WorldWideScience

Sample records for antimicrobial resistance monitoring

  1. Danish Integrated Antimicrobial Resistance Monitoring and Research Program

    Science.gov (United States)

    Heuer, Ole E.; Emborg, Hanne-Dorthe; Bagger-Skjøt, Line; Jensen, Vibeke F.; Rogues, Anne-Marie; Skov, Robert L.; Agersø, Yvonne; Brandt, Christian T.; Seyfarth, Anne Mette; Muller, Arno; Hovgaard, Karin; Ajufo, Justin; Bager, Flemming; Aarestrup, Frank M.; Frimodt-Møller, Niels; Wegener, Henrik C.; Monnet, Dominique L.

    2007-01-01

    Resistance to antimicrobial agents is an emerging problem worldwide. Awareness of the undesirable consequences of its widespread occurrence has led to the initiation of antimicrobial agent resistance monitoring programs in several countries. In 1995, Denmark was the first country to establish a systematic and continuous monitoring program of antimicrobial drug consumption and antimicrobial agent resistance in animals, food, and humans, the Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP). Monitoring of antimicrobial drug resistance and a range of research activities related to DANMAP have contributed to restrictions or bans of use of several antimicrobial agents in food animals in Denmark and other European Union countries. PMID:18217544

  2. Monitoring of antimicrobial resistance among food animals: Principles and limitations

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2004-01-01

    Large amounts of antimicrobial agents are in the production of food animals used for therapy and prophylactics of bacterial infections and in feed to promote growth. The use of antimicrobial agents causes problems in the therapy of infections through the selection for resistance among bacteria...... pathogenic for animals or humans. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimes to limit the development of resistance...... is incomplete. Programmes monitoring the occurrence and development of resistance are essential to determine the most important areas for intervention and to monitor the effects of interventions. When designing a monitoring programme it is important to decide on the purpose of the programme. Thus...

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System ... Note: If you need help accessing information in different file formats, see Instructions for Downloading ...

  4. Monitoring of antimicrobial resistance in pathogenic bacteria from livestock animals.

    Science.gov (United States)

    Wallmann, Jürgen

    2006-06-01

    Facing the problem of development and spreading of bacterial resistance, preventive strategies are considered the most appropriate means to counteract. The establishment of corresponding management options relies on scientifically defensible efforts to obtain objective data on the prevalence of bacterial resistance in healthy and diseased livestock. Additionally, detailed statistics are needed on the overall amount of antimicrobial agents dispensed in Germany. The collection of valid data on the prevalence of resistance requires representative and cross-sectional studies. The German national antimicrobial resistance monitoring of the Federal Office of Consumer Protection and Food Safety (BVL) determines the current quantitative resistance level of life-stock pathogens, in order to permit the evaluation and surveillance of the distribution of resistances on a valid basis. Essential key features determining the design of these studies comprise (1) a statistically valid sampling program. This incorporates regional differences in animal population density, (2) the avoidance of "copy strains", (3) testing of no more than two bacterial strains belonging to one species per herd, (4) testing only if no antimicrobial therapy preceded sample collection, and (5) the use of standardized methods [e.g. microdilution broth method to determine the minimal inhibitory concentration (MIC)]. The analysis and interpretation of this data permits reliable identification and definition of epidemiological characteristics of resistance and its development in animal associated bacteria, such as geographically and time wise differentiated profiles on its prevalence, the emergence of unknown phenotypes of resistance and an assessment of the threat resistant bacteria from animals pose for humans. In applied antimicrobial therapy, the data can serve as a decision guidance in choosing the antimicrobial agent most adapted to the prevailing epidemiological situation. The susceptibility testing

  5. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System About NARMS Bacteria (NARMS) NARMS at Work Reports ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  6. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics...... is associated with an increased risk of adverse effects, more frequent re-attendance and increased medicalization of self-limiting conditions. Antibiotic overprescribing is a particular problem in primary care, where viruses cause most infections. About 90% of all antibiotic prescriptions are issued by general...... practitioners, and respiratory tract infections are the leading reason for prescribing. Multifaceted interventions to reduce overuse of antibiotics have been found to be effective and better than single initiatives. Interventions should encompass the enforcement of the policy of prohibiting the over...

  7. Spatial scan statistics to assess sampling strategy of antimicrobial resistance monitoring programme

    DEFF Research Database (Denmark)

    Vieira, Antonio; Houe, Hans; Wegener, Henrik Caspar;

    2009-01-01

    sampled by the Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP), by identifying spatial Clusters of samples and detecting areas with significantly high or low sampling rates. These analyses were performed for each year and for the total 5-year study period for all...

  8. Animation of Antimicrobial Resistance

    Science.gov (United States)

    ... Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it ... Veterinary Medicine is cited as the corporate author. Animation Animation of Antimicrobial Resistance (WMV - 19.2MB) 9: ...

  9. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... 08 Animation of Antimicrobial Resistance (text version) Arabic Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) French ...

  10. Evaluation of an antimicrobial resistance monitoring program for campylobacter in poultry by simulation

    DEFF Research Database (Denmark)

    Regula, G.; Wong, Danilo Lo Fo; Ledergerber, U.;

    2005-01-01

    An ideal national resistance monitoring program should deliver a precise estimate of the resistance situation for a given combination of bacteria and antimicrobial at a low cost. To achieve this, decisions need to be made on the number of samples to be collected at each of different possible...... sampling points. Existing methods of sample size calculation can not be used to solve this problem, because sampling decisions do not only depend on the prevalence of resistance and sensitivity and specificity of resistance testing, but also on the prevalence of the bacteria, and test characteristics...... of isolation of these bacteria. Our aim was to develop a stochastic simulation model that optimized a national resistance monitoring program, taking multi-stage sampling, imperfect sensitivity and specificity of diagnostic tests, and cost-effectiveness considerations into account. The process of resistance...

  11. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial ...

  12. Monitoring Antimicrobial Resistance in the Food Supply Chain and Its Implications for FDA Policy Initiatives.

    Science.gov (United States)

    Zawack, Kelson; Li, Min; Booth, James G; Love, Will; Lanzas, Cristina; Gröhn, Yrjö T

    2016-09-01

    In response to concerning increases in antimicrobial resistance (AMR), the Food and Drug Administration (FDA) has decided to increase veterinary oversight requirements for antimicrobials and restrict their use in growth promotion. Given the high stakes of this policy for the food supply, economy, and human and veterinary health, it is important to rigorously assess the effects of this policy. We have undertaken a detailed analysis of data provided by the National Antimicrobial Resistance Monitoring System (NARMS). We examined the trends in both AMR proportion and MIC between 2004 and 2012 at slaughter and retail stages. We investigated the makeup of variation in these data and estimated the sample and effect size requirements necessary to distinguish an effect of the policy change. Finally, we applied our approach to take a detailed look at the 2005 withdrawal of approval for the fluoroquinolone enrofloxacin in poultry water. Slaughter and retail showed similar trends. Both AMR proportion and MIC were valuable in assessing AMR, capturing different information. Most variation was within years, not between years, and accounting for geographic location explained little additional variation. At current rates of data collection, a 1-fold change in MIC should be detectable in 5 years and a 6% decrease in percent resistance could be detected in 6 years following establishment of a new resistance rate. Analysis of the enrofloxacin policy change showed the complexities of the AMR policy with no statistically significant change in resistance of both Campylobacter jejuni and Campylobacter coli to ciprofloxacin, another second-generation fluoroquinolone. PMID:27324772

  13. Towards the establishment and standardization of a veterinary antimicrobial resistance surveillance and monitoring programme in South Africa

    Directory of Open Access Journals (Sweden)

    H. Nel

    2004-11-01

    Full Text Available The objective of this study was to establish a repeatable, standardized laboratory procedure for monitoring the development of antimicrobial resistance in bacteria isolated from animals and food of animal origin in South Africa, with reagents prepared in-house. The emergence of resistance and the spread of resistant bacteria can be limited by implementing a veterinary antimicrobial drug policy, in which inter alia systematic monitoring and prudent use play essential roles. The bacteria included in this study represented three different categories, namely zoonotic bacteria (Salmonella, indicator bacteria (Escherichia coli, Enterococcus faecalis and Enterococcus faecium and veterinary pathogens (Mannheimia haemolytica. Thirty isolates of each species were collected with the aim of standardizing the laboratory methodology for a future national veterinary surveillance and monitoring programme. Susceptibility to ten selected antimicrobial drugs was determined by means of minimum inhibitory concentrations (MICs using the microdilution method. The method according to the National Committee for Clinical Laboratory Standards was used as the standard. Multi-well plates containing varying dilutions of antimicrobial drugs and prepared in-house for MIC determinations, yielded repeatable results. Storage of plates for 2 months at -70 oC did not influence results meaningfully. Within this limited sample of bacteria, MIC results did not indicate meaningful resistance against any of the ten selected antimicrobial drugs. The findings of the study will be used to establish a national veterinary antimicrobial resistance surveillance and monitoring programme in South Africa. To allow for international comparison of data, harmonisation of the surveillance and monitoring programme in accordance with global trends is encouraged. Ideally it should be combined with a programme monitoring the quantities of antimicrobial drugs used. The aim is to contribute to slowing down

  14. Antimicrobial resistance monitoring projects for zoonotic and indicator bacteria of animal origin: common aspects and differences between EASSA and EFSA.

    Science.gov (United States)

    Moyaert, Hilde; de Jong, Anno; Simjee, Shabbir; Thomas, Valérie

    2014-07-16

    Resistance monitoring programmes are essential to generate data for inclusion in the scientific risk assessment of the potential for transmission of antimicrobial-resistant bacteria or their resistance determinants from food-producing animals to humans. This review compares the technical specifications on monitoring of antimicrobial resistance in zoonotic Salmonella, Campylobacter and indicator Escherichia coli and Enterococcus as performed by the European Food Safety Authority (EFSA) with veterinary pharmaceutical industry's European Antimicrobial Susceptibility Surveillance in Animals (EASSA) programme. The authors conclude that most of EFSA's recent monitoring recommendations have been covered by EASSA since the start of the latter programme in 1998. The major difference between the two programmes is the classification into 'susceptible' versus 'resistant'. While EFSA categorises all isolates with an MIC value above the epidemiological cut-off value as 'resistant', EASSA differentiates between 'percentage decreased susceptible' and 'percentage clinical resistant' strains by applying both epidemiological cut-off values and clinical breakpoints. Because there is still a need to further improve harmonisation among individual EU Member State activities, Animal Health Industry welcomes EFSA's initiative to further improve the quality of resistance monitoring as it is of utmost importance to apply standardised collection procedures and harmonised susceptibility testing, when monitoring antimicrobial resistance across Europe.

  15. How to fight antimicrobial resistance.

    Science.gov (United States)

    Foucault, Cédric; Brouqui, Philippe

    2007-03-01

    Antimicrobial misuse results in the development of resistance and superbugs. Over recent decades, resistance has been increasing despite continuing efforts to control it, resulting in increased mortality and cost. Many authorities have proposed local, regional and national guidelines to fight against this phenomenon, and the usefulness of these programmes has been evaluated. Multifaceted intervention seems to be the most efficient method to control antimicrobial resistance. Monitoring of bacterial resistance and antibiotic use is essential, and the methodology has now been homogenized. The implementation of guidelines and infection control measures does not control antimicrobial resistance and needs to be reinforced by associated measures. Educational programmes and rotation policies have not been evaluated sufficiently in the literature. Combination antimicrobial therapy is inefficient in controlling antimicrobial resistance.

  16. Antimicrobial Resistance

    Science.gov (United States)

    ... others. For example, the emergence of Plasmodium falciparum multidrug resistance, including resistance to ACTs in the Greater Mekong subregion is an urgent public health concern that is threatening global efforts to reduce the burden of malaria. Although MDR-TB is a growing concern, it is still ...

  17. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) ... FEAR Act Site Map Transparency Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver ...

  18. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial for treatment. Accordingly, efforts are underway in both veterinary and human medicine to preserve the effectiveness of these drugs. ...

  19. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  20. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... issue of antimicrobial resistance is that the subject material appears abstract and is complex. This video was ... can develop and spread. All FDA CVM produced material may be copied, reproduced, and distributed as long ...

  1. Antimicrobial resistance in wildlife

    OpenAIRE

    Vittecoq, M.; Godreuil, S.; Prugnolle, Franck; Durand, P.; Brazier, L; Renaud, N; Arnal, A.; Aberkane, S.; Jean-Pierre, H.; Gauthier-Clerc, M; Thomas, F.; Renaud, F.

    2016-01-01

    The spread of antimicrobial resistance is of major concern for human health and leads to growing economic costs. While it is increasingly hypothesized that wildlife could play an important role in antimicrobial-resistant bacteria dynamics, empirical data remain scarce. The present work builds on a systematic review of the available data in order to highlight the main information we have and to suggest research pathways that should be followed if we aim to fill the gaps in our current knowledg...

  2. 76 FR 4120 - The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for...

    Science.gov (United States)

    2011-01-24

    ... surveillance program that monitors the susceptibility of enteric bacteria to antimicrobial agents of medical... contribute to the problem of foodborne diseases. Non- typhoidal Salmonella and Campylobacter are the leading... people in the United States are infected with these bacteria, resulting in tens of thousands...

  3. Technical specifications on randomised sampling for harmonised monitoring of antimicrobial resistance in zoonotic and commensal bacteria

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2014-05-01

    Full Text Available To monitor antimicrobial resistance in zoonotic and indicator bacteria from food-producing animal populations and meat thereof under Decision 2013/652/EC, a guidance for randomised sampling procedures is provided. Prospective and retrospective sampling plans for samples and isolates are addressed. The former involves collecting sufficient numbers of representative animal and food samples from which recovered isolates are tested for susceptibility; the latter involves selecting randomly Salmonella isolates from collections constituted within the framework of either the national control programmes in poultry flocks or from verification of the compliance with process hygiene criterion in broiler carcases. A generic proportionate stratified sampling process is proposed and numerical illustrations of proportional allocation are provided. Stratified sampling of Salmonella isolates from poultry primary productions is performed with proportional allocation to the size of the isolate collections available in the official laboratories. An alternative approach would be a simple random sampling within the sampling frame of flocks positive for Salmonella. Stratified sampling of caecal samples, accounting for at least 60 % of the domestic production of food-producing animal populations monitored, with proportionate allocation to the slaughterhouse production, allows for the collection of representative isolates of Campylobacter and indicator E. coli and enterococci in various animal populations. Stratified sampling of Salmonella isolates from broiler carcases is proposed with proportional allocation to the size of the isolate collections available in the official laboratories involved in verifying the compliance with the Salmonella process hygiene criterion. These isolates may be complemented with those recovered by the food business operator. Sampling of different chilled fresh meat categories is targeted at retail outlets serving the final consumer, with

  4. Antimicrobial Drugs in Fighting against Antimicrobial Resistance.

    Science.gov (United States)

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals. PMID:27092125

  5. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Guyue eCheng

    2016-04-01

    Full Text Available The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants, the community level resistance (i.e., bilofilms and persisters is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals.

  6. A European study on the relationship between antimicrobial use and antimicrobial resistance

    NARCIS (Netherlands)

    Bronzwaer, SLAM; Cars, O; Buchholz, U; Molstad, S; Goettsch, W; Veldhuijzen, IK; Kool, JL; Sprenger, MJW; Degener, JE

    2002-01-01

    In Europe, antimicrobial resistance has been monitored since 1998 by the European Antimicrobial Resistance Surveillance System (EARSS). We examined the relationship between penicillin nonsusceptibility of invasive isolates of Streptococcus pneumoniae and antibiotic sales. Information was collected o

  7. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... En Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, ... Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of ...

  8. Technical specifications on the harmonised monitoring and reporting of antimicrobial resistance in methicillin-resistant Staphylococcus aureus in food-producing animals and food

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2012-10-01

    Full Text Available

    In this report, proposals to improve the harmonisation of monitoring of prevalence, genetic diversity and antimicrobial resistance in methicillin-resistant Staphylococcus aureus (MRSAfrom food-producing animals and food derived thereof by the European Union Member States are presented. The primary route of zoonotic transmission of MRSA is considered to be the direct or indirect occupational contact of livestock professionals with colonised animals, while the role of food as a source of human colonisation or infection is presently considered to be low. Sampling recommendations have therefore prioritised several different food-producing animal populations previously described as MRSA reservoirs and, to a lesser extent, food produced by these animals. Monitoring in primary production, including at slaughter, is pivotal because of the main transmission route, while additional monitoring in food may help with the assessment of consumers’ exposure via this route. A consistent monitoring in broiler flocks, fattening pigs and dairy cattle, as well as in veal calves under 1 year of age and fattening turkey flocks, in those countries where production exceeds 10 million tonnes slaughtered/year, is recommended every third year on a rotating basis. It is proposed that breeding poultry flocks and breeding pigs, as well as meat and raw milk products, are monitored on a voluntary basis. Representative sampling should be made within the framework of the national Salmonella control programmes for the poultry populations targeted, at the slaughterhouse for calves and either on farm or at the slaughterhouse for fattening pigs. Harmonised analytical methodologies for identification, typing and further characterisation of MRSA are proposed. The use of the microdilution method applied to a harmonised set of antimicrobials, and interpreted using EUCAST epidemiological cut-off values for antimicrobial susceptibility testing of MRSA, is recommended

  9. [Neruda and antimicrobial resistance].

    Science.gov (United States)

    Cotera, Alejandro

    2011-07-01

    Antimicrobial resistance has been a problem in medicine, since their incorporation to clinical practice. Numerous papers have been written on the subject. The analysis of two poems by Pablo Neruda "How much does a man live" and "Larynx", included in the volume "Estravagario" and published for the first time in 1957 and 1958, give us an incredible revelation about the concept of resistance. In these poems aureomycin, the first antimicrobial of the family of tetracyclines, was included as a poetic figure and the therapeutic action of antimicrobials was described. "Never so much bugs died I tons of them fell I but the few that remained olive I manifested their perversity". These writings incorporated novel concepts, even for physicians of that time and described the closeness of death that a patient may perceive during the course of a given disease. The capacity of Pablo Neruda to extract the essence of situations and to anticipate to conditions that only years later became clinically relevant problems, is noteworthy.

  10. Using data on resistance prevalence per sample in the surveillance of antimicrobial resistance

    DEFF Research Database (Denmark)

    Vieira, Antonio; Shuyu, Wu; Jensen, Lars Bogø;

    2008-01-01

    Objectives: In most existing antimicrobial resistance monitoring programmes, one single bacterial colony from each collected sample is susceptibility tested against a panel of antimicrobials. Detecting the proportion of colonies resistant to different antimicrobials in each sample can provide...... and occurrence of resistance, there is a need to move towards a more quantitative approach when dealing with antimicrobial resistance in a population, and the resistance prevalence per sample method can provide some of this additional information....

  11. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.

    Science.gov (United States)

    Maddox, T W; Clegg, P D; Williams, N J; Pinchbeck, G L

    2015-11-01

    Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined.

  12. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.

    Science.gov (United States)

    Maddox, T W; Clegg, P D; Williams, N J; Pinchbeck, G L

    2015-11-01

    Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined. PMID:26084443

  13. Engineering Antimicrobials Refractory to Resistance

    Science.gov (United States)

    Multi-drug resistant superbugs are a persistent problem in modern health care, demonstrating the need for a new class of antimicrobials that can address this concern. Triple-acting peptidoglycan hydrolase fusions are a novel class of antimicrobials which have qualities well suited to avoiding resis...

  14. Antimicrobial resistance of thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Engberg, J.

    2001-01-01

    Campylobacter has become the leading cause of zoonotic enteric infections in developed and developing countries world-wide. Antimicrobial resistance has emerged among Campylobacter mainly as a consequence of the use of antimicrobial agents in food animal production. Resistance to drugs of choice...... for the treatment of infections, macrolides and fluoroquinolones has emerged as a clinical problem and interventions to reduce this are recommended. Resistance to fluoroquinolones and macrolides is mediated by chromosomal mutations. Resistance to other relevant antimicrobial agents, mediated by...... acquired resistance genes, has not become widespread so far. However, resistance genes originating from both Gram-positive and Gram-negative bacterial species have been found, showing the potential for acquired resistance to emerge in Campylobacter....

  15. Clinical impact of antimicrobial resistance in animals.

    Science.gov (United States)

    Vaarten, J

    2012-04-01

    It is almost impossible to imagine veterinary medicine today without the use of antimicrobials. Shortly after their discovery, antimicrobials found their way into the veterinary world. They have brought many benefits for the health and welfare of both animals and people, such as the lessening of pain and suffering, reduction in shedding of (zoonotic) bacteria and the containment of potentially large-scale epidemics. Indirectly, they also contribute to food security, protection of livelihoods and animal resources, and poverty alleviation. Given the broad range of animal species under veterinary care and the enormous variety of infectious agents, a complete range of antimicrobials is needed in veterinary medicine. Losing products, either through the occurrence of resistance or through a prohibition on their use, will have serious consequences for the health and welfare of all animals. It will also seriously affect people who depend on these animals. It is a great challenge to everyone involved to stop the growing trend of antimicrobial resistance and to safeguard the effectiveness of antimicrobials for the future. Transparent and responsible use of antimicrobials, together with continuous monitoring and surveillance of the occurrence of resistance, are key elements of any strategy. The current situation also urges us to re-think unsustainable practices and to work on the development of alternatives, in the interests of the health and welfare of both animals and people. PMID:22849278

  16. Antimicrobial resistance in Libya: 1970-2011.

    Science.gov (United States)

    Ghenghesh, Khalifa Sifaw; Rahouma, Amal; Tawil, Khaled; Zorgani, Abdulaziz; Franka, Ezzedin

    2013-01-01

    Resistance to antimicrobial agents is a major health problem that affects the whole world. Providing information on the past state of antimicrobial resistance in Libya may assist the health authorities in addressing the problem more effectively in the future. Information was obtained mainly from Highwire Press (including PubMed) search for the period 1970-2011 using the terms 'antibiotic resistance in Libya', 'antimicrobial resistance in Libya', 'tuberculosis in Libya', and 'primary and acquired resistance in Libya' in title and abstract. From 1970 to 2011 little data was available on antimicrobial resistance in Libya due to lack of surveillance and few published studies. Available data shows high resistance rates for Salmonella species in the late 1970s and has remained high to the present day. High prevalence rates (54-68%) of methicillin-resistant Staphylococcus aureus (MRSA) were reported in the last decade among S. aureus from patients with burns and surgical wound infections. No reports were found of vancomycin-resistant S. aureus (VRSA) or vancomycin-intermediate-resistant S. aureus (VISA) using standard methods from Libya up to the end of 2011. Reported rates of primary (i.e. new cases) and acquired (i.e. retreatment cases) multidrug-resistant tuberculosis (MDR-TB) from the eastern region of Libya in 1971 were 16.6 and 33.3% and in 1976 were 8.6 and 14.7%, in western regions in 1984-1986 were 11 and 21.5% and in the whole country in 2011 were estimated at 3.4 and 29%, respectively. The problem of antibiotic resistance is very serious in Libya. The health authorities in particular and society in general should address this problem urgently. Establishing monitoring systems based on the routine testing of antimicrobial sensitivity and education of healthcare workers, pharmacists, and the community on the health risks associated with the problem and benefits of prudent use of antimicrobials are some steps that can be taken to tackle the problem in the future.

  17. Antibiotic / Antimicrobial Resistance Glossary

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  18. Role of Antimicrobial Selective Pressure and Secondary Factors on Antimicrobial Resistance Prevalence in Escherichia coli from Food-Producing Animals in Japan

    OpenAIRE

    Harada, Kazuki; Asai, Tetsuo

    2010-01-01

    The use of antimicrobial agents in the veterinary field affects the emergence, prevalence, and dissemination of antimicrobial resistance in bacteria isolated from food-producing animals. To control the emergence, prevalence, and dissemination of antimicrobial resistance, it is necessary to implement appropriate actions based on scientific evidence. In Japan, the Japanese Veterinary Antimicrobial Resistance Monitoring System (JVARM) was established in 1999 to monitor the antimicrobial suscepti...

  19. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... resistance more real and understandable to veterinarians, livestock producers, lawmakers, consumer representatives and other key audiences. We ... Regulatory Information Safety Emergency Preparedness International Programs News & ... Training & Continuing Education Inspections & Compliance Federal, State & Local ...

  20. Antimicrobial (Drug) Resistance: Gonorrhea

    Science.gov (United States)

    ... Marketing Share this: Main Content Area Multidrug-Resistant Neisseria gonorrhoeae (Gonorrhea) During the past 50 years, the use ... Gonorrhea is a sexually transmitted disease caused by Neisseria gonorrhoeae , a bacterium that can infect areas of the ...

  1. Antimicrobial resistance in Dschang, Cameroon

    Directory of Open Access Journals (Sweden)

    Fusi-Ngwa Catherine Kesah

    2013-01-01

    Full Text Available Background: Health-care-associated and community infections remain problematic in most of Africa where the increasing incidences of diseases, wars, poverty, malnutrition, and general environmental deterioration have led to the gradual collapse of the health-care system. Detection of antimicrobial resistance (AMR remains imperative for the surveillance purposes and optimal management of infectious diseases. This study reports the status of AMR in pathogens in Dschang. Materials and Methods: From May 2009 to March 2010, the clinical specimens collected at two hospitals were processed accorded to the standard procedures. Antibiotic testing was performed by E test, and antimycotics by disc-agar diffusion, as recommended by the Clinical and Laboratory Standards Institute on pathogens comprising Staphylococcus aureus (100 strains, Enterococcus faecalis (35, Klebsiella pneumoniae (75, Escherichia coli (50, Proteus mirabilis (30, Pseudomonas aruginosa (50, Acinetobacter species (20, and Candida albicans (150 against common antimicrobials. Results: There was no vancomycin resistance in the cocci, the minimum inhibitory concentration for 90% of these strains MIC 90 was 3 μg/ml, methicillin-resistant S. aureus (MRSA was 43%, benzyl penicillin 89% resistance in S. aureus as opposed to 5.7% in E. faecalis. Low resistance (<10% was recorded to cefoxitin, cefotaxime, and nalidixic acid (MIC 90 3-8 μg/ml against the coliforms, and to ticarcillin, aztreonam, imipenem, gentamicin, and ciprofloxacin among the non-enterobacteria; tetracycline, amoxicillin, piperacillin, and chloramphenicol were generally ineffective. Resistance rates to fluconazole, clotrimazole, econazole, and miconazole were <55% against C. albicans. The pathogens tested exhibited multidrug-resistance. Conclusion: The present findings were intended to support antimicrobial stewardship endeavors and empiric therapy. The past, present, and the future investigations in drug efficacy will continue

  2. Antimicrobial Resistance in the Environment.

    Science.gov (United States)

    Williams, Maggie R; Stedtfeld, Robert D; Guo, Xueping; Hashsham, Syed A

    2016-10-01

    This review summarizes important publications from 2015 pertaining to the occurrence of antimicrobial resistance (AMR) in the environment. Emphasis is placed on sources of antibiotic resistance in the aquatic environment including wastewater treatment plants, hospitals, and agriculture, treatment and mitigation techniques, and surveillance and analysis methodologies for characterizing abundance data. As such, this review is organized into the following sections: i) occurrence of AMR in the environment, including surface waters, aquaculture, and wastewater ii) treatment technologies, and iii) technologies for rapid surveillance of AMR, iv) transmission between matrices, v) databases and analysis methods, and vi) gaps in AMR understanding. PMID:27620115

  3. Antimicrobial Resistance: Is the World UNprepared?

    Science.gov (United States)

    2016-09-01

    Long Blurb: On September 21st 2016 the United Nations General Assembly convenes in New York, United States to tackle a looming and seemingly inevitable global challenge with the potential to threaten the health and wellbeing of all people: antimicrobial resistance. In an Editorial, the PLOS Medicine Editors reflect on the challenge of coordinating the response to antimicrobial resistance in order to ensure the viability of current antimicrobials and the development of new therapies against resistant pathogens. Short Blurb: In this month's Editorial, the PLOS Medicine Editors reflect on the upcoming United Nations General Assembly meeting which convenes to discuss the global challenge of antimicrobial resistance. PMID:27618631

  4. Resistance to antimicrobial agents used for animal therapy in pathogenic , zoonotic and indicator bacteria isolated from different food animals in Denmark: A baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP)

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Bager, Flemming; Jensen, N. E.;

    1998-01-01

    , Enterococcus faecium), 2) zoonotic bacteria (Campylobacter coli/jejuni, Salmonella enterica, Yelsinia enterocolitica), and 3) animal pathogens (E. coli, Staphylococcus aureus, coagulase-negative staphylococci (CNS), Staphylococcus hyicus, Actinobacillus pleuropneumoniae). A total of 3304 bacterial isolates......This study describes the establishment and first results of a continuous surveillance system of antimicrobial resistance among bacteria isolated from pigs, cattle and broilers in Denmark. The three categories of bacteria tested were: 1) indicator bacteria (Escherichia coli, Enterococcus faecalis...

  5. Combating Antimicrobial Resistance in Foodborne Microorganisms.

    Science.gov (United States)

    Lai, Edward P C; Iqbal, Zafar; Avis, Tyler J

    2016-02-01

    This review addresses an important public health hazard affecting food safety. Antimicrobial agents are used in foods to reduce or eliminate microorganisms that cause disease. Many traditional organic compounds, novel synthetic organic agents, natural products, peptides, and proteins have been extensively studied for their effectiveness as antimicrobial agents against foodborne Campylobacter spp., Escherichia coli, Listeria spp. and Salmonella. However, antimicrobial resistance can develop in microorganisms, enhancing their ability to withstand the inhibiting or killing action of antimicrobial agents. Knowledge gaps still exist with regard to the actual chemical and microbiological mechanisms that must be identified to facilitate the search for new antimicrobial agents. Technical implementation of antimicrobial active packing films and coatings against target microorganisms must also be improved for extended product shelf life. Recent advances in antimicrobial susceptibility testing can provide researchers with new momentum to pursue their quest for a resistance panacea.

  6. Increasing prevalence of extended-spectrum-betalactamase among Gram-negative bacilli in Latin America: 2008 update from the Study for Monitoring Antimicrobial Resistance Trends (SMART

    Directory of Open Access Journals (Sweden)

    Maria Virginia Villegas

    2011-02-01

    Full Text Available OBJECTIVES: This analysis of the Study for Monitoring Antimicrobial Resistance Trends (SMART evaluated the susceptibility patterns of Enterobacteriaceae in Latin America in 2008, with emphasis on susceptibility trends of E. coli and K. pneumoniae. METHODS: Clinical isolates were recovered from intra-abdominal infections (IAI from 23 centers in 10 Latin American countries. Isolates were sent to a central laboratory for confirmation of identification, antimicrobial susceptibility and ESBL testing, following the Clinical Laboratory Standards Institute (CLSI guidelines. RESULTS: Of 1,003 Gram-negative bacilli collected from intra-abdominal infections, E. coli and K. pneumoniae were the most commonly isolated organisms, and 26.8% of E. coli and 37.7% of K. pneumoniae were ESBL positive. Ertapenem and imipenem were the most consistently active agents tested; 99% of ESBLpositive E. coli isolates were susceptible to ertapenem and 100% to imipenem as well, and 91% of ESBL-positive K. pneumoniae were susceptible to ertapenem and 98% to imipenem. Quinolones and cephalosporins were less active, achieving 1.5% to 76% inhibition against ESBL-producing E. coli and 3.5% to 61% inhibition against K. pneumoniae. CONCLUSIONS: Local and unit-specific surveillance data is particularly important for selection of empiric therapy and in community-acquired infections as they can help the clinician with antibiotic selection by providing guidance regarding the likely pathogens and their resistance profiles. Our data also confirm the increasing frequency with which ESBL-producing organisms are found in the community setting, with 31.4% of communityacquired and 24.9% of hospital-acquired infections found to produce ESBLs. Imipenem and ertapenem are the most active agents tested for ESBL-positive E. coli and K. pneumoniae.

  7. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    Science.gov (United States)

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance.

  8. 国家动物源细菌耐药性监测工作的探讨和建议%Discussion and Suggestion on the National Antimicrobial Resistance Monitoring and Surveillance Program in Animals

    Institute of Scientific and Technical Information of China (English)

    顾欣; 金凌艳; 蔡金华; 刘雅妮; 王蓓

    2009-01-01

    The foreign profile of antimicrobial resistance monitoring and surveillance program in animal, and the purpose of resistance monitoring and surveillance program were described. A variety of factors to be considered for resistance monitoring and surveillance program were introduced and discussed, including the animal species, food products, Sampling strategies, specimens collecting, bacterial species, antimicrobials, standardized susceptibility testing, quality control, database design and recording, report and analysis of result. Suggestion was pointed out about antimicrobial resistance monitoring and surveillance program in the future.%介绍了国外动物源细菌耐药性监测工作的情况及目标,对我国的动物源细菌耐药性监测工作需考虑的许多因素进行了介绍和讨论,包括动物品种、食品、采样方法、样本的收集、细菌品种、抗菌药物、标准药敏试验法、质控、结果记录和数据库设计、报告和结果分析等,并对今后的动物源细菌耐药性监测工作提出了建议.

  9. Dealing with antimicrobial resistance - the Danish experience

    DEFF Research Database (Denmark)

    Bager, Flemming; Aarestrup, Frank Møller; Wegener, Henrik Caspar

    2000-01-01

    Following the discovery in 1994 and 1995 that use of the glycopeptide antimicrobial avoparcin for growth promotion was associated with the occurrence of vancomycin resistant Enterococcus faecium in food animals and in food, the Danish Minister of Food, Agriculture and Fisheries banned the use...... of avoparcin in May 1995. The ban was later extended by the European Commission to include all EU member states. In May 1999, the EU Scientific Steering Committee recommended that use for growth promotion of antimicrobials, which are or may be used in human or veterinary medicine should be phased out as soon...... on the prudent use of antimicrobials in order to reduce the development of resistance without compromising therapeutic efficacy. Our experience with avoparcin shows that a restrictive policy on the use of antimicrobials can curb the development of resistance. However, the occurrence and persistence of specific...

  10. Extended-Spectrum-β-Lactamase-Producing Escherichia coli Strains Isolated from Farm Animals from 1999 to 2002: Report from the Japanese Veterinary Antimicrobial Resistance Monitoring Program

    OpenAIRE

    Kojima, Akemi; Ishii, Yoshikazu; Ishihara, Kanako; Esaki, Hidetake; Asai, Tetsuo; Oda, Chitose; Tamura, Yutaka; Takahashi, Toshio; Yamaguchi, Keizo

    2005-01-01

    A nationwide surveillance for antimicrobial susceptibility in Escherichia coli strains isolated from food-producing animals in Japan was conducted from 1999 to 2002. Eighteen cefazolin-resistant E. coli strains were isolated from broilers. Six were CTX-M-type producing, and eight were CMY-2 producing, while eight had mutations at the ampC promoter region.

  11. Antimicrobial resistant bacteria in the food chain

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    2003-01-01

    Antimicrobials are used for treatment and prevention of disease in food animals and as feed additives for growth promotion. All uses lead to the development of resistant bacteria, some of which are pathogenic to humans. Current main concerns are with resistance in Salmonella and Campylobacter...

  12. Quantifying antimicrobial resistance at veal calf farms.

    Directory of Open Access Journals (Sweden)

    Angela B Bosman

    Full Text Available This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm were collected. From each individual sample and one pooled faecal sample per farm, 90 selected Escherichia coli isolates were tested for their resistance against 25 mg/L amoxicillin, 25 mg/L tetracycline, 0.5 mg/L cefotaxime, 0.125 mg/L ciprofloxacin and 8/152 mg/L trimethoprim/sulfamethoxazole (tmp/s by replica plating. From each faecal sample another 10 selected E. coli isolates were tested for their resistance by broth microdilution as a reference. Logistic regression analysis was performed to compare the odds of testing an isolate resistant between both test methods (replica plating vs. broth microdilution and to evaluate the effect of pooling faecal samples. Bootstrap analysis was used to investigate the precision of the estimated prevalence of resistance to each antimicrobial obtained by several simulated sampling strategies. Replica plating showed similar odds of E. coli isolates tested resistant compared to broth microdilution, except for ciprofloxacin (OR 0.29, p ≤ 0.05. Pooled samples showed in general lower odds of an isolate being resistant compared to individual samples, although these differences were not significant. Bootstrap analysis showed that within each antimicrobial the various compositions of a pooled sample provided consistent estimates for the mean proportion of resistant isolates. Sampling strategies should be based on the variation in resistance among isolates within faecal samples and between faecal samples, which may vary by antimicrobial. In our study, the optimal sampling strategy from the perspective of precision of the estimated levels of resistance and practicality consists of a pooled faecal sample from 20 individual animals, of which

  13. Antimicrobial resistance in Scandinavia after ban of antimicrobial growth promoters.

    Science.gov (United States)

    Bengtsson, Björn; Wierup, Martin

    2006-01-01

    The banned use of antimicrobial growth promoters resulted in a considerably decreased use of antimicrobials in food animal production in Sweden (65%), Denmark (47%), Norway (40%) and Finland (27%). The current prevalence of antimicrobial resistance in animal bacterial populations is also considerably lower than in some other countries in the EU. In the swine production, no or limited effect was found in the finisher production (>25 to 30 kg). Temporary negative effects occurred during the post weaning period (7-30 kg). In Denmark, the cost of production from birth to slaughter per pig produced increased by approximately 1.0 euro with a high variability between pig producers. In the broiler production the termination had no significant negative effect on animal health and welfare or on production economy.

  14. Dana Cole, Georgia Division of Public Health, Notifiable Disease Section, Department of Human Resources, 2 Peachtree Free-living Canada Geese and Antimicrobial Resistance

    OpenAIRE

    Cole, Dana; Drum, David J.V.; Stallknecht, David E.; White, David G.; Lee, Margie D.; Ayers, Sherry; Sobsey, Mark; Maurer, John J

    2005-01-01

    We describe antimicrobial resistance among Escherichia coli isolated from free-living Canada Geese in Georgia and North Carolina (USA). Resistance patterns are compared to those reported by the National Antimicrobial Resistance Monitoring System. Canada Geese may be vectors of antimicrobial resistance and resistance genes in agricultural environments.

  15. Understanding the mechanisms and drivers of antimicrobial resistance.

    Science.gov (United States)

    Holmes, Alison H; Moore, Luke S P; Sundsfjord, Arnfinn; Steinbakk, Martin; Regmi, Sadie; Karkey, Abhilasha; Guerin, Philippe J; Piddock, Laura J V

    2016-01-01

    To combat the threat to human health and biosecurity from antimicrobial resistance, an understanding of its mechanisms and drivers is needed. Emergence of antimicrobial resistance in microorganisms is a natural phenomenon, yet antimicrobial resistance selection has been driven by antimicrobial exposure in health care, agriculture, and the environment. Onward transmission is affected by standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel, and migration. Strategies to reduce antimicrobial resistance by removing antimicrobial selective pressure alone rely upon resistance imparting a fitness cost, an effect not always apparent. Minimising resistance should therefore be considered comprehensively, by resistance mechanism, microorganism, antimicrobial drug, host, and context; parallel to new drug discovery, broad ranging, multidisciplinary research is needed across these five levels, interlinked across the health-care, agriculture, and environment sectors. Intelligent, integrated approaches, mindful of potential unintended results, are needed to ensure sustained, worldwide access to effective antimicrobials. PMID:26603922

  16. Shigella flexneri: a three-year antimicrobial resistance monitoring of isolates in a Children Hospital, Ahvaz, Iran.

    Directory of Open Access Journals (Sweden)

    Soheila Khaghani

    2014-08-01

    Full Text Available Shigellosis is an acute gastroenteritis that is one of the most common causes of morbidity and mortality in children with diarrhea in developing countries. The purpose of this study was to describe the distribution of Shigella serogroups and serotypes and their antibacterial drug resistance profiles.Fecal samples of all children suffering from shigellosis who had been admitted to Abuzar Children's Hospital in Ahvaz, southwestern Iran, from September 2008 to August 2010 were examined. Antibiotics susceptibility testing was performed according to the Kirby Bauer disk diffusion method.Shigella flexneri was the predominant serogroup and being identified in 87 isolates (49.8%. The most common S. flexneri serotypes were type 2 (57.5% and type 1 (21.8%. High rates of resistance were observed to trimethoprime-sulfamethpxazole (85% and ampicillin (87.5%.S. flexneri and its serotypes was the most frequently isolated Shigella species from southwest of Iran, Ahvaz. Identification of predominant S. flexneri serotypes in developing countries can help in prioritizing strategies such as development of effective vaccines.

  17. Staphylococcus aureus resistance to topical antimicrobials in atopic dermatitis*

    Science.gov (United States)

    Bessa, Giancarlo Rezende; Quinto, Vanessa Petry; Machado, Daiane Corrêa; Lipnharski, Caroline; Weber, Magda Blessmann; Bonamigo, Renan Rangel; D'Azevedo, Pedro Alves

    2016-01-01

    Background Topical antimicrobial drugs are indicated for limited superficial pyodermitis treatment, although they are largely used as self-prescribed medication for a variety of inflammatory dermatoses, including atopic dermatitis. Monitoring bacterial susceptibility to these drugs is difficult, given the paucity of laboratory standardization. Objective To evaluate the prevalence of Staphylococcus aureus topical antimicrobial drug resistance in atopic dermatitis patients. Methods We conducted a cross-sectional study of children and adults diagnosed with atopic dermatitis and S. aureus colonization. We used miscellaneous literature reported breakpoints to define S. aureus resistance to mupirocin, fusidic acid, gentamicin, neomycin and bacitracin. Results A total of 91 patients were included and 100 S. aureus isolates were analyzed. