contribution is the dominant one. We calculate the magnetization for two typical magnetic ion concentrations: = 0.03 and = 0.06. Temperature dependence of the magnetization is also considered. Apart from lattice and localized magnetic ions, the carrier contribution to the spin-density is also calculated for a carrier density of = 1018 cm-3. The relative spin-density of carriers increases with increase in the magnetic field strength and magnetic ion concentration. The agreement with experiment where available is reasonably good.

  5. Effect of particle-core-vibration coupling near the double closed $^{132}$Sn nucleus from precise magnetic moment measurements

    CERN Multimedia

    Postma, H; Heyde, K; Walker, P; Grant, I; Veskovic, M; Stone, N; Stone, J

    2002-01-01

    % IS301 \\\\ \\\\ Low temperature nuclear orientation of isotope-separator implanted short-lived radio-isotopes makes possible the measurements of nuclear magnetic dipole moments of oriented ground and excited states with half-lives longer than a few seconds. Coupling schemes characterizing the odd nucleons and ground-state deformations can be extracted from the nuclear moments. \\\\ We thus propose to measure the magnetic dipole moments of $^{127-133}$Sb to high precision using NMR/ON at the NICOLE facility. With (double magic +1) $^{133}$Sb as the reference, the main aim of this experiment is to examine whether the collective component in the 7/2$^+$ Sb ground state magnetic dipole moment varies as expected according to particle-core coupling calculations carried out for the Sb (Z=51) isotopes. Comparison of the 1-proton-particle excitations in Sb to 1-proton-hole states in In nuclei will shed light on differences between particle and hole excitations as understood within the present model. Comparison of ...

  6. Molecular terms, magnetic moments, and optical transitions of molecular ions C60mplus-or-minus

    Science.gov (United States)

    Nikolaev, A. V.; Michel, K. H.

    2002-09-01

    Starting from a multipole expansion of intramolecular Coulomb interactions, we present configuration interaction calculations of the molecular energy terms of the hole configurations (hu)+m, m=2-5, of C60m+ cations, of the electron configurations t1un, n=2-4, of the C60n- anions, and of the exciton configurations (hu+t1u)-, (hu+t1g)- of the neutral C60 molecule. The ground state of C602- is either 3T1g or 1Ag, depending on the energy separation between t1g and t1u levels. There are three close (approx0.03 eV) low lying spin triplets 3T1g, 3Gg, 3T2g for C602+, and three spin quartets 4T1u, 4Gu, 4T2u for C603+, which can be subjected to the Jahn-Teller effect. The number of low lying nearly degenerate states is largest for m=3 holes. We have calculated the magnetic moments of the hole and electron configurations and found that they are independent of molecular orientation with respect to an external magnetic field. The coupling of spin and orbital momenta differs from the atomic case. We analyze the electronic dipolar transitions (t1u)2[right arrow] t1ut1g and (t1u)3 [right arrow](t1u)2t1g for C602- and C603-. Three optical absorption lines (3T1g[right arrow] 3Hu, 3T1u, 3Au) are found for the ground level of C602- and only one line (4Au[right arrow]4T1g) for the ground state of C603-. We compare our results with the experimental data for C60n- in solutions and with earlier theoretical studies.

  7. A nonperturbative calculation of the electron's magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 (United States); Franke, V.A. [St. Petersburg State University, St. Petersburg (Russian Federation); Hiller, J.R. [Department of Physics, University of Minnesota-Duluth, Duluth, MN 55812 (United States)]. E-mail: jhiller@d.umn.edu; McCartor, G. [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States); Paston, S.A. [St. Petersburg State University, St. Petersburg (Russian Federation); Prokhvatilov, E.V. [St. Petersburg State University, St. Petersburg (Russian Federation)

    2004-12-20

    In principle, the complete spectrum and bound-state wave functions of a quantum field theory can be determined by finding the eigenvalues and eigensolutions of its light-cone Hamiltonian. One of the challenges in obtaining nonperturbative solutions for gauge theories such as QCD using light-cone Hamiltonian methods is to renormalize the theory while preserving Lorentz symmetries and gauge invariance. For example, the truncation of the light-cone Fock space leads to uncompensated ultraviolet divergences. We present two methods for consistently regularizing light-cone-quantized gauge theories in Feynman and light-cone gauges: (1) the introduction of a spectrum of Pauli-Villars fields which produces a finite theory while preserving Lorentz invariance; (2) the augmentation of the gauge-theory Lagrangian with higher derivatives. In the latter case, which is applicable to light-cone gauge (A+=0), the A- component of the gauge field is maintained as an independent degree of freedom rather than a constraint. Finite-mass Pauli-Villars regulators can also be used to compensate for neglected higher Fock states. As a test case, we apply these regularization procedures to an approximate nonperturbative computation of the anomalous magnetic moment of the electron in QED as a first attempt to meet Feynman's famous challenge.

  8. Tenth-Order Electron Anomalous Magnetic Moment --- Contribution of Diagrams without Closed Lepton Loops

    CERN Document Server

    Aoyama, T; Kinoshita, T; Nio, M

    2014-01-01

    This paper presents a detailed account of evaluation of the electron anomalous magnetic moment a_e which arises from the gauge-invariant set, called Set V, consisting of 6354 tenth-order Feynman diagrams without closed lepton loops. The latest value of the sum of Set V diagrams evaluated by the Monte-Carlo integration routine VEGAS is 8.726(336)(\\alpha/\\pi)^5, which replaces the very preliminary value reported in 2012. Combining it with other 6318 tenth-order diagrams published previously we obtain 7.795(336)(\\alpha/\\pi)^5 as the complete mass-independent tenth-order term. Together with the improved value of the eighth-order term this leads to a_e(theory)=1 159 652 181.643 (25)(23)(16)(763) \\times 10^{-12}, where first three uncertainties are from the eighth-order term, tenth-order term, and hadronic and elecroweak terms. The fourth and largest uncertainty is from \\alpha^{-1}=137.035 999 049(90), the fine-structure constant derived from the rubidium recoil measurement. a_e(theory) and a_e(experiment) agree wi...

  9. A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation

    CERN Document Server

    Lindner, Manfred; Queiroz, Farinaldo S

    2016-01-01

    We review how the muon anomalous magnetic moment ($g-2$) and the quest for lepton flavor violation are intimately correlated. Indeed the decay $\\mu \\to e \\gamma$ is induced by the same amplitude for different choices of in- and outgoing leptons. In this work, we try to address some intriguing questions such as: Which hierarchy in the charged lepton sector one should have in order to reconcile possible signals coming simultaneously from $g-2$ and LFV? What can we learn if the $g-2$ anomaly is confirmed by the upcoming flagship experiments at FERMILAB and J-PARC, and no signal is seen in the decay $\\mu \\rightarrow e\\gamma$ in the foreseeable future? On the other hand, if the $\\mu \\rightarrow e\\gamma$ decay is seen in the upcoming years, do we need to necessarily observe a signal also in $g-2$? In this attempt, we generally study the correlation between the two phenomena in a detailed analysis of simplified models. We derive master integrals and fully analytical and exact expressions for both phenomena. We inves...

  10. Hadronic contributions to the anomalous magnetic moment of the electron and the hyperfine splitting of muonium

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Daisuke, E-mail: dnomura@tuhep.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Teubner, Thomas [Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX (United Kingdom)

    2013-02-11

    Motivated by recent progress of theory and experiment on the anomalous magnetic moment of the electron, a{sub e}, we update the hadronic contributions to a{sub e}. Using our up-to-date compilation of e{sup +}e{sup -}{yields}hadrons data, we find the leading order hadronic contribution a{sub e}{sup had,LO,VP}=(1.866{+-}0.010{sub exp}{+-}0.005{sub rad}) Dot-Operator 10{sup -12} and the next-to-leading order hadronic contribution a{sub e}{sup had,NLO,VP}=(-0.2234{+-}0.0012{sub exp}{+-}0.0007{sub rad}) Dot-Operator 10{sup -12}, where the first and second errors are from the error of the experimental data and the uncertainty in the treatment of radiative corrections, respectively. These values are compatible with earlier evaluations by other groups, but have significantly improved uncertainties due to the more precise input data used. We also update the leading order hadronic contribution to the ground state hyperfine splitting of muonium, obtaining {Delta}{nu}{sub Mu}{sup had,VP}=(232.68{+-}1.25{sub exp}{+-}0.72{sub rad}) Hz. This value is consistent with the most precise evaluation in the literature and reduces its error by a factor of two.

  11. Tests of hadronic vacuum polarization fits for the muon anomalous magnetic moment

    CERN Document Server

    Golterman, Maarten; Peris, Santiago

    2013-01-01

    We construct a physically motivated model for the isospin-one non-strange vacuum polarization function Pi(Q^2) based on a spectral function given by vector-channel OPAL data from hadronic tau decays for energies below the tau mass and a successful parametrization, employing perturbation theory and a model for quark-hadron duality violations, for higher energies. Using a covariance matrix and Q^2 values from a recent lattice simulation, we then generate fake data for Pi(Q^2) and use it to test fitting methods currently employed on the lattice for extracting the hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This comparison reveals a systematic error much larger than the few-percent total error sometimes claimed for such extractions in the literature. In particular, we find that errors deduced from fits using a Vector Meson Dominance ansatz are misleading, typically turning out to be much smaller than the actual discrepancy between the fit and exact model results. The use of a ...

  12. Tests of hadronic vacuum polarization fits for the muon anomalous magnetic moment

    CERN Document Server

    Golterman, Maarten; Peris, Santiago

    2013-01-01

    Using experimental spectral data for hadronic tau decays from the OPAL experiment, supplemented by a phenomenologically successful parameterization for the high-s region not covered by the data, we construct a physically constrained model of the isospin-one vector-channel polarization function. Having such a model as a function of Euclidean momentum Q^2 allows us to explore the systematic error associated with fits to the Q^2 dependence of lattice data for the hadronic electromagnetic current polarization function which have been used in attempts to compute the leading order hadronic contribution, a_\\mu^HLO, to the muon anomalous magnetic moment. In contrast to recent claims made in the literature, we find that a final error in this quantity of the order of a few percent does not appear possible with current lattice data, given the present lack of precision in the determination of the vacuum polarization at low Q^2. We also find that fits to the vacuum polarization using fit functions based on Vector Meson Do...

  13. Compositional variation of magnetic moment, magnetic anisotropy energy and coercivity in Fe(1- x)M x (M = Co/Ni) nanowires: an ab initio study

    Science.gov (United States)

    Assa Aravindh, S.; Mathi Jaya, S.; Valsakumar, M. C.; Sundar, C. S.

    2012-12-01

    Ab initio simulations are used to investigate the magnetic and electronic properties of freestanding Fe(1- x)M x (M = Co/Ni) nanowires. The stability of the nanowires increases with Co (Ni) addition, as seen from the increase in cohesive energy. With the addition of Co (Ni), the average magnetic moment shows a monotonic decrease, in contrast to the Slater-Pauling behavior observed in bulk Fe-Co/Ni alloys. The magnetic anisotropy energy of the nanowire is observed to change sign, from a parallel alignment of spins along the wire axis, to a perpendicular alignment with the increase of Co and Ni content. The magnetic anisotropy energy variation is seen to be correlated with the orbital moment anisotropy. The coercivity, as calculated using the Jacobs-Bean model is observed to decrease with Co (Ni) addition to the nanowire.

  14. Prospects for antineutrino running at MiniBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Wascko, M.O.; /Louisiana State U.

    2006-02-01

    MiniBooNE began running in antineutrino mode on 19 January, 2006. We describe the sensitivity of MiniBooNE to LSND-like {bar {nu}}{sub e} oscillations and outline a program of antineutrino cross-section measurements necessary for the next generation of neutrino oscillation experiments. We describe three independent methods of constraining wrong-sign (neutrino) backgrounds in an antineutrino beam, and their application to the MiniBooNE antineutrino analyses.

  15. The radiative decay of a neutrino with a magnetic moment in a strong magnetic field with taking account of the positronium influence on the photon dispersion

    Science.gov (United States)

    Mosichkin, A. F.

    2016-02-01

    We study the process of the radiative decay of the neutrino with a magnetic moment in a strong magnetic field, with taking account of the influence of the positronium on the photon dispersion. The positronium contribution into the photon polarization operator leads to an essential modification of the photon dispersion law, and of the neutrino radiative decay amplitude. It has been shown that the probability of the neutrino radiative decay essentially increases under an influence of the positronium on the photon dispersion.

  16. Itinerant and localized magnetic moments in ferrimagnetic Mn{sub 2}CoGa thin films identified with x-ray magnetic linear dichroism: experiment and ab initio theory

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, M.; Schmalhorst, J; Klewe, C.; Reiss, G.; Arenholz, E.; Bohnert, T.; Nielsch, K.

    2011-08-08

    Epitaxial thin films of the half-metallic X{sub a}-compound Mn{sub 2}CoGa (Hg{sub 2}CuTi prototype) were prepared by dc magnetron co-sputtering with different heat treatments on MgO (001) substrates. High-quality lms with a bulk magnetization of 1.95(5) {mu}{sub }B per unit cell were obtained. The average Mn magnetic moment and the Co moment are parallel, in agreement with theory. The x-ray magnetic circular dichroism spectra agree with calculations based on density functional theory and reveal the antiparallel alignment of the two inequivalent Mn moments. X-ray magnetic linear dichroism allows to distinguish between itinerant and localized Mn moments. It is shown that one of the two Mn moments has localized character, whereas the other Mn moment and the Co moment are itinerant.

  17. Workshop applied antineutrino physics 2007

    Energy Technology Data Exchange (ETDEWEB)

    Akiri, T.; Andrieu, B.; Anjos, J.; Argyriades, J.; Barouch, G.; Bernstein, A.; Bersillon, O.; Besida, O.; Bowden, N.; Cabrera, A.; Calmet, D.; Collar, J.; Cribier, M.; Kerret, H. de; Meijer, R. de; Dudziak, F.; Enomoto, S.; Fallot, M.; Fioni, G.; Fiorentini, G.; Gale, Ph.; Georgadze, A.; Giot, L.; Gonin, M.; Guillon, B.; Henson, C.; Jonkmans, G.; Kanamaru, S.; Kawasaki, T.; Kornoukhov, V.; Lasserre, Th.; Learned, J.G.; Lefebvre, J.; Letourneau, A.; Lhillier, D.; Lindner, M.; Lund, J.; Mantovani, F.; Mcdonough, B.; Mention, G.; Monteith, A.; Motta, D.; Mueller, Th.; Oberauer, L.; Obolensky, M.; Odrzywolek, A.; Petcov, S.; Porta, A.; Queval, R.; Reinhold, B.; Reyna, D.; Ridikas, D.; Sadler, L.; Schoenert, St.; Sida, J.L.; Sinev, V.; Suekane, F.; Suvorov, Y.; Svoboda, R.; Tang, A.; Tolich, N.; Tolich, K.; Vanka, S.; Vignaud, D.; Volpe, Ch.; Wong, H

    2007-07-01

    The 'Applied Antineutrino Physics 2007' workshop is the fourth international meeting devoted to the opening of the neutrino physics to more applied fields, such as geophysics and geochemistry, nuclear industry, as well as the nonproliferation. This meeting highlights the world efforts already engaged to exploit the single characteristics of the neutrinos for the control of the production of plutonium in the civil nuclear power reactor. The potential industrial application of the measurement of the thermal power of the nuclear plants by the neutrinos is also approached. earth neutrinos were for the first time highlighted in 2002 by the KamLAND experiment. Several international efforts are currently underway to use earth neutrinos to reveal the interior of the Earth. This meeting is an opportunity to adapt the efforts of detection to the real needs of geophysicists and geochemists (sources of radiogenic heat, potassium in the court, feathers.) Finally more futuristic topics such as the detection of nuclear explosions, of low powers, are also discussed. This document gathers only the slides of the presentations.

  18. Measurement of a false electric dipole moment signal from $^{199}$Hg atoms exposed to an inhomogeneous magnetic field

    CERN Document Server

    Afach, S; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Geltenbort, P; Green, K; van der Grinten, M G D; Grujic, Z; Harris, P G; Heil, W; Hélaine, V; Henneck, R; Horras, M; Iaydjiev, P; Ivanov, S N; Kasprzak, M; Kermaïdic, Y; Kirch, K; Knowles, P; Koch, H -C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Prashant, P N; Quéméner, G; Rebreyend, D; Ries, D; Roccia, S; Schmidt-Wellenburg, P; Severijns, N; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G

    2015-01-01

    We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for $^{199}{\\rm Hg}$ atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations.

  19. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    OpenAIRE

    Djurcic, Z.(Argonne National Laboratory, Argonne, Illinois, 60439, U.S.A.); Detwiler, J. A.; Piepke, A.; Foster Jr., V. R.; Miller, L.; Gratta, G.

    2008-01-01

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

  20. Magnetic moments of confined quarks and baryons in an independent-quark model based on Dirac equation with power-law potential

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Das, M.

    1983-12-01

    The effect of confinement on the magnetic moment of a quark has been studied in a simple independent-quark model based on the Dirac equation with a power-law potential. The magnetic moments so obtained for the constituent quarks, which are found to be significantly different from their corresponding Dirac moments, are used in predicting the magnetic moments of baryons in the nucleon octet as well as those in the charmed and b-flavored sectors. We not only get an improved result for the proton magnetic moment, but the calculation for the rest of the nucleon octet also turns out to be in reasonable agreement with experiment. The overall predictions for the charmed and b-flavored baryons are also comparable with other model predictions.

  1. Plasma induced neutrino spin-flip in a supernova and new bounds on the neutrino magnetic moment

    CERN Document Server

    Kuznetsov, A V

    2007-01-01

    The neutrino chirality-flip process under the conditions of the supernova core is investigated in detail with the plasma polarization effects in the photon propagator taken into account in a more complete form than in earlier publications. It is shown in part that the contribution of the proton fraction of plasma is essential. New upper bounds on the neutrino magnetic moment are obtained: mu_nu < (0.5 - 1.1) 10^{-12} mu_B from the limit on the supernova core luminosity for nu_R emission, and mu_nu < (0.4 - 0.6) 10^{-12} mu_B from the limit on the averaged time of the left-handed neutrino washing out. The best upper bound on the neutrino magnetic moment from SN1987A is improved by the factor of 3 to 7.

  2. Detection of Antineutrinos for Non-Proliferation

    CERN Document Server

    Nieto, M M; Teeter, C M; Wilson, W B; Stanbro, W D; Nieto, Michael Martin; Teeter, Corinne M.; Wilson, William B.; Stanbro, William D.

    2003-01-01

    We discuss the feasibility of using the detection of electron antineutrinos produced in fission to monitor the time dependence of the Plutonium content of nuclear power reactors and large (> 1 MWatt) research reactors. If practical such a scheme would allow world-wide, automated monitoring of reactors and, thereby, the detection of proliferation attempts. Although this idea shows some promise, we find that a practical scheme is difficult to envision. We also consider using fission antineutrino spectra to determine and attribute the fuel in an unexploded nuclear device. We find it would not be possible to determine the isotopic content of such a device in this manner. Finally, we examine the possibility of antineutrino detection of an unannounced low-yield (~ 1kton) nuclear explosion. We argue this can be ruled out completely.

  3. Applied Anti-neutrino Physics 2013

    CERN Document Server

    2013-01-01

    This year, the 9th annual Applied Antineutrino Physics Workshop will be hosted by Sejong University, at the COEX conference center in Seoul South Korea. The workshop will be held on November 1(Friday) - 2(Saturday), 2013. Conveniently for many travelers, it takes place directly after and at the same venue as the 2013 IEEE Nuclear Science Symposium (http://www.nss-mic.org/2013/NSSMain.asp) Applied Antineutrino Physics describes an ensemble of experimental and theoretical efforts which aim to use the antineutrino signal from nuclear reactors, and from the Earth itself, in order to address practical problems in nonproliferation and geology respectively. Since the 2004 inception of these workshops, groups worldwide have made considerable advances in defining and expanding the field, garnering interest from the International Atomic Energy Agency (IAEA), which administers the worlds most important nonproliferation regime, and from the geology/geophysics community. This meeting will focus on the current activi...

  4. Antineutrino induced antikaon production off the nucleon

    CERN Document Server

    Alam, M Rafi; Athar, M Sajjad; Vacas, M J Vicente

    2011-01-01

    The charged current antikaon production off nucleons induced by antineutrinos is studied at low and intermediate energies. We extend here our previous calculation on kaon production induced by neutrinos. We have developed a microscopic model that starts from the SU(3) chiral Lagrangians and includes background terms and the resonant mechanisms associated to the lowest lying resonance in the channel, namely, the Sigma*(1385). Our results could be of interest for the background estimation of various neutrino oscillation experiments like MiniBooNE and SuperK. They can also be helpful for the planned antineutrino experiments like MINERvA, NOvA and T2K phase II and for beta-beam experiments with antineutrino energies around 1 GeV.

  5. Magnetic moment and lifetime measurements of Coulomb-excited states in 106Cd

    Science.gov (United States)

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K.-H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Wiens, A.

    2016-09-01

    Background: The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Purpose: Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. Results: The g factors of the 21+ and 41+ states in 106Cd were measured to be g (21+)=+0.398 (22 ) and g (41+)=+0.23 (5 ) . A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ (106Cd;21+)=7.0 (3 )ps and τ (106Cd;41+)=2.5 (2 )ps . The mean life τ (106Cd;22+)=0.28 (2 )ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ (106Cd;43+)=1.1 (1 )ps and τ (106Cd;31-)=0.16 (1 )ps were determined for the first time. Conclusions: The newly measured g (41+) of 106Cd is found to be only 59% of the g (21+) . This difference cannot be explained by either shell-model or collective-model calculations.

  6. Tenth-order electron anomalous magnetic moment: Contribution of diagrams without closed lepton loops

    Science.gov (United States)

    Aoyama, Tatsumi; Hayakawa, Masashi; Kinoshita, Toichiro; Nio, Makiko

    2015-02-01

    This paper presents a detailed account of the evaluation of the electron anomalous magnetic moment ae which arises from a gauge-invariant set, called Set V, consisting of 6354 tenth-order Feynman diagrams without closed lepton loops. The latest value of the sum of Set V diagrams evaluated by the Monte Carlo integration routine VEGAS is 8.726 (336 )(α /π )5 , which replaces the very preliminary value reported in 2012. Combining it with 6318 previously published tenth-order diagrams, we obtain 7.795 (336 )(α /π )5 as the complete mass-independent tenth-order term. Together with the improved value of the eighth-order term this leads to ae(theory)=1 159 652 181.643 (25 )(23 )(16 )(763 )×1 0-12 , where the first three uncertainties are from the eighth-order, tenth-order, and hadronic and elecroweak terms. The fourth and largest uncertainty is from α-1=137.035 999 049 (90 ) , the fine-structure constant derived from the rubidium recoil measurement. Thus, ae(experiment)-ae(theory)=-0.91 (0.82 )×1 0-12 . Assuming the validity of the standard model, we obtain the fine-structure constant α-1(ae)=137.035 999 1570 (29 )(27 )(18 )(331 ) , where uncertainties are from the eighth-order, tenth-order, and hadronic and electroweak terms, and the measurement of ae. This is the most precise value of α available at present and provides a stringent constraint on possible theories beyond the standard model.

  7. Evolution of calculations of the virtual dipole moment of the Earth for reconstructing the oceanic inversion magnetic layer's parameters

    Science.gov (United States)

    Schreider, A. A.; Ignatova, A. A.; Schreider, Al. A.; Sajneva, A. E.; Varga, P.; Denis, C.

    2016-05-01

    The VDM (virtual dipole moment) is one of the most significant characteristics describing the behavior of the time evolution of the terrestrial magnetic field. However, we have revealed that the formulas with which VDM calculations are performed often do not coincide with each other in various literature sources. Hence, results are obtained from these calculations that cannot be identical. Their correctness is verified by comparing the dimension and obtained results with the known value of the VDM for our time.

  8. Magnetic moment for the negative parity Λ → Σ0 transition in light cone QCD sum rules

    Science.gov (United States)

    Aliev, T. M.; Savcı, M.

    2016-07-01

    The magnetic moment of the Λ →Σ0 transition between negative parity baryons is calculated in framework of the QCD sum rules approach by using the general form of the interpolating currents. The pollution arising from the positive-to-positive, and positive-to-negative parity baryons is eliminated by constructing the sum rules for different Lorentz structures. A comparison of our result with the predictions of the results of other approaches for the positive parity baryons is presented.

  9. Magnetic moments in odd-A Cd isotopes and coupling of particles with zero-point vibrations

    CERN Document Server

    Mishev, S

    2015-01-01

    Background: The coupling of the last nucleon with configurations in the ground state of the even-even core is known to augment the single quasiparticle fragmentation pattern. In a recent experimental study by Yordanov \\emph{et al.} the values of the magnetic dipole and electric quadrupole moments of the $11/2^-$ state in a long chain of Cd isotopes were found to follow a simple trend which we try to explain by means of incorporating long-range correlations in the ground state. Purpose: Our purpose is to study the influence of the ground-state correlations (GSC) on the magnetic moments and compare our results with the data for the odd-A Cd isotopes. Method: In order to evaluate if the additional correlations have bearing on the magnetic moments we employ an extension to the quasiparticle-phonon model (QPM) which takes into account quasiparticle$\\otimes$phonon configurations in the ground state of the even-even core to the structure of the odd-A nucleus wave function. Results: It is shown that the values for th...

  10. Changes in mean-squared charge radii and magnetic moments of Tl-184179 measured by in-source laser spectroscopy

    Science.gov (United States)

    Barzakh, A. E.; Andreyev, A. N.; Cocolios, T. E.; de Groote, R. P.; Fedorov, D. V.; Fedosseev, V. N.; Ferrer, R.; Fink, D. A.; Ghys, L.; Huyse, M.; Köster, U.; Lane, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Molkanov, P. L.; Procter, T. J.; Rapisarda, E.; Rothe, S.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van Beveren, C.; Van Duppen, P.; Venhart, M.; Veselský, M.

    2017-01-01

    Hyperfine structure and isotope shifts have been measured for the ground and isomeric states in the neutron-deficient isotopes Tl-184179 using the 276.9-nm transition. The experiment has been performed at the CERN-Isotope Separator On-Line facility using the in-source resonance-ionization laser spectroscopy technique. Spins for the ground states in 179,181,183Tl have been determined as I =1 /2 . Magnetic moments and changes in the nuclear mean-square charge radii have been deduced. By applying the additivity relation for magnetic moments of the odd-odd Tl nuclei the leading configuration assignments were confirmed. A deviation of magnetic moments for isomeric states in Tl,184182 from the trend of the heavier Tl nuclei is observed. The charge radii of the ground states of the isotopes Tl-184179 follow the trend for isotonic (spherical) lead nuclei. The noticeable difference in charge radii for ground and isomeric states of Tl,184183 has been observed, suggesting a larger deformation for the intruder-based 9 /2- and 10- states compared to the ground states. An unexpected growth of the isomer shift for 183Tl has been found.

  11. Using the Dipolar and Quadrupolar Moments to Improve Solar-Cycle Predictions Based on the Polar Magnetic Fields

    CERN Document Server

    Muñoz-Jaramillo, Andrés; DeLuca, Edward E

    2013-01-01

    The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth's upper atmosphere (commonly referred to as space weather and climate). In recent years there has been an effort to develop accurate solar cycle predictions, leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. Here we show that cycle predictions can be made more accurate if performed separately for each hemisphere, taking advantage of information about both the dipolar and quadrupolar moments of the solar magnetic field during minimum.

  12. X-ray magnetic circular dichroism: Orbital and spin moments of iron single-crystal thin film deposited on MgO substrate

    Institute of Scientific and Technical Information of China (English)

    LI Honghong; WANG Jie; LI Ruipeng; GUO Yuxian; WANG Feng; HU Zhiwei

    2005-01-01

    X-ray magnetic circular dichroism in absorption of the single-crystal iron layer deposited epitaxially on MgO substrate is studied. Spin and orbital moment, 0.069 and 2.33 -B, respectively, are calculated in terms of the XMCD sum rules. Our results are accordant to those published. Experiments show that the orbital moment would be decreased to that in bulk materials as iron film is thinned down, but spin moment changes little.

  13. Reactor antineutrino fluxes - status and challenges

    CERN Document Server

    Huber, Patrick

    2016-01-01

    In this contribution we describe the current understanding of reactor antineutrino fluxes and point out some recent developments. This is not intended to be a complete review of this vast topic but merely a selection of observations and remarks, which despite their incompleteness, will highlight the status and the challenges of this field.

  14. Reactor antineutrino fluxes – Status and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Patrick, E-mail: pahuber@vt.edu

    2016-07-15

    In this contribution we describe the current understanding of reactor antineutrino fluxes and point out some recent developments. This is not intended to be a complete review of this vast topic but merely a selection of observations and remarks, which despite their incompleteness, will highlight the status and the challenges of this field.

  15. Kinetics of local "magnetic" moment and non-stationary spin-polarized current in the single impurity Anderson-model

    Science.gov (United States)

    Maslova, N. S.; Mantsevich, V. N.; Arseyev, P. I.

    2017-02-01

    We perform theoretical investigation of the localized state dynamics in the presence of interaction with the reservoir and Coulomb correlations. We analyze kinetic equations for electron occupation numbers with different spins taking into account high order correlation functions for the localized electrons. We reveal that in the stationary state electron occupation numbers with the opposite spins always have the same value - the stationary state is a "paramagnetic" one. "Magnetic" properties can appear only in the non-stationary characteristics of the single-impurity Anderson model and in the dynamics of the localized electrons second order correlation functions. We found, that for deep energy levels and strong Coulomb correlations, relaxation time for initial "magnetic" state can be several orders larger than for "paramagnetic" one. So, long-living "magnetic" moment can exist in the system. We also found non-stationary spin polarized currents flowing in opposite directions for the different spins in the particular time interval.

  16. Evidence for local moment magnetism in superconducting FeTe0.35 Se 0.65

    Science.gov (United States)

    Xu, Guangyong; Xu, Zhijun; Wen, Jinsheng; Chi, Songxue; Ku, Wei; Gu, Genda; Tranquada, John

    2011-03-01

    We investigate the temperature evolution (from 5~K to 300~K) of low energy spin fluctuations in Fe-based superconductor FeTe 0.35 Se 0.65 (Tc ~ 14 ~K) via inelastic neutron scattering. The magnetic excitation spectrum in the superconducting phase appears qualitatively similar to those observed in other Fe-based superconductors, with a spin gap (at about 5~meV) and a resonance peak at ℏω ~ 6.5 ~meV. At higher temperatures, the spectral weight of the low-temperature resonance is found to redistribute to lower energies below the spin gap. A significant moment (0.26μB / Fe) is found for the integrated spectral weight below merely ℏω ~ 12 ~meV, with nearly no temperature dependence up to 300K, indicating existence of strong local moments.

  17. A link between the coercivity and microstructure of high moment Fe films and their use in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, M.T. [Institute for Materials Research, Maxwell Building, The University of Salford, Salford M5 4WT (United Kingdom)]. E-mail: milena.georgieva@mdm.infm.it; Telling, N.D. [Institute for Materials Research, Maxwell Building, The University of Salford, Salford M5 4WT (United Kingdom); Magnetic Spectroscopy Group, CCLRC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Grundy, P.J. [Institute for Materials Research, Maxwell Building, The University of Salford, Salford M5 4WT (United Kingdom)

    2006-01-25

    Magnetron sputtered single Fe films have been 'softened' magnetically by controlled N-doping during the sputter deposition. This technique allows a reduction in grain size and coercivity of the Fe films, without decreasing the saturation magnetization and without the formation of any crystalline FeN phases. We describe this effect through a modification of the random magnetocrystalline anisotropy model, by taking the film thickness into account. The coercivities calculated in this way are in good agreement with those obtained experimentally. It is demonstrated that N-doping can be samples increased as to control the switching field of the 'free' layer in magnetic trilayer films of the MTJ type. It is thus possible to construct an all Fe-electrode magnetic tunnel junction (MTJ) that displays the tunneling magnetoresistance (TMR) effect by altering the switching field of one Fe layer using N-doping. The ability to control the magnetic softness of high magnetic moment materials is important in regard to their incorporation into TMR devices.

  18. Limit on the muon neutrino magnetic moment and a measurement of the CCPIP to CCQE cross section ratio

    Energy Technology Data Exchange (ETDEWEB)

    Ouedraogo, Serge Aristide [Louisiana State Univ., Baton Rouge, LA (United States)

    2008-12-01

    A search for the muon neutrino magnetic moment was conducted using the Mini-BooNE low energy neutrino data. The analysis was performed by analyzing the elastic scattering interactions of muon neutrinos on electrons. The analysis looked for an excess of elastic scattering events above the Standard Model prediction from which a limit on the neutrino magnetic could be set. In this thesis, we report an excess of 15.3 ± 6.6(stat)±4.1(syst) vμe events above the expected background. At 90% C.L., we derived a limit on the muon neutrino magnetic moment of 12.7 x 10-10 μB. The other analysis reported in this thesis is a measurement of charged current single pion production (CCπ+) to charged current quasi elastic (CCQE) interactions cross sections ratio. This measurement was performed with two different fitting algorithms and the results from both fitters are consistent with each other.

  19. Methods for Computing Accurate Atomic Spin Moments for Collinear and Noncollinear Magnetism in Periodic and Nonperiodic Materials.

    Science.gov (United States)

    Manz, Thomas A; Sholl, David S

    2011-12-13

    The partitioning of electron spin density among atoms in a material gives atomic spin moments (ASMs), which are important for understanding magnetic properties. We compare ASMs computed using different population analysis methods and introduce a method for computing density derived electrostatic and chemical (DDEC) ASMs. Bader and DDEC ASMs can be computed for periodic and nonperiodic materials with either collinear or noncollinear magnetism, while natural population analysis (NPA) ASMs can be computed for nonperiodic materials with collinear magnetism. Our results show Bader, DDEC, and (where applicable) NPA methods give similar ASMs, but different net atomic charges. Because they are optimized to reproduce both the magnetic field and the chemical states of atoms in a material, DDEC ASMs are especially suitable for constructing interaction potentials for atomistic simulations. We describe the computation of accurate ASMs for (a) a variety of systems using collinear and noncollinear spin DFT, (b) highly correlated materials (e.g., magnetite) using DFT+U, and (c) various spin states of ozone using coupled cluster expansions. The computed ASMs are in good agreement with available experimental results for a variety of periodic and nonperiodic materials. Examples considered include the antiferromagnetic metal organic framework Cu3(BTC)2, several ozone spin states, mono- and binuclear transition metal complexes, ferri- and ferro-magnetic solids (e.g., Fe3O4, Fe3Si), and simple molecular systems. We briefly discuss the theory of exchange-correlation functionals for studying noncollinear magnetism. A method for finding the ground state of systems with highly noncollinear magnetism is introduced. We use these methods to study the spin-orbit coupling potential energy surface of the single molecule magnet Fe4C40H52N4O12, which has highly noncollinear magnetism, and find that it contains unusual features that give a new interpretation to experimental data.

  20. Gd-doped BaSnO{sub 3}: A transparent conducting oxide with localized magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Alaan, Urusa S., E-mail: usalaan@gmail.com [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Shafer, Padraic; N' Diaye, Alpha T.; Arenholz, Elke [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Suzuki, Y. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States)

    2016-01-25

    We have synthesized transparent, conducting, paramagnetic stannate thin films via rare-earth doping of BaSnO{sub 3}. Gd{sup 3+} (4f{sup 7}) substitution on the Ba{sup 2+} site results in optical transparency in the visible regime, low resistivities, and high electron mobilities, along with a significant magnetic moment. Pulsed laser deposition was used to stabilize epitaxial Ba{sub 0.96}Gd{sub 0.04}SnO{sub 3} thin films on (001) SrTiO{sub 3} substrates, and compared with Ba{sub 0.96}La{sub 0.04}SnO{sub 3} and undoped BaSnO{sub 3} thin films. Gd as well as La doping schemes result in electron mobilities at room temperature that exceed those of conventional complex oxides, with values as high as 60 cm{sup 2}/V·s (n = 2.5 × 10{sup 20 }cm{sup −3}) and 30 cm{sup 2}/V·s (n = 1 × 10{sup 20 }cm{sup −3}) for La and Gd doping, respectively. The resistivity shows little temperature dependence across a broad temperature range, indicating that in both types of films the transport is not dominated by phonon scattering. Gd-doped BaSnO{sub 3} films have a strong magnetic moment of ∼7 μ{sub B}/Gd ion. Such an optically transparent conductor with localized magnetic moments may unlock opportunities for multifunctional devices in the design of next-generation displays and photovoltaics.

  1. Lattice Calculation of the Connected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment

    CERN Document Server

    Jin, Luchang; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Lehner, Christoph

    2015-01-01

    The anomalous magnetic moment of muon, $g-2$, is a very precisely measured quantity. However, the current measurement disagrees with standard model by about 3 standard deviations. Hadronic vacuum polarization and hadronic light by light are the two types of processes that contribute most to the theoretical uncertainty. I will describe how lattice methods are well-suited to provide a first-principle's result for the hadronic light by light contribution, the various numerical strategies that are presently being used to evaluate it, our current results and the important remaining challenges which must be overcome.

  2. Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Liu, Tao; Steinhauser, Matthias [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Smirnov, Alexander V. [Moscow State Univ. (Russian Federation). Scientific Research Computing Center; Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2015-08-15

    The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.

  3. Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias

    2015-01-01

    The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.

  4. The lowest-lying spin-1/2 and spin-3/2 baryon magnetic moments in chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vicente-Vacas, M J

    2010-01-01

    We review some recent progress in our understanding of the lowest-lying spin-1/2 and spin-3/2 baryon magnetic moments (MMs) in terms of Chiral Perturbation Theory (ChPT). In particular, we show that at next-to-leading-order ChPT can describe the MMs of the octet baryons quite well. We also make predictions for the decuplet MMs at the same chiral order. Among them, the MMs of the $\\Delta^{++}$ and $\\Delta^+$ are found to agree well with data within the experimental uncertainties.

  5. Effects of the interaction between the magnetic moments of the proton and electron on the energy states of hydrogen atom

    CERN Document Server

    Dolocan, Voicu

    2014-01-01

    We make a comparison between the energy levels of the hydrogen atom, calculated by using standard methods, and that by using a modified Coulomb potential due to the interaction between the magnetic moments of the proton and electron. In this later method we use to ways. One is that in which we solve the Schroedinger equation with the modified Coulomb potential and some constraint conditions. The other is that in which we expand the modified Coulomb potential in Taylor series. The obtained results show that the first way gives a better agreement with experimental data.

  6. Random magnetic fields inducing solar neutrino spin-flavor precession in a three generation context

    CERN Document Server

    Guzzo, M M; Peres, O L G

    2005-01-01

    We study the effect of random magnetic fields in the spin-flavor precession of solar neutrinos in a three generation context, when a non-vanishing transition magnetic moment is assumed. While this kind of precession is strongly constrained when the magnetic moment involves the first family, such constraints do not apply if we suppose a transition magnetic moment between the second and third families. In this scenario we can have a large non-electron anti-neutrino flux arriving on Earth, which can lead to some interesting phenomenological consequences, as, for instance, the suppression of day-night asymmetry. We have analyzed the high energy solar neutrino data and the KamLAND experiment to constrain the solar mixing angle, and solar mass difference, and we have found a larger shift of allowed values.

  7. High flux lithium antineutrino source with variable hard spectrum

    CERN Document Server

    Lyashuk, V I

    2016-01-01

    The high flux antineutrino source with hard antineutrino spectrum based on neutron activation of 7Li and subsequent fast beta-decay (T 1/2 = 0.84 s) of the 8Li isotope with emission of antineutrino with energy up to 13 MeV - is discussed. Creation of the intensive isotope neutrino source of hard spectrum will allow to increase the detection statistics of neutrino interaction and it is especially urgent for oscillation experiments. The scheme of the proposed neutrino source is based on the continuous transport of the created 8Li to the neutrino detector, which moved away from the place of neutron activation. Analytical expressions for lithium antineutrino flux is obtained. The discussed source will ensure to increase the cross section for reactions with deuteron from several times to tens compare to the reactor antineutrino spectrum. An another unique feature of the installation is the possibility to vary smoothly the hardness of the antineutrino spectrum.

