WorldWideScience

Sample records for antimony sulfides

  1. Deposition of rod-shaped antimony sulfide thin films from single-source antimony thiosemicarbazone precursors

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jasmine B.; Sawant, Narayan V. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai - 400 098 (India); Garje, Shivram S., E-mail: ssgarje@chem.mu.ac.i [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai - 400 098 (India)

    2010-04-02

    Antimony sulfide thin films were deposited on glass substrates by aerosol assisted chemical vapour deposition technique using single source precursors, namely, antimony(III) thiosemicarbazones, SbCl{sub 3}(L) (L = thiosemicarbazones of thiophene-2-carboxaldehyde (1) and cinnamaldehyde (2)). The deposited films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and UV-visible spectroscopy in order to identify their phases, morphologies, compositions and optical properties respectively. These characterizations revealed that the films were comprised of rod-shaped particles of orthorhombic stibnite (Sb{sub 2}S{sub 3}) with a Sb:S stoichiometry of {approx} 1:1.3. The calculated optical band gap from UV-vis absorption spectrum is found to be 3.48 eV.

  2. In Vitro Antiparasitic and Apoptotic Effects of Antimony Sulfide Nanoparticles on Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Saied Soflaei

    2012-01-01

    Full Text Available Visceral leishmaniasis is one of the most important sever diseases in tropical and subtropical countries. In the present study the effects of antimony sulfide nanoparticles on Leishmania infantum in vitro were evaluated. Antimony sulfide NPs (Sb2S5 were synthesized by biological method from Serratia marcescens bacteria. Then the cytotoxicity effects of different concentrations (5, 10, 25, 50, and 100 μg/mL of this nanoparticle were assessed on promastigote and amastigote stages of L. infantum. MTT method was used for verification results of promastigote assay. Finally, the percentages of apoptotic, necrotic, and viable cells were determined by flow cytometry. The results indicated the positive effectiveness of antimony sulfide NPs on proliferation of promastigote form. The IC50 (50% inhibitory concentration of antimony sulfide NPs on promastigotes was calculated 50 μg/mL. The cytotoxicity effect was dose-dependent means by increasing the concentration of antimony sulfide NPs, the cytotoxicity curve was raised and the viability curve of the parasite dropped simultaneously. Moreover, the IC50 of antimony sulfide NPs on amastigote stage was calculated 25 μg/mL. On the other hand, however, antimony sulfide NPs have a low cytotoxicity effect on uninfected macrophages but it can induce apoptosis in promastigote stage at 3 of 4 concentrations.

  3. Morphology-controlled growth of crystalline antimony sulfide via a refluxing polyol process

    Science.gov (United States)

    Zhang, Rui; Chen, Xiangying; Mo, Maosong; Wang, Zhenghua; Zhang, Meng; Liu, Xinyuan; Qian, Yitai

    2004-02-01

    By refluxing antimony trichloride (SbCl 3) and thiourea in various solvents at suitable reaction conditions, antimony sulfide (Sb 2S 3) crystallites with a diversity of well-defined morphologies were synthesized. Sb 2S 3 rods with the average diameter of 800 nm and the length of 7 μm, as well as microtubes with the average outer diameter of 1.2 μm, the average inner diameter of 800 nm and the length of 8 μm, were obtained in 1,2-propanediol at 180°C for 10 min. In contrast, a series of experiments under different conditions were carried out to investigate the influencing factors on the reaction. The as-synthesized products were characterized by powder X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscope and X-ray photoelectron spectra. The results indicate Sb 2S 3 crystals with different morphologies, including rod-like, tube-like, bowknot-like, flower-like, straw-bundled-like, taken under different experimental conditions. It is found that the reaction temperature, time, solvent and poly(vinyl pyrrolidone) (as a polymer capping reagent) play important roles in the formation of the final Sb 2S 3 crystallites with different morphologies. Also, the possible growth mechanism is discussed.

  4. Interest of lymphoscintigraphy with 99sup(m)Tc-labelled antimony sulfide in the arms after breast carcinoma treatment

    International Nuclear Information System (INIS)

    2 mCi of antimony sulfide colloid labelled with sup(99m)Tc were injected subcutaneously between the digits in 25 patients with postoperative lymphoedema of the arm for breast carcinoma. The two arms are examined successively, the normal one being used as control. The lymphoscintigraphy is realised with a gamma camera during an hour. The information obtained is threefoled; on the peripheral block's importance, the place where the lymphatic flow is stopped, and the presence in 40% of patients of axillary lymph nodes. The diminution of the lymphatic flow is not in correlation with the lymphoedema's importance. Lymphoscintigraphy with sup(99m)Tc antimony sulfide colloid is a simple examination but some side effects may occur. In 7 patients, post-injection lymphangitis was observed, with favorable evolution under antibiotic treatment. The lymphoscintigraphy can give some interesting information on the evolution of treated lymphoedema

  5. Preparation of antimony sulfide semiconductor nanoparticles by pulsed laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ren-De, E-mail: son003@sekisui.com [Research & Development Institute, High Performance Plastics Company, Sekisui Chemical Co., Ltd. 2-1 Hyakuyama, Shimamoto-Cho, Mishima-Gun, Osaka, 618-0021 (Japan); Tsuji, Takeshi [Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu-Cho, Matsue, 690-8504 (Japan)

    2015-09-01

    Highlights: • Pulsed laser ablation in liquid (LAL) was applied to prepare antimony sulfide nanoparticles (Sb{sub 2}S{sub 3} NPs). • Sb{sub 2}S{sub 3} NPs with a stoichiometric composition were successfully prepared by LAL in water without using any surfactants or capping agents. • Thus-prepared Sb{sub 2}S{sub 3} NPs showed low-temperature crystallization and melting at a temperature low as 200 °C. • The NPs-coated Sb{sub 2}S{sub 3} thin film showed comparable semiconductor properties (carrier mobility and carrier density) to the vacuum deposited one. • Byproducts such as CS{sub 2}, CH{sub 4} and CO were detected by GC-MS analysis when LAL was performed in organic solvent. • The LAL-induced decomposition mechanism of Sb{sub 2}S{sub 3} and organic solvents was discussed based on the GC-MS results. - Abstract: In this paper, we report on the synthesis of antimony sulfide (Sb{sub 2}S{sub 3}) semiconductor nanoparticles by pulsed laser ablation in liquid without using any surfactants or capping agents. Different results were obtained in water and organic solvents. In the case of water, Sb{sub 2}S{sub 3} nanoparticles with chemical compositions of stoichiometry were successfully prepared when laser irradiation was performed under the condition with the dissolved oxygen removed by argon gas bubbling. It was shown that thus-obtained Sb{sub 2}S{sub 3} nanoparticles exhibit features of not only low-temperature crystallization but also low-temperature melting at a temperature as low as 200 °C. Nanoparticle-coated Sb{sub 2}S{sub 3} thin films were found to show good visible light absorption and satisfying semiconductor properties (i.e., carrier mobility and density), which are essential for photovoltaic application. On the other hand, in the case of organic solvents (e.g., acetone, ethanol), such unexpected byproducts as CS{sub 2}, CO and CH{sub 4} were detected from the reaction system by GC-MS analysis, which suggests that both Sb{sub 2}S{sub 3} and organic

  6. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    Science.gov (United States)

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells. PMID:26237216

  7. Large anharmonic effect and thermal expansion anisotropy of metal chalcogenides: The case of antimony sulfide

    Science.gov (United States)

    Gan, Chee Kwan; Soh, Jian Rui; Liu, Yun

    2015-12-01

    We derive a compact matrix expression for the linear thermal expansion coefficients (TECs) for a general orthorhombic system which relates elastic properties and integrated quantities based on deformation and mode dependent Grüneisen parameters and mode dependent heat capacities. The density of Grüneisen parameters Γ (ν ) as a function of frequency ν , weighted by the number of phonon modes, is introduced and found to be illuminating in interpreting the TEC results. Using density functional perturbation theory and Grüneisen formalism for thermal expansion, we illustrate the general usefulness of this method by calculating the linear and volumetric TECs of a low-symmetry orthorhombic compound antimony sulfide (Sb2S3 ), which belongs to a large class of technologically and fundamentally important materials. Even though negative Grüneisen parameters are found for deformations in all three crystal directions, the Γ (ν ) data rule out the occurrences of negative TECs at all temperatures. Sb2S3 exhibits a large thermal expansion anisotropy where the TEC in the b direction can reach as high as 13 ×10-6 K-1 at high temperatures, about two and seven times larger than the TECs in the c and a direction, respectively. Our work suggests a general and practical first-principles approach to calculate the thermal properties of other complicated low-symmetry systems.

  8. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    Science.gov (United States)

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.

  9. A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield.

    Science.gov (United States)

    Chen, Keqiang; Zhou, Jing; Chen, Wen; Chen, Qiao; Zhou, Peng; Liu, Yueli

    2016-03-01

    Until now, it is a great challenge for the controllable synthesis of copper antimony sulfide (CAS) nanocrystals (NCs), as the reactivity of precursors is quite difficult to be controlled during the synthesis process. In the present work, a novel solution-based method is proposed to synthesize CAS NCs by choosing N,N'-diphenylthiourea as the sulfide precursor, which is favorable for balancing the relative reactivity of Cu and Sb ions. It is found that three phases (CuSbS2, Cu12Sb4S13 and Cu3SbS4) of CAS NCs with size tunability were successfully synthesized for the first time. To the best of our knowledge, the lowest reaction temperature of 110 °C and the highest yield over 90% for CAS NCs were also achieved for the first time, which may be considered to be a green synthesis route compared with other conventional methods. Optical properties indicate that the as-prepared CAS NCs have strong optical absorption in the visible light region of the solar spectrum, and we also observed the band gap tunability of CuSbS2 and Cu3SbS4 materials for the first time. PMID:26875832

  10. Antimony Toxicity

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2010-12-01

    Full Text Available Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically.

  11. In-situ growth of antimony sulfide in carbon nanoparticle matrix: Enhanced electrocatalytic activity as counter electrode in dye-sensitized solar cells

    Science.gov (United States)

    Sun, Panpan; Zhang, Ming; Ai, Changzhi; Wu, Zhixin; Lu, Shuang; Zhang, Xintong; Huang, Niu; Sun, Yihua; Sun, Xiaohua

    2016-07-01

    Considering the undesirable electrocatalytic activity toward I-/I3- redox system of prinstine antimony sulfide (Sb2S3) fabricated with the existing conditions, a mesoporous carbon nanoparticle film (CNP) is introduced here for in-situ growth of Sb2S3 to construct a Sb2S3@CNP hybrid catalyst. Based on a Sb-thiourea precursor solution, in-situ growth of Sb2S3 can be achieved via solution deposition (denoted as Sb2S3@CNP-S) as well as atmospheric pressure thermal evaporation (denoted as Sb2S3@CNP-T) in CNP matrix. Structural characterizations indicate that Sb2S3 particles have well dispersed in the pores of CNP matrix. Because of the introduction of porous and conductive CNP matrix to support Sb2S3, the hybrid catalyst exhibits lower charge transfer resistance at the catalyst/electrolyte interface and higher electrocatalytic activity. When used as counter electrode (CE) for dye-sensitized solar cells (DSSCs), devices using Sb2S3@CNP hybrid catalyst as CE produce fill factor of 67.6% and 66.3%, which is significantly higher than that using pristine Sb2S3 fabricated in our previous work (52.8%). Finally, the corresponding power conversion efficiencies reach 6.69% (Sb2S3@CNP-S) and 6.24% (Sb2S3@CNP-T), respectively, which are comparable to that using Pt CE measured under the same conditions (6.74%).

  12. Formation of inorganic nanocomposites by filling TiO{sub 2} nanopores with indium and antimony sulfide precursor aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Juma, Albert, E-mail: jumalberto@yahoo.com [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Azarpira, Anahita [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fischer, Ch.-H. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Free University Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin (Germany); Wendler, Elke [Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, 07743 Jena (Germany); Dittrich, Thomas [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2014-09-01

    Nanocomposites of nanoporous-TiO{sub 2}/In{sub 2}S{sub 3} and np-TiO{sub 2}/Sb{sub 2}S{sub 3} were formed by deposition of In{sub 2}S{sub 3} or Sb{sub 2}S{sub 3} using spray ion layer gas reaction technique from their precursor solutions onto nanoporous TiO{sub 2} substrates at temperatures of 150, 175 and 200 °C. The least penetration of the precursor into np-TiO{sub 2} was achieved for np-TiO{sub 2}/In{sub 2}S{sub 3} nanocomposites from indium acetylacetonate salt. The deepest penetration was obtained for both np-TiO{sub 2}/In{sub 2}S{sub 3}(Cl) and np-TiO{sub 2}/Sb{sub 2}S{sub 3} nanocomposites with effective diffusion coefficients of 3.3 × 10{sup −3} cm{sup 2}/s and 3.2 × 10{sup −3} cm{sup 2}/s, respectively. The transport of the precursors in np-TiO{sub 2} and the formation of different nanocomposites were described the regime of the Knudsen diffusion model. - Highlights: • Deposition of metal sulfides by ion layer gas reaction technique • Penetration and diffusion depend on precursor characteristics. • Pore transport described by Knudsen diffusion model • InCl{sub 3} precursor penetrates more than In(acac){sub 3}.

  13. Changes induced by gamma radiation in nanocomposites based on copper II and antimony sulfides in commercial poly(methyl methacrylate) matrix; Alteracoes induzidas pela radiacao gama em nanocompositos a base dos sulfetos de cobre II e de antimonio na matriz de poli(metacrilato de metila) comercial

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, M.C.C. de; Garcia, O.P.; Aquino, K.A.S.; Araujo, E.S., E-mail: esa@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2010-07-01

    Poly (methyl methacrylate) (PMMA) is a polymer with wide application in the manufacture of medical devices that is exposed to gamma irradiation. Currently the use of composite materials has been disseminated and PMMA is an excellent polymer matrix to package various materials. This study aimed to analyze the changes induced by gamma irradiation (25 kGy) on the properties of PMMA nanocomposites with nanoparticles of copper II sulfide (250nm-900nm) and antimony sulfite (300-500 nm). The nanoparticles were added to the polymer in different concentrations and synthesized by ultrasonic irradiation from the corresponding chlorides with thioacetamide. Viscometric results showed a good radioprotective effect of nanoparticles of copper and antimony. It was found a good protection of nanoparticles on PMMA matrix in the concentration of 0.3% wt. The protections of 75% and 50% were calculated for nanoparticles of antimony and copper II, respectively. (author)

  14. Determination of Ruthenium, Rhodium, Palladium, Iridium and Platinum in Copper-Nickel Sulfide Ores by Bismuth-Antimony Fire Assay%铋锑试金测定硫化铜镍矿中钌铑钯铱铂

    Institute of Scientific and Technical Information of China (English)

    李可及; 刘淑君; 邵坤

    2014-01-01

    建立了用于预富集硫化铜镍矿中钌铑钯铱铂5种铂族元素的铋锑试金方法。40.0 g 氧化铋、25.0 g硼酸、10.0 g 碳酸钠、1.00 g 淀粉与10.0 g 待测样品于120 mL 瓷皿中,充分混匀,850℃入炉,20 min 后升至1000℃,保留40 min,出炉后趁热倾倒熔渣,使铋试金于空气中自然冷却。设计两段灰吹流程,铋试金先在镁砂灰皿内灰吹,直至剩余直径约5 mm,而后直接转入盛有20 g 熔融锑粉的坩埚盖中继续灰吹,获得直径约1 mm 的试金合粒。所得合粒经微波消解,冷却后定容至10 mL。铂钯用 ICP-OES 分析;钌铑铱质量数选择99 Ru,103 Rh 和191 Ir,以115 In 和185 Re 为内标,应用 ICP-MS 分析。对标准物质 GBW07196平行测定12次,铂族元素相对标准偏差为7.0%~9.5%。在10 g 取样量条件下,方法对 Ru, Rh, Pd, Ir 和 Pt 的检出限分别为0.027,0.016,0.11,0.10和0.11 ng/ g。应用本方法处理标准物质 GBW07194,GBW07195和 GBW07196均获得了满意的结果。%A bismuth-antimony fire assay method for the preconcentration of ruthenium, rhodium, palladium, iridium and platinum in copper-nickel sulfide ores was developed. 40. 0 g bismuth trioxide, 25. 0 g boric acid, 10. 0 g sodium carbonate and 1. 00 g starch were mixed with 10. 0 g sample in a 120 mL porcelain bowl, which was put in a furnace at 850 ℃. After 20 min the temperature was raised to 1000 ℃ and held for another 40 min, and then the bowl was taken out, with the slag poured, which left the bismuth button to air cooling. A two-step cupellation procedure was developed. During the first step, the bismuth button was cupellated in a magnesia cupel until its diameter reached 5 mm or so, then it was transferred to a crucible cover containing 20 g melting antimony and kept cupellating, at last a bead with a diameter of 1 mm was obtained. The bead was microwave-digested, after cooling down to room temperature, the solvent of which was transferred to a volumetric flask and

  15. Selenium Sulfide

    Science.gov (United States)

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, scaly particles ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium sulfide usually ...

  16. Separation of traffic related antimony compounds

    International Nuclear Information System (INIS)

    Complete text of publication follows. It is known that most of the brake pads contain Sb2S3 as lubricant to achieve better friction stability. Due to braking the brake lining crumbles away and its Sb content gets into the air. As a result of the temperature increase accompanying the braking a part of the antimony may oxidize to oxides, as Sb2O3 or even to the more stable form, Sb2O4. Since Sb2O3 more readily soluble than the others, its absorption from the lung so its environmental impact effect is more harmful. After a systematic investigation involving solubilization of the solid compounds, citric and tartaric acid as well as 6 mol/dm3 HCl were tested for leaching of trace antimony compounds from natural matrix. To prepare reference material related to these species, soil and activated charcoal was spiked in 10 μg/g concentration with all the three material (Sb2S3, Sb2O3,Sb2O4). separately. Recovery of the different forms was checked by graphite furnace atomic absorption spectrometric (GFAAS) analysis of the leachates. The soil was confirmed to oxidize the sulfide content while the activated charcoal was established to enrich antimony from HCl solution as ion association complex. It was concluded, that Sb2S3 is leached only in slight amount in 4 hours by 0.1-0.5 mol/dm3 citric acid, while leaching of Sb2O3 is quantitative. On the other side, it was proved that Sb2O3 as well as Sb2S3 traces are soluble in 6 HCl solution in 60 min, whilst Sb2O4 is not destroyed. So, the Sb2O3 and Sb2S3 content of a flying dust can be determined. The GFAAS temperature program had to be modified in order to be capable to analyze high organic matrix as citric or tartaric acid even in 0.5 mol/dm3 concentration. Concerning their decomposition temperature an additional step was inserted into the temperature program, pyrolysis on 300 and 400 deg C, respectively. The antimony concentration of the highly acidic leachates were determined by hydride generation GFAAS. The reproducibility of

  17. 高碳高泥铅锑锌硫化矿浮选试验研究%Tests On Flotation Of Lead -Antimony-Zinc Sulfide Ore With High Carbon and Slime Content

    Institute of Scientific and Technical Information of China (English)

    黎晓光; 李宁钧; 兰健

    2014-01-01

    According to the characteristics of Pb -Sb -Zn sulfide ore with high carbon and slime content from Guangxi , the carbon and slime can adsorb a large of drug and slime was adsorded by the surface of the purpose of mineral to affect action between drug and mineral , the flotation experiment was carried out . The test results show that new type restrainer AF and combinations of collector Ammonium dibuyldithio-phosphate+ TB were used for flotation of Pb -Sb can achieve good flotation index of Pb -Sb effectively .%针对广西某铅锑锌硫化矿含碳含泥高,浮选过程中碳、泥吸附大量药剂,并且由于矿泥吸附在目的矿物表面影响药剂与矿物作用的特点,进行了浮选试验研究。研究结果表明,铅锑浮选采用丁铵黑药+ TB组合捕收剂,新型抑制剂AF抑制碳泥,能有效提高铅锑浮选指标。

  18. The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver

    Energy Technology Data Exchange (ETDEWEB)

    Bessinger, Brad; Apps, John A.

    2003-03-23

    A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent, those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur

  19. Pentavalent Antimonials: New Perspectives for Old Drugs

    OpenAIRE

    Ribeiro, Raul R.; Cynthia Demicheli; Frédéric Frézard

    2009-01-01

    Pentavalent antimonials, including meglumine antimoniate and sodium stibogluconate, have been used for more than half a century in the therapy of the parasitic disease leishmaniasis. Even though antimonials are still the first-line drugs, they exhibit several limitations, including severe side effects, the need for daily parenteral administration and drug resistance. The molecular structure of antimonials, their metabolism and mechanism of action are still being investigated. Some recent stud...

  20. Pentavalent Antimonials: New Perspectives for Old Drugs

    Directory of Open Access Journals (Sweden)

    Raul R. Ribeiro

    2009-06-01

    Full Text Available Pentavalent antimonials, including meglumine antimoniate and sodium stibogluconate, have been used for more than half a century in the therapy of the parasitic disease leishmaniasis. Even though antimonials are still the first-line drugs, they exhibit several limitations, including severe side effects, the need for daily parenteral administration and drug resistance. The molecular structure of antimonials, their metabolism and mechanism of action are still being investigated. Some recent studies suggest that pentavalent antimony acts as a prodrug that is converted to active and more toxic trivalent antimony. Other works support the direct involvement of pentavalent antimony. Recent data suggest that the biomolecules, thiols and ribonucleosides, may mediate the actions of these drugs. This review will summarize the progress to date on the chemistry and biochemistry of pentavalent antimony. It will also present the most recent works being done to improve antimonial chemotherapy. These works include the development of simple synthetic methods for pentavalent antimonials, liposome-based formulations for targeting the Leishmania parasites responsible for visceral leishmaniasis and cyclodextrin-based formulations to promote the oral delivery of antimony.

  1. Sodium sulfide leaching of low-grade jamesonite concentrate in production of sodium pyroantimoniate

    Institute of Scientific and Technical Information of China (English)

    YANG Tian-zu; JIANG Ming-xi; LAI Qiong-lin; CHEN Jin-zhong

    2005-01-01

    Sodium sulfide leaching of a low-grade jamesonite concentrate in the production of sodium pyroantimoniate through the air oxidation process and the influencing factors on the leaching rate of antimony were investigated.In order to decrease the consumption of sodium sulfide and increase the concentration of antimony in the leaching solution, two-stage leaching of jamesonite concentrate and combination leaching of high-grade stibnite concentrate and jamesonite concentrate were used. The experimental results showthat the consumptions of sodium sulfide for the two-stage leaching process and the combination leaching process are decreased by 20% and 60% compared to those of one-stage leaching process respectively. The final concentrations of antimony in the leaching solutions of both processes are above 100 g/L.

  2. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    Science.gov (United States)

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration.

  3. Thermodynamics for arsenic and antimony in copper matte converting—computer simulation

    Science.gov (United States)

    Chaubal, P. C.; Nagamori, M.

    1988-08-01

    Thermodynamic data for arsenic and antimony and their sulfide and oxide gases have been critically reviewed and compiled. The entropy values for AsS(g), SbS(g), and BiS(g) have been recalculated based on a statistical thermodynamic method. The standard heat of formation and entropy of As2O3(g) have been newly assessed to be △H{298/0} = -81,500 cal/mole and S{298/0} = 81.5 cal/deg/mole. Copper matte converting has been mathematically described using the stepwise equilibrium simulation technique together with quadratic approximations of oxygen and magnetite solubilities in molten mattes. A differential equation for the volatilization of arsenic and antimony has been derived and solved for successive reaction microsteps, whereby the volatilization, slagging, and alloying of the minor elements in copper matte converting have been examined as functions of reaction time and other process variables. Only the first (slag-making) stage of converting is responsible for the elimination of arsenic and antimony by volatilization. Arsenic volatilizes mainly as AsS(g) and AsO(g), with As2(g) also contributing when initial mattes are unusually rich in arsenic (above 0.5 pct arsenic). Antimony volatilizes chiefly as SbS(g), and the contributions of other gases such as SbO(g) and Sb(g) always remain negligibly low. The results of the stepwise equilibrium simulation compare favorably with the industrial operating data.

  4. Sequential solvent extraction for forms of antimony in five selected coals

    Science.gov (United States)

    Qi, C.; Liu, Gaisheng; Kong, Y.; Chou, C.-L.; Wang, R.

    2008-01-01

    Abundance of antimony in bulk samples has been determined in five selected coals, three coals from Huaibei Coalfield, Anhui, China, and two from the Illinois Basin in the United States. The Sb abundance in these samples is in the range of 0.11-0.43 ??g/g. The forms of Sb in coals were studied by sequential solvent extraction. The six forms of Sb are water soluble, ion changeable, organic matter bound, carbonate bound, silicate bound, and sulfide bound. Results of sequential extraction show that silicate-bound Sb is the most abundant form in these coals. Silicate- plus sulfide-bound Sb accounts for more than half of the total Sb in all coals. Bituminous coals are higher in organic matterbound Sb than anthracite and natural coke, indicating that the Sb in the organic matter may be incorporated into silicate and sulfide minerals during metamorphism. ?? 2008 by The University of Chicago. All rights reserved.

  5. FIRST REPORT ON OTOTOXICITY OF MEGLUMINE ANTIMONIATE

    Directory of Open Access Journals (Sweden)

    Cláudia Maria Valete-Rosalino

    2014-09-01

    Full Text Available Introduction: Pentavalent antimonials are the first drug of choice in the treatment of tegumentary leishmaniasis. Data on ototoxicity related with such drugs is scarcely available in literature, leading us to develop a study on cochleovestibular functions. Case Report: A case of a tegumentary leishmaniasis patient, a 78-year-old man who presented a substantial increase in auditory threshold with tinnitus and severe rotatory dizziness during the treatment with meglumine antimoniate, is reported. These symptoms worsened in two weeks after treatment was interrupted. Conclusion: Dizziness and tinnitus had already been related to meglumine antimoniate. However, this is the first well documented case of cochlear-vestibular toxicity related to meglumine antimoniate.

  6. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  7. Anthropogenic impacts on the biogeochemistry and cycling of antimony.

    Science.gov (United States)

    Shotyk, William; Krachler, Michael; Chen, Bin

    2005-01-01

    Antimony is a potentially toxic trace element with no known biological function. Antimony is commonly enriched in coals, and fossil fuel combustion appears to be the largest single source of anthropogenic Sb to the global atmosphere. Abundant in sulfide minerals, its emission to the atmosphere from anthropogenic activities is linked to the mining and metallurgy of non-ferrous metals, especially Pb, Cu, and Zn. In particular, the geochemical and mineralogical association of Sb with Pb minerals implies that, like Pb, Sb has been emitted to the environment for thousands of years because of Pb mining, smelting, and refining. In the US alone, there are more than 400 former secondary lead smelting operations and worldwide there are 133 Pb-Zn smelters in operation today. Antimony is used in creating and improving dozens of industrial and commercial materials including various alloys, ceramics, glasses, plastics, and synthetic fabrics, making waste incineration another important source of Sb to the environment. Enrichments of Sb in atmospheric aerosols, plants, soils, sediments, as well as alpine and polar snow and ice suggest that Sb contamination is extensive, but there are very few quantitative studies of the geographic extent, intensity, and chronology of this contamination. There is an urgent need to quantify the extent of human impacts and how these have changed with time. The decreasing inventories of anthropogenic Sb with time in peat cores from Switzerland and Scotland suggest that the atmospheric Sb flux may be declining, but there have been too few studies to make any general conclusions. In fact, some studies of sediments and biomonitors in central Europe show little decline in Sb concentrations during the past decades. There is an obvious need for reliable data from well dated archives such as polar snow and ice, peat bogs, and sediments. The air concentrations, extent of enrichment, particle size distribution, and rate of deposition of Sb in urban areas is

  8. Biogeochemistry of Antimony(V) in Microcosms under Sulfidogenic Conditions

    Science.gov (United States)

    O'Loughlin, E. J.; Johnson, C. R.; Antonopoulos, D. A.; Boyanov, M.; Flynn, T. M.; Koval, J. C.; Kemner, K. M.

    2015-12-01

    As the mining and use of antimony continues to increase, environmental concerns involving the element have grown. Antimony(V) and (III) are the two most environmentally-relevant oxidation states, but little is known about the redox transitions between the two in natural systems. To better understand the behavior of antimony in anoxic environments, we examined the transformations of Sb(V) under Fe(III)- and sulfate-reducing conditions in aqueous suspensions that contained 2 mM KSb(OH)6, 50 mM Fe(III) (as ferrihydrite), 10 mM sulfate, and 10 mM lactate, and were inoculated with sediment from a wetland on the campus of Argonne National Laboratory in Argonne, Illinois. Samples were collected over time to track changes in the concentrations of Sb, Fe(II), sulfate, and lactate, as well as the composition of the microbial community as determined by 16S rRNA gene inventories. We also examined the interaction of Sb(V) with pure Fe(II) mineral phases in aqueous suspensions containing 2 mM KSb(OH)6 and 50 mM Fe(II) as either magnetite, sideritre, vivianite, green rust, or mackinawite. X-ray absorption fine-structure spectroscopy was used to determine the valence state of Sb and its chemical speciation. Lactate was rapidly fermented to acetate and propionate concomittant with a bloom of Veillonellaceae. Utilization of propionate for dissimilatory sulfate reduction (DSR) was accompanied by an increase in Desulfobulbaceae. Sb K-edge X-Ray absorption near edge structure (XANES) analysis showed reduction of Sb(V) to Sb(III) within 4 weeks, concurrent with DSR and the formation of FeS. We observed variable responses in the ability of specific Fe(II) minerals to reduce Sb(V). No reduction was observed with magnetite, siderite, vivianite, or green rust. In the presence of mackinawite (FeS), however, Sb(V) was reduced to Sb(III) sulfide. These results suggest that the reduction of Sb(V) to Sb(III) is not likely under solely Fe(III)-reducing conditions, but is expected in sulfidogenic

  9. 21 CFR 862.3110 - Antimony test system.

    Science.gov (United States)

    2010-04-01

    ... antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by this device are used in the diagnosis and treatment of antimony poisoning. (b) Classification. Class I....

  10. Perspectives of antimony compounds in oncology

    Institute of Scientific and Technical Information of China (English)

    Pankaj SHARMA; Diego PEREZ; Armando CABRERA; Nee ROSAS; Jose Luis ARIAS

    2008-01-01

    Antimony, a natural element that has been used as a drug for over more than 100 years, has remarkable therapeutic efficacy in patients with acute promyelocytic leukemia. This review focuses on recent advances in developing antimony anti- cancer agents with an emphasis on antimony coordination complexes, Sb (Ⅲ) and Sb (V). These complexes, which include many organometallic complexes, may provide a broader spectrum of antitumoral activity. They were compared with classical platinum anticancer drugs. The review covers the literature data pub- lished up to 2007. A number of antimonials with different antitumoral activities are known and have diverse applications, even though little research has been done on their possibilities. It might be feasible to develop more specific and effective inhibitors for phosphatase-targeted, anticancer therapeutics through the screen- ing of sodium stibogluconate (SSG) and potassium antimonyltartrate-related compounds, which are comprised of antimony conjugated to different organic moieties. For example, SSG appears to be a better inhibitor than suramin which is a compound known for its antineoplastic activity against several types of cancers.

  11. Infrared surface polaritons on antimony.

    Science.gov (United States)

    Cleary, Justin W; Medhi, Gautam; Shahzad, Monas; Rezadad, Imen; Maukonen, Doug; Peale, Robert E; Boreman, Glenn D; Wentzell, Sandy; Buchwald, Walter R

    2012-01-30

    The semimetal antimony, with a plasma frequency ~80 times less than that of gold, is potentially useful as a host for infrared surface polaritons (SPs). Relevant IR SP properties, including the frequency-dependent propagation length and penetration depths for fields into the media on either side of the interface, were determined from optical constants measured on optically-thick thermally-evaporated Sb films over the wavelength range 1 to 40 μm. Plasma and carrier relaxation frequencies were determined from Drude-model fits to these data. The real part of the permittivity is negative for wavelengths beyond 11 μm. Distinct resonant decreases in specular reflected intensity were observed for Sb lamellar gratings in the wavelength range of 6 to 11 μm, where the real part of the permittivity is positive. Both resonance angles and the angular reflectance spectral line shapes are in agreement with theory for excitation of bound surface electromagnetic waves (SPs). Finite element method (FEM) electrodynamic simulations indicate the existence of SP modes under conditions matching the experiments. FEM results also show that such waves depend on having a significant imaginary part of the permittivity, as has been noted earlier for the case of surface exciton polaritons.

  12. Synthesis and application of antimony pent(isooctyl thioglycollate)

    Institute of Scientific and Technical Information of China (English)

    LIU You-nian; LI Hong-bing; SHU Wan-gen; CHEN Qi-yuan

    2005-01-01

    A new type of thermal stabilizer, antimony pent(isooctyl thioglycollate)(Sb(SCH2COOC8H17)5), was synthesized by using antimony trioxide, isooctanol and thioglycolic acid in 2 steps. Firstly, antimony trioxide was oxidized into colloidal antimony peroxide. Then antimony peroxide and isooctyl thioglycollate reacted stoichiometrically for 2 h with the yield of 87%. This compound was used as thermal stabilizer for polyvinyl chloride(PVC). The results show that the thermal stability time is 52 min at 200 ℃ by heat-ageing oven test when adding 2.5% thermal stabilizer to PVC resin. Compared with antimony tris(isooctyl thiolycollate), the initial thermal stability of antimony pent(isooctyl thioglycollate) is better than that of antimony tris(isooctyl thioglycollate), while the long-term thermal stability time is shorter than that of antimony tris(isooctyl thioglycollate). Meanwhile, the synergism of antimony pent(isooctyl thioglycollate) with calcium stearate was studied, indicating that when the mass ratio of antimony pent(isooctyl thioglycollate) to calcium stearate is 2:1, the thermal stability time of PVC is 58 min.

  13. Vacuum Evaporation Technology for Treating Antimony-Rich Anode Slime

    Science.gov (United States)

    Qiu, Keqiang; Lin, Deqiang; Yang, Xuelin

    2012-11-01

    A vacuum evaporation technology for treating antimony-rich anode slime was developed in this work. Experiments were carried out at temperatures from 873 K to 1073 K and residual gas pressures from 50 Pa to 600 Pa. During vacuum evaporation, silver from the antimony-rich anode slime was left behind in the distilland in a silver alloy containing antimony and lead, and antimony trioxide was evaporated. The experimental results showed that 92% by weight of antimony can be removed, and the silver content in the alloy was up to 12.84%. The antimony trioxide content in the distillate was more than 99.7%, and the distillate can be used directly as zero-grade antimony trioxide (China standard).

  14. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways

    Science.gov (United States)

    Li, Jingxin; Qian Wang,; Oremland, Ronald S.; Kulp, Thomas R.; Rensing, Christopher; Wang, Gejiao

    2016-01-01

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of “antimonotrophs.”

  15. Arsenic and antimony transporters in eukaryotes.

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  16. In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Lab. de Biologia Molecular]. E-mail: samanta@usp.br; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo (IMT-SP), SP (Brazil). Lab. de Protozoologia]. E-mail:hfandrad@usp.br

    2005-10-15

    Pentavalent antimony, as meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes {sup 122} Sb and {sup 124} Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology. (author)

  17. In Vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    OpenAIRE

    Samanta Etel Treiger Borborema; Heitor Franco de Andrade Junior; João Alberto Osso Junior; Nanci do Nascimento

    2005-01-01

    Pentavalent antimony, as meglumine antimoniate (Glucantime® ) or sodium stibogluconate (Pentostam® ), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer...

  18. Microbial diversity and community structure in an antimony-rich tailings dump.

    Science.gov (United States)

    Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin

    2016-09-01

    To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities. PMID:27188777

  19. Pharmacokinetic of antimony in mice with cutaneous Leishmaniasis

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta E.T.; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular]. E-mails: samanta@usp.br; nnascime@ipen.br; Andrade Junior, Heitor F. de [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular; Instituto de Medicina Tropical de Sao Paulo, Sao Paulo, SP (Brazil); E-mail: hfandrad@usp.br; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br

    2007-07-01

    Cutaneous Leishmaniasis (CL) remains a major world health problem, with about 1.5 million new cases each year. Caused by protozoa Leishmania, in South America, this infection can vary from a chronic skin ulcer, to an erosive mucosal disease and severe facial disfigurement. Pentavalent antimony (Sb{sup +5}) as sodium stibogluconate (Pentostam) or meglumine antimoniate (Glucantime) are main drugs for treating most forms of human leishmaniasis. For six decades, despite the recent developments, the effective therapy to cutaneous leishmaniasis has been based on long parenteral courses of such drugs, even though these are fairly costly, toxic and inconvenient to use, without adequate knowledge on their pharmacokinetics or mechanism of action. Pharmacokinetics studies could be based on bioactive traceable drugs, usually with radioactive isotopes, but antimony radioisotopes are unavailable commercially. Neutron irradiation is a powerful tool in the analysis of mineral content of samples, for antimony, there are at least two main isotopes that could be formed after neutron irradiation in nuclear reactor. The aim of the present study was to construct antimony salts with those radioisotopes to obtain tracers to compare the pharmacokinetic and the tissue distribution of neutron irradiated meglumine antimoniate in healthy and cutaneous leishmaniasis experimentally infected mice. Meglumine antimoniate, (Glucantime, Aventis, S.P, Brazil), was neutron irradiated inside the IEA-R1 nuclear reactor (IPEN/CNEN-SP), producing two radioisotopes {sup 122}Sb and {sup 124}Sb. Its biodistribution was verified in BALB/c mice experimentally infected with Leishmania (Leishmania) Amazonensis, which received a single intraperitoneal dose of the drug. At different times after injection, the tissues and blood were excised and activity measured in a NaI (Tl) scintillation counter. Compared with the healthy mice, experimentally infected mice had significantly lower maximum concentration of antimony

  20. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    Science.gov (United States)

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  1. Structural and electrical characterization of zinc oxide doped with antimony

    Directory of Open Access Journals (Sweden)

    G. Juárez Díaz

    2014-08-01

    Full Text Available In this work we report the results of structural and electrical characterization realized on zinc oxide single crystal samples with (001 orientation, which were doped with antimony. Doping was carried out by antimony thermal diffusion at 1000 °C for periods of 1 and 2 hours under nitrogen environment from a solid source formed by antimony oxide. Electrical characterization by I-V curves and Hall effect shown an increase in acceptor concentration which demonstrates that doping is effective and create holes in zinc oxide samples.

  2. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Deise Riba Coelho

    2014-07-01

    Full Text Available Meglumine antimoniate (MA and sodium stibogluconate are pentavalent antimony (SbV drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous. Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h and a slow (t1/2 >> 24 h elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain. The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies.

  3. How can we adapt to geological scarcity of antimony? Investigation of antimony's substitutability and of other measures to achieve a sustainable use

    NARCIS (Netherlands)

    Henckens, M.L.C.M.; Driessen, P.P.J.; Worrell, E.

    2016-01-01

    Abstract Antimony is an element that is applied in many useful applications for mankind. However, antimony resources are very scarce, when comparing the current extraction rates with the availability of antimony containing ores. From an inter-temporal sustainability perspective, current generations

  4. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials

    International Nuclear Information System (INIS)

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1 M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3σ) of the proposed method was 0.02 ng mL-1 for antimony(III), and the relative standard deviation was 7.8% (c = 1.0 ng mL-1, n = 7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results.

  5. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials.

    Science.gov (United States)

    Jiang, Xiuming; Wen, Shengping; Xiang, Guoqiang

    2010-03-15

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by l-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3 sigma) of the proposed method was 0.02 ng mL(-1) for antimony(III), and the relative standard deviation was 7.8% (c=1.0 ng mL(-1), n=7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results. PMID:19853991

  6. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xiuming; Wen Shengping [School of Chemistry and Chemical Engineering, Henan University of Technology, South Song Shan Road No. 140, Zhengzhou City 450001 (China); Xiang Guoqiang, E-mail: xianggq@haut.edu.cn [School of Chemistry and Chemical Engineering, Henan University of Technology, South Song Shan Road No. 140, Zhengzhou City 450001 (China)

    2010-03-15

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1 M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3{sigma}) of the proposed method was 0.02 ng mL{sup -1} for antimony(III), and the relative standard deviation was 7.8% (c = 1.0 ng mL{sup -1}, n = 7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results.

  7. Heat-treated Saccharomyces cerevisiae for antimony speciation and antimony(III) preconcentration in water samples

    International Nuclear Information System (INIS)

    An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 deg. C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L-1). 140 mg of yeast and 2 h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 μg L-1. In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L-1 thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100 mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L-1, respectively, using ICP-MS, 7 and 0.9 μg L-1 using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n = 3) were in the 2-5% range at the tenth μg L-1 level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 μg L-1). Corrected recoveries were in all cases close to 100%

  8. Noninferiority of Miltefosine Versus Meglumine Antimoniate for Cutaneous Leishmaniasis in Children

    OpenAIRE

    Rubiano, Luisa Consuelo; Miranda, María Consuelo; Muvdi Arenas, Sandra; Montero, Luz Mery; Rodríguez-Barraquer, Isabel; Garcerant, Daniel; Prager, Martín; Osorio, Lyda; Rojas, Maria Ximena; Pérez, Mauricio; Nicholls, Ruben Santiago; Gore Saravia, Nancy

    2012-01-01

    Background. Children have a lower response rate to antimonial drugs and higher elimination rate of antimony (Sb) than adults. Oral miltefosine has not been evaluated for pediatric cutaneous leishmaniasis.

  9. The influence of pet containers on antimony concentration in bottled drinking water

    OpenAIRE

    Perić-Grujić Aleksandra A.; Radmanovac Aleksandar R.; Stojanov Aleksander M.; Pocajt Viktor V.; Ristić Mirjana Đ.

    2010-01-01

    Antimony trioxide (Sb2O3) is the most frequently used catalyst in the polyethylene terephthalate (PET) manufacture. As a result, antimony is incorporated into PET bottles at concentration level of 100-300 mg/kg. PET containers are used for drinking water and beverages, as well as food packaging and in the pharmaceutical industry. Thus, it is important to understand the factors that may influence the release of antimony from the catalysts into water and other products, since antimony is potent...

  10. The influence of pet containers on antimony concentration in bottled drinking water

    Directory of Open Access Journals (Sweden)

    Perić-Grujić Aleksandra A.

    2010-01-01

    Full Text Available Antimony trioxide (Sb2O3 is the most frequently used catalyst in the polyethylene terephthalate (PET manufacture. As a result, antimony is incorporated into PET bottles at concentration level of 100-300 mg/kg. PET containers are used for drinking water and beverages, as well as food packaging and in the pharmaceutical industry. Thus, it is important to understand the factors that may influence the release of antimony from the catalysts into water and other products, since antimony is potentially toxic trace element. In this paper, the antimony content in nine brands of bottled mineral and spring water from Serbia, and seven brands of bottled mineral and spring water from EU countries was analyzed. The measurements were conducted using the inductively coupled plasma-mass spectrometry (ICP-MS technique. In the all examined samples the antimony concentration was bellow the maximum contaminant level of 5 μg/L prescribed by the Serbian and EU regulations. Comparison of the content of antimony in PET bottled waters with the content of antimony in water bottled commercially in glass and the natural content of antimony in pristine groundwaters, provides explicit evidence of antimony leaching from PET containers. Since waters bottled in PET have much greater concentration ratio of Sb to Pb than corresponding pristine groundwaters, it can be assumed that bottled waters cannot be used as the relavant source for the study of the natural antimony content in groundwaters. There is a clear relation between the quality of water in bottles (composition, ion strength and antimony leaching rate. Moreover, while the rate of antimony leaching is slow at temperatures below 60 oC, at the temperature range of 60-80 oC antimony release occurs and reaches maximum contaminant level rapidly. As antimony can cause both acute and chronic health problems, factors that promote the increase of antimony concentration should be avoided.

  11. Antimony Doped Tin Oxide Thin Films: Co Gas Sensor

    Directory of Open Access Journals (Sweden)

    P.S. Joshi

    2011-01-01

    Full Text Available Tin dioxide (SnO2 serves as an important base material in a variety of resistive type gas sensors. The widespread applicability of this semicoducting oxide is related both to its range of conductance variability and to the fact that it responds to both oxidising and reducing gases. The antimony doped tin-oxide films were prepared by spray pyrolysis method. The as-deposited films are blackish in colour. Addition of antimony impurity showed little increase in the thickness. The X-ray diffraction pattern shows characteristic tin oxide peaks with tetragonal structure. As the doping concentration of antimony was increased, new peak corresponding to Sb was observed. The intensity of this peak found to be increased when the Sb concentration was increased from 0.01 % to the 1 % which indicates the antimony was incorporated into the tin oxide. For gas sensing studies ohmic contacts were preferred to ensure the changes in resistance of sensor is due to only adsorption of gas molecule. The graph of I-V shows a straight line in nature which indicates the ohmic contact. The sensitivity of the sensor for CO gas was tested. The sensitivity of antimony doped tin oxide found to be increased with increasing Sb concentration. The maximum sensitivity was observed for Sb = 1 % at a working temperature of 250 °C.

  12. Behavior of arsenic impurity at antimony electric precipitation

    International Nuclear Information System (INIS)

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 1013 n/cm2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  13. Martensite transformation in antimony implanted stainless steel

    International Nuclear Information System (INIS)

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb+ ions to a fluence of 5 x 1020 ions/m2, thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  14. Antimony Resistance in Leishmania, Focusing on Experimental Research

    Directory of Open Access Journals (Sweden)

    Fakhri Jeddi

    2011-01-01

    Full Text Available Leishmaniases are parasitic diseases that spread in many countries with a prevalence of 12 million cases. There are few available treatments and antimonials are still of major importance in the therapeutic strategies used in most endemic regions. However, resistance toward these compounds has recently emerged in areas where the replacement of these drugs is mainly limited by the cost of alternative molecules. In this paper, we reviewed the studies carried out on antimonial resistance in Leishmania. Several common limitations of these works are presented before prevalent approaches to evidence antimonial resistance are related. Afterwards, phenotypic determination of resistance is described, then confronted to clinical outcome. Finally, we detail molecular mechanisms and targets involved in resistance and already identified in vitro within selected mutant strains or in clinical isolates.

  15. Lattice dynamics of femtosecond laser-excited antimony

    Science.gov (United States)

    Abdel-Fattah, Mahmoud Hanafy; Bugayev, Aleksey; Elsayed-Ali, Hani E.

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron-phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  16. SULFIDE METHOD PLUTONIUM SEPARATION

    Science.gov (United States)

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  17. Heat-treated Saccharomyces cerevisiae for antimony speciation and antimony(III) preconcentration in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Marcellino, Sebastien [Universite de Lyon, Lyon1, Laboratoire des Sciences Analytiques, CNRS UMR 5180, bat CPE, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cedex (France); Attar, Hossein [Universite Louis Pasteur de Strasbourg, Laboratoire de Chimie Analytique et Sciences Separatives, CNRS UMR 7178, ECPM, 25 rue Becquerel 67087 Strasbourg (France); Lievremont, Didier; Lett, Marie-Claire [Universite Louis Pasteur de Strasbourg, Laboratoire de Genetique Moleculaire, Genetique et Microbiologie, CNRS UMR 7156, 28 rue Goethe, 67000 Strasbourg (France); Barbier, Frederique [CNRS USR 59, Service Central d' Analyse, 59 Chemin du Canal BP22 69390 Vernaison (France); Lagarde, Florence [Universite de Lyon, Lyon1, Laboratoire des Sciences Analytiques, CNRS UMR 5180, bat CPE, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cedex (France); Universite Louis Pasteur de Strasbourg, Laboratoire de Chimie Analytique et Sciences Separatives, CNRS UMR 7178, ECPM, 25 rue Becquerel 67087 Strasbourg (France)], E-mail: florence.lagarde@univ-lyon1.fr

    2008-11-23

    An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 deg. C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L{sup -1}). 140 mg of yeast and 2 h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 {mu}g L{sup -1}. In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L{sup -1} thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100 mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L{sup -1}, respectively, using ICP-MS, 7 and 0.9 {mu}g L{sup -1} using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n = 3) were in the 2-5% range at the tenth {mu}g L{sup -1} level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 {mu}g L{sup -1}). Corrected recoveries were in all cases close to 100%.

  18. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen;

    2012-01-01

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide...

  19. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen;

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide...

  20. Gold and Antimony Mixed Flotation on a Micrite Gold Antimony ore in Guizhou%贵州某泥晶灰岩型含锑金矿金锑混浮试验

    Institute of Scientific and Technical Information of China (English)

    石贵明; 周意超

    2015-01-01

    贵州某泥晶灰岩型含锑金矿石为块状构造,金属矿物主要为黄铁矿、针铁矿,含量小于1%,非金属矿物以方解石为主,另有少量石英、有机质等;金含量为6.04 g/t,显微镜下未见自然金粒,74.34%的金赋存在硫化矿中,游离金仅占总金的7.14%;硅酸盐、碳酸盐包裹金分别占11.96%和6.56%;锑主要以辉锑矿的形式存在。为高效、低成本回收矿石中的金、锑,对混合浮选工艺进行了试验研究。结果表明,在一段磨矿细度为-0.074 mm占71%的情况下1粗2扫混浮、尾矿再磨细度为-0.074 mm占92.7%的情况下再1粗2扫混浮、两粗精矿合并后3次精选、中矿顺序返回流程处理,最终获得了金品位为47.60 g/t、锑品位为9.81%、金回收率为76.68%、锑回收率为85.22%的金锑混合精矿,金锑混浮效果较理想。尾矿中金的回收及金锑分离工艺研究将另文介绍。%The micrite type antimony-containing gold ore in Guizhou is in blocky construction. Its metallic minerals are mainly pyrite and goethite,with content of less than 1%. Non-metallic minerals are calcite,and few of quartz,organic matter, etc. It contains gold of 6. 04 g/t,and natural gold grains were not seen in microscope,74. 34% of the gold occurred in sulfide ore,free gold accounted for only 7. 14%,wrapped gold in silicate and carbonate accounted for 11. 96% and 6. 56% respective-ly. Antimony mainly existed in the form of stibnite. Bulk flotation process was studied to make high efficient recovery of gold and antimony at low costs. The results indicated that,at the grinding fineness of 71% passing 0. 074 mm,through one roughing and two scavenging bulk flotation,one roughing and two scavenging bulk flotation after regrinding the tailings to 92. 7% passing 0. 074 mm,three cleaning flotation for the two mixed rough concentrate,and then middles back to the flow-sheet in turn,rough gold-antimony concentrate with gold grade of 47. 60 g

  1. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B.

    Directory of Open Access Journals (Sweden)

    Gloria Morizot

    2016-01-01

    Full Text Available We report on 4 patients (1 immunocompetent, 3 immunosuppressed in whom visceral leishmaniasis had become unresponsive to (or had relapsed after treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure.

  2. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B.

    Science.gov (United States)

    Morizot, Gloria; Jouffroy, Romain; Faye, Albert; Chabert, Paul; Belhouari, Katia; Calin, Ruxandra; Charlier, Caroline; Miailhes, Patrick; Siriez, Jean-Yves; Mouri, Oussama; Yera, Hélène; Gilquin, Jacques; Tubiana, Roland; Lanternier, Fanny; Mamzer, Marie-France; Legendre, Christophe; Peyramond, Dominique; Caumes, Eric; Lortholary, Olivier; Buffet, Pierre

    2016-01-01

    We report on 4 patients (1 immunocompetent, 3 immunosuppressed) in whom visceral leishmaniasis had become unresponsive to (or had relapsed after) treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure.

  3. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    OpenAIRE

    Kathawa, J.; Fry, C; Thoennessen, M

    2012-01-01

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  4. The determination of the thermodynamic activity of antimony in alpha-iron

    International Nuclear Information System (INIS)

    In this paper a method is suggested for determining the thermodynamic activity of antimony dissolved in alpha-iron, based on the study of antimony distribution between the two phases: liquid lead and solid iron. By this method, it was found that solid solutions of antimony in alpha-iron can be distinguished by positive divergences from the ideal state. Over a fairly wide range of concentrations, solutions of antimony in iron obey Henry's law. Special experiments on the distribution of antimony between lead and liquid iron showed that in the liquid state also the iron-antimony system is marked by positive divergences from the ideal state when small concentrations of antimony are present. The heat required for the solution of antimony in alpha-iron, and the excess partial molar entropy, were calculated from the activity temperature. The results were used for accurately locating the line showing the solubility limit of antimony in alpha-iron. Since alloys of antimony with iron were obtained by diffusion saturation and not by cooling from the liquid state, there was no liquefaction. Thus the lattice constant of the alloys and its relation to the alloy concentration could be reliably determined. The solubility limit established from X-ray data agrees with that obtained with Sb124. (author)

  5. Sulfide detoxification in plant mitochondria.

    Science.gov (United States)

    Birke, Hannah; Hildebrandt, Tatjana M; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.

  6. In Vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2005-10-01

    Full Text Available Pentavalent antimony, as meglumine antimoniate (Glucantime® or sodium stibogluconate (Pentostam® , is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes 122Sb and 124Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology.Os antimoniais pentavalentes, como o antimoniato de meglumina (Glucantime® ou estibogluconato de sódio (Pentostam® , são o principal tratamento para a leishmaniose, um complexo de doenças causadas pelo protozoário parasita Leishmania, uma doença endêmica e negligenciada no Brasil. Apesar do seu uso clínico por mais de meio século, seu mecanismo de ação, toxicidade e dados de farmacocinética permanecem desconhecidos. Os métodos analíticos para determinação de antimônio em sistemas biológicos são complexos e apresentam baixa sensibilidade. Estudos utilizando radiotraçadores têm papel potencial no desenvolvimento farmacológico. O objetivo deste estudo foi desenvolver um radiotraçador de antimônio, com propriedades físicas e biológicas adequadas. O antimoniato de meglumina foi irradiado por nêutrons no reator nuclear IEA-R1, produzindo dois radioisótopos: 122

  7. Antimony and arsenic biogeochemistry in the western Atlantic Ocean

    Science.gov (United States)

    Cutter, Gregory A.; Cutter, Lynda S.; Featherstone, Alison M.; Lohrenz, Steven E.

    The subtropical to equatorial Atlantic Ocean provides a unique regime in which one can examine the biogeochemical cycles of antimony and arsenic. In particular, this region is strongly affected by inputs from the Amazon River and dust from North Africa at the surface, and horizontal transport at depth from high-latitude northern (e.g., North Atlantic Deep Water) and southern waters (e.g., Antarctic Bottom and Intermediate Waters). As a part of the 1996 Intergovernmental Oceanographic Commission's Contaminant Baseline Survey, data for dissolved As(III+V), As(III), mono- and dimethyl arsenic, Sb(III+V), Sb(III), and monomethyl antimony were obtained at six vertical profile stations and 44 sites along the 11,000 km transect from Montevideo, Uruguay, to Bridgetown, Barbados. The arsenic results were similar to those in other oceans, with moderate surface depletion, deep-water enrichment, a predominance of arsenate (>85% As(V)), and methylated arsenic species and As(III) in surface waters that are likely a result of phytoplankton conversions to mitigate arsenate "stress" (toxicity). Perhaps the most significant discovery in the arsenic results was the extremely low concentrations in the Amazon Plume (as low as 9.8 nmol/l) that appear to extend for considerable distances offshore in the equatorial region. The very low concentration of inorganic arsenic in the Amazon River (2.8 nmol/l; about half those in most rivers) is probably the result of intense iron oxyhydroxide scavenging. Dissolved antimony was also primarily in the pentavalent state (>95% antimonate), but Sb(III) and monomethyl antimony were only detected in surface waters and displayed no correlations with biotic tracers such as nutrients and chlorophyll a. Unlike As(III+V)'s nutrient-type vertical profiles, Sb(III+V) displayed surface maxima and decreased into the deep waters, exhibiting the behavior of a scavenged element with a strong atmospheric input. While surface water Sb had a slight correlation with

  8. BioGeochemistry of antimony, Sources, Transfers, Impacts and Assessment

    Science.gov (United States)

    Le Roux, Gael; Pinelli, Eric; Hedde, Mickael; Guiresse, Maritxu; De Vleeschouwer, François; Silvestre, Jérôme; Enrico, Maxime; Gandois, Laure; Monna, Fabrice; Gers, Charles; Probst, Anne

    2013-04-01

    BioGeoSTIB is a project funded by ADEME (French Environmental Protection Agency). Its aim is to provide a better understanding of biogeochemical cycle disturbances of antimony by man. Specifically, it is focused on the atmosphere-soil-organism interfaces. Based on a multi-scale approach, the impact of antimony on organisms and organism communities and the factors of Sb dispersion in the environment aim to better characterized. This report gives the main results of 2 and 1 -2 years of research. Using peat bogs as environmental archives, we show that Sb contamination in soils date back to the beginning of the metallurgy. Atmospheric deposition of Sb largely increased by 100 times during the Industrial Revolution compared to natural levels (~0,001-0,01 mg m-2 an-1) estimated in the deepest peat layers. This disturbance in the antimony geochemical cycle modified its concentrations in soils. One main source of present Sb contamination is automotive traffic due to Sb in braking lines. This emerging contamination was characterized close to a roundabout. This additional source of Sb does not seem to impact soil fauna but Sb concentrations in soil solutions exceed 1 μg L-1. Genotoxicity tests have been performed on the model plant Vicia faba and show that antimony is genotoxic at its lowest concentrations and that there is a synergistic effect lead, a trace metal frequently found in association with antimony in the environment. It is a main issue to determine Sb critical loads in the environment but main identified lacks are thermodynamic data, which are not available yet, to model the behavior of Sb in soil solutions and the fact the antimony is always associated with other anthropogenic trace metals like lead. Critical thresholds of Sb have been determined for the first time based on genotoxicity experiment. Simulations show that these thresholds can be exceeded in the future, whereas present limits for invertebrates (US-EPA) are and will not be reached. However

  9. States of antimony and tin atoms in lead chalcogenides

    International Nuclear Information System (INIS)

    It is shown by Mössbauer spectroscopy of the 119Sb(119mSn) isotope that impurity antimony atoms in PbS, PbSe, and PbTe lattices are distributed between cation and anion sublattices. In n-type samples, the greatest part of antimony is located in the anion sublattice; in hole ones, in the cation sublattice. The tin atoms formed as a result of radioactive decay of 119Sb (antisite state) are electrically inactive in the anion sub-lattice of PbS and PbSe, while, in the cation sublattice, they form donor U− centers. Electron exchange between the neutral and doubly ionized tin U− centers via the allowed band states is observed. The tin atoms formed after radioactive decay of 119Sb are electrically inactive in the anion and cation sublattices of PbTe.

  10. 无机锑系阻燃剂%Inorganic Antimony Series Fire Retardants

    Institute of Scientific and Technical Information of China (English)

    张亨

    2012-01-01

    无机锑系阻燃剂主要包括三氧化二锑、五氧化二锑溶胶和锑酸钠等。介绍了它们的性质、生产工艺、产品标准、阻燃用途和研发方向等。%Inorganic antimony series fire retardants include antimony trioxide, antimony pentoxide sol and sodium antimonate, etc. The properties, production process, production standard and uses of several inorganic antimony series fire retardants are introduced.

  11. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A., E-mail: mmamu001@odu.edu; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States); The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Hernandez-Garcia, C.; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  12. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Hernandez-Garcia, C. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  13. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Directory of Open Access Journals (Sweden)

    M. A. Mamun

    2015-06-01

    Full Text Available CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  14. Resistance to Arsenic- and Antimony-Based Drugs

    OpenAIRE

    Milena Salerno; Arlette Garnier-Suillerot

    2003-01-01

    Organic arsenicals were the first antimicrobial agents specifically synthesized for the treatment of infectious diseases such as syphilis and sleeping sickness. For the treatment of diseases caused by trypanosomatid parasites, organic derivatives of arsenic and the related metalloid antimony are still the drugs of choice. Arsenic trioxide, As203, has been used for a long time in traditional Chinese medicines for treatment of various diseases, and it has recently been shown to be clinically ac...

  15. Crystallization of antimony orthotantalate and its physical properties

    International Nuclear Information System (INIS)

    Physicochemical conditions of monophase synthesis of antimony orthoniobate monocrystals in the system SbO3-Ta2O5-KHF2-H2O2-H2O were investigated. In the area of monophase synthesis of SbTaO4 monocrystals kinetic studies of its growth conditions for inoculation, depending on solvent concentration, temperature, pyroelectric properties of the monocrystal grown were studied and conclusion was made on their practical use

  16. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water.

    Science.gov (United States)

    Westerhoff, Paul; Prapaipong, Panjai; Shock, Everett; Hillaireau, Alice

    2008-02-01

    Antimony is a regulated contaminant that poses both acute and chronic health effects in drinking water. Previous reports suggest that polyethylene terephthalate (PET) plastics used for water bottles in Europe and Canada leach antimony, but no studies on bottled water in the United States have previously been conducted. Nine commercially available bottled waters in the southwestern US (Arizona) were purchased and tested for antimony concentrations as well as for potential antimony release by the plastics that compose the bottles. The southwestern US was chosen for the study because of its high consumption of bottled water and elevated temperatures, which could increase antimony leaching from PET plastics. Antimony concentrations in the bottled waters ranged from 0.095 to 0.521 ppb, well below the US Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 6 ppb. The average concentration was 0.195+/-0.116 ppb at the beginning of the study and 0.226+/-0.160 ppb 3 months later, with no statistical differences; samples were stored at 22 degrees C. However, storage at higher temperatures had a significant effect on the time-dependent release of antimony. The rate of antimony (Sb) release could be fit by a power function model (Sb(t)=Sb 0 x[Time, h]k; k=8.7 x 10(-6)x[Temperature ( degrees C)](2.55); Sb 0 is the initial antimony concentration). For exposure temperatures of 60, 65, 70, 75, 80, and 85 degrees C, the exposure durations necessary to exceed the 6 ppb MCL are 176, 38, 12, 4.7, 2.3, and 1.3 days, respectively. Summertime temperatures inside of cars, garages, and enclosed storage areas can exceed 65 degrees C in Arizona, and thus could promote antimony leaching from PET bottled waters. Microwave digestion revealed that the PET plastic used by one brand contained 213+/-35 mgSb/kg plastic; leaching of all the antimony from this plastic into 0.5L of water in a bottle could result in an antimony concentration of 376 ppb. Clearly, only a small

  17. Recent advances on antimony(III/V) compounds with potential activity against tumor cells.

    Science.gov (United States)

    Hadjikakou, S K; Ozturk, I I; Banti, C N; Kourkoumelis, N; Hadjiliadis, N

    2015-12-01

    Antimony one of the heavier pnictogens, has been in medical use against microbes and parasites as well. Antimony-based drugs have been prescribed against leishmaniasis since the parasitic transmission of the tropical disease was understood in the beginning of the 20th century. The activity of arsenic against visceral leishmaniasis led to the synthesis of an array of arsenic-containing parasitic agents, among them the less toxic pentavalent antimonials: Stibosan, Neostibosan, and Ureastibamine. Other antimony drugs followed: sodium stibogluconate (Pentostam) and melglumine antimoniate (Glucantim or Glucantime); both continue to be in use today despite their toxic side effects and increasing loss in potency due to the growing resistance of the parasite against antimony. Antimony compounds and their therapeutic potentials are under consideration from many research groups, while a number of early reviews recording advances of antimony biomedical applications are also available. However, there are only few reports on the screening for antitumor potential of antimony compounds. This review focuses upon results obtained on the anti-proliferative activity of antimony compounds in the past years. This survey shows that antimony(III/V) complexes containing various types of ligands such as thiones, thiosemicarbazones, dithiocarbamates, carboxylic acids, or ketones, nitrogen donor ligands, exhibit selectivity against a variety of cancer cells. The role of the ligand type of the complex is elucidated within this review. The complexes and their biological activity are already reported elsewhere. However quantitative structure-activity relationship (QSAR) modeling studies have been carried out and they are reported for the first time here. PMID:26092367

  18. Heavy weight vehicle traffic and its relationship with antimony content in human blood.

    Science.gov (United States)

    Quiroz, Waldo; De Gregori, Ida; Basilio, Paola; Bravo, Manuel; Pinto, Marcela; Lobos, Maria Gabriela

    2009-05-01

    Brake pads systems are nowadays considered as one of the most important sources of antimony in airborne particulate matter. One way that antimony can enter the body is through the lungs and specially by the interaction of antimony with -SH groups present in erythrocyte membrane cells. In spite of that, there are no studies about antimony enrichment in blood of workers exposed to high vehicle traffic. Port workers are generally exposed to heavy weight vehicle traffic. In Chile the biggest marine port is found in Valparaíso City. In this study antimony in whole blood and its fractions (erythrocytes-plasma and erythrocytes membranes-cytoplasm) of 45 volunteers were determined. The volunteers were port workers from Valparaíso city, and two control groups, one from Valparaíso and another from Quebrada Alvarado, the latter being a rural area located about 100 Km away from Valparaíso. The results demonstrate that port workers are highly impacted by antimony emissions from heavy weight vehicle traffic showing an average concentration of 27 +/- 9 ng Sb kg(-1), 5-10 times higher than the concentration of antimony in the blood of control groups. These are the highest antimony levels in blood ever reported in the literature. The highest antimony percentages (>60%) were always found in the erythrocyte fractions. However, the exposure degree to vehicle traffic is significant over antimony distribution in plasma, erythrocytes and cytoplasm. This results shows that the antimony mass in the erythrocyte membranes, was approximately constant at 1.0 +/- 0.1 ng Sb g(-1) of whole blood in all blood samples analyzed.

  19. Tin dioxide sol-gel derived films doped with platinum and antimony deposited on porous silicon

    NARCIS (Netherlands)

    Savaniu, C.; Arnautu, A.; Cobianu, C.; Craciun, G.; Flueraru, C.; Zaharescu, M.; Parlog, C.; Paszti, F.; Berg, van den A.

    1999-01-01

    SnO2 sol-gel derived thin films doped simultaneously with Pt and Sb are obtained and reported for the first time. The Sn sources were tin(IV) ethoxide or tin(II) ethylhexanoate, while hexachloroplatinic acid (H2PtCl6) and antimony chloride (SbCl3) were used as platinum and antimony sources, respecti

  20. Oxidation and mobilization of metallic antimony in aqueous systems with simulated groundwater

    Science.gov (United States)

    Ilgen, A. G.; Majs, F.; Barker, A. J.; Douglas, T. A.; Trainor, T. P.

    2014-05-01

    Antimony (Sb) is a contaminant of concern that can be present in elevated concentrations in shooting range soils due to mobilization from spent lead/antimony bullets. Antimony in shooting range soils has been observed as either metallic Sb(0) or as Sb(V) immobilized by iron (hydr)oxides. The absence of Sb(III) in soils is indicative of rapid Sb(III) oxidation to Sb(V) under surface soil conditions. However, the major controls on antimony oxidation and mobility are poorly understood. To better understand these controls we performed multiple batch experiments under oxic conditions to quantify the oxidation and dissolution of antimony in systems where Sb(0) is oxidized to Sb(III) and further to Sb(V). We also tested how variations in the aqueous matrix composition and the presence of metallic lead (Pb) affect the dissolution, solid phase speciation, and oxidation of antimony. We monitored changes in the aqueous antimony speciation using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). To test which solid phases form as a result of Sb(0) oxidation, and therefore potentially limit the mobility of antimony in our studied systems, we characterized the partially oxidized Sb(0) powders by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and powder X-ray diffraction (XRD).

  1. Leishmania donovani: an in vitro study of antimony-resistant amphotericin B-sensitive isolates

    DEFF Research Database (Denmark)

    Sharief, Abdalla Hassan; Gasim Khalil, Eltahir Awad; Theander, Thor G;

    2006-01-01

    Drug sensitivity of clinically antimony-unresponsive Leishmania donovani isolates from Eastern Sudan was evaluated in an in vitro culture system against sodium stibogluconate (Pentostam) and Amphotericin B. Eight isolates, six from antimony-resistant and two from clinically responsive patients were...

  2. Research on Percolation Network and Physical Properties of Graphite/Antimony Composites

    Institute of Scientific and Technical Information of China (English)

    HU Ya-fei; HE Min; WANG Qi-li

    2006-01-01

    The microstructure, friction and wear behaviour of graphite preform and graphite/antimony composites are analysed based on the percolation theory of hydrodynamics to investigate the relationship between the percolation network and physical properties of graphite/antimony composites. The result shows that there are two important factors to enhance friction and wear behaviour of graphite/antimony composites at high temperature: 1) the formation of the pore network in the preform, which is called the first percolation and 2) the optimization of infiltration method in the process of infiltrating antimony, which is called the second percolation. By adding some pyrolysate and controlling the roasting process, perfect net pores and sub-micron percolation microstructure may be formed in the graphite preform. By controlling the infiltration process, the saturation of molten antimony infiltrating into perfect pores can be optimized.

  3. Testing of antimony selective media for treatment of liquid radwaste

    International Nuclear Information System (INIS)

    Nuclear power plants have sought radiation source term reduction and reduced discharge of radioactive constituents for many years. In the case of pressurized water reactors (PWRs), the latter efforts have been directed toward capture and immobilization of recalcitrant (ubiquitous radionuclides with long half-lives) species such as Cs-134 and Cs-137 and Co-58 and Co-60. As these plants resolved, or at least mitigated, the problems with radiocesium and radio-cobalt, antimony radionuclides (Sb-122, Sb-124, and Sb-125) have become a primary concern in liquid liquid radwaste systems Graver Technologies developed a granular composite metal oxide media with good selectivity for radio-antimony. Initial laboratory data were collected using non-radioactive salts of antimony, cesium, and cobalt to judge efficacy of selective removal of antimony. Based on success of those trials, the media, designated Gravex GX187, was tested in partnership with Energy Solutions (nee Duratek) using actual liquid liquid radwaste in two PWR plants. One of these plants performed extensive slip-stream trials comparing the GX187 with strong base anion resins. With more than 2500 bed volumes of throughput, the GX187 outperformed the other competitors by reducing both Sb-124 and Sb-125 radionuclides below minimum detectable activity (MDA) with average decontamination factors (DF's) of 170, even when subjected to high levels of borate. Based on these favorable results, Energy Solutions installed the GX187 in a layered bed in their ALPS liquid radwaste processing system at this plant in August 2005. After one year of intermittent, batchwise operation including an outage, the GX187 processed more than 2.25 million liters (>600,000 gallons) of liquid liquid radwaste while reducing the Sb-125 activity to 2.9 E-08 Bq/L (DF=111) on average. This evaluation is ongoing and will continue at least until the fall 2006 outage at this plant. Concurrently, Graver developed a second generation antimony selective

  4. A novel method for improving cerussite sulfidization

    Institute of Scientific and Technical Information of China (English)

    Qi-cheng Feng; Shu-ming Wen; Wen-juan Zhao; Qin-bo Cao; Chao L

    2016-01-01

    Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sul-fide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.

  5. Sulfide intrusion and detoxification in Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2014-01-01

    Sulfide intrusion in seagrasses represents a global threat to seagrasses. In contrast seegrasses grow in hostile sediments, where they are constantly exposed to sulfide intrusion. Little is known about the strategies to survive sulfide intrusion, if there are detoxification mechanisms and sulfur...... nutrition in general. By a global review of sulfide intrusion, coupled with a series of field studies and in situ experiments we elucidate sulfide intrusion and different strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis...... to trace sulfur compounds and as well as metabolomics upon sulfide and anoxia exposure we identified different strategies to cope with sulfidic sediments. 1) Avoidance, by reoxidation of gaseous sulfide in the arenchyma to elemental sulfur and sulfate; where precipitation of sulfide occurred as non...

  6. Behavior of ruthenium, cesium and antimony during simulated HLLW vitrification

    International Nuclear Information System (INIS)

    The behavior of ruthenium, cesium, and antimony during the vitrification of simulated high-level radioactive liquid wastes (HLLW) in a liquid fed melter was studied on a laboratory scale and on a semi-pilot scale. In the laboratory melter of a 2.5 kg capacity, a series of tests with the simulate traced with 103Ru, 134Cs and 124Sb, has shown that the Ru and Cs losses to the melter effluent are generally higher than 10% whereas the antimony losses remain lower than 0.4%. A wet purification system comprising in series, a dust scrubber, a condenser, an ejector venturi and an NOx washing column retains most of the activity present in the off-gas so that the release fractions for Ru at the absolute filter inlet ranges between 5.10-3 to 5.10-5% of the Ru fed, for Cs the corresponding release fraction ranges between 3.10-3 to 10-4% and for Sb the release fraction ranges between 1.7 10-4 to 1.7 10-5%. The same experiments were performed at a throughput of 1 to 2 1 h-1 of simulated solution in the semi-pilot scale unit RUFUS. The RUFUS unit comprises a glass melter with a 50 kg molten glass capacity and the wet purification train comprises in series a dust scrubber, a condenser, an ejector venturi and an NOx washing column. The tracer tests were restricted to 103Ru and 134Cs since the laboratory tests had shown that the antimony losses were very low. The results of the tests are presented

  7. Prevention of sulfide oxidation in sulfide-rich waste rock

    Science.gov (United States)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  8. Electrostatically defined silicon quantum dots with counted antimony donor implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  9. Antimony implanted strained Si for nMOSFET applications

    OpenAIRE

    Zamani, Atieh

    2009-01-01

    Incorporation of implanted antimony (Sb) in strained-silicon (s-Si) formed on relaxed-SiGe virtual substrates (10 and 30% Ge) has been studied. The implantation doses were 5×1013- 5×1014 cm-2 with an energy of 20 keV. The activation of dopant was performed by an rapid thermal annealing (RTA) treatment at 700 and 800 °C for 30 sec. Projected range of this implantation is about 20 nm which was also confirmed by different techniques. The layers were analyzed in terms of strain relaxation, sheet ...

  10. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong;

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  11. Pyrophoric nature of iron sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R. [Univ. of Surrey, Guildford (United Kingdom). Dept. of Materials Science and Engineering; Steele, A.D.; Morgan, D.T.B. [Shell Research Centre Ltd., Chester (United Kingdom). Thornton Research Centre

    1996-05-01

    Hydrogen sulfide, often present in crude oil tankers, can react with rust to form various sulfides including mackinawite (FeS), greigite (Fe{sub 3}S{sub 4}), and pyrite (FeS{sub 2}). The tendency for these compounds to react with oxygen in air to form potentially explosive mixtures depends upon their morphology and the environmental conditions. The experimentally determined heat of oxidation of finely divided mackinawite was {minus}7.45 kJ/g. For samples with a larger particle size and smaller surface area the values measured were lower due to incomplete oxidation of the sulfide. All the sulfides produced, whether from magnetite or acicular, prismatic or spherical geothite, were approximately spherical in form. The heat of oxidation of greigite was found to be approximately {minus}2100 kJ/mol, and the heat of formation of greigite is approximately {minus}320 kJ/mol.

  12. Hydrogen Sulfide Oxidation by Myoglobin.

    Science.gov (United States)

    Bostelaar, Trever; Vitvitsky, Victor; Kumutima, Jacques; Lewis, Brianne E; Yadav, Pramod K; Brunold, Thomas C; Filipovic, Milos; Lehnert, Nicolai; Stemmler, Timothy L; Banerjee, Ruma

    2016-07-13

    Enzymes in the sulfur network generate the signaling molecule, hydrogen sulfide (H2S), from the amino acids cysteine and homocysteine. Since it is toxic at elevated concentrations, cells are equipped to clear H2S. A canonical sulfide oxidation pathway operates in mitochondria, converting H2S to thiosulfate and sulfate. We have recently discovered the ability of ferric hemoglobin to oxidize sulfide to thiosulfate and iron-bound hydropolysulfides. In this study, we report that myoglobin exhibits a similar capacity for sulfide oxidation. We have trapped and characterized iron-bound sulfur intermediates using cryo-mass spectrometry and X-ray absorption spectroscopy. Further support for the postulated intermediates in the chemically challenging conversion of H2S to thiosulfate and iron-bound catenated sulfur products is provided by EPR and resonance Raman spectroscopy in addition to density functional theory computational results. We speculate that the unusual sensitivity of skeletal muscle cytochrome c oxidase to sulfide poisoning in ethylmalonic encephalopathy, resulting from the deficiency in a mitochondrial sulfide oxidation enzyme, might be due to the concentration of H2S by myoglobin in this tissue. PMID:27310035

  13. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D

    1999-12-01

    The major contributions of the isotopes {sup 122}Sb and {sup 124}Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300{sup o}C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb{sub 2}O{sub 3} increases by about two orders of magnitude between 25 and 200{sup o}C, and then levels out or decreases slightly. At 250{sup o}C, in oxidizing solutions, Sb{sub 2}O{sub 5}{center_dot}xH{sub 2}O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na{sub 2{alpha}}[H(H{sub 2}O)]{sub 2-2{alpha}}Sb{sub 2}O{sub 6}, which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200{sup o}C and decreases at temperatures above 250{sup o}C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO{sub 3}{sup -} or Sb(OH){sub 6}{sup -}), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations {>=} 0.00005 mol{center_dot}dm{sup -3} in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be

  14. Antimony removal from the polyethylene terephthalate manufacture wastewater

    Directory of Open Access Journals (Sweden)

    Tomas Vengris

    2010-04-01

    Full Text Available In this study, antimony removal by coagulation from polyethylene terephthalate resin production wastewater of „Orion Global PET“ factory in Klaipėda city was investigated, with regard to the dependence of coagulant type and dosage, pH and presence of organics. FeCl3 ∙6H2O, FeSO4 ∙7H2O, AlCl3∙6H2O and TiCl4 salts were used as coagulants. Ti(IV and Fe(III revealed oneself to be the most effective coagulants. Antimony removal effectiveness is moderate and low using FeSO4 ∙7H2O and AlCl3∙6H2O coagulants, respectively. The addition of 10 mg dm-3 Ti(IV and 30 mg dm-3 Fe(III reduces by ~98% of the Sb, when the initial amount of Sb in wastewater is about 1200 mkg/l. The action of Fe(III is practically independent in the pH range 4-9, and that of Ti(IV slightly decreases in the same pH interval. The Sb amount in wastewater can be reduced to 13-20 mkg dm-3, while the initial Sb concentration is 1200 mkg dm-3. The presence of organic compounds in wastewater determines the reduction of Sb removal by coagulation.

  15. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    Science.gov (United States)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  16. Antimony contamination and its effect on Trifolium plants

    Science.gov (United States)

    Corrales, Isabel; Barceló, Juan; Bech, Jaume; Poschenrieder, Charlotte

    2014-05-01

    Antimony is not an essential element and soil Sb contents usually are low.However, soil contamination by Sb has increased in the last years due to the human activities (combustion of fossil fuels, mining, waste incineration, smelting, shooting and road traffic). The main objective of this work was to study the effect of different concentrations of antimony (KSb(OH)6) in order to evaluate the effect on growth and Sb uptake on Trifolium pratense cv. Milvus and Trifolium repens. Our results show that Sb accumulated both in roots and shoots of clover without any negative effect on root growth, cellular viability and lipid peroxidation. This absence of toxicity sympthoms in clover plants could be very dangerous because Sb can be inadvertedly incorporated into the trophic chain causing toxic effects both in animals and humans. The absence of toxic effects on plants does not seem to be due to detoxification by phytochelatins because the use of the gamma-glutamylcysteine synthetase inhibitor, L-buthionine-[S,R]-sulphoximine (BSO) did not enhance Sb toxicity to plants. (Supported by the Spanish MICINN project BFU2010-14873)

  17. Thermal decomposition kinetics of antimony oxychloride in air

    Institute of Scientific and Technical Information of China (English)

    阳卫军; 唐谟堂; 金胜明

    2002-01-01

    The DTA and XRD techniques were employed to study thermal decomposition mechanism of antimony oxychloride SbOCl in the air. The thermal decomposition reaction occurs in four steps, and the former three steps as: SbOCl(s)→Sb4O5Cl2(s)+SbCl3(g)→Sb8O11Cl2(s)+SbCl3(g)→Sb2O3(s)+SbCl3(g). The forth step is the oxidation of Sb2O3 by air, Sb2O3(s)+O2→Sb2O4(s). The activation energy and the order of the thermal decomposition reaction of antimony oxychloride in three steps presented in DTA curves were calculated according to Kinssinger methods from DTA curves. The values of activation energy and the order are respectively 91.97kJ/mol, 0.73 in the first step, 131.14kJ/mol, 0.63 in the second step and 146.94kJ/mol, 1.58 in the third step.

  18. BSA activated CdTe quantum dot nanosensor for antimony ion detection.

    Science.gov (United States)

    Ge, Shenguang; Zhang, Congcong; Zhu, Yuanna; Yu, Jinghua; Zhang, Shuangshuang

    2010-01-01

    A novel fluorescent nanosensor for Sb(3+) determination was reported based on thioglycolic acid (TGA)-capped CdTe quantum dot (QD) nanoparticles. It was the first antimony ion sensor using QD nanoparticles in a receptor-fluorophore system. The water-soluable TGA-capped CdTe QDs were prepared through a hydrothermal route, NaHTe was used as the Te precursor for CdTe QDs synthesis. Bovine serum albumin (BSA) conjugated to TGA-capped CdTe via an amide link interacting with carboxyl of the TGA-capped CdTe. When antimony ion enters the BSA, the lone pair electrons of the nitrogen and oxygen atom become involved in the coordination, switching off the QD emission and a dramatic quenching of the fluorescence intensity results, allowing the detection of low concentrations of antimony ions. Using the operating principle, the antimony ion sensor based on QD nanoparticles showed a very good linearity in the range 0.10-22.0 microg L(-1), with the detection limit lower than 2.94 x 10(-8) g L(-1) and the relative standard deviation (RSD) 2.54% (n = 6). In a study of interferences, the antimony-sensitive TGA-QD-BSA sensor showed good selectivity. Therefore, a simple, fast, sensitive, and highly selective assay for antimony has been built. The presented method has been applied successfully to the determination of antimony in real water samples (n = 6) with satisfactory results.

  19. Removal of cobalt from zinc sulphate solution using rude antimony trioxide as additive

    Institute of Scientific and Technical Information of China (English)

    戴军; 王德全; 姜澜; 金曼

    2002-01-01

    The process of cobalt removal from zinc sulphate solution using rude antimony trioxide as an additive was investigated. The rude antimony trioxide was produced in treatment of copper and lead anode mud and its main components are antimony trioxide, antimony arsenate and lead antimonate. Using the rude antimony trioxide as the additive of cobalt removal can not only decrease operation cost of purification but also find out a new way for utilization of the rude antimony trioxide. The effects of temperature, dosage of zinc dust, the rude antimony trioxide, copper ion and solution pH on removal of cobalt were studied. And experimental data using the rude Sb2O3 as additive were compared with those using Sb2O3. The results indicate that using rude Sb2O3 as additive, cobalt concentration in solution could be decreased from 24mg/L to below 1mg/L under about the same conditions as using Sb2O3.

  20. Leaching Mechanism of Complicated Antimony-Lead Concentrate and Sulfur Formation in Slurry Electrolysis

    Institute of Scientific and Technical Information of China (English)

    WangChengyan; QiuDingfan; JiangPeihai

    2004-01-01

    Anodic reaction mechanism of complicated antimony-lead concentrate in slurry electrolysis was investigated by the anodic polarization curves determined under various conditions. The main reactions on the anode are the oxidations of FeCln(2-n) . Though the oxidation of jamesonite particle on the anode can occur during the whole process, it is less. With the help of mineralogy studies and relevant tests, the leaching reaction mechanism of jameson[to and gudmundite during slurry electrolysis was ascertained. Because of the oxidation reaction of FeCl3 produced by antimony-lead concentrate itself, the non-oxidation complex acid dissolution of jameson[re, the oxidation complex acid dissolution of gudmundite, and the oxidation of air carried by stirring, the leaching ratio of antimony reaches about 35% when HCl-NH4Cl solution is used to leach antimony-lead concentrate directly. So when the theoretical electric quantity is given to oxidation of antimony in slurry electrolysis, all of antimony, lead and iron containing in antimony-lead concentrate, are leached. The formation of sulfur is through the directly redox reaction of Fe3+ and jameson[re. The S2- in jamesonite is oxidized into S0 , and forms the crystals of sulfur again on the spot. The redox reaction of Fe3+ and H2S formed by non-oxidative acid dissolution of jamesonite is less.

  1. Segregation of antimony in InP in MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Weeke, Stefan

    2008-07-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  2. Varicella zoster virus reactivation during or immediately following treatment of tegumentary leishmaniasis with antimony compounds

    Directory of Open Access Journals (Sweden)

    Andrea Barbieri Barros

    2014-07-01

    Full Text Available Antimony compounds are the cornerstone treatments for tegumentary leishmaniasis. The reactivation of herpes virus is a side effect described in few reports. We conducted an observational study to describe the incidence of herpes zoster reactivation during treatment with antimony compounds. The global incidence of herpes zoster is approximately 2.5 cases per 1,000 persons per month (or 30 cases per 1,000 persons per year. The estimated incidence of herpes zoster in patients undergoing antimony therapy is higher than previously reported.

  3. Structural and optical characterization of thermally evaporated bismuth and antimony films for photovoltaic applications

    Science.gov (United States)

    Srimathy, N.; Ruban Kumar, A.

    2016-05-01

    In this present study, the thin film of bismuth and antimony is coated by thermal evaporation system equipped with the inbuilt ultra high vacuum system. XRD analysis confirmed the rhombohedral structure of Bismuth and Antimony on the prepared film. The surface roughness and physical appearance is analyzed by Atomic force microscopy. The results of Raman Spectroscopy show the wave functions and the spectrum of electrons. The preparation technique and conditions strongly influence the crystalline structure and the phase composition of bismuth and antimony thin films. The electrical and optical properties for the prepared film are analyzed. The results show a great interest and promising applications in Photovoltaic devices.

  4. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    Science.gov (United States)

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  5. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    Science.gov (United States)

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  6. Novel Metal Sulfides to Achieve Effective Capture and Durable Consolidation of Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri [Northwestern Univ., Evanston, IL (United States); Riley, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chun, Jaehun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pierce, D. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-01-30

    This report documents the work done under NEUP grant to examine the capability of novel chalcogels and some binary metal chalcogenides as a host matrix for the capture of gaseous iodine and the feasibility of their iodine-laden materials to be converted into a permanent waste form. The presented work was conducted over last two years. A number of novel chalcogels Zn2Sn2S 6, Sb4Sn4S12, NiMoS 4, CoMoS 4, antimony sulfide (SbS x) chalcogels, silver functionalized chalcogels and binary metal sulfides (Sb2S3) were developed and studied for their iodine absorption efficacies. A new and simple route was devised for the large scale preparation of antimony sulfide chalcogel. The chalcogel was obtained by treating Sb2S3 with Na2S in the presence of water followed by addition of formamide. The obtained gels have a low-density sponge-like network of meso-porous nature having BET surface area of 125 m2/g. The chalcogels, silver functionalized chalcogel and the binary metal sulfides were exposed to iodine vapors in a closed container. Silver-functionalized chalcogels and Sb2S3 powders showed iodine uptake up to 100 wt%, the highest iodine uptake of 200 wt% was observed for the SbS-III chalcogel. The PXRD patterns of iodine-laden specimens revealed that iodine shows spontaneous chemisorption to the matrix used. The iodine loaded chalcogels and the binary chalcogenides were sealed under vacuum in fused silica ampoules and heated in a temperature controlled furnace. The consolidated products were analyzed by PXRD, energy dispersive spectroscopy (EDS), UV-Vis and Raman spectroscopy. The final products were found to be amorphous in most of the cases with high amount (~4-35 wt%) of iodine and approximately ~60- 90 % of the absorbed iodine could be consolidated into the final waste form. Alginate

  7. Synthesis and characterisation of nano-pore antimony imprinted polymer and its use in the extraction and determination of antimony in water and fruit juice samples.

    Science.gov (United States)

    Shakerian, Farid; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Nili Ahmad Abadi, Maryam

    2014-02-15

    A solid phase extraction method using antimony ion imprinted polymer (IIP) sorbent combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for the extraction and speciation of antimony. The sorbent has been synthesised in the presence of Sb(III) and ammonium pyrrolidine dithiocarbamate (APDC) using styrene as the monomer and ethylene glycol dimethacrylate (EGDMA) as the cross linker. The imprinted Sb(III) ions were removed by leaching with HCl (50%v/v) and the polymer was characterised by FT-IR and scanning electron microscopy. The maximum sorption capacity of the IIP for Sb(III) ions was found to be 6.7 mg g(-1). With preconcentration of 60 mL of sample, an enhancement factor of 232 and detection limit of 3.9 ng L(-1) was obtained. Total antimony was determined after the reduction of Sb(V) to Sb(III). The method was successfully applied to the determination of antimony species in water samples and total antimony in fruit juices.

  8. Geochemical Studies on Dachang Antimony Ore Deposit in Qinglong,Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    张启厚

    1999-01-01

    The Dachang antimony deposit in Qinglong,Guizhou Province,is strictly controlled by the “Dachang Layer” which is a complex altered rock occurring at unconformity between the Permian Emeishan basalt and the Maokou limestone.Based on the studies of the hanging-and foot-wall rocks,the trace elements and REE contents of the rocks and ores and heavy placer minerals in the basalt,this paper is focused on the relations between these data and the “Dachang Layer”and its hanging- and oot-wall rocks.The author pointed out that the “Dachang Layer” and basalt are the source-beds of antimony;ilmenite and magnetite are the major mineral carriers of antimony.In the processes of halmyrosis and burial metamorphism of the “Dachang Layer” an basalt,antimony was mobilized along with the mobilization of iron and was preliminarily concentrated in the“ Dachang Layer”.

  9. Effect of filler on the self-lubrication performance of graphite antimony composites

    Institute of Scientific and Technical Information of China (English)

    WANG Qi-li; HU Ya-fei; HE Min

    2008-01-01

    Graphite antimony composites were prepared using a mechanical pressure infiltration method to force molten antimony into graphite preforms having a percolation micro-structure and a hop-pocket power filler. The micro-structural and macroscopic properties of the graphite antimony composites were analysed. Observations included metallographic analysis, physical properties and friction and wear behaviour. The results show that the wear loss is decreased by 12.24% and that the friction coefficient is re-duced by 32.61% after hop-pocket power was used. The research indicates that the hop-pocket power method gives a useful way to reduce friction coefficients and wear loss, and to increase service life and self-lubrication properties, of the graphite antimony seal-ing material as compared to carbon black.

  10. Geochemistries of arsenic, antimony, mercury, and related elements in sediments of puget sound

    Science.gov (United States)

    Crecelius, E.A.; Bothner, Michael H.; Carpenter, R.

    1975-01-01

    The natural distributions of arsenic, antimony mercury, chromium, cobalt, iron, aluminum, and carbon in the surface sediments of Puget Sound are perturbed by two major anthropogenic sources of trace metals: a copper smelter near Tacoma, Wash., that discharges large amounts of arsenic and antimony, and a chlor-alkali plant in Bellingham, Wash., which, in the recent past, discharged significant amounts of mercury. Arsenic and antimony inputs from the smelter over the past 80 years are evident in sediment cores whose accumulation rates have been determined by the lead-210 technique. An arsenic budget for Puget Sound reveals the importance of atmospheric input resulting from smokestack emissions of the smelter. Chemical extraction studies of sediments showed that more than 82% of the mercury was associated with easily oxidizable organic matter, whereas about 50% of both arsenic and antimony was associated with extractable iron and aluminum compounds.

  11. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  12. Crystal structure and thermodynamic properties of potassium antimony tungsten oxide

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, Aleksandr V., E-mail: knav@uic.nnov.ru [Nizhny Novgorod State University, Gagarin Prospekt 23/2, Nizhny Novgorod, 603950 (Russian Federation); Tananaev, Ivan G. [Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky prospect, Moscow GSP-1, 119991 (Russian Federation); Kuznetsova, Nataliya Yu.; Smirnova, Nataliya N.; Letyanina, Irene A.; Ladenkov, Igor V. [Nizhny Novgorod State University, Gagarin Prospekt 23/2, Nizhny Novgorod, 603950 (Russian Federation)

    2010-02-20

    In the present work potassium antimony tungsten oxide with pyrochlore structure is refined by the Rietveld method (space group Fd3m, Z = 8). The temperature dependences of heat capacity have been measured for the first time in the range from 7 to 370 K for this compound. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity C{sub p}{sup o}(T), enthalpy H{sup o}(T) - H{sup o}(0), entropy S{sup o}(T) - S{sup o}(0) and Gibbs function G{sup o}(T) - H{sup o}(0), for the range from T {yields} 0 to 370 K. The differential scanning calorimetry was applied to measure the incongruent melting temperature of compound under study. The high-temperature X-ray diffraction was used for the determining thermal expansion coefficients.

  13. Coherent and Incoherent Structural Dynamics in Laser-Excited Antimony

    CERN Document Server

    Waldecker, Lutz; Bertoni, Roman; Vasileiadis, Thomas; Garcia, Martin E; Zijlstra, Eeuwe S; Ernstorfer, Ralph

    2016-01-01

    We investigate the excitation of phonons in photoexcited antimony and demonstrate that the entire electron-lattice interactions, in particular coherent and incoherent electron-phonon coupling, can be probed simultaneously. Using femtosecond electron diffraction (FED) with high temporal resolution, we observe the coherent excitation of the fully symmetric \\Ag\\ optical phonon mode via the shift of the minimum of the atomic potential energy surface. Molecular dynamics simulations are performed to quantify the change in lattice potential and the associated real-space amplitude of the coherent atomic oscillations. In addition, our experimental configuration allows observing the energy transfer from electrons to phonons via incoherent electron-lattice scattering events. Applying a modified two-temperature model, the electron-phonon coupling is determined from the data as a function of electronic temperature.

  14. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaolong [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); Lin, Jianping, E-mail: jaredlin@163.com [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Qiao, Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Zhao, E-mail: zwangzhao@gmail.com [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  15. Synthesis of furan from allenic sulfide derivatives

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we report the synthesis of furan derivatives from allenic sulfides. By the reaction with NaH, β-Hydroxyl allenic sulfides were found to generate furan products in excellent yields with the removal of phenylthio group. β-Aldehyde allenic sulfides were found to give similar furan products with one more substituent when treated with additional nucleophilic reagents. β-ketone allenic sulfides can also cyclize to give furan derivatives with the promotion of P2O5.

  16. Synthesis of furan from allenic sulfide derivatives

    Institute of Scientific and Technical Information of China (English)

    PENG LingLing; ZHANG Xiu; MA Jie; ZHONG ZhenZhen; ZHANG Zhe; ZHANG Yan; WANG JianBo

    2009-01-01

    In this paper, we report the synthesis of furan derivatives from allenic sulfides. By the reaction with NaH.,β-Hydroxyl allenic sulfides were found to generate furan products in excellent yields with the removal of phenylthio group.β-Aldehyde allenic sulfides were found to give similar furan products with one more substituent when treated with additional nucleophilic reagents. β-ketone allenic sulfides can also cyclize to give furan derivatives with the promotion of P2O5.

  17. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity

    OpenAIRE

    Samanta Etel Treiger Borborema; João Alberto Osso Junior; Heitor Franco de Andrade Junior; Nanci do Nascimento

    2016-01-01

    Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine l...

  18. New low-antimony alloy for straps and cycling service in lead-acid batteries

    Science.gov (United States)

    Prengaman, R. David

    Lead-antimony alloys used for the positive grids in lead-acid batteries for cycling service have generally used antimony contents of 4.5 wt.% and above. Tubular batteries for cycling service that impart high compression of the active material to the grid surface via gauntlet use alloys with antimony contents as low as 1.5 wt.%. These batteries are generally employed in less-severe cycling service. Value-regulated lead-acid (VRLA) batteries can give good cycling service without lead-antimony in the positive grid, but require a high tin content and high compression. The change in automotive battery positive grid alloys to lead-calcium-tin and the tin contents of VRLA positive grids and straps have dramatically increased the tin content of the recycled grid and strap lead in the USA, Europe, and Australia. The higher tin contents can contaminate the lead used for lead-antimony battery grids and generally must be removed to low levels to meet the specifications. This study describes a low-antimony alloy that contains a substantial amount of tin. The high tin content reduces the rate of corrosion of low-antimony positive grid alloys, improves conductivity, increases the bond between the grid and the active material, and cycles as well as the traditional 5-6 wt.% antimony alloys employed in conventional flat-plate batteries. The alloy is also used as a corrosion-resistant cast-on strap alloy for automotive batteries for high temperature service, as well as for posts, bushings, and connectors for all wet batteries.

  19. 30 CFR 250.604 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  20. 30 CFR 250.808 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of...

  1. 30 CFR 250.490 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.490 Section 250.490... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Hydrogen Sulfide § 250.490 Hydrogen... black lettering as follows: Letter height Wording 12 inches Danger. Poisonous Gas. Hydrogen Sulfide....

  2. 30 CFR 250.504 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  3. Influence of arsenic on iron sulfide transformations

    NARCIS (Netherlands)

    Wolthers, M.; Butler, I.B.; Rickard, D.

    2007-01-01

    The association of arsenate, As(V), and arsenite, As(III), with disordered mackinawite, FeS, was studied in sulfide-limited (Fe:S = 1:1) and excess-sulfide (Fe:S = 1:2) batch experiments. In the absence of arsenic, the sulfide-limited experiments produce disordered mackinawite while the excess-sulfi

  4. Effect of Antimony, Phosphorous and Salinity on Growth, Root Membrane Permeability and Root Antimony, Iron and Zinc Concentration of Corn in Hydroponic Media

    OpenAIRE

    H. Barangizi; M. Afyuni; B. Rezaee

    2010-01-01

    Antimony (Sb) pollution has increased in recent years because of human activities and extensive usage of antimony compounds. To date, only a few researches have been conducted in this field in Iran. The purpose of this research is to determine fresh and dry weight, root permeability percentage and root concentration of Sb, Fe and Zn in the corn. This greenhouse research was performed in hydroponics. A factorial experiment (3 × 2 × 3) with three Sb concentrations (0, 6, 18 mgL-1), with and wit...

  5. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  6. Effects of antimony on aquatic organisms (Larva and embryo of Oryzias latipes, Moina macrocopa, Simocephalus mixtus, and Pseudokirchneriella subcapitata).

    Science.gov (United States)

    Nam, Sun-Hwa; Yang, Chang-Yong; An, Youn-Joo

    2009-05-01

    Antimony is widespread in aquatic environment. Trivalent forms of antimony are known to be more toxic than other chemical species of antimony. In the present study, antimony potassium tartrate (APT), the trivalent inorganic forms of antimony, was selected as a test antimony compound due to its high water solubility. The effects of antimony on Japanese medaka (Oryzias latipes), planktonic crustacea (Moina macrocopa and Simocephalus mixtus), and green algae (Pseudokirchneriella subcapitata) were evaluated. Larval survival and the embryonic development were measured for fish assay. APT was less toxic to larval medaka (24-h LC50, 261; 48-h LC50, 238 mg L(-1)). Simocephalus mixtus was killed by very low concentrations of APT (24-h LC50, 4.92 mg L(-1)), and antimony was also toxic to Moina macrocopa (24-h LC50, 12.83 mg L(-1)). Toxicities of APT to S. mixtus and Moina macrocopa were about 50 and 20 times more toxic to Oryzias latipes larvae, respectively, in terms of 24-h LC50 value. Growth inhibition of Pseudokirchneriella subcapitata was observed in the presence of APT (72-h EC50, 206 mg L(-1)). This study demonstrated that APT is more toxic to planktonic crustacea than fish and green algae, and planktonic crustacea appears a better indicator of antimony pollution in aquatic environment. PMID:19264343

  7. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... is known about the strategies of seagrasses to survive sulfide intrusion, their potential detoxification mechanisms and sulfur nutrition in general. By a global review of sulfide intrusion, coupled with a series of field studies and in situ experiments we elucidate sulfide intrusion and different...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...

  8. Comparison of the native antimony-bearing Paiting gold deposit, Guizhou Province, China, with Carlin-type gold deposits, Nevada, USA

    Science.gov (United States)

    Xie, Zhuo-Jun; Xia, Yong; Cline, Jean S.; Yan, Bao-Wen; Wang, Ze-Peng; Tan, Qin-Ping; Wei, Dong-Tian

    2016-03-01

    The Paiting gold deposit, Guizhou Province, China, has been regarded as a Carlin-type gold deposit by several researchers. Alteration and ore-related minerals from the Paiting deposit were examined, and results were compared with the Cortez Hills Carlin-type gold deposit, Nevada, USA. Similarities include the structural and stratigraphic controls on the orebodies in both deposits and the occurrence of invisible gold ionically bound in arsenian pyrite. Significant differences include the following: (1) The gold-bearing mineral in Nevada is arsenian pyrite. However, gold-bearing minerals in the Paiting deposit include arsenopyrite, arsenian pyrite, and trace pyrrhotite. Also, euhedral or subhedral gold-bearing arsenian pyrite at Paiting contains significantly less As, Cu, and Hg than gold-bearing pyrite from Nevada. (2) Alteration in the Paiting deposit displays significantly less decarbonatization. Instead, dolomite precipitation, which has not been described in Nevada deposits, is associated with deposition of gold-bearing sulfide minerals. (3) Stibnite and minor native antimony typify Paiting late-ore-stage minerals, whereas in Nevada, realgar, orpiment, and calcite are common late-ore-stage minerals. Precipitation of native antimony in the Paiting deposit reflects the evolution of a late-ore fluid with unusually low sulfur and oxygen fugacities. Some characteristics of the Paiting gold deposit, including formation of ore-stage dolomite and precipitation from CO2-rich ore fluids at temperatures in excess of 250 °C, are more typical of orogenic deposits than Nevada Carlin deposits. The presence of similarities in the Paiting deposit to both Carlin type and orogenic deposits is consistent with formation conditions intermediate to those typical of Carlin type and orogenic systems.

  9. Arsenic and Antimony Content in Soil and Plants from Baia Mare Area, Romania

    Directory of Open Access Journals (Sweden)

    Gabriela Oprea

    2010-01-01

    Full Text Available Problem statement: The objective of this research was to evaluate the degree of soil contamination with arsenic and antimony in Baia Mare, a nonferrous mining and metallurgical center located in the North West region of Romania. The soil in the area is affected by the emissions of powders containing metals from metallurgical factories. Previous studies indicated the soil contamination with copper, zinc, cadmium and lead, but there is few data about the actual level of soil pollution with arsenic and antimony. Approach: The soil samples were collected from 2 districts of Baia Mare: Ferneziu, which is located in the proximity of a lead smelter and Săsar district which is located along the Sasar River in the preferential direction of the wind over a metallurgical factory producing lead. As reference was considered Dura area located in a less polluted hilly area, in the west part of the town. Samples of soil and plants from the residential area of Ferneziu, Săsar and Dura districts were collected. The arsenic determination was carried out by inductively coupled plasma atomic emission spectrometry and the antimony determination by inductively coupled plasma mass spectrometry. Results: In Ferneziu area, the concentration of arsenic in soil ranged between 0.25 and 255 mg kg-1. In Săsar district the arsenic concentration in the soil ranged between 5.5 and 295 mg kg-1. Regarding antimony, in Ferneziu area the concentration ranged between 5.3 and 40.6 mg kg-1; while in Săsar, antimony soils concentrations vary in the range: 0.9-18.4. Arsenic and antimony concentrations in plants were low for almost of the samples, both in Ferneziu and Săsar area indicating a low mobility of these elements in the studied soils. Conclusion: This study indicated the soil pollution with arsenic both in Ferneziu district and in Săsar district. The soil pollution with antimony was found especially in Ferneziu district.

  10. Research on the Flotation of a Gold - antimony Ore in Gansu%甘肃某金锑矿选矿试验研究

    Institute of Scientific and Technical Information of China (English)

    吉庆军

    2012-01-01

    The systematical flotation experiments were conducted on a gold - antimony ore in Gansu based on mineralogy. When the grinding fineness was 82% -0. 074 mm, sodium silicate was used as ganguefe depressant, lead nitrate as activator, and the mixture of sodium ethyl xanthate and ammonium dibutyl dithiophosphate as selective flotation collectors, an antimony concentrate of 50. 67% Sb could be obtained with a recovery of 78.43% . Then the mixture of sodium sulfide and copper sulfate were used as activators of gold - bearing mineral in antimony tailings, combined collectors was also used, and benzyl hydroxamic acid was used to enhance gold flotation. A gold concentrate containing 60. 89 g/t Au could be obtained with a recovery of 80. 52% .%以甘肃某金锑矿为研究对象,在矿石工艺矿物学研究的基础上,通过系统的浮选试验,对含锑0.73%、金2.42 g/t的原矿,确定在磨矿细度为-0.074 mm占82%时,采用单一的水玻璃作为脉石矿物抑制剂,以硝酸铅活化含锑矿物,混合使用乙基黄药和丁铵黑药优先浮选锑,组合采用硫化钠与硫酸铜活化浮锑尾矿中的载金矿物,混合使用Y89黄药和丁铵黑药浮金,浮金回路添加少量苯甲羟肟酸以强化浮选效果,实验室小型闭路试验可获得锑精矿品位50.67%、回收率78.43%;金精矿含金60.89 g/t、回收率80.52%的选矿指标.

  11. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain)

    International Nuclear Information System (INIS)

    A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation. - Bioaccumulation of antimony in vegetal species growing in mining areas

  12. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Murciego, A. Murciego [Area de Cristalografia y Mineralogia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Sanchez, A. Garcia [IRNA-CSIC, Departamento de Geoquimica Ambiental, Aptdo. 257, Salamanca (Spain); Gonzalez, M.A. Rodriguez [Area de Cristalografia y Mineralogia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Gil, E. Pinilla [Departamento de Quimica Analitica y Electroquimica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain)]. E-mail: epinilla@unex.es; Gordillo, C. Toro [Departamento de Quimica Analitica y Electroquimica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Fernandez, J. Cabezas [Area de Ecologia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Triguero, T. Buyolo [Area de Ecologia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain)

    2007-01-15

    A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation. - Bioaccumulation of antimony in vegetal species growing in mining areas.

  13. The MRP1-mediated effluxes of arsenic and antimony do not require arsenic-glutathione and antimony-glutathione complex formation.

    Science.gov (United States)

    Salerno, Milena; Petroutsa, Maria; Garnier-Suillerot, Arlette

    2002-04-01

    Arsenic trioxide is an effective treatment for acute promyelocytic leukemia, but resistance to metalloid salts is found in humans. Using atomic absorption spectroscopy, we have measured the rate of uptake of arsenic trioxide and of antimony tartrate in GLC4 and GLC4/ADR cells overexpressing MRP1 and the rate of their MRP1-mediated effluxes as a function of the intracellular GSH concentration. In sensitive cells, after 1 h, a pseudosteady state is reached where intra- and extracellular concentrations of metalloid are the same. This precludes the formation, at short term, of complexes between arsenic or antimony with GSH. In resistant cells reduced intracellular accumulation of arsenic (or antimony), reflecting an increased rate of arsenic (or antimony) efflux from the cells, is observed. No efflux of the metalloid is observed in GSH depleted cells. The two metalloids and GSH are pumped out by MRP1 with the same efficiency. Moreover for the three compounds 50% of the efflux is inhibited by 2 microM MK571. This led us to suggest that As- and Sb-containing species could be cotransported with GSH. PMID:12018890

  14. Levels and risk factors of antimony contamination in human hair from an electronic waste recycling area, Guiyu, China.

    Science.gov (United States)

    Huang, Yue; Ni, Wenqing; Chen, Yaowen; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2015-05-01

    The primitive electronic waste (e-waste) recycling has brought a series of environmental pollutants in Guiyu, China. Antimony is one of the important metal contaminants and has aroused the global concerns recently. We aimed to investigate concentrations of antimony in human hair from Guiyu and compared them with those from a control area where no e-waste recycling exists, and assessed the potential risk factors. A total of 205 human hair samples from Guiyu and 80 samples from Jinping were collected for analysis. All volunteers were asked to complete a questionnaire including socio-demographic characteristics and other possible factors related to hair antimony exposure. The concentrations of hair antimony were analyzed using atomic absorption spectrophotometer. Our results indicated that the level of hair antimony in volunteers from Guiyu (median, 160.78; range, 6.99-4412.59 ng/g) was significantly higher than those from Jinping (median, 61.74; range, 2.98-628.43 ng/g). The residents who engaged in e-waste recycling activities in Guiyu had higher hair antimony concentrations than others (P < 0.001). There was no significant difference of hair antimony concentrations among different occupation types in e-waste recycling. Multiple stepwise regression analysis indicated that hair antimony concentrations were associated with education level (β = -0.064), the time of residence in Guiyu (β = 0.112), living house also served as e-waste workshop (β = 0.099), the work related to e-waste (β = 0.169), and smoking (β = 0.018). The elevated hair antimony concentrations implied that the residents in Guiyu might be at high risk of antimony contamination, especially the e-waste recycling workers. Work related to e-waste recycling activities and long-time residence in Guiyu contributed to the high hair antimony exposure. PMID:25501644

  15. Redox Biochemistry of Hydrogen Sulfide*

    OpenAIRE

    Kabil, Omer; Banerjee, Ruma

    2010-01-01

    H2S, the most recently discovered gasotransmitter, might in fact be the evolutionary matriarch of this family, being both ancient and highly reduced. Disruption of γ-cystathionase in mice leads to cardiovascular dysfunction and marked hypertension, suggesting a key role for this enzyme in H2S production in the vasculature. However, patients with inherited deficiency in γ-cystathionase apparently do not present vascular pathology. A mitochondrial pathway disposes sulfide and couples it to oxid...

  16. Predictors of an unsatisfactory response to pentavalent antimony in the treatment of American visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Santos Mácia A.

    2002-01-01

    Full Text Available Although treatment of visceral leishmaniasis with pentavalent antimony is usually successful, some patients require second-line drug therapy, most commonly with amphotericin B. To identify the clinical characteristics that predict an inadequate response to pentavalent antimony, a case-control study was undertaken in Teresina, Piaui, Brazil. Over a two-year period, there were 19 cases of VL in which the staff physicians of a hospital prescribed second-line therapy with amphotericin B after determining that treatment with pentavalent antimony had failed. The control group consisted of 97 patients that were successfully treated with pentavalent antimony. A chart review using univariate and multivariate analysis was performed. The cure rate was 90% with amphotericin B. The odds ratio for the prescription of amphotericin B was 10.2 for children less than one year old, compared with individuals aged over 10 years. Patients who presented coinfection had an OR of 7.1 while those on antibiotics had an OR of 2.8. These data support either undertaking a longer course of therapy with pentavalent antimony for children or using amphotericin B as a first-line agent for children and individuals with coinfections. It also suggests that chemoprophylaxis directed toward bacterial coinfection in small children with VL may be indicated.

  17. Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide.

    Science.gov (United States)

    Sazakli, Eleni; Zouvelou, Stavroula V; Kalavrouziotis, Ioannis; Leotsinidis, Michalis

    2015-01-01

    Arsenic and antimony occur in drinking water due to natural weathering or anthropogenic activities. There has been growing concern about their impact on health. The aim of this study was to assess the efficiency of a granular ferric oxide adsorbent medium to remove arsenic and antimony from drinking water via rapid small-scale column tests (RSSCTs). Three different water matrices - deionized, raw water treated with a reverse osmosis domestic device and raw water - were spiked with arsenic and/or antimony to a concentration of 100 μg L⁻¹. Both elements were successfully adsorbed onto the medium. The loadings until the guideline value was exceeded in the effluent were found to be 0.35-1.63 mg g⁻¹ for arsenic and 0.12-2.11 mg g⁻¹ for antimony, depending on the water matrix. Adsorption of one element was not substantially affected by the presence of the other. Aeration did not affect significantly the adsorption capacity. Granular ferric oxide could be employed for the simultaneous removal of arsenic and antimony from drinking water, whereas full-scale systems should be assessed via laboratory tests before their implementation.

  18. Determination of traces of uranium and thorium in antimony(III) oxide by ICP-MS

    International Nuclear Information System (INIS)

    Traces of uranium and thorium in antimony(III) oxide were determined by inductively coupled plasma mass spectrometry (ICP-MS). A method of vaporization as the halide was applied to the separation of the analytes from the antimony matrix. Because the above separation method is so simple, reduced of external contamination was expected. In the case of vaporization using hydrochloric acid, however, it was found that antimony trichloride ions overlapped thorium ion of 232 (m/z). To find the most suitable conditions for matrix separation, vaporization behaviors were studied by using different acidic solutions such as HBr, HBr-HClO4 and HBr-H2SO4. Neither HBr+HClO4 nor HBr+H2SO4 was able to reduce the antimony matrix down to an unaffected level on ICP-MS measurement. On the other hand, in the case of the vaporization using hydrobromic acid, almost all the antimony matrix was removed. Determination limits obtained by this method were 0.02 and 0.03 ng g-1 for uranium and thorium, respectively. (author)

  19. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures.

    Science.gov (United States)

    Pierart, Antoine; Shahid, Muhammad; Séjalon-Delmas, Nathalie; Dumat, Camille

    2015-05-30

    The increasing interest in urban agriculture highlights the crucial question of crop quality. The main objectives for environmental sustainability are a decrease in chemical inputs, a reduction in the level of pollutants, and an improvement in the soil's biological activity. Among inorganic pollutants emitted by vehicle traffic and some industrial processes in urban areas, antimony (Sb) is observed on a global scale. While this metalloid is known to be potentially toxic, it can transfer from the soil or the atmosphere to plants, and accumulate in their edible parts. Urban agriculture is developing worldwide, and could therefore increasingly expose populations to Sb. The objective of this review was in consequences to gather and interpret actual knowledge of Sb uptake and bioaccumulation by crops, to reveal investigative fields on which to focus. While there is still no legal maximal value for Sb in plants and soils, light has to be shed on its accumulation and the factors affecting it. A relative absence of data exists about the role of soil flora and fauna in the transfer, speciation and compartmentation of Sb in vegetables. Moreover, little information exists on Sb ecotoxicity for terrestrial ecosystems. A human risk assessment has finally been reviewed, with particular focus on Sb bioaccessibility.

  20. Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond.

    Science.gov (United States)

    Xiao, Enzong; Krumins, Valdis; Tang, Song; Xiao, Tangfu; Ning, Zengping; Lan, Xiaolong; Sun, Weimin

    2016-08-01

    Mining activities have introduced various pollutants to surrounding aquatic and terrestrial environments, causing adverse impacts to the environment. Indigenous microbial communities are responsible for the biogeochemical cycling of pollutants in diverse environments, indicating the potential for bioremediation of such pollutants. Antimony (Sb) has been extensively mined in China and Sb contamination in mining areas has been frequently encountered. To date, however, the microbial composition and structure in response to Sb contamination has remained overlooked. Sb and As frequently co-occur in sulfide-rich ores, and co-contamination of Sb and As is observed in some mining areas. We characterized, for the first time, the microbial community profiles and their responses to Sb and As pollution from a watershed heavily contaminated by Sb tailing pond in Southwest China. The indigenous microbial communities were profiled by high-throughput sequencing from 16 sediment samples (535,390 valid reads). The comprehensive geochemical data (specifically, physical-chemical properties and different Sb and As extraction fractions) were obtained from river water and sediments at different depths as well. Canonical correspondence analysis (CCA) demonstrated that a suite of in situ geochemical and physical factors significantly structured the overall microbial community compositions. Further, we found significant correlations between individual phylotypes (bacterial genera) and the geochemical fractions of Sb and As by Spearman rank correlation. A number of taxonomic groups were positively correlated with the Sb and As extractable fractions and various Sb and As species in sediment, suggesting potential roles of these phylotypes in Sb biogeochemical cycling. PMID:27182975

  1. SESPE-FRAZIER, DIABLO, MATILIJA, DRY LAKES, SAWMILL-BADLANDS, CUYAMA, ANTIMONY, AND QUATAL ROADLESS AREAS, CALIFORNIA.

    Science.gov (United States)

    Frizzell, Virgil A.; Hale, William N.

    1984-01-01

    The study area, consisting of the Sespe-Frazier, Diablo, Matilija, Dry Lakes, Sawmill-Badlands, Cuyama, Antimony, and Quatal Roadless Areas, occupies about 872 sq mi in the Los Padres National Forest, California. Studies indicate that the Sespe-Frazier Roadless Area contains demonstrated resources of gold, gypsum, phosphate and bentonite; deposits in the Cuyama Roadless Area have demonstrated resources of gypsum; mines in the Antimony Roadless Area have demonstrated resources of antimony, gold, silver, and marble; and the Quatal Roadless Area has demonstrated resources of bentonite. The Sespe-Frazier Roadless Area has substantiated potential for geothermal resources suitable for direct-heat purposes, probable and substantiated potential for oil and gas resources, and probable potential for gold resources. Small areas of probable resource potential for antimony and gold were identified in Antimony Roadless Area.

  2. Mixed Antimony(V Complexes with Different Sugars to Modulate the Oral Bioavailability of Pentavalent Antimonial Drugs

    Directory of Open Access Journals (Sweden)

    Weverson A. Ferreira

    2014-04-01

    Full Text Available Previous studies have shown that the association of the drug meglumine antimoniate (MA with β-cyclodextrin can improve its bioavailability by the oral route. In this work, ribose and maltose were investigated for their ability to form mixed or association complexes with MA, release MA and modulate the serum levels of Sb after oral administration in mice. Analysis of the MA/ribose composition by high performance liquid chromatography coupled to mass spectrometry (LCMS-IT-TOF revealed the presence of mixed meglumine-Sb-ribose and Sb-ribose complexes. Analysis of the MA/maltose composition suggested the formation of MA-maltose association compounds. Circular dichroism characterization of these compositions following dilution in water at 37 °C suggested a partial and slow dissociation of the association compounds. When the MA/ribose composition was administered orally and compared to MA, the serum concentration of Sb was significantly lower after 1 h and greater after 3 h. On the other hand, the MA/maltose composition showed similar serum Sb concentration after 1 h and higher level of Sb after 3 h, when compared to MA. In conclusion, the present study has demonstrated the formation of mixed or association complexes of MA with sugars, such as maltose and ribose, which promoted sustained serum level of Sb after oral administration.

  3. Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes

    International Nuclear Information System (INIS)

    Carbon screen-printed electrodes (CSPE) modified with gold nanoparticles present an interesting alternative in the determination of antimony using differential pulse anodic stripping voltammetry. Metallic gold nanoparticles deposits have been obtained by direct electrochemical deposition. Scanning electron microscopy measurements show that the electrochemically synthesized gold nanoparticles are deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analyzed to ensure that common interferents in the determination of antimony by ASV. The detection limit for Sb(III) obtained was 9.44 x 10-10 M. In terms of reproducibility, the precision of the above mentioned method in %R.S.D. values was calculated at 2.69% (n = 10). The method was applied to determine levels of antimony in seawater samples and pharmaceutical preparations

  4. Synthesis of barium mercaptides and application of antimony/barium mercaptides

    Institute of Scientific and Technical Information of China (English)

    瞿龙; 张露露; 舒万艮

    2001-01-01

    Mercaptoacetic acid, isooctyl thioglycolate and barium hydroxide used as start materials, barium bis (2-ethylhexyl thioglycolate) (Ba(2EHTG)2), barium thioglycolate (Ba(TG)) and barium bisthioglycolate (Ba(TG)2) were synthesized. Their optimum synthetic techniques were discussed, and some physicochemical data were reported. Infrared spectroscopy and elemental analysis methods were used to identify the structures. They were put into PVC plastic products together with antimony tris (2-ethylhexyl thioglycolate) (Sb(2EHTG)3) under the suitable compounding, and their heat stability to PVC was studied. It is shown that these barium mercaptides have remarkable synergisms with antimony mercaptides and the long-term stabilizing effect of organoantimony stabilizer can be effectively improved, reducing the amount of antimony compounds so as to avoid the decrease of its stabilizing effect.

  5. Response of cutaneous leishmaniasis (chiclero's ulcer) to treatment with meglumine antimoniate in Southeast Mexico.

    Science.gov (United States)

    Vargas-Gonzalez, A; Canto-Lara, S B; Damian-Centeno, A G; Andrade-Narvaez, F J

    1999-12-01

    Cutaneous leishmaniasis, known as chiclero's ulcer in southeastern Mexico, is characterized by a predominantly single, painless, ulcerated lesion, without lymphangitis or adenopathy. When located on the ear, it tends to become chronic, causing destruction of the pinna and disfigurement. It is caused predominantly by Leishmania (L.) mexicana. Although pentavalent antimonials (Sb5+) are the mainstay of leishmanial therapy and have been used for more than 50 years, dosage regimens have been repeatedly modified and the best one has not been fully identified. The main purpose of the present study was to investigate the response of chiclero's ulcer to treatment with meglumine antimoniate. One hundred five patients were treated with meglumine antimoniate at a daily dose of 1 ampule per day (425 mg of Sb5+) until healing. The lesions healed after a mean of 25 days (range = 5-60 days). PMID:10674678

  6. Geothermal and fluid flowing simulation of ore-forming antimony deposits in Xikuangshan

    Institute of Scientific and Technical Information of China (English)

    YANG Ruiyan; MA Dongsheng; BAO Zhengyu; PAN Jiayong; CAO Shuanglin; XIA Fei

    2006-01-01

    The Xikuangshan Antimony Deposit located in the Mid-Hunan Basin, China, is the largest antimony deposit in the world. Based on the hydrogeological and geochemical data collected from four sections, Xikuangshan-Dajienao (AO), Xikuangshan-Dashengshan (BO), Xikuangshan-Longshan (CO) and Dafengshan (DO) in the Basin, an advanced metallogenic model related to deep-cyclic meteoric water of Xikuangshan Antimony Deposit is put forward in this paper using a model of heat-gravity-driving fluid flow transportation. The simulation results show that the ore-forming fluid of the deposit mainly comes from the Dashengshan and Longshan areas where BO and CO sections are located if the overall basin keeps a constant atmospheric precipitation and infiltration rate during mineralization, and that the average transportation speed of the ore-forming fluids is about 0.2-0.4 m/a.

  7. On-line lab-in-syringe cloud point extraction for the spectrophotometric determination of antimony.

    Science.gov (United States)

    Frizzarin, Rejane M; Portugal, Lindomar A; Estela, José M; Rocha, Fábio R P; Cerdà, Victor

    2016-02-01

    Most of the procedures for antimony determination require time-consuming sample preparation (e.g. liquid-liquid extraction with organic solvents), which are harmful to the environment. Because of the high antimony toxicity, a rapid, sensitive and greener procedure for its determination becomes necessary. The goal of this work was to develop an analytical procedure exploiting for the first time the cloud point extraction on a lab-in-syringe flow system aiming at the spectrophotometric determination of antimony. The procedure was based on formation of an ion-pair between the antimony-iodide complex and H(+) followed by extraction with Triton X-114. The factorial design showed that the concentrations of ascorbic acid, H2SO4 and Triton X-114, as well as second and third order interactions were significant at the 95% confidence level. A Box-Behnken design was applied to obtain the response surfaces and to identify the critical values. System is robust at the 95% confidence level. A linear response was observed from 5 to 50 µg L(-1), described by the equation A=0.137+0.050C(Sb) (r=0.998). The detection limit (99.7% confidence level), the coefficient of variation (n=5; 15 µg L(-1)) and the sampling rate was estimated at 1.8 µg L(-1), 1.6% and 16 h(-1), respectively. The procedure allows quantification of antimony in the concentrations established by environmental legislation (6 µg L(-1)) and it was successfully applied to the determination of antimony in freshwater samples and antileishmanial drugs, yielding results in agreement with those obtained by HGFAAS at the 95% confidence level.

  8. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    Science.gov (United States)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  9. Studies on Thin Films of Antimony Vacuum Evaporated from a Knudsen-Type Source

    Directory of Open Access Journals (Sweden)

    K.L. Chaudhary

    2000-10-01

    Full Text Available A Knudsen-type evaporation source was used for the deposition of thin films of antimony to study their growth and microstructure under different rates of evaporation and substrate temperatures when vacuum evaporated onto air-cleaved KC1, mica, amorphous carbon and doped KCl substrates. The crystallisation of these films on exposure to an electron beam of moderate intensity inside the electron microscope was studied, and the orientations of the crystallised films wrt the substrate were established. It has been concluded that antimony films prepared by this source compare well with those prepared by other sources of vacuum evaporation.

  10. Co-doping with antimony to control phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.

    2013-02-15

    In germanium, phosphorous and antimony diffuse quickly and as such their transport must be controlled in order to design efficient n-typed doped regions. Here, density functional theory based calculations are used to predict the influence of double donor co-doping on the migration activation energies of vacancy-mediated diffusion processes. The migration energy barriers for phosphorous and antimony were found to be increased significantly when larger clusters involving two donor atoms and a vacancy were formed. These clusters are energetically stable and can lead to the formation of even larger clusters involving a number of donor atoms around a vacancy, thereby affecting the properties of devices.

  11. Kinetic Studies of Sulfide Mineral Oxidation and Xanthate Adsorption

    OpenAIRE

    Mendiratta, Neeraj K.

    2000-01-01

    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrho...

  12. Hydrogen sulfide and vascular relaxation

    Institute of Scientific and Technical Information of China (English)

    SUN Yan; TANG Chao-shu; DU Jun-bao; JIN Hong-fang

    2011-01-01

    Objective To review the vasorelaxant effects of hydrogen sulfide (H2S) in arterial rings in the cardiovascular system under both physiological and pathophysiological conditions and the possible mechanisms involved.Data sources The data in this review were obtained from Medline and Pubmed sources from 1997 to 2011 using the search terms "hydrogen sulfide" and ""vascular relaxation".Study selection Articles describing the role of hydrogen sulfide in the regulation of vascular activity and its vasorelaxant effects were selected.Results H2S plays an important role in the regulation of cardiovascular tone.The vasomodulatory effects of H2S depend on factors including concentration,species and tissue type.The H2S donor,sodium hydrosulfide (NarS),causes vasorelaxation of rat isolated aortic rings in a dose-dependent manner.This effect was more pronounced than that observed in pulmonary arterial rings.The expression of KATP channel proteins and mRNA in the aortic rings was increased compared with pulmonary artery rings.H2S is involved in the pathogenesis of a variety of cardiovascular diseases.Downregulation of the endogenous H2S pathway is an important factor in the pathogenesis of cardiovascular diseases.The vasorelaxant effects of H2S have been shown to be mediated by activation of KATP channels in vascular smooth muscle cells and via the induction of acidification due to activation of the CI/HCO3 exchanger.It is speculated that the mechanisms underlying the vasoconstrictive function of H2S in the aortic rings involves decreased NO production and inhibition of cAMP accumulation.Conclusion H2S is an important endogenous gasotransmitter in the cardiovascular system and acts as a modulator of vascular tone in the homeostatic regulation of blood pressure.

  13. Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats

    Science.gov (United States)

    Miller, Scott R.; Bebout, Brad M.

    2004-01-01

    Physiological and molecular phylogenetic approaches were used to investigate variation among 12 cyanobacterial strains in their tolerance of sulfide, an inhibitor of oxygenic photosynthesis. Cyanobacteria from sulfidic habitats were found to be phylogenetically diverse and exhibited an approximately 50-fold variation in photosystem II performance in the presence of sulfide. Whereas the degree of tolerance was positively correlated with sulfide levels in the environment, a strain's phenotype could not be predicted from the tolerance of its closest relatives. These observations suggest that sulfide tolerance is a dynamic trait primarily shaped by environmental variation. Despite differences in absolute tolerance, similarities among strains in the effects of sulfide on chlorophyll fluorescence induction indicated a common mode of toxicity. Based on similarities with treatments known to disrupt the oxygen-evolving complex, it was concluded that sulfide toxicity resulted from inhibition of the donor side of photosystem II.

  14. New biologically active hydrogen sulfide donors.

    Science.gov (United States)

    Roger, Thomas; Raynaud, Francoise; Bouillaud, Frédéric; Ransy, Céline; Simonet, Serge; Crespo, Christine; Bourguignon, Marie-Pierre; Villeneuve, Nicole; Vilaine, Jean-Paul; Artaud, Isabelle; Galardon, Erwan

    2013-11-25

    Generous donors: The dithioperoxyanhydrides (CH3 COS)2 , (PhCOS)2 , CH3 COSSCO2 Me and PhCOSSCO2 Me act as thiol-activated hydrogen sulfide donors in aqueous buffer solution. The most efficient donor (CH3 COS)2 can induce a biological response in cells, and advantageously replace hydrogen sulfide in ex vivo vascular studies. PMID:24115650

  15. Sulfide stress cracking of pipeline steels

    International Nuclear Information System (INIS)

    The problem of the sulfide stress corrosion cracking of pipeline steels and their welded joints have been presented for pipeline steels. Results of hydrogen sulfide stress cracking inhibitors and corrosion inhibitors of three types protective actions on pipeline steels of two grades petroleum range of products are given. (author)

  16. Ammonia and hydrogen sulfide removal using biochar

    Science.gov (United States)

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  17. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  18. Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2012-05-01

    Full Text Available Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow, M (medium and F (fast. The cooling rates around the equilibrium eutectic temperature (1,150 ℃ for these cooling conditions (S, M and F were set at 0.21 ℃·min-1, 0.32 ℃·min-1 and 0.37 ℃·min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.

  19. Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures.

    Science.gov (United States)

    Wen, Bing; Zhou, Jianwei; Zhou, Aiguo; Liu, Cunfu; Xie, Lina

    2016-11-01

    The Xikuangshan (XKS) mine in central China is the largest antimony (Sb) mine in the world. The mining activity has seriously contaminated the waters in the area. To determine the sources, migration and transformation of Sb contamination, 32 samples from groundwater (aquifer water), surface water and mine water were collected for water chemistry, trace element and SSO4 and Sr stable isotope analyses. The results showed that the groundwater and surface water were in an oxidized environment. The SSO4 and Sr isotope compositions in the water indicated that dissolved Sb and SO4(2) originated from sulfide mineral (Sb2S3) oxidation, whereas radiogenic Sr may have been sourced from silicified limestone and stibnite in the Shetianqiao aquifer. Furthermore, a positive correlation between δ(34)SSO4 and δ(87)Sr values revealed that the Sr, S and Sb in the waters had a common contamination source, i.e., silicified limestone and stibnite, whereas the Sr, S and Sb in rock and ore were sourced from Proterozoic basement clastics. The analysis also indicated that the isotope composition of dissolved SO4(2-) had been influenced by slight bacterial SO4 reduction in the Magunao aquifer. Mining or rock collapse may have caused Shetianqiao aquifer water to contaminate the Magunao aquifer water via mixing. This study has demonstrated that the stable isotopes of (34)SSO4 and (87)Sr, combined with hydrochemical methods, are effective in tracking the sources, migration and transformation of Sb contamination. PMID:27341112

  20. Commerce Ministry Announced the Export Quotas for Zinc,Antimony,Tungsten,Tin and Silver

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The Ministry of Commerce recently announcedits decision on the export quotas for zinc,anti-mony,tungsten,tin and silver in 2004.Accord-ing to the data released,all the export quotasare reduced except for silver.Relevant peoplesay that the raw materials shortage is a majorissue for the production of antimony and tin,

  1. Determination of barium and antimony in gun shot residues by neutron activation analysis

    International Nuclear Information System (INIS)

    The antimony contents on both hands of 7 persons before and after firing an automatic pistol were determined by instrumental neutron activation analysis. The gun shot residues were removed from hands by a 4% solution of cellulose acetate in acetone. The average content of antimony on both hands before firing obtained from 70 measurements (35 from each hand) was 0.040 ± 0.010 micro gram, whereas the average contents on the right and the left hands after 1 firing were 0.385 ± 0.036 and 0.144 ± 0.029 micro gram respectively. The ration of the antimony contents after 1 firing to the normal level (before firing) was 9.9 for the right and 3.6 for the left. No significant difference was observed between male and female, smoker and non-smoker. The antimony content after several firings was not much different from that of 1 firing and it reduced to the normal level within 2 days after firing. The barium contents before and after firing were studied from one person. Barium was precipitated as Ba SO4 before counting. An average contents of 0.936 ± 0.551 micro gram for both hands before firing, 4.092 ± 2.687 micro gram for the right hand and 1.363 ± 0.879 micro gram for the left hand after 1 firing were found

  2. Investigation on the thermal radiation properties of antimony doped tin oxide particles

    Institute of Scientific and Technical Information of China (English)

    Fu Cheng-Wu; Zhang Shuan-Qin; Chen Ming-Qing

    2008-01-01

    This paper reports the preparation of antimony doped tin oxide crystalline powders by chemical coprecipitation method. The influence of sintering temperature and the sintering retention time on the thermal infrared emissivity is analysed. The thermal infrared reflectivity is measured and the optimum doping concentration is proposed.

  3. Synthesis of antimony tris(mercaptoethyl carboxylates) as thermal stabilizer for polyvinyl chloride

    Institute of Scientific and Technical Information of China (English)

    舒万艮; 刘又年; 陈启元

    2002-01-01

    A novel type of thermal stabilizers-antimony tris(mercaptoethyl carboxylates) (Sb(SCH2CH2OOCR) 3), was synthesized from carboxylic acid, antimony trioxide and 2-mercaptoethanol in two steps. The experimental results show that the molar ratio of carboxylic acid to antimony tris(2-hydroxyethyl mercaptide) is 1.2, when adding 0.6% tetra-n-butyl titanate as catalyst and xylene as isotropic solvent, heating and refluxing for about 2~4h. The thermal stability was measured by heat-aging oven test. The thermal stability time is about 8~40min(at 200℃) when adding 2% tetra-n-butyl titanate in polyvinyl chloride(PVC). Among these stabilizers, antimony tris(mercaptoethyl stearate) has best thermal stability. Its thermal stability is better than that of Ca-Zn complex and basic lead stabilizers, and equal to that of organotin. In addition, the stabilization mechanism of this kind of stabilizers for PVC was discussed briefly.

  4. Antimony production by carbothermic reduction of stibnite in the presence of lime

    Directory of Open Access Journals (Sweden)

    Padilla R.

    2014-01-01

    Full Text Available Experimental work on the carbothermic reduction of Sb2S3 in the presence of lime was carried out in the temperature range of 973 to 1123 K to produce antimony in an environmentally friendly manner. The results demonstrated the technical feasibility of producing antimony by this method without producing SO2 gas. Complete conversion of Sb2S3 was obtained at 1023 K in about 1000 seconds and at 1123 K in less than 250 seconds using stibnite-carbon-lime mixtures with molar ratios Sb2S3:CaO:C = 1:3:3. It was found that the reduction proceeds through the formation of an intermediate oxide SbO2, which is subsequently reduced by CO(g to yield antimony metal and CaS. The kinetics of the Sb2S3 reduction was analyzed by using the equation ln(1-X = -kt. The activation energy was 233 kJ mol-1 in the temperature range of 973 to 1123 K. This value would correspond to an antimony catalyzed carbon oxidation by CO2.

  5. Primordial Xenon in Allende Sulfides

    Science.gov (United States)

    Lee, J. T.; Manuel, O. K.

    1995-09-01

    The Allende C3V carbonaceous chondrite incorporated isotopically anomalous components of several medium-heavy elements (Z=36-62) from nucleosynthesis [1]. Isotopically distinct Xe (Z=54) has been found in grains ranging from several _ to a few mm in size. Diamond [2] is the host of Xe that is enriched in isotopes produced by the very rapid p- and r-processes in a supernova explosion [3]. Silicon carbide [4] is the host of Xe that is enriched in the middle isotopes, 128-132Xe, produced by slow neutron capture [3] before a star reaches the supernova stage. The present study was undertaken to identify the isotopic composition of primitive Xe initially trapped in sulfides of the Allende meteorite. Two FeS mineral separates were analyzed by stepwise heating. One sample was first irradiated in a neutron flux to generate a tracer isotope, 131*Xe, by the 130Te(n, gamma beta-)131*Xe reaction. The release pattern of this tracer isotope, 131*Xe, closely paralleled the release of primordial 132Xe up to 950 degrees C, when the sulfide melted and released the bulk of its trapped Xe (Figure 1). The Xe released from both samples at 950 deg C was terrestrial in isotopic composition, except for enrichments from spallogenic and radiogenic components (Figure 2). From the results of this and earlier analyses of Xe in meteoritic FeS [5, 6, 7], we conclude that terrestrial-type Xe was dominant in the central region of the protoplanetary nebula, and it remains a major component in the FeS of diverse meteorites and in the terrestrial planets that are rich in Fe, S [8]. References: [1] Begemann F. (1993) Origin and Evolution of the Elements (N. Prantzos et al., eds.), 518-527, Cambridge Univ. [2] Lewis R. S. and Anders E. (1988) LPS XIX, 679-680. [3] Burbidge et al. (1957) Rev. Modern Phys., 29, 547-650. [4] Tang M. and Anders E. (1988) GCA, 52, 1235-1244. [5] Niemeyer S. (1979) GCA, 43, 843-860. [6] Lewis et al. (1979) GCA, 43, 1743-1752. [7] Hwaung G. and Manuel O. K. (1982) Nature, 299

  6. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2016-04-01

    Full Text Available Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine liposomes and to analyze their biological and physicochemical characteristics. METHODS: Liposomes containing meglumine antimoniate (MA or pentavalent antimony salt (Sb were obtained through filter extrusion (FEL and characterized by transmission electron microscopy. Promastigotes of Leishmania infantum were incubated with the drugs and the viability was determined with a tetrazolium dye (MTT assay. The effects of these drugs against intracellular amastigotes were also evaluated by optical microscopy, and mammalian cytotoxicity was determined by an MTT assay. RESULTS: Liposomes had an average diameter of 162nm. MA-FEL showed inhibitory activity against intracellular L. infantum amastigotes, with a 50% inhibitory concentration (IC50 of 0.9μg/mL, whereas that of MA was 60μg/mL. Sb-FEL showed an IC50 value of 0.2μg/mL, whereas that of free Sb was 9μg/mL. MA-FEL and Sb-FEL had strong in vitro activity that was 63-fold and 39-fold more effective than their respective free drugs. MA-FEL tested at a ten-times higher concentration than Sb-FEL did not show cytotoxicity to mammalian cells, resulting in a higher selectivity index. CONCLUSIONS: Antimonial drug-containing liposomes are more effective against Leishmania-infected macrophages than the non-liposomal drugs.

  7. Pelletizing of sulfide molybdenite concentrates

    Science.gov (United States)

    Palant, A. A.

    2007-04-01

    The results of a pelletizing investigation using various binding components (water, syrup, sulfite-alcohol distillery grains, and bentonite) of the flotation sulfide molybdenite concentrate (˜84% MoS2) from the Mongolian deposit are discussed. The use of syrup provides rather high-strength pellets (>3 N/pellet or >300 g/pellet) of the required size (2 3 mm) for the consumption of 1 kg binder per 100 kg concentrate. The main advantage of the use of syrup instead of bentonite is that the molybdenum cinder produced by oxidizing roasting of raw ore materials is not impoverished due to complete burning out of the syrup. This fact exerts a positive effect on the subsequent hydrometallurgical process, decreasing molybdenum losses related to dump cakes.

  8. Adequate hydrogen sulfide, healthy circulation

    Institute of Scientific and Technical Information of China (English)

    DU Jun-bao; CHEN Stella; JIN Hong-fang; TANG Chao-shu

    2011-01-01

    Previously,hydrogen sulfide (H2S) was considered to be a toxic gas.However,recently it was discovered that it could be produced in mammals and even in plants,throughtheproductionandmetabolismof sulfur-containing amino acids.In mammals,H2S is mainly catalyzed by cystathionine-γ-lyase (CSE),cystathionin-β-lyase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST) with the substrate of L-cysteine.Endogenous H2S exerts many important physiological and pathophysiological functions,including hypotensive action,vasorelaxation,myocardial dilation,inhibition of smooth muscle cell proliferation,and antioxidatve actions.Importantly,it plays a very important role in the pathogenesis of systemic hypertension,pulmonary hypertension,atherosclerosis,myocardialinjury,angiogenesis,hyperhomocysteinemi aandshock.Therefore,H2S is now being considered to be a novel gasotransmitter after nitric oxide and carbon monoxide in the regulation of circulatory system.

  9. Structural studies in limestone sulfidation

    Energy Technology Data Exchange (ETDEWEB)

    Fenouil, L.A.; Lynn, S.

    1993-05-01

    This study investigates the sulfidation of limestone at high temperatures (700--900{degree}C) as the first step in the design of a High-Temperature Coal-Gas Clean-Up system using millimeter-size limestone particles. Several workers have found that the rate of this reaction significantly decreases after an initial 10 to 15% conversion of CaCO{sub 3} to CaS. The present work attempts to explain this feature. It is first established that millimeter-size limestone particles do not sinter at temperatures up to the CaCO{sub 3} calcination point (899{degree}C at 1.03 bar CO{sub 2} partial pressure). It is then shown that CaS sinters rapidly at 750 to 900{degree}C if CO{sub 2} is present in the gas phase. Scanning Electron Microscope (SEM) photographs and Electron Dispersive Spectroscopy (EDS) data reveal that the CaS product layer sinters and forms a quasi-impermeable coating around the CaCO{sub 3} grains that greatly hinders more H{sub 2}S from reaching the still unreacted parts of the stone. Moreover, most of the pores initially present within the limestone structure begin to disappear or, at least, are significantly reduced in size. From then on, subsequent conversion is limited by diffusion of H{sub 2}S through the CaS layer, possibly by S{sup 2{minus}} ionic diffusion. The kinetics is then adequately described by a shrinking-core model, in which a sharp front of completely converted limestone is assumed to progress toward the center of the pellet. Finally, experimental evidence and computer simulations using simple sintering models suggest that the CaS sintering, responsible for the sharp decrease in the sulfidation rate, is surface-diffusion controlled.

  10. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  11. Iron-sulfide crystals in probe deposits

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming

    1998-01-01

    Iron-sulfides were observed in deposits collected on a probe inserted at the top of the furnace of a coal-fired power station in Denmark. The chemical composition of the iron-sulfides is equivalent to pyrrhotite (FeS). The pyrrhotites are present as crystals and, based on the shape of the crystals......: (1) impact of low viscous droplets of iron sulfide; and (2) sulfur diffusion. Previous research on the influence of pyrite on slagging focused on the decomposition of pyrite into pyrrhotite and especially on the oxidation stage of this product during impact on the heat transfer surfaces...

  12. Phase Engineering of 2D Tin Sulfides.

    OpenAIRE

    Mutlu, Z; Wu, RJ; Wickramaratne, D.; Shahrezaei, S; Liu, C; Temiz, S; Patalano, A; M Ozkan; Lake, RK; Mkhoyan, KA; Ozkan, CS

    2016-01-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2...

  13. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field...... as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments....

  14. Formation of Copper Sulfide Artifacts During Electrolytic Dissolution of Steel

    Science.gov (United States)

    Tan, Jia; Pistorius, P. Chris

    2013-06-01

    Based on equilibrium considerations, copper sulfide is not expected to form in manganese-containing steel, yet previous workers reported finding copper sulfide in transmission electron microscope samples which had been prepared by electropolishing. It is proposed that copper sulfide can form during electrolytic dissolution because of the much greater stability of copper sulfide relative to manganese sulfide in contact with an electrolyte containing copper and manganese cations. This mechanism has been demonstrated with aluminum-killed steel samples.

  15. High temperature sulfide corrosion and transport properties of transition metal sulfides

    International Nuclear Information System (INIS)

    An overview is presented of the role of the defect and transport properties of transition metal sulfides on the kinetics and mechanism of high-temperature sulfide corrosion of metals and alloys. It has been shown that due to the very high concentration of defects in common metal sulfides, not only pure metals but also conventional high-temperature alloys (chromia and alumina formers) undergo very rapid degradation in highly sulfidizing environments. Refractory metals (Mo, Nb), on the other hands, are highly resistant to sulfide corrosion, their sulfidation rates being comparable with the oxidation rate of chromium. Also, alloying of common metals by niobium and molybdenum improve considerably corrosion resistance with respect to highly sulfidizing atmospheres. It has demonstrated that Al.-Mo and Al.-Mo-Si alloys shown excellent resistant to sulfidizing environments, these materials being also simultaneously oxidation resistant. Thus, new prospects have been created for the development of a new generation of coating materials, resistant to multicomponent sulfidizing-oxidizing atmospheres, often encountered in many branches of modern technology. (author)

  16. Electrodes modified with bismuth, antimony and tin precursor compounds for electrochemical stripping analysis of trace metals (a short review)

    OpenAIRE

    Lezi, Nikolitsa; Economou, Anastasios; Barek, Jiří

    2014-01-01

    Over the last decade, intensive research is being carried out towards the development of “green” electrochemical sensors. Bismuth, antimony and tin electrodes have been proposed as potential substitutes of mercury electrodes in electrochemical stripping analysis of trace metals. The main advantage of these metals as electrode materials is their lower toxicity compared to mercury. Among the different configuration of bismuth, antimony and tin electrodes, one of the most attractive inv...

  17. Investigation into properties of the mixture of perfluoro-2-methyl-bicyclo(4,4,0) decane with antimony fluoride

    International Nuclear Information System (INIS)

    State diagram was constructed for a binary system formed by antimony fluoride and perfluoro-2-methyl-bicyclo-(4,4,0)decane in the temperature range of -58 deg to +56 deg C. Temperature dependence of solubility and the differential molar heat of solubility of solid Sb F5 were determined. Above the melting point of antimony fluoride these components were found to form a system of two sparingly miscible liquids with upper critical dissolution temperature

  18. Electrodeposition of SnSbCu Alloy on Copper from an Electrolyte with Varied Content of Antimony Chloride

    Science.gov (United States)

    Valeeva, A. Kh.; Valeev, I. Sh.

    2015-10-01

    The microstructure and chemical composition of electrodeposited alloys of the SnSbCu system with varied concentration of antimony chloride in the electrolyte have been investigated. It is shown that during electrodeposition mechanical-mixture alloys are not formed, but rather intermetallic compounds. It is found that increasing the concentration of antimony chloride in the electrolyte leads to a decrease in the tin content and cracking of the coating.

  19. The Ministry of Land and Resources Continued to Impose Total Exploitation Control on Tungsten, Antimony and Rare Earth

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>The General Office of the Ministry of Land and Resources distributed "Notice on Issuing Total Exploitation Control Quota of Tungsten Mine, Antimony Mine and Rare Earth Mine (First Batch) for 2013" (the "Notice") on January 5, it issued total exploitation control quota of tungsten mine, antimony mine and rare earth mine (first batch) for 2013. According to the Notice, the first batch of national

  20. Inorganic sorbents for concentration of hydrogen sulfide

    International Nuclear Information System (INIS)

    Present work is devoted to application of inorganic sorbents for concentration of hydrogen sulfide. The elaboration of method is conducted under controlled concentrations of hydrogen sulphide from 1.00 til 0.01 mg/l.

  1. Managing hydrogen sulfide the natural way

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, T.; Abry, R.G.F. [New Paradigm Gas Processing Ltd., Calgary, AB (Canada)

    2003-07-01

    This paper explores the benefits and costs associated with acid gas injection versus flaring and venting. It provides an update of Shell Paques biological gas desulfurization technology and the world's first high pressure application of the technology at the EnCana Bantry Project. The process is particularly well suited to treat sour (acid) natural gases that are currently being flared. It can also be used as an alternative to acid gas injection. Complete removal of hydrogen sulfide can be achieved by selective biotechnological conversion of hydrogen sulfide to elemental sulfur. Compared to conventional processes, this breakthrough technology achieves greater savings in terms of capital and operational costs. The Shell-Paque process produces up to 50 tonnes of sulfur per day with virtually complete conversion of hydrogen sulfide to elemental sulfur, resulting in no hydrogen sulfide based airborne emissions. 2 refs., 2 tabs., 35 figs.

  2. The Search for Interstellar Sulfide Grains

    Science.gov (United States)

    Keller, Lindsay P.; Messenger, Scott

    2010-01-01

    The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.

  3. Mechanism of mechanical activation for sulfide ores

    Institute of Scientific and Technical Information of China (English)

    HU Hui-ping; CHEN Qi-yuan; YIN Zhou-lan; HE Yue-hui; HUANG Bai-yun

    2007-01-01

    Structural changes for mechanically activated pyrite, sphalerite, galena and molybdenite with or without the exposure to ambient air, were systematically investigated using X-ray diffraction analysis(XRD), particle size analysis, gravimetrical method, X-ray photo-electron spectroscopy(XPS) and scanning electron microscopy(SEM), respectively. Based on the above structural changes for mechanically activated sulfide ores and related reports by other researchers, several qualitative rules of the mechanisms and the effects of mechanical activation for sulfide ores are obtained. For brittle sulfide ores with thermal instability, and incomplete cleavage plane or extremely incomplete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with thermal instability, and complete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed, and lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with excellent thermal stability, and complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For sulfide ores with high toughness, good thermal stability and very excellent complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation, but the lattice deformation ratio is very small. The effects of mechanical activation are worst.

  4. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.;

    2004-01-01

    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  5. [Physico-chemical characteristics of meglumine antimoniate in different storage conditions].

    Science.gov (United States)

    Romero, G A; de Oliveira, M R; Correia, D; Marsden, P D

    1996-01-01

    During the period October 1992 to July 1995 we measured the osmolarity and pH of ampoules of meglumine antimoniate (glucantime) from lot 9206L-004 (manufactured by Rhodia Farma Ltd, of São Paulo, SP, Brazil) maintained in three temperature conditions namely 4 degrees C, 37 degrees C and ambiental. Although we observed statistically significant differences in osmolarity between samples, the limited number of measurements and the variation of this property in ampoules maintained at the same temperature were obstacles to obtain definitive conclusions. Such a variation was not found with pH. Assuming these parameters could reflect structural changes in the pentavalent antimony molecule, clearly further better controlled experiments are indicated.

  6. Antimony segregation in stressed SiGe heterostructures grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    The effects of the growth temperature, composition, and elastic strains in separate layers on the segregation of antimony are studied experimentally for stressed SiGe structures grown by molecular beam epitaxy. It is established that the growth conditions and parameters of the structures exert an interrelated influence on the segregation of Sb: the degree of the influence of the composition and elastic stresses in the SiGe layers on Sb segregation depends on the growth temperature. It is shown that usage of a method previously proposed by us for the selective doping of silicon structures with consideration for the obtained dependences of Sb segregation on the growth conditions and parameters of the SiGe layers makes it possible to form SiGe structures selectively doped with antimony

  7. Deciphering lead and cadmium stripping peaks for porous antimony deposited electrodes

    Directory of Open Access Journals (Sweden)

    Taimoor Aqeel Ahmad

    2016-06-01

    Full Text Available Cadmium and lead are generally taken as model heavy metal ions in water to scale the detection limit of various electrode sensors, using electrochemical sensing techniques. These ions interact with the electrochemically deposited antimony electrodes depending on the diffusion limitations. The phenomenon acts differently for the in-situ and ex-situ deposition as well as for porous and non-porous electrodes. A method has been adopted in this study to discourage the stripping and deposition of the working ions (antimony to understand the principle of heavy metal ion detection. X-ray photoelectron spectroscopy (XPS technique was used to establish the interaction between the working and dissolved ions. In addition to the distinct peaks for each analyte, researchers also observed a shoulder peak. A possible reason for the presence of this peak was provided. Different electrochemical tests were performed to ascertain the theory on the basis of the experimental observations.

  8. A facile and fast route to prepare antimony (Sb) nanostructures without additives

    KAUST Repository

    Shah, M.A.

    2011-12-01

    Herein, we report a safe, low cost and reproducible approach for the synthesis of antimony (Sb) nanostructures with most of them having prism like morphology and having well defined faces in the range of ∼70210 nm. The organics free approach is based on a reaction of antimony powder and pure water at ∼210 °C without using any harmful additives and amines. The XRD pattern confirmed the composition and crystallinity of the grown nanostructures. The reported method besides being organics free is economical, fast and free of pollution, which will make it suitable for large scale production. Furthermore, it is well expected that such a technique could be extended to prepare many other important metal and metal oxide nanostructures. The prospects of the process are bright and promising. © 2012 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.

  9. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  10. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors

    NARCIS (Netherlands)

    Villa Gomez, D.K.; Cassidy, J.; Keesman, K.J.; Sampaio, R.M.; Lens, P.N.L.

    2014-01-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4 2- ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing

  11. Bi-antimony capped Keggin polyoxometalate modified with Cu-ligand fragment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jiao [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China); Han, Zhangang, E-mail: hanzg116@yahoo.com.cn [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China); Zhang, Heng; Yu, Haitao [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China); Zhai, Xueliang, E-mail: xlzhai253@mail.hebtu.edu.cn [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China)

    2012-10-15

    Three polyoxometalates consisting of bi-antimony capped Keggin-type clusters: [Cu(mbpy){sub 2}]{sub 2}[PMo{sub 12}O{sub 40}Sb{sub 2}]{center_dot}4H{sub 2}O (1), [Cu(mbpy){sub 2}][PMo{sub 12}O{sub 40}Sb{sub 2}] (2) and {l_brace}Cu(mbpy)[Cu(mbpy){sub 2}]{sub 2}{r_brace}[VMo{sub 8}V{sub 4}O{sub 40}Sb{sub 2}]{center_dot}2H{sub 2}O (3) (mbpy=4,4 Prime -dimethyl-2,2 Prime - dipyridyl in 1 and 2; 5,5 Prime -dimethyl-2,2 Prime -dipyridyl in 3) have been synthesized and characterized by IR, X-ray powder diffraction, TG analysis and electrochemical property. Single-crystal analysis revealed that all of three compounds are built upon bi-antimony capped Keggin-type polyoxoanions and Cu-mbpy cations. In 1-3, two Sb{sup III} centers located at the two opposite of anionic surface adopt fundamentally tetragonal pyramidal coordination geometry. Both compounds 1 and 2 consist of P-centered Keggin structure, while compound 3 presents a V-centered Keggin anion. The Keggin-type anions present different structural features: isolated cluster in 1 and Cu-ligand-supported cluster in 2 and 3. - Graphical abstract: Three hybrid compounds consisting of bi-antimony capped Keggin-type clusters modified with Cu-ligand cations have been synthesized and characterized. Highlights: Black-Right-Pointing-Pointer Three hybrid compounds consisting of bi-antimony capped Keggin-type clusters have been synthesized. Black-Right-Pointing-Pointer Two Sb{sup III} centers located at the two opposite of anionic surface adopt tetragonal pyramidal coordination geometry. Black-Right-Pointing-Pointer The anions present different structural features: isolated and Cu-ligand-supported cluster.

  12. Metal corrosion studies with the fluorosulphonic acid-antimony pentafluoride superacid system

    International Nuclear Information System (INIS)

    Because of their rapid dissolution of many actinide metals and refractory oxides, superacids such as HSO3F/SbF5 have potential applications in actinide processing. However, material compatibility must first be addressed because of the highly corrosive nature of superacids. This paper describes the qualitative rates of attack of fluorosulphonic acid-antimony pentafluoride superacid on a variety of metal substrates relevant to nuclear processing

  13. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    OpenAIRE

    Rajmund Michalski; Sebastian Szopa; Magdalena Jabłońska; Aleksandra Łyko

    2012-01-01

    Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemi...

  14. Electrodeposition Mechanism of Trivalent Antimony%三价锑的电沉积机理

    Institute of Scientific and Technical Information of China (English)

    林艳; 谢刚; 杨大锦

    2011-01-01

    The reduction mechanism of Sb3+ in H2SO4-NH4F-SbF3 electrolyte system was studied by means of electrochemical methods, including chronopotentiometry and alternating current impedance.Analysis of potential-time transients clearly shows that antimony (Ⅲ) could be reduced to antimony metal via two-steps irreversible electron transfer process in H2SO4-NH4F-SbF3 system.The relationship between iτ1/2 and i calculated by chronopotentiometry indicates that the trivalent antimony complex undergoes chemical transformation reaction before its reduction in the cathode.The impedance results confirm the above conclusion and indicate that the adsorption states which are the middle product of trivalent antimony have different influences on two electron transfer steps.%采用恒电流阶跃法及交流阻抗法等电化学方法,研究了H2SO4-NH4F-SbF3体系中三价锑的阴极还原机理.电势~时间暂态曲线出现二步反应特征,表明Sb"还原分两步进行.由恒电流阶跃曲线中iτ1/2~i关系可知Sb3+阴极还原存在前置化学转化.Sb3+阴极还原的交流阻抗测定结果进一步验证Sb3+还原是存在化学前置转化步骤的二步反应,且电活性中间产物吸附在电极表面,吸附反应对两步电子转移步骤的影响不同.

  15. Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Lazcano, Y. [Department of Solar Energy Materials, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos-62580 (Mexico); Pena, Yolanda [Department of Solar Energy Materials, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos-62580 (Mexico); Nair, M.T.S. [Department of Solar Energy Materials, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos-62580 (Mexico)]. E-mail: mtsn@cie.unam.mx; Nair, P.K. [Department of Solar Energy Materials, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos-62580 (Mexico)

    2005-12-22

    We report a method for obtaining thin films of polycrystalline antimony selenide via chemical bath deposition followed by heating the thin films at 573 K in selenium vapor. The thin films deposited from chemical baths containing one or more soluble complexes of antimony, and selenosulfate initially did not show X-ray diffraction (XRD) patterns corresponding to crystalline antimony selenide. Composition of the films, studied by energy dispersive X-ray analyses indicated selenium deficiency. Heating these films in presence of selenium vapor at 573 K under nitrogen (2000 mTorr) resulted in an enrichment of Se in the films. XRD peaks of such films matched Sb{sub 2}Se{sub 3}. Evaluation of band gap from optical spectra of such films shows absorption due to indirect transition occurring in the range of 1-1.2 eV. The films are photosensitive, with dark conductivity of about 2 x 10{sup -8} ({omega} cm){sup -1} and photoconductivity, about 10{sup -6} ({omega} cm){sup -1} under tungsten halogen lamp illumination with intensity of 700 W m{sup -2}. An estimate for the mobility life time product for the film is 4 x 10{sup -9} cm{sup 2} V{sup -1}.

  16. Studies in atomic-fluorescence spectroscopy-V The fluorescence characteristics and determination of antimony.

    Science.gov (United States)

    Dagnall, R M; Thompson, K C; West, T S

    1967-10-01

    Atomic-fluorescence of antimony may be generated in an air-propane flame by nebulizing aqueous solutions of antimony salts whilst irradiating the flame by means of a microwave-excited electrode-less discharge tube operating at 30 W. The strongest fluorescence is exhibited by the (4)S(11 2 ) --> (4)P(1 3 ) 2311 A resonance line and weaker signals are observed at the 2068 and 2176 A resonance lines and at four intercombination lines, at 2598, 2671, 2770 and 2878 A. A process of thermally assisted direct-line fluorescence is postulated to account for the otherwise inexplicable intensity of the 2598 A line emission. Atomic-fluorescence spectroscopy at 2176 A permits the determination of antimony in the range 0.1-120 ppm with a detection limit of 0.05 ppm. With the same equipment and source, the range of measurement for atomic-absorption was 6-120 ppm and the detection limit was 1 ppm. No interferences were observed from 100-fold molar amounts of Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, NH(4), Pb and Zn or from arsenate, chloride, nitrate, phosphate and sulphate. PMID:18960212

  17. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    International Nuclear Information System (INIS)

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb3Zn4, The precipitated β-Sb3Zn4 particles distributed randomly on the shiny spangle surface, both β-Sb3Zn4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb3Zn4 compound are discussed by a proposed model.

  18. Antimony in the Contaminated Site of El Triunfo, Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Marmolejo-Rodríguez A. J.

    2013-04-01

    Full Text Available Antimony has properties similar to arsenic with some of its compounds toxic to humans. Therefore it is necessary to control the wastes accumulated by anthropogenic activities, such as mining, where it is in tailings to be released to the environment. According to the Environment Protection Agency, the maximum value in sediments is 11.2 mg Sb kg–1 and the Earth’s crust average is 0.2 mg Sb kg–1. In this semiarid area, the drainage basin El Carrizal is impacted with wastes of an abandoned gold mine at the Mining District El Triunfo (MD – ET which have tailings with 17,600 mg kg–1 of antimony. In the main dry river (arroyo, the Sb content is between 0.6 and 122 mg kg–1. This element is transported from the source throughout the fluvial basin to discharge into the Pacific Ocean. In the arroyo mouth we collected one sedimentary core and the sediment from dunes (28.6 – 45.7 and 6.43 – 7.74 mg Sb kg–1. This research concluded the antimony is enriched in this semiarid system, with Normalized Enrichment Factors severely enriched mainly in arroyo sediments close to the MD-ET

  19. Parto prematuro após uso de antimonial pentavalente: relato de um caso Premature birth after the use of pentavalent antimonial: case report

    Directory of Open Access Journals (Sweden)

    Bruna Pinheiro Silveira

    2003-07-01

    Full Text Available Relata-se o caso de uma mulher de 19 anos, na 24ª semana de gravidez e com leishmaniose visceral. Tratada com antimonial pentavalente na posologia de 850mg/dia por 20 dias, ocorreu parto prematuro no quinto dia de tratamento e óbito da criança um dia após nascimento. Considerando a importância da protozoose no nosso meio e a raridade da associação com a gestação, julgamos de interesse a publicação do caso.A case is reported of a 19-year-old woman, at week 24 of gestation, with visceral leishmaniosis. She was treated with meglumine antimoniate at a dose of 850mg/day for 20 days. There occurred premature birth on day five of treatment and the neonate died one day after birth. Considering the importance of protozoiasis in our population and the rarity of the association with pregnancy, we resolved to publish the case.

  20. Stratospheric carbonyl sulfide (OCS) burden

    Science.gov (United States)

    Kloss, Corinna; Walker, Kaley A.; Deshler, Terry; von Hobe, Marc

    2015-04-01

    An estimation of the global stratospheric burden of carbonyl sulfide (OCS) calculated using satellite based measurements from the Atmospheric Chemistry Experiment - Fourier Transform Spectrometer (ACE-FTS) will be presented. OCS is the most abundant sulfur containing gas in the atmosphere in the absence of volcanic eruptions. With a long lifetime of 2-6 years it reaches the stratosphere where it is photolyzed and the sulfur oxidized and condensed to aerosols, contributing to the stratospheric aerosol layer. The aerosol layer is the one factor of the middle-atmosphere with a direct impact on the Earth's climate by scattering incoming solar radiation back to space. Therefore it is crucial to understand and estimate the different processes and abundances of the species contributing to the aerosol layer. However, the exact amount of OCS in the stratosphere has not been quantified yet. A study on the OCS mixing ratio distribution based on ACE-FTS data has already been made by Barkley et al. (2008), also giving an estimation for the total atmospheric OCS mass. ACE-FTS is an infrared solar occultation spectrometer providing high- resolution profile observations since 2004. In the scope of this work the focus lies on the stratospheric OCS burden, calculated by integrating the ACE profiles. A global overview on the stratospheric OCS amount in the past and present based on the ACE data as well as a look at regional and seasonal variability will be given. Furthermore, the results of this work will be useful for further studies on OCS fluxes and lifetimes, and in quantifying the contribution of OCS to the global stratospheric sulfur burden. Barkley et al., 2008, Geophys. Res. Lett., 35, L14810.

  1. Terahertz spectroscopy of hydrogen sulfide

    International Nuclear Information System (INIS)

    Pure rotational transitions of hydrogen sulfide (H2S) in its ground and first excited vibrational states have been recorded at room temperature. The spectrum comprises an average of 1020 scans at 0.005 cm−1 resolution recorded in the region 45–360 cm−1 (1.4 to 10.5 THz) with a globar continuum source using a Fourier transform spectrometer located at the AILES beamline of the SOLEIL synchrotron. Over 2400 rotational lines have been detected belonging to ground vibrational state transitions of the four isotopologues H232S, H233S, H234S, and H236S observed in natural abundance. 65% of these lines are recorded and assigned for the first time, sampling levels as high as J=26 and Ka=17 for H232S. 320 pure rotational transitions of H232S in its first excited bending vibrational state are recorded and analysed for the first time and 86 transitions for H234S, where some of these transitions belong to new experimental energy levels. Rotational constants have been fitted for all the isotopologues in both vibrational states using a standard effective Hamiltonian approach. Comprehensive comparisons are made with previously available data as well as the data available in HITRAN, CDMS, and JPL databases. The 91 transitions assigned to H236S give the first proper characterization of its pure rotational spectrum. -- Highlights: • Over 2400 lines are measured and assigned in the 45–360 cm−1 region. • New rotational transitions are assigned for four isotopologues of H2S. • Rotational transitions within the first excited state of H2S are assigned for the first time. • An improved rotational line list is presented

  2. Biomonitoring of persons living in areas with high concentrations of mercury, arsenic and antimony in soil. Goals and methods; Biomonitoring-Untersuchung bei Personen in Wohngebieten mit erhoehten Bodenwerten an Quecksilber, Arsen und Antimon. Vorstellung und Studiendesign

    Energy Technology Data Exchange (ETDEWEB)

    Gebel, T. [Goettingen Univ. (Germany). Abt. Allgemeine Hygiene; Schaefer, J. [Mainz Univ. (Germany). Inst. fuer Medizinische Mikrobiologie und Hygiene; Beuermann, I. [Mainz Univ. (Germany). Inst. fuer Medizinische Mikrobiologie und Hygiene; Platen, H. von [Mainz Univ. (Germany). Inst. fuer Geowissenschaften; Dunkelberg, H. [Goettingen Univ. (Germany). Abt. Allgemeine Hygiene

    1995-07-01

    In the northern part of palatinate country in Germany (Nordpfaelzer Bergland; Rheinland-Pfalz) intense mercury activity had been situated beginning in the 15th century extending partly up into the 20th century. Nowadays in many cases former dump grounds of rubble caused by the mercury mining activities are used for agricultural and housing purposes. In soil material of these areas the natural background contents up to strongly elevated levels were found for mercury, arsenic and antimony. In the housing area soil concentrations (per dry matter) of less than 0,5 mg/kg up to 1364 mg/kg mercury, less than 2 mg/kg up to 605 mg/kg arsenic and less than 0,5 mg/kg up to 776 mg/kg antimony were detected. Mercury, arsenic and antimony are strongly bound to be ore in sulfidic forms of cinnabar or fahlore (gray copper) causing a bad availability. The concentration variance of the detected element levels is immense even relating to little spaces because of an inhomogenous distribution of the rubble; highly contaminated grounds can be found beneath not contaminated ground. A biomonitoring study is presented in which 219 exposed residents are involved. They are examined concerning a possible incorporation of the elements mentioned above. The proceeding of the study, the way of data collection, and the amnestical approach are discussed. This study ist compared to similar studies. (orig.) [Deutsch] Im Nordpfaelzer Bergland wurde vom 15. bis teilweise ins 20. Jahrhundert intensiv Quecksilberbergbau betrieben. Vielfach befinden sich landwirtschaftlich genutzte Flaechen und Wohngebiete auf oder neben Abraumhalden des ehemaligen Quecksilberbergbaus. In diesen Regionen fand man im Boden fuer das Schwermetall Quecksilber und die metalloide Arsen und Antimon von den natuerlichen Hintergrundkonzentrationen bis hin zu stark erhoehten Werten. In Wohngebieten waren dies bei Quecksilber weniger als 0,5 mg/kg Boden (Trockensubstanz) bis zu 1364 mg/kg, bei Arsen weniger als 2 mg/kg bis zu 605 mg

  3. Sulfide capacities of fayalite-base slags

    Science.gov (United States)

    Simeonov, S. R.; Sridhar, R.; Toguri, J. M.

    1995-04-01

    The sulfide capacities of fayalite-base slags were measured by a gas-slag equilibration technique under controlled oxygen and sulfur potentials similar to those encountered in the pyrometallurgical processing of nonferrous metals. The oxygen pressure range was from 10-9.5 to 10-11 MPa and the sulfur pressure range from 10-3 to 10-4.5 MPa, over a temperature range of 1473 to 1623 K. The slags studied were FeO-SiO2 at silica saturation and those with addition of CaO, MgO, and Al2O3 to determine their effect on sulfide capacities. For these slags, the sulfide capacities were found to vary from 10-3.3 to 10-5. The sulfide capacities increased with increasing temperature from 1473 to 1623 K. A comparison of the reported plant data on sulfur content of industrial slags shows good agreement with the present experimental results. The present data will be useful in estimating metal losses in slag due to metal sulfide entrainment in nonferrous smelters.

  4. Synthesis of magnetic rhenium sulfide composite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tang Naimei [Division of Molecular and Materials Simulation, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Tu Weixia [Division of Molecular and Materials Simulation, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: tuwx@mail.buct.edu.cn

    2009-10-15

    Rhenium sulfide nanoparticles are associated with magnetic iron oxide through coprecipitation of iron salts with tetramethylammonium hydroxide. Sizes of the formed magnetic rhenium sulfide composite particles are in the range 5.5-12.5 nm. X-ray diffraction and energy-dispersive analysis of X-rays spectra demonstrate the coexistence of Fe{sub 3}O{sub 4} and ReS{sub 2} in the composite particle, which confirm the formation of the magnetic rhenium sulfide composite nanoparticles. The association of rhenium sulfide with iron oxide not only keeps electronic state and composition of the rhenium sulfide nanoparticles, but also introduces magnetism with the level of 24.1 emu g{sup -1} at 14 kOe. Surface modification with monocarboxyl-terminated poly(ethylene glycol) (MPEG-COOH) has the role of deaggregating the composite nanoparticles to be with average hydrodynamic size of 27.3 nm and improving the dispersion and the stability of the composite nanoparticles in water.

  5. Comparison of oral itraconazole and intramuscular meglumine antimoniate in the treatment of cutaneous leishmaniasis

    International Nuclear Information System (INIS)

    To compare the efficacy and tolerability of oral itraconazole against intramuscular meglumine antimoniate in the treatment of Cutaneous Leishmaniasis (CL). Two hundred eligible and consenting patients of Cutaneous Leishmaniasis (CL) were divided in two groups with 100 patients in each. The number and location of the lesions were documented and clinical types of cutaneous leishmaniasis were noted. The diagnosis was confirmed by skin slit smear and histopathology of the lesional skin. Culture on Nicolle Novy MacNeal (NNN) medium and Leishmanin test was done in all patients. All the patients in both groups were subjected to complete blood picture, urine examination, serum urea and creatinine levels and ECG examination. One group was given itraconazole 100 mg twice daily orally for a duration of 6-8 weeks. The other group was given meglumine antimoniate 10 cc in the form of deep intramuscular injections for 15-30 days. The efficacy of the treatment was judged by clinical and parasitological response. Side effects of the agents were also noted during treatment. Out of 200 patients studied, 185 were males and 15 were females. The mean age of presentation was 30 + 6.6 years. Single lesion was seen in 132 (66%) subjects whereas 68 (34%) subjects had multiple lesions. Slit skin smears were positive in 50 (25%) of the patients. Skin biopsy yielded the presence of LT bodies in 150 (75%) subjects. The culture was positive in 102 (51%) cases. Leishmanin test was positive in 94% subjects. Seventy-five (75%) patients on itraconazole therapy showed complete clinical and parasitological cure in 4-8 weeks duration. A rise in ALT was seen in 12% subjects. Five (5%) subjects did not show any improvement till the end of therapy. Sixty-five (65%) subjects on meglumine antimoniate showed complete healing in 15-30 days. In 35 (35%) of the patients, the treatment had to be stopped due to intolerable side-effects. Four cases of lupoid leishmaniasis and 4 cases of sporotrichoid leishmaniasis

  6. Experimental research on the improvement of gold recovery rate applying alkaline leaching pretreatment of a refractory arsenic and antimony contained gold concentrate%碱浸预处理提高某含砷锑难处理金精矿回收率的试验研究

    Institute of Scientific and Technical Information of China (English)

    李勇; 徐忠敏; 吕翠翠; 张治磊

    2013-01-01

    内蒙古某黄金矿山金精矿中,金主要包裹在黄铁矿及砷黄铁矿中,同时还有锑金属硫化物的存在.氰化浸出生产工艺中金的回收率比较低,只有76.63%.通过常规氰化工艺条件优化试验,金的回收率最高可达到80.15%.对该低品位含砷、锑难处理金精矿进行碱浸预处理,优先除砷、锑,以提高金氰化浸出率.确定了生产操作的最佳工艺条件,金的氰化回收率由原来的76.63%提高到92%,试验获得了较好技术指标和经济效益.%Gold in the gold concentrates of a mine in Inner Mongolia is mainly wrapped in pyrite and arsenopy-rite, and together with the existence of metallic antimony sulfide, cyanide leaching rate of gold in the production is relatively low,only 76. 63 %. By optimization experiment of conventional cyanide process conditions, gold recovery rate can reach a max of 80. 15 % , using alkaline leaching to pretreat the arsenic and antimony contained refractory gold concentrate, with the arsenic and antimony first removed, the cyanide leaching rate of gold increased from 76. 63 % to 92 % , achieving satisfactory technical and economical index.

  7. Transition Metal Catalyzed Synthesis of Aryl Sulfides

    Directory of Open Access Journals (Sweden)

    Chad C. Eichman

    2011-01-01

    Full Text Available The presence of aryl sulfides in biologically active compounds has resulted in the development of new methods to form carbon-sulfur bonds. The synthesis of aryl sulfides via metal catalysis has significantly increased in recent years. Historically, thiolates and sulfides have been thought to plague catalyst activity in the presence of transition metals. Indeed, strong coordination of thiolates and thioethers to transition metals can often hinder catalytic activity; however, various catalysts are able to withstand catalyst deactivation and form aryl carbon-sulfur bonds in high-yielding transformations. This review discusses the metal-catalyzed arylation of thiols and the use of disulfides as metal-thiolate precursors for the formation of C-S bonds.

  8. Sulfide and methane production in sewer sediments.

    Science.gov (United States)

    Liu, Yiwen; Ni, Bing-Jie; Ganigué, Ramon; Werner, Ursula; Sharma, Keshab R; Yuan, Zhiguo

    2015-03-01

    Recent studies have demonstrated significant sulfide and methane production by sewer biofilms, particularly in rising mains. Sewer sediments in gravity sewers are also biologically active; however, their contribution to biological transformations in sewers is poorly understood at present. In this study, sediments collected from a gravity sewer were cultivated in a laboratory reactor fed with real wastewater for more than one year to obtain intact sediments. Batch test results show significant sulfide production with an average rate of 9.20 ± 0.39 g S/m(2)·d from the sediments, which is significantly higher than the areal rate of sewer biofilms. In contrast, the average methane production rate is 1.56 ± 0.14 g CH4/m(2)·d at 20 °C, which is comparable to the areal rate of sewer biofilms. These results clearly show that the contributions of sewer sediments to sulfide and methane production cannot be ignored when evaluating sewer emissions. Microsensor and pore water measurements of sulfide, sulfate and methane in the sediments, microbial profiling along the depth of the sediments and mathematical modelling reveal that sulfide production takes place near the sediment surface due to the limited penetration of sulfate. In comparison, methane production occurs in a much deeper zone below the surface likely due to the better penetration of soluble organic carbon. Modelling results illustrate the dependency of sulfide and methane productions on the bulk sulfate and soluble organic carbon concentrations can be well described with half-order kinetics.

  9. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    Science.gov (United States)

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts. PMID:22970588

  10. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    Science.gov (United States)

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.

  11. Modeling of Sulfide Microenvironments on Mars

    Science.gov (United States)

    Schwenzer, S. P.; Bridges, J. C.; McAdam, A.; Steer, E. D.; Conrad, P. G.; Kelley, S. P.; Wiens, R. C.; Mangold, N.; Grotzinger, J.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.

    2016-01-01

    Yellowknife Bay (YKB; sol 124-198) is the second site that the Mars Science Laboratory Rover Curiosity investigated in detail on its mission in Gale Crater. YKB represents lake bed sediments from an overall neutral pH, low salinity environment, with a mineralogical composition which includes Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral phyllosilicates. We investigate whether sulfide alteration could be associated with ancient habitable microenvironments in the Gale mudstones. Some textural evidence for such alteration may be pre-sent in the nodules present in the mudstone.

  12. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  13. Sol-gel processing of metal sulfides

    Science.gov (United States)

    Stanic, Vesha

    Metal sulfides were synthesised via a sol-gel process using various metal alkoxides and hydrogen sulfide in toluene. Colloidal gels were prepared from germanium ethoxide, germanium isopropoxide, zinc tert-butoxide and tungsten (VI) ethoxide, whereas colloidal powder was produced from tungsten (V) dichloride ethoxide. Special precautions were necessary to protect the reaction mixture from water contamination which produced metal oxides. Results indicated that the main source of water is the hydrogen sulfide gas. In addition, synthesis of metal sulfides from a mixture of metal oxide and sulfide was demonstrated by the example of monoclinic germanium disulfide. It was produced by reaction of the sol-gel product with sulfur. Heat treatment of the sol-gel product and sulfur yielded single phase GeSsb2. The sol-gel prepared materials and their heat treated products were characterized by various methods. A chemical kinetics study of the functional groups -OR, -SH and Ssp{2-} was carried out for the sol-gel processing of GeSsb2 from of hydrogen sulfide and two different alkoxides, germanium ethoxide and germanium isopropoxide. The study was performed for different concentrations of precursors at different molar ratios and temperatures. The results indicate that the proposed reaction mechanism was simplified under appropriate reaction conditions. Experimentally determined rate constants of thiolysis and condensations demonstrate that thiolysis is slow and that condensations are fast steps, regardless of the studied reaction conditions. A study of the temperature effect on the reaction rate constant shows that it increases with temperature in accord with both Arrhenius law and transition-state theory. Activation energies, Esba, and activation parameters DeltaSsp{ddagger}, DeltaHsp{ddagger} and DeltaGsp{ddagger}, were determined for thiolysis and condensation reactions. The potentiometric tiration method was used for quantitative determination of germanium sulfide and

  14. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    Science.gov (United States)

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  15. Use of biogenic sulfide for ZnS precipitation

    NARCIS (Netherlands)

    Esposito, G.; Veeken, A.; Weijma, J.; Lens, P.N.L.

    2006-01-01

    A 600 ml continuously stirred tank reactor was used to assess the performance of a zinc sulfide precipitation process using a biogenic sulfide solution (the effluent of a sulfate-reducing bioreactor) as sulfide source. In all experiments, a proportional-integral (PI) control algorithm was used to co

  16. A physiologically based kinetic model for bacterial sulfide oxidation

    NARCIS (Netherlands)

    Klok, J.B.; Graaff, M. de; Bosch, P.L. van den; Boelee, N.C.; Keesman, K.J.; Janssen, A.J.W.M.

    2013-01-01

    In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concl

  17. T.O.C.S. : Hydrogen Sulfide Remission System

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    BioEnviroTech, Inc., (BET) developed Toxicity Odor Corrosion Sulfides (T.O.C.S.) Remission System for hydrogen sulfide reduction in municipal and industrial wastewater sewer, lift stations and force mains. This safe and cost effective biotreatment technology uses safe and natural bacteria to interrupt sulfide generation.

  18. Leachability of antimony from energy ashes. Total contents, leachability and remedial suggestions; Lakning av antimon fraan energiaskor. Totalhalter, lakbarhet samt foerslag till aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, Mattias [Oerebro Univ. (Sweden)

    2006-01-15

    In the current project total concentrations for antimony in 31 energy ashes have been compiled. The average concentration of antimony in boiler fly ash and grate boiler fly ash is 192 and 1,140 mg/kg, respectively. The corresponding antimony concentrations for boiler ashes and grate bottom ashes are 86,5 and 61,8 mg/kg, respectively. Multivariate calculations clearly pointed out waste as the major source for antimony in ashes. The difference between total antimony concentration in fly ash and bottom ash is greatest for grate boilers, in average 18 times higher in the fly ash. The difference for CFB/BFB-boilers is only slightly more than 2. However, based on amount, 75% of the total antimony inventory is recovered in the fly ashes for both CFB/BFB and grate boilers. Eleven (eight of which were bottom ashes) out of the 31 samples exceeded the guidelines for inert waste. It is clear that the higher ionic strength in the solutions from the fly ashes contribute to decrease the solubility for critical minerals retaining antimony. In addition, the fly ashes have considerably larger effective surface able to sorb trace elements. A clear and positive covariance was discovered between aluminium and antimony. Furthermore, it was noted that antimony showed no typical anionic behaviour despite the fact that it according to the geochemical calculations should be present as SbO{sub 3}{sup -}. At L/S 10, a maximum of 1% of the total antimony concentration is leached. This should be compared to chloride that had 94% of the total concentration leached at L/S 10. There was no correlation between the leached antimony concentrations and the total antimony concentrations. The sequential extractions also suggest a low leachability for antimony from the ashes. In average only 9,6% is released at pH 7, 7,3% at pH 5, 3,6% during reducing conditions and 3,2% during oxidising conditions. In total, only 24% of the total antimony concentrations is released during the four extraction steps. The

  19. Synthesis, characterization and single crystal X-ray analysis of chlorobis(N,N-dimethyldithiocarbamato-S,S′antimony(III

    Directory of Open Access Journals (Sweden)

    H.P.S. Chauhan

    2015-07-01

    Full Text Available The title compound chlorobis(N,N-dimethyldithiocarbamato-S,S′antimony(III has been prepared in distilled acetonitrile and characterized by physicochemical [melting point and molecular weight determination, elemental analysis (C, H, N, S & Sb], spectral [FT–IR, far IR, NMR (1H & 13C] studies. The crystal and molecular structure was further confirmed using single crystal X-ray diffraction analysis which features a five-coordinate geometry for antimony(III within a ClS4 donor set. The distortion in the co-planarity of ClSbS3 evidences the stereochemical influence exerts by the lone pair of electrons on antimony(III. Two centrosymmetrically related molecule held together via C–H···Cl secondary interaction result in molecular aggregation of the compound.

  20. Selective liquid-liquid extraction of antimony(III from hydrochloric acid media by N-n-octylaniline in xylene

    Directory of Open Access Journals (Sweden)

    M. A. ANUSE

    2004-04-01

    Full Text Available N-n-Octylaniline in xylene was used for the extraction separation of antimony(III from hydrochloric acid media. Antimony(III was extracted quantitatively with 10 mL 4 % N-n-octylaniline in xylene. It was stripped from the organic phase with 0.5 M ammonia and estimated photometrically by the iodide method. The effect of metal ion, acid, reagent concentration and various foreign ions was investigated. The method affords binary and ternary separation of antimony(III from tellurium(IV, selenium(IV, lead(II, bismuth(III, tin(IV, germanium(IV, copper(II, gold(III, iron(III and zinc(II. The method is applicable for the analysis of synthetic mixtures, alloys and semiconductor thin films. It is fast, accurate and precise.

  1. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices

    NARCIS (Netherlands)

    Tangerman, Albert

    2009-01-01

    This review deals with the measurement of the volatile Sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (-SH

  2. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices.

    NARCIS (Netherlands)

    Tangerman, A.

    2009-01-01

    This review deals with the measurement of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (-SH

  3. Hydrogen Sulfide in Preeclampsia : Potential Therapeutic Implications

    NARCIS (Netherlands)

    Holwerda, Kim

    2015-01-01

    The thesis provide insights into the production and possible therapeutic effect of the gaseous molecule hydrogen sulfide (H2S) in preeclampsia (PE). H2S is an important molecule in the (human) body. It is among others involved in blood pressure regulation, stimulation of vascular growth and modulati

  4. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  5. The diagenesis of carbohydrates by hydrogen sulfide

    Science.gov (United States)

    Mango, Frank D.

    1983-08-01

    Carbohydrates react with hydrogen sulfide under low temperature (100° to 200°C) yielding a variety of organosulfur compounds including thiophenes, thiols, sulfides and sulfones. A polymer is also produced, whose elemental composition is within the range of natural coals. When reductive dehydration is carried out in the presence of hydrocarbon, organosulfur compounds are formed in the carbon number range of the hydrocarbon used. In these processes, an active hydrogen transfer catalyst is produced which facilitates the passage of hydrogen between normal paraffins and saccharide units, distributing sulfur between these two families primarily in the form of thiophene rings. The simplicity of these systems - H 2S, carbohydrates, H 2O, hydrocarbon - and the facility of the chemistry would suggest that the carbohydrates and hydrogen sulfide may be important agents in the diagenetic processes leading to petroleum and coal. Carbohydrate reduction by hydrogen sulfide may constitute an important route through which certain organosulfur compounds found in petroleum and coal entered these materials in early diagenesis.

  6. Development and pharmacokinetic of antimony encapsulated in liposomes of phosphatidylserine using radioisotopes in experimental leishmaniasis

    International Nuclear Information System (INIS)

    Leishmaniasis are a complex of parasitic diseases caused by intra macrophage protozoa of the genus Leishmania, and is fatal if left untreated. Pentavalent antimonials, though toxic and their mechanism of action being unclear, remain the first-line drugs for treatment. Effective therapy could be achieved by delivering antileishmanial drugs to these sites of infection. Liposomes are phospholipid vesicles that promote improvement in the efficacy and action of drugs in target cell. Liposomes are taken up by the cells of mononuclear phagocytic system (MPS). The purpose of this study was to develop a preparation of meglumine antimonate encapsulated in liposomes of phosphatidylserine and to study its pharmacokinetic in healthy mice to establish its metabolism and distribution. Quantitative analysis of antimony from liposomes demonstrated that Neutron Activation Analysis was the most sensitive technique with almost 100 % of accuracy. All liposome formulations presented a mean diameter size of 150 nm. The determination of IC50 in infected macrophage showed that liposome formulations were between 10 - 63 fold more effective than the free drug, indicating higher selectivity index. By fluorescence microscopy, an increased uptake of fluorescent-liposomes was seen in infected macrophages during short times of incubation compared with non-infected macrophages. Biodistribution studies showed that meglumine antimonate irradiated encapsulated in liposomes of phosphatidylserine promoted a targeting of antimony for MPS tissues and maintained high doses in organs for a prolonged period. In conclusion, these data suggest that meglumine antimonate encapsulated in liposomes showed higher effectiveness than the non-liposomal drug against Leishmania infection. The development of liposome formulations should be a new alternative for the chemotherapy of infection diseases, especially Leishmaniasis, as they are used to sustain and target pharmaceuticals to the local of infection. (author)

  7. Lithium-antimony-lead liquid metal battery for grid-level energy storage

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J.; Boysen, Dane A.; Bradwell, David J.; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R.

    2014-10-01

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding

  8. The LABCG2 Transporter from the Protozoan Parasite Leishmania Is Involved in Antimony Resistance.

    Science.gov (United States)

    Perea, Ana; Manzano, José Ignacio; Castanys, Santiago; Gamarro, Francisco

    2016-06-01

    Treatment for leishmaniasis, which is caused by Leishmania protozoan parasites, currently relies on a reduced arsenal of drugs. However, the significant increase in the incidence of drug therapeutic failure and the growing resistance to first-line drugs like antimonials in some areas of Northern India and Nepal limit the control of this parasitic disease. Understanding the molecular mechanisms of resistance in Leishmania is now a matter of urgency to optimize drugs used and to identify novel drug targets to block or reverse resistant mechanisms. Some members of the family of ATP-binding cassette (ABC) transporters in Leishmania have been associated with drug resistance. In this study, we have focused our interest to characterize LABCG2's involvement in drug resistance in Leishmania. Leishmania major parasites overexpressing the ABC protein transporter LABCG2 were generated in order to assess how LABCG2 is involved in drug resistance. Assays of susceptibility to different leishmanicidal agents were carried out. Analysis of the drug resistance profile revealed that Leishmania parasites overexpressing LABCG2 were resistant to antimony, as they demonstrated a reduced accumulation of Sb(III) due to an increase in drug efflux. Additionally, LABCG2 was able to transport thiols in the presence of Sb(III) Biotinylation assays using parasites expressing LABCG2 fused with an N-terminal green fluorescent protein tag revealed that LABCG2 is partially localized in the plasma membrane; this supports data from previous studies which suggested that LABCG2 is localized in intracellular vesicles that fuse with the plasma membrane during exocytosis. In conclusion, Leishmania LABCG2 probably confers antimony resistance by sequestering metal-thiol conjugates within vesicles and through further exocytosis by means of the parasite's flagellar pocket. PMID:27021316

  9. Highly active and stable Pt electrocatalysts promoted by antimony-doped SnO2 supports for oxygen reduction reactions

    DEFF Research Database (Denmark)

    Yin, Min; Xu, Junyuan; Li, Qingfeng;

    2014-01-01

    Alternative composite supports for platinum catalysts were synthesized from antimony doped tin dioxide (ATO) nanoparticles. In the range of the antimony content from 0 to 11mol%, the highest electrical conductivity of 1.1Scm-1 at 130°C was obtained for the 5mol% Sb ATO, from which composite...... supports composed of oxides and carbon and supported platinum catalysts were prepared. Using the pure oxide support, the Pt/ATO catalyst displayed superior specific activity and stability for the oxygen reduction reactions (ORRs). Low surface area of ATO caused poor dispersion of Pt particles compared...

  10. Separation of antimony from synthetic cloth. Application in forensic science using neutron activation analysis

    International Nuclear Information System (INIS)

    A simple ion-exchange separation procedure was developed for selective removal of antimony from synthetic cloth to facilitate determination of several trace elements frequently used to identify gunshot residues by neutron activation analysis. Radiotracers of Sb, Ba, Cu, Co, As, Zn, Hg and Ag were employed to optimize the developed procedure. The method involves the quantitative retention of the above elements, except of Sb, from 0.2M ammonium carbonate solution using Chelex 100 resin and subsequent quantitative elution of the elements of interest with 2M nitric acid for gamma-ray spectrometry. The procedure was tested by simulated gunshot residues. (author)

  11. Influence of arsenic,antimony and cobalt impurities on the cathodic process in zinc electrowinning

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By means of an electrochemical study,the influence of arsenic,antimony and cobalt on cathodic polarization in the zinc electrowinning process,the associated kinetic equations and parameters,and the polarization mechanism have been studied.The results show that the experimental values of the kinetic parameters are in accord with the theoretical values in the ZnSO4/H2SO4 solution with a single impurity is added.In contrast,the charge transfer coefficient α is smaller than the theoretical value in the ZnSO4/H2SO4 solution when the three impurities are added together.

  12. Polymorphism and properties of Bi{sub 2}WO{sub 6} doped with pentavalent antimony

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonova, E.P.; Belov, D.A. [M.V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Gagor, A.B.; Pietraszko, A.P. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-950 Wrocław (Poland); Alekseeva, O.A. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow (Russian Federation); Voronkova, V.I., E-mail: voronk@polly.phys.msu.ru [M.V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation)

    2014-04-05

    Highlights: • The limit of Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} solid solutions is at x = 0.05. • Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} does not fully transform into high-temperature monoclinic phase. • Sb{sup 5+} has a weak effect on the temperatures of the ferroelectric transitions. • γ→γ{sup ‴} transition near 650 °C was observed as strong permittivity peak at 0.01–8 Hz. • The conductivity of Bi{sub 2}W{sub 0.96}Sb{sub 0.04}O{sub 6−y} at 800 °C reaches 0.02 S/cm. -- Abstract: Antimony-containing solid solutions isostructural with bismuth tungstate, Bi{sub 2}WO{sub 6}, have been prepared in air as polycrystalline samples by solid-state reactions and as single crystals by unseeded flux growth. The antimony in the solid solutions is in a pentavalent state and substitutes for tungsten in the structure of Bi{sub 2}WO{sub 6}. The Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} solid solutions have been shown to exist in the composition range 0 ⩽ x ⩽ 0.05. We have examined the effect of Sb{sup 5+} doping on the polymorphism and properties of Bi{sub 2}WO{sub 6}. In contrast to undoped Bi{sub 2}WO{sub 6}, antimony-substituted bismuth tungstate does not completely transform into its high-temperature, monoclinic phase at 960 °C and remains two-phase up to temperatures approaching its melting point. Antimony substitution for tungsten has a weak effect on the temperatures of the ferroelectric phase transitions. Heterovalent substitution of Sb{sup 5+} for W{sup 6+} is accompanied by the formation of extra oxygen vacancies and an increase in the electrical conductivity of the solid solutions by one to two orders of magnitude relative to undoped Bi{sub 2}WO{sub 6}.

  13. Electromagnetic absorption and shielding behavior of polyaniline-antimony oxide composites

    Science.gov (United States)

    Faisal, Muhammad; Khasim, Syed

    2013-02-01

    This work highlights the microwave absorption and electromagnetic interference (EMI) shielding properties of synthesized polyaniline (PAni)-antimony oxide (Sb2O3) composites in the 8-12 GHz (X-band) range. These composites showed absorption dominated EMI shielding effectiveness (EMI SEA) of -34 to -40 dB (> 99 % attenuation), indicating their shielding potential throughout the X-band. Our analyses reveal that the Sb2O3 particles in PAni matrix have key impact in determining the microwave absorption properties of the composites.

  14. Determination of arsenic, selenium and antimony by neutron activation analysis. Application to hair samples

    International Nuclear Information System (INIS)

    A fast rabbit system for instrumental activation analysis with reactor neutrons is described. Its use in the determination of selenium in hair is discussed. A survey is given of the correction factors which are inherent to the use of short-lived radionuclides. An alternative to INAA is NAA based on the separation of arsenic, selenium and antimony by hydride evaporation and adsorption to active carbon. Data for some Standard Reference Materials are given. This work was done under research contract 2440/RI/RB with the IAEA

  15. Recent findings on sinks for sulfide in gravity sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2006-01-01

    Sulfide buildup in sewer networks is associated with several problems, including health impacts, corrosion of sewer structures and odor nuisance. In recent years, significant advances in the knowledge of the major processes governing sulfide buildup in sewer networks have been made. This paper...... summarizes this newly obtained knowledge and emphasizes important implications of the findings. Model simulations of the in-sewer processes important for the sulfur cycle showed that sulfide oxidation in the wetted biofilm is typically the most important sink for dissolved sulfide in gravity sewers. However......, sulfide emission and thereby potential hydrogen sulfide buildup in the sewer atmosphere is of particular importance in sewers constructed with large diameter pipes, in sewers constructed with steep slopes and in sewers conveying low pH wastewater. Precipitation of metal sulfides is only important when...

  16. High levels of antimony in dust from e-waste recycling in southeastern China

    International Nuclear Information System (INIS)

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. - Highlights: → Antimony and arsenic concentrations in dust from e-waste recycling were investigated. → E-waste recycling is an important emerging source of Sb pollution. → Sb/As ratios may help identify the e-waste contamination.

  17. Canine visceral leishmaniasis: comparison of in vitro leishmanicidal activity of marbofloxacin, meglumine antimoniate and sodium stibogluconate.

    Science.gov (United States)

    Vouldoukis, Ioannis; Rougier, Sandrine; Dugas, Bernard; Pino, Paco; Mazier, Dominique; Woehrlé, Frédérique

    2006-01-30

    The control of canine leishmaniasis largely depends on the success of treatment. Drugs currently available to treat this disease are toxic and partially effective. The curative effect of marbofloxacin, a third-generation fluoroquinolone developed for veterinarian individual treatment, was evaluated in vitro in the presence of Leishmania infantum promastigotes and dog-monocyte-derived macrophages; meglumine antimoniate and sodium stibogluconate were used as comparative treatments. We observed that the killing of Leishmania promastigotes and intracellular amastigotes by marbofloxacin was dose-dependent. We demonstrated that successful treatment of canine infected macrophages for 48 h was possible with 500 microg/ml of marbofloxacin. Leishmanicidal activity acted through a TNF-alpha and nitric oxide pathway and correlated with the generation of nitric oxide (NO(2)) production by monocytes derived macrophages from infected (23+/-5 microM) or healthy (21+/-6 microM) dogs, in comparison with NO(2) concentration in infected/non-treated macrophages (Marbofloxacin was shown to be non-toxic at 500 microg/ml in vitro and no cell apoptosis was observed. The molecule was able to induce a parasitic process after significant elimination of amastigotes in leishmania-infected dog macrophages. We propose that marbofloxacin, compared to standard chemotherapeutic agents (meglumine antimoniate and sodium stibogluconate), could be an effective and pragmatic oral route alternative to treat canine leishmaniasis.

  18. Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat.

    Science.gov (United States)

    Gevaerd, Ava; de Oliveira, Paulo R; Mangrich, Antonio S; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2016-05-01

    This work describes the construction and application of carbon paste electrodes modified with biochar and antimony microparticles (SbBCPE) for voltammetric determination of paraquat using a simple and sensitive procedure based on voltammetric stripping analysis. Some parameters such as amount of biochar and antimony used in the composition of the carbon paste and instrumental parameters were examined in detail. Under optimized conditions, an analytical curve was obtained for paraquat determination employing SbBCPE, which showed a linear response ranging from 0.2 to 2.9 μmol L(-1), with limit of detection and quantification of 34 nmol L(-1) and 113 nmol L(-1), respectively, after paraquat pre-concentration of 120 s. The repeatability study presented a RSD=2.0% for 10 consecutive measurements using the same electrode surface and the reproducibility study showed a RSD=2.7% for measurements with 10 different electrode surfaces. The proposed sensor was successfully applied for paraquat determination in tap water and citric fruit juice spiked samples and good recoveries were obtained without any sample pre-treatment, showing its promising analytical performance.

  19. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.

    Science.gov (United States)

    Hockmann, Kerstin; Tandy, Susan; Lenz, Markus; Reiser, René; Conesa, Héctor M; Keller, Martin; Studer, Björn; Schulin, Rainer

    2015-09-01

    Many soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions using four large outdoor lysimeters. After monitoring the leachate samples taken at bi-weekly intervals for >1.5 years under drained conditions, two of the lysimeters were subjected to waterlogging with a water table fluctuating according to natural rainfall water infiltration. Antimony leachate concentrations under drained conditions showed a strong seasonal fluctuation between 110 μg L(-1) in summer and soil solution indicated that this decrease in Sb(V) concentrations was attributable to the reduction of Sb(V) to Sb(III) and the stronger sorption affinity of the latter to iron (Fe) (hydr)oxide phases. Our results demonstrate the importance of considering seasonal and waterlogging effects in the assessment of the risks from Sb-contaminated sites. PMID:25592464

  20. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    Science.gov (United States)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  1. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    Directory of Open Access Journals (Sweden)

    Rajmund Michalski

    2012-01-01

    Full Text Available Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices.

  2. Determination of Trace Antimony (III by Adsorption Voltammetry at Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    Nongyue He

    2005-05-01

    Full Text Available This work presents a sensitive method for the determination of trace antimonybased on the antimony-pyrogallol red (PGR adsorption at a carbon paste electrode (CPE.The optimal conditions were to use an electrode containing 25% paraffin oil and 75%high purity graphite powder as working electrode, a 0.10 mol/L HCl solution containing3.0×10-5 mol/L PGR as accumulation medium and a 0.20 mol/L HCl solution aselectrolyte with an accumulation time of 150 s and a reduction time of 60 s at -0.50 Vfollowed with a sweep from -0.50 V to 0.20 V. The mechanism of the electrode reactionwas discussed. Interferences of other metal ions were studied as well. The detection limitwas 1×10-9 mol/L. The linear range was from 2.0×10-9 mol/L to 5.0×10-7 mol/L.Application of the proposed method to the determination of antimony in water andhuman hair samples gave good results.

  3. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    Science.gov (United States)

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes. PMID:26076768

  4. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    Science.gov (United States)

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes.

  5. Effect of antimony incorporation on structural properties of CuInS{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabeh, M., E-mail: mohamedbenrabeh@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Chaglabou, N., E-mail: nadia_chaglabou@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Kanzari, M., E-mail: Mounir.Kanzari@ipeit.rnu.t [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia)

    2010-02-15

    CuInS{sub 2} (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS{sub 2} phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  6. Food crop accumulation and bioavailability assessment for antimony (Sb) compared with arsenic (As) in contaminated soils.

    Science.gov (United States)

    Wilson, Susan C; Tighe, Matthew; Paterson, Ewan; Ashley, Paul M

    2014-10-01

    Field samples and a 9-week glasshouse growth trial were used to investigate the accumulation of mining derived arsenic (As) and antimony (Sb) in vegetable crops growing on the Macleay River Floodplain in Northern New South Wales, Australia. The soils were also extracted using EDTA to assess the potential for this extractant to be used as a predictor of As and Sb uptake in vegetables, and a simplified bioaccessibility extraction test (SBET) to understand potential for uptake in the human gut with soil ingestion. Metalloids were not detected in any field vegetables sampled. Antimony was not detected in the growth trial vegetable crops over the 9-week greenhouse trial. Arsenic accumulation in edible vegetable parts was risk of exposure through short-term vegetable crops is low. The data also demonstrate that uptake pathways for Sb and As in the vegetables were different with uptake strongly impacted by soil properties. A fraction of soil-borne metalloid was soluble in the different soils resulting in Sb soil solution concentration (10.75 ± 0.52 μg L(-1)) that could present concern for contamination of water resources. EDTA proved a poor predictor of As and Sb phytoavailability. Oral bioaccessibility, as measured by SBET, was risk from soil borne As and Sb in the floodplain environment.

  7. Determination of antimony in nail and hair by thermal neutron activation analysis

    International Nuclear Information System (INIS)

    The concentration of antimony in nail and hair was determined by thermal neutron activation analysis. Samples were collected from the workers of an antimony refinery, inhabitants near the refinery, and residents in control area. They were irradiated by Kyoto University 5000 kW Reactor for 1 h, and cooled for 30 to 100 days. After cooling, the concentration of Sb in nail and hair was estimated by measuring the intensity of γ-ray from 124Sb of the samples, then the samples were washed by 0.1 % aqueous solution of nonionic surface active agent in an ultrasonic cleaner. The γ-ray spectrometry was done again (after washing). The concentration of Sb in nail before washing was 730 ppm for the workers, 2.46 ppm for habitants near the refinery, and 0.19 ppm for the control; after washing, it became 230 ppm for the workers, 0.63 ppm for habitants, and 0.09 ppm for the control. The concentration of Sb in hair before and after washing was 222 ppm and 196 ppm for the workers, and 0.21 ppm and 0.15 ppm for the control, respectively. (author)

  8. One-step synthesis of antimony-doped tin dioxide nanocrystallites and their property

    Institute of Scientific and Technical Information of China (English)

    ZHENG Min; WANG Bao

    2009-01-01

    Antimony-doped tin dioxide(ATO) nanoparticles with primary diameter in the range of 9-10 nm were rapidly synthesized via a novel combustion technique, starting with antimony trichloride and tin tetrachloride as metal sources and self-assembly compounds as fuels. The combustion phenomena and characteristics of products were controlled by assembling components in fuel compounds according to appropriate molar ratio. The as-synthesized products were characterized by XRD, SEM, TEM and XPS, respectively. The electrical conductivity was evaluated through measuring the antistatic property of polyester fiber treated by the as-synthesized products. The results show that a mild combustion phenomena without release of smoke can be taken on and perfect azury rutile ATO crystal with complete substitution can be formed rapidly under the appropriate synthetic conditions. The antistatic property of the polyester fiber treated by the as-synthesized ATO products is enhanced remarkably. The triboelectricity voltage below 1.0 kV, half life below 1.0 s and surface resistance below 1.0×106 Ω can be attained.

  9. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  10. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina.

    Directory of Open Access Journals (Sweden)

    Harald Hasler-Sheetal

    Full Text Available Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with scanning electron microscopy coupled to energy dispersive X-ray spectroscopy, chromatographic and spectrophotometric methods, and stable isotope tracing coupled with a mass balance of sulfur compounds. We found that Z. marina detoxified gaseous sediment-derived sulfide through incorporation and that most of the detoxification occurred in underground tissues, where sulfide intrusion was greatest. Elemental sulfur was a major detoxification compound, precipitating on the inner wall of the aerenchyma of underground tissues. Sulfide was metabolized into thiols and entered the plant sulfur metabolism as well as being stored as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments.

  11. The Evolution of Sulfide Tolerance in the Cyanobacteria

    Science.gov (United States)

    Miller, Scott R.; Bebout, Brad M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Understanding how the function of extant microorganisms has recorded both their evolutionary histories and their past interactions with the environment is a stated goal of astrobiology. We are taking a multidisciplinary approach to investigate the diversification of sulfide tolerance mechanisms in the cyanobacteria, which vary both in their degree of exposure to sulfide and in their capacity to tolerate this inhibitor of photosynthetic electron transport. Since conditions were very reducing during the first part of Earth's history and detrital sulfides have been found in Archean sediments, mechanisms conferring sulfide tolerance may have been important for the evolutionary success of the ancestors of extant cyanobacteria. Two tolerance mechanisms have been identified in this group: (1) resistance of photosystem II, the principal target of sulfide toxicity; and (2) maintenance of the ability to fix carbon despite photosystem II inhibition by utilizing sulfide as an electron donor in photosystem I - dependent, anoxygenic photosynthesis. We are presently collecting comparative data on aspects of sulfide physiology for laboratory clones isolated from a variety of habitats. These data will be analyzed within a phylogenetic framework inferred from molecular sequence data collected for these clones to test how frequently different mechanisms of tolerance have evolved and which tolerance mechanism evolved first. In addition, by analyzing these physiological data together with environmental sulfide data collected from our research sites using microelectrodes, we can also test whether the breadth of an organism's sulfide tolerance can be predicted from the magnitude of variation in environmental sulfide concentration it has experienced in its recent evolutionary past and whether greater average sulfide concentration and/or temporal variability in sulfide favors the evolution of a particular mechanism of sulfide tolerance.

  12. Iron-sulfide redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  13. Speciation of arsenic in sulfidic waters

    Directory of Open Access Journals (Sweden)

    Ford Robert G

    2003-03-01

    Full Text Available Formation constants for thioarsenite species have been determined in dilute solutions at 25°C, ΣH2S from 10-7.5 to 10-3.0 M, ΣAs from 10-5.6 to 10-4.8 M, and pH 7 and 10. The principal inorganic arsenic species in anoxic aquatic systems are arsenite, As(OH30, and a mononuclear thioarsenite with an S/As ratio of 3:1. Thioarsenic species with S/As ratios of 1 : 1,2 : 1, and 4 : 1 are lesser components in sulfidic solutions that might be encountered in natural aquatic environments. Thioarsenites dominate arsenic speciation at sulfide concentrations > 10-4.3 M at neutral pH. Conversion from neutral As(OH30 to anionic thioarsenite species may regulate the transport and fate of arsenic in sulfate-reducing environments by governing sorption and mineral precipitation reactions.

  14. Iron-sulfide redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  15. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  16. Progress of Antimony-containing Wastewater Treatment%含锑废水处理技术研究进展

    Institute of Scientific and Technical Information of China (English)

    尹鑫; 周广柱; 王翠珍; 王世豪; 彭刚; 何双

    2014-01-01

    在锑矿的开采及冶炼加工过程中,排出了大量含锑废水,这种重金属废水对环境和人体健康构成严重威胁。本文总结了重金属锑元素的物理化学性质、毒性特点,归纳了含锑废水的处理方法,分析了含锑废水处理技术的优势和缺点,提出了工艺联合应用等高效处理含锑废水的相关建议。%A large amount of wastewater containing antimony discharged in the process of antimony ore mining,smelting and processing,which pose a serious threat to the environment and human health. In this paper we summarized the characteristics of physical and chemical properties, toxicity of antimony, and the antimony wastewater treatment. Advantages and disadvantages of these treatment crafts were compared in a table,the recommendations given out for more efficiently processing via crafts combination.

  17. Electrochemical, structural and surface characterization of nickel/zirconia solid oxide fuel cell anodes in coal gas containing antimony

    Science.gov (United States)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.

    The interactions of antimony with the nickel-zirconia anode in solid oxide fuel cells (SOFCs) have been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800 °C in synthetic coal gas containing 100 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5% power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1600 h depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel resulting in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni 5Sb 2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer, while the late stage degradation was due the Ni-Sb phase formation. Assuming an average Sb concentration in coal gas of 0.07 ppmv, a 500 μm thick Ni/zirconia anode-supported cell is not expected to fail within 7 years when operated at a power output of 0.5 W cm -2 and fuel utilization above 50%.

  18. Ambulatory oesophageal pH monitoring : a comparison between antimony, ISFET, and glass pH electrodes

    NARCIS (Netherlands)

    Hemmink, Gerrit J. M.; Weusten, Bas L. A. M.; Oors, Jac; Bredenoord, Albert J.; Timmer, Robin; Smout, Andre J. P. M.

    2010-01-01

    Background and aim Ambulatory oesophageal pH-impedance monitoring is a widely used test to evaluate patients with reflux symptoms. Several types of pH electrodes are available: antimony, ion sensitive field effect transistor (ISFET), and glass electrodes. These pH electrodes have not been compared d

  19. POLICY China’s Ministry of Commerce Set the Rules for Antimony and Tungsten Export in 2005

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> China’s ministry of commerce recently re-leased the rules and application procedures forthe export of antimony and tungsten productsin 2005 by the domestic producers.Based on the rules set by the ministry,China’santimony and tungsten producers providingtheir products for export must be those enter-prises authorized by the related State authori-ties.

  20. Comparative phytotoxicity of methylated and inorganic arsenic- and antimony species to Lemna minor, Wolffia arrhiza and Selenastrum capricornutum

    NARCIS (Netherlands)

    L. Duester; H.G. van der Geest; S. Moelleken; A.V. Hirner; K. Kueppers

    2011-01-01

    The alkylation of metalloids through the transfer of methyl groups is an important factor in the biogeochemical cycling of elements like arsenic and antimony. In the environment, many different organic and inorganic forms of these elements can therefore be found in soils, sediments or organisms. Stu

  1. Subsurface heaters with low sulfidation rates

    Energy Technology Data Exchange (ETDEWEB)

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  2. Efficiently Dispersing Carbon Nanotubes in Polyphenylene Sulfide

    OpenAIRE

    Sommer, Kevin M; Pipes, R. Byron

    2013-01-01

    Thermal plastics are replacing conventional metals in the aerospace, sporting, electronics, and other industries. Thermal plastics are able to withstand relatively high temperatures, have good fatigue properties, and are lighter than metals. Unfortunately, they are not very electrically conductive. However, adding carbon nanotubes to thermal plastics such as polyphenylene sulfide (PPS) can drastically increase the plastic's conductivity at a low weight percent of nanotubes called the percolat...

  3. Hydrogen sulfide prodrugs—a review

    Directory of Open Access Journals (Sweden)

    Yueqin Zheng

    2015-09-01

    Full Text Available Hydrogen sulfide (H2S is recognized as one of three gasotransmitters together with nitric oxide (NO and carbon monoxide (CO. As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.

  4. Hydrogen sulfide prodrugs—a review

    Science.gov (United States)

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-01-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  5. 从硫化锑矿渣中回收硫实验研究%Experimental study on recycling of sulphur from antimony sulfide slag

    Institute of Scientific and Technical Information of China (English)

    宋剑飞; 李立清; 李静; 李丹; 刘峥; 郑清里; 金科

    2004-01-01

    采用浸取法对硫化锑矿渣中硫单质回收进行了实验研究,选用特殊的有机溶剂Ⅰ*做浸取剂,对液固比、加热时间、加热温度及冷却温度等主要影响因素进行了实验分析.正交实验表明:当特殊的有机溶剂Ⅰ*与矿渣的液固比为10:1,混合搅拌的加热时间为15 min,加热温度为150℃,冷却温度为0℃时,硫的回收效果最佳,回收率可以达到96.6%.所得硫磺的粒度可达到5μm,硫磺的纯度为98%.

  6. American cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis resistant to meglumine antimoniate, but with good response to pentamidine: a case report.

    Science.gov (United States)

    Pimentel, Maria Inês Fernandes; Baptista, Cibele; Rubin, Evelyn Figueiredo; Vasconcellos, Erica de Camargo Ferreira e; Lyra, Marcelo Rosandiski; Salgueiro, Mariza de Matos; Saheki, Maurício Naoto; Rosalino, Cláudia Maria Valete; Madeira, Maria de Fátima; Silva, Aline Fagundes da; Confort, Eliame Mouta; Schubach, Armando de Oliveira

    2011-01-01

    This is a case report of a Brazilian soldier with cutaneous leishmaniasis. The lesion relapsed following two systemic treatments with meglumine antimoniate. The patient was treated with amphotericin B, which was interrupted due to poor tolerance. Following isolation of Leishmania sp., six intralesional infiltrations of meglumine antimoniate resulted in no response. Leishmania sp promastigotes were again isolated. The patient was submitted to intramuscular 4 mg/kg pentamidine. Parasites from the first and second biopsies were identified as Leishmania (Viannia) braziliensis; those isolated from the first biopsy were more sensitive to meglumine antimoniate in vitro than those isolated from the second biopsy. No relapse was observed. PMID:21552747

  7. American cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis resistant to meglumine antimoniate, but with good response to pentamidine: a case report.

    Science.gov (United States)

    Pimentel, Maria Inês Fernandes; Baptista, Cibele; Rubin, Evelyn Figueiredo; Vasconcellos, Erica de Camargo Ferreira e; Lyra, Marcelo Rosandiski; Salgueiro, Mariza de Matos; Saheki, Maurício Naoto; Rosalino, Cláudia Maria Valete; Madeira, Maria de Fátima; Silva, Aline Fagundes da; Confort, Eliame Mouta; Schubach, Armando de Oliveira

    2011-01-01

    This is a case report of a Brazilian soldier with cutaneous leishmaniasis. The lesion relapsed following two systemic treatments with meglumine antimoniate. The patient was treated with amphotericin B, which was interrupted due to poor tolerance. Following isolation of Leishmania sp., six intralesional infiltrations of meglumine antimoniate resulted in no response. Leishmania sp promastigotes were again isolated. The patient was submitted to intramuscular 4 mg/kg pentamidine. Parasites from the first and second biopsies were identified as Leishmania (Viannia) braziliensis; those isolated from the first biopsy were more sensitive to meglumine antimoniate in vitro than those isolated from the second biopsy. No relapse was observed.

  8. Microaeration for hydrogen sulfide removal in UASB reactor.

    Science.gov (United States)

    Krayzelova, Lucie; Bartacek, Jan; Kolesarova, Nina; Jenicek, Pavel

    2014-11-01

    The removal of hydrogen sulfide from biogas by microaeration was studied in Up-flow Anaerobic Sludge Blanket (UASB) reactors treating synthetic brewery wastewater. A fully anaerobic UASB reactor served as a control while air was dosed into a microaerobic UASB reactor (UMSB). After a year of operation, sulfur balance was described in both reactors. In UASB, sulfur was mainly presented in the effluent as sulfide (49%) and in biogas as hydrogen sulfide (34%). In UMSB, 74% of sulfur was detected in the effluent (41% being sulfide and 33% being elemental sulfur), 10% accumulated in headspace as elemental sulfur and 9% escaped in biogas as hydrogen sulfide. The efficiency of hydrogen sulfide removal in UMSB was on average 73%. Microaeration did not cause any decrease in COD removal or methanogenic activity in UMSB and the elemental sulfur produced by microaeration did not accumulate in granular sludge. PMID:25270045

  9. Sulfide scaling in low enthalpy geothermal environments; A survey

    Energy Technology Data Exchange (ETDEWEB)

    Criaud, A.; Fouillac, C. (Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France))

    1989-01-01

    A review of the sulfide scaling phenomena in low-temperature environments is presented. While high-temperature fluids tend to deposit metal sulfides because of their high concentrations of dissolved metals and variations of temperature, pressure and fluid chemistry, low temperature media are characterized by very low metal content but much higher dissolved sulfide. In the case of the goethermal wells of the Paris Basin, detailed studies demonstrate that the relatively large concentrations of chloride and dissolved sulfide are responsible for corrosion and consequent formation of iron sulfide scale composed of mackinawite, pyrite and pyrrhotite. The effects of the exploitation schemes are far less important than the corrosion of the casings. The low-enthalpy fluids that do not originate from sedimentary aquifers (such as in Iceland and Bulgaria), have a limited corrosion potential, and the thin sulfide film that appears may prevent the progress of corrosion.

  10. Oxidation and Precipitation of Sulfide in Sewer Networks

    DEFF Research Database (Denmark)

    Nielsen, A. H.

    for the accumulation of metal sulfides in the biofilms. This was the case even when the iron concentration in the wastewater was increased approximately ten times compared to the in situ concentration. In aerobic biofilms, iron precipitation was apparently controlled by phosphate. Based on the experimental studies...... were studied in both wastewater and biofilms. Particular emphasis was on the importance of iron in the sulfur cycle. Iron is typically among the dominant metals in wastewater. The experiments showed that, ferric iron (Fe(III)) that was added to anaerobic wastewater was rapidly reduced to ferrous iron...... (Fe(II)) and precipitated subsequently with dissolved sulfide as ferrous sulfide (FeS). The ferrous sulfide precipitation was relatively fast, but not immediate. Despite the very low solubility of ferrous sulfide, initially present iron did not react completely with sulfide. This observation...

  11. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    OpenAIRE

    Yu. P. Sedlukho; Yu. O. Stankevich

    2015-01-01

    The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation....

  12. Extraction of Nanosized Cobalt Sulfide from Spent Hydrocracking Catalyst

    OpenAIRE

    Samia A. Kosa; Hegazy, Eman Z.

    2013-01-01

    The processes used for the extraction of metals (Co, Mo, and Al) from spent hydrotreating catalysts were investigated in this study. A detailed mechanism of the metal extraction process is described. Additionally, a simulation study was performed to understand the sulfidizing mechanism. The suggested separation procedure was effective and achieved an extraction of approximately 80–90%. In addition, the sulfidization mechanism was identified. This sulfidizing process for Co was found to involv...

  13. Determination of natural isotopic variation in antimony using inductively coupled plasma mass spectrometry for an uncertainty estimation of the standard atomic weight of antimony

    International Nuclear Information System (INIS)

    The isotopic variation of industrially produced antimony was estimated using multiple-collector inductively coupled plasma mass spectrometry. A reproducible 123Sb/121Sb ratio of ±0.004% (2 standard deviations) was routinely obtained using a Sn doping mass discrimination correction technique. Only a small isotopic variation of about 0.05% was observed among industrially important Sb materials (five commercially available reagents and two ore minerals). The degree of Sb isotopic variation to determine the uncertainty in Sb atomic weight can be reduced by this new analytical technique to 0.00025 compared to the currently accepted IUPAC isotopic variation determined by conventional mass spectrometry of ±0.001. Heavy isotope enrichment of Sb in a drainage water sample from a stibnite mining area was found. This heavy isotope enrichment tendency in an aqueous environment may be useful in detecting anthropogenic Sb input from industrial emission by the smelting process via air because Sb of anthropogenic origin will have lighter isotope enrichment features. (author)

  14. Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

    Science.gov (United States)

    Sahin, Cuneyt

    The emerging field of spintronics relies on the manipulation of electron spin in order to use it in spin-based electronics. Such a paradigm change has to tackle several challenges including finding materials with sufficiently long spin lifetimes and materials which are efficient in generating pure spin currents. This thesis predicts that two types of material families could be a solution to the aforementioned challenges: complex oxides and bismuth based materials. We derived a general approach for constructing an effective spin-orbit Hamiltonian which is applicable to all nonmagnetic materials. This formalism is useful for calculating spin-dependent properties near an arbitrary point in momentum space. We also verified this formalism through comparisons with other approaches for III-V semiconductors, and its general applicability is illustrated by deriving the spin-orbit interaction and predicting spin lifetimes for strained strontium titanate (STO) and a two-dimensional electron gas in STO (such as at the LAO/STO interface). Our results suggest robust spin coherence and spin transport properties in STO related materials even at room temperature. In the second part of the study we calculated intrinsic spin Hall conductivities for bismuth-antimony (BISb) semimetals with strong spin-orbit couplings, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 ((h/e)O--1cm--1) for bismuth to 96((h/e)O--1cm --1) for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi0.83Sb0.17. The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi0.83Sb0.17, by changing the chemical potential by 0.5 e

  15. Limitation of Sulfide Capacity Concept for Molten Slags

    Science.gov (United States)

    Jung, In-Ho; Moosavi-Khoonsari, Elmira

    2016-04-01

    The sulfide capacity concept has been widely used in pyrometallurgy to define sulfur removal capacities of slags. Typically, the sulfide capacity is considered to be a unique slag property depending only on temperature regardless of partial pressures of oxygen and sulfur. In the present study, it is demonstrated that sulfide capacities of slags in particular those of Na2O-containing slags can vary with partial pressures of oxygen and sulfur due to large solubility of sulfide in Na2O-containing slag systems.

  16. Influence of iron on sulfide inhibition in dark biohydrogen fermentation.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Nakhla, George

    2012-12-01

    Sulfide impact on biohydrogen production using dark fermentation of glucose at 37 °C was investigated. Dissolved sulfide (S(2-)) at a low concentration (25mg/L) increased biohydrogen production by 54% relative to the control (without iron addition). Whereas on initial dissolved S(2-) concentration of 500 mg/L significantly inhibited the biohydrogen production with total cumulative biohydrogen decreasing by 90% compared to the control (without iron addition). At sulfide concentrations of 500 mg S(2-)/L, addition of Fe(2+) at 3-4 times the theoretical requirement to precipitate 100% of the dissolved S(2-) entirely eliminated the inhibitory effect of sulfide.

  17. First-Principles Study of Antimony Doping Effects on the Iron-Based Superconductor CaFe(SbxAs1-x)2

    Science.gov (United States)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko; Kuroki, Kazuhiko

    2015-09-01

    We study antimony doping effects on the iron-based superconductor CaFe(SbxAs1-x)2 by using the first-principles calculation. The calculations reveal that the substitution of a doped antimony atom into As of the chainlike As layers is more stable than that into FeAs layers. This prediction can be checked by experiments. Our results suggest that doping homologous elements into the chainlike As layers, which only exist in the novel 112 system, is responsible for rising up the critical temperature. We discuss antimony doping effects on the electronic structure. It is found that the calculated band structures with and without the antimony doping are similar to each other within our framework.

  18. Phytoavailability of antimony and heavy metals in arid regions: the case of the Wadley Sb district (San Luis, Potosí, Mexico).

    Science.gov (United States)

    Levresse, G; Lopez, G; Tritlla, J; López, E Cardellach; Chavez, A Carrillo; Salvador, E Mascuñano; Soler, A; Corbella, M; Sandoval, L G Hernández; Corona-Esquivel, R

    2012-06-15

    This paper presents original results on the Sb and heavy metals contents in sediments and waste tailings, plants and water from the giant Wadley antimony mine district (San Luis Potosí State, Mexico). The dominant antimony phases in mining wastes are stibiconite, montroydite and minor hermimorphite. The waste tailings contain high concentrations of metals and metalloids (antimony, iron, zinc, arsenic, copper, and mercury). Manganese, copper, zinc, and antimony contents exceed the quality guidelines values for groundwater, plants and for waste tailings. Results indicate that peak accumulation is seasonal due to the concentration by high metabolism plants as Solanaceae Nicotiana. The metal phytoavailability in waste tailings is highly dependant on the metal speciation, its capability to be transported in water and, more particularly, the plant metabolism efficiency.

  19. MEASURING METAL SULFIDE COMPLEXES IN OXIC RIVER WATERS WITH SQUARE WAVE VOLTAMMETRY. (R825395)

    Science.gov (United States)

    A sulfide identification protocol was developed to quantify specific metal sulfides that could exist in river water. Using a series of acid additions, nitrogen purges, and voltammetric analyses, metal sulfides were identified and semiquantified in three specific gr...

  20. Thermoelectric transport in surface- and antimony-doped bismuth telluride nanoplates

    Science.gov (United States)

    Pettes, Michael Thompson; Kim, Jaehyun; Wu, Wei; Bustillo, Karen C.; Shi, Li

    2016-10-01

    We report the in-plane thermoelectric properties of suspended (Bi1-xSbx)2Te3 nanoplates with x ranging from 0.07 to 0.95 and thicknesses ranging from 9 to 42 nm. The results presented here reveal a trend of increasing p-type behavior with increasing antimony concentration, and a maximum Seebeck coefficient and thermoelectric figure of merit at x ˜ 0.5. We additionally tuned extrinsic doping of the surface using a tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) coating. The lattice thermal conductivity is found to be below that for undoped ultrathin Bi2Te3 nanoplates of comparable thickness and in the range of 0.2-0.7 W m-1 K-1 at room temperature.

  1. Nuclear quadrupole resonance of iodine pentafluoride and its complexes with antimony pentafluoride

    International Nuclear Information System (INIS)

    The spectra of nuclear quadrupole resonance (NQR) have been obtained at 77 deg K for I127 and Sbsup(121,128) in the IF5, IF5xSbF5, IF5x2SbF5, CsIF6, and RbIF6 compounds. An agreement between quadrupole spectra and structural data have been observed. The results of studying IF5 by NQR, gamma resonance and microwave spectroscopy have been compared. It has been established that unshared electron pair of an iodine atom is stereochemically active which leads to a considerable distortion of octahedral symmetry of coordination polyhedron of the iodine atoms. The structure of complexes of iodine pentafluoride with antimony pentafluoride is given

  2. A novel composite material based on antimony(III) oxide and amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Zemnukhova, Ludmila A. [Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok (Russian Federation); Panasenko, Alexander E., E-mail: panasenko@ich.dvo.ru [Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok (Russian Federation)

    2013-05-01

    The composite material nSb₂O₃·mSiO₂·xH₂O was prepared by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. It has been shown that the composition of the material is influenced by the ratio of the initial components and the acidity of the reaction medium. The morphology of the material particles and its specific surface area have been determined. The thermal and optic properties were also investigated. - Graphical abstract: Novel composite material containing amorphous silica and crystal antimony(III) oxide has been synthesized by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. Highlights: • The composite material nSb₂O₃·mSiO₂·xH₂O was prepared in an aqueous medium. • The composition of the material is controllable by a synthesis conditions. • The morphology of the material and its optic properties have been determined.

  3. Preparation and characterization of conductive antimony-doped tin oxide (ATO) nanoparticles

    Institute of Scientific and Technical Information of China (English)

    LIN; Feng; DUAN; Xue-chen; REN; Xian-jing

    2005-01-01

    In this paper, conductive antimony-doped tin oxide (ATO) composite particles is prepared by hydroxylation method of metal alcoxides. This method has many advantages such as little pollution, low cost, simple sheet and equipment. The synthesis processing and the ATO nanoparticles are characterized by means of transmission electron microscope (TEM), X-ray diffraction (XRD), thermal gravimetric and differential thermal analysis, and BET. The results show that the ATO nanoparticles is tetragonal rutile crystal structure. TEM show that the particles are monodispersed with weak aggromation. The size of the particles calcinated at 700 is about 8nm. The specific areas are 153 m2 · g-1. In addition to, ATO nanop articles have good electric properties

  4. Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries.

    Science.gov (United States)

    Ji, Liwen; Zhou, Weidong; Chabot, Victor; Yu, Aiping; Xiao, Xingcheng

    2015-11-11

    Reduced graphene oxides loaded with tin-antimony alloy (RGO-SnSb) nanocomposites were synthesized through a hydrothermal reaction and the subsequent thermal reduction treatments. Transmission electron microscope images confirm that SnSb nanoparticles with an average size of about 20-30 nm are uniformly dispersed on the RGO surfaces. When they were used as anodes for rechargeable sodium (Na)-ion batteries, these as-synthesized RGO-SnSb nanocomposite anodes delivered a high initial reversible capacity of 407 mAh g(-1), stable cyclic retention for more than 80 cycles and excellent cycle stability at ultra high charge/discharge rates up to 30C. The significantly improved performance of the synthesized RGO-SnSb nanocomposites as Na-ion battery anodes can be attributed to the synergetic effects of RGO-based flexible framework and the nanoscale dimension of the SnSb alloy particles (batteries.

  5. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2/carbon aerogel (CA for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  6. Novel fabrication of an electrochromic antimony-doped tin oxide film using a nanoparticle deposition system

    Science.gov (United States)

    Kim, Hyungsub; Park, Yunchan; Choi, Dahyun; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2016-07-01

    Novel deposition method of Antimony-doped tin oxide (ATO) thin films was introduced using a nanoparticle deposition system (NPDS) to fabricate an electrochromic (EC) device. NPDS is a dry deposition method that simplifies the ATO deposition process by eliminating the need for solvents or binders. In this study, an ATO EC layer was deposited using NPDS. The surface morphology and electrochemical and optical transmittance properties were characterized. The optical transmittance change in the ATO EC device was ∼35% over the wavelength range of 350-800 nm, and the cyclic transmittance was stable. The ATO film deposited using NPDS, exhibited a coloration efficiency of 15.5 cm2 C-1. Therefore, our results suggest that ATO EC devices can be fabricated using a simple, cost-effective NPDS, which allows nanoparticles to be deposited directly without pre- or post-processing.

  7. Properties of antimony doped ZnO thin films deposited by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Sadananda Kumar, N., E-mail: sadanthara@gmail.com; Bangera, Kasturi V.; Shivakumar, G. K. [National Institute of Technology Karnataka, Surathkal, Thin Films Laboratory, Department of Physics (India)

    2015-07-15

    Antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on the glass substrate at 450°C using spray pyrolysis technique. Effect of Sb doping on surface morphology structural, optical and electrical properties were studied. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (101) preferred orientation. SEM analysis showed a change in surface morphology of Sb doped ZnO thin films. Doping results in a marked increase in conductivity without affecting the transmittance of the films. ZnO films prepared with 3 at % Sb shows the lowest resistivity of 0.185 Ohm cm with a Hall mobility of 54.05 cm{sup 2} V{sup –1} s{sup –1}, and a hole concentration of 6.25 × 10{sup 17} cm{sup –3}.

  8. Renal function evaluation in patients with American Cutaneous Leishmaniasis after specific treatment with pentavalent antimonial

    Directory of Open Access Journals (Sweden)

    Oliveira Rodrigo A

    2012-06-01

    Full Text Available Abstract Background Renal evaluation studies are rare in American Cutaneous Leishmaniasis (ACL. The aim of this study is to investigate whether specific treatment reverts ACL-associated renal dysfunction. Methods A prospective study was conducted with 37 patients with ACL. Urinary concentrating and acidification ability was assessed before and after treatment with pentavalent antimonial. Results The patients mean age was 35.6 ± 12 years and 19 were male. Before treatment, urinary concentrating defect (U/Posm Conclusion As previously described, urinary concentrating and acidification defects were found in an important number of patients with ACL. Present results demonstrate that only some patients recover urinary acidification capacity, while no one returned to normal urinary concentration capacity.

  9. Supermolecular template route to fabrication of well crystallized hollow antimony microspheres

    Institute of Scientific and Technical Information of China (English)

    GU Li; CHEN Shu-da; WEI Xiao-yan

    2006-01-01

    Hollow spheres of elemental antimony (Sb) with good crystallinity, high contrast and thin wall were prepared in the solutions of poly(ethylene glycol) (PEG) and oleic acid(OA) associations at the refluxed temperature. The complexes of Sb3+ with tartaric acid were used as precursors, which can avoid the hydrolysis of SbCl3 and the resulting impurity of products. The average diameter and thickness of the as-prepared hollow sphere are about 300 nm and less than 20 nm, respectively. The formation of hollow spheres depends on the template function of PEG and OA associations, which can be confirmed through the theoretical analysis and results of control experiments. The specific surface area reaches 34.669 m2/g.

  10. 锑环境健康效应的研究进展%Environmental Health Effect of Antimony: a Review of Recent Researches

    Institute of Scientific and Technical Information of China (English)

    戈兆凤; 韦朝阳

    2011-01-01

    随着锑的开采及含锑产品的广泛应用,锑所带来的污染问题已越来越严重,锑对环境与健康的危害也受到了更多的关注.该文总结了锑环境健康效应的研究进展,从医学、环境毒理学和生态毒理学的角度分别分析了锑对人、动物以及植物与土壤生物的健康效应.提示今后还需加强锑的致癌性及基因毒性研究,并需从微观与宏观尺度揭示锑的毒性效应,以期为锑的环境健康风险评估提供科学依据.%The antimony mining and widely use of antimony products have resulted in serious antimony contamination,causing hazards to both the environment and human health. The present paper summarized the research progresses on the environmental health effect of antimony. The health effects of antimony on human, animals, and plants as well as soil organisms are introduced and discussed in the view of medical science, environmental toxicology and ecological toxicology, respectively. It is suggested that more researches should be conducted on antimony earcinogenieity and genotoxicity, and the toxic effects of antimony should be explored from micro and macroscopic scales in order to provide the scientific basis for risk assessment of antimony.

  11. Successful treatment of feline leishmaniosis using a combination of allopurinol and N-methyl-glucamine antimoniate

    Directory of Open Access Journals (Sweden)

    Maria Alexandra Basso

    2016-02-01

    Full Text Available Case summary This work describes the diagnosis and successful treatment of a 2-year-old domestic cat infected with Leishmania species and presenting fever, and ulcerative and nodular skin lesions after being treated for pyodermatitis for 1 year without clinical improvement. After anamnesis the cat was submitted to a complete clinical examination. Blood was collected for determination of haematological and biochemical parameters, detection of feline leukaemia virus (FeLV, feline immunodeficiency virus (FIV, feline coronavirus (FCoV and Leishmania amastigotes. Fine-needle aspiration puncture from the skin nodules was also performed. After definitive diagnosis the animal was treated and followed up over a 2 year period. The animal tested negative for FIV-specific antibodies, FeLV antigen and feline coronavirus RNA. Leishmania amastigotes in the skin nodules were confirmed by cytology and molecular diagnosis. Treatment was initiated with allopurinol, resulting in a slight clinical improvement. Thus, N-methyl-glucamine antimoniate was added and administered for 30 days, with complete closure of the ulcerative lesions in the hindlimbs requiring a surgical approach. Close monitoring of the patient in the following 24 months indicated that combined therapy was safe and clinical cure was achieved without further relapses or side effects. Relevance and novel information Considering the increasing number of feline leishmaniosis cases and the inconsistent results of most therapeutic protocols described in the literature, the use of new approaches, especially in refractory cases, is essential. Although the use of allopurinol and N-methyl-glucamine antimoniate is off-label in cats, in this case the combination treatment was followed by an extensive analytical monitoring, supporting their safety and effectiveness.

  12. Infrared-to-red upconversion luminescence in samarium-doped antimony glasses

    International Nuclear Information System (INIS)

    A new antimony-based glass system (K2O-B2O3-Sb2O3) having low phonon energy (about 600 cm-1) doped with Sm3+ ions has been developed. Infrared reflection spectroscopic (IRRS) studies have been employed to establish its low phonon energy. Ultraviolet-Visible-near infrared (UV-Vis-NIR) absorption and photoluminescence upconversion properties with the spectrochemistry of the 15K2O-15B2O3-70Sb2O3 (mol%) glasses have been studied doping with different concentrations (0.1-1.0 wt%) of Sm2O3. UV-Vis-NIR absorption band positions have been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 949 nm at room temperature. Three upconverted bands originating from the 4G5/2→6H5/2, 4G5/2→6H7/2 and 4G5/2→6H9/2 transitions are found to be centered at 566 (green, weak), 602 (orange, weak) and 636 (red, remarkably strong) nm, respectively. These bands have been explained from the evaluation of the absorption, normal (downconversion) fluorescence and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET) and cross-relaxation (CR) mechanisms involving population of the metastable (storage) energy level (4G5/2) by multiphonon deexcitation effect. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in antimony glasses owing to their low phonon energy (602 cm-1, the main and highest intensity Sb-O-Sb stretching band) which is very close to that of fluoride glasses (500-600 cm-1)

  13. Optical properties of Eu3+-doped antimony-oxide-based low phonon disordered matrices

    Science.gov (United States)

    Som, Tirtha; Karmakar, Basudeb

    2010-01-01

    A new series of monolithic Eu2O3-doped high antimony oxide (40-80 mol%) content disordered matrices (glasses) of low phonon energy (about 600 cm-1) in the K2O-B2O3-Sb2O3 (KBS) system was prepared by the melt-quench technique. Infrared reflection spectroscopy was used to establish the low phonon energy of the glasses. Amorphicity and devitrification of the glasses were confirmed by x-ray diffraction analysis. UV-vis absorption spectra of Eu3+ have been measured and the band positions have been justified with quantitative calculation of the nephelauxetic parameter and covalent bonding characteristics of the host. These Eu2O3-doped glasses upon excitation at 393 nm radiation exhibit six emission bands in the range 500-750 nm due to their low phonon energy. Of these, the magnetic dipole ^{5}\\mathrm {D}_{0} \\to {}^{7} \\mathrm {F_{1}} transition shows small Stark splitting while the electric dipole ^{5}\\mathrm {D}_{0} \\to {}^{7}\\mathrm {F}_{2} transition undergoes remarkable Stark splitting into two components. They have been explained by the crystal field effect. The Judd-Ofelt parameters, Ωt = 2,4,6, were also evaluated and the change of Ωt with the glass composition was correlated with the asymmetric effect at Eu3+ ion sites and the fundamental properties like covalent character and optical basicity. We are the first to report the spectroscopic properties of the Eu3+ ion in KBS low phonon antimony glasses.

  14. Optical characterization of antimony-based bismuth-doped thin films with different annealing temperatures

    Institute of Scientific and Technical Information of China (English)

    Xinmiao Lu; Yiqun Wu; Yang Wang; Jinsong Wei

    2011-01-01

    Antimony-b ased bismuth-doped thin film,a new kind of super-resolution mask layer,is prepared by magnetron sputtering.The structures and optical constants of the thin films before and after annealing are examined in detail.The as-deposited film is mainly in an amorphous state.After annealing at 170-370℃,it is converted to the rhombohedral-type of structure.The extent of crystallization increased with the annealing temperature.When the thin film is annealed,its refractive index decreased in the most visible region,whereas the extinction coefficient and reflectivity are markedly increased.The results indicate that the optical parameters of the film strongly depend on its microstructure and the bonding of the atoms.As demand for ultrahigh-density information storage continues to grow the recording mark size in optical memory is reduced to the nanometer scale [1- 4].Exceeding the optical diffraction limit with traditional optical storage technology has become a challenge[5-6].%Antimony-based bismuth-doped thin film, a new kind of super-resolution mask layer, is prepared by magnetron sputtering. The structures and optical constants of the thin films before and after annealing are examined in detail. The as-deposited film is mainly in an amorphous state. After annealing at 170-370℃, it is converted to the rhombohedral-type of structure. The extent of crystallization increased with the annealing temperature. When the thin film is annealed, its refractive index decreased in the most visible region, whereas the extinction coefficient and reflectivity are markedly increased. The results indicate that the optical parameters of the film strongly depend on its microstructure and the bonding of the atoms.

  15. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco

    DEFF Research Database (Denmark)

    Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild;

    2015-01-01

    An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree...

  16. Solubility of hydrogen sulfide in water

    International Nuclear Information System (INIS)

    The solubility of hydrogen sulfide in water, which is of importance in the design and analysis of the dual temperature process for the production of heavy water, has been measured in the temperature range 100 - 1800C at pressures up to 6670 kPa or the hydrate/H2S-rich liquid locus, whichever is lower at the particular temperature. Limited vapor phase data at 900, 1200, and 1500C were also obtained. Henry's coefficients have been determined from the experimental data. (orig./HK)

  17. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts...... satisfactorily oxidation of OCS over a wide range of stoichiometric air–fuel ratios (0.5 ≤λ≤7.3), temperatures (450–1700 K), and pressures (0.02–3.0 atm) under dry conditions. The governing reaction mechanisms are outlined based on calculations with the kinetic model. The oxidation rate of OCS is controlled...

  18. Normal State of the Metallic Hydrogen Sulfide

    OpenAIRE

    Kudryashov, Nikolay A.; Kutukov, Alexander A.; Mazur, Evgeny A.

    2016-01-01

    Generalized theory of the normal properties of the metal in the case of the electron-phonon (EP) systems with not constant density of electronic states is used to examine the normal state of the SH3 and SH2 phase of the hydrogen sulfide at different pressures. The frequency dependence of the real and imaginary part of the self-energy part (SP) of the electron Green's function, the real and imaginary part of the complex renormalization of the electron mass, the real and imaginary part of the c...

  19. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum.

    Science.gov (United States)

    Gómez Pérez, Verónica; García-Hernandez, Raquel; Corpas-López, Victoriano; Tomás, Ana M; Martín-Sanchez, Joaquina; Castanys, Santiago; Gamarro, Francisco

    2016-08-01

    Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania infantum, is one of the most important zoonotic diseases affecting dogs and humans in the Mediterranean area. The presence of infected dogs as the main reservoir host of L. infantum is regarded as the most significant risk for potential human infection. We have studied the susceptibility profile to antimony and other anti-leishmania drugs (amphotericin B, miltefosine, paromomycin) in Leishmania infantum isolates extracted from a dog before and after two therapeutic interventions with meglumine antimoniate (subcutaneous Glucantime(®), 100 mg/kg/day for 28 days). After the therapeutic intervention, these parasites were significantly less susceptible to antimony than pretreatment isolate, presenting a resistance index of 6-fold to Sb(III) for promastigotes and >3-fold to Sb(III) and 3-fold to Sb(V) for intracellular amastigotes. The susceptibility profile of this resistant L. infantum line is related to a decreased antimony uptake due to lower aquaglyceroporin-1 expression levels. Additionally, other mechanisms including an increase in thiols and overexpression of enzymes involved in thiol metabolism, such as ornithine decarboxylase, trypanothione reductase, mitochondrial tryparedoxin and mitochondrial tryparedoxin peroxidase, could contribute to the resistance as antimony detoxification mechanisms. A major contribution of this study in a canine L. infantum isolate is to find an antimony-resistant mechanism similar to that previously described in other human clinical isolates. PMID:27317865

  20. 湿法生产锑白渣中硫磺的回收工艺%Reclaiming technology of sulphur from leaching residue of antimony white with hydrometallurgical process

    Institute of Scientific and Technical Information of China (English)

    王文侠

    2012-01-01

    A sulphur reclaiming method from leaching residue of antimony white with hydrometallurgical process was introduced. Ammonia sulfide solution was selected as extracted liquor,and sulphur in leaching residue could form polysulfide ions, which will dissolve in the solution.The filtrate was separated out through suction filtration and the thermal decomposition was carried out.The produced gas was led out and absorbed, which can be used circularly.Finally, sulphur product could be prepared through thermal decomposition of filtrate.The best extraction conditions included the ratio of solid to liquid of 1:20, leaching time of 2 h,and leaching temperature of 20 t.The process had many advantages,such as equipment,technology, and sulphur extracting operation were very simple,the extract liquid could be returned for recycling,the cost was lower, the quality of the sulphur products was good,and the total sulphur recovery could reach over 99%.At the same time,the waste residue of antimony prodcution was recycled and utilized comprehensively, so that the pollution of the environment and the pile-up of waste residue could be reduced.%介绍了一种从湿法生产锑白渣中回收硫磺的方法.以硫化铵溶液作为提取液浸取矿渣,矿渣中的硫可生成多硫离子而溶解转入溶液中,抽滤分离出滤液,将产生的气体导出并吸收,吸收后可返回循环使用;滤液热分解后可得到硫磺产品.最佳提取条件:固液比为1:20、浸取温度为20℃、浸取时间为2 h.该工艺设备及提硫操作简单,硫化铵可循环利用,成本较低,硫磺产品的质量较好,硫的总回收率可达99%以上.同时利用了浸锑废渣,实现资源 综合回收利用,又减少环境污染和废渣的堆积量.

  1. 21 CFR 73.2995 - Luminescent zinc sulfide.

    Science.gov (United States)

    2010-04-01

    ... coloring externally applied facial makeup preparations and nail polish included under § 720.4(c)(7)(ix) and... zinc sulfide in facial makeup preparations shall not exceed 10 percent by weight of the final product. (2) Facial makeup preparations containing luminescent zinc sulfide are intended for use only...

  2. Effect of Soluble Sulfide on the Activity of Luminescent Bacteria

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2012-05-01

    Full Text Available Sulfide is an important water pollutant widely found in industrial waste water that has attracted much attention. S2−, as a weak acidic anion, is easy hydrolyzed to HS and H2S in aqueous solution. In this study, biological tests were performed to establish the toxicity of sulfide solutions on luminescent bacteria. Considering the sulfide solution was contained three substances—S2−, HS and H2S—the toxicity test was performed at different pH values to investigate which form of sulfide increased light emission and which reduced light emission. It was shown that the EC50 values were close at pH 7.4, 8.0 and 9.0 which were higher than pH 5 and 10. The light emission and sulfide concentrations displayed an inverse exponential dose-response relationship within a certain concentration range at pH 5, 6.5 and 10. The same phenomenon occurred for the high concentration of sulfide at pH 7.4, 8 and 9, in which the concentration of sulfide was HS >> H2S > S2−. An opposite hormesis-effect appeared at the low concentrations of sulfide.

  3. Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia.

    Science.gov (United States)

    Bos, Eelke M; van Goor, Harry; Joles, Jaap A; Whiteman, Matthew; Leuvenink, Henri G D

    2015-03-01

    Hydrogen sulfide (H2 S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2 S, focusing upon the protective effects of hydrogen sulfide in models of hypoxia and ischaemia.

  4. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sulfide analytical methods and applicability. 425.03 Section 425.03 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 425.03 Sulfide analytical methods and applicability. (a) The potassium ferricyanide titration...

  5. Sodium Antimony Gluconate Induces Generation of Reactive Oxygen Species and Nitric Oxide via Phosphoinositide 3-Kinase and Mitogen-Activated Protein Kinase Activation in Leishmania donovani-Infected Macrophages

    OpenAIRE

    Mookerjee Basu, Jayati; Mookerjee, Ananda; Sen, Prosenjit; Bhaumik, Suniti; Sen, Pradip; Banerjee, Subha; Naskar, Ksudiram; Choudhuri, Soumitra K.; Saha, Bhaskar; Raha, Sanghamitra; Roy, Syamal

    2006-01-01

    Pentavalent antimony complexes, such as sodium stibogluconate and sodium antimony gluconate (SAG), are still the first choice for chemotherapy against various forms of leishmaniasis, including visceral leishmaniasis, or kala-azar. Although the requirement of a somewhat functional immune system for the antileishmanial action of antimony was reported previously, the cellular and molecular mechanism of action of SAG was not clear. Herein, we show that SAG induces extracellular signal-regulated k...

  6. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor.

    Science.gov (United States)

    Sun, Weimin; Xiao, Enzong; Kalin, Margarete; Krumins, Valdis; Dong, Yiran; Ning, Zengping; Liu, Tong; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Mao, Jianzhong; Xiao, Tangfu

    2016-08-01

    An on-site field-scale bioreactor for passive treatment of antimony (Sb) contamination was installed downstream of an active Sb mine in Southwest China, and operated for one year (including a six month monitoring period). This bioreactor consisted of five treatment units, including one pre-aerobic cell, two aerobic cells, and two microaerobic cells. With the aerobic cells inoculated with indigenous mine water microflora, the bioreactor removed more than 90% of total soluble Sb and 80% of soluble antimonite (Sb(III)). An increase in pH and decrease of oxidation-reduction potential (Eh) was also observed along the flow direction. High-throughput sequencing of the small subunit ribosomal RNA (SSU rRNA) gene variable (V4) region revealed that taxonomically diverse microbial communities developed in the bioreactor. Metal (loid)-oxidizing bacteria including Ferrovum, Thiomonas, Gallionella, and Leptospirillum, were highly enriched in the bioreactor cells where the highest total Sb and Sb(III) removal occurred. Canonical correspondence analysis (CCA) indicated that a suite of in situ physicochemical parameters including pH and Eh were substantially correlated with the overall microbial communities. Based on an UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis), the microbial composition of each cell was distinct, indicating these in situ physicochemical parameters had an effect in shaping the indigenous microbial communities. Overall, this study was the first to employ a field-scale bioreactor to treat Sb-rich mine water onsite and, moreover, the findings suggest the feasibility of the bioreactor in removing elevated Sb from mine waters. PMID:27208755

  7. Hydrogen Sulfide and Polysulfides as Biological Mediators

    Directory of Open Access Journals (Sweden)

    Hideo Kimura

    2014-10-01

    Full Text Available Hydrogen sulfide (H2S is recognized as a biological mediator with various roles such as neuromodulation, regulation of the vascular tone, cytoprotection, anti-inflammation, oxygen sensing, angiogenesis, and generation of mitochondrial energy. It is produced by cystathionine β-synthase (CBS, cystathionine γ-lyase (CSE, and 3-mercaptopyruvate sulfurtransferase (3MST. The activity of CBS is enhanced by S-adenosyl methionine (SAM and glutathionylation, while it is inhibited by nitric oxide (NO and carbon monoxide (CO. The activity of CSE and cysteine aminotransferase (CAT, which produces the 3MST substrate 3-mercaptopyruvate (3MP, is regulated by Ca2+. H2S is oxidized to thiosulfate in mitochondria through the sequential action of sulfide quinone oxidoreductase (SQR, sulfur dioxygenase, and rhodanese. The rates of the production and clearance of H2S determine its cellular concentration. Polysulfides (H2Sn have been found to occur in the brain and activate transient receptor potential ankyrin 1 (TRPA1 channels, facilitate the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2 to the nucleus, and suppress the activity of phosphatase and tensin homolog (PTEN by sulfurating (sulfhydrating the target cysteine residues. A cross talk between H2S and NO also plays an important role in cardioprotection as well as regulation of the vascular tone. H2S, polysulfides, and their cross talk with NO may mediate various physiological and pathophysiological responses.

  8. Calculation of sulfide capacities of multicomponent slags

    Science.gov (United States)

    Pelton, Arthur D.; Eriksson, Gunnar; Romero-Serrano, Antonio

    1993-10-01

    The Reddy-Blander model for the sulfide capacities of slags has been modified for the case of acid slags and to include A12O3 and TiO2 as components. The model has been extended to calculate a priori sulfide capacities of multicomponent slags, from a knowledge of the thermodynamic activities of the component oxides, with no adjustable parameters. Agreement with measurements is obtained within experimental uncertainty for binary, ternary, and quinary slags involving the components SiO2-Al2O3-TiO2-CaO-MgO-FeO-MnO over wide ranges of composition. The oxide activities used in the computations are calculated from a database of model parameters obtained by optimizing thermodynamic and phase equilibrium data for oxide systems. Sulfur has now been included in this database. A computing system with automatic access to this and other databases has been developed to permit the calculation of the sulfur content of slags in multicomponent slag/metal/gas/solid equilibria.

  9. First detection of doubly deuterated hydrogen sulfide

    CERN Document Server

    Vastel, C; Ceccarelli, C; Pearson, J

    2003-01-01

    This work was carried out with using the Caltech Submillimeter Observatory and presents the observational study of HDS and D2S towards a sample of Class 0 sources, and dense cores. We report the first detection of doubly deuterated hydrogen sulfide (D2S) in two dense cores and analyze the chemistry of these molecules aiming to help understand the deuteration processes in the interstellar medium. The observed values of the D2S/HDS ratio, and upper limits, require an atomic D/H ratio in the accreting gas of 0.1-1. The study presented in this Letter supports the hypothesis that formaldehyde, methanol and hydrogen sulfide are formed on the grain surfaces, during the cold pre-stellar core phase, where the CO depleted gas has large atomic D/H ratios. The high values for the D/H ratios are consistent with the predictions of a recent gas-phase chemical model that includes H3+ and its deuterated isotopomers, H2D+, D2H+ and D3+ (Roberts et al. 2003).

  10. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides

    Directory of Open Access Journals (Sweden)

    Priyanka Jood

    2015-03-01

    Full Text Available Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS2-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS2 sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor.

  11. Effect of palladium on sulfide tarnishing of noble metal alloys.

    Science.gov (United States)

    Suoninen, E; Herø, H; Minni, E

    1985-10-01

    Electron spectroscopic studies of Au-Ag-Cu alloys of the type used for dental castings show that small additions (less than or equal to 3 wt%) of palladium reduce essentially the thickness of the sulfide layer formed on surfaces of samples treated in aqueous Na2S solutions. Relative to silver, palladium does not enrich in the sulfide, but statistically significant enrichment is found immediately below the sulfide layer. This enrichment probably takes place during the exposure of the substrate surface to atmosphere before the sulfiding treatment. The mechanism of the impeding effect of palladium on sulfiding is assumed to be a decrease in diffusion from the bulk alloy to the surface due to the enriched layer. The effect cannot be explained by changes in the electronic structure of the alloy due to palladium alloying.

  12. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  13. Cyanide and antimony thermodynamic database for the aqueous species and solids for the EPA-MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Sehmel, G.A.

    1989-05-01

    Thermodynamic data for aqueous species and solids that contain cyanide and antimony were tabulated from several commonly accepted, published sources of thermodynamic data and recent journal article. The review does not include gases or organic complexes of either antimony or cyanide, nor does the review include the sulfur compounds of cyanide. The basic thermodynamic data, ..delta..G/sub f,298//sup o/, ..delta..H/sub f,298//sup o/, and S/sub f//sup o/ values, were chosen to represent each solid phase and aqueous species for which data were available in the appropriate standard state. From these data the equilibrium constants (log K/sub r,298//sup o/) and enthalpies of reaction (..delta..H/sub r,298//sup o/) at 298 K (25/degree/C) were calculated for reactions involving the formation of these aqueous species and solids from the basic components. 34 refs., 14 tabs.

  14. Antimony incorporation in InAs quantum dots grown on GaAs substrate by molecular beam epitaxy

    Science.gov (United States)

    Rihani, J.; Sallet, V.; Christophe, H. J.; Oueslati, M.; Chtourou, R.

    2008-01-01

    We have grown InAs(Sb) quantum dots (QDs) on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE) using two different antimony exposures ( ΦSb). Atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy were carried out to investigate the dot size evolution as function of the incorporated antimony content in InAs/GaAs QDs material. Anomalous asymmetric-band feature was observed in room temperature photoluminescence (RTPL) spectra of the investigated QD samples grown at relatively high temperature (490 °C). From the temperature-dependent PL measurements, it was found that the asymmetric-band feature is associated with the ground-states transitions from QDs with bimodal size distribution. The analysis of the pump power dependent PL spectra allows us to suggest a type II band lineup for the InAsSb/GaAs QDs materials system.

  15. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    Science.gov (United States)

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  16. Co-administration of glycyrrhizic acid with the antileishmanial drug sodium antimony gluconate (SAG) cures SAG-resistant visceral leishmaniasis.

    Science.gov (United States)

    Bhattacharjee, Amrita; Majumder, Saikat; Majumdar, Suchandra Bhattacharyya; Choudhuri, Soumitra Kumar; Roy, Syamal; Majumdar, Subrata

    2015-03-01

    Since there are very few affordable antileishmanial drugs available, antimonial resistance has crippled antileishmanial therapy, thereby emphasising the need for development of novel therapeutic strategies. This study aimed to evaluate the antileishmanial role of combined therapy with sodium antimony gluconate (SAG) and the triterpenoid glycyrrhizic acid (GA) against infection with SAG-resistant Leishmania (GE1F8R). Combination therapy with GA and SAG successfully limited infection with SAG-resistant Leishmania in a synergistic manner (fractional inhibitory concentration index resistant Leishmania and co-treated with GA and SAG exhibited a significant reduction in hepatic and splenic parasite burden. In probing the mechanism, it was observed that GA treatment suppressed the expression and efflux activity of P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1), two host ABC transporters responsible for antimony efflux from host cells infected with SAG-resistant parasites. This suppression correlated with greater intracellular antimony retention during SAG therapy both in vitro and in vivo, which was reflected in the reduced parasite load. Furthermore, co-administration of GA and SAG induced a shift in the cytokine balance towards a Th1 phenotype by augmenting pro-inflammatory cytokines (such as IL-12, IFNγ and TNFα) and inducing nitric oxide generation in GE1F8R-infected macrophages as well as GE1F8R-infected mice. This study aims to provide an affordable leishmanicidal alternative to expensive antileishmanial drugs such as miltefosine and amphotericin B. Furthermore, this report explores the role of GA as a resistance modulator in MRP1- and P-gp-overexpressing conditions. PMID:25600891

  17. Exploring screen printing technology on thermoelectric energy harvesting with printing copper-nickel and bismuth-antimony thermocouples

    OpenAIRE

    Cao, Zhuo; Koukharenko, Elena; Torah, R; Beeby, SP

    2013-01-01

    This paper reports the fabrication and testing of copper (Cu) - nickel (Ni) and bismuth (Bi) - antimony (Sb) based thermocouples fabricated using screen printing technology. The transport properties of the printed thermoelectric material were measured in room temperature while the Seebeck voltage and power output of the printed thermocouples were tested under a variety temperature gradient. Initial thermoelectric materials have been integrated in inks and then deposited on substrate by the si...

  18. The Potential Impact of Biofield Energy Treatment on the Atomic and Physical Properties of Antimony Tin Oxide Nanopowder

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Antimony tin oxide (ATO) is known for its high thermal conductivity, optical transmittance, and wide energy band gap, which makes it a promising material for the display devices, solar cells, and chemical sensor industries. The present study was undertaken to evaluate the effect of biofield energy treatment on the atomic and physical properties of ATO nanopowder. The ATO nanopowder was divided into two parts: control and treated. The treated part was subjected to Mr. Trivedi’s biofield ...

  19. The influence of remelting on the properties of AlSi6Cu4 alloy modified by antimony

    OpenAIRE

    D. Medlen; D. Bolibruchova

    2012-01-01

    The paper deals with the problem of multiple remelting influence on AlSi6Cu4 alloy modified by antimony on chosen mechanical characteristics, microstructure and gas content. This foundry alloy is used mostly in automotive industry. Foundry Aluminum-Silicon alloys are also used in number of industrial weight sensitive applications because of their low weight and very good castability and good mechanical properties. Modifiers are usually added to molten aluminum-silicon alloys to refine the eut...

  20. EFFECT OF GRAIN BOUNDARY SEGREGATION OF ANTIMONY ON RELAXATION AT GRAIN BOUNDARIES IN SILICON-IRON ALLOYS

    OpenAIRE

    Iwasaki, Y.; Fujimoto, K

    1981-01-01

    A sharp grain boundary peak appears in both 2 and 3% silicon-iron alloys due to a substitutional solute of silicon. This peak is highly sensitive to the segregation of the third element of antimony and, contrary to orthodox solute peaks in binary and ternary alloys, largely decreases in magnitude on heating after a segregation treatment. The subsequent measurement on cooling returns the peak to the ordinary magnitude. As a function of annealing time at a temperature of segregation, the height...

  1. Evaluation of potential dietary toxicity of heavy metals in some common Nigerian beverages: A look at antimony, tin and mercury

    Directory of Open Access Journals (Sweden)

    I.I. Roberts

    2011-11-01

    Full Text Available There is currently little information on the composition of heavy metals in beverages imported and locally produced in Nigeria. The study quantitatively determined the composition of antimony (Sb, tin (Sn and mercury (Hg in 50 different beverage samples and evaluated the extent of violation of guideline values. Analysis of the beverage samples for the presence of Sb, Sn, and Hg was carried out using an atomic absorption spectrophotometer (AAS 929. The mean values detected for mercury, tin and antimony (±SE in fruit juices and soft drinks were 2.39±0.25, 3.66±0.22 and 0.49±0.048 μg/l; 2.93±0.34, 3.60±0.46 and 0.49±0.10 μg/l in dairy drinks and 0.94±0.02, 4.34±0.48 and 0.48±0.05 μg/l in bottled water samples respectively. While antimony detected in all products was below guideline values, mercury and tin were above the acceptable levels established by the World Health Organization, United States Environmental Protection Agency and European Union in most samples tested.

  2. Precipitation of antimony from the solution of sodium thioantimonite by air oxidation in the presence of catalytic agents

    Institute of Scientific and Technical Information of China (English)

    杨天足; 赖琼琳; 唐建军; 楚广

    2002-01-01

    The behavior of antimony oxidation in the solution of sodium thioantimonite was studied in the presence of catalytic agents. The catalytic effects of the respective addition of cupric sulfate, sodium tartrate, potassium permanganate, phenol, 1,2-dihydroxybenzene and their combination on the oxidation of sodium thioantimonite were investigated. A pilot test was carried out. The results show that the respective use of sodium tartrate, cupric sulfate, potassium permanganate, phenol and 1,2-dihydroxybenzene have little catalytic effect on the oxidation of sodium thioantimonite. However there exists obvious catalytic oxidation by the combination of 0.25 g/L 1,2-dihydroxybenzene, 0.5 g/L potassium permanganate and 1.0 g/L phenol. Moreover, high blast intensity, the increase of temperature and NaOH concentration favor the oxidation of antimony. The oxidation process of antimony has such advantages as quick reaction and low operation costs. The results of the pilot test are consistent with those of laboratory experiments.

  3. Separation of Lead from Crude Antimony by Pyro-Refining Process with NaPO3 Addition

    Science.gov (United States)

    Ye, Longgang; Hu, Yuejie; Xia, Zhimei; Chen, Yongming

    2016-06-01

    The main purpose of this study was to separate lead from crude antimony through an oxidation pyro-refining process and by using sodium metaphosphate as a lead elimination reagent. The process parameters that will affect the refining results were optimized experimentally under controlled conditions, such as the sodium metaphosphate charging dosage, the refining temperature and duration, and the air flow rate, to determine their effect on the lead content in refined antimony and the lead removal rate. A minimum lead content of 0.0522 wt.% and a 98.6% lead removal rate were obtained under the following optimal conditions: W_{{{NaPO}_{{3}} }} = 15% W Sb (where W represents weight), a refining temperature of 800°C, a refining time of 30 min, and an air flow rate of 3 L/min. X-ray diffractometry and scanning electron microscopy showed that high-purity antimony was obtained. The smelting operation is free from smoke or ammonia pollution when using monobasic sodium phosphate or ammonium dihydrogen phosphate as the lead elimination reagent. However, this refining process can also remove a certain amount of sulfur, cobalt, and silicon simultaneously, and smelting results also suggest that sodium metaphosphate can be used as a potential lead elimination reagent for bismuth and copper refining.

  4. PANCREATIC TOXICITY AS AN ADVERSE EFFECT INDUCED BY MEGLUMINE ANTIMONIATE THERAPY IN A CLINICAL TRIAL FOR CUTANEOUS LEISHMANIASIS

    Science.gov (United States)

    LYRA, Marcelo Rosandiski; PASSOS, Sonia Regina Lambert; PIMENTEL, Maria Inês Fernandes; BEDOYA-PACHECO, Sandro Javier; VALETE-ROSALINO, Cláudia Maria; VASCONCELLOS, Erica Camargo Ferreira; ANTONIO, Liliane Fatima; SAHEKI, Mauricio Naoto; SALGUEIRO, Mariza Mattos; SANTOS, Ginelza Peres Lima; RIBEIRO, Madelon Noato; CONCEIÇÃO-SILVA, Fatima; MADEIRA, Maria Fatima; SILVA, Jorge Luiz Nunes; FAGUNDES, Aline; SCHUBACH, Armando Oliveria

    2016-01-01

    SUMMARY American tegumentary leishmaniasis is an infectious disease caused by a protozoan of the genus Leishmania. Pentavalent antimonials are the first choice drugs for cutaneous leishmaniasis (CL), although doses are controversial. In a clinical trial for CL we investigated the occurrence of pancreatic toxicity with different schedules of treatment with meglumine antimoniate (MA). Seventy-two patients were allocated in two different therapeutic groups: 20 or 5 mg of pentavalent antimony (Sb5+)/kg/day for 20 or 30 days, respectively. Looking for adverse effects, patients were asked about abdominal pain, nausea, vomiting or anorexia in each medical visit. We performed physical examinations and collected blood to evaluate serum amylase and lipase in the pre-treatment period, and every 10 days during treatment and one month post-treatment. Hyperlipasemia occurred in 54.8% and hyperamylasemia in 19.4% patients. Patients treated with MA 20 mg Sb5+ presented a higher risk of hyperlipasemia (p = 0.023). Besides, higher MA doses were associated with a 2.05 higher risk ratio (p = 0.003) of developing more serious (moderate to severe) hyperlipasemia. The attributable fraction was 51% in this group. Thirty-six patients presented abdominal pain, nausea, vomiting or anorexia but only 47.2% of those had hyperlipasemia and/ or hyperamylasemia. These findings suggest the importance of the search for less toxic therapeutic regimens for the treatment of CL. PMID:27680173

  5. 某锑金矿综合回收锑、金的试验研究%Comprehensive Recovery of Au and Sb from an Antimony-gold Concentrate

    Institute of Scientific and Technical Information of China (English)

    杨永斌; 刘波; 李骞; 姜涛

    2014-01-01

    采用酸法浸锑⁃浸锑渣焙烧脱硫⁃氰化浸金工艺从某锑金精矿中分离提取锑、金。酸法浸锑最佳工艺条件为:温度为95℃、[H+]=4 mol/L、液固比为4∶1、FeCl3过量系数为1.1、浸出时间为0.5 h,在此条件下,锑浸出率为99.05%,进入浸锑液的金仅为0.99%,实现了锑、金良好的选择性浸出。对浸锑渣直接氰化浸金,浸金率仅为71.93%。为了提高浸金率,在分析酸性浸锑渣的矿物组成的基础上,对浸锑渣进行氧化焙烧,结果表明:碚砂中硫品位仅为0.18%,硫脱除率达到了99.81%,渣中的单质硫及硫化物显著减少,主要以赤铁矿和脉石矿物为主。最终金浸出率达到95.92%,比浸锑渣直接氰化浸金提高了约24个百分点。%Comprehensive recovery of Sb and Au from an antimony⁃gold concentrate is studied by adopting a process of Sb leaching with acid solution⁃oxidizing roasting of the antimony residue⁃cyanide leaching of gold. Under the following optimum conditions, that is, leaching at 95℃ for 0.5 h with HCl concentration at 4.0 mol/L, liquid⁃solid rate at 4∶1, excess coefficient of FeCl3 being 1. 1, a favorable selective leaching effect can be realized for Sb and Au, with the leaching rate of Sb up to 99.05% and only 0.99% Au recovered into antimony leachate. However, the following direct cyanide leaching only resulted in the Au leaching rate of 71.93%. For the purpose of increasing the leaching rate of Au, the antimony leaching residue was subjected to oxidizing roasting process based on the analysis of its mineral compositions, leading to only 0.18%S in the calcined product, with removal rate of sulfur up to 99.81%. It is found that hematite and gangue minerals are the dominant minerals in the residue, with the content of sulfur and sulfide remarkably decreased. The ultimate leaching rate of Au reached 95. 92%, 24 percentage points higher than that by direct

  6. Synthesis of Diaryl Ethers, Diaryl Sulfides, Heteroaryl Ethers and Heteroaryl Sulfides under Microwave Heating

    Institute of Scientific and Technical Information of China (English)

    LI,Feng; ZOU,Jiong; WANG,Quan-Rui; TAO,Feng-Gang

    2004-01-01

    @@ Diaryl ether moiety is found in a pool of naturally occurring and medicinally important compounds.[1] As a consequent, considerable efforts have been devoted to the assembly of this framework.[2] Recently, we have developed a microwave heating version of the synthesis of diaryl ethers as well as aryl sulfides. Under our conditions, even the extremely electron-poor 4-nitrophenol works well and its reaction with 1-halo-4-nitrobenzenes produces 4-(nitrophenoxy)-benzonitriles in satisfactory yield. The scope of the present protocol has been expanded to hydroxylated six-membered heterocycles as well as 2-pyrimidinethiol with mildly activated aryl halides, affording heteroaryl ethers and respectively sulfides. The advantages of the present method include the wide substrate scope, no use of any metal catalysts, the ease of product isolation and high yields.

  7. Atomic layer deposition of aluminum sulfide thin films using trimethylaluminum and hydrogen sulfide

    International Nuclear Information System (INIS)

    Sequential exposures of trimethylaluminum and hydrogen sulfide are used to deposit aluminum sulfide thin films by atomic layer deposition (ALD) in the temperature ranging from 100 to 200 °C. Growth rate of 1.3 Å per ALD cycle is achieved by in-situ quartz crystal microbalance measurements. It is found that the growth rate per ALD cycle is highly dependent on the purging time between the two precursors. Increased purge time results in higher growth rate. Surface limited chemistry during each ALD half cycle is studied by in-situ Fourier transformed infrared vibration spectroscopy. Time of flight secondary ion-mass spectroscopy measurement is used to confirm elemental composition of the deposited films

  8. Banded sulfide-magnetite ores of Mauk copper massive sulfide deposit, Central Urals: Composition and genesis

    Science.gov (United States)

    Safina, N. P.; Maslennikov, V. V.; Maslennikova, S. P.; Kotlyarov, V. A.; Danyushevsky, L. V.; Large, R. R.; Blinov, I. A.

    2015-05-01

    The results of investigation of metamorphosed sulfide-magnetite ores from the Mauk deposit located within the Main Ural Fault at the junction of Tagil and Magnitogorsk massive sulfide zones are discussed. The ore-hosting sequence comprises metamorphic rocks formed from basalt, carbonaceous and carbonaceous-cherty siltstone, and lenticular serpentinized ultramafic bodies. The ores of the deposit are represented by banded varieties and less frequent breccia. The clastic origin of the banded ore is indicated by load casts at the bottom of sulfide beds, alternation of sulfide and barren beds, and the truncation of the growth zones of pyrite crystals. Pyrite, pyrrhotite, chalcopyrite, sphalerite, and magnetite are the major minerals of the banded ores. The internal structure of the listed minerals testifies to the deep metamorphic recrystallization of primary hydrothermal-sedimentary ores accompanied with deformation. Cubanite, pyrrhotite, mackinawite, greigite, and gold are enclosed in metacrysts of pyrite, magnetite, and chalcopyrite. The accessory minerals of the Pb-Bi-Te, Bi-Te, and Ag-Te systems as well as uraninite have been found at the Mauk deposit for the first time. Magnetite predominantly replaces pyrite and less frequently chalcopyrite, pyrrhotite, and gangue minerals. It was established that the major carriers of As and Co are crystals of metamorphic pyrite. Chalcopyrite is the major carrier of Zn, Sn, Te, Pb, Bi, and Ag. Admixture of Fe and Cu is typical of sphalerite, and Se and Ni are characteristic of pyrrhotite. Ti, V, Mn, Sb, As, Ba, and U are concentrated in magnetite. The banded ores of the Mauk deposit are suggested as having been transformed in several stages: diagenesis, anadiagenesis, epidiagenesis ( t 500°C).

  9. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  10. Azo dye decolorization assisted by chemical and biogenic sulfide

    International Nuclear Information System (INIS)

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection

  11. Sulfide elimination by intermittent nitrate dosing in sewer sediments

    Institute of Scientific and Technical Information of China (English)

    Yanchen Liu; Chen Wu; Xiaohong Zhou; David Z.Zhu; Hanchang Shi

    2015-01-01

    The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards,and requires expensive programs for its prevention.The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments.The study was carried out based on lab-scale experiments and batch tests using real sewer sediments.The intermittent nitrate dosing mode and the optimal control condition were investigated.The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment.The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide)ratio with slight excess nitrate is necessary for optimal conditions ofefficient sulfide control with lower carbon source loss.The opth-nal control condition is feasible for the sulfide elimination in sewer systems.

  12. On the pelletizing of sulfide molybdenite concentrate

    International Nuclear Information System (INIS)

    Investigation results are discussed on the process of pelletizing with the use of various binders (water, syrup, sulfite-alcoholic residue and bentonite) for flotation sulfide molybdenite concentrate (∼84 % MoS2) of the Mongolian deposit. It is established that with the use of syrup rather strong pellets (>300 g/p) of desired size (2-3 mm) can be obtained at a binder flowrate of 1 kg per 100 kg of concentrate. The main advantage of using syrup instead of bentonite lies in the fact that in this instance no depletion of a molybdenum calcine obtained by oxidizing roasting of raw ore takes place due to syrup complete burning out. This affects positively subsequent hydrometallurgical conversion because of decreasing molybdenum losses with waste cakes

  13. A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films

    International Nuclear Information System (INIS)

    Thin films of undoped, fluorine- and antimony-doped tin oxide on glass at 400 deg. C was prepared by spray pyrolysis technique. Tin chloride (SnCl2), ammonium fluoride (NH4F), and antimony trichloride (SbCl3) were used as source for tin (Sn), fluorine (F), and antimony (Sb), respectively. To ensure the control of solution concentration on growth rate, fluorine-doped tin oxide (SnO2:F) thin films were first prepared with different amount of tin precursor, in the range of 5-12g, which has resulted in deposition of films with different thickness values. The optimum amount of tin precursor found from this study (11g) was fixed constant for preparing SnO2 films with different doping levels of F and Sb. From the X-ray diffraction analyses, it is understood that the preferred orientation of SnO2:F films is dependent on their thickness and the solution concentration. The variation in the solution concentration and orientation of the films was reflected in their morphology as examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM studies showed that the variation in the solution concentration lead to different grain shapes for different orientations. The AFM study showed that the RMS roughness of undoped films reduced considerably from 86 to 24nm due to fluorine doping (15wt.%), whereas the antimony doping (2wt.%) has no significance effect on RMS roughness (93nm). The electrical properties of the films were examined by a Hall measurements setup in van der Pauw configuration. A minimum sheet resistance of 1.75 and 2.17Ω/ were obtained for F and Sb doped films, respectively. From the optical studies, it is found that the transmittance of undoped films increased from 42% to a maximum 85% on 30wt.% fluorine doping, whereas that has been decreased to a minimum of 12% on 4wt.% antimony doping (800nm). A discussion on the effect of type of dopants and their concentration on the structural, electrical and optical properties of the SnO2 film have

  14. Infrared-to-red upconversion luminescence in samarium-doped antimony glasses

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha [Glass Technology Laboratory, Glass Division, Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700 032 (India); Karmakar, Basudeb [Glass Technology Laboratory, Glass Division, Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700 032 (India)], E-mail: basudebk@cgcri.res.in

    2008-12-15

    A new antimony-based glass system (K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3}) having low phonon energy (about 600 cm{sup -1}) doped with Sm{sup 3+} ions has been developed. Infrared reflection spectroscopic (IRRS) studies have been employed to establish its low phonon energy. Ultraviolet-Visible-near infrared (UV-Vis-NIR) absorption and photoluminescence upconversion properties with the spectrochemistry of the 15K{sub 2}O-15B{sub 2}O{sub 3}-70Sb{sub 2}O{sub 3} (mol%) glasses have been studied doping with different concentrations (0.1-1.0 wt%) of Sm{sub 2}O{sub 3}. UV-Vis-NIR absorption band positions have been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 949 nm at room temperature. Three upconverted bands originating from the {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 5/2}, {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 7/2} and {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 9/2} transitions are found to be centered at 566 (green, weak), 602 (orange, weak) and 636 (red, remarkably strong) nm, respectively. These bands have been explained from the evaluation of the absorption, normal (downconversion) fluorescence and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET) and cross-relaxation (CR) mechanisms involving population of the metastable (storage) energy level ({sup 4}G{sub 5/2}) by multiphonon deexcitation effect. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in antimony glasses owing to their low phonon energy (602 cm{sup -1}, the main and highest intensity Sb-O-Sb stretching band) which is very close to that of fluoride glasses (500-600 cm{sup -1})

  15. Effect of radiation on wettability and floatability of sulfide minerals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The feasibility for modifying the wettability and floatability of sulfide minerals by electron beam irradiation has been studied experimentally. The wettability of crystalline pyrite and floatability of some sulfide as pyrite, arsenopyrite, chalcopyrite and marmatite after irradiation were examined by flotation in a modified Hallimond tube. Experimental results show that the hydrophobicity of crystalline pyrite enhances with the increase of irradiation dose in a low dose range. And the flotation responses of sulfide minerals on irradiation dosevary with the mineral species and particle size. The floatability of minerals can be regulated by altering irradiation dose. An explanationfor the mechanism has been suggested based on the principle of radiation chemistry.

  16. Sulfide capacities of MnO-SiO2 slags

    Science.gov (United States)

    Reddy, Ramana G.; Blander, Milton

    1989-04-01

    Sulfide capacities of binary MnO-SiO2 slags at 1773 and 1923 K were calculated thermodynamically. Only known data, such as the standard free energy of formation of MnO and MnS and activities of MnO in the melt, are used in making calculations based on fundamental concepts. Excellent agreement is found between our calculations and published experimental data. Correlations of sulfide capacities, based on optical basicity using Pauling electronegativities or empirically deduced optical basicities, differ from the experimental data in both magnitude and concentration dependence. Our method provides useful predictions of sulfide capacities a priori.

  17. Optimization of the superconducting phase of hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Degtyarenko, N. N.; Masur, E. A., E-mail: eugen-mazur@mail.ru [National Research Nuclear University MEPhI (Russian Federation)

    2015-12-15

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH{sub 3} phase and the stable orthorhombic structure of hydrogen sulfide SH{sub 2}, are calculated for the pressure interval 100–225 GPa. It is found that the I4/mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH{sub 3} phase. Sequential stages for obtaining and conservation of the SH{sub 2} phase are proposed. The properties of two (SH{sub 2} and SH{sub 3}) superconducting phases of hydrogen sulfide are compared.

  18. Optimization of the superconducting phase of hydrogen sulfide

    International Nuclear Information System (INIS)

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH3 phase and the stable orthorhombic structure of hydrogen sulfide SH2, are calculated for the pressure interval 100–225 GPa. It is found that the I4/mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH3 phase. Sequential stages for obtaining and conservation of the SH2 phase are proposed. The properties of two (SH2 and SH3) superconducting phases of hydrogen sulfide are compared

  19. Effect of Soluble Sulfide on the Activity of Luminescent Bacteria

    OpenAIRE

    Feng Wang; Ling-Ling Wu; Hong-Wen Gao; Ying Shao

    2012-01-01

    Sulfide is an important water pollutant widely found in industrial waste water that has attracted much attention. S2−, as a weak acidic anion, is easy hydrolyzed to HS and H2S in aqueous solution. In this study, biological tests were performed to establish the toxicity of sulfide solutions on luminescent bacteria. Considering the sulfide solution was contained three substances—S2−, HS

  20. Adsorbate thermodynamics as a determinant of reaction mechanism: Pentamethylene sulfide on Mo(110)

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, B.C.; Friend, C.M.; Roberts, J.T. (Harvard Univ., Cambridge, MA (USA))

    The reactions of the totally unstrained, six-membered cyclic sulfide pentamethylene sulfide on Mo(110) have been investigated by using temperature-programmed reaction spectroscopy and X-ray photoelectron spectroscopy in an effort to identify the roles of ring size and strain in dictating reaction selectivity. Four gases products are detected in the temperature-programmed reaction of pentamethylene sulfide: dihydrogen at 380 and 590 K, pentane at 350 K, pentene at 345 K, and pentamethylene sulfide at 190 and 280 K. The kinetics for hydrocarbon production from pentamethylene sulfide are qualitatively different than for the four- and five-membered cyclic sulfides, trimethylene sulfide and tetrahydrothiophene.

  1. Micro-aeration for hydrogen sulfide removal from biogas

    Science.gov (United States)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  2. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment

    DEFF Research Database (Denmark)

    Preisler, André; de Beer, Dirk; Lichtschlag, Anna;

    2007-01-01

    The ecological niche of nitrate-storing Beggiatoa, and their contribution to the removal of sulfide were investigated in coastal sediment. With microsensors a clear suboxic zone of 2-10 cm thick was identified, where neither oxygen nor free sulfide was detectable. In this zone most of the Beggiat...... were found, where they oxidize sulfide with internally stored nitrate. The sulfide input into the suboxic zone was dominated by an upward sulfide flux from deeper sediment, whereas the local production in the suboxic zone was much smaller. Despite their abundance, the calculated sulfide......, where they oxidize sulfide with internally stored nitrate. The sulfide input into the suboxic zone was dominated by an upward sulfide flux from deeper sediment, whereas the local production in the suboxic zone was much smaller. Despite their abundance, the calculated sulfide-oxidizing capacity...

  3. Inhibition of Leishmania donovani promastigote DNA topoisomerase I and human monocyte DNA topoisomerases I and II by antimonial drugs and classical antitopoisomerase agents.

    Science.gov (United States)

    Walker, John; Saravia, Nancy G

    2004-10-01

    We have compared the inhibitor sensitivities of DNA topoisomerase I (TOPI) from Leishmania donovani promastigotes and TOPs I and II of human monocytes using pentavalent and trivalent antimonials (SbV, SbIII) and classical TOP inhibitors. Bis-benzimidazoles (Hoechst-33258 and -33342) were potent inhibitors of both parasite and human TOPI, but Hoechst-33342 was markedly less cytotoxic to promastigotes than to monocytes in vitro. Leishmania donovani was also considerably less sensitive than monocytes to camptothecin, both at enzyme and cellular levels. Sodium stibogluconate (SSG) was the only antimonial to inhibit TOPI, exhibiting a significant (P donovani enzyme but showed low cytotoxicities against intact promastigotes. The SbV meglumine antimoniate failed to inhibit TOPI and showed negligible cytotoxicities, whereas SbIII drugs were lethal to parasites and monocytes yet poor inhibitors of TOPI. Monocyte TOPII was inhibited by bis-benzimidazoles and insensitive to antimonials and camptothecin. The disparity between the high leishmanicidal activity and low anti-TOPI potency of SbIII indicates that in vivo targeting of L. donovani TOPI by the reductive pathway of antimonial activation is improbable. Nevertheless, the potent direct inhibition of TOPI by SSG and the differential interactions of camptothecin with L. donovani and human TOPI support the possibility of developing parasite-specific derivatives. PMID:15562618

  4. Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis

    Science.gov (United States)

    Perry, Meghan R.; Wyllie, Susan; Raab, Andrea; Feldmann, Joerg; Fairlamb, Alan H.

    2013-01-01

    The Indian subcontinent is the only region where arsenic contamination of drinking water coexists with widespread resistance to antimonial drugs that are used to treat the parasitic disease visceral leishmaniasis. We have previously proposed that selection for parasite resistance within visceral leishmaniasis patients who have been exposed to trivalent arsenic results in cross-resistance to the related metalloid antimony, present in the pentavalent state as a complex in drugs such as sodium stibogluconate (Pentostam) and meglumine antimonate (Glucantime). To test this hypothesis, Leishmania donovani was serially passaged in mice exposed to arsenic in drinking water at environmentally relevant levels (10 or 100 ppm). Arsenic accumulation in organs and other tissues was proportional to the level of exposure and similar to that previously reported in human liver biopsies. After five monthly passages in mice exposed to arsenic, isolated parasites were found to be completely refractory to 500 μg⋅mL−1 Pentostam compared with the control passage group (38.5 μg⋅mL−1) cultured in vitro in mouse peritoneal macrophages. Reassessment of resistant parasites following further passage for 4 mo in mice without arsenic exposure showed that resistance was stable. Treatment of infected mice with Pentostam confirmed that resistance observed in vitro also occurred in vivo. We conclude that arsenic contamination may have played a significant role in the development of Leishmania antimonial resistance in Bihar because inadequate treatment with antimonial drugs is not exclusive to India, whereas widespread antimonial resistance is. PMID:24167266

  5. Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis.

    Science.gov (United States)

    Perry, Meghan R; Wyllie, Susan; Raab, Andrea; Feldmann, Joerg; Fairlamb, Alan H

    2013-12-01

    The Indian subcontinent is the only region where arsenic contamination of drinking water coexists with widespread resistance to antimonial drugs that are used to treat the parasitic disease visceral leishmaniasis. We have previously proposed that selection for parasite resistance within visceral leishmaniasis patients who have been exposed to trivalent arsenic results in cross-resistance to the related metalloid antimony, present in the pentavalent state as a complex in drugs such as sodium stibogluconate (Pentostam) and meglumine antimonate (Glucantime). To test this hypothesis, Leishmania donovani was serially passaged in mice exposed to arsenic in drinking water at environmentally relevant levels (10 or 100 ppm). Arsenic accumulation in organs and other tissues was proportional to the level of exposure and similar to that previously reported in human liver biopsies. After five monthly passages in mice exposed to arsenic, isolated parasites were found to be completely refractory to 500 μg · mL(-1) Pentostam compared with the control passage group (38.5 μg · mL(-1)) cultured in vitro in mouse peritoneal macrophages. Reassessment of resistant parasites following further passage for 4 mo in mice without arsenic exposure showed that resistance was stable. Treatment of infected mice with Pentostam confirmed that resistance observed in vitro also occurred in vivo. We conclude that arsenic contamination may have played a significant role in the development of Leishmania antimonial resistance in Bihar because inadequate treatment with antimonial drugs is not exclusive to India, whereas widespread antimonial resistance is.

  6. Leaching of Antimony (Sb)from Municipal Solid Waste Incineration (MSWI) Residues

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Inga

    2004-07-01

    The mobility of antimony (Sb) in municipal solid waste incineration (MSWI) residues often exceeds the limit values stipulated by the European Union. As an ash treatment by washing is conceivable, this work investigated the Sb release from Swedish bottom ash and fly ash when mixed with water. The leaching experiments revealed the factors significantly (a = 0.05) affecting Sb release from the ashes. The following factors were investigated: Liquid to solid ratio (L/S), time, pH, carbonation (treatment with CO{sub 2}), ultrasonics and temperature. The data were evaluated using multiple linear regression (MLR). The impact of the factors could be quantified. The maximum Sb release calculated was 13 mg/kg DM for bottom ash and 51 mg/kg DM for fly ash. The derived models explained the observed data well. Nevertheless, the calculated values were subject to a high uncertainty. For bottom ash, a lowering of the Sb total content of approximately 22% could be achieved. If this also involves a sufficient lowering of the Sb mobility to meet EU limit values could not yet be assessed. Chemical equilibrium calculations were performed to explain the empirical results. However, no solid phases controlling Sb release from the ashes could be identified.

  7. Direct Band Gap Gallium Antimony Phosphide (GaSbxP(1-x)) Alloys.

    Science.gov (United States)

    Russell, H B; Andriotis, A N; Menon, M; Jasinski, J B; Martinez-Garcia, A; Sunkara, M K

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1-2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP(1-x) alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP(1-x). Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP(1-x) nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470

  8. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1-x) Alloys

    Science.gov (United States)

    Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.

    2016-02-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1-2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1-x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1-x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1-x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields.

  9. Adsorption behavior of antimony(III) oxyanions on magnetite surface in aqueous organic acid environment

    Science.gov (United States)

    Mittal, Vinit K.; Bera, Santanu; Narasimhan, S. V.; Velmurugan, S.

    2013-02-01

    Antimony(III) adsorption is observed on magnetite (Fe3O4) surface under acidic and reducing condition through surface hydroxyl (SOH) groups bonding on Fe3O4 surface. Desorption of adsorbed Sb(III) is observed from Fe3O4 surface along with iron release in organic acid at 85 °C after 5 h of experiment. Tartaric acid (TA) shows minimum Sb(III) adsorption on Fe3O4 among the organic acid studied. The reason is TA having two sets of adjacent functional groups viz. Odbnd Csbnd OH and Csbnd OH which are responsible for the formation of five-membered bidendate chelate with Sb(III). Other oxyanions, cations or complexing agents along with TA influences the Sb(III) adsorption on Fe3O4. The surface of magnetite is modified by the addition of fatty acids viz. Lauric acid, benzoic acid to bind the Ssbnd OH groups present on the surface. This results in delaying the process of adsorption without changing the quantity of saturation adsorption of Sb(III) on Fe3O4 surface.

  10. Controlled n-doping in chemical vapour deposition grown graphene by antimony

    International Nuclear Information System (INIS)

    We have studied the effects of antimony (Sb) doping on graphene grown by chemical vapour deposition without any significant change in its electrical properties. By increasing the metal thickness from 1 to 5 nm, we found a shift in the wave numbers of Raman G and two-dimensional (2D) peaks consistent with n-doping and a change in the Fermi level of the graphene into the conduction band. The relative intensity of the D peak to the G peak did not show a significant change and that of the 2D peak to the G peak remained at a large enough number as a function of metal thickness, implying little degradation by the metal dopants. Transport measurements also confirm the n-doping of graphene through a shift of Dirac point in the transfer characteristics and the quality preservation with little changes in mobility. We also report on the formation of a p–n junction by metal doping on selected areas of the graphene and their electrical properties with transfer characteristics and Hall measurements. (paper)

  11. Evaluation of atmospheric inputs as possible sources of antimony in pregnant women from urban areas.

    Science.gov (United States)

    Fort, Marta; Grimalt, Joan O; Querol, Xavier; Casas, Maribel; Sunyer, Jordi

    2016-02-15

    Antimony and copper are common components of brake linings. The occurrence of these two metals in urban atmospheric aerosols has been related to vehicular use. Urine samples (n=466) taken during the 32nd week of pregnancy were analyzed for Sb and Cu in pregnant women from an urban area (Sabadell, Catalonia, Spain). The geometric mean levels were 0.28 and 13 μg/g creatinine, respectively. Positive significant associations between urine concentrations of Sb and seasonality, intensity of physical exercise, working activities and traffic intensity at their home streets were observed. Cu showed the same trends but without statistical significance. In both cases, the estimated dietary ingestion of these two metals was larger than the inhalation inputs but the difference was much higher for Cu than for Sb. While Sb has no dietary role, Cu is an essential element which is also incorporated into humans through diet. The results suggest that inhalation of atmospheric particles may also constitute a source of Sb in pregnant women and general population of urban areas. PMID:26657384

  12. Partitioning geochemistry of arsenic and antimony, El Tatio Geyser Field, Chile

    Energy Technology Data Exchange (ETDEWEB)

    Landrum, J.T. [Department of Geological Sciences, The University of Texas, Austin, TX 78759 (United States); Bennett, P.C., E-mail: pbennett@mail.utexas.edu [Department of Geological Sciences, University of Texas, Austin, TX 78759 (United States); Engel, A.S. [Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803 (United States); Alsina, M.A.; Pasten, P.A. [Departamento de Ingenieria Hidraulica y Ambiental, Pontificia Universidad Catolica de Chile, Santiago (Chile); Milliken, K. [Department of Geological Sciences, University of Texas, Austin, TX 78759 (United States)

    2009-04-15

    The abundance of As and Sb in aqueous, mineral and biological reservoirs was examined at El Tatio Geyser Field, a unique hydrothermal basin located in the Atacama Desert region of Chile. Here the concentration of total As and Sb in hydrothermal springs and discharge streams are the highest reported for a natural surface water, and the geyser basin represents a significant source of toxic elements for downstream users across Region II, Chile. The geyser waters are near neutral Na:Cl type with {approx}0.45 and 0.021 mmol L{sup -1} total As and Sb, respectively, primarily in the reduced (III) redox state at the discharge with progressive oxidation downstream. The ferric oxyhydroxides associated with the microbial mats and some mineral precipitates accumulate substantial As that was identified as arsenate by XAS analysis (>10 wt% in the mats). This As is easily mobilized by anion exchange or mild dissolution of the HFO, and the ubiquitous microbial mats represent a significant reservoir of As in this system. Antimony, in contrast, is not associated with the mineral ferric oxides or the biomats, but is substantially enriched in the silica matrix of the geyserite precipitates, up to 2 wt% as Sb{sub 2}O{sub 3}. Understanding the mobility and partitioning behavior of these metalloids is critical for understanding their eventual impact on regional water management.

  13. Spark Plasma Sintering and Densification Mechanisms of Antimony-Doped Tin Oxide Nanoceramics

    Directory of Open Access Journals (Sweden)

    Junyan Wu

    2013-01-01

    Full Text Available Densification of antimony-doped tin oxide (ATO ceramics without sintering aids is very difficult, due to the volatilization of SnO2, formation of deleterious phases above 1000°C, and poor sintering ability of ATO particles. In this paper, monodispersed ATO nanoparticles were synthesized via sol-gel method, and then ATO nanoceramics with high density were prepared by spark plasma sintering (SPS technology using the as-synthesized ATO nanoparticles without the addition of sintering aids. The effect of Sb doping content on the densification was investigated, and the densification mechanisms were explored. The results suggest that ATO nanoparticles derived from sol-gel method show good crystallinity with a crystal size of 5–20 nm and Sb is incorporated into the SnO2 crystal structure. When the SPS sintering temperature is 1000°C and the Sb doping content is 5 at.%, the density of ATO nanoceramics reaches a maximum value of 99.2%. Densification mechanisms are explored in detail.

  14. A new method for antimony speciation in plant biomass and nutrient media using anion exchange cartridge.

    Science.gov (United States)

    Tisarum, Rujira; Ren, Jing-Hua; Dong, Xiaoling; Chen, Hao; Lessl, Jason T; Ma, Lena Q

    2015-11-01

    A selective separation method based on anion exchange cartridge was developed to determine antimony (Sb) speciation in biological matrices by graphite furnace atomic absorption spectrophotometry (GFAAS). The selectivity of the cartridge towards antimonite [Sb(III)] and antimonate [Sb(V)] reversed in the presence of deionized (DI) water and 2mM citric acid. While Sb(V) was retained by the cartridge in DI water, Sb(III) was retained in citric acid media. At pH 6, Sb(III) and Sb(V) formed Sb(III)- and Sb(V)-citrate complexes, but the cartridge had higher affinity towards the Sb(III)-citrate complex. Separation of Sb(III) was tested at various concentrations in fresh and spent growth media and plant tissues. Our results showed that cartridge-based Sb speciation was successful in plant tissues, which was confirmed by HPLC-ICP-MS. The cartridge retained Sb(III) and showed 92-104% Sb(V) recovery from arsenic hyperaccumulator Pteris vittata roots treated with Sb(III) and Sb(V). The cartridge procedure is an effective alternative for Sb speciation, offering low cost, reproducible results, and simple Sb analysis using GFAAS.

  15. Antimony release from contaminated mine soils and its migration in four typical soils using lysimeter experiments.

    Science.gov (United States)

    Shangguan, Yu-Xian; Zhao, Long; Qin, Yusheng; Hou, Hong; Zhang, Naiming

    2016-11-01

    Antimony (Sb) can pose great risks to the environment in mining and smelting areas. The migration of Sb in contaminated mine soil was studied using lysimeter experiments. The exchangeable concentration of soil Sb decreased with artificial leaching. The concentrations of Sb retained in the subsoil layers (5-25cm deep) were the highest for Isohumosol and Ferrosol and the lowest for Sandy soil. The Sb concentrations in soil solutions decreased with soil depth, and were adequately simulated using a logarithmic function. The Sb migration pattern in Sandy soil was markedly different from the patterns in the other soils which suggested that Sb may be transported in soil colloids. Environmental factors such as water content, soil temperature, and oxidation-reduction potential of the soil had different effects on Sb migration in Sandy soil and Primosol. The high Fe and Mn contents in Ferrosol and Isohumosol significantly decreased the mobility of Sb in these soils. The Na and Sb concentrations in soils used in the experiments positively correlated with each other (Psoil solutions, the Sb chemical fraction patterns, and the Sb/Na ratios decreased in the order Sandy soil>Primosol>Isohumosol>Ferrosol, and we concluded that the Sb mobility in the soils also decreased in that order. PMID:27395817

  16. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.

    Science.gov (United States)

    Kovalenko, Maksym V; Spokoyny, Boris; Lee, Jong-Soo; Scheele, Marcus; Weber, Andrew; Perera, Susanthri; Landry, Daniel; Talapin, Dmitri V

    2010-05-19

    The energy efficiency of heat engines could be improved by the partial recovery of waste heat using thermoelectric (TE) generators. We show the possibility of designing nanostructured TE materials using colloidal inorganic nanocrystals functionalized with molecular antimony telluride complexes belonging to the family of Zintl ions. The unique advantage of using Zintl ions as the nanocrystal surface ligands is the possibility to convert them into crystalline metal chalcogenides, thus linking individual nanobuilding blocks into a macroscopic assembly of electronically coupled functional modules. This approach allows preserving the benefits of nanostructuring and quantum confinement while enabling facile charge transport through the interparticle boundaries. A developed methodology was applied for solution-based fabrication of nanostructured n- and p-type Bi(2-x)Sb(x)Te(3) alloys with tunable composition and PbTe-Sb(2)Te(3) nanocomposites with controlled grain size. Characterization of the TE properties of these materials showed that their Seebeck coefficients, electrical and thermal conductivities, and ZT values compared favorably with those of previously reported solution-processed TE materials.

  17. Assessment and distribution of antimony in soils around three coal mines, Anhui, China

    Science.gov (United States)

    Qi, C.; Liu, Gaisheng; Kang, Y.; Lam, P.K.S.; Chou, C.

    2011-01-01

    Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasmaoptical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg-1, which is lower than in coals from this region (6.2 mg kg-1). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5-20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils. ?? 2011 Air & Waste Management Association.

  18. DFT Study on the Carrier Concentration and Temperature-Dependent Thermoelectric Properties of Antimony Selenide

    Directory of Open Access Journals (Sweden)

    Aditya Jayaraman

    2016-01-01

    Full Text Available We present the thermoelectric properties of Antimony Selenide (Sb2Se3 obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Thermoelectric properties were calculated using BoltzTrap code using the constant relaxation time (τ approximation at three different temperatures 300 K, 600 K, and 800 K. Seebeck coefficient (S was found to decrease with increasing temperature, electrical conductivity (σ/τ was almost constant in the entire temperature range, and electronic thermal conductivity (κ/τ increased with increasing temperature. With increase in temperature S decreased from 1870 μV/K (at 300 K to 719 μV/K (at 800 K, electronic thermal conductivity increased from 1.56 × 1015 W/m K s (at 300 K to 3.92 × 1015 W/m K s (at 800 K, and electrical conductivity decreased from 22 × 1019/Ω m s (at 300 K to 20 × 1019/Ω m s (at 800 K. The thermoelectric properties were also calculated for different hole concentrations and the optimum concentration for a good thermoelectric performance over a large range of temperatures (from 300 K to 1000 K was found for hole concentration around 1019 cm−3.

  19. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China.

    Science.gov (United States)

    Fu, Zhiyou; Wu, Fengchang; Mo, Changli; Deng, Qiujing; Meng, Wei; Giesy, John P

    2016-01-01

    Although similar geochemical behaviors of arsenic (As) and antimony (Sb) in the environment has been assumed and widely reported, growing evidence suggests the two elements cannot, under some conditions, be assumed to behave similarly. In this four-year study (samples collected in each year), comparative investigation of the biogeochemistry of As and Sb in water/fish, soil/vegetable, tailings/plant samples were carried out at the world's largest active Sb mine area (Xikuangshan, China). Depending on duration the tailings had been stacked, significant differences in spatial distributions between As and Sb were found, and these were associated with change in pH over time. Bio-accumulation factors (BAFs) of As were approximately 10-fold greater than those of Sb in fish/water, plant/tailing, and vegetable/soil systems. Sb had higher BAF in non-fatty tissues such as gills of fishes and shells of crabs. BAFs of Sb in vegetable/soil exhibited insignificantly, but different from As, positive correlation with pH in soil. PMID:26356182

  20. Validation of methodology and uncertainty assessment of antimony determination in environmental materials using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Antimony is an element found in low concentrations in the environment. However, its determination has attracted great interest because of the knowledge of its toxicity and increasing application. Neutron activation analysis (NAA) is a suitable method for the determination of several elements in different types, but in case of Sb, the analysis presents some difficulties due to spectral interferences. The objective of this research was to validate the method of NAA and uncertainty assessment for Sb determination in environmental samples. The experimental procedure consisted of irradiating twelve certified reference samples of different kind of matrices. The samples were irradiated in the nuclear research reactor IEA R1 IPEN/CNEN/SP followed by measurement of induced radioactivity, using a hyperpure germanium detector coupled to a gamma ray spectrometry. The radioisotopes 122Sb and 124Sb were measured and the Sb concentrations with their respective uncertainties were obtained by the comparative method. Relative errors and values of Z scores were calculated to evaluate the accuracy of the results for Sb determination in certified reference materials. The evaluation of the components that contribute to uncertainty measurement of the Sb concentration, showed that the major uncertainty contribution is due to statistical counting. The results also indicated that the uncertainty value of the combined standard uncertainty depends on the radioisotope measured and the decay time used for counting. (author)

  1. Antimony-Doped Tin Oxide Thin Films Grown by Home Made Spray Pyrolysis Technique

    Science.gov (United States)

    Yusuf, Gbadebo; Babatola, Babatunde Keji; Ishola, Abdulahi Dimeji; Awodugba, Ayodeji O.; Solar cell Collaboration

    2016-03-01

    Transparent conducting antimony-doped tin oxide (ATO) films have been deposited on glass substrates by home made spray pyrolysis technique. The structural, electrical and optical properties of the ATO films have been investigated as a function of Sb-doping level and annealing temperature. The optimum target composition for high conductivity and low resistivity was found to be 20 wt. % SnSb2 + 90 wt. ATO. Under optimized deposition conditions of 450oC annealing temperature, electrical resistivity of 5.2×10-4 Ω -cm, sheet resistance of 16.4 Ω/sq, average optical transmittance of 86% in the visible range, and average optical band-gap of 3.34eV were obtained. The film deposited at lower annealing temperature shows a relatively rough, loosely bound slightly porous surface morphology while the film deposited at higher annealing temperature shows uniformly distributed grains of greater size. Keywords: Annealing, Doping, Homemade spray pyrolysis, Tin oxide, Resistivity

  2. A density-functional study on the electronic and vibrational properties of layered antimony telluride

    Science.gov (United States)

    Stoffel, Ralf P.; Deringer, Volker L.; Simon, Ronnie E.; Hermann, Raphaël P.; Dronskowski, Richard

    2015-03-01

    We present a comprehensive survey of electronic and lattice-dynamical properties of crystalline antimony telluride (Sb2Te3). In a first step, the electronic structure and chemical bonding have been investigated, followed by calculations of the atomic force constants, phonon dispersion relationships and densities of states. Then, (macroscopic) physical properties of Sb2Te3 have been computed, namely, the atomic thermal displacement parameters, the Grüneisen parameter γ, the volume expansion of the lattice, and finally the bulk modulus B. We compare theoretical results from three popular and economic density-functional theory (DFT) approaches: the local density approximation (LDA), the generalized gradient approximation (GGA), and a posteriori dispersion corrections to the latter. Despite its simplicity, the LDA shows excellent performance for all properties investigated—including the Grüneisen parameter, which only the LDA is able to recover with confidence. In the absence of computationally more demanding hybrid DFT methods, the LDA seems to be a good choice for further lattice dynamical studies of Sb2Te3 and related layered telluride materials.

  3. Sulfide mineralization in ultramafic rocks of the Faryab ophiolite complex, southern Kerman

    OpenAIRE

    Mohammad Ali Rajabzadeh; Fatemeh Al Sadi

    2015-01-01

    Introduction Worldwide, Ni-Cu and PGE magmatic sulfide deposits are confined to the lower parts of stratiform mafic and ultramafic complexes. However, ophiolite mafic and ultramafic complexes have been rarely explored for sulfide deposits despite the fact that they have been extensively explored and exploited for chromite. Sulfide saturation during magmatic evolution is necessary for sulfide mineralization, in which sulfide melts scavenge chalcophile metals from the parent magma and conc...

  4. [Activity of hydrogen sulfide production enzymes in kidneys of rats].

    Science.gov (United States)

    Mel'nyk, A V; Pentiuk, O O

    2009-01-01

    An experimental research of activity and kinetic descriptions of enzymes participating in formation of hydrogen sulfide in the kidney of rats has been carried out. It was established that cystein, homocystein and thiosulphate are the basic substrates for hydrogen sulfide synthesis. The higest activity for hydrogen sulfide production belongs to thiosulfate-dithiolsulfurtransferase and cysteine aminotransferase, less activity is characteristic of cystathionine beta-synthase and cystathio-nine gamma-lyase. The highest affinity to substrate is registered for thiosulfate-dithiolsulfurtransferase and cystathionine gamma-lyase. It is discovered that the substrate inhibition is typical of all hydrogen sulfide formation enzymes, although this characteristic is the most expressed thiosulfat-dithiolsulfurtransferase. PMID:20387629

  5. Optimization of biological sulfide removal in a CSTR bioreactor.

    Science.gov (United States)

    Roosta, Aliakbar; Jahanmiri, Abdolhossein; Mowla, Dariush; Niazi, Ali; Sotoodeh, Hamidreza

    2012-08-01

    In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.

  6. Hydrogen Sulfide Micro-Sensor for Biomass Fouling Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hydrogen Sulfide (H2S)is the leading chemical agent causing human fatalities following inhalation exposures. The overall aim of this project is to develop and...

  7. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    Science.gov (United States)

    Lajin, Bassam; Francesconi, Kevin A.

    2016-06-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools.

  8. Selective adsorption of bacteria on sulfide minerals surface

    Institute of Scientific and Technical Information of China (English)

    JIA Chun-yun; WEI De-zhou; LIU Wen-gang; HAN Cong; GAO Shu-ling; WANG Yu-juan

    2008-01-01

    The adsorption of bacteria on sulfide minerals surface was studied, and the selective adsorption mechanism of cells on the sulfide minerals was investigated by means of FTIR, UVS and XPS. The results show that the three strains of bacteria adsorbed more preferentially on pyrite than on other two sulfide minerals surface at neutral and alkaline pH conditions. FTIR and UVS of three strains of bacteria indicate that there are more functional groups on their surface, such as O-H, C=O, N-H, C-O, and the content of saccharide is more than that of protein. The state of every element on sulfide minerals surface was analyzed by XPS. The empty orbital number of electronic shell of metal ions on minerals surface is important in selective adsorption process, and some stable constants of metal coordinates can be used to explain the contribution of some groups in saccharide of cell wall to the selective adsorption.

  9. Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment

    DEFF Research Database (Denmark)

    Thar, Roland Matthias; Kühl, Michael

    2002-01-01

    , but the bacteria have so far not been isolated in pure culture, and a detailed characterization of their metabolism is still lacking. The bacteria are colorless, gram-negative, and vibrioid-shaped (1.3- to 2.5- by 4- to 10-µm) cells that multiply by binary division and contain several spherical inclusions of poly......We describe the morphology and behavior of a hitherto unknown bacterial species that forms conspicuous veils (typical dimensions, 30 by 30 mm) on sulfidic marine sediment. The new bacteria were enriched on complex sulfidic medium within a benthic gradient chamber in oxygen-sulfide countergradients......-ß-hydroxybutyric acid. The cells have bipolar polytrichous flagella and exhibit a unique swimming pattern, rotating and translating along their short axis. Free-swimming cells showed aerotaxis and aggregated at ca. 2 µM oxygen within opposing oxygen-sulfide gradients, where they were able to attach via a mucous stalk...

  10. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    OpenAIRE

    Bassam Lajin; Francesconi, Kevin A

    2016-01-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ion...

  11. An eco-friendly oxidation of sulfide compounds

    Indian Academy of Sciences (India)

    RAVINDRA B WAGH; SITARAM H GUND; JAYASHREE M NAGARKAR

    2016-08-01

    An improved green route has been developed for the oxidation of sulfide compounds. Albendazole is converted to ricobendazole or albendazole sulfone using H₂O₂ as an oxidant and H₂O as the solvent. High yields of the corresponding products were obtained by carrying out the reaction at room temperature. This synthetic method is environmentally clean and safe, operationally simple for the oxidation of other benzimidazole anthelmintics and various sulfide compounds.

  12. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  13. Mechanism for SOFC anode degradation from hydrogen sulfide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lussier, A.; Dvorak, J.; Idzerda, Y.U. [Department of Physics, Montana State University, EPS Building, Room 264, Bozeman, MT 59717 (United States); Sofie, S. [Department of Mechanical and Industrial Engineering, Montana State University, 201E Roberts Hall, Bozeman, MT 59717 (United States)

    2008-07-15

    Recent results on solid oxide fuel cells with Ni/YSZ and Ni/GDC anodes reveal a mechanism for permanent performance degradation due to hydrogen sulfide exposure. Our results confirm the temporary performance decline observed by others but also reveal a mechanism for the long term permanent degradation. We find that hydrogen sulfide leads to nickel migration and depletion in the anode, thereby compromising electrical conductivity and cell performance. (author)

  14. Sulfide oxidation in fluidized bed bioreactor using nylon support material

    Institute of Scientific and Technical Information of China (English)

    Varsha Midha; M K Jha; Apurba Dey

    2012-01-01

    A continuous fluidized bed bioreactor(FBBR)with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25,50 and 75 min and upflow velocity of 14,17 and 20 m/hr.The effects of upflow velocity,hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model.Mixed culture obtained from the activated sludge,taken from tannery effluent treatment plant,was used as a source for microorganisms.The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3,respectively.Experiments were carried out in the reactor at a temperature of(30± 2)℃,at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles.Biofilm thickness reached(42±3)μm after 15 days from reactor start-up.The sulfide oxidation,sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities.The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times.Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate.The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  15. Sulfide capacity of high alumina blast furnace slags

    Science.gov (United States)

    Shankar, Amitabh; Görnerup, Märten; Seetharaman, S.; Lahiri, A. K.

    2006-12-01

    Sulfide capacities of high alumina blast furnace slags were experimentally determined using the gas-slag equilibration technique. Two different slag systems were considered for the current study, namely, CaO-SiO2-MgO-Al2O3 quaternary and CaO-SiO2-MgO-Al2O3-TiO2 quinary system. The liquid slag was equilibrated with the Ar-CO-CO2-SO2 gas mixture. Experiments were conducted in the temperature range of 1773 to 1873 K. The effects of temperature, basicity, and the MgO and TiO2 contents of slags on sulfide capacity were studied. As expected, sulfide capacity was found to increase with the increase in temperature and basicity. At the higher experimental temperature, titania decreases the sulfide capacity of slag. However, at the lower temperature, there was no significant effect of titania on the sulfide capacity of slag. Sulfide capacity increases with the increase in MgO content of slag if the MgO content is more than 5 pct.

  16. Dihydrogen Activation by Titanium Sulfide Complexes

    Science.gov (United States)

    Sweeney, Zachary K.; Polse, Jennifer L.; Bergman*, Robert G.; Andersen*, Richard A.

    2005-01-01

    The titanocene sulfido complex Cp*2Ti(S)py (1, Cp* = pentamethylcyclopentadienyl; py = pyridine) is synthesized by addition of a suspension of S8 to a toluene solution of Cp*2Ti-(CH2CH2) (2) and py. The rate of rotation of the pyridine ligand in solution was determined by 1H NMR spectroscopy, and the structure of 1 was determined by X-ray crystallography. Complex 1 reacts reversibly with dihydrogen to give Cp*2Ti(H)SH (6) and py. Reaction of 1 with HD gives an equilibrium mixture of Cp*2Ti(D)SH and Cp*2Ti(H)SD; H2 and D2 are not formed in this reaction. 1D 1H NMR magnetization transfer spectra and 2D EXSY 1H NMR spectra of 6 in the presence of H2 show that in solution the H2, hydride, and hydrosulfido hydrogen atoms exchange. A four-center mechanism for this exchange is proposed. The EXSY studies show that the Ti–H and S–H hydrogens exchange with each other more rapidly than either of those hydrogens exchanges with external H2. A transient dihydrogen complex intermediate is proposed to explain this observation. The infrared spectrum of 6 shows an absorption assigned to the Ti–H stretching mode at 1591 cm−1 that shifts upon deuteration to 1154 cm−1. Reaction of 1 with trimethylsilane, diethylsilane, or dimethylsilane gives Cp*2-Ti(H)SSiMe3 (7), Cp*2Ti(H)SSiHEt2 (8), or Cp*2Ti(H)SSiHMe2 (9), respectively. The isotope effect for the reaction producing 7 has been measured, and a mechanism is proposed. Treatment of 1 with an additional equivalent of S8 results in the formation of the disulfide Cp*2Ti(S2) (4). Acetylene inserts into the Ti–S bond of 4 to produce the vinyl disulfide complex 5. The structures of 4 and 5 have been determined by X-ray diffraction. Compound 4 reacts with 2 in the presence of py to produce 1. Phosphines react with 4 in the presence of H2 to provide 6 and the corresponding phosphine sulfide. Reaction of hydrogen with 4 gives Cp*2-Ti(SH)2 (3). The reactions of 1 and 4 with dihydrogen provide a model for possible mechanisms of H2

  17. Quantitative HPLC-ICP-MS analysis of antimony redox speciation in complex sample matrices: new insights into the Sb-chemistry causing poor chromatographic recoveries

    DEFF Research Database (Denmark)

    Hansen, Claus; Schmidt, Bjørn; Larsen, Erik Huusfeldt;

    2011-01-01

    In solution antimony exists either in the pentavalent or trivalent oxidation state. As Sb(III) is more toxic than Sb(V), it is important to be able to perform a quantitative speciation analysis of Sb’s oxidation state. The most commonly applied chromatographic methods used for this redox speciation...... analysis do, however, often show a low chromatographic Sb recovery when samples of environmental or biological origin are analysed. In this study we explored basal chemistry of antimony and found that formation of macromolecules, presumably oligomeric and polymeric Sb(V) species, is the primary cause...... of low chromatographic recoveries. A combination of HPLC-ICP-MS, AFFF-ICP-MS and spinfiltration was applied for analysis of model compounds and biological samples. Quantitative chromatographic Sb redox speciation analysis was possible by acidic hydrolysis of the antimony polymers prior to analysis...

  18. Hydrogen Sulfide and Endothelium-Dependent Vasorelaxation

    Directory of Open Access Journals (Sweden)

    Jerzy Bełtowski

    2014-12-01

    Full Text Available In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H2S, synthesized enzymatically from l-cysteine or l-homocysteine, is the third gasotransmitter in mammals. Endogenous H2S is involved in the regulation of many physiological processes, including vascular tone. Although initially it was suggested that in the vascular wall H2S is synthesized only by smooth muscle cells and relaxes them by activating ATP-sensitive potassium channels, more recent studies indicate that H2S is synthesized in endothelial cells as well. Endothelial H2S production is stimulated by many factors, including acetylcholine, shear stress, adipose tissue hormone leptin, estrogens and plant flavonoids. In some vascular preparations H2S plays a role of endothelium-derived hyperpolarizing factor by activating small and intermediate-conductance calcium-activated potassium channels. Endothelial H2S signaling is up-regulated in some pathologies, such as obesity and cerebral ischemia-reperfusion. In addition, H2S activates endothelial NO synthase and inhibits cGMP degradation by phosphodiesterase 5 thus potentiating the effect of NO-cGMP pathway. Moreover, H2S-derived polysulfides directly activate protein kinase G. Finally, H2S interacts with NO to form nitroxyl (HNO—a potent vasorelaxant. H2S appears to play an important and multidimensional role in endothelium-dependent vasorelaxation.

  19. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari

    2016-01-01

    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  20. Hydrogen Sulfide and Cellular Redox Homeostasis

    Directory of Open Access Journals (Sweden)

    Zhi-Zhong Xie

    2016-01-01

    Full Text Available Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1 is also one of the focuses of this review.

  1. Hydrogen Sulfide and Cellular Redox Homeostasis

    Science.gov (United States)

    Xie, Zhi-Zhong; Liu, Yang; Bian, Jin-Song

    2016-01-01

    Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S) is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review. PMID:26881033

  2. Minerogenetic Mechanism of the Songxi Silver—Antimony Deposit of Northeastern Guangdong—Ore—Controlling Role of Organic Matter

    Institute of Scientific and Technical Information of China (English)

    胡凯; 肖振宇; 等

    1999-01-01

    Organic geochemistry and comparisons of characteristics of the organic matter in wall rocks of the ore-controlling strata and ores of the Lower Jurassic Songling black shale formation and the related Songxi silver-antimony deposit of northeastern Guangdong have been studied in this paper.The results show that the Lower Jurassic Songling shale formation is a suite of biologic-rich and organic-rich ore-bearing marine sedimentary rocks.Micro-components of the organic matter in the Songling black shale formation consists primarily of algae,amorphous marine kerogen,solid bitument,and pyrobitument.The thermal evolution of organic matter is at the over-maturity stage.There is a general positive correlation between total organic carbon(CO)and metallogenetic elements such as Ag and Sb in the black shale formation.Organic matter in the host rocks in the Songxi ore deposit played a role in controlling the silver-antimony depositing environment during the forming process of the black shale ore-bearing formation.In the absence of vitrinite,the relative level of thermal maturity calculated by solid bitument reflectance indicates that the ore-forming temperatute of the Songxi silver-antimony deposit was about 150-170℃,which was considered as an epithermally reworked ore deposit.The roles of organic matter in the formation of the Sonxi ore deposit are a primitive accumulation of the metallogenetic elements(Ag,Sb) in the sea-water cycle system for ore source and a concentration of metals by ion exchange of chelation as well as reductionn of the oxidzed metals.

  3. Clinical and Parasitological Features of Patients with American Cutaneous Leishmaniasis that Did Not Respond to Treatment with Meglumine Antimoniate

    Science.gov (United States)

    Robayo, Marta L.; Lopez, Myriam C.; Daza, Carlos D.; Bedoya, Angela; Mariño, Maria L.; Saavedra, Carlos H.

    2016-01-01

    Background American cutaneous leishmaniasis (ACL) is a complicated disease producing about 67.000 new cases per year. The severity of the disease depends on the parasite species; however in the vast majority of cases species confirmation is not feasible. WHO suggestion for ACL produced by Leishmania braziliensis, as first line treatment, are pentavalent antimonial derivatives (Glucantime or Sodium Stibogluconate) under systemic administration. According to different authors, pentavalent antimonial derivatives as treatment for ACL show a healing rate of about 75% and reasons for treatment failure are not well known. Methods In order to characterise the clinical and parasitological features of patients with ACL that did not respond to Glucantime, a cross-sectional observational study was carried out in a cohort of 43 patients recruited in three of the Colombian Army National reference centers for complicated ACL. Clinical and paraclinical examination, and epidemiological and geographic information were recorded for each patient. Parasitological, histopathological and PCR infection confirmation were performed. Glucantime IC50 and in vitro infectivity for the isolated parasites were estimated. Results Predominant infecting Leishmania species corresponds to L. braziliensis (95.4%) and 35% of the parasites isolated showed a significant decrease in in vitro Glucanatime susceptibility associated with previous administration of the medicament. Lesion size and in vitro infectivity of the parasite are negatively correlated with decline in Glucantime susceptibility (Spearman: r = (-)0,548 and r = (-)0,726; respectively). Conclusion A negative correlation between lesion size and parasite resistance is documented. L. braziliensis was found as the main parasite species associated to lesion of patients that underwent treatment failure or relapse. The indication of a second round of treatment in therapeutic failure of ACL, produced by L. braziliensis, with pentavalent antimonial

  4. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jamal, Aslam [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Rahman, Mohammed M. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar, E-mail: drkhanmarwat@gmail.com [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Faisal, Mohd. [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Akhtar, Kalsoom [Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Graphical abstract: A dichloromethane chemical sensor using cobalt antimony oxides has been fabricated. This sensor showed high sensitivity and will be a useful candidate for environmental and health monitoring. Also it showed high photo-catalytic activity and can be a good candidate as a photo-catalyst for organic hazardous materials. Highlights: Black-Right-Pointing-Pointer Reusable chemical sensor. Black-Right-Pointing-Pointer Green environmental and eco-friendly chemi-sensor. Black-Right-Pointing-Pointer High sensitivity. Black-Right-Pointing-Pointer Good candidate for environmental and health monitoring. - Abstract: Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb{sub 2}O{sub 6}) are well crystalline nano-particles with an average particles size of 26 {+-} 10 nm. UV-visible absorption spectra ({approx}286 nm) were used to investigate the optical properties of CoSb{sub 2}O{sub 6}. The chemical sensing of CoSb{sub 2}O{sub 6} NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 {mu}A cm{sup -2} mM{sup -1}) and a large linear dynamic range (1.0 {mu}M-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb{sub 2}O{sub 6} nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb{sub 2}O{sub 6} nano-particles can play an excellent research impact in the environmental field.

  5. Comparative Efficacies of Two Antimony Regimens To Treat Leishmania braziliensis-Induced Cutaneous Leishmaniasis in Rhesus Macaques (Macaca mulatta)▿

    Science.gov (United States)

    Grimaldi, G.; Porrozzi, R.; Friedrich, K.; Teva, A.; Marchevsky, R. S.; Vieira, F.; Miekeley, N.; Paumgartten, F. J. R.

    2010-01-01

    This study compared the efficacies of two N-methylglucomine antimoniate (MA) dose regimens for treating macaques with Leishmania braziliensis-induced chronic skin disease. Whereas all animals treated with the full dose (20 mg MA/kg/day) were cured, 50% of the monkeys receiving a low-dose regimen (5 mg MA/kg/day) relapsed. The antimony concentrations in macaque plasma and tissue samples were greater in the full-dose group than in that receiving a subtherapeutic MA regimen. Our data also suggest the presence of drug-induced hepatic pathology. PMID:19822700

  6. Influence of antimony on the mechanical properties and gas content of alloy AlSi6Cu4

    OpenAIRE

    D. Medlen; D. Bolibruchova

    2011-01-01

    Aluminium alloys based on Al-Si are used in automotive and aerospace industries. AlSi6Cu4 alloy is used the complicated castings, whichmust comply high strength requirements. Strength characteristics can also be affected by the modifiers: Na, Sr, Sb. In the li terature ismentioned, that AlSi6Cu4 modified by sodium and strontium has negative effect - increases of the gas absorption. Modification of AlSi6Cu4 alloy by antimony, is still not mentioned in the literature. The article gives the effe...

  7. The influence of remelting on the properties of AlSi6Cu4 alloy modified by antimony

    Directory of Open Access Journals (Sweden)

    D. Medlen

    2012-01-01

    Full Text Available The paper deals with the problem of multiple remelting influence on AlSi6Cu4 alloy modified by antimony on chosen mechanical characteristics, microstructure and gas content. This foundry alloy is used mostly in automotive industry. Foundry Aluminum-Silicon alloys are also used in number of industrial weight sensitive applications because of their low weight and very good castability and good mechanical properties. Modifiers are usually added to molten aluminum-silicon alloys to refine the eutectic phase particle shape and improve the mechanical properties of the final cast products and Al-Si alloys cast properties.

  8. Flow analysis-hydride generation-gas phase derivative molecular absorption spectrophotometric determination of antimony in antileishmanial drugs

    Directory of Open Access Journals (Sweden)

    Máximo Gallignani

    2009-01-01

    Full Text Available In the present work, the development of a method based on the coupling of flow analysis (FA, hydride generation (HG, and derivative molecular absorption spectrophotometry (D-EAM in gas phase (GP, is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm of the absorption spectrum (190 - 300 nm is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.

  9. Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders

    Indian Academy of Sciences (India)

    Vikram V Dabhade; Rama Mohan R Tallapragada; Mahendra Kumar Trivedi

    2009-10-01

    Next to atoms and molecules the powders are the smallest state of matter available in high purities and large quantities. The effect of any external energy on the shape, morphology and structure can thus be studied with relative ease. The present investigation deals with the effect of a non-contact external energy on the powders of antimony and bismuth. The characteristics of powders treated by external energy are compared with the as received powders (control). The average particle sizes, 50 and 99, the sizes below which 99% of the particles are present showed significant increase and decrease indicating that the energy had caused deformation and fracture as if the powders have been subjected to high energy milling. To be able to understand the reasons for these changes the powders are characterized by techniques such as X-ray diffraction (XRD), surface area determination (BET), thermal analytical techniques such as DTA–DTG, DSC–TGA and SDTA and scanning electron microscopy (SEM). The treated powder samples exhibited remarkable changes in the powder characteristics at all structural levels starting from polycrystalline particles, through single crystal to atoms. The external energy had changed the lattice parameters of the unit cell which in turn changed the crystallite size and density. The lattice parameters are then used to compute the weight and effective nuclear charge of the atom which showed significant variation. It is speculated that the external energy is acting on the nucleus through some reversible weak interaction of larger cross section causing changes in the proton to neutron ratios. Thus the effect is felt by all the atoms, and hence the unit cell, single crystal grain and grain boundaries. The stresses generated in turn may have caused deformation or fracture of the weak interfaces such as the crystallite and grain boundaries.

  10. Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increases upon storage.

    Science.gov (United States)

    Shotyk, William; Krachler, Michael

    2007-03-01

    Antimony concentrations were determined in 132 brands of bottled water from 28 countries. Two of the brands were at or above the maximum allowable Sb concentration for drinking water in Japan (2 microg/L). Elevated concentrations of Sb in bottled waters are due mainly to the Sb2O3 used as the catalyst in the manufacture of polyethylene terephthalate (PET(E)). The leaching of Sb from PET(E) bottles shows variable reactivity. In 14 brands of bottled water from Canada, Sb concentrations increased on average 19% during 6 months storage at room temperature, but 48 brands of water from 11 European countries increased on average 90% under identical conditions. A mineral water from France in PET(E), purchased in Germany, yielded 725 ng/L when first tested, but 1510 ng/L when it was stored for 6 months at room temperature; the same brand of water, purchased in Hong Kong, yielded 1990 ng/L Sb. Pristine groundwater containing 1.7+/-0.4 ng/L Sb (n = 6) yielded 26.6+/-2.3 ng/L Sb (n = 3) after storage in PET(E) bottles from Canada for 6 months versus 281+/-38 ng/L Sb (n = 3) in PET(E) bottles from Germany. Tap water bottled commercially in PET(E) in December 2005 contained 450+/-56 ng/L Sb (n = 3) versus 70.3+/-0.3 ng/L Sb (n = 3) when sampled from a household faucet in the same village (Bammental, Germany), and 25.7+/-1.5 ng/L Sb (n = 3) from a local artesian flow. PMID:17396641

  11. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.

    Science.gov (United States)

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-02-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10-26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration.

  12. Association of drinking-water source and use characteristics with urinary antimony concentrations.

    Science.gov (United States)

    Makris, Konstantinos C; Andra, Syam S; Herrick, Lisa; Christophi, Costas A; Snyder, Shane A; Hauser, Russ

    2013-03-01

    Environmental factors, such as storage time, frequency of bottle reuse and temperature, have been shown to facilitate antimony (Sb) leaching from water- and food-packaging materials. The globally escalating consumption of water packaged in Sb-containing bottles, such as that of polyethylene terephthalate (PET), could increase human daily Sb doses. This study set out to investigate the relationship between drinking-water source, use characteristics, and urinary Sb concentrations (U-Sb) accompanied with survey responses of a healthy (n=35) Cypriot participant pool. One spot urine sample was collected during administration of questionnaire, while a second spot urine sample was collected from the same individual about 7 days later. Urinary and water Sb concentrations were measured with an inductively coupled plasma mass spectrometer. Survey responses showed that bottled water summed over various volumes and plastic types, such as polycarbonate and PET contributed to an average 61% of daily water consumption. Water sources such as tap, mobile stations (explained in a following section), and well water contributed to 24%, 14%, and 2% of an individual's daily water consumption pattern, respectively. Average daily potable water use of both bottled and tap water by individuals consisted of 65% drinking-water, while the remaining 35% was water used for preparing cold and hot beverages, such as, tea, coffee, and juices. A significant (P=0.02) association between per capita water consumption from PET bottles and urinary creatinine-unadjusted concentrations was observed, but this relationship did not remain after inclusion of covariates in a multivariate regression model. In the creatinine-adjusted regression model, only gender (female) was a significant (P<0.01) predictor of U-Sb, after adjusting for several covariates. It is proposed that consumption data collection on various water uses and sources among individuals could perhaps decrease the uncertainty associated with

  13. Effects of Residual Elements Arsenic, Antimony, and Tin on Surface Hot Shortness

    Science.gov (United States)

    Yin, Lan; Sridhar, Seetharaman

    2011-10-01

    Scrap-based electric arc furnace (EAF) steelmaking is limited by a surface cracking problem in the recycled steel products, which is known as surface hot shortness. This problem originates from the excessive amount of copper (Cu) in the steel scrap, which enriches during the oxidation of iron (Fe) and consequently melts and penetrates into the austenite grain boundaries. In this article, the effects of arsenic (As), antimony (Sb), and tin (Sn) on surface hot shortness were investigated. A series of Fe-0.3 wt pct Cu- x wt pct (As, Sb, or Sn) alloys with x content ranging from 0.06 to 0.10 wt pct was oxidized in air at 1423 K (1150 °C) for 60, 300, and 600 seconds inside the chamber of a thermogravimety analyzer (TGA) where heat is supplied through infrared radiation. Scanning electron microscopy (SEM) investigations show that (1) the presence of Sb and Sn results in severe grain boundary cracking, whereas the presence of As does not, (2) open cracks with Fe oxides were found beneath the oxide/metal interface in the Sb and Sn alloys, and (3) the oxide/metal interfaces for all As, Sb, and Sn alloys are planar. Penetration experiments of pure Cu and Cu-30 wt pct Sn liquid were also conducted in the chamber of a hot-stage confocal laser scanning microscopy (CLSM) in nonoxidizing atmosphere: (1) on the Fe-35 wt pct manganese (Mn) alloys to study the correlation between cracking and grain boundary characters, and (2) on the pure Fe substrates to exclude the bulk segregation effects of Sn on grain boundary cracking. It was found that grain boundary cracking rarely took place on low-energy grain boundaries. The results also suggest that the bulk segregation of Sn in the substrate is not necessary to promote significant grain boundary cracking, and as long as the liquid phase contains Sn, it will be highly embrittling.

  14. Green and red fluorescence upconversion in neodymium-doped low phonon antimony glasses

    International Nuclear Information System (INIS)

    A new K2O-B2O3-Sb2O3 (KBS) glass system having low phonon energy (about 600 cm-1) doped with Nd3+ ions has been developed. Infrared reflection spectroscopic (IRRS) studies have been employed to establish its low phonon energy. Ultraviolet-visible-near infrared (UV-vis-NIR) absorption and photoluminescence upconversion properties with special emphasis on the spectrochemistry of the 15K2O-15B2O3-70Sb2O3 (mol%) glass have been studied doping with different concentrations (0.1-1.0 wt%) of Nd2O3. UV-vis-NIR absorption band positions have been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 805 nm at room temperature. Two upconverted bands originating from the 4G7/2 → 4I9/2 and 4G7/2 → 4I13/2 transitions are found to be centered at 540 nm (green, medium) and 650 nm (red, strong), respectively. These bands have been explained from the evaluation of the absorption and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET), cooperative energy transfer (CET) and cross-relaxation (CR) mechanisms involving population of the metastable (storage) energy level (4G7/2) by effects of multiphonon deexcitation and thermal population. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in antimony glasses owing to their low phonon energy (602 cm-1, the main and highest intensity Sb-O-Sb stretching band) which is very close to that of fluoride glasses (500-600 cm-1).

  15. EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses

    Science.gov (United States)

    De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.

    2014-12-01

    Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).

  16. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil.

    Directory of Open Access Journals (Sweden)

    Jinming Luo

    Full Text Available Microbes have great potential for arsenic (As and antimony (Sb bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb in a high As (range from 34.11 to 821.23 mg kg-1 and Sb (range from 226.67 to 3923.07 mg kg-1 contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3 were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871 and aioA-like (R2 = 0.675 gene abundance and As concentration, and indicated that intracellular As(V reduction and As(III oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment.

  17. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  18. Dimethyl sulfide in the Amazon rain forest

    Science.gov (United States)

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; Kunert, N.; Jardine, A.; Taylor, T.; Abrell, L.; Artaxo, P.; Guenther, A.; Hewitt, C. N.; House, E.; Florentino, A. P.; Manzi, A.; Higuchi, N.; Kesselmeier, J.; Behrendt, T.; Veres, P. R.; Derstroff, B.; Fuentes, J. D.; Martin, S. T.; Andreae, M. O.

    2015-01-01

    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate through the formation of gaseous sulfuric acid, which can yield secondary sulfate aerosols and contribute to new particle formation. While oceans are generally considered the dominant sources of DMS, a shortage of ecosystem observations prevents an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified ambient DMS mixing ratios within and above a primary rainforest ecosystem in the central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-2014). Elevated but highly variable DMS mixing ratios were observed within the canopy, showing clear evidence of a net ecosystem source to the atmosphere during both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios lasting up to 8 h (up to 160 parts per trillion (ppt)) often occurred within the canopy and near the surface during many evenings and nights. Daytime gradients showed mixing ratios (up to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain event. The spatial and temporal distribution of DMS suggests that ambient levels and their potential climatic impacts are dominated by local soil and plant emissions. A soil source was confirmed by measurements of DMS emission fluxes from Amazon soils as a function of temperature and soil moisture. Furthermore, light- and temperature-dependent DMS emissions were measured from seven tropical tree species. Our study has important implications for understanding terrestrial DMS sources and their role in coupled land-atmosphere climate feedbacks.

  19. Hydrogen sulfide and nervous system regulation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cheng-fang; TANG Xiao-qing

    2011-01-01

    Objective This review discusses the current status and progress in studies on the roles of hydrogen sulfide (H2S) in regulation of neurotoxicity,neuroprotection,and neuromodulator,as well as its therapeutic potential for neurodegenerative disorders.Data sources The data used in this review were mainly from Medline and PubMed published in English from 2001 to August 2011.The search terms were “hydrogen sulfide”,“neuron”,and “neurodegenerative disorders”.Study selection Articles regarding the regulation of neuronal function,the protection against neuronal damage and neurological diseases,and their possible cellular and molecular mechanisms associated with H2S were selected.Results The inhibited generation of endogenous H2S is implicated in 1-methy-4-phenylpyridinium ion,6-OHDA,and homocysteine-triggered neurotoxicity.H2S elicits neuroprotection in Alzheimer's disease and Parkinson's disease models as well as protecting neurons against oxidative stress,ischemia,and hypoxia-induced neuronal death.H2S offers anti-oxidant,anti-inflammatory and anti-apoptotic effects,as well as activates ATP-sensitive potassium channels and cystic fibrosis transmembrane conductance regulator Cl- channels.H2S regulates the long-term potentiation (LTP) and GABAB receptors in the hippocampus,as well as intracellular calcium and pH homeostasis in neurons and glia cells.Conclusions These articles suggest that endogenous H2S may regulate the toxicity of neurotoxin.H2S not only acts as a neuroprotectant but also serves as a novel neuromodulator.

  20. Electrical properties of seafloor massive sulfides

    Science.gov (United States)

    Spagnoli, Giovanni; Hannington, Mark; Bairlein, Katharina; Hördt, Andreas; Jegen, Marion; Petersen, Sven; Laurila, Tea

    2016-06-01

    Seafloor massive sulfide (SMS) deposits are increasingly seen as important marine metal resources for the future. A growing number of industrialized nations are involved in the surveying and sampling of such deposits by drilling. Drill ships are expensive and their availability can be limited; seabed drill rigs are a cost-effective alternative and more suitable for obtaining cores for resource evaluation. In order to achieve the objectives of resource evaluations, details are required of the geological, mineralogical, and physical properties of the polymetallic deposits and their host rocks. Electrical properties of the deposits and their ore minerals are distinct from their unmineralized host rocks. Therefore, the use of electrical methods to detect SMS while drilling and recovering drill cores could decrease the costs and accelerate offshore operations by limiting the amount of drilling in unmineralized material. This paper presents new data regarding the electrical properties of SMS cores that can be used in that assessment. Frequency-dependent complex electrical resistivity in the frequency range between 0.002 and 100 Hz was examined in order to potentially discriminate between different types of fresh rocks, alteration and mineralization. Forty mini-cores of SMS and unmineralized host rocks were tested in the laboratory, originating from different tectonic settings such as the intermediate-spreading ridges of the Galapagos and Axial Seamount, and the Pacmanus back-arc basin. The results indicate that there is a clear potential to distinguish between mineralized and non-mineralized samples, with some evidence that even different types of mineralization can be discriminated. This could be achieved using resistivity magnitude alone with appropriate rig-mounted electrical sensors. Exploiting the frequency-dependent behavior of resistivity might amplify the differences and further improve the rock characterization.

  1. Microbial control of hydrogen sulfide production in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.; Wofford, N.Q. [Univ. of Oklahoma, Norman, OK (United States); Sublette, K.L. [Univ. of Tulsa, OK (United States)

    1996-12-31

    The ability of a sulfide- and glutaraldehyde-tolerant strain of Thiobacillus denitrificans (strain F) to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa natural gas storage facility was investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F, and the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200-460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70-110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate, and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3800 pM, and then decreased to about 1100 {mu}M after 5 wk. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160-330 {mu}M. Nitrate consumption (5 mM) and high concentrations (101-1011 cells/mL) of strain F were detected in the test core system. An accumulation of biomass occurred in the influent lines during 2 mo of continuous operation, but only a small increase in injection pressure was observed. These studies showed that inoculation with strain F was needed for effective control of sulfide production, and that significant plugging or loss of injectivity owing to microbial inoculation did not occur. 7 refs., 3 figs., 1 tab.

  2. Sulfide Oxidation in the Anoxic Black-Sea Chemocline

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; FOSSING, H.; WIRSEN, CO;

    1991-01-01

    that the measured H2S oxidation rates were 4-fold higher than could be explained by the downward flux of organic carbon and too high to balance the availability of electron acceptors such as oxidized iron or manganese. A nitrate maximum at the lower boundary of the O2 zone did not extend down to the sulfide zone.......The depth distributions of O2 and H2S and of the activity of chemical or bacterial sulfide oxidation were studied in the chemocline of the central Black Sea. Relative to measurements from earlier studies, the sulfide zone had moved upwards by 20-50 m and was now (May 1988) situated at a depth of 81......-99 m. Oxygen in the water column immediately overlying the sulfide zone was depleted to undetectable levels resulting in a 20-30-m deep intermediate layer of O2- and H2S-free water. Radiotracer studies with S-35-labelled H2S showed that high rates of sulfide oxidation, up to a few micromoles per liter...

  3. Species-specific enzymatic tolerance of sulfide toxicity in plant roots.

    Science.gov (United States)

    Martin, Nicole M; Maricle, Brian R

    2015-03-01

    Toxic effects of sulfide come from a poisoning of a number of enzymes, especially cytochrome c oxidase, which catalyzes the terminal step in mitochondrial aerobic respiration. Despite this, some estuarine plants live in sulfide-rich sediments. We hypothesized estuarine and flooding-tolerant species might be more tolerant of sulfide compared to upland species, and this was tested by measures of root cytochrome c oxidase and alcohol dehydrogenase activities in extracts exposed to sulfide. Enzyme activities were measured in 0, 5, 10, 15, and 20 μM sodium sulfide, and compared among 17 species of plants. Activities of alcohol dehydrogenase and cytochrome c oxidase were both reduced by increasing sulfide concentration, but cytochrome c oxidase was more sensitive to sulfide compared to alcohol dehydrogenase. Activities of cytochrome c oxidase were reduced to near zero at 5-10 μM sulfide whereas alcohol dehydrogenase activities were only reduced by about 50% at 10 μM sulfide. All species were sensitive to increasing sulfide, but to different degrees. Cytochrome c oxidase in flooding-sensitive species was decreased to near zero activity at 5 μM sulfide, whereas activities in some flooding-tolerant species were still detectable until 15 μM sulfide. Cytochrome c oxidase activities in some estuarine species were low even in the absence of sulfide, perhaps an adaptation to avoid sulfide vulnerability in their native, sulfide-rich habitat. This illustrates the potent metabolic effects of sulfide, and this is the first demonstration of varying sensitivities of cytochrome c oxidase to sulfide across organisms, making these data of novel importance.

  4. Nutritional status in patients with cutaneous leishmaniasis and a study of the effects of zinc supplementation together with antimony treatment

    Directory of Open Access Journals (Sweden)

    Miguel Guzman-Rivero

    2014-11-01

    Full Text Available Background: The role of micronutrient status for the incidence and clinical course of cutaneous leishmaniasis is not much studied. Still zinc supplementation in leishmaniasis has shown some effect on the clinical recovery, but the evidence in humans is limited. Objective: To compare biochemical nutritional status in cutaneous leishmaniasis patients with that in controls and to study the effects of zinc supplementation for 60 days. Design: Twenty-nine patients with cutaneous leishmaniasis were treated with antimony for 20 days. Fourteen of them got 45 mg zinc daily and 15 of them got placebo. Biomarkers of nutritional and inflammatory status and changes in size and characteristics of skin lesions were measured. Results: The level of transferrin receptor was higher in patients than in controls but otherwise no differences in nutritional status were found between patients and controls. No significant effects of zinc supplementation on the clinical recovery were observed as assessed by lesion area reduction and characteristics or on biochemical parameters. Conclusions: It is concluded that nutritional status was essentially unaffected in cutaneous leishmaniasis and that oral zinc supplementation administered together with intramuscular injection of antimony had no additional clinical benefit.

  5. Detection of pathogenic bacteria in skin lesions of patients with chiclero's ulcer: reluctant response to antimonial treatment

    Directory of Open Access Journals (Sweden)

    Isaac-Márquez Angélica Patricia

    2003-01-01

    Full Text Available We investigated the bacterial flora present in skin lesions of patients with chiclero's ulcer from the Yucatan peninsula of Mexico using conventional culture methods (11 patients, and an immunocolorimetric detection of pathogenic Streptococcus pyogenes (15 patients. Prevalence of bacteria isolated by culture methods was 90.9% (10/11. We cultured, from chiclero's ulcers (60%, pathogenic bacterial such as Staphylococcus aureus (20%, S. pyogenes (1.6%, Pseudomonas aeruginosa (1.6%, Morganella morganii (1.6%, and opportunist pathogenic bacteria such as Klebsiella spp. (20.0%, Enterobacter spp. (20%, and Enterococcus spp. (20%. We also cultured coagulase-negative staphylococci in 40% (4/10 of the remaining patients. Micrococcus spp. and coagulase-negative staphylococci constituted the bacterial genuses more frequently isolated in the normal skin of patients with chiclero's ulcer and healthy individuals used as controls. We also undertook another study to find out the presence of S. pyogenes by an immunocolorimetric assay. This study indicated that 60% (9/15 of the ulcerated lesions, but not normal controls, were contaminated with S. pyogenes. Importantly, individuals with purulent secretion and holding concomitant infections with S. pyogenes, S. aureus, P. aeruginosa, M. morganii, and E. durans took longer to heal Leishmania (L. mexicana infections treated with antimonial drugs. Our results suggest the need to eliminate bacterial purulent infections, by antibiotic treatment, before starting antimonial administration to patients with chiclero's ulcer.

  6. Complement activation-related pseudoallergy in dogs following intravenous administration of a liposomal formulation of meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Raul R. Ribeiro

    2013-08-01

    Full Text Available The increasing use of nanotechnologies in advanced therapies has allowed the observation of specific adverse reactions related to nanostructures. The toxicity of a novel liposome formulation of meglumine antimoniate in dogs with visceral leishmaniasis after single dose has been investigated. Groups of 12 animals received by the intravenous route a single dose of liposomal meglumine antimoniate (group I [GI], 6.5 mg Sb/kg, empty liposomes (GII or isotonic saline (GIII. Evaluation of hematological and biochemical parameters showed no significant changes 4 days after administration. No undesired effects were registered in the GIII. However, adverse reactions were observed in 67.7% of dogs from both groups that received liposomal formulations. The side effects began moments after bolus administration and disappeared during the first 15 minutes after treatment. Prostation, sialorrhea and defecation were the most frequent clinical signs, registered in 33.3% and 41.6 % of animals from the groups GI and GII, respectively. Tachypnea, mydriasis, miosis, vomiting and cyanosis were also registered in both groups. The adverse reactions observed in this study were attributed to the activation of the complement system by lipid vesicles in a phenomenon known as Complement Activation-Related Pseudoallergy (CARPA. The influence of the physical-chemical characteristics of liposomal formulation in the triggering of CARPA is discussed.

  7. Determination of Antimony (III in Real Samples by Anodic Stripping Voltammetry Using a Mercury Film Screen-Printed Electrode

    Directory of Open Access Journals (Sweden)

    Olga Domínguez-Renedo

    2009-01-01

    Full Text Available This paper describes a procedure for the determination of antimony (III by differential pulse anodic stripping voltammetry using a mercury film screen-printed electrode as the working electrode. The procedure has been optimized using experimental design methodology. Under these conditions, in terms of Residual Standard Deviation (RSD, the repeatability (3.81 % and the reproducibility (5.07 % of the constructed electrodes were both analyzed. The detection limit for Sb (III was calculated at a value of 1.27×10–8 M. The linear range obtained was between 0.99 × 10–8 – 8.26 × 10–8 M. An analysis of possible effects due to the presence of foreign ions in the solution was performed and the procedure was successfully applied to the determination of antimony levels in pharmaceutical preparations and sea water samples.

  8. Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: Modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xijun; Chen, Chuan; Wang, Aijie; Guo, Wanqian; Zhou, Xu [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Lee, Duu-Jong, E-mail: djlee@ntu.edu.tw [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ren, Nanqi, E-mail: rnq@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Chang, Jo-Shu [Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2014-01-15

    Graphical abstract: Model evaluation applied to case study 1: (A-G) S{sup 2−}, NO{sub 3}{sup −}-N, NO{sub 2}{sup −}-N, and Ac{sup −}-C profiles under initial sulfide concentrations of 156.2 (A), 539 (B), 964 (C), 1490 (D), 342.7 (E), 718 (F), and 1140.7 (G) mg L{sup −1}. The solid line represents simulated result and scatter represents experimental result. -- Highlights: • This work developed a mathematical model for DSR process. • Kinetics of sulfur–nitrogen–carbon and interactions between denitrifiers were studied. • Kinetic parameters of the model were estimated via data fitting. • The model described kinetic behaviors of DSR processes over wide parametric range. -- Abstract: Simultaneous removal of sulfide (S{sup 2−}), nitrate (NO{sub 3}{sup −}) and acetate (Ac{sup −}) under denitrifying sulfide removal process (DSR) is a novel biological wastewater treatment process. This work developed a mathematical model to describe the kinetic behavior of sulfur–nitrogen–carbon and interactions between autotrophic denitrifiers and heterotrophic denitrifiers. The kinetic parameters of the model were estimated via data fitting considering the effects of initial S{sup 2−} concentration, S{sup 2−}/NO{sub 3}{sup −}-N ratio and Ac{sup −}-C/NO{sub 3}{sup −}-N ratio. Simulation supported that the heterotrophic denitratation step (NO{sub 3}{sup −} reduction to NO{sub 2}{sup −}) was inhibited by S{sup 2−} compared with the denitritation step (NO{sub 2}{sup −} reduction to N{sub 2}). Also, the S{sup 2−} oxidation by autotrophic denitrifiers was shown two times lower in rate with NO{sub 2}{sup −} as electron acceptor than that with NO{sub 3}{sup −} as electron acceptor. NO{sub 3}{sup −} reduction by autotrophic denitrifiers occurs 3–10 times slower when S{sup 0} participates as final electron donor compared to the S{sup 2−}-driven pathway. Model simulation on continuous-flow DSR reactor suggested that the adjustment of

  9. Diverse sulfur metabolisms from two subterranean sulfidic spring systems.

    Science.gov (United States)

    Rossmassler, Karen; Hanson, Thomas E; Campbell, Barbara J

    2016-08-01

    In sulfidic environments, microbes oxidize reduced sulfur compounds via several pathways. We used metagenomics to investigate sulfur metabolic pathways from microbial mat communities in two subterranean sulfidic streams in Lower Kane Cave, WY, USA and from Glenwood Hot Springs, CO, USA. Both unassembled and targeted recA gene assembly analyses revealed that these streams were dominated by Epsilonproteobacteria and Gammaproteobacteria, including groups related to Sulfurovum, Sulfurospirillum, Thiothrix and an epsilonproteobacterial group with no close cultured relatives. Genes encoding sulfide:quinone oxidoreductase (SQR) were abundant at all sites, but the specific SQR type and the taxonomic affiliation of each type differed between sites. The abundance of thiosulfate oxidation pathway genes (Sox) was not consistent between sites, although overall they were less abundant than SQR genes. Furthermore, the Sox pathway appeared to be incomplete in all samples. This work reveals both variations in sulfur metabolism within and between taxonomic groups found in these systems, and the presence of novel epsilonproteobacterial groups. PMID:27324397

  10. Sulfide Catalysts Supported on Porous Aromatic Frameworks for Naphthalene Hydroprocessing

    Directory of Open Access Journals (Sweden)

    Eduard Karakhanov

    2016-08-01

    Full Text Available This paper describes the first example of using porous aromatic frameworks as supports for sulfide catalysts for the hydrogenation of aromatic hydrocarbons. The synthesis of bimetallic Ni-W and Ni-Mo sulfides was performed by in situ decomposition of [(n-Bu4N]2[Ni(MeS42] (Me = W, Mo complexes, supported on mesoporous aromatic framework with a diamond-like structure. It is shown that the highest naphthalene conversions were achieved in the case of additional sulfidation with sulfur. After the reaction, catalysts were characterized by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. The activity of synthesized catalysts has been studied using naphthalene as a model substrate. The materials used in this study were substantially active in hydrogenation and slightly in hydrocracking of naphthalene.

  11. Extraction of Nanosized Cobalt Sulfide from Spent Hydrocracking Catalyst

    Directory of Open Access Journals (Sweden)

    Samia A. Kosa

    2013-01-01

    Full Text Available The processes used for the extraction of metals (Co, Mo, and Al from spent hydrotreating catalysts were investigated in this study. A detailed mechanism of the metal extraction process is described. Additionally, a simulation study was performed to understand the sulfidizing mechanism. The suggested separation procedure was effective and achieved an extraction of approximately 80–90%. In addition, the sulfidization mechanism was identified. This sulfidizing process for Co was found to involve an intermediate, the structure of which was proposed. This proposed intermediate was confirmed through simulations. Moreover, the activities of the spent and the regenerated catalyst were examined in the cracking of toluene. The modification of the spent catalyst through the use of different iron oxide loadings improved the catalytic activity.

  12. Mechanism of sulfide effect on viscosity of HPAM polymer solution

    Institute of Scientific and Technical Information of China (English)

    康万利; 周阳; 王志伟; 孟令伟; 刘述忍; 白宝君

    2008-01-01

    The effect of sulfide on HPAM solution viscosity was studied using BROOKFIELD DV-II viscometer,and the interaction mechanism was discussed.The HPAM solution viscosity was investigated through fully reducing sulfide by the addition of hydrogen peroxide oxidation,and the mechanism of increasing polymer viscosity was investigated.The experimental results also show that there is a critical concentration of 15 mg/L.Below it,the loss rate of HPAM solution viscosity increases more rapidly,but becomes slowly above the critical concentration.A theoretical guidance for oilfields to prepare polymer solution using sewage-water by eliminating sulfide,and it is also importance to prepare polymer solution using sewage-water and save fresh water.

  13. Investigation of chemical suppressants for inactivation of sulfide ores

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the effective control method of spontaneous combustion in the mining of sulfide ore deposits, This paper presents the testing results of several selected chemicals (water glass, calcium chloride, calcium oxide, magnesium oxide and their composites) as oxidation suppressants for sulfide ores. A weight increment scaling method was used to measure suppressant performance, and this method proved to be accurate, simple and convenient. Based on a large number of experiments, the test results show that four types of chemical mixtures demonstrate a good performance in reducing the oxidation rate of seven active sulfide ore samples by up to 27% to 100% during an initial 76 d period. The mixtures of water glass mixed with calcium chloride and magnesium oxide mixed with calcium chloride can also act as fire suppressants when used with fire sprinkling systems.

  14. Laser cleaning of sulfide scale on compressor impeller blade

    Science.gov (United States)

    Tang, Q. H.; Zhou, D.; Wang, Y. L.; Liu, G. F.

    2015-11-01

    Sulfide scale on the surface of a compressor impeller blade can considerably reduce the impeller performance and its service life. To prepare for subsequent remanufacturing, such as plasma spraying, it needs to be removed completely. In the corrosion process on an FV(520)B stainless steel, sulfide scale is divided into two layers because of different outward diffusion rates of Cr, Ni and Fe. In this paper, the cleaning threshold values of the upper and inner layers and the damage threshold value of the substrate were investigated using a pulsed fiber laser. To obtain experimental evidence, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 3D surface profilometry were employed to investigate the two kinds of sulfide layers on specimens before, during, and after laser cleaning.

  15. Antimony doped tin oxides and their composites with tin pyrophosphates as catalyst supports for oxygen evolution reaction in proton exchange membrane water electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Hansen, Martin Kalmar;

    2012-01-01

    Proton exchange membrane water electrolysers operating at typically 80 °C or at further elevated temperatures suffer from insufficient catalyst activity and durability. In this work, antimony doped tin oxide nanoparticles were synthesized and further doped with an inorganic proton conducting phase...

  16. Real-world emission factors for antimony and other brake wear related trace elements: size-segregated values for light and heavy duty vehicles.

    Science.gov (United States)

    Bukowiecki, Nicolas; Lienemann, Peter; Hill, Matthias; Figi, Renato; Richard, Agnes; Furger, Markus; Rickers, Karen; Falkenberg, Gerald; Zhao, Yongjing; Cliff, Steven S; Prevot, Andre S H; Baltensperger, Urs; Buchmann, Brigitte; Gehrig, Robert

    2009-11-01

    Hourly trace element measurements were performed in an urban street canyon and next to an interurban freeway in Switzerland during more than one month each, deploying a rotating drum impactor (RDI) and subsequent sample analysis by synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). Antimony and other brake wear associated elements were detected in three particle size ranges (2.5-10, 1-2.5, and 0.1-1 microm). The hourly measurements revealed that the effect of resuspended road dust has to be taken into account for the calculation of vehicle emission factors. Individual values for light and heavy duty vehicles were obtained for stop-and-go traffic in the urban street canyon. Mass based brake wear emissions were predominantly found in the coarse particle fraction. For antimony, determined emission factors were 11 +/- 7 and 86 +/- 42 microg km(-1) vehicle(-1) for light and heavy duty vehicles, respectively. Antimony emissions along the interurban freeway with free-flowing traffic were significantly lower. Relative patterns for brake wear related elements were very similar for both considered locations. Beside vehicle type specific brake wear emissions, road dust resuspension was found to be a dominant contributor of antimony in the street canyon. PMID:19924925

  17. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    Science.gov (United States)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-05-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  18. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    Science.gov (United States)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-08-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  19. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    Science.gov (United States)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  20. Application of Borehole SIP Technique to Sulfide Mineral Exploration

    Science.gov (United States)

    Kim, Changryol; Park, Mi Kyung; Park, Samgyu; Sung, Nak Hoon; Shin, Seung Wook

    2016-04-01

    In the study, SIP (Spectral Induced Polarization) well logging probe system was developed to rapidly locate the metal ore bodies with sulfide minerals in the boreholes. The newly developed SIP logging probe employed the non-polarizable electrodes, consisting of zinc chloride (ZnCl2), sodium chloride (NaCl), gypsum (CaSO4·2H2O), and water (H2O), instead of existing copper electrodes, leading to eliminating the EM coupling effect in the IP surveys as much as possible. In addition, the SIP logging system is designed to make measurements down to maximum 500 meters in depth in the boreholes. The SIP well logging was conducted to examine the applicability of the SIP probe system to the boreholes at the ore mine in Jecheon area, Korea. The boreholes used in the SIP logging are known to have penetrated the metal ore bodies with sulfide minerals from the drilling investigations. The ore mine of the study area is the scarn deposits surrounded by the limestone or lime-silicate rocks in Ordovician period. The results of the SIP well logging have shown that the borehole segments with limestone or lime-silicate rocks yielded the insignificant SIP responses while the borehole segments with sulfide minerals (e.g. pyrite) provided the significant phase shifts of the SIP responses. The borehole segments penetrating the metal ore body, so-called cupola, have shown very high response of the phase shift, due to the high contents of the sulfide mineral pyrite. The phase shifts of the SIP response could be used to estimate the grade of the ore bodies since the higher contents of the sulfide minerals, the higher magnitudes of the phase shifts in the SIP responses. It is, therefore, believed that the borehole SIP technique can be applied to investigate the metal ore bodies with sulfide minerals, and that could be used to estimate the ore grades as a supplementary tool in the future.

  1. Hydrogen evolution from water through metal sulfide reactions

    International Nuclear Information System (INIS)

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2SX− (M = Mo and W, X = 4–6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4− isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4− and M2S5− isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (–SH) and a hydroxyl (–OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4− and M2S5− clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6− is highly endothermic with a considerable barrier due to saturation of the local bonding environment

  2. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    Science.gov (United States)

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. PMID:27093236

  3. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile.

    Science.gov (United States)

    De Gregori, Ida; Fuentes, Edwar; Rojas, Mariela; Pinochet, Hugo; Potin-Gautier, Martine

    2003-04-01

    This paper reports a comparative study of the concentration of three important environmental elements that are often found together in mineral deposits and then associated with mining activities; copper, arsenic and antimony. These elements were determined in 26 different agricultural soils from regions I, II and V in Chile, zones where the most important and biggest copper industries of this country are located. As background levels of these elements in soils have not been well established, in this study, both, impacted and non-impacted agricultural soils from different regions were considered. The relationships between the concentrations of these elements in soils were also examined. The concentration ranges for copper, arsenic and antimony were 11-530; 2.7-202 and 0.42-11 mg kg(-1) respectively. The copper concentrations in non-polluted soils from the north and central zone of Chile were similar. However, three sites from the north region have copper concentration as higher as 100 mg kg(-1), values that exceed the critical concentration for copper in soils. The concentration of arsenic and antimony in the north soils were higher than in non-impacted ones and, in the case of arsenic, greatly exceeded the world average concentration reported for this element in soils. The highest arsenic and antimony concentrations were found in Calama and Quillagua soils, two different sites in the Loa valley. The arsenic/antimony concentration ratio was higher in Quillagua soil. The high concentrations of three elements determined in impacted soils from region V (Puchuncaví and Catemu valleys) clearly shows the impact produced in this zone by the industrial and mining activities developed in their proximities. At Puchuncaví valley a clear decrease was observed in copper, arsenic and antimony concentrations in soils on the function of the distance from the industrial complex "Las Ventanas", and all concentrations exceeded the reported critical values for this matrix. Instead at

  4. Correlation models between environmental factors and bacterial resistance to antimony and copper.

    Directory of Open Access Journals (Sweden)

    Zunji Shi

    Full Text Available Antimony (Sb and copper (Cu are toxic heavy metals that are associated with a wide variety of minerals. Sb(III-oxidizing bacteria that convert the toxic Sb(III to the less toxic Sb(V are potentially useful for environmental Sb bioremediation. A total of 125 culturable Sb(III/Cu(II-resistant bacteria from 11 different types of mining soils were isolated. Four strains identified as Arthrobacter, Acinetobacter and Janibacter exhibited notably high minimum inhibitory concentrations (MICs for Sb(III (>10 mM,making them the most highly Sb(III-resistant bacteria to date. Thirty-six strains were able to oxidize Sb(III, including Pseudomonas-, Comamonas-, Acinetobacter-, Sphingopyxis-, Paracoccus- Aminobacter-, Arthrobacter-, Bacillus-, Janibacter- and Variovorax-like isolates. Canonical correspondence analysis (CCA revealed that the soil concentrations of Sb and Cu were the most obvious environmental factors affecting the culturable bacterial population structures. Stepwise linear regression was used to create two predictive models for the correlation between soil characteristics and the bacterial Sb(III or Cu(II resistance. The concentrations of Sb and Cu in the soil was the significant factors affecting the bacterial Sb(III resistance, whereas the concentrations of S and P in the soil greatly affected the bacterial Cu(II resistance. The two stepwise linear regression models that we derived are as follows: MIC(Sb(III=606.605+0.14533 x C(Sb+0.4128 x C(Cu and MIC((Cu(II=58.3844+0.02119 x C(S+0.00199 x CP [where the MIC(Sb(III and MIC(Cu(II represent the average bacterial MIC for the metal of each soil (μM, and the C(Sb, C(Cu, C(S and C(P represent concentrations for Sb, Cu, S and P (mg/kg in soil, respectively, p<0.01]. The stepwise linear regression models we developed suggest that metals as well as other soil physicochemical parameters can contribute to bacterial resistance to metals.

  5. Green and red fluorescence upconversion in neodymium-doped low phonon antimony glasses

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha [Glass Technology Laboratory, Central Glass and Ceramic Research Institute (Council of Scientific and Industrial Research), 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Karmakar, Basudeb [Glass Technology Laboratory, Central Glass and Ceramic Research Institute (Council of Scientific and Industrial Research), 196 Raja S.C. Mullick Road, Kolkata 700032 (India)], E-mail: basudebk@cgcri.res.in

    2009-05-12

    A new K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3} (KBS) glass system having low phonon energy (about 600 cm{sup -1}) doped with Nd{sup 3+} ions has been developed. Infrared reflection spectroscopic (IRRS) studies have been employed to establish its low phonon energy. Ultraviolet-visible-near infrared (UV-vis-NIR) absorption and photoluminescence upconversion properties with special emphasis on the spectrochemistry of the 15K{sub 2}O-15B{sub 2}O{sub 3}-70Sb{sub 2}O{sub 3} (mol%) glass have been studied doping with different concentrations (0.1-1.0 wt%) of Nd{sub 2}O{sub 3}. UV-vis-NIR absorption band positions have been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 805 nm at room temperature. Two upconverted bands originating from the {sup 4}G{sub 7/2} {yields} {sup 4}I{sub 9/2} and {sup 4}G{sub 7/2} {yields} {sup 4}I{sub 13/2} transitions are found to be centered at 540 nm (green, medium) and 650 nm (red, strong), respectively. These bands have been explained from the evaluation of the absorption and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET), cooperative energy transfer (CET) and cross-relaxation (CR) mechanisms involving population of the metastable (storage) energy level ({sup 4}G{sub 7/2}) by effects of multiphonon deexcitation and thermal population. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in antimony glasses owing to their low phonon energy (602 cm{sup -1}, the main and highest intensity Sb-O-Sb stretching band) which is very close to that of fluoride glasses (500-600 cm{sup -1})

  6. Novel organo-colloidal synthesis, optical properties, and structural analysis of antimony sesquioxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Validzic, Ivana Lj., E-mail: validzic@vinca.rs; Abazovic, Nadica D.; Mitric, Miodrag [University of Belgrade, ' Vinca' Institute of Nuclear Sciences (Serbia); Lalic, Milan V. [Universidade Federal de Sergipe, Departamento de Fisica (Brazil); Popovic, Zoran S. [University of Belgrade, ' Vinca' Institute of Nuclear Sciences (Serbia); Vukajlovic, Filip R. [' Vinca' Institute of Nuclear Sciences (Serbia)

    2013-01-15

    We report the novel colloidal syntheses in organic media of antimony sesquioxide ( Sb{sub 2}O{sub 3} ) spherical nanoparticles (30-250 nm) and octahedron micro- and nanocrystals (100nm - 4{mu}) depending on the synthetic method conditions. It is observed that small differences in the synthetic procedure cause large differences in the very changeable morphology. The structure of Sb{sub 2}O{sub 3} powders was refined down to the R-factors of 9.57, 7.44, 9.19, 9.78, and 8.30 %. The refinement showed that Sb{sub 2}O{sub 3} powder belongs to the cubic crystal type with space group Fd 3-bar m (No. 227). The values of estimated standard deviations, as well as reliability factors, confirmed that the structure of Sb{sub 2}O{sub 3} was well refined. Ultraviolet and visible (UV-Vis) absorption spectroscopy and diffuse reflectance measurements (DRS) reveal that the optical band gap energies found for the Sb{sub 2}O{sub 3} octahedrons and nanoparticles, micro- and nanocrystals, respectively, are quite independent of the synthetic method conditions and synthesized morphology and is found to be between 4.1-4.4 eV. No peaks in both photoluminescence (PL) emission and excitation spectra have been observed for a broad spectral range, typical for this material. In order to discriminate between conflicting experimental results concerning the band gap energy of this compound, we investigated theoretically the electronic structure and optical properties of one of the cubic sesquioxide Sb{sub 2}O{sub 3} samples synthesized here. This has been done on the basis of density functional theory (DFT) with the generalized gradient approximation (GGA) and improved version of exchange potential suggested recently by Tran and Blaha (TB-mBJ). The main characteristic of the calculated TB-mBJ electronic structure is the significant improvement of the band gap value, which is in perfect agreement with our experimental measurements. The real and imaginary parts of the dielectric tensor are also

  7. The presence and leachability of antimony in different wastes and waste handling facilities in Norway.

    Science.gov (United States)

    Okkenhaug, G; Almås, Å R; Morin, N; Hale, S E; Arp, H P H

    2015-11-01

    The environmental behaviour of antimony (Sb) is gathering attention due to its increasingly extensive use in various products, particularly in plastics. Because of this it may be expected that plastic waste is an emission source for Sb in the environment. This study presents a comprehensive field investigation of Sb concentrations in diverse types of waste from waste handling facilities in Norway. The wastes included waste electrical and electronic equipment (WEEE), glass, vehicle fluff, combustibles, bottom ash, fly ash and digested sludge. The highest solid Sb concentrations were found in WEEE and vehicle plastic (from 1238 to 1715 mg kg(-1)) and vehicle fluff (from 34 to 4565 mg kg(-1)). The type of acid used to digest the diverse solid waste materials was also tested. It was found that HNO3:HCl extraction gave substantially lower, non-quantitative yields compared to HNO3:HF. The highest water-leachable concentration for wastes when mixed with water at a 1 : 10 ratio were observed for plastic (from 0.6 to 2.0 mg kg(-1)) and bottom ash (from 0.4 to 0.8 mg kg(-1)). For all of the considered waste fractions, Sb(v) was the dominant species in the leachates, even though Sb(iii) as Sb2O3 is mainly used in plastics and other products, indicating rapid oxidation in water. This study also presents for the first time a comparison of Sb concentrations in leachate at waste handling facilities using both active grab samples and DGT passive samples. Grab samples target the total suspended Sb, whereas DGT targets the sum of free- and other chemically labile species. The grab sample concentrations (from 0.5 to 50 μg L(-1)) were lower than the predicted no-effect concentration (PNEC) of 113 μg L(-1). The DGT concentrations were substantially lower (from 0.05 to 9.93 μg L(-1)) than the grab samples, indicating much of the Sb is present in a non-available colloidal form. In addition, air samples were taken from the chimney and areas within combustible waste incinerators, as

  8. Growth, photosynthesis, and defense mechanism of antimony (Sb)-contaminated Boehmeria nivea L.

    Science.gov (United States)

    Chai, Li-Yuan; Mubarak, Hussani; Yang, Zhi-Hui; Yong, Wang; Tang, Chong-Jian; Mirza, Nosheen

    2016-04-01

    Ramie (Boehmeria nivea L.) is the oldest cash fiber crop in China and is widely grown in antimony (Sb) mining areas. To evaluate the extent of Sb resistance and tolerance, the growth, tolerance index (TI), Sb content in plant parts and in Hoagland solution, bioaccumulation factor (BF), photosynthesis, and physiological changes in Sb-contaminated B. nivea (20, 40, 80, and 200 mg L(-1) Sb) grown hydroponically were investigated. The Sb tolerance and resistance of ramie were clearly revealed by growth inhibition, a TI between 13 and 99 %, non-significant changes in the maximum quantum efficiency of photosystem (F v /F m ), energy-harvesting efficiency (photosystem II (PSII)) and single-photon avalanche diode (SPAD) value, a significant increase in Sb in plant parts, BF >1, and an increase in catalase (CAT) and malondialdehyde (MDA) at 200 mg L(-1) Sb. Under increasing Sb stress, nearly the same non-significant decline in the maximum quantum efficiency of photosystem (F v /F m ), energy-harvesting efficiency (PSII), relative quantum yield of photosystem II (φPSII), and photochemical quenching (qP), except for F v /F m at 20 mg L(-1) Sb, were recorded. SPAD values for chlorophyll under Sb stress showed an increasing trend, except for a slight decrease, i.e., continuous increase in MDA, superoxide dismutase (SOD), peroxidase (POD), and CAT activities were suppressed under Sb addition up to 40 mg L(-1) Sb and the addition of Sb enhanced enzyme production at 80 and 200 mg L(-1) Sb. A continuous decrease in SOD, POD, and CAT up to 40 mg L(-1) Sb and enhancements at ≥80 mg L(-1), along with the continuous enhancement of MDA activity and inhibited biomass production, clearly reveal the roles of these enzymes in detoxifying Sb stress and the defense mechanism of ramie at 80 mg L(-1) Sb. Thus, B. nivea constitutes a promising candidate for Sb phytoremediation at mining sites. PMID:26711292

  9. The Sulfide Capacity of Iron Oxide-Rich Slags

    Science.gov (United States)

    Motlagh, M.

    1988-03-01

    The relationship between the sulfide capacity of slags rich in iron oxide and the sulfur partition ratio between the metal and slag is strongly related to the slag's iron oxide concentration. For slags containing little or no lime, this relationship is linear for a constant concentration of iron oxide in the slag. The effect of silica on changes in the sulfide capacity of slags rich in iron oxide is similar to that of basic steel-making slags, particularly at low activity of silica in slag.

  10. Experimental constraints on gold and silver solubility in iron sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Pal' yanova, Galina [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Mikhlin, Yuri [Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Kokh, Konstantin, E-mail: k.a.kokh@gmail.com [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Siberian Physical–Technical Institute of Tomsk State University, 1, Novosobornaya, Tomsk, 634050 (Russian Federation); Karmanov, Nick [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Seryotkin, Yurii [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation)

    2015-11-15

    Experiments were performed to determine crystallization of Fe,S-melts (pyriti≿ and troilitic with molar ratio S/Fe ratios of 2 and 1, respectively) containing traces of gold and silver at (Ag/Au){sub wt} ratios varying from 10 to 0.1. The solid products were studied by optical microscopy, scanning electron microscopy, X-ray powder diffraction (XRD), microprobe analysis, and X-ray photoelectron spectroscopy (XPS) in order to reveal the concentration limits of “invisible” gold and silver in magmatic iron sulfides, and to determine the influence of sulfur on forms of precious metals in the Fe–S system with different Ag/Au ratios. Au–Ag phases do not form inclusions but instead concentrate on the grain boundaries in the synthetic pyrrhotite and troilite, while pyrite comprises micro- (1–5 μm) and macroinclusions of Au–Ag alloys and Au–Ag sulfides. In “pyriti≿” systems, the fineness of alloys increases from 650 to 970‰ and the composition of sulfides changes from acanthite (Ag{sub 2}S) to uytenbogaardtite (Ag{sub 3}AuS{sub 2}) and petrovskaite (AgAuS) as the Ag/Au ratio decreases. The concentrations of “invisible” precious metals revealed in troilite were 0.040 ± 0.013 wt.% Au and 0.079 ± 0.016 wt.% Ag. Measured concentrations in pyrite and pyrrhotite were <0.024 wt.% Au and <0.030 wt.% Ag. The surface layers of iron sulfides probed with XPS were enriched in the precious metals, and in silver relative to gold, especially in the systems with Fe/S = 1, probably, due to depletion of the metallic alloy surfaces with gold. Au- and Ag-bearing iron sulfides crystallized primarily from melts may be the source of redeposited phases in hydrothermal and hypergene processes. - Highlights: • The samples of Fe–S–Au–Ag system were synthesized. • Coupled solubility of gold and silver in iron sulfides was specified. • Ag–Au inclusions on surfaces of iron sulfides are likely to be enriched in silver. • Au–Ag sulfides can exist along with

  11. Non-hydrolytic Sol-gel Synthesis of Tin Sulfides

    Science.gov (United States)

    Kaur, Rajvinder

    The non-hydrolytic sol-gel (NHSG) process is an effective low temperature route well known for preparing homogeneous metal oxides. Thermodynamically as well as kinetically favored products, which cannot be prepared with the traditional solid-state routes, can be produced using NHSG. This project is focused on the exploration of NHSG synthesis of binary tin sulfides. In the past few years, metal sulfides have been the subject of significant interest. Much effort has been devoted to understand these materials because of their potential applications in electronic, optical, and superconductor devices.4 Among these materials, tin sulfides are materials of technological importance, which are being explored as semiconductors, anode materials for Li ion batteries, photoconductors, photocatalysts and absorber layer materials in photovoltaic solar cell devices. All of these applications depend upon features like homogeneity, oxidation state, high surface area and purity of the materials. These properties can be difficult to achieve by employing traditional synthetic routes, which require high temperatures due to slow diffusion, limiting the products to thermodynamically stable phases and prohibiting control over properties like particle size and surface area. A variety of low temperature methods are being explored due to the increased demand for such advanced materials. This project is focused on exploring the NHSG approach to synthesize binary tin sulfides, with the main goal of establishing conditions for the targeted synthesis of different tin sulfide polymorphs with controlled particle size. Being non-oxide materials, tin sulfides can be air sensitive, which requires special attention in handling. All reactions were carried out in absence of oxygen. This project explores the reaction of tin halides with thioethers in a dry solvent medium, leading to the formation of tin sulfides. There are a number of synthetic parameters that can be varied for the NHSG approach. A

  12. Experimental constraints on gold and silver solubility in iron sulfides

    International Nuclear Information System (INIS)

    Experiments were performed to determine crystallization of Fe,S-melts (pyriti≿ and troilitic with molar ratio S/Fe ratios of 2 and 1, respectively) containing traces of gold and silver at (Ag/Au)wt ratios varying from 10 to 0.1. The solid products were studied by optical microscopy, scanning electron microscopy, X-ray powder diffraction (XRD), microprobe analysis, and X-ray photoelectron spectroscopy (XPS) in order to reveal the concentration limits of “invisible” gold and silver in magmatic iron sulfides, and to determine the influence of sulfur on forms of precious metals in the Fe–S system with different Ag/Au ratios. Au–Ag phases do not form inclusions but instead concentrate on the grain boundaries in the synthetic pyrrhotite and troilite, while pyrite comprises micro- (1–5 μm) and macroinclusions of Au–Ag alloys and Au–Ag sulfides. In “pyriti≿” systems, the fineness of alloys increases from 650 to 970‰ and the composition of sulfides changes from acanthite (Ag2S) to uytenbogaardtite (Ag3AuS2) and petrovskaite (AgAuS) as the Ag/Au ratio decreases. The concentrations of “invisible” precious metals revealed in troilite were 0.040 ± 0.013 wt.% Au and 0.079 ± 0.016 wt.% Ag. Measured concentrations in pyrite and pyrrhotite were <0.024 wt.% Au and <0.030 wt.% Ag. The surface layers of iron sulfides probed with XPS were enriched in the precious metals, and in silver relative to gold, especially in the systems with Fe/S = 1, probably, due to depletion of the metallic alloy surfaces with gold. Au- and Ag-bearing iron sulfides crystallized primarily from melts may be the source of redeposited phases in hydrothermal and hypergene processes. - Highlights: • The samples of Fe–S–Au–Ag system were synthesized. • Coupled solubility of gold and silver in iron sulfides was specified. • Ag–Au inclusions on surfaces of iron sulfides are likely to be enriched in silver. • Au–Ag sulfides can exist along with native gold in pyrite

  13. Dithiocarbamate Complexes as Single Source Precursors to Metal Sulfide Nanoparticles for Applications in Catalysis

    OpenAIRE

    Roffey, A. R.

    2014-01-01

    Herein we report the solvothermal decomposition of a range of metal dithiocarbamate complexes for the synthesis of metal sulfide nanoparticles. Metal sulfides exist in a variety of structural phases, some of which are known to be catalytically active towards various processes. The aim of this work was to synthesise a variety of different metal sulfide phases for future catalysis testing, particularly the iron sulfide greigite (Fe3S4, a thiospinel containing Fe2+ and Fe3+) which is to be teste...

  14. Synthesis and Properties of Light-tolerant Organic Antimony%耐光型有机锑的合成及其性能研究

    Institute of Scientific and Technical Information of China (English)

    高勇; 韩永和; 李建丰; 袁余斌; 王爱红

    2014-01-01

    硫醇锑稳定剂由于其耐紫外光性能很差,在存储、运输和使用方面受到很大的限制。为解决这一问题,试探性以三氯化锑和巯基酯为原料,引入抗紫外线活性基团TBP-1(2,4-二羟基二苯甲酮),合成了“晒不黑”的有机锑热稳定剂。用红外光谱对产品结构进行了确认,光敏性实验表明其7周内不变色;静态热稳定性实验结果表明其与硫醇锑热稳定剂相当。%Because of its poor ultraviolet resistance , the storage , transportation and use of antimony mercaptide stabilizer was greatly limited.In order to solve this problem , a kind of synthesized organic antimony thermal stabilizer was prepared, which was light -tolerant with antimony trichloride , isooctyl thioglycollat as raw materials and TBP -1(2,4-dihydroxybenzophenone ) , with an anti-ultraviolet agent added in.The light-tolerant performance and thermal stability of product tested showed that the color of organic antimony as -synthesized was unchangeable when under the impact of direct sunlight for 7 weeks by infrared spectroscopy spectrum that was confirmed for structure of product , and the static experimental results showed that the thermal stability was nearly equivalent to antimony mercaptide.

  15. Identifying the Prospective Area of Sulfide Groundwater within the Area of Palvantash Oil and Gas Deposit

    Directory of Open Access Journals (Sweden)

    M. R. Zhurayev

    2014-03-01

    Full Text Available This paper describes the methodology of prospecting for sulfide groundwater in the area of Palvantash oil fields. In result of study allowed determining the favorable conditions for the sulfide waters formation, and mapping the areas of different sulfide water concentration. The relatively permeable areas were established and the water borehole positions were recommended.

  16. 76 FR 64022 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-10-17

    ... rule (December 1, 1993, 58 FR 63500). Hydrogen sulfide was listed under the criteria of EPCRA section... EPCRA section 313(d)(2)(B) (see 59 FR 61432, 61433, 61440-61442). Hydrogen sulfide has also been... adding hydrogen sulfide to the EPCRA section 313 list of toxic chemicals (58 FR 63500) (effective...

  17. Selective precipitation of heavy metals as controlled by a sulfide-selective electrode

    NARCIS (Netherlands)

    Veeken, A.H.M.; Vries, S.; Mark, van der A.

    2003-01-01

    Sulfide precipitation is superior to hydroxide precipitation for removal of heavy metals from wastewaters as it results in lower effluent concentrations and less interference from chelating agents. However, sulfide precipitation is not widely applied in practice because the dosing of sulfide cannot

  18. Sulfide-iron interactions in domestic wastewater from a gravity sewer

    NARCIS (Netherlands)

    Nielsen, A.H.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.

    2005-01-01

    Interactions between iron and sulfide in domestic wastewater from a gravity sewer were investigated with particular emphasis on redox cycling of iron and iron sulfide formation. The concentration ranges of iron and total sulfide in the experiments were 0.4-5.4 mg Fe L-1 and 0-5.1 mg S L-1, respectiv

  19. SULFIDE OXIDATION UNDER OXYGEN LIMITATION BY A THIOBACILLUS-THIOPARUS ISOLATED FROM A MARINE MICROBIAL MAT

    NARCIS (Netherlands)

    VANDENENDE, FP; VANGEMERDEN, H

    1993-01-01

    The colorless sulfur bacterium Thiobacillus thioparus T5, isolated from a marine microbial mat, was grown in continuous culture under conditions ranging from sulfide limitation to oxygen limitation. Under sulfide-limiting conditions, sulfide was virtually completely oxidized to sulfate. Under oxygen

  20. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  1. H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments.

    Science.gov (United States)

    Tobler, Michael; Henpita, Chathurika; Bassett, Brandon; Kelley, Joanna L; Shaw, Jennifer H

    2014-09-01

    Disentangling the effects of plasticity, genetic variation, and their interactions on organismal responses to environmental stressors is a key objective in ecological physiology. We quantified the expression of five candidate genes in response to hydrogen sulfide (H2S) exposure in fish (Poecilia mexicana, Poeciliidae) from a naturally sulfide-rich environment as well as an ancestral, non-sulfidic population to test for constitutive and environmentally dependent population differences in gene expression patterns. Common garden raised individuals that had never encountered environmental H2S during their lifetime were subjected to short or long term H2S exposure treatments or respective non-sulfidic controls. The expression of genes involved in responses to H2S toxicity (cytochrome c oxidase, vascular endothelial growth factor, and cytochrome P450-2J6), H2S detoxification (sulfide:quinone oxidoreductase), and endogenous H2S production (cystathionine γ lyase) was determined in both gill and liver tissues by real time PCR. The results indicated complex changes in expression patterns that--depending on the gene--not only differed between organs and populations, but also on the type of H2S exposure. Populations differences, both constitutive and H2S exposure dependent (i.e., plastic), in gene expression were particularly evident for sulfide:quinone oxidoreductase, vascular endothelial growth factor, and to a lesser degree for cytochrome P450-2J6. Our study uncovered putatively adaptive modifications in gene regulation that parallel previously documented adaptive changes in phenotypic traits. PMID:24813672

  2. The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration

    OpenAIRE

    Marcia, Marco; Ermler, Ulrich; Peng, Guohong; Michel, Hartmut

    2009-01-01

    Sulfide:quinone oxidoreductase (SQR) is a flavoprotein with homologues in all domains of life except plants. It plays a physiological role both in sulfide detoxification and in energy transduction. We isolated the protein from native membranes of the hyperthermophilic bacterium Aquifex aeolicus, and we determined its X-ray structure in the “as-purified,” substrate-bound, and inhibitor-bound forms at resolutions of 2.3, 2.0, and 2.9 Å, respectively. The structure is composed of 2 Rossmann doma...

  3. Hydrogen sulfide : role in vascular physiology and pathology

    NARCIS (Netherlands)

    Holwerda, Kim M.; Karumanchi, S. Ananth; Lely, A. Titia

    2015-01-01

    Purpose of reviewHydrogen sulfide (H2S), a colorless gas that is endogenously generated in mammals from cysteine, has important biological functions. Within the vasculature it regulates vessel tone and outgrowth of new vessels. This review summarizes recent literature on H2S signaling in the vascula

  4. Alloy selection for sulfidation: oxidation resistance in coal gasification environments

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, R.W.; Stoltz, R.E.

    1980-01-01

    A series of iron-nickel-chromium and nickel-chromium alloys were studied for their combined sulfidation-oxidation resistance in simulated coal gasification environments. All alloys contained a minimum of 20 w/o chromium, and titanium and aluminum in the range 0 to 4 w/o. Corrosion resistance was evaluated at 1255/sup 0/K (1800/sup 0/F) in both high BTU and low BTU coal gasification atmospheres with 1 v/o H/sub 2/S. Titanium at levels greater than 1 w/o imparted significant sulfidation resistance due to an adherent, solid solution chromium-titanium oxide layer which prevented sulfur penetration. Aluminum was less effective in preventing sulfidation since surface scales were not adherent. Of the commercial alloys tested, Nimomic 81, Pyromet 31, IN801, and IN825 exhibited the best overall corrosion resistance. However, futher alloy development, tailored to produce solid solution chromium-titanium oxide scales, may lead to alloys with greater sulfidation-oxidation resistance than those investigated here.

  5. Adsorption characteristics of thiobacillus ferrooxidans on surface of sulfide minerals

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-she; XIE Xue-hui; LI Bang-mei; DONG Qing-hai

    2005-01-01

    By using thiobacillus ferrooxidans (T.f) from Qixiashan, Hubei Province, China, the adsorption characteristics of T.f on surface of sulfide mineral were studied. The influences of adsorption time, pH value, temperature, initial inoculated concentration of bacteria, concentration of sulfide mineral powder, and variety of minerals on the adsorption characteristics were firstly investigated by using the ninhydrin colorimetric method, and the changes of contact angles and Zeta potentials of mineral surface during the bacterial adsorption were then determined. The results show that when the leaching experiments are performed for a long time from several days to a month, the maximal quantity of adsorption of T.f on the surface of pyrite is obtained under the following conditions: leaching for 20 d, pH value in range of 1-2 and temperature at 30 ℃, respectively; when the bio-leaching experiments are performed for a shorter leaching time, the maximal quantity of adsorption is obtained under the conditions: bio-leaching for 2 h, at 2.4×10 7 cell/mL of initial inoculated bacteria concentration, and at 10% of mineral powder concentration; and the adsorption quantities are different form one sulfide mineral to another, and the adsorption of T.f on the surface of sulfide minerals includes three phases: increasing phase, stationary phase and decreasing phase.

  6. Luminescence in Sulfides: A Rich History and a Bright Future

    Directory of Open Access Journals (Sweden)

    Philippe F. Smet

    2010-04-01

    Full Text Available Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs. The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  7. A coumarin-based colorimetric fluorescent probe for hydrogen sulfide

    Indian Academy of Sciences (India)

    Yanqiu Yang; Yu Liu; Liang Yang; Jun Liu; Kun Li; Shunzhong Luo

    2015-03-01

    A coumarin-based fluorescent probe for selective detection of hydrogen sulfide (H2S) is presented. This `off–on’ probe exhibited high selectivity towards H2S in aqueous solution with a detection limit of 30 nM. Notably, because of its dual nucleophilicity, the probe could avoid the interference of thiols and other sulfur containing compounds.

  8. Estimation of bacterial hydrogen sulfide production in vitro

    Directory of Open Access Journals (Sweden)

    Amina Basic

    2015-06-01

    Full Text Available Oral bacterial hydrogen sulfide (H2S production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways.

  9. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Wadia, Cyrus; Ma, Wanli; Sadtler, Bryce; Alivisatos, A.Paul

    2008-06-24

    We present the rational synthesis of colloidal copper(I) sulfide nanocrystals and demonstrate their application as an active light absorbing component in combination with CdS nanorods to make a solution-processed solar cell with 1.6percent power conversion efficiency on both conventional glass substrates and flexible plastic substrates with stability over a 4 month testing period.

  10. Electrogenerative leaching of nickel sulfide concentrate with ferric chloride

    Institute of Scientific and Technical Information of China (English)

    王少芬; 方正; 王云燕; 陈阳国

    2004-01-01

    In order to utilize the chemical energy in hydrometallurgical process of sulfide minerals reasonably and to simplify the purifying process, the electrogenerative process was applied and a dual cell system was introduced to investigate FeCl3 leaching of nickel sulfide concentrate. Some factors influencing the electrogenerative leaching, such as electrode structure, temperature and solution concentration were studied. The results show that a certain quantity of electrical energy accompanied with the leached products can be acquired in the electrogenerative leaching process.The output current and power increase with the addition of acetylene black to the electrode. Varying the components of electrode just affects the polarization degree of anode. Increasing FeCl3 concentration results in a sharp increase in the output of the leaching cell when c(FeCl3) is less than 0.1 mol/L. The optimum value of NaCl concentration for electrogenerative leaching nickel sulfide concentrate with FeCl3 is 3.0 mol/L. Temperature influences electrogenerative leaching by affecting anodic and cathodic polarization simultaneously. The apparent activation energy is determined to be 34.63 kJ/mol in the range of 298 K to 322 K. The leaching rate of Ni2+ is 29.3% after FeCl3 electrogenerative leaching of nickel sulfide concentrate for 620 min with a filter bag electrode.

  11. Microbial Oxidation of Iron Sulfides in Anaerobic Environments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka

    Abstract (shortened): Iron sulfides (FeSx), representing 0.04-10 % of Danish dry soil weight, oxidize in a presence of oxygen, releasing sulfuric acid and free iron. Environmental impact of FeSx oxidation is commonly seen on agricultural sites cultivated by drainage as acid sulfate soil formation...

  12. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  13. Magmatic sulfides in the porphyritic chondrules of EH enstatite chondrites

    CERN Document Server

    Piani, Laurette; Libourel, Guy; Tissandier, Laurent

    2016-01-01

    The nature and distribution of sulfides within 17 porphyritic chondrules of the Sahara 97096 EH3 enstatite chondrite have been studied by backscattered electron microscopy and electron microprobe in order to investigate the role of gas-melt interactions in the chondrule sulfide formation. Troilite (FeS) is systematically present and is the most abundant sulfide within the EH3 chondrite chondrules. It is found either poikilitically enclosed in low-Ca pyroxenes or scattered within the glassy mesostasis. Oldhamite (CaS) and niningerite [(Mg,Fe,Mn)S] are present in about 60% of the chondrules studied. While oldhamite is preferentially present in the mesostasis, niningerite associated with silica is generally observed in contact with troilite and low-Ca pyroxene. The chondrule mesostases contain high abundances of alkali and volatile elements as well as silica. Our data suggest that most of the sulfides found in EH3 chondrite chondrules are magmatic minerals that formed after the dissolution of S from a volatile-r...

  14. Adsorption of hydrogen sulfide on montmorillonites modified with iron.

    Science.gov (United States)

    Nguyen-Thanh, Danh; Block, Karin; Bandosz, Teresa J

    2005-04-01

    Sodium-rich montmorillonite was modified with iron in order to introduce active centers for hydrogen sulfide adsorption. In the first modification, interlayer sodium cations were exchanged with iron. In another modification, iron oxocations were introduced to the clay surface. The most elaborated modification was based on doping of iron within the interlayer space of aluminum-pillared clay. The modified clay samples were tested as hydrogen sulfide adsorbents. Iron-doped samples showed a significant improvement in the capacity for H2S removal, despite of a noticeable decrease in microporosity compared to the initial pillared clay. The smallest capacity was obtained for the clay modified with iron oxocations. Variations in adsorption capacity are likely due to differences in the chemistry of iron species, degree of their dispersion on the surface, and accessibility of small pores for H2S molecule. The results suggest that on the surface of iron-modified clay hydrogen sulfide reacts with Fe(+3) forming sulfides or it is catalytically oxidized to SO2 on iron (hydro)oxides. Subsequent oxidation may lead to sulfate formation.

  15. Solar thermal extraction of copper and zinc from sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Guesdon, C.; Sturzenegger, M.

    2002-03-01

    A novel approach for extracting metals from metal sulfides is proposed. Key feature is the use of concentrated solar radiation to directly convert metal sulfides into the metal and sulfur. Such processes have the potential to produce metals with virtually zero emission of SO{sub 2} and CO{sub 2}. The feasibility of such a solar thermal extraction has been evaluated for zinc sulfide (Zn S) and copper(I)sulfide Cu{sub 2}S. Thermodynamic calculations suggest that for both processes heat recovery from the hot product is required to implement a viable process. Decomposition experiments have indicated that the high reactivity of Zn and S is not compatible with the energy requirement of heat recovery and that quenching will likely be needed to collect Zn. As an alternative, the addition of a mixture of O{sub 2} and steam (chemical quenching) is discussed. The extraction of Cu from Cu{sub 2}S appears less critical: Experiments under N{sub 2} revealed the formation of metallic Cu already at 1323 K. Natural separation of gaseous S from liquid Cu successfully prevents recombination of the two products and at least partial heat recovery can be envisaged. (author)

  16. ISE Analysis of Hydrogen Sulfide in Cigarette Smoke

    Science.gov (United States)

    Li, Guofeng; Polk, Brian J.; Meazell, Liz A.; Hatchett, David W.

    2000-08-01

    Many advanced undergraduate analytical laboratory courses focus on exposing students to various modern instruments. However, students rarely have the opportunity to construct their own analytical tools for solving practical problems. We designed an experiment in which students are required to build their own analytical module, a potentiometric device composed of a Ag/AgCl reference electrode, a Ag/Ag2S ion selective electrode (ISE), and a pH meter used as voltmeter, to determine the amount of hydrogen sulfide in cigarette smoke. Very simple techniques were developed for constructing these electrodes. Cigarette smoke is collected by a gas washing bottle into a 0.1 M NaOH solution. The amount of sulfide in the cigarette smoke solution is analyzed by standard addition of sulfide solution while monitoring the response of the Ag/Ag2S ISE. The collected data are further evaluated using the Gran plot technique to determine the concentration of sulfide in the cigarette smoke solution. The experiment has been successfully incorporated into the lab course Instrumental Analysis at Georgia Institute of Technology. Students enjoy the idea of constructing an analytical tool themselves and applying their classroom knowledge to solve real-life problems. And while learning electrochemistry they also get a chance to visualize the health hazard imposed by cigarette smoking.

  17. Micelle Mediated Trace Level Sulfide Quantification through Cloud Point Extraction

    Directory of Open Access Journals (Sweden)

    Samrat Devaramani

    2012-01-01

    Full Text Available A simple cloud point extraction protocol has been proposed for the quantification of sulfide at trace level. The method is based on the reduction of iron (III to iron (II by the sulfide and the subsequent complexation of metal ion with nitroso-R salt in alkaline medium. The resulting green-colored complex was extracted through cloud point formation using cationic surfactant, that is, cetylpyridinium chloride, and the obtained surfactant phase was homogenized by ethanol before its absorbance measurement at 710 nm. The reaction variables like metal ion, ligand, surfactant concentration, and medium pH on the cloud point extraction of the metal-ligand complex have been optimized. The interference effect of the common anions and cations was studied. The proposed method has been successfully applied to quantify the trace level sulfide in the leachate samples of the landfill and water samples from bore wells and ponds. The validity of the proposed method has been studied by spiking the samples with known quantities of sulfide as well as comparing with the results obtained by the standard method.

  18. Sulfide Formation And Its Impacts On A Developing Country

    DEFF Research Database (Denmark)

    Matias, Natércia; Mutuvúie, Raúl; Vollertsen, Jes;

    2014-01-01

    is expected in the near future, with the associated longer wastewater travel times and increasing problems of septicity and hydrogen sulfide gas impacts. In order to better understand the in-sewer processes under local conditions, evaluate risks and exemplify how to support general drainage systems planning...

  19. Potential Applications of Hydrogen Sulfide-Induced Suspended Animation

    NARCIS (Netherlands)

    H. Aslami; M.J. Schultz; N.P. Juffermans

    2009-01-01

    A suspended animation-like state has been induced in rodents with the use of hydrogen sulfide, resulting in hypothermia with a concomitant reduction in metabolic rate. Also oxygen demand was reduced, thereby protecting against hypoxia. Several therapeutic applications of induction of a hibernation-l

  20. Hydrogen sulfide : physiological properties and therapeutic potential in ischaemia

    NARCIS (Netherlands)

    Bos, Eelke M.; van Goor, Harry; Joles, Jaap A.; Whiteman, Matthew; Leuvenink, Henri G. D.

    2015-01-01

    Hydrogen sulfide (H2S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2S, focusing upon the

  1. Hydrogen sulfide release from dairy manure storages containing gypsum bedding

    Science.gov (United States)

    Recycled gypsum products can provide a cost-effective bedding alternative for dairy producers. Manufacturers report reduced odors, moisture and bacteria in the stall environment when compared to traditional bedding. Gypsum provides a sulfate source that can be converted to hydrogen sulfide under ana...

  2. 40 CFR 425.04 - Applicability of sulfide pretreatment standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability of sulfide pretreatment standards. 425.04 Section 425.04 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY General Provisions § 425.04 Applicability of...

  3. Carbonyl Sulfides as Possible Intermediates in the Photolysis of Oxathiiranes

    DEFF Research Database (Denmark)

    Carlsen, Lars; Snyder, J. P.; Holm, A.;

    1981-01-01

    species and several dipolarophiles is rationlized in terms of a labile carbonyl suffide intermediate capable of facile sulfur extrusion from a long, weak O-S bond. Finally, the electronic absorption spectra of a series of para-substituted benzaldehyde O-sulfide model system have been calculated with CNDO...

  4. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    Science.gov (United States)

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R., II; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    Volcanogenic massive sulfide deposits, also known as volcanic-hosted massive sulfide, volcanic-associated massive sulfide, or seafloor massive sulfide deposits, are important sources of copper, zinc, lead, gold, and silver (Cu, Zn, Pb, Au, and Ag). These deposits form at or near the seafloor where circulating hydrothermal fluids driven by magmatic heat are quenched through mixing with bottom waters or porewaters in near-seafloor lithologies. Massive sulfide lenses vary widely in shape and size and may be podlike or sheetlike. They are generally stratiform and may occur as multiple lenses.

  5. Research advances in microbial mechanism of antimony%微生物对锑的代谢机制研究进展

    Institute of Scientific and Technical Information of China (English)

    李明顺; 李洁; 王革娇

    2013-01-01

    锑(Sb)是一种自然界普遍存在的剧毒重金属,随着工业生产的日趋发展,我国部分地区土壤、水体及农产品受到严重的锑污染.作为环境污染物,锑中毒会导致人类心肌衰竭,肝坏死等疾病.自然界中的某些生物,特别是微生物却可以在极高锑浓度下生长,甚至可以利用这种元素作为能源物质,因此,微生物在锑的地球物质循环中起着重要的作用.研究生物对锑的代谢机制,对于保护环境与人体健康具有重要的现实意义.本文对锑在环境中的分布、污染状况、微生物对锑的代谢以及生物修复等方面的研究现状进行了综述.同时建议今后应加强以下三方面的研究:(1)筛选更多抗锑微生物或氧化锑的微生物;(2)发掘更多锑抗性基因或氧化基因;(3)开发锑污染土壤及水体的微生物修复技术.%Antimony (Sb) is a highly toxic heavy metal which widespreadly exists in nature.With the increasing development of industry,the soil,water and agricultural products are severely polluted by antimony in some regions of our country.As an environmental pollutant,antimony poisoning can lead to heart failure,human diseases such as liver necrosis.Some organisms in nature,especially the microorganisms can grow in the high concentration of antimony,and can even use the element as an energy material,so the microorganisms play an important role in the cycle of earth's materials.Study on metabolic mechanism of antimony has important practical significance to protect environment and human health.This study reviewed the researches of Sb distribution in the environment,the pollution status,microbial metabolism of antimony and bioremediation.At the same time it suggests that future researches should strengthen the following three aspects:(1) isolating more antimony resistance or antimony oxidizing microorganisms; (2) identifying more antimony resistant or oxidizing genes; (3) exploring microbial techniques to remediate

  6. Enhanced Removal of Arsenic and Antimony in the Mining Site by Calcined γ-Fe2O3/Layered Double Hydroxide Nanocomposite

    Science.gov (United States)

    Lee, Sang-Ho; Choi, Heechul; Kim, Kyoung-Woong

    2016-04-01

    Arsenic (As) and Antimony (Sb) have been recognized as harmful contaminants in aquatic environment due to its high toxicity and carcinogenicity. Especially, the contamination of arsenic in the mining areas is considered as a serious emerging environmental issue in Korea. Due to the hazardous effect of arsenic, the United States Environmental Protection Agency (US EPA) regulated maximum contamination level of arsenic to 10 μg/L in drinking water. The harmful effect on human health by excessive intake of antimony was also reported by previous studies, and severe contamination level (100 - 7,000 μg/L) of antimony reported in surface and groundwater of abandoned mining area in China and Slovakia. Therefore, US EPA regulated maximum contaminants level of antimony in drinking water to 6 μg/L. In order to remove anionic contaminants in drinking water, various type of nanomaterials have been developed. Layered double hydroxide (LDH) is the artificial anionic clay that is based on the layered structure of positively charged brucite-like layers with interlayers of anions. The LDH is one of the promising nanomaterials for the removal of anionic contaminants because it has high selectivity for arsenic, phosphate, chromium and antimony. However, the biggest problem of LDH for wastewater treatment is that the particles cannot be easily separated after the removal of contaminants. In this study, magnetic nanoparticles (γ-Fe2O3) supported LDH nanocomposite (γ-Fe2O3/LDH) was investigated to enhance magnetic particle recovery and removal efficiency for arsenic and antimony. The calcined γ-Fe2O3/LDH nanocomposites synthesized by co-precipitation method, and the crystallographic properties of maghemite (γ-Fe2O3) and layered structure of LDH were confirmed by X-ray diffraction. The nano-sized γ-Fe2O3 (30 to 50 nm) was stably attached on the surface of LDH (100 to 150 nm) and O1s spectrum by X-ray photoelectron spectroscopy (XPS) explained that there are both physical and

  7. Direct rapid determination of traces of sulfide in environment samples

    Institute of Scientific and Technical Information of China (English)

    郭方遒; 黄兰芳; 梁逸曾

    2002-01-01

    An improved ethylene blue method for determination of sulfide is developed. It has been adapted to a direct determination of sulfide by both common spectrophotometric method and total differential spectrophotometric method. In common spectrophotometric method, the calibration curve is A=1.69ρ+0.006 and the correlation coefficient is 0.9994.The apparent molar absorptivity is 5.42×104 L*mol-1*cm-1 and calibration curve is liner when ρ is in the range of 0-0.9 mg*L-1. In total differential spectrophotometric method, the calibration curve is A=9.25ρ+0.004 and the correlation coefficient is 0.9996. The apparent molar absorptivity is 2.96×105 L*mol-1*cm-1and calibration curve is liner when ρ is in the range of 0-0.10 mg*L-1. The sensitivity of this method is increased significantly compared with the former ethylene blue method. The speed of reaction is also faster than the former one. The limit of detection is found to be 1.0 ng*mL-1 by both common spectrophotometric method and total differential spectrophotometric method. Ten replicate analyses of a sample solution containing 100 ng*mL-1sulfide give a relative standard deviation of 1.8%. The effects of various cations and anions on the determination of sulfide are studied and procedures for removal of interference is described. The method is used for the determination of sulfide in environment samples with satisfactory results.

  8. Biogeographic Congruency among Bacterial Communities from Terrestrial Sulfidic Springs

    Directory of Open Access Journals (Sweden)

    Brendan eHeadd

    2014-09-01

    Full Text Available Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria, up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria, but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or

  9. Synthesis and characterization of nanostructured Mn(II) doped antimony-tin oxide (ATO) films on glass

    International Nuclear Information System (INIS)

    Sol–gel Mn(II) doped antimony tin oxide films were developed with precursor of atomic ratio range, Sn:Sb:Mn = 68–72:23–25:9–3. The X-ray diffraction patterns depict tetragonal cassiterite phase of SnO2. Transmission electron microscopy images suggest the nanostructured form of the doped materials. The increase in crystallite size with Mn(II) concentration is reflected by the larger band gap values (4.61–4.73 eV) arising from the excitonic transitions which also respond to PL emissions. Hall effect measurements show that the carrier concentration increases but mobility decreases for Mn(II) doping. Room temperature ferromagnetism with different saturation magnetic moments (Ms) has been observed for all dopant concentrations, 3–9 at%.

  10. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Susan C., E-mail: swilso24@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia); Lockwood, Peter V., E-mail: peter.lockwood@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia); Ashley, Paul M., E-mail: pashley@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia); Tighe, Matthew, E-mail: mtighe2@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia)

    2010-05-15

    This article provides a critical review of the environmental chemistry of inorganic antimony (Sb) in soils, comparing and contrasting findings with those of arsenic (As). Characteristics of the Sb soil system are reviewed, with an emphasis on speciation, sorption and phase associations, identifying differences between Sb and As behaviour. Knowledge gaps in environmentally relevant Sb data for soils are identified and discussed in terms of the limitations this imposes on understanding the fate, behaviour and risks associated with Sb in environmental soil systems, with particular reference to mobility and bioavailability. - A critical and comparative review of Sb and As chemistry and associations in soil systems identifies research directions needed for better understanding of risks.

  11. Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Vaculík, Marek; Mrázová, Anna; Lux, Alexander

    2015-12-01

    The role of antimony (Sb)--a non-essential trace metalloid--in physiological processes running in crops is still poorly understood. Present paper describes the effect of Sb tartrate (SbIII) on growth, Sb uptake, photosynthesis, photosynthetic pigments, and leaf tissue organization in young sunflower plants grown in hydroponics. We found that growth of below- and aboveground part was reduced with increasing concentration of Sb in the medium. Although Sb was mostly taken up by sunflower roots and only small part (1-2%) was translocated to the shoots, decline in photosynthesis, transpiration, and decreased content of photosynthetic pigments were observed. This indicates that despite relatively low mobility of Sb in root-shoot system, Sb in shoot noticeably modifies physiological status and reduced plant growth. Additionally, leaf anatomical changes indicated that Sb reduced the size of intercellular spaces and made leaf tissue more compact. PMID:26194244

  12. Conjugative plasmid in Corynebacterium flaccumfaciens subsp. oortii that confers resistance to arsenite, arsenate, and antimony(III)

    Energy Technology Data Exchange (ETDEWEB)

    Hendrick, C.A.; Haskins, W.P.; Vidaver, A.K.

    1984-07-01

    Gene transfer systems for phytopathogenic corynebacteria have not been reported previously. In this paper a conjugative 46-megadalton plasmid (pDG101) found in Corynebacterium flaccumfaciens subsp. oorii CO101 is described that mediates resistance to arsenite, arsenate, and antimony(III). Transfer of the plasmid from CO101 to four other strains from the C. flaccumfaciens group occurred between cells immobilized on nitrocellulose filters or on agar surfaces. Transconjugant strains expressed the same levels of metal resistance as the donor strain and were able to act as donor strains in subsequent matings. The physical presence of the plasmid was detected by agarose gel electrophoresis. Arsenite-sensitive derivatives of the donor and transconjugant strains were obtained after heat treatment; these were cured of pDG101.

  13. Construction of spongy antimony-doped tin oxide/graphene nanocomposites using commercially available products and its excellent electrochemical performance

    Science.gov (United States)

    Zhao, Xiaowei; Zhang, Jingwei; Zhang, Jiwei; Gong, Chunhong; Gu, Xiufang; Ma, Zhihua; Zhou, Jingfang; Yu, Laigui; Zhang, Zhijun

    2015-10-01

    We construct successfully a porous antimony-doped tin oxide (ATO)/nitrogen-doped graphene 3-dimensional (3D) frameworks (denoted as ATO/NG/TEPA; TEPA refers to tetraethylenepentamine) by a one-pot hydrothermal process, with which TEPA aqueous solution is adopted to easily re-disperse commercial ATO precursor forming a transparent hydrosol. The results show that TEPA plays a key role in the construction of ATO/NG/TEPA, not only acting as a peptization reagent to re-disperse ATO precursor nanoparticles, and as a linker to combine ATO with graphene sheets. The as-fabricated ATO/NG/TEPA hybrid as the negative electrode of lithium ion batteries exhibits excellent lithium storage capacity and cycling stability. With the advantage of easily re-dispersing commercial ATO, the present synthetic route may be put into use for the large-scale production of the titled nanocomposites as the anode material of lithium ion batteries.

  14. Fabrication of superhydrophobic and heat-insulating antimony doped tin oxide/polyurethane films by cast replica micromolding.

    Science.gov (United States)

    Feng, Jie; Huang, Baoyuan; Zhong, Mingqiang

    2009-08-01

    A novel process for fabricating superhydrophobic and heat-insulating polymeric nanocomposite films was developed. Briefly, antimony doped tin oxide (ATO) nanoparticles that commonly endow coats heat-insulating and transparent functions were mixed into commercial waterborne polyurethane (WPU) suspensions to obtain ATO/WPU suspensions, which were then cast onto poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from stamps, ATO/PU films with superhydrophobic surface and heat-insulating property were created, while PU films without ATO only showed high hydrophobicity. Scanning electron microscopy (SEM) imaging showed the surface of ATO/PU superhydrophobic films had unique micro- and nano-structures similar with those on the lotus leaf. On the contrary, no obvious nano-structures were found on the surface of pure PU films, demonstrating mixing functional nanoparticles into polymers is a necessary and feasible step in creating superhydrophobic and functional films by replica molding method. PMID:19394955

  15. lVIICROSTRUCTURE AND EUTECTIC MORPHOLOGY OF AL-12.5°/o Si ALLOY REFINED WITH ANTIMONY

    Directory of Open Access Journals (Sweden)

    Funda Kahraman

    2007-01-01

    Full Text Available Modification of Al-Si cast alloys can be achieved in two different ways, namely by additions of certain eleınents orwith rapid cooling rate. Modifications of the Al-Si al1oys are carried out extensivcly in industry to improve themechanical properties, particularly ductility. In this study, the effects of antiınony addition.s and growth rate on theınicrostructure and eutectic morphology on the directionally solidified Al- 1 2.5°/o Si cutectic all oy has beeninvestigated. The results showed that antimony can be identified as a grain refıner. Over modification occurs in Al-12.5 °/oSi alloy when modifier is present in the amount of 1 %Sb results in AISb compound.

  16. Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Vaculík, Marek; Mrázová, Anna; Lux, Alexander

    2015-12-01

    The role of antimony (Sb)--a non-essential trace metalloid--in physiological processes running in crops is still poorly understood. Present paper describes the effect of Sb tartrate (SbIII) on growth, Sb uptake, photosynthesis, photosynthetic pigments, and leaf tissue organization in young sunflower plants grown in hydroponics. We found that growth of below- and aboveground part was reduced with increasing concentration of Sb in the medium. Although Sb was mostly taken up by sunflower roots and only small part (1-2%) was translocated to the shoots, decline in photosynthesis, transpiration, and decreased content of photosynthetic pigments were observed. This indicates that despite relatively low mobility of Sb in root-shoot system, Sb in shoot noticeably modifies physiological status and reduced plant growth. Additionally, leaf anatomical changes indicated that Sb reduced the size of intercellular spaces and made leaf tissue more compact.

  17. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration

    NARCIS (Netherlands)

    Peiffer, Stefan; Behrends, Thilo; Hellige, Katrin; Larese-Casanova, Philip; Wan, Moli; Pollok, Kilian

    2015-01-01

    The reaction of ferric (hydr)oxides with dissolved sulfide does not lead to the instantaneous production of thermodynamically stable products but can induce a variety of mineral transformations including the formation of metastable intermediates. The importance of the various transformation pathways

  18. Blood Components Prevent Sulfide Poisoning of Respiration of the Hydrothermal Vent Tube Worm Riftia pachyptila

    Science.gov (United States)

    Powell, Mar A.; Somero, George N.

    1983-01-01

    Respiration of plume tissue of the hydrothermal vent tube worm Riftia pachyptila is insensitive to sulfide poisoning in contrast to tissues of animals that do not inhabit vents. Permeability barriers may not be responsible for this insensitivity since plume homogenates are also resistant to sulfide poisoning. Cytochrome c oxidase of plume, however, is strongly inhibited by sulfide at concentrations less than 10 μ M. Factors present in blood, but not in cytosol, prevent sulfide from inhibiting cytochrome c oxidase. Avoidance of sulfide poisoning of respiration in Riftia pachyptila thus appears to involve a blood-borne factor having a higher sulfide affinity than that of cytochrome c oxidase, with the result that appreciable amounts of free sulfide are prevented from accumulating in the blood and entering the intracellular compartment.

  19. Galvanic coupling and its effect on origin potential flotation system of sulfide minerals

    Institute of Scientific and Technical Information of China (English)

    顾帼华; 戴晶平; 王晖; 邱冠周

    2004-01-01

    The galvanic coupling formed in origin potential flotation systems of sulfide minerals can be divided into three types: sulfide mineral-sulfide mineral-water system; sulfide mineral-steel ball-water system; and sulfide mineral-sulfide mineral-collector system. In this paper, taking lead, zinc, iron sulfide mineral systems for examples,several models of galvanic coupling were proposed and the effects of galvanic coupling on flotation were discussed. A galvanic contact between galena (or sphalerite) and pyrite contributes to decreasing the content of zinc in lead concentrate, and enhances remarkably the absorption of collector on the galena surface. During grinding, due to galvanic interactions between minerals and steel medium, Fe(OH)3 formed covers on the cathodic mineral surface, affecting its floatability.

  20. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.

    Science.gov (United States)

    Nielsen, A H; Yongsiri, C; Hvitved-Jacobsen, T; Vollertsen, J

    2005-01-01

    A model concept for prediction of sulfide buildup in sewer networks is presented. The model concept is an extension to--and a further development of--the WATS model (Wastewater Aerobic-anaerobic Transformations in Sewers), which has been developed by Hvitved-Jacobsen and co-workers at Aalborg University. In addition to the sulfur cycle, the WATS model simulates changes in dissolved oxygen and carbon fractions of different biodegradability. The sulfur cycle was introduced via six processes: 1. sulfide production taking place in the biofilm covering the permanently wetted sewer walls; 2. biological sulfide oxidation in the permanently wetted biofilm; 3. chemical and biological sulfide oxidation in the water phase; 4. sulfide precipitation with metals present in the wastewater; 5. emission of hydrogen sulfide to the sewer atmosphere and 6. adsorption and oxidation of hydrogen sulfide on the moist sewer walls where concrete corrosion may take place.

  1. Conversion kinetics for smelt anions: cyanate and sulfide

    Energy Technology Data Exchange (ETDEWEB)

    DeMartini, N.

    2004-07-01

    Cyanate and sulfide are two anions found in the molten salts (smelt) from the kraft recovery boiler of the chemical recovery cycle. Their concentrations in smelt are significantly different, as are their origins. The concentration of cyanate in smelt ranges between 0.4 and 2.1 g OCN{sup -}/kg smelt while the concentration of sulfide ranges between 78 and 115 g S{sup 2-}/kg smelt. Cyanate is a by-product of black liquor combustion. It is formed from organic nitrogen compounds in black liquor during the char burning stage. The charge of the cyanate anion is balanced by the alkali metals found in smelt, namely sodium and potassium. It has been found that the nitrogen in cyanate represents about 30% of the nitrogen entering the recovery boiler with the black liquor. This flow is similar in magnitude to the flows of black liquor nitrogen exiting the recovery boiler as the gaseous compounds NO and N{sub 2}. The method for cyanate analysis used in this work is presented in the Methods chapter of this thesis and Paper I. The results from nitrogen balances at three European kraft pulp mills are discussed in this thesis and Papers II and III, with a focus on the fate of cyanate in the recovery boiler and recausticizing process. Cyanate exits the recovery boiler with the smelt and reacts to form ammonia in the recausticizing solutions of the chemical recovery cycle. Papers IV and V of this thesis focus on the rate of ammonia formation from cyanate in model solutions and in kraft green liquors. The experiments were carried out at temperatures of 80 to 95 deg C, which are temperatures similar to those found in the recausticizing process of a kraft pulp mill. The kinetic studies help clarify the catalytic effect of bicarbonate. A rate equation applicable for use in describing ammonia formation from cyanate in highly alkaline solutions such as pulp mill recovery streams is presented. The sulfide anion, on the other hand, is a desired product of black liquor combustion as the

  2. Low Temperature Calorimetric Investigation of the Spin Glasses: MERCURY(1-X)MANGANESE(X)TELLURIDE and COBALT(X)GALLIUM(1-X); and of the Compounds: Mercury-Telluride Alpha - Mercury Sulfide, Beta - Mercury Sulfide, THALLIUM(3)ARSENIC SELENIDE(3), THALLIUM(3)ANTIMONY SULFIDE(3), Silver-Thallium - and Silver-Thallium

    Science.gov (United States)

    Akbarzadeh, Hadi

    A systematic study of the low-dc-field magnetic susceptibility and the specific heat has been carried out on mixes Hg(,1-x)Mn(,x)Te crystals, in the composition range 0 (LESSTHEQ) x (LESSTHEQ) 0.35. The alloy with x = 0.35 showed spin-glass behavior below T = 10.9 K. The observed spin-glass phase is ascribed to the frustration of the antiferromagnetic interactions. For x (LESSTHEQ) 0.25, the Hg(,1-x)Mn(,x)Te samples remain paramagnetic down to 1 K. Experimental results for the specific heat and the susceptibility for x 0.52 it also has contributions by the cobalt nuclei, proportional to T('-2), and a spin wave contribution proportional to T('3/2). This last term indicates the coexistence of spin glass and ferromagnetic properties. A simple two level system model fits the spin glass specific heat very well. The agreement between experimental and calculated specific heat shows that individual AS defects are responsible for the thermal properties. To explain hysteresis and remanence objects containing thousands of AS defects have been proposed. On increasing the temperature some objects become unfrozen. We speculate that the individual AS defects in the unfrozen objects can adjust themselves over their own two levels and so contribute to the thermal properties. Specific heats of mercury chalcogenides (HgTe, HgSe, (alpha)-HgS, (beta)-HgS) and red HgI(,2) have been measured in the temperature range of 0.4 - 50 K. All materials display well defined maxima in CT('-3) which indicate the presence of low-lying modes described by Einstein oscillators. The specific heats of Tl(,3)AsSe, Tl(,3)SbS(,3), AgTlS, and AgTlSe have been measured between 1 and 50 K. The Debye temperatures are, respectively: 140, 145, 160, 140 K. Above 2.5 K an additional contribution is noticed which indicates low-lying optical modes.

  3. Cadmium sulfide and lead sulfide quantum dots in glass: Processing, growth, and optical absorption

    Science.gov (United States)

    Rao, Pratima Gattu Naga

    Glasses containing cadmium sulfide and lead sulfide particles were prepared, and their properties were studied. These particles exhibit quantum confinement behavior when they are smaller than their Bohr exciton radii. Quantum confinement leads to size dependence in the optical absorption of particles. This size dependence can tune the optical absorption of the material to a particular wavelength or energy and possibly enhances the nonlinear optical absorption of the particles. These properties have potential applications in photonic devices. To control the growth of these semiconductor particles in glass, the glass processing conditions were studied. CdS-doped glasses were initially prepared with CdO and ZnS. The sublimation temperature for ZnS is at 1185°C; whereas, CdO sublimes at 1559°C, and CdS at 980°C. Loss of both cadmium and sulfur was observed in open crucible melts, even when CdO and ZnS were used. Improvements in glass processing were made by use of preheat and a cover during the glass melting, resulting in better retention of both dopants. Direct CdS addition to the glasses was possible with these improvements, thus eliminating complications of zinc incorporation during the growth of the semiconductor particles. These methods were successfully applied to the synthesis of PbS-doped glasses. CdS and PbS particles were grown in alkali borosilicate glasses, and their optical absorption spectra were measured as a function of heat treatment temperature and time. The position of the absorption peak and edge shifted to longer wave-lengths, or lower energies, with longer heat treatments at a constant temperature. Both CdS and PbS particles exhibited quantum confinement. These measurements were used to calculate particle sizes from quantum confinement models. Comparisons with transmission electron microscopy (TEM) demonstrated that the 1-term effective-mass approximation was appropriate for estimating CdS particle sizes. A sophisticated four-band envelope

  4. Super-resolution readout property of bismuth-doped antimony-based thin film as a functional mask for read-only memory

    Science.gov (United States)

    Lu, Xinmiao; Wu, Yiqun; Wang, Yang; Wei, Jingsong

    2012-09-01

    Bismuth-doped antimony-based (Sb100- x Bi x , x=2.46) thin films were presented as a functional mask for super-resolution readout of read-only memory (ROM). The pit size of the ROM was 390 nm, and super-resolution readout was realized on a dynamic tester with laser wavelength of 780 nm and the numerical aperture of the focusing objective lens of 0.45. The carrier-to-noise ratio (CNR) of 22 dB, readout threshold power of 0.8 mW and super-resolution readout cycles of 2×104 was achieved. The influence of film thickness and readout power on CNR was investigated. The reflectivity and transmittance of the film with different temperature at wavelength of 780 nm were detected, and the super-resolution mechanism of the bismuth-doped antimony-based thin films as the functional mask layer was discussed.

  5. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    Science.gov (United States)

    Hong, Seung Sae; Cha, Judy J.; Kong, Desheng; Cui, Yi

    2012-03-01

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×1011 cm-2. The zinc oxide-capped, antimony-doped Bi2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications.

  6. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part II. the regeneration of copper sulfide to copper oxide - An experimental study

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    Aim of this study was to investigate the possibilities for a selective and efficient method to convert copper(II) sulfide (CuS) into copper(II) oxide (CuO). The oxidation of copper sulfide has been studied experimentally using a thermogravimetric analyzer (TGA) at temperatures ranging from 450 to 75

  7. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    Directory of Open Access Journals (Sweden)

    Z. O. Lipatova

    2015-03-01

    Full Text Available Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been found to be dependent on the registration wavelength in the range from 450 to 700 nm. Obtained fluorophosphate glasses with CdS quantum dots can find their application as fluorescent materials with intensive luminescence band and long excited-state natural lifetime.

  8. Oxygen-free atomic layer deposition of indium sulfide

    Science.gov (United States)

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  9. L-Cysteine-assisted Synthesis of Copper Gallium Sulfide Microspheres

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiao-juan; ZHONG Jia-song; CAI Qian; HUANG Hai-yu; LIU Hai-tao; XIANG Wei-dong; SUN Jun-cai

    2012-01-01

    An effective L-cysteine-assisted synthetic route has been successfully developed to prepare copper gallium sulfide(CuGaS2) microspheres under solvothermal conditions with CuCI2-2H2O,GaCl3 and L-cysteine as source materials,in which L-cysteine was used as the sulfide source and eomplexing molecule.The experiments revealed that the synthesized sample was of a typical CuGaS2 tetragonal structure.Moreover,the prepared CuGaS2 crystals consisting of microspheres made up of nanoflakes,and the diameter of the nanoflakes was about 20 nm.Raman spectrum of the obtained CuGaS2 exhibits a high-intensity peak of the A1 mode at 306 cm-1.Meanwhile,a possible growth mechanism was proposed based on the investigations.

  10. Fractal characteristics of nanocrystalline indium and gallium sulfide particles

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, P.U., E-mail: psastry@barc.gov.i [Solid State Physics Division, Mumbai 400085 (India); Dutta, Dimple P. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-11-13

    The structure of nano-sized powders of indium sulfide (In{sub 2}S{sub 3}) and gallium sulfide (Ga{sub 2}S{sub 3}), prepared by single source precursor route has been investigated by small angle X-ray scattering technique. The particle morphology shows interesting fractal nature. For In{sub 2}S{sub 3}, the nanoparticle aggregates show a mass fractal with fractal dimension 2.0 that increases with longer time of thermal treatment. Below the length scale of about 20 nm, the particles have a rough surface with a surface fractal dimension of 2.8. Unlike In{sub 2}S{sub 3}, structure of Ga{sub 2}S{sub 3} exhibits a single surface fractal over whole q-range of study. The estimated particle sizes are in range of 5-15 nm and the results are supported by transmission electron microscope.

  11. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  12. The bioleaching of different sulfide concentrates using thermophilic bacteria

    Science.gov (United States)

    Torres, F.; Blázquez, M. L.; González, F.; Ballester, A.; Mier, J. L.

    1995-05-01

    The bioleaching of different mineral sulfide concentrates with thermophilic bacteria (genus Sulfolobus @#@) was studied. Since the use of this type of bacteria in leaching systems involves stirring and the control of temperature, the influence of the type of stirring and the pulp density on dissolution rates was studied in order to ascertain the optimum conditions for metal recovery. At low pulp densities, the dissolution kinetic was favored by pneumatic stirring, but for higher pulp densities, orbital stirring produced the best results. A comparative study of three differential concentrates, one mixed concentrate, and one global concentrate was made. Copper and iron extraction is directly influenced by bacterial activity, while zinc dissolution is basically due to an indirect mechanism that is activated in the presence of copper ions. Galvanic interactions between the different sulfides favors the selective bioleaching of some phases (sphalerite and chalcopyrite) and leads to high metal recovery rates. However, the formation of galvanic couples depends on the type of concentrate.

  13. Health assessment document for hydrogen sulfide: review draft

    Energy Technology Data Exchange (ETDEWEB)

    Ammann, H.M.; Bradow, F.; Fennell, D.; Griffin, R.; Kearney, B.

    1986-08-01

    Hydrogen sulfide is a highly toxic gas which is immediately lethal in concentrations greater than 2000 ppm. The toxic end-point is due to anoxia to brain and heart tissues which results from its interaction with the celluar enzyme cytochrome oxidase. Inhibition of the enzyme halts oxidative metabolism which is the primary energy source for cells. A second toxic end-point is the irritative effect of hydrogen sulfide on mucous membranes, particularly edema at sublethal doses (250 to 500 ppm) in which sufficient exposure occurs before conciousness is lost. Recovered victims of exposure report neurologic symptoms such as headache, fatigue, irritability, vertigo, and loss of libido. Long-term effects are similar to those caused by anoxia due to other toxic agents like CO, and probably are not due to specific H/sub 2/S effects. H/sub 2/S is not a cumulative poison. No mutagenic, carcinogenic, reproductive, or teratogenic effects have been reported in the literature.

  14. Synthesis and characterization of cerium sulfide thin film

    Institute of Scientific and Technical Information of China (English)

    Ιshak Afsin Kariper

    2014-01-01

    Cerium sulfide (CexSy) polycrystalline thin film is coated with chemical bath deposition on substrates (commercial glass). Transmittance, absorption, optical band gap and refractive index are examined by using UV/VIS. Spectrum. The hexagonal form is observed in the structural properties in XRD. The structural and optical properties of cerium sulfide thin films are analyzed at different pH. SEM and EDX analyses are made for surface analysis and elemental ratio in films. It is observed that some properties of films changed with different pH values. In this study, the focus is on the observed changes in the properties of films. The pH values were scanned at 6–10. The optical band gap changed with pH between 3.40 to 3.60 eV. In addition, the film thickness changed with pH at 411 nm to 880 nm.

  15. Oxygen-free atomic layer deposition of indium sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  16. Antimoniais empregados no tratamento da leishmaniose: estado da arte Antimonials employed in the treatment of leishmaniaisis: the state of the art

    OpenAIRE

    Susanne Rath; Luciano Augusto Trivelin; Talitha Rebecca Imbrunito; Daniela Maria Tomazela; Marcelo Nunes de Jesús; Percy Calvo Marzal; Heitor Franco de Andrade Junior; André Gustavo Tempone

    2003-01-01

    Antimony preparations are the drugs of choice for the treatment of leishmaniasis over 90 years, a disease that currently affects 12 million people worldwide. Its introduction was based on 19th century concepts of therapeutic effects of metal salts as arsenicals and other metals, most of them abandoned due to toxic effects or better drugs. In the last three decades, there was a great improvement in the knowledge of cell biology and immunology of those infections, but chemotherapy has not been ...

  17. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum

    OpenAIRE

    Verónica Gómez Pérez; Raquel García-Hernandez; Victoriano Corpas-López; Tomás, Ana M.; Joaquina Martín-Sanchez; Santiago Castanys; Francisco Gamarro

    2016-01-01

    Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania infantum, is one of the most important zoonotic diseases affecting dogs and humans in the Mediterranean area. The presence of infected dogs as the main reservoir host of L. infantum is regarded as the most significant risk for potential human infection. We have studied the susceptibility profile to antimony and other anti-leishmania drugs (amphotericin B, miltefosine, paromomycin) in Leishmania infantum isolates extracted...

  18. Arsenic and antimony determination in refined and unrefined table salts by means of hydride generation atomic absorption spectrometry--comparison of sample decomposition and determination methods

    OpenAIRE

    AKSUNER, Nur; TİRTOM, Vedia Nüket; HENDEN, Emür

    2011-01-01

    An evaluation was made of different digestion methods for the determination of arsenic and antimony in table salt samples prior to hydride generation atomic absorption spectrometric analysis. Microwave acid digestion, classical wet digestion, dry ashing, and fusion were applied to the decomposition of salt samples and optimum conditions were investigated. Samples were decomposed by changing heating time, digestion techniques, and the amount and composition of acid, and then the concen...

  19. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides

    Science.gov (United States)

    Placencia-Gómez, Edmundo; Slater, Lee; Ntarlagiannis, Dimitrios; Binley, Andrew

    2013-05-01

    Oxidation of metal sulfide minerals is responsible for the generation of acidic waters rich in sulfate and metals. When associated with the oxidation of sulfide ore mine waste deposits the resulting pore water is called acid mine drainage (AMD); AMD is a known environmental problem that affects surface and ground waters. Characterization of oxidation processes in-situ is challenging, particularly at the field scale. Geophysical techniques, spectral induced polarization (SIP) in particular, may provide a means of such investigation. We performed laboratory experiments to assess the sensitivity of the SIP method to the oxidation mechanisms of common sulfide minerals found in mine waste deposits, i.e., pyrite and pyrrhotite, when the primary oxidant agent is dissolved oxygen. We found that SIP parameters, e.g., phase shift, the imaginary component of electrical conductivity and total chargeability, decrease as the time of exposure to oxidation and oxidation degree increase. This observation suggests that dissolution-depletion of the mineral surface reduces the capacitive properties and polarizability of the sulfide minerals. However, small increases in the phase shift and imaginary conductivity do occur during oxidation. These transient increases appear to correlate with increases of soluble oxidizing products, e.g., Fe2 + and Fe3 + in solution; precipitation of secondary minerals and the formation of a passivating layer to oxidation coating the mineral surface may also contribute to these increases. In contrast, the real component of electrical conductivity associated with electrolytic, electronic and interfacial conductance is sensitive to changes in the pore fluid chemistry as a result of the soluble oxidation products released (Fe2 + and Fe3 +), particularly for the case of pyrrhotite minerals.

  20. Aromatic and heterocyclic perfluoroalkyl sulfides. Methods of preparation

    Directory of Open Access Journals (Sweden)

    Vladimir N. Boiko

    2010-08-01

    Full Text Available This review covers all of the common methods for the syntheses of aromatic and heterocyclic perfluoroalkyl sulfides, a class of compounds which is finding increasing application as starting materials for the preparation of agrochemicals, pharmaceutical products and, more generally, fine chemicals. A systematic approach is taken depending on the mode of incorporation of the SRF groups and also on the type of reagents used.