  8. Precisely determined the spent nuclear fuel antineutrino flux and spectrum for Daya Bay antineutrino experiment

    CERN Document Server

    Ma, X B; Chen, Y X; Zhong, W L; An, F P

    2015-01-01

    Spent nuclear fuel (SNF) antineutrino flux is an important source of uncertainties for a reactor neutrino flux prediction. However, if one want to determine the contribution of spent fuel, many data are needed, such as the amount of spent fuel in the pool, the time after discharged from the reactor core, the burnup of each assembly, and the antineutrino spectrum of the isotopes in the spend fuel. A method to calculate the contribution of SNF is proposed in this study. In this method, reactor simulation code verified by experiment have been used to simulate the fuel depletion by taking into account more than 2000 isotopes and fission products, the quantity of SNF in each six spend fuel pool, and the antineutrino spectrum of SNF varying with time after SNF discharged from core. Results show that the contribution of SNF to the total antineutrino flux is about 0.26%~0.34%, and the shutdown impact is about 20%. The SNF spectrum would distort the softer part of antineutrino spectra, and the maximum contribution fro...

  9. Neutrino and Antineutrino Cross sections at MiniBooNE

    CERN Document Server

    Dharmapalan, Ranjan

    2011-01-01

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections-among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil. Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  10. Precise control of a magnetically suspended double-gimbal control moment gyroscope using differential geometry decoupling method

    Institute of Scientific and Technical Information of China (English)

    Chen Xiaocen; Chen Maoyin

    2013-01-01

    Precise control of a magnetically suspended double-gimbal control moment gyroscope (MSDGCMG) is of vital importance and challenge to the attitude positioning of spacecraft owing to its multivariable,nonlinear and strong coupled properties.This paper proposes a novel linearization and decoupling method based on differential geometry theory and combines it with the internal model controller (IMC) to guarantee the system robustness to the external disturbance and parameter uncertainty.Furthermore,by introducing the dynamic compensation for the inner-gimbal rate-servo system and the magnetically suspended rotor (MSR) system only,we can eliminate the influence of the unmodeled dynamics to the decoupling control accuracy as well as save costs and inhibit noises effectively.The simulation results verify the nice decoupling and robustness performance of the system using the proposed method.

  11. Precision spectroscopy with reactor anti-neutrinos

    CERN Document Server

    Huber, P; Huber, Patrick; Schwetz, Thomas

    2004-01-01

    In this work we present an accurate parameterization of the anti-neutrino flux produced by the isotopes 235U, 239Pu and 241Pu in nuclear reactors. We determine the coefficients of this parameterization, as well as their covariance matrix, by performing a fit to spectra inferred from experimentally measured beta spectra. Subsequently we show that flux shape uncertainties play only a minor role in the KamLAND experiment, however, we find that future reactor neutrino experiments to measure the mixing angle $\\theta_{13}$ are sensitive to the fine details of the reactor neutrino spectra. Finally, we investigate the possibility to determine the isotopic composition in nuclear reactors through an anti-neutrino measurement. We find that with a 3 month exposure of a one ton detector the isotope fractions and the thermal reactor power can be determined at a few percent accuracy, which may open the possibility of an application for safeguard or non-proliferation objectives.

  12. Hanohano:A Deep Ocean Antineutrino Observatory

    CERN Document Server

    Batygov, M; Learned, J G; Matsuno, S; Pakvasa, S; Varner, G

    2008-01-01

    This paper presents the science potential of a deep ocean antineutrino observatory being developed at Hawaii and elsewhere. The observatory design allows for relocation from one site to another. Positioning the observaory some 60 km distant from a nuclear reactor complex enables preecision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and theta_13. At a mid-Pacific location, the observatory measures the flux of uranium and thorium decay series antineutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subequent deployment at another mid-ocean location would test lateral homogeneity of uranium and thorium in earth's mantle. These measurements have significance for earth energy studies.

  13. The antineutrino energy structure in reactor experiments

    CERN Document Server

    Novella, P

    2015-01-01

    The recent observation of an energy structure in the reactor antineutrino spectrum is reviewed. The reactor experiments Daya Bay, Double Chooz and RENO have reported a consistent excess of antineutrinos deviating from the flux predictions, with a local significance of about 4$\\sigma$ between 4 and 6 MeV of the positron energy spectrum. The possible causes of the structure are analyzed in this work, along with the different experimental approaches developed to identify its origin. Considering the available data and results from the three experiments, the most likely explanation concerns the reactor flux predictions and the associated uncertainties. Therefore, the different current models are described and compared. The possible sources of incompleteness or inaccuracy of such models are discussed, as well as the experimental data required to improve their precision.

  14. Reactor Antineutrino Signals at Morton and Boulby

    CERN Document Server

    Dye, Steve

    2016-01-01

    Increasing the distance from which an antineutrino detector is capable of monitoring the operation of a registered reactor, or discovering a clandestine reactor, strengthens the Non-Proliferation of Nuclear Weapons Treaty. This report presents calculations of reactor antineutrino interactions, from quasi-elastic neutrino-proton scattering and elastic neutrino-electron scattering, in a water-based detector operated >10 km from a commercial power reactor. It separately calculates signal from the proximal reactor and background from all other registered reactors. The main results are interaction rates and kinetic energy distributions of charged leptons scattered from quasi-elastic and elastic processes. Comparing signal and background distributions evaluates reactor monitoring capability. Scaling the results to detectors of different sizes, target media, and standoff distances is straightforward. Calculations are for two examples of a commercial reactor (P_th~3 GW) operating nearby (L~20 km) an underground facil...

  15. Gamma-ray and neutron diffraction studies of CoF2: magnetostriction, electron density and magnetic moments.

    Science.gov (United States)

    Jauch, W; Reehuis, M; Schultz, A J

    2004-01-01

    Accurate structure factors up to sin theta/lambda = 1.6 A(-1) have been measured with 316.5 keV gamma-rays from CoF(2), both at room temperature and in the antiferromagnetic state at 10 K. The same crystal was used to collect extended time-of-flight neutron diffraction data in the two magnetic states, which allowed an accurate determination of the fluorine positional parameter. For room temperature, the standard structural parameters are reported. At 10 K, a complete charge-density study has been carried out. The total number of 3d electrons on Co is found to be 6.95 (3). The experimental populations of the d orbitals agree with expectation from crystal field theory. The fluorine valence region exhibits a strong dipolar deformation. Electronic properties at the bond critical points and integrated atomic properties are derived from the static model electron density, revealing the Co-F interactions as purely ionic. On magnetic ordering, a shift of the fluorine ions of 1.5 (4) x 10(-3) A is found which confirms a prediction from theory of optical birefringence. The effect of magnetostriction on the distortion of the ligand coordination octahedra is compared for the late members of the 3d transition-metal difluorides. From neutron powder diffraction, an ordered magnetic moment of 2.60 (4) mu(B) per cobalt ion is found. Despite the strong deviation from the ideal spin value of 3 mu(B), there is still an appreciable orbital contribution to the local magnetic moment.

  16. Correlated oscillations of the magnetic anisotropy energy and orbital moment anisotropy in thin films: The role of quantum well states

    Science.gov (United States)

    Sandratskii, L. M.

    2015-10-01

    We report the first-principles study of the correlated behavior of the magnetic anisotropy energy (MAE) and orbital moment anisotropy (OMA) as the functions of the thickness N of the Fe film. The work is motivated by recent experimental studies combining photoemission, x-ray magnetic circular dichroism, and magnetic anisotropy measurements. In agreement with experiment, the correlated oscillations of MAE (N ) and OMA (N ) are obtained that have their origin in the formation of the 3d quantum well states (QWS) confined in the films. The main contribution to the oscillation amplitude comes from the surface layer. This is an interesting feature of the phenomenon consisting in the peculiar dependence of the physical quantities on the thickness of the film. We demonstrate that the band structure of the bulk Fe does not reflect adequately the properties of the 3d QWS in thin films and, therefore, does not provide the basis for understanding the oscillations of MAE (N ) and OMA (N ) . A detailed point-by-point analysis in the two-dimensional (2D) Brillouin zone (BZ) of the film shows that the contribution of the Γ point, contrary to a rather common expectation, does not play an important role in the formation of the oscillations. Instead, the most important contributions come from a broad region of the 2D BZ distant from the center of the BZ. Combining symmetry arguments and direct calculations we show that orbital moments of the electronic states possess nonzero transverse components orthogonal to the direction of the spin magnetization. The account for this feature is crucial in the point-by-point analysis of the OMA. On the basis of the calculations for noncollinear spin configurations we suggest interpretations of two interesting experimental findings: fast temperature decay of the oscillation amplitude in MAE (N ) and unexpectedly strong spin mixing of the initial states of the photoemission process.

  17. Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels

    CERN Document Server

    Hayes, A C; Nieto, Michael Martin; WIlson, W B

    2011-01-01

    This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

  18. magnetic horn

    CERN Multimedia

    Neutrinos and antineutrinos are ideal for probing the weak force because it is effectively the only force they feel. How were they made? Protons fired into a metal target produce a tangle of secondary particles. A magnetic horn like this one, invented by Simon Van der Meer, selected pions and focused them into a sharp beam. Pions decay into muons and neutrinos or antineutrinos. The muons were stopped in a wall of 3000 tons of iron and 1000 tons of concrete, leaving the neutrinos or antineutrinos to reach the Gargamelle bubble chamber. A simple change of magnetic field direction on the horn flipped between focusing positively- or negatively-charged pion beams, and so between neutrinos and antineutrinos.

  19. Functional integral calculation of local magnetic moments at Ta impurities embedded in XFe{sub 2}(X=Gd,Yb) compounds: Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.L. de [Centro Federal de Educacao Tecnologica de Quimica de Nilopolis, Rua Lucio Tavares, 1045, Nilopolis-RJ, 26530-060 (Brazil); Tovar Costa, M.V. [Instituto de Aplicacao, Universidade do Estado do Rio de Janeiro, Rua Santa Alexandrina, 288, Rio de Janeiro, 20261-232 (Brazil); Oliveira, N.A. de [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Rio de Janeiro, 20550-013 (Brazil); Troper, A. [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Rio de Janeiro, 20550-013 (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud, 150, Rio de Janeiro, 22290-180 (Brazil)], E-mail: atroper@cbpf.br

    2008-04-01

    In this work, we study the systematics, at finite temperature, of the formation of local magnetic moments at a Ta impurity diluted in intermetallic Laves phases compounds XFe{sub 2}(X=Gd,Yb). We use an extended two-coupled sublattices Hubbard Hamiltonian, to describe the Laves phases host. The d-d electronic interaction is treated via a functional integral approach in the quasi-static saddle point approximation. Temperature dependent pressure effects are included considering induced electron-phonon interaction which renormalizes the pure electron hybridization. The calculated magnetic hyperfine fields related to the obtained local magnetic moments, are in a quite good agreement with available experimental data.

  20. Magnetic moments of J{sup P} = (3)/(2){sup +} decuplet baryons using the statistical model

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Amanpreet; Upadhyay, Alka [Thapar University, School of Physics and Materials Science, Patiala (India)

    2016-04-15

    A suitable wave function for the baryon decuplet is framed with the inclusion of the sea containing quark-gluon Fock states. Relevant operator formalism is applied to calculate the magnetic moments of J{sup P} = (3)/(2){sup +} baryon decuplet. The statistical model assumes the decomposition of the baryonic state in various quark-gluon Fock states and is used in combination with the detailed balance principle to find the relative probabilities of these Fock states in flavor, spin and color space. The upper limit to the gluon is restricted to three with the possibility of emission of quark-antiquark pairs. We study the importance of strangeness in the sea (scalar, vector and tensor) and its contribution to the magnetic moments. Our approach has confirmed the scalar-tensor sea dominancy over the vector sea. Various modifications in the model are used to check the validity of the statistical approach. The results are matched with the available theoretical data. A good consistency with the experimental data has been achieved for Δ{sup ++}, Δ{sup +} and Ω{sup -}. (orig.)

  1. Ferrofluid thin films as optical gaussmeters proposed for field and magnetic moment sensing

    Indian Academy of Sciences (India)

    Swapna S Nair; S Rajesh; V S Abraham; M R Anantharaman

    2011-04-01

    Ferrofluids belonging to the series, NiFe1−Fe2O4 and ZnFe1−Fe2O4, were synthesized using cold co-precipitation. Liquid films of these ferrofluids were prepared by encapsulating the ferrofluids in between two optically smooth and ultrasonically cleaned glass plates. Magnetic field induced laser transmission through these ferrofluid films has been investigated. Magnetic field values can be calibrated in terms of output laser power in the low field region in which the variation is linear. This set up can be used as a cheap optical gaussmeter in the low field regime. Using the same set-up, the saturation magnetization of the sample used can also be calculated with a sample that is pre-characterized. Hence both magnetization of the sample, as well as applied magnetic field can be sensed and calculated with a precalibrated sample.

  2. Magnetic flux transport and the sun's dipole moment - New twists to the Babcock-Leighton model

    Science.gov (United States)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    1991-01-01

    The mechanisms that give rise to the sun's large-scale poloidal magnetic field are explored in the framework of the Babcock-Leighton (BL) model. It is shown that there are in general two quite distinct contributions to the generation of the 'alpha effect': the first is associated with the axial tilts of the bipolar magnetic regions as they erupt at the surface, while the second arises through the interaction between diffusion and flow as the magnetic flux is dispersed over the surface. The general relationship between flux transport and the BL dynamo is discussed.

  3. Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO.

    Science.gov (United States)

    Baumann, S; Donati, F; Stepanow, S; Rusponi, S; Paul, W; Gangopadhyay, S; Rau, I G; Pacchioni, G E; Gragnaniello, L; Pivetta, M; Dreiser, J; Piamonteze, C; Lutz, C P; Macfarlane, R M; Jones, B A; Gambardella, P; Heinrich, A J; Brune, H

    2015-12-04

    We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0±0.3  meV/atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.

  4. Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO

    Science.gov (United States)

    Baumann, S.; Donati, F.; Stepanow, S.; Rusponi, S.; Paul, W.; Gangopadhyay, S.; Rau, I. G.; Pacchioni, G. E.; Gragnaniello, L.; Pivetta, M.; Dreiser, J.; Piamonteze, C.; Lutz, C. P.; Macfarlane, R. M.; Jones, B. A.; Gambardella, P.; Heinrich, A. J.; Brune, H.

    2015-12-01

    We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0 ±0.3 meV /atom . This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.

  5. Studies on high-moment soft magnetic FeCo/Co thin films

    Institute of Scientific and Technical Information of China (English)

    Fu Yu; Yang Zheng; Matsumoto Mitsunori; Liu Xiao-Xi; Morisako Akimitsu

    2006-01-01

    The dependences of soft magnetic properties and microstructures of the sputtered FeCo (=-Fe65Co3s) films on Co underlayer thickness tCo, FeCo thickness tFeCo, substrate temperature Ts and target-substrate spacing dT-S are studied. FeCo single layer generally shows a high coercivity with no obvious magnetic anisotropy. Excellent soft magnetic properties with saturation magnetization μ0Ms of 2.35 T and hard axis coercivity Hch of 0.25 kA/m in FeCo films can be achieved by introducing a Co underlayer. It is shown that sandwiching a Co underlayer causes a change in orientation and reduction in grain size from 70 nm to about 10 nm in the FeCo layer. The magnetic softness can be explained by the Hoffmann's ripple theory due to the effect of grain size. The magnetic anisotropy can be controlled by changing dT-S, and a maximum of 14.3 kA/m for anisotropic field Hk is obtained with dT-S=18.0 cm.

  6. Size effect on local magnetic moments in ferrimagnetic molecular complexes: an XMCD investigation

    CERN Document Server

    Champion, G; Cartier-Dit-Moulin, C; Arrio, M A; Sainctavit, P; Zacchigna, M; Zangrando, M; Finazzi, M; Parmigiani, F; Mathoniere, C

    2003-01-01

    Molecular chemistry allows to synthesize new magnetic systems with controlled properties such as size, magnetization or anisotropy. The theoretical study of the magnetic properties of small molecules (from 2 to 10 metallic cations per molecule) predicts that the magnetization at saturation of each ion does not reach the expected value for uncoupled ions when the magnetic interaction is antiferromagnetic. The quantum origin of this effect is due to the linear combination of several spin states building the wave function of the ground state and clusters of finite size and of finite spin value exhibit this property. When single crystals are available, spin densities on each atom can be experimentally given by polarized neutron diffraction (PND) experiments. In the case of bimetallic MnCu powdered samples, we will show that x-ray magnetic circular dichroism (XMCD) spectroscopy can be used to follow the evolution of the spin distribution on the Mn sup I sup I and Cu sup I sup I sites when passing from a dinuclear ...

  7. Magnetic Moments and Ordered States in Pyrochlore Iridates Nd2Ir2O7 and Sm2Ir2O7 Studied by Muon-Spin Relaxation

    Science.gov (United States)

    Asih, Retno; Adam, Noraina; Sakinah Mohd-Tajudin, Saidah; Puspita Sari, Dita; Matsuhira, Kazuyuki; Guo, Hanjie; Wakeshima, Makoto; Hinatsu, Yukio; Nakano, Takehito; Nozue, Yasuo; Sulaiman, Shukri; Ismail Mohamed-Ibrahim, Mohamad; Biswas, Pabitra Kumar; Watanabe, Isao

    2017-02-01

    Magnetic-ordered states of the pyrochlore iridates Nd2Ir2O7 (Nd227) and Sm2Ir2O7 (Sm227), showing metal-insulator transitions at 33 and 117 K, respectively, were studied by both the muon-spin-relaxation (μSR) method and density functional theory (DFT) calculations. A long-range magnetic ordering of Ir moments appeared in conjunction with the metal insulator transition, and additional long-range-ordered states of Nd/Sm moments were confirmed at temperatures below about 10 K. We found that the all-in all-out spin structure most convincingly explained the present μSR results of both Nd227 and Sm227. Observed internal fields were compared with values derived from DFT calculations. The lower limits of the sizes of magnetic moments were estimated to be 0.12 μB and 0.2 μB for Ir and Nd moments in Nd227, and 0.3 μB and 0.1 μB for Ir and Sm moments in Sm227, respectively. Further analysis indicated that the spin coupling between Ir and Nd/Sm moments was ferromagnetic for Nd227 and antiferromagnetic for Sm227.

  8. X-ray magnetic dichroism: from quantitative determination of magnetic moments to imaging of magnetization dynamics; Dichroisme magnetique des rayons X: de la determination quantitative des moments magnetiques a l'imagerie de la dynamique de l'aimantation

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J

    2006-03-15

    In this document, I use some results of my research activities of the last ten years to show the power of x-ray magnetic dichroism for determining magnetic properties of thin layers, multilayers and nano-structures. The use of sum rules for x-ray dichroism allows a quantitative determination of the spin and orbital contributions to the magnetic moment, for each element of a heterogeneous material separately. Used in a qualitative way, x-ray dichroism allows monitoring the magnetization of the different layers in a multilayer material as a function of applied field. In combination with the temporal structure of synchrotron radiation, it is possible to study fast magnetization reversal with element selectivity, which is important for devices like spin valves and magnetic tunnel junctions. Adding the spatial resolution of a photoelectron emission microscope (PEEM), it becomes possible to study all the details of the fast magnetization reversal in complex magnetic systems. (author)

  9. Assembly and Installation of the Daya Bay Antineutrino Detectors

    CERN Document Server

    Band, H R; Carr, R; Chen, X C; Chen, X H; Cherwinka, J J; Chu, M C; Draeger, E; Dwyer, D A; Edwards, W R; Gill, R; Goett, J; Greenler, L S; Gu, W Q; He, W S; Heeger, K M; Heng, Y K; Hinrichs, P; Ho, T H; Hoff, M; Hsiung, Y B; Jin, Y; Kang, L; Kettell, S H; Kramer, M; Kwan, K K; Kwok, M W; Lewis, C A; Li, G S; Li, N; Li, S F; Li, X N; Lin, C J; Littlejohn, B R; Liu, J L; Luk, K B; Luo, X L; Ma, X Y; McFarlane, M C; McKeown, R D; Nakajima, Y; Ochoa-Ricoux, J P; Pagac, A; Qian, X; Seilhan, B; Shih, K; Steiner, H; Tang, X; Themann, H; Tsang, K V; Tsang, R H M; Virostek, S; Wang, L; Wang, W; Wang, Z M; Webber, D M; Wei, Y D; Wen, L J; Wenman, D L; Wilhelmi, J; Wingert, M; Wise, T; Wong, H L H; Wu, F F; Xiao, Q; Yang, L; Zhang, Z J; Zhong, W L; Zhuang, H L

    2013-01-01

    The Daya Bay reactor antineutrino experiment is designed to make a precision measurement of the neutrino mixing angle theta13, and recently made the definitive discovery of its nonzero value. It utilizes a set of eight, functionally identical antineutrino detectors to measure the reactor flux and spectrum at baselines of 300 - 2000m from the Daya Bay and Ling Ao Nuclear Power Plants. The Daya Bay antineutrino detectors were built in an above-ground facility and deployed side-by-side at three underground experimental sites near and far from the nuclear reactors. This configuration allows the experiment to make a precision measurement of reactor antineutrino disappearance over km-long baselines and reduces relative systematic uncertainties between detectors and nuclear reactors. This paper describes the assembly and installation of the Daya Bay antineutrino detectors.

  10. Uncertainty analysis of fission fraction for reactor antineutrino experiments

    Science.gov (United States)

    Ma, X. B.; Lu, F.; Wang, L. Z.; Chen, Y. X.; Zhong, W. L.; An, F. P.

    2016-06-01

    Reactor simulation is an important source of uncertainties for a reactor neutrino experiment. Therefore, how to evaluate the antineutrino flux uncertainty results from reactor simulation is an important question. In this study, a method of the antineutrino flux uncertainty result from reactor simulation was proposed by considering the correlation coefficient. In order to use this method in the Daya Bay antineutrino experiment, the open source code DRAGON was improved and used for obtaining the fission fraction and correlation coefficient. The average fission fraction between DRAGON and SCIENCE code was compared and the difference was less than 5% for all the four isotopes. The uncertainty of fission fraction was evaluated by comparing simulation atomic density of four main isotopes with Takahama-3 experiment measurement. After that, the uncertainty of the antineutrino flux results from reactor simulation was evaluated as 0.6% per core for Daya Bay antineutrino experiment.

  11. Energy Moment Method Applied to Nuclear Quadrupole Splitting of Nuclear Magnetic Resonance Lines

    DEFF Research Database (Denmark)

    Frank, V

    1962-01-01

    Expressions giving the sum of the energy values, raised to the second and third power, for a nucleus interacting with a static magnetic field and a static electric field gradient are derived. Several applications of this method for obtaining the values of the components of the electric field...

  12. Moessbauer study of the orientation of the magnetic moments in Fe—based nanocrystalline alloys

    Institute of Scientific and Technical Information of China (English)

    HuBing-Yuan; ZhangGui-Lin; 等

    1997-01-01

    Magneto-impedance(MI) effect in Fe-based nanocrystalline Fe73 Cu1Nb1.5Mo2Si13.5B alloys has been observed by Moessbauer spectroscopy.The results show that the field dependence of the MI ratio is strongly influenced by the transverse magnetic structure in samples.

  13. A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

    Directory of Open Access Journals (Sweden)

    R. L. Zhang

    2016-11-01

    Full Text Available For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magnetic moment of 5μB. The challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.

  14. A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

    Science.gov (United States)

    Zhang, R. L.; Damewood, L.; Fong, C. Y.; Yang, L. H.; Peng, R. W.; Felser, C.

    2016-11-01

    For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magnetic moment of 5μB. The challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.

  15. Connected and leading disconnected hadronic light-by-light contribution to the muon anomalous magnetic moment with physical pion mass

    CERN Document Server

    Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph

    2016-01-01

    We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the $48^3 \\times 96$ ensemble generated with a physical-pion-mass and a 5.5 fm spatial extent by the RBC and UKQCD collaborations using the chiral, domain wall fermion (DWF) formulation. We find $a_\\mu^{\\text{HLbL}} = 5.35 (1.35) \\times 10^{- 10}$, where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of on-going research. The omitted disconnected graphs, while expected to give a correction of order 10\\%, also need to be computed.

  16. Electron's anomalous magnetic moment effects on electron-hydrogen elastic collisions in the presence of a circularly polarized laser field

    CERN Document Server

    Elhandi, S; attaourti, Y; Manaut, B; Oufni, L

    2010-01-01

    The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to new results, namely the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the non relativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.

  17. No quenching of magnetic moment for the GenCo (n=1-13) clusters: First-principles calculations

    Science.gov (United States)

    Jing, Qun; Tian, Fu-yang; Wang, Yuan-xu

    2008-03-01

    The authors predict that for the GenCo (n=1-13) clusters the magnetic moment does not quench, which is dark contrast to the previous results with transition-metal-doped Sin clusters. It may be due to the unpaired electrons of the Co atom in the clusters. For the ground state structures of the GenCo (n⩾9) clusters, the Co atom completely falls into the center of the Ge outer frame, forming metal-encapsulated Gen cages. The doping of the Co atom enhances the stability of the host Gen clusters. The Ge10Co cluster with the bicapped tetragonal antiprism structure is more stable than others, which agrees very well with the results of the experiment of the Co /Ge binary clusters by the laser vaporization.

  18. JUNO: A Next Generation Reactor Antineutrino Experiment

    CERN Document Server

    Zhan, Liang

    2015-01-01

    The mass hierarchy and the CP phase are the main focus of the next generation neutrino oscillation experiments. Jiangmen Underground Neutrino Observatory (JUNO), as a medium baseline reactor antineutrino experiment, can determine the neutrino mass hierarchy independent of the CP phase. The physics potential on the mass hierarchy, and other measurements are reviewed. The preliminary design options for a 20~kton detector with an energy resolution of $3\\%/\\sqrt{E_{vis}}$ are illustrated. The main technical challenges on the PMT and scintillator are discussed and the corresponding R\\&D efforts are presented.

  19. Magnetic nanowires (Fe, Fe-Co, Fe-Ni – magnetic moment reorientation in respect of wires composition

    Directory of Open Access Journals (Sweden)

    Kalska-Szostko Beata

    2015-03-01

    Full Text Available Magnetic nanowires of Fe, Fe-Co, and Fe-Ni alloy and layered structure were prepared by electrochemical alternating current (AC deposition method. The morphology of the nanowires in and without the matrix was studied by energy dispersive X-ray spectroscopy (EDX, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. The wires either show strong dependence on the combination of elements deposition (alloy or layered or chemical composition (Co or Ni. The magnetic properties of the nanostructures were determined on the basis of Mössbauer spectroscopy (MS.

  20. Do Black Hole Candidates Have Magnetic Moments Instead of Event Horizons?

    CERN Document Server

    Robertson, S L; Robertson, Stanley L.; Leiter, Darryl J.

    2003-01-01

    In previous work we found that many of the spectral properties of low mass x-ray binaries (LMXB), including galactic black hole candiates (GBHC) were consistent with the existence of intrinsically magnetized central objects. We review and extend these findings and show that the existence of intrisically magnetic BHC is consistent with a new class of solutions of the Einstein field equations of General Relativity. These solutions are based on a strict adherence to the Strong Principle of Equivalence (SPOE) requirement that the world lines of physical matter must remain timelike in all regions of spacetime. The new solutions emerge when the structure and radiation transfer properties of the energy momentum tensor on the right hand side of the Einstein field equations are appropriately chosen to dynamically enforce the SPOE requirement of timelike world line completeness. In this context, we find that the Einstein field equations allow the existence of highly red shifted, Magnetospheric, Eternally Collapsing Obj...

  1. A study of nanosized magnesium ferrite particles with high magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Sumangala, T.P.; Mahender, C.; Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, 400076 Mumbai (India); Prasad, Shiva, E-mail: shiva.pd@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Powai, 400076 Mumbai (India)

    2015-05-15

    Nano-sized magnesium ferrite particles were prepared by sol gel combustion synthesis and were either furnace cooled or quenched after calcining at various temperatures ranging from 300 to 800 °C. A magnetisation value of 61 emu/g was obtained at 5 K for sample calcined at 800 °C and quenched in liquid nitrogen temperature. This is one of the highest reported values of magnetisation obtained from quenching at such a lower temperature. An estimate of the number of Fe{sup 3+} ions on A and B sites was made after applying Néel Model on the magnetisation values measured at 5 K. It was estimated that Fe{sup 3+} ions segregates out from both sites disproportionately so as to cause a net decrease in the overall moment. The resultant cation distribution is found to be consistent with the coercivity data. - Highlights: • Highest magnetisation (M) among nano sized magnesium ferrite particles was obtained. • The obtained magnetisation was nearly double of furnace cooled bulk sample. • Coercivity (H{sub c}) is anti correlated to M for samples with different heat treatment. • Coefficient of non saturation of magnetisation in M–H loop (a), is correlated with H{sub c}. • H{sub c}, M and a are explained in terms of cation distribution obtained using NNéel model.

  2. Fullerene antiferromagnetic reconstructed spinterface subsurface layer dominates multi-orbitals spin-splitting and large magnetic moment in C60

    CERN Document Server

    Shao, Yangfan; Pan, Hui; Shi, Xingqiang

    2016-01-01

    The interfaces between organic molecules and metal surfaces with layered antiferromagnetic order have gained increasing interests in the field of antiferromagnetic spintronics. The C60 layered AFM spinterfaces have been studied for C60 bonded only to the outermost ferromagnetic layer. Using density functional theory calculations, here we demonstrate that C60 adsorption can reconstruct the layered AFM Cr(001) surface so that C60 bonds to the top two Cr layers with opposite spin direction. Surface reconstruction drastically changes C60 s spintronic properties 1 the spin-split p-d hybridization involve multi-orbitals of C60 and metal double layers, 2 the subsurface layer dominates the C60 spin properties, and 3) reconstruction induces a large magnetic moment in C60 of 0.58 B, which is a synergetic effect of the top two layers as a result of a magnetic direct-exchange interaction. Understanding these complex spinterfaces phenomena is a crucial step for their device applications. The surface reconstruction can be ...

  3. Probing Dy{sup 3+} magnetic moments in multiferroic perovskite DyMnO{sub 3} by optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kashchenko, M.A. [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Dolgoprudnyi (Russian Federation); Klimin, S.A.; Popova, M.N. [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow (Russian Federation); Balbashov, A.M. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)

    2016-06-15

    We present a detailed temperature-dependent (4-300 K) spectroscopic study of DyMnO{sub 3} single crystals with distorted perovskite structure. Energies of 36 crystal-field levels of Dy{sup 3+} in paramagnetic DyMnO{sub 3} were determined. The Dy{sup 3+} ground Kramers doublet does not split at T{sub N}{sup Mn} = 39 K and splits below T{sub lock} = 18 K. The splitting grows fast at temperatures near T{sub N}{sup Dy} = 6.5 K and reaches Δ{sub 0} ∼ 11 ± 2 cm{sup -1} at 4 K. Using the experimental temperature dependence Δ{sub 0}(T), we calculate the dysprosium magnetic moment m{sub Dy}(T) and the dysprosium contribution into specific heat and magnetic susceptibility. Analysing all the experimental data, we conclude that the Dy-Mn interaction is of the Dzyaloshinskii-Moriya type. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Detection of Breeding Blankets Using Antineutrinos

    Science.gov (United States)

    Cogswell, Bernadette; Huber, Patrick

    2016-03-01

    The Plutonium Management and Disposition Agreement between the United States and Russia makes arrangements for the disposal of 34 metric tons of excess weapon-grade plutonium. Under this agreement Russia plans to dispose of its excess stocks by processing the plutonium into fuel for fast breeder reactors. To meet the disposition requirements this fuel would be burned while the fast reactors are run as burners, i.e., without a natural uranium blanket that can be used to breed plutonium surrounding the core. This talk discusses the potential application of antineutrino monitoring to the verification of the presence or absence of a breeding blanket. It is found that a 36 kg antineutrino detector, exploiting coherent elastic neutrino-nucleus scattering and made of silicon, could determine the presence of a breeding blanket at a liquid sodium cooled fast reactor at the 95% confidence level within 90 days. Such a detector would be a novel non-intrusive verification tool and could present a first application of coherent elastic neutrino-nucleus scattering to a real-world challenge.

  5. Antineutrino reactor safeguards - a case study

    CERN Document Server

    Christensen, Eric; Jaffke, Patrick

    2013-01-01

    Antineutrinos have been proposed as a means of reactor safeguards for more than 30 years and there has been impressive experimental progress in neutrino detection. In this paper we conduct, for the first time, a case study of the application of antineutrino safeguards to a real-world scenario - the North Korean nuclear crisis in 1994. We derive detection limits to a partial or full core discharge in 1989 based on actual IAEA safeguards access and find that two independent methods would have yielded positive evidence for a second core with very high confidence. To generalize our results, we provide detailed estimates for the sensitivity to the plutonium content of various types of reactors, including most types of plutonium production reactors, based on detailed reactor simulations. A key finding of this study is that a wide class of reactors with a thermal power of less than 0.1-1 GWth can be safeguarded achieving IAEA goals for quantitative sensitivity and timeliness with detectors right outside the reactor ...

  6. Magnetic Moments of Coulomb Excited $2^{+}_{1}$ States for Radioactive Beams of $^{132,134,136}$Te and $^{138}$Xe Isotopes at REX-ISOLDE

    CERN Multimedia

    Kroell, T; Leske, J

    2002-01-01

    Magnetic moments are an indispensable source of information on the microscopic structure of atomic nuclei. It results from the fundamental difference of the spin $g$ factors of protons and neutrons, in $sign$ and $magnitude$, $\\textit{g}_{s}(\\pi)$ = +5.586 and $g_s(\

  7. Magnetic moment collapse induced axial alternative compressibility of Cr2TiAlC2 at 420 GPa from first principle

    Science.gov (United States)

    Ze-Jin, Yang; Rong-Feng, Linghu; Qing-He, Gao; Heng-Na, Xiong; Zhi-Jun, Xu; Ling, Tang; Guo-Zhu, Jia; Yun-Dong, Guo

    2016-01-01

    The electronic structure and thermodynamical properties of Cr2TiAlC2 are studied by first principles under pressure. The obtained results observed that the ferromagnetic order is the most stable ground state and the magnetic moment will collapse at about 50 GPa. As a result, the lattice a axis becomes stiffer above about 420 GPa, ultimately presenting the same axial compressibility trends with those of nonmagnetic compounds Mo2TiAlC2 and hypothetical Cr2TiAlC2. The elastic constants and phonon dispersion curves demonstrate the structural stability during the disappearance of magnetic moment and occurrence of axial alternative compressibility. The density of states and energy band calculations confirmed the existence of magnetic moment of Cr2TiAlC2 at 0 GPa and disappearance at high pressures above 50 GPa. Evolutions of magnetic moment collapse with pressure are confirmed by a variety of properties. The obtained grüneisen parameter and thermal expansion coefficients show the maximum value among the known MAX phases, to date and to the author’s knowledge. PMID:27666292

  8. Proximity effects on the local magnetic moments of clusters V{sub 6}-V{sub 9} embedded in a Fe matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sosa-Hernandez, E.M. [Departamento de Matematicas Aplicadas, Facultad de Contaduria y Administration, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico); Alvarado-Leyva, P.G. [Departamento de Fisica, Facultad de Ciencias, Universidad Autonoma de San Luis Potosi Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico)]. E-mail: pal@galia.fc.uaslp.mx

    2006-11-09

    The magnetic behavior of clusters V{sub 6}-V{sub 9} in bulk Fe is determined by using an electronic Hamiltonian which includes s, p and d electrons. The spin density distribution is calculated self-consistenly in the unrestricted Hartree-Fock approximation. The local magnetic moments are obtained at V and Fe atoms; the magnetic coupling between Fe and V atoms is antiferromagnetic-like. We consider two cases, the first case correspond to non-interacting clusters, the distance between them is infinity, and the another case, when the clusters are interacting, the separation between them is finite; in the first case, the magnetic order in V{sub 6} is ferromagnetic-like whereas for V{sub 9} the magnetic order is antiferromagnetic-like, in the second case we have found that the magnetic order is not well stablished in V{sub 6}. We have found that the magnetic order in the matrix is not broken by the presence of the V atoms, although the local magnetic moments of Fe atoms at the interface cluster-matrix, are reduced respect to Fe bulk magnetization (2.22{mu} {sub B}) [e.g. {mu} {sub Fe}(5) = 1.98{mu} {sub B} in V{sub 6}; {mu} {sub Fe}(3) 1.89{mu} {sub B} in V{sub 9}].

  9. An upper limit on the anomalous magnetic moment of the $\\tau$ lepton

    CERN Document Server

    Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Clarke, P.E.L.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Doucet, M.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Foucher, M.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Hargrove, C.K.; Hart, P.A.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; List, B.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Oldershaw, N.J.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rembser, C.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Rossi, A.M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Springer, Robert Wayne; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, David M.; Strohmer, R.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Utzat, P.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Vokurka, E.H.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-01-01

    Using radiative Z^0 -> \\tau^+ \\tau^- \\gamma events collected with the OPAL detector at LEP at \\sqrt{s}=M_Z during 1990-95, a direct study of the electromagnetic current at the \\tau\\gamma vertex has been performed in terms of the anomalous magnetic form factor F_2 of the \\tau lepton. The analysis is based on a data sample of 1429 e^+ e^- -> \\tau^+ \\tau^- \\gamma events which are examined for a deviation from the expectation with F_2 = 0. From the non-observation of anomalous \\tau^+ \\tau^- \\gamma production a limit of -0.068 < F_2 < 0.065 is obtained. This can also be interpreted as a limit on the electric dipole form factor F_3 as -3.8 x 10^-16 e-cm < eF_3 < 3.6 x 10^-16 e-cm. The above ranges are valid at the 95% confidence level.

  10. Does Sgr A* Have an Intrinsic Magnetic Moment Instead of an Event Horizon?

    CERN Document Server

    Robertson, S L; Robertson, Stanley L.; Leiter, Darryl J.

    2006-01-01

    We have previously developed a general relativistic model of a gravitationally compact, intrinsically magnetic, eternally collapsing object (MECO). It has been shown to account for the low quiescent x-ray luminosities and spectral state switches in galactic black hole candidates (GBHC) while correctly predicting the radio/x-ray luminosity correlations of both GBHC and active galactic nuclei. We show here that a MECO model for Sgr A* is consistent with its observed low NIR luminosity levels. It has the unique property of providing an explanation for observed polarizations in the context of an inverted polar jet flow while reconciling the low luminosity of Sgr A* with a standard Bondi accretion flow. Thus the conclusion that Sgr A* contains a black hole with an event horizon is still unsubstantiated.

  11. Testing Geological Models with Terrestrial Antineutrino Flux Measurements

    CERN Document Server

    Dye, Steve

    2009-01-01

    Uranium and thorium are the main heat producing elements in the earth. Their quantities and distributions, which specify the flux of detectable antineutrinos generated by the beta decay of their daughter isotopes, remain unmeasured. Geological models of the continental crust and the mantle predict different quantities and distributions of uranium and thorium. Many of these differences are resolvable with precision measurements of the terrestrial antineutrino flux. This precision depends on both statistical and systematic uncertainties. An unavoidable background of antineutrinos from nuclear reactors typically dominates the systematic uncertainty. This report explores in detail the capability of various operating and proposed geo-neutrino detectors for testing geological models.

  12. First Observations of Separated Atmospheric Muon Neutrino and Muon Anti-Neutrino Events in the MINOS Detector

    CERN Document Server

    Adamson, P; Allison, W W M; Alner, G J; Anderson, K; Andreopoulos, C; Andrews, M; Andrews, R; Arroyo, C; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barker, M A; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bergfeld, T; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bocean, V; Bock, B; Bock, G J; Bogert, D; Border, P M; Bower, C; Boyd, S; Buckley-Geer, E; Byon-Wagner, A; Böhm, J; Böhnlein, D J; Cabrera, A; Chapman, J D; Chase, T R; Chernichenko, S K; Childress, S; Choudhary, B C; Cobb, J H; Cossairt, J D; Courant, H; Crane, D A; Culling, A J; Dawson, J W; De Muth, D M; De Santo, A; Dierckxsens, M; Diwan, M V; Dorman, M; Drake, G; Ducar, R; Durkin, T; Erwin, A R; Escobar, C O; Evans, J; Fackler, O D; Falk-Harris, E; Feldman, G J; Felt, N; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Gebhard, M; Godley, A; Gogos, J; Goodman, M C; Gornushkin, Yu; Gouffon, P; Grashorn, E; Grossman, N; Grudzinski, J J; Grzelak, K; Guarino, V; Habig, A; Halsall, R; Hanson, J; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Hill, N; Ho, Y; Howcroft, C; Hylen, J; Ignatenko, M A; Indurthy, D; Irwin, G M; James, C; Jenner, L; Jensen, D; Joffe-Minor, T M; Kafka, T; Kang, H J; Kasahara, S M; Kilmer, J; Kim, H; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kostin, M; Krakauer, D A; Kumaratunga, S; Ladran, A S; Lang, K; Laughton, C; Lebedev, A; Lee, R; Lee, W Y; Libkind, M A; Litchfield, P J; Litchfield, R P; Liu, J; Longley, N P; Lucas, P; Luebke, W; Madani, S; Maher, E; Makeev, V; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; McDonald, J; McGowan, A; Meier, J R; Merzon, G I; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Miyagawa, P S; Moore, Cristopher; Morf, J; Morse, R; Mualem, L; Mufson, S; Murgia, S; Murtagh, M J; Musser, J; Naples, D; Nelson, C; Nelson, J K; Newman, H B; Nezrick, F A; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, J; Oliver, W P; Onuchin, V A; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovich, Z; Pearce, G F; Pearson, N; Peck, C W; Perry, C; Peterson, E A; Petyt, D A; Ping, H; Piteira, R; Pla-Dalmau, A; Plunkett, R K; Price, L E; Proga, M; Pushka, D R; Rahman, D; Rameika, R A; Raufer, T M; Read, A L; Rebel, B; Reyna, D E; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schoessow, P V; Schreiner, P; Schwienhorst, R; Semenov, V K; Seun, S M; Shanahan, P; Shield, P D; Smart, W; Smirnitsky, A V; Smith, C; Smith, P N; Sousa, A; Speakman, B; Stamoulis, P; Stefanik, A; Sullivan, P; Swan, J M; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Trendler, R; Trevor, J; Trostin, I; Tsarev, V A; Tzanakos, G S; Urheim, J; Vahle, P; Vakili, M; Vaziri, K; Velissaris, C; Verebryusov, V; Viren, B; Wai, L; Ward, C P; Ward, D R; Watabe, M; Webb, R C; Weber, A; Wehmann, A; West, N; White, C; White, R F; Wojcicki, S G; Wright, D M; Wu, Q K; Yan, W G; Yang, T; Yumiceva, F X; Yun, J C; Zheng, H; Zois, M; Zwaska, R

    2006-01-01

    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of muon neutrino and muon anti-neutrino charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations giving: R_data(up/down)/R_MC(up/down) = 0.62^{+0.19}_{-0.14} (stat.) +- 0.02 (sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98 % confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field muon neutrino and muon anti-neutrino interactions are separated. The ratio of muon neutrino to muon anti-neutrino events in the data is compared to the Monte Carlo expectation assuming neutrinos and anti-neutrinos osci...

  13. Tenth-Order Lepton Anomalous Magnetic Moment -- Sixth-Order Vertices Containing Vacuum-Polarization Subdiagrams

    CERN Document Server

    Aoyama, Tatsumi; Kinoshita, Toichiro; Nio, Makiko

    2011-01-01

    This paper reports the values of contributions to the electron g-2 from 300 Feynman diagrams of the gauge-invariant Set III(a) and 450 Feynman diagrams of the gauge-invariant Set III(b). The evaluation is carried out in two versions. Version A is to start from the sixth-order magnetic anomaly M_6 obtained in the previous work. The mass-independent contributions of Set III(a) and Set III(b) are 2.1275 (2) and 3.3271 (6) in units of (alpha/pi)^5, respectively. Version B is based on the recently-developed automatic code generation scheme. This method yields 2.1271 (3) and 3.3271 (8) in units of (alpha/pi)^5, respectively. They are in excellent agreement with the results of the first method within the uncertainties of numerical integration. Combining these results as statistically independent we obtain the best values, 2.1273 (2), and 3.3271 (5) times (alpha/pi)^5, for the mass-independent contributions of the Set III(a) and Set III(b), respectively. We have also evaluated mass-dependent contributions of diagrams...

  14. Large Magnetic Moments of Arsenic-Doped Mn Clusters and their Relevance to Mn-Doped III-V Semiconductor Ferromagnetism

    CERN Document Server

    Kabir, M; Mookerjee, A; Kabir, Mukul; Mookerjee, Abhijit

    2005-01-01

    We report electronic and magnetic structure of arsenic-doped manganese clusters from density-functional theory using generalized gradient approximation for the exchange-correlation energy. We find that arsenic stabilizes manganese clusters, though the ferromagnetic coupling between Mn atoms are found only in Mn$_2$As and Mn$_4$As clusters with magnetic moments 9 $\\mu_B$ and 17 $\\mu_B$, respectively. For all other sizes, $x=$ 3, 5-10, Mn$_x$As clusters show ferrimagnetic coupling. It is suggested that, if grown during the low temperature MBE, the giant magnetic moments due to ferromagnetic coupling in Mn$_2$As and Mn$_4$As clusters could play a role on the ferromagnetism and on the variation observed in the Curie temperature of Mn-doped III-V semiconductors.

  15. Estimating terrestrial uranium and thorium by antineutrino flux measurements

    CERN Document Server

    Dye, Stephen T

    2008-01-01

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This research report describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a mid-continental and a mid-oceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understa...

  16. Observation of electron-antineutrino disappearance at Daya Bay

    CERN Document Server

    An, F P; Balantekin, A B; Band, H R; Beavis, D; Beriguete, W; Bishai, M; Blyth, S; Brown, R L; Cao, G F; Cao, J; Carr, R; Chan, W T; Chang, J F; Chang, Y; Chasman, C; Chen, H S; Chen, H Y; Chen, S J; Chen, S M; Chen, X C; Chen, X H; Chen, X S; Chen, Y; Chen, Y X; Cherwinka, J J; Chu, M C; Cummings, J P; Deng, Z Y; Ding, Y Y; Diwan, M V; Dong, L; Draeger, E; Du, X F; Dwyer, D A; Edwards, W R; Ely, S R; Fang, S D; Fu, J Y; Fu, Z W; Ge, L Q; Ghazikhanian, V; Gill, R L; Goett, J; Gonchar, M; Gong, G H; Gong, H; Gornushkin, Y A; Greenler, L S; Gu, W Q; Guan, M Y; Guo, X H; Hackenburg, R W; Hahn, R L; Hans, S; He, M; He, Q; He, W S; Heeger, K M; Heng, Y K; Hinrichs, P; Ho, T H; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, T; Hu, T; Huang, H X; Huang, H Z; Huang, P W; Huang, X; Huang, X T; Huber, P; Isvan, Z; Jaffe, D E; Jetter, S; Ji, X L; Ji, X P; Jiang, H J; Jiang, W Q; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Lai, C Y; Lai, W C; Lai, W H; Lau, K; Lebanowski, L; Lee, J; Lee, M K P; Leitner, R; Leung, J K C; Leung, K Y; Lewis, C A; Li, B; Li, F; Li, G S; Li, J; Li, Q J; Li, S F; Li, W D; Li, X B; Li, X N; Li, X Q; Li, Y; Li, Z B; Liang, H; Liang, J; Lin, C J; Lin, G L; Lin, S K; Lin, S X; Lin, Y C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, B J; Liu, C; Liu, D W; Liu, H; Liu, J C; Liu, J L; Liu, S; Liu, X; Liu, Y B; Lu, C; Lu, H Q; Luk, A; Luk, K B; Luo, T; Luo, X L; Ma, L H; Ma, Q M; Ma, X B; Ma, X Y; Ma, Y Q; Mayes, B; McDonald, K T; McFarlane, M C; McKeown, R D; Meng, Y; Mohapatra, D; Morgan, J E; Nakajima, Y; Napolitano, J; Naumov, D; Nemchenok, I; Newsom, C; Ngai, H Y; Ngai, W K; Nie, Y B; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pagac, A; Patton, S; Pearson, C; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Rosero, R; Roskovec, B; Ruan, X C; Seilhan, B; Shao, B B; Shih, K; Steiner, H; Stoler, P; Sun, G X; Sun, J L; Tam, Y H; Tanaka, H K; Tang, X; Themann, H; Torun, Y; Trentalange, S; Tsai, O; Tsang, K V; Tsang, R H M; Tull, C; Viren, B; Virostek, S; Vorobel, V; Wang, C H; Wang, L S; Wang, L Y; Wang, L Z; Wang, M; Wang, N Y; Wang, R G; Wang, T; Wang, W; Wang, X; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Webber, D M; Wei, Y D; Wen, L J; Wenman, D L; Whisnant, K; White, C G; Whitehead, L; Whitten, C A; Wilhelmi, J; Wise, T; Wong, H C; Wong, H L H; Wong, J; Worcester, E T; Wu, F F; Wu, Q; Xia, D M; Xiang, S T; Xiao, Q; Xing, Z Z; Xu, G; Xu, J; Xu, J; Xu, J L; Xu, W; Xu, Y; Xue, T; Yang, C G; Yang, L; Ye, M; Yeh, M; Yeh, Y S; Yip, K; Young, B L; Yu, Z Y; Zhan, L; Zhang, C; Zhang, F H; Zhang, J W; Zhang, Q M; Zhang, K; Zhang, Q X; Zhang, S H; Zhang, Y C; Zhang, Y H; Zhang, Y X; Zhang, Z J; Zhang, Z P; Zhang, Z Y; Zhao, J; Zhao, Q W; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, Z Y; Zhuang, H L; Zou, J H

    2012-01-01

    The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle $\\theta_{13}$ with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW$_{\\rm th}$ reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With 55 days of data, 10416 (80376) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is $R=0.940\\pm 0.011({\\rm stat}) \\pm 0.004({\\rm syst})$. A rate-only analysis finds $\\sin^22\\theta_{13}=0.092\\pm 0.016({\\rm stat})\\pm0.005({\\rm syst})$ in a three-neutrino framework.

  17. An improved measurement of muon antineutrino disappearance in MINOS

    CERN Document Server

    Adamson, P; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cao, S V; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Phan-Budd, S; Plunkett, R K; Qiu, X; Radovic, A; Ratchford, J; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Walding, J J; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Zwaska, R

    2012-01-01

    We report an improved measurement of muon anti-neutrino disappearance over a distance of 735km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a muon anti-neutrino enhanced configuration. From a total exposure of 2.95e20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of the anti-neutrino "atmospheric" delta-m squared = 2.62 +0.31/-0.28 (stat.) +/- 0.09 (syst.) and constrain the anti-neutrino atmospheric mixing angle >0.75 (90%CL). These values are in agreement with those measured for muon neutrinos, removing the tension reported previously.

  18. Improved Scintillator Materials For Compact Electron Antineutrino Detectors

    NARCIS (Netherlands)

    Dijkstra, Peter; Wortche, Heinrich J.; Browne, Wesley R.

    2012-01-01

    Recent developments provide new components holding the potential to improve the performance of liquid scintillation electron antineutrino detectors used as nuclear reactors monitors. Current systems raise issues regarding size, quantum efficiency, stability, and spatial resolution of the vertex dete

  19. Estimating terrestrial uranium and thorium by antineutrino flux measurements.

    Science.gov (United States)

    Dye, Stephen T; Guillian, Eugene H

    2008-01-01

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth.

  20. Geoneutrinos and reactor antineutrinos at SNO+

    CERN Document Server

    Baldoncini, M; Wipperfurth, S A; Fiorentini, G; Mantovani, F; McDonough, W F; Ricci, B

    2016-01-01

    In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores ($\\sim$55\\% of the total reactor signal), which generally burn natural uranium. Approximately 18\\% of the total geoneutrino signal is generated by the U and Th present in the rocks of the Huronian Supergroup-Sudbury Basin: the 60\\% uncertainty on the signal produced by this lithologic unit plays a crucial role on the discrimination power on the mantle signal as well as on the geoneutrino spectral shape reconstruction, which can in principle provide a direct measurement of the Th/U ratio in the Earth.

  1. Applications of Antineutrino Monitoring to Nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-03

    Antineutrinos are highly penetrating particles emitted by the fission process in operating nuclear power and research reactors. Their rate of emission and energy spectrum can provide useful information about reactor operations, including the existence of the reactor, its power level, and the fissile mass inventories in the core. Because the signal cannot be attenuated or masked, this information can be gathered at long standoff outside the core (further detail is available in [1]). Building on our group’s successful experimental demonstrations of plutonium content monitoring at 25 meters from a reactor core, the goal of this project is to demonstrate detectors for reactor monitoring and discovery detectors at increasing standoffs, out to a practical limit of about 1000 kilometers. Our two main goals for FY16 and 17 are: 1) design a detector capable of monitoring nuclear reactor operations at 25 kilometer standoff, and 2) engag

  2. Applications of Antineutrino Monitoring to Nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-04

    Antineutrinos are highly penetrating particles emitted by the fission process in operating nuclear power and research reactors. Their rate of emission and energy spectrum can provide useful information about reactor operations, including the existence of the reactor, its power level, and the fissile mass inventories in the core. Because the signal cannot be attenuated or masked, this information can be gathered at long standoff outside the core. Building on our group’s successful experimental demonstrations of plutonium content monitoring at 25 meters from a reactor core, the goal of this project is to demonstrate detectors for reactor monitoring and discovery detectors at increasing standoffs, out to a practical limit of about 1000 kilometers. Our two main goals for FY16 and 17 are: 1) design a detector capable of monitoring nuclear reactor operations at 25 kilometer standoff, and 2) engage in a cooperative effort to monitor a former plutonium production reactor in India (at close range).

  3. Failure-tolerant control for small agile satellites using single-gimbal control moment gyros and magnetic torquers

    Institute of Scientific and Technical Information of China (English)

    Tao Meng; Saburo Matunaga

    2012-01-01

    This paper focuses on the attitude control problem of small agile satellites using single-gimbal control moment gyros (CMG) and magnetic torquers (MTQ).CMGs are regarded as effective torque generators for agile satellites because of their torque amplification capability.However,they are vulnerable to failure due to their complex inner mechanism.In this paper,different failure cases of CMGs are analyzed.A flexible failure-tolerant control strategy is developed by automatically redistributing the required control torque among the operating CMGs and MTQs,with a variable limiter to accommodate the actuator dynamics changes introduced by CMG failures.The performances of maneuvers about different directions under different failure cases are also discussed and examined.Numerical simulations demonstrate that the proposed strategy maintains certain agility in the cases of one or two CMGs failing.Moreover,a survival strategy with only one CMG left is also verified.Both sun-pointing stabilization and earth-pointing stabilization can be achieved in this case,which fulfill some basic mission requirements.

  4. Electric quadrupole and magnetic dipole moments of odd nuclei near the magic ones in a self-consistent approach

    CERN Document Server

    Co', G; Anguiano, M; Bernard, R N; Lallena, A M

    2015-01-01

    We present a model which describes the properties of odd-even nuclei with one nucleon more, or less, with respect to the magic number. In addition to the effects related to the unpaired nucleon, we consider those produced by the excitation of the closed shell core. By using a single particle basis generated with Hartree-Fock calculations, we describe the polarization of the doubly magic-core with Random Phase Approximation collective wave functions. In every step of the calculation, and for all the nuclei considered, we use the same finite-range nucleon-nucleon interaction. We apply our model to the evaluation of electric quadrupole and magnetic dipole moments of odd-even nuclei around oxygen, calcium, zirconium, tin and lead isotopes. Our Random Phase Approximation description of the polarization of the core improves the agreement with experimental data with respect to the predictions of the independent particle model. We compare our results with those obtained in first-order perturbation theory, with those ...

  5. Dynamical zero in {nu}-bar {sub e}-e{sup -} scattering and the neutrino magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, J. [Departament de Fisica Teorica and IFIC Centro Mixto, Universitat de Valencia, CSIC, E-46100 Burjassot, Valencia (Spain); Papavassiliou, J. [Departament de Fisica Teorica and IFIC Centro Mixto, Universitat de Valencia, CSIC, E-46100 Burjassot, Valencia (Spain); Passera, M. [Departament de Fisica Teorica and IFIC Centro Mixto, Universitat de Valencia, CSIC, E-46100 Burjassot, Valencia (Spain) and Dipartimento di Fisica ' G. Galilei' , Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy)]. E-mail: massimo.passera@pd.infn.it

    2005-05-05

    The Standard Model differential cross section for {nu}-bar {sub e}-e{sup -} elastic scattering vanishes exactly, at lowest order, for forward electrons and incident {nu}-bar {sub e} energy close to the rest energy of the electron. This dynamical zero is not induced by a fundamental symmetry of the Lagrangian but by a destructive interference between the left- and right-handed chiral couplings of the electron in the charged and neutral current amplitudes. We show that lowest-order analyses based on this favorable kinematic configuration are only mildly affected by the inclusion of the O({alpha}) radiative corrections in the {nu}-bar {sub e}-e{sup -} differential cross section, thus providing an excellent opportunity for the search of ''new physics''. In the light of these results, we discuss possible methods to improve the upper limits on the neutrino magnetic moment by selecting recoil electrons contained in a forward narrow cone. We conclude that, in spite of the obvious loss in statistics, one may have a better signal for small angular cones.

  6. Changes in the mean-square charge radii and magnetic moments of neutron-deficient Tl isotopes

    Science.gov (United States)

    Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Mezilev, K. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Panteleev, V. N.; Volkov, Yu. M.

    2013-08-01

    In-source laser spectroscopy experiments for neutron-deficient thallium isotopes at the 276.9-nm atomic transition have been carried out at the Investigation of Radioactive Isotopes on Synchrocyclotron facility of Petersburg Nuclear Physics Institute. New data on isotope shifts and the hyperfine structure for 183-207Tl isotopes and isomers are presented. The changes in the mean-square charge radii and magnetic-moment values are deduced. It is shown that nuclear properties of Tl isotopes and isomers smoothly change at the neutron midshell and beyond without development of strong deformation in contrast to the adjacent Hg nuclei. A rather great isomer shift between I = 1/2 and I = 9/2 states for odd Tl isotopes is preserved for both sides of the previously investigated mass range. For the first time, a similar isomer shift is found for the odd-odd isotope 186Tl. The close resemblance of the charge radii isotopic behavior for the Tl and Pb ground states is demonstrated.

  7. A to Z of the Muon Anomalous Magnetic Moment in the MSSM with Pati-Salam at the GUT scale

    CERN Document Server

    Belyaev, Alexander S; King, Steve F; Miller, David J; Morais, António P; Schaefers, Patrick B

    2016-01-01

    We analyse the low energy predictions of the minimal supersymmetric standard model (MSSM) arising from a GUT scale Pati-Salam gauge group further constrained by an $A_4 \\times Z_5$ family symmetry, resulting in four soft scalar masses at the GUT scale: one left-handed soft mass $m_0$ and three right-handed soft masses $m_1,m_2,m_3$, one for each generation. We demonstrate that this model, which was initially developed to describe the neutrino sector, can explain collider and non-collider measurements such as the dark matter relic density, the Higgs boson mass and, in particular, the anomalous magnetic moment of the muon $(g-2)_\\mu$. Since about two decades, $(g-2)_\\mu$ suffers a puzzling about 3$\\,\\sigma$ excess of the experimentally measured value over the theoretical prediction, which our model is able to fully resolve. As the consequence of this resolution, our model predicts specific regions of the parameter space with the specific properties including light smuons and neutralinos, which could also potent...

  8. A to Z of the muon anomalous magnetic moment in the MSSM with Pati-Salam at the GUT scale

    Science.gov (United States)

    Belyaev, Alexander S.; Camargo-Molina, José E.; King, Steve F.; Miller, David J.; Morais, António P.; Schaefers, Patrick B.

    2016-06-01

    We analyse the low energy predictions of the minimal supersymmetric standard model (MSSM) arising from a GUT scale Pati-Salam gauge group further constrained by an A 4 × Z 5 family symmetry, resulting in four soft scalar masses at the GUT scale: one left-handed soft mass m 0 and three right-handed soft masses m 1 , m 2 , m 3, one for each generation. We demonstrate that this model, which was initially developed to describe the neutrino sector, can explain collider and non-collider measurements such as the dark matter relic density, the Higgs boson mass and, in particular, the anomalous magnetic moment of the muon ( g - 2) μ . Since about two decades, ( g - 2) μ suffers a puzzling about 3 σ excessoftheexperimentallymeasuredvalueoverthetheoreticalprediction,whichour model is able to fully resolve. As the consequence of this resolution, our model predicts specific regions of the parameter space with the specific properties including light smuons and neutralinos, which could also potentially explain di-lepton excesses observed by CMS and ATLAS.

  9. Simulation of the SONGS Reactor Antineutrino Flux Using DRAGON

    CERN Document Server

    Jones, C L

    2011-01-01

    For reactor antineutrino experiments, a thorough understanding of the fuel composition and isotopic evolution is of paramount importance for the extraction of $\\theta_{13}$. To accomplish these goals, we employ the deterministic lattice code DRAGON, and analyze the instantaneous antineutrino rate from the San Onofre Nuclear Generating Station (SONGS) Unit 2 reactor in California. DRAGON's ability to predict the rate for two consecutive fuel cycles is examined.

  10. Structural Origin of the Anomalous Temperature Dependence of the Local Magnetic Moments in the CaFe2As2 Family of Materials

    Science.gov (United States)

    Ortenzi, L.; Gretarsson, H.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; Finkelstein, K. D.; Wu, W.; Julian, S. R.; Kim, Young-June; Mazin, I. I.; Boeri, L.

    2015-01-01

    We report a combination of Fe K β x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx) 2 . The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx) 2 . We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx) 2 (x =0.055 ) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c -axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.

  11. Correlation of electronic structure and magnetic moment in Ga1-xMnxN : First-principles, mean field and high temperature series expansions calculations

    Science.gov (United States)

    Masrour, R.; Hlil, E. K.

    2016-08-01

    Self-consistent ab initio calculations based on density-functional theory and using both full potential linearized augmented plane wave and Korring-Kohn-Rostoker-coherent potential approximation methods, are performed to investigate both electronic and magnetic properties of the Ga1-xMnxN system. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters such as the magnetic phase diagram and the critical exponent. The increasing of the dilution x in this system has allowed to verify a series of HTSEs predictions on the possibility of ferromagnetism in dilute magnetic insulators and to demonstrate that the interaction changes from antiferromagnetic to ferromagnetic passing through the spins glace phase.

  12. Precise measurement of magnetic moment of short-lived β-emitting nuclei 12B (Iπ= 1+, T1/2 = 20.18 ms)

    Institute of Scientific and Technical Information of China (English)

    K.; Matsuta; T.; Minamisono; ZHU; Shengyun; ZHOU; Dongmei

    2004-01-01

    The spin polarized β-emitting nuclei 12B (Iπ = 1+, T1/2 = 20.18 ms) were produced by the nuclear reaction 11B(d, p) 12B and by the selection technique of the incident deuteron energy and the 12B recoil angle following the nuclear reaction. The nuclear magnetic moment of the short-lived nuclei 12B was measured by β-NMR with the β-NMR and β-NQR setup established for the first time in China. The nuclear magnetic moment of 12B was determined to be μ = 0.99993 ± 0.00048 nm or g = 0.99993 ± 0.00048 after the precise correction of the Knight shift.

  13. Observations Supporting the Existence of an Intrinsic Magnetic Moment Inside the Central Compact Object Within the Quasar Q0957+561

    CERN Document Server

    Schild, R E; Robertson, S L; Schild, Rudolph E.; Leiter, Darryl J.; Robertson, Stanley L.

    2005-01-01

    Recent auto-correlation and fluctuation analysis of time series data in the brightness curves and micro-lensing size scales seen in Q0957+561 A,B has produced important information about the existence and characteristic physical dimensions of a new non-standard internal structure contained within this quasar. We find that the new internal quasar structure, which we shall call the Schild-Vakulik Structure, can be consistently explained in terms of a new calss of gravitationally collapsing solutions to the Einstein field equations which describe highly redshifted, Eddington limited, Magnetospheric Eternally Collapsing Objects (MECO) that contain intrinsic magnetic moments. Since observation of the Schild-Vakulik structure within Q0957+561 implies that this quasar contains an observable intrinsic magnetic moment, this represents strong evidence that this quasar does not have an event horizon

  14. Spins and Magnetic Moments of $^{49}$K and $^{51}$K: establishing the 1/2$^+$ and 3/2$^+$ level ordering beyond $N$ = 28

    CERN Document Server

    Papuga, J; Kreim, K; Blaum, K; Brown, B A; De Rydt, M; Ruiz, R F Garcia; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nörtershäuser, W; Otsuka, T; Rajabali, M M; Sánchez, R; Utsuno, Y; Yordanov, D T

    2013-01-01

    The ground-state spins and magnetic moments of $^{49,51}$K have been measured using bunched-beam high-resolution collinear laser spectroscopy at ISOLDE-CERN. For $^{49}$K a ground-state spin $I = 1/2$ was firmly established. The observed hyperfine structure of $^{51}$K requires a spin $I > 1/2$ and from its magnetic moment $\\mu(^{51}\\text{K})= +0.5129(22)\\, \\mu_N$ a spin/parity $I^\\pi=3/2^+$ with a dominant $\\pi 1d_{3/2}^{-1}$ hole configuration was deduced. This establishes for the first time the re-inversion of the single-particle levels and illustrates the prominent role of the residual monopole interaction for single-particle levels and shell evolution.

  15. Relativistic quark-diquark model of baryons with a spin-isospin transition interaction: Non-strange baryon spectrum and nucleon magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Sanctis, M. de [Universidad Nacional de Colombia, Bogota (Colombia); Ferretti, J. [Universita La Sapienza, Dipartimento di Fisica, Roma (Italy); INFN, Roma (Italy); Santopinto, E.; Vassallo, A. [INFN, Sezione di Genova, Genova (Italy)

    2016-05-15

    The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented. (orig.)

  16. Energetic stability and magnetic moment of tri-, tetra-, and octa- ferromagnetic element nitrides predicted by first-principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Yoji, E-mail: imai-y@aist.go.jp [National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 5, Higashi 1-1, Tsukuba, Ibaraki 305-8565 (Japan); Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8573 (Japan); Sohma, Mitsugu [National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 5, Higashi 1-1, Tsukuba, Ibaraki 305-8565 (Japan); Suemasu, Takashi [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-10-25

    Highlights: • Formation energies of tri-, tetra-, and octa-metal nitrides of Fe, Co and Ni were calculated. • It is predicted that Fe{sub 4}N is stable, Ni{sub 4}N is metastable, and Co{sub 4}N is unstable. • Octa-metal nitrides with the α″-Fe{sub 16}N{sub 2} type structure is stable only for Fe. • All the tri-metal nitrides with the Ni{sub 3}N type structure are stable. - Abstract: Formation energies and magnetic moments of tri-, tetra-, and octa- ferromagnetic element nitrides have been calculated using spin-polarized Perdew–Wang generalized gradient approximations of the density functional theory. From the energetic point of view, Fe{sub 4}N are more stable compared to Fe and N{sub 2} gas. Ni{sub 4}N may be a metastable phase since mixture of Ni{sub 3}N and Ni would be more energetically stable. Fe{sub 4}N may be also a metastable from energetic point of view but effect of configurational entropy caused by N-vacancy and of disregarded random occupation of interstitial sites by N observed in Fe{sub 3}N must be evaluated so as to make precise evaluation, which is beyond the scope of the present work. Co{sub 4}N are not stable compared to Co metal with the hcp structure and N{sub 2} gas, but more stable in case Co metal with the fcc structure is used as a reference state. Only Fe{sub 8}N with the α″-Fe{sub 16}N{sub 2} type structure would be stable among octa-metal nitrides with the assumed structure of the α″-Fe{sub 16}N{sub 2} type and the Ni{sub 32}N{sub 4} type structure. All of Fe{sub 3}N, Co{sub 3}N, and Ni{sub 3}N are stable, but Ni{sub 3}N would be non-magnetic in contrast to ferromagnetism of other tri-metal nitrides.

  17. Status of the Prediction of Reactor Anti-neutrino Spectra

    Science.gov (United States)

    Fallot, Muriel

    2015-04-01

    New generation neutrino physics experiments at reactors have recently determined the value of the θ13 mixing angle. Even though their principle is to use multiple detectors allowing to minimize the influence of reactor and nuclear physics ingredients on their results, these ingredients cannot be totally eliminated. They include reactor simulations, but also new computations of reactor anti-neutrino energy spectra. Recently, after a new computation of the reactor anti-neutrino energy spectra, based on the conversion of integral data of the beta spectra from 235U, and 239;241Pu, a deficit of reactor anti-neutrinos measured by short baseline experiments was pointed out. This is called the reactor anomaly, a new puzzle in the neutrino physics area. Since then, numerous new experimental neutrino projects have emerged. In parallel, computations of the anti-neutrino spectra independent from the ILL data would be desirable. One possibility is the use of the summation method, summing all the contributions of the fission product beta decay branches that can be found in nuclear databases. Studies have shown that in order to obtain reliable summation anti-neutrino energy spectra, new nuclear physics measurements of selected fission product beta decay properties are required. Lately, the first integral measurement of the beta spectrum associated to fast fission of 238U has been performed. Even more recently, the question of the influence of forbidden decays in the determination of reactor anti-neutrino energy spectrum has been raised. At this conference, we will present the methods used to compute reactor anti-neutrino energy spectra, the recent published developments on the topic, remaining open questions and some experimental outlooks.

  18. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for 235U (n ,fission) at Thermal and Fast Neutron Energies

    Science.gov (United States)

    Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; Dimitriou, P.

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U 235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  19. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies.

    Science.gov (United States)

    Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  20. Room temperature ferromagnetism with large magnetic moment at low field in rare-earth-doped BiFeO₃ thin films.

    Science.gov (United States)

    Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M

    2013-05-22

    Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.

  1. Angle and temperature dependence of the magnetocrystalline anisotropy energy and the microscopic magnetic moments of the ferromagnetic semi-metal CrO{sub 2}; Winkel- und Temperaturabhaengigkeit der magnetokristallinen Anisotropieenergie und der mikroskopischen magnetischen Momente des ferromagnetischen Halbmetalls CrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gold, S.

    2005-07-01

    The aim of this work was to examine, by use of XMCD-effect and additional measurements with SQUID-magnetometer, spin moments and hysteresis loops, but also to clarify the intrinsic properties like magnetocrystalline anisotropy, magnetic dipole term, and the nearly quenched orbital moment. The XMCD-measurements were done at the Cr L{sub 2,3}- and the O K-edge. The results for CrO{sub 2} show a strong dependence of the orbital, the sum of spin moment and magnetic dipole term, and the magnetocrystalline anisotropy energy from the angle between rutile a- and c-axis. Even more than the complete orbital moment, two separable and different spectral features show strong alterations of the different orbital moments. In a second part of this work the temperature dependence was investigated. The aim was to clarify the origin of the orbital moment, dipole term, and MAE in dependence of the spin moment and compare the results to different theoretical models. The extracted orbital moments and the magnetic dipole term show the same temperature dependence as the spin moment. In the following a dependence of the squared measured spin moment could be found for the MAE. For the first time the magnetic dipole term could be identified as the reason of the magnetocrystalline anisotropy energy. A strong Cr-O hybridisation was found, which shows in a similar structure and temperature dependence of the orbital moments for Cr L{sub 2,3} and the XMCD effect at O-K edge. (orig.)

  2. Experimental determination of the antineutrino spectrum of the fission products of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Nils-Holger

    2013-10-09

    Fission of {sup 238}U contributes about 10 % to the antineutrino emission of a pressurized water reactor. In the present thesis, the beta spectrum of the fission products of {sup 238}U was determined in an experiment at the neutron source FRM II. This beta spectrum was subsequently converted into an antineutrino spectrum. This first measurement of the antineutrino spectrum supports all current and future reactor antineutrino experiments.

  3. Progress Towards Deployable Antineutrino Detectors for Reactor Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, N; Bernstein, A; Dazeley, S; Keefer, G; Reyna, D; Cabrera-Palmer, B; Kiff, S

    2010-04-05

    Fission reactors emit large numbers of antineutrinos and this flux may be useful for the measurement of two quantities of interest for reactor safeguards: the reactor's power and plutonium inventory throughout its cycle. The high antineutrino flux and relatively low background rates means that simple cubic meter scale detectors at tens of meters standoff can record hundreds or thousands of antineutrino events per day. Such antineutrino detectors would add online, quasi-real-time bulk material accountancy to the set of reactor monitoring tools available to the IAEA and other safeguards agencies with minimal impact on reactor operations. Between 2003 and 2008, our LLNL/SNL collaboration successfully deployed several prototype safeguards detectors at a commercial reactor in order to test both the method and the practicality of its implementation in the field. Partially on the strength of the results obtained from these deployments, an Experts Meeting was convened by the IAEA Novel Technologies Group in 2008 to assess current antineutrino detection technology and examine how it might be incorporated into the safeguards regime. Here we present a summary of our previous deployments and discuss current work that seeks to provide expanded capabilities suggested by the Experts Panel, in particular aboveground detector operation.

  4. Anti-neutrino oscillations with T2K

    CERN Document Server

    Salzgeber, M Ravonel

    2015-01-01

    T2K is a long-baseline neutrino oscillation experiment, in which a muon neutrino beam is produced at J-PARC and detected 295 km away at the Super-Kamiokande detector. The T2K experiment observed electron-neutrino appearance in 2012. This observation enables T2K to explore CP violation in the lepton sector by comparing electron-neutrino appearance and electron-antineutrino appearance. Indeed, the number of observed electron neutrino events up to 2012 is, though within statistical fluctuation, larger than the expectation, which suggests maximal CP violation. Since 2013, T2K has been accumulating data with a muon antineutrino beam. If the suggested maximal CP violation is true, electron-antineutrino appearance would be suppressed. The signal is further suppressed by the smaller cross section for antineutrinos compared to neutrinos. Hence the observation of electron-antineutrino appearance is an important next step. Furthermore, the CPT theorem imposes that the muon disappearance rate must be the same for muon ne...

  5. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  6. Observation of the Isotopic Evolution of PWR Fuel Using an Antineutrino Detector

    CERN Document Server

    Bowden, N S; Dazeley, S; Svoboda, R; Misner, A; Palmer, T

    2008-01-01

    By operating an antineutrino detector of simple design during several fuel cycles, we have observed long term changes in antineutrino flux that result from the isotopic evolution of a commercial pressurized water reactor. Measurements made with simple antineutrino detectors of this kind offer an alternative means for verifying fissile inventories at reactors, as part of IAEA and other reactor safeguards regimes.

  7. The New (g-2) Experiment: A proposal to measure the muon anomalous magnetic moment to +-0.14 ppm precision

    Energy Technology Data Exchange (ETDEWEB)

    Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; Morse, W.M.; Semertzides, Y.K.; Druzhinin, V.P.; Khazin, B.I.; Koop, I.A.; Logashenko, I.; Redin, S.I.; /Boston U. /Brookhaven /Novosibirsk, IYF /Cornell U., CIHEP /Fermilab /Frascati /Illinois U., Urbana /James Madison U. /Groningen, KVI /KEK, Tsukuba /Kentucky U.

    2009-02-01

    We propose to measure the muon anomalous magnetic moment, a{sub {mu}}, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10{sup -11}, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, {Delta}a{sub {mu}} (Expt: -SM) = (295 {+-} 81) x 10{sup -11}, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10{sup -11} is reduced to 30 x 10{sup -11} on the time scale of the completion of our experiment, a future {Delta}a{sub {mu}} comparison would have a combined uncertainty of {approx} 34 x 10{sup -11}, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned

  8. A reference worldwide model for antineutrinos from reactors

    CERN Document Server

    Baldoncini, Marica; Fiorentini, Giovanni; Mantovani, Fabio; Ricci, Barbara; Strati, Virginia; Xhixha, Gerti

    2014-01-01

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO+) and proposed (Juno, RENO-50, LENA and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation and detection processes are estimated using a Monte Carlo based approach, which provides an overall site dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes and we estimate a 2.4% increase of the unoscillate...

  9. Data acquisition system for segmented reactor antineutrino detector

    Science.gov (United States)

    Hons, Z.; Vlášek, J.

    2017-01-01

    This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.

  10. Simulation of Reactors for Antineutrino Experiments Using DRAGON

    CERN Document Server

    Winslow, L

    2011-01-01

    From the discovery of the neutrino to the precision neutrino oscillation measurements in KamLAND, nuclear reactors have proven to be an important source of antineutrinos. As their power and our knowledge of neutrino physics has increased, more sensitive measurements have become possible. The next generation of reactor antineutrino experiments require more detailed simulations of the reactor core. Many of the reactor simulation codes are proprietary which makes detailed studies difficult. Here we present the results of the open source DRAGON code and compare it to other industry standards for reactor modeling. We use published data from the Takahama reactor to determine the quality of the simulations. The propagation of the uncertainty to the antineutrino flux is also discussed.

  11. Antineutrino monitoring for the Iranian heavy water reactor

    CERN Document Server

    Christensen, Eric; Jaffke, Patrick; Shea, Thomas

    2014-01-01

    In this note we discuss the potential application of antineutrino monitoring to the Iranian heavy water reactor at Arak, the IR-40, as a non-proliferation measure. We demonstrate that an above ground detector positioned right outside the IR-40 reactor building could meet and in some cases significantly exceed the verification goals identified by IAEA for plutonium production or diversion from declared inventories. In addition to monitoring the reactor during operation, observing antineutrino emissions from long-lived fission products could also allow monitoring the reactor when it is shutdown. Antineutrino monitoring could also be used to distinguish different levels of fuel enrichment. Most importantly, these capabilities would not require a complete reactor operational history and could provide a means to re-establish continuity of knowledge in safeguards conclusions should this become necessary.

  12. Isomer Shift and Magnetic Moment of the Long-Lived 1/2^{+} Isomer in _{30}^{79}Zn_{49}: Signature of Shape Coexistence near ^{78}Ni.

    Science.gov (United States)

    Yang, X F; Wraith, C; Xie, L; Babcock, C; Billowes, J; Bissell, M L; Blaum, K; Cheal, B; Flanagan, K T; Garcia Ruiz, R F; Gins, W; Gorges, C; Grob, L K; Heylen, H; Kaufmann, S; Kowalska, M; Kraemer, J; Malbrunot-Ettenauer, S; Neugart, R; Neyens, G; Nörtershäuser, W; Papuga, J; Sánchez, R; Yordanov, D T

    2016-05-01

    Collinear laser spectroscopy is performed on the _{30}^{79}Zn_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in ^{79}Zn as well as the isomer shift are measured. From the observed hyperfine structures, spins I=9/2 and I=1/2 are firmly assigned to the ground and isomeric states. The magnetic moment μ (^{79}Zn)=-1.1866(10)μ_{N}, confirms the spin-parity 9/2^{+} with a νg_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ (^{79m}Zn)=-1.0180(12)μ_{N} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ⟨r_{c}^{2}⟩^{79,79m}=+0.204(6)  fm^{2}, providing first evidence of shape coexistence.

  13. Theoretic 3-D study of the high-frequency magnetic moment dynamics in thin ferromagnetic films with in-plane uniaxial anisotropy by considering eddy-current generation

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K., E-mail: klaus.seemann@kit.edu [Karlsruhe Institute of Technology KIT (Campus North), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Leiste, H.; Krueger, K. [Karlsruhe Institute of Technology KIT (Campus North), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-06-15

    In the present paper, theoretic investigations of polarisation vector precession trajectories represented by a macro spin in ferromagnetic films with in-plane uniaxial anisotropy were realised. For this purpose, the Landau-Lifschitz-Gilbert differential equation (LLG) in combination with the Maxwell equations were solved for three dimensions by considering a linear progression of the magnetisation or polarisation with an external field. The frequency and time dependent polarisation trajectories illustrate how a magnetic moment precesses if effective damping and eddy-currents impacts its motion. For computation, typical parameter values like the saturation polarisation J{sub s}={mu}{sub 0}{center_dot}M{sub s}=1.4 T and in-plane uniaxial anisotropy {mu}{sub 0}{center_dot}H{sub u}=4.5 mT were employed. The main focus of simulation was on the variation of the effective damping parameter {alpha}{sub eff} between 0.01 and 0.05 and ferromagnetic film thickness t{sub m} between 200 nm and 1200 nm. The frequency-dependent calculations were carried out between 50 MHz and 6 GHz. The time-dependent simulations were done for a duration between 5 and 30 ns. - Highlights: Black-Right-Pointing-Pointer Frequency- and time domain solution of the LLG and Maxwell differential equation. Black-Right-Pointing-Pointer 3D magnetic moment or macro spin trajectories by eddy-current impact. Black-Right-Pointing-Pointer Progression of a magnetic excitation field in thin ferromagnetic films. Black-Right-Pointing-Pointer Transient response evaluation of uniform magnetic moments excited by an r.f. field.

  14. Neutrino emissivity from Goldstone boson decay in magnetized neutron matter

    CERN Document Server

    Bedaque, Paulo

    2013-01-01

    Neutron matter at densities somewhat above nuclear densities is believed to be superfluid due to the condensation of neutron pairs in the 3 P2 channel. This condensate breaks rotational symmetry spontaneously and leads to the existence of Goldstone bosons (angulons). We show that the coupling to magnetic fields mediated by the magnetic moment of the neutron makes angulons massive and capable of decaying into a neutrino-antineutrino pair. We compute the rate for this process and argue they become competitive with other cooling processes for temperatures around 10^7 K as long as the interior magnetic field of the star is in the B=10^15 G range or above.

  15. Stopping power of neutrinos and antineutrinos in polymers

    Science.gov (United States)

    Rustgi, M. L.; Leung, P. T.; Long, S. A. T.

    1985-01-01

    The Weinberg-Salam model is applied to quantify the energy loss of antineutrinos and neutrinos encountering polymers. The scattering cross-sectional energy due to encounters with electrons is calculated, along with the probability that an antineutrino will remain the same particle. The energy loss reaches a maximum, i.e., stopping occurs, when the probability is unity. The technique is applied to study the energy losses in kapton, a solid organic insulator used for antennas on spacecraft exposed to solar neutrinos with energies ranging from 0.5-10 MeV. The energy loss is found to be negligible.

  16. Spectral Structure of Electron Antineutrinos from Nuclear Reactors

    CERN Document Server

    Dwyer, D A

    2014-01-01

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principle calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructure in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of this substructure can constrain nuclear reactor physics. The substructure can be a systematic uncertainty for measurements utilizing the detailed spectral shape.

  17. Antineutrino Flux from the Laguna Verde Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Marisol Chavez-Estrada

    2015-01-01

    Full Text Available We present a calculation of the antineutrino flux produced by the reactors at the Laguna Verde Nuclear Power Plant in México, based on the antineutrino spectra produced in the decay chains of the fission fragments of the main isotopes in the reactor core, and their fission rates, which have been calculated using the DRAGON simulation code. We also present an estimate of the number of expected events in a detector made of plastic scintillator with a mass of 1 ton, at 100 m from the reactor cores.

  18. Spectral structure of electron antineutrinos from nuclear reactors.

    Science.gov (United States)

    Dwyer, D A; Langford, T J

    2015-01-01

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principles calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructures in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of these substructures can elucidate the nuclear processes occurring within reactors. These substructures can be a systematic issue for measurements utilizing the detailed spectral shape.

  19. Geophysics with Hawaiian Anti-neutrino Observatory (Hanohano)

    Energy Technology Data Exchange (ETDEWEB)

    Maricic, J., E-mail: jelena.maricic@physics.drexel.edu [Drexel University, Philadelphia, PA, 19104, University of Hawaii, Honolulu, HI, 96822 (United States)

    2011-12-15

    The design studies are under way for the deep ocean anti-neutrino observatory located in the vicinity of the Big Island (Hawaii) with the main goal of measuring geo-neutrino flux from the mantle and core which can exclusively be done in a location far from the continental plates such is Hawaiian Islands chain. Hanohano will also accomplish the definitive measurement of the electron anti-neutrino signal from the core to observe or eliminate a hypothetical natural reactor in the Earth's core.

  20. Geophysics with Hawaiian Anti-neutrino Observatory (Hanohano)

    Science.gov (United States)

    Maricic, J.; Hanohano Collaboration

    2011-12-01

    The design studies are under way for the deep ocean anti-neutrino observatory located in the vicinity of the Big Island (Hawaii) with the main goal of measuring geo-neutrino flux from the mantle and core which can exclusively be done in a location far from the continental plates such is Hawaiian Islands chain. Hanohano will also accomplish the definitive measurement of the electron anti-neutrino signal from the core to observe or eliminate a hypothetical natural reactor in the Earth's core.

  1. Reactor Simulation for Antineutrino Experiments using DRAGON and MURE

    CERN Document Server

    Jones, C L; Conrad, J M; Djurcic, Z; Fallot, M; Giot, L; Keefer, G; Onillon, A; Winslow, L

    2011-01-01

    Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulations to predict reactor fission rates. Here we present results from the DRAGON and MURE simulation codes and compare them to other industry standards for reactor core modeling. We use published data from the Takahama-3 reactor to evaluate the quality of these simulations against the independently measured fuel isotopic composition. The propagation of the uncertainty in the reactor operating parameters to the resulting antineutrino flux predictions is also discussed.

  2. Antineutrino flux from the Laguna Verde Nuclear Power Plant

    CERN Document Server

    Chavez-Estrada, Marisol

    2015-01-01

    We present a a calculation of the antineutrino flux produced by the reactors at the Laguna Verde Nuclear Power Plant in M\\'exico, based on the antineutrino spectra produced in the decay chains of the fission fragments of the main isotopes in the reactor core, and their fission rates, that have been calculated using the DRAGON simulation code. We also present an estimate of the number of expected events in a detector made of plastic scintillator with a mass of 1 ton, at 100 m from the reactor cores.

  3. An Upper Bound on the Strongly Forbidden $6S_{1/2} \\leftrightarrow 5D_{3/2}$ Magnetic Dipole Transition Moment in {Ba}$^{+}$

    CERN Document Server

    Williams, Spencer R; Hoffman, Matthew R; Blinov, Boris B; Fortson, E N

    2016-01-01

    We report the results from our first-generation experiment to measure the magnetic-dipole transition moment (M1) between the $6S_{1/2}$ and $5D_{3/2}$ manifolds in Ba$^{+}$. Knowledge of M1 is crucial for the proposed parity-nonconservation experiment in the ion \\cite{Fortson93}, where M1 will be a leading source of systematic error. To date, no measurement of M1 has been made in Ba$^{+}$, and moreover, the sensitivity of the moment to electron-electron correlations has confounded accurate theoretical predictions. A precise measurement may help to resolve the theoretical discrepancies while providing essential information for planning a future PNC measurement in Ba$^{+}$. We demonstrate our technique for measuring M1 - including a method for calibrating for stress-induced birefringence introduced by the scientific apparatus - and place an upper bound of $\\mathrm{M1} < 93 \\pm 39 \\times 10^{-5} \\mu_{B}$.

  4. Use of relativistic hadronic mechanics for the exact representation of nuclear magnetic moments and the prediction of new recycling of nuclear waste

    CERN Document Server

    Santilli, R M

    1997-01-01

    We present a new realization of relativistic hadronic me- chanics and its underlying iso-Poincar'e symmetry specifically constructed for nuclear physics which: 1) permits the representation of nucleons as ex- tended, nonspherical and deformable charge distributions with alterable mag- netic moments yet conventional angular momentum and spin; 2) results to be a nonunitary ``completion'' of relativistic quantum mechanics much along the EPR argument; yet 3) is axiom-preserving, thus preserves conventional quantum laws and the axioms of the special relativity. We show that the proposed new formalism permits the apparently first exact representation of the total magnetic moments of new-body nuclei under conventional physical laws. We then point out that, if experimentally confirmed the alterability of the intrinsic characteristics of nucleons would imply new forms of recycling nuclear waste by the nuclear power plants in their own site, thus avoiding its transportation and storage in a (yet unidentified) dumping a...

  5. Magnetic-field-induced electric quadrupole moments for relativistic hydrogenlike atoms: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    Science.gov (United States)

    Stefańska, Patrycja

    2016-02-01

    We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength B of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997), 10.1088/0953-4075/30/4/007; J. Phys. B 30, 2747 (1997), 10.1088/0953-4075/30/11/023], We derive a closed-form expression for the electric quadrupole moment induced in the atom in an arbitrary discrete energy eigenstate. The result, which has the form of a double finite sum involving the generalized hypergeometric functions 3F2 of the unit argument, agrees with the earlier relativistic formula for that quantity, obtained by us for the ground state of the atom.

  6. g-factor and quadrupole moment of the 212− isomeric state in 131La: Signature for a weakly-deformed magnetic rotational band head

    Directory of Open Access Journals (Sweden)

    Jasmeet Kaur

    2017-02-01

    Full Text Available The g-factor and the static quadrupole moment of a magnetic rotational band head 212− at 2121 keV in 131La have been determined by means of the time-differential perturbed angular distribution technique. The measured value of the g-factor, +1.060(4, is in agreement with the theoretical value for a three quasi-proton, π3{112−[505]⊗52+[422]⊗52+[413]} Nilsson configuration assignment. The observed spectroscopic quadrupole moment ratio, Qs(212−,131LaQs(192−,137La=0.457(4, supports the collective oblate shape (γ∼−60° with quadrupole deformation β2<0.07. The half-life of the 212− state, 37.2(1 ns, is re-measured with better accuracy.

  7. Magnetic-field-induced electric quadrupole moments for relativistic hydrogenlike atoms: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    CERN Document Server

    Stefańska, Patrycja

    2016-01-01

    We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength B of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997); 30, 2747(E) (1997)], we derive a closed-form expression for the electric quadrupole moment induced in the atom in an arbitrary discrete energy eigenstate. The result, which has the form of a double finite sum involving the generalized hypergeometric functions 3F2 of the unit argument, agrees with the earlier relativistic formula for that quantity, obtained by us for the ground state of the atom.

  8. g-factor and quadrupole moment of the 21/2- isomeric state in 131La: Signature for a weakly-deformed magnetic rotational band head

    Science.gov (United States)

    Kaur, Jasmeet; Bansal, Neeraj; Bhati, A. K.; Kumar, R.; Sharma, Vijay R.; Kapoor, K.; Kumar, V.; Kaur, Navneet

    2017-02-01

    The g-factor and the static quadrupole moment of a magnetic rotational band head 21/2- at 2121 keV in 131La have been determined by means of the time-differential perturbed angular distribution technique. The measured value of the g-factor, + 1.060 (4), is in agreement with the theoretical value for a three quasi-proton, π3 {11/2- [ 505 ] ⊗5/2+ [ 422 ] ⊗5/2+ [ 413 ] } Nilsson configuration assignment. The observed spectroscopic quadrupole moment ratio, Qs (21/2- ,131 La)/Qs (19/2- ,137 La) = 0.457 (4), supports the collective oblate shape (γ ∼ - 60 °) with quadrupole deformation β2 < 0.07. The half-life of the 21/2- state, 37.2(1) ns, is re-measured with better accuracy.

  9. Stabilizing and increasing the magnetic moment of half-metals: The role of Li in half-Heusler LiMn Z (Z =N,P,Si)

    Science.gov (United States)

    Damewood, L.; Busemeyer, B.; Shaughnessy, M.; Fong, C. Y.; Yang, L. H.; Felser, C.

    2015-02-01

    Due to their similarities to metastable zinc-blende half-metals, we systematically examined the half-Heusler compounds β -LiMnZ (Z =N,P and Si) for their electronic, magnetic, and stability properties at optimized lattice constants and strained lattice constants that exhibit half-metallic properties. We also report the other phases of the half-Heusler structure (α and γ phases), but they are unlikely to be grown. The magnetic moments of these stable Li-based compounds are expected to reach as high as 4 μB per unit cell when Z =Si and 5 μB per unit cell when Z =N and P; however, the antiferromagnetic spin configuration is energetically favored when Z is a pnictogen. β -LiMnSi at a lattice constant 14% larger than its equilibrium lattice constant is a promising half-metal due to its large magnetic moment, large gap, and vibrational stability. The modified Slater-Pauling rule for these compounds is determined. Finally, we investigated a plausible method for developing half-metallic Li xMn Z at equilibrium by tuning x , but this type of alloying introduces local structural changes that preclude half-metallicity.

  10. Construction of a stable and homogeneous magnetic field at 10 milligauss for neutron electric dipole moment measurements: preparatory phase

    Energy Technology Data Exchange (ETDEWEB)

    Gravador, E.; Yoshiki, Hajime; Feizeng, H. [Ibaraki Univ., Mito (Japan)

    1996-08-01

    A superthermal UCN edm measuring machine is currently under construction at KEK. It utilizes a magnetically shielded superconducting solenoid at liquid helium temperature to generate a stable and homogeneous magnetic field at 10 milligauss. The design of the magnetic shield and solenoid and preliminary evaluation of shielding effectiveness is presented. (author)

  11. SU(3) Polyakov linear-σ model in magnetic fields: Thermodynamics, higher-order moments, chiral phase structure, and meson masses

    Science.gov (United States)

    Tawfik, Abdel Nasser; Magdy, Niseem

    2015-01-01

    Effects of an external magnetic field on various properties of quantum chromodynamics (QCD) matter under extreme conditions of temperature and density (chemical potential) have been analyzed. To this end, we use SU(3) Polyakov linear-σ model and assume that the external magnetic field (e B ) adds some restrictions to the quarks' energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization, which assumes that the cyclotron orbits of charged particles in a magnetic field should be quantized. This requires an additional temperature to drive the system through the chiral phase transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities (energy density and trace anomaly) and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of the magnetic field on the chiral phase transition. We found that both critical temperature Tc and critical chemical potential increase with increasing magnetic field, e B . Last but not least, the magnetic effects of the thermal evolution of four scalar and four pseudoscalar meson states are studied. We concluded that the meson masses decrease as the temperature increases up to Tc. Then, the vacuum effect becomes dominant and rapidly increases with the temperature T . At low T , the scalar meson masses normalized to the lowest Matsubara frequency rapidly decrease as T increases. Then, starting from Tc, we find that the thermal dependence almost vanishes. Furthermore, the meson masses increase with increasing magnetic field. This gives a characteristic phase diagram of T vs external magnetic field e B . At high T , we find that the masses of almost all meson states become temperature independent. It is worthwhile to highlight that the various meson

  12. Limits on the oscillation plus decay model using published MINOS neutrino and antineutrino data

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Abner Leonel Gadelha; Gomes, Ricardo Avelino [Universidade Federal de Goias (UFGO), Goiania (Brazil). Instituto de Fisica; Peres, Orlando Goulart [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin

    2013-07-01

    Full text: The neutrino oscillation model is the theoretical model that explains the so called anomalous neutrino phenomena. Models such as neutrino decay and decoherence failed to explain the neutrino experimental results. Nevertheless, it was proposed that the oscillation model could be the dominant model with the possibility to add alternative models to it and determine limits for the parameters of the additional models. In this phenomenological work we considered the neutrino oscillation plus decay model and used the published data from the MINOS experiment. MINOS is a long-baseline neutrino experiment with two magnetized detectors (the Near Detector at Fermilab, 1 km from the target and depth of 225 meters of water equivalent (mwe), and the Far Detector at Soudan, MN, 735 km from the target and depth of 2100 mwe) exposed to the NuMI (Neutrinos at the Main Injector) beam. We used recent results from neutrino and antineutrino configurations of the NuMI beam and fitted by a 2-flavor oscillation model - transition from ν{sub μ} (ν{sub -}bar{sub μ}) to ν{sub τ} (ν{sub -}bar{sub τ}). We show the best fit and allowed region found for neutrino and antineutrino data, reproducing the published results. We then combined the data and under the oscillation plus decay framework calculated 1D and 2D allowed regions to determine limits for the decay parameter. (author)

  13. Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N_f=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB

    2013-11-01

    We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.

  14. Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)

    2013-12-15

    We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.

  15. The reaction $\\gamma p \\to \\pi^\\circ \\gamma^\\prime p$ and the magnetic dipole moment of the $\\Delta^+(1232)$ resonance

    CERN Document Server

    Kotulla, M; Annand, J R M; Beck, R; Caselotti, G; Fog, L S; Hornidge, D; Janssen, S; Krusche, B; McGeorge, J C; McGregor, I J D; Mengel, K; Messchendorp, J G; Metag, V; Novotny, R; Pfeiffer, M; Rost, M; Sack, S; Sanderson, R; Schadmand, S; Watts, D P

    2002-01-01

    The reaction $\\gamma p \\to \\pi^\\circ \\gamma^\\prime p$ has been measured with the TAPS calorimeter at the Mainz Microtron accelerator facility MAMI for energies between $\\sqrt{s}$ = 1221--1331 MeV. Cross sections differential in angle and energy have been determined for all particles in the final state in three bins of the excitation energy. This reaction channel provides access to the magnetic dipole moment of the $\\Delta^{+}(1232)$ resonance and, for the first time, a value of $\\mu_{\\Delta^+} = (2.7_{-1.3}^{+1.0}(stat.) \\pm 1.5 (syst.) \\pm 3(theo.)) \\mu_N$ has been extracted.

  16. Subtractive procedure for calculating the anomalous electron magnetic moment in QED and its application for numerical calculation at the three-loop level

    Science.gov (United States)

    Volkov, S. A.

    2016-06-01

    A new subtractive procedure for canceling ultraviolet and infrared divergences in the Feynman integrals described here is developed for calculating QED corrections to the electron anomalous magnetic moment. The procedure formulated in the form of a forest expression with linear operators applied to Feynman amplitudes of UV-diverging subgraphs makes it possible to represent the contribution of each Feynman graph containing only electron and photon propagators in the form of a converging integral with respect to Feynman parameters. The application of the developed method for numerical calculation of two- and threeloop contributions is described.

  17. Improved Measurement of Electron-antineutrino Disappearance at Daya Bay

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, D.A. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2013-02-15

    With 2.5× the previously reported exposure, the Daya Bay experiment has improved the measurement of the neutrino mixing parameter sin{sup 2}2θ{sub 13}=0.089±0.010(stat)±0.005(syst). Reactor anti-neutrinos were produced by six 2.9 GW{sub th} commercial power reactors, and measured by six 20-ton target-mass detectors of identical design. A total of 234,217 anti-neutrino candidates were detected in 127 days of exposure. An anti-neutrino rate of 0.944±0.007(stat)±0.003(syst) was measured by three detectors at a flux-weighted average distance of1648 m from the reactors, relative to two detectors at 470 m and one detector at 576 m. Detector design and depth underground limited the background to 5±0.3% (far detectors) and 2±0.2% (near detectors) of the candidate signals. The improved precision confirms the initial measurement of reactor anti-neutrino disappearance, and continues to be the most precise measurement of θ{sub 13}.

  18. Monitoring Akkuyu Nuclear Reactor Using Anti-Neutrino Flux Measurement

    CERN Document Server

    Ozturk, Sertac; Ozcan, V Erkcan; Unel, Gokhan

    2016-01-01

    We present a simulation based study for monitoring Akkuyu Nuclear Power Plant's activity using anti-neutrino flux originating from the reactor core. A water Cherenkov detector has been designed and optimization studies have been performed using Geant4 simulation toolkit. A first study for the design of a monitoring detector facility for Akkuyu Nuclear Power Plant has been discussed in this paper.

  19. Neutron Capture and the Antineutrino Yield from Nuclear Reactors.

    Science.gov (United States)

    Huber, Patrick; Jaffke, Patrick

    2016-03-25

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  20. Neutron capture and the antineutrino yield from nuclear reactors

    CERN Document Server

    Huber, Patrick

    2015-01-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low-energies below 3.2MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach 0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the non-equilibrium correction...

  1. Neutron Capture and the Antineutrino Yield from Nuclear Reactors

    Science.gov (United States)

    Huber, Patrick; Jaffke, Patrick

    2016-03-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ˜0.9 % of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  2. Electron Neutrino and Antineutrino Appearance in the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Schreckenberger, Adam Paul [Univ. of Minnesota, Minneapolis, MN (United States)

    2013-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline neutrino experiment that utilizes a particle beam and two steel-scintillator calorimeters designed to determine the parameters associated with muon neutrino disappearance. Analysis methods developed by the MINOS νe group have facilitated the placement of limits upon the mixing angle associated with νμ → νe oscillations. Since the polarity of the focusing horns can be switched, we can perform a similar analysis with an antineutrino-enriched beam to select electron antineutrino appearance candidates. Using 3.34e20 POT (protons on target) in the antineutrino mode, we exclude θ13 = 0 at the 80% C.L. A joint fit of the 3.34e20 POT antineutrino and 10.6e20 POT neutrino samples excluded θ13 = 0 at the 96% C.L. In addition, the combined data were used to produce exclusions regarding the CP-violating phase.

  3. Improved Measurement of Electron Antineutrino Disappearance at Daya Bay

    CERN Document Server

    An, F P; Balantekin, A B; Band, H R; Beriguete, W; Bishai, M; Blyth, S; Brown, R L; Cao, G F; Cao, J; Carr, R; Chan, W T; Chang, J F; Chang, Y; Chasman, C; Chen, H S; Chen, H Y; Chen, S J; Chen, S M; Chen, X C; Chen, X H; Chen, X S; Chen, Y; Chen, Y X; Cherwinka, J J; Chu, M C; Cummings, J P; Deng, Z Y; Ding, Y Y; Diwan, M V; Dong, L; Draeger, E; Dwyer, D; Edwards, W R; Ely, S R; Fang, S D; Fu, J Y; Fu, Z W; Ge, L Q; Gill, R L; Gonchar, M; Gong, G H; Gong, H; Gornushkin, Y A; Greenler, L S; Gu, W Q; Guan, M Y; Guo, X H; Hackenburg, R W; Hahn, R L; Hans, S; He, M; He, Q; Heeger, K M; Heng, Y K; Hinrichs, P; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, T; Huang, H X; Huang, H Z; Huang, X T; Huber, P; Issakov, V; Isvan, Z; Jaffe, D E; Jetter, S; Ji, X L; Ji, X P; Jiang, H J; Jiang, W Q; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Lai, C Y; Lai, W C; Lai, W H; Lau, K; Lebanowski, L; Lee, J; Leitner, R; Leung, J K C; Leung, K Y; Lewis, C A; Li, B; Li, F; Li, G S; Li, J; Li, Q J; Li, S F; Li, W D; Li, X B; Li, X N; Li, X Q; Li, Y; Li, Z B; Liang, H; Liang, J; Lin, C J; Lin, G L; Lin, S K; Lin, S X; Lin, Y C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, B J; Liu, D W; Liu, J C; Liu, J L; Liu, S; Liu, Y B; Lu, C; Lu, H Q; Luk, A; Luk, K B; Luo, T; Luo, X L; Ma, Q M; Ma, X B; Ma, X Y; Ma, Y Q; McDonald, K T; McFarlane, M C; McKeown, R D; Meng, Y; Mohapatra, D; Morgan, J E; Nakajima, Y; Napolitano, J; Naumov, D; Nemchenok, I; Ngai, H Y; Ngai, W K; Nie, Y B; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pagac, A; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Shih, K; Steiner, H; Stoler, P; Sun, G X; Sun, J L; Tam, Y H; Tanaka, H K; Tang, X; Tagg, N; Themann, H; Torun, Y; Trentalange, S; Tsai, O; Tsang, R H M; Tsang, K V; Tull, C; Tung, Y C; Viren, B; Virostek, S; Vorobel, V; Wang, C H; Wang, L S; Wang, L Y; Wang, L Z; Wang, M; Wang, N Y; Wang, R G; Wang, T; Wang, W; Wang, X; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Webber, D M; Wei, Y D; Wen, L J; Wenman, D L; Whisnant, K; White, C G; Whitehead, L; Wilhelmi, J; Williamson, Y; Wise, T; Wong, H L H; Wong, J; Worcester, E T; Wu, F F; Wu, Q; Xia, D M; Xiang, S T; Xiao, Q; Xing, Z Z; Xu, J; Xu, J; Xu, J L; Xu, W; Xu, Y; Xue, T; Yang, C G; Yang, L; Ye, M; Yeh, M; Yeh, Y S; Young, B L; Yu, Z Y; Zhan, L; Zhang, C; Zhang, F H; Zhang, J W; Zhang, Q M; Zhang, Q X; Zhang, S H; Zhang, Y C; Zhang, Y H; Zhang, Y X; Zhang, Z J; Zhang, Z P; Zhang, Z Y; Zhao, J; Zhao, Q W; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, Z Y; Zhuang, H L; Zou, J H

    2012-01-01

    We report an improved measurement of the neutrino mixing angle $\\theta_{13}$ from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for $\\sin^22\\theta_{13}$ with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GW$_{\\rm th}$ were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is $0.944\\pm 0.007({\\rm stat.}) \\pm 0.003({\\rm syst.})$. An analysis of the relative rates in six detectors finds $\\sin^22\\theta_{13}=0.089\\pm 0.010({\\rm stat.})\\pm0.005({\\rm syst.})$ in a three-neutrino framework.

  4. Measuring Antineutrino Oscillations with the MINOS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Justin John [Univ. of Oxford (United Kingdom)

    2008-09-01

    MINOS is a long baseline neutrino oscillation experiment. A manmade beam of predominantly muon neutrinos is detected both 1 km and 735 km from the production point by two functionally identical detectors. A comparison of the energy spectra measured by the two detectors shows the energy-dependent disappearance of muon neutrinos characteristic of oscillations and allows a measurement of the parameters governing the oscillations. This thesis presents work leading to measurements of disappearance in the 6% $\\bar{v}$μ background in that beam. A calibration is developed to correct for time-dependent changes in the responses of both detectors, reducing the corresponding uncertainty on hadronic energy measurements from 1.8% to 0.4% in the near detector and from 0.8% to 0.4% in the far detector. A method of selecting charged current $\\bar{v}$μ events is developed, with purities (efficiencies) of 96.5% (74.4%) at the near detector, and 98.8% (70.9%) at the far detector in the region below 10 GeV reconstructed antineutrino energy. A method of using the measured near detector neutrino energy spectrum to predict that expected at the far detector is discussed, and developed for use in the $\\bar{v}$μ analysis. Sources of systematic uncertainty contributing to the oscillation measurements are discussed. In the far detector, 32 charged current $\\bar{v}$μ events are observed below a reconstructed energy of 30 GeV, compared to an expectation of 47.8 for Δ$\\bar{m}$atm2 = Δ$\\bar{m}$atm2, sin2(2$\\bar{θ}$23) = sin2(2θ23). This deficit, in such a low-statistics sample, makes the result difficult to interpret in the context of an oscillation parameter measurement. Possible sources for the discrepancy are discussed, concluding that considerably more data are required for a definitive solution. Running MINOS with a dedicated $\\bar

  5. SU(3) Polyakov Linear $\\sigma$-Model in Magnetic Field: Thermodynamics, Higher-Order Moments, Chiral Phase Structure and Meson Masses

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    Effects of external magnetic field on various properties of the quantum chromodynamics under extreme conditions of temperature and density have been analysed. To this end, we use SU(3) Polyakov linear sigma-model and assume that the external magnetic field eB adds some restrictions to the quarks energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization. This requires an additional temperature to drive the system through the chiral phase-transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase-transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of magnetic field on chiral phase-transition. We found that both critical temperature T_c and critical chemical potential increase with increasing the magnetic f...

  6. Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via inelastic neutron scattering

    Science.gov (United States)

    Xu, Zhijun; Wen, Jinsheng; Xu, Guangyong; Chi, Songxue; Ku, Wei; Gu, Genda; Tranquada, J. M.

    2011-08-01

    The nature of the magnetic correlations in Fe-based superconductors remains a matter of controversy. To address this issue, we use inelastic neutron scattering to characterize the strength and temperature dependence of low-energy spin fluctuations in FeTe0.35Se0.65 (Tc˜14 K). Integrating magnetic spectral weight for energies up to 12 meV, we find a substantial moment (LE˜0.07μB2/Fe)that shows little change with temperature, from below Tc to 300 K. Such behavior cannot be explained by the response of conduction electrons alone; states much farther from the Fermi energy must have an instantaneous local spin polarization. It raises interesting questions regarding the formation of the spin gap and resonance peak in the superconducting state.

  7. Local-moment Magnetism in Superconducting FeTe0.35Se0.65 as Seen via Inelastic Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, J.M.; Xu, Z.; Wen, J.; Xu, G.; Chi, S.; Ku, W.; Gu, G.

    2011-08-11

    The nature of the magnetic correlations in Fe-based superconductors remains a matter of controversy. To address this issue, we use inelastic neutron scattering to characterize the strength and temperature dependence of low-energy spin fluctuations in FeTe{sub 0.35}Se{sub 0.65} (T{sub c} {approx} 14 K). Integrating magnetic spectral weight for energies up to 12 meV, we find a substantial moment ({sub LE} {approx}0.07 {mu}B{sup 2}/Fe) that shows little change with temperature, from below T{sub c} to 300 K. Such behavior cannot be explained by the response of conduction electrons alone; states much farther from the Fermi energy must have an instantaneous local spin polarization. It raises interesting questions regarding the formation of the spin gap and resonance peak in the superconducting state.

  8. A Method for Measuring the $6S_{1/2} \\leftrightarrow 5D_{3/2}$ Magnetic Dipole Transition Moment in {Ba}$^{+}$

    CERN Document Server

    Williams, Spencer R; Hoffman, Matthew R; Blinov, Boris B; Fortson, E N

    2013-01-01

    We propose a method for measuring the magnetic dipole (M1) transition moment of the $6S_{1/2} \\big(\\mathrm{m}=-1/2\\big)\\leftrightarrow 5D_{3/2}\\big(\\mathrm{m}=-1/2\\big)$ transition in single trapped Ba$^{+}$ by exploiting different symmetries in the electric quadrupole (E2) and M1 couplings between the states. The technique is adapted from a previously proposed method for measuring atomic parity nonconservation in a single trapped ion [Norval Fortson, Phys. Rev. Lett. \\textbf{70}, 17 (1993)]. Knowledge of M1 is crucial for any parity nonconservation measurement in Ba$^{+}$, as laser coupling through M1 can mimic the parity-violating signal. The magnetic moment for the transition has been calculated by atomic theory and found to be dominated by electron-electron correlation effects [B.K. Sahoo et. al., Phys. Rev. A \\textbf{74}, 6 (2006)]. To date the value has not been verified experimentally. This proposed measurement is therefore an essential step toward a parity nonconservation experiment in the ion that wi...

  9. Characteristics of magnetic moment of capsule robots driven in pipes with curves by a spatial rotational magnetic field%胶囊机器人万向旋转磁场的转弯磁矩特性

    Institute of Scientific and Technical Information of China (English)

    张永顺; 马壮; 解华英; 张建军

    2012-01-01

    For the steering drive of a capsule robot in any direction, the paper proposes a technical scheme that uses three axis orthogonal square Helmholtz coils to generate a spatial universal rotating uniform magnetic field by three harmonic currents with the same frequency and relevant amplitude and phase. A magnetic field generator and power source with three phase frequency conversions were developed, and the experiments were conducted successfully for verifying the spatial universal rotating magnetic field and the steering experiment in curve pipes. The magnetic moment modeling was derived according to the magnetic coupling mechanism, and based on the Euler equation, a swinging equation was derived. The relationships between the follow-up moment and the steering angle, as well as between the spin moment and the steering angle, were studied, and finally, the influences of the magnetic moments on the stability of a capsule robot and the robotic drive effect were analyzed, indicating that the follow-up effect generated by the rotating magnetic field is beneficial to its turning movement.%针对胶囊机器人任意方向的转弯驱动,提出了向三轴正交亥姆霍兹线圈加载一定幅值和相位关系的同频谐波电流叠加空间万向旋转磁场的技术方案,研制了磁场发生装置与三相变频驱动电源,并成功地进行了万向旋转磁场的验证与转弯试验.根据磁耦合机理建立了空间磁力矩模型,并基于欧拉方程,建立了机器人摆动方程,研究了转向角与随动力矩和自转力矩的关系,进而分析了磁驱力矩分量对胶囊机器人稳定性和驱动效果的影响,结果表明,旋转磁场的随动效应有利于机器人转弯.

  10. Proposed chiral texture of the magnetic moments of unit-cell loop currents in the pseudogap phase of cuprate superconductors.

    Science.gov (United States)

    Pershoguba, Sergey S; Kechedzhi, Kostyantyn; Yakovenko, Victor M

    2013-07-26

    We propose a novel chiral order parameter to explain the unusual polar Kerr effect in underdoped cuprates. It is based on the loop-current model by Varma, which is characterized by the in-plane anapole moment N and exhibits the magnetoelectric effect. We propose a helical structure where the vector N(n) in the layer n is twisted by the angle π/2 relative to N(n-1), thus breaking inversion symmetry. We show that coupling between magnetoelectric terms in the neighboring layers for this structure produces optical gyrotropy, which results in circular dichroism and the polar Kerr effect.

  11. Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor

    CERN Document Server

    Sinev, V V

    2009-01-01

    The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

  12. Contribution of recently measured nuclear data to reactor antineutrino energy spectra predictions

    OpenAIRE

    Fallot M.; Cormon S.; Estienne M.; Algora A.; Bui V.M.; Cucoanes A.; Elnimr M.; Giot L.; Jordan D.; Martino J.; Onillon A.; Porta A.; Pronost G.; Remoto A.; Taín J.L.

    2013-01-01

    This paper attempts to summarize the actual problematic of reactor antineutrino energy spectra in the frame of fundamental and applied neutrino physics. Nuclear physics is an important ingredient of reactor antineutrino experiments. These experiments are motivated by neutrino oscillations, i.e. the measure of the θ13 mixing angle. In 2011, after a new computation of the reactor antineutrino energy spectra, based on the conversion of integral data of the beta spectra from 235U, and 239;241Pu, ...

  13. Reactor electron antineutrino disappearance in the Double Chooz experiment

    CERN Document Server

    Abe, Y; Anjos, J C dos; Barriere, J C; Bergevin, M; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A; D'Agostino, M V; Damon, E; Dawson, J V; Dazeley, S; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Ebert, J; Efremenko, Y; Elnimr, M; Etenko, A; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Franco, D; Franke, A J; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Goger-Neff, M; Gonzalez, L F G; Goodman, M C; Goon, J TM; Greiner, D; Haag, N; Hagner, C; Hara, T; Hartmann, F X; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G A; Hourlier, A; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaplan, D M; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Kibe, Y; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Langbrandtner, C; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; López-Castanõ, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Miletic, T; Milincic, R; Miyata, H; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Pepe, I M; Perasso, S; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Reichenbacher, J; Reinhold, B; Remoto, A; Rohling, M; Roncin, R; Roth, S; Sakamoto, Y; Santorelli, R; Sato, F; Schonert, S; Schoppmann, S; Schwetz, T; Shaevitz, M H; Shimojima, S; Shrestha, D; Sida, J-L; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Stuken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Svoboda, R; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Valdiviesso, G; Veyssiere, C; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yermia, F; Zimmer, V

    2012-01-01

    The Double Chooz experiment has observed 8,249 candidate electron antineutrino events in 227.93 live days with 33.71 GW-ton-years (reactor power x detector mass x livetime) exposure using a 10.3 cubic meter fiducial volume detector located at 1050 m from the reactor cores of the Chooz nuclear power plant in France. The expectation in case of theta13 = 0 is 8,937 events. The deficit is interpreted as evidence of electron antineutrino disappearance. From a rate plus spectral shape analysis we find sin^2 2{\\theta}13 = 0.109 \\pm 0.030(stat) \\pm 0.025(syst). The data exclude the no-oscillation hypothesis at 99.9% CL (3.1{\\sigma}).

  14. Which reactor antineutrino flux may be responsible for the anomaly?

    CERN Document Server

    Giunti, Carlo

    2016-01-01

    We investigate which among the reactor antineutrino fluxes from the decays of the fission products of $^{235}\\text{U}$, $^{238}\\text{U}$, $^{239}\\text{Pu}$, and $^{241}\\text{Pu}$ may be responsible for the reactor antineutrino anomaly. We find that it is the $^{235}\\text{U}$ flux, which contributes to the rates of all reactor neutrino experiments. From the fit of the data we obtain the precise determination $ \\sigma_{^{235}\\text{U}} = ( 6.34 \\pm 0.10 ) \\times 10^{-43} \\, \\text{cm}^2 / \\text{fission} $ of the $^{235}\\text{U}$ cross section per fission, which is more precise than the calculated value and differs from it by $2.0\\sigma$.

  15. Neutrino mass hierarchy determination at reactor antineutrino experiments

    CERN Document Server

    Yang, Guang

    2015-01-01

    After the neutrino mixing angle $\\theta_{13}$ has been precisely measured by the reactor antineutrino experiments, one of the most important open questions left in neutrino physics is the neutrino mass hierarchy. Jiangmen Underground Neutrino Observatory (JUNO) is designed to determine the neutrino mass hierarchy (MH) without exploring the matter effect. The JUNO site location is optimized to have the best sensitivity for the mass hierarchy determination. JUNO will employ a 20 kton liquid scintillator detector located in a laboratory 700 meters underground. The excellent energy resolution and PMT coverage will give us an unprecedented opportunity to reach a 3-4 $\\sigma$ precision. In this paper, the JUNO detector design and simulation work will be presented. Also, RENO-50, another medium distance reactor antineutrino experiment, will do a similar measurement. With the efforts of these experiments, it is very likely that the neutrino mass hierarchy will be determined in the next 10 years.

  16. Onsite magnetic moment through cation distribution and magnetocrystalline anisotropy studies in NiFe2-xRxO4 (R = Y and Lu; x = 0, 0.05, and 0.075)

    Science.gov (United States)

    Kodam, Ugendar; Kamala Bharathi, K.; Raghavendra Reddy, V.; Rayaprol, Sudhindra; Siruguri, Vasudeva; Garimalle, Markandeyulu

    2017-02-01

    Onsite magnetic moments through cation distribution and magnetocrystalline anisotropy studies of NiFe2-xRxO4 (R = Y and Lu; x = 0, 0.05, and 0.075) compounds were investigated, and the results are discussed and presented in this paper. All the compounds were prepared by solid state reaction, and the compounds formed in the cubic inverse spinel phase with the space group Fd 3 ¯ m . The cation distribution, bond lengths, u-parameter, etc. were estimated through the Rietveld refinement of XRD patterns. Increment in the lattice constant was observed upon partial substitution of Fe3+ by Y3+/Lu3+. The presence of all elements and their ionic states were confirmed from X-ray photoelectron spectroscopy studies. Analyses of Mössbauer spectra revealed that the hyperfine fields and the magnetic moments at the B-site (and hence net moment) decreased with increasing Y3+/Lu3+ occupancy and that the compounds exhibited a Néel-type, collinear ferrimagnetic structure. Magnetization measurements revealed that the magnetic moment decreased with Y3+/Lu3+ substitution. The high field regimes of the magnetization curves were modeled using the law of approach to the saturation magnetization equation, and the first order cubic anisotropy constants (K1) were calculated. The temperature variation of K1 and effects of Y3+/Lu3+ substitution are explained.

  17. Inverse-square law violation and reactor antineutrino anomaly

    Science.gov (United States)

    Naumov, D. V.; Naumov, V. A.; Shkirmanov, D. S.

    2017-01-01

    We discuss a possibility that the so-called reactor antineutrino anomaly can be, at least in part, explained by applying a quantum field-theoretical approach to neutrino oscillations, which in particular predicts a small deviation from the classical inverse-square law at short but macroscopic distances between the neutrino source and detector. An extensive statistical analysis of the reactor data is performed to examine this speculation.

  18. Inverse-square law violation and reactor antineutrino anomaly

    CERN Document Server

    Naumov, D V; Shkirmanov, D S

    2015-01-01

    We discuss a possibility that the so-called reactor antineutrino anomaly can be, at least in part, explained by applying a quantum field-theoretical approach to neutrino oscillations, which in particular predicts a small deviation from the classical inverse-square law at short but macroscopic distances between the neutrino source and detector. An extensive statistical analysis of the reactor data is performed to examine this speculation.

  19. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  20. Nuclear Magnetic Resonance Structure of a Major Lens Protein, Human γC-Crystallin: Role of the Dipole Moment in Protein Solubility.

    Science.gov (United States)

    Dixit, Karuna; Pande, Ajay; Pande, Jayanti; Sarma, Siddhartha P

    2016-06-07

    A hallmark of the crystallin proteins is their exceptionally high solubility, which is vital for maintaining the high refractive index of the eye lens. Human γC-crystallin is a major γ-crystallin whose mutant forms are associated with congenital cataracts but whose three-dimensional structure is not known. An earlier study of a homology model concluded that human γC-crystallin has low intrinsic solubility, mainly because of the atypical magnitude and fluctuations of its dipole moment. On the contrary, the high-resolution tertiary structure of human γC-crystallin determined here shows unequivocally that it is a highly soluble, monomeric molecule in solution. Notable differences between the orientations and interactions of several side chains are observed upon comparison to those in the model. No evidence of the pivotal role ascribed to the effect of dipole moment on protein solubility was found. The nuclear magnetic resonance structure should facilitate a comprehensive understanding of the deleterious effects of cataract-associated mutations in human γC-crystallin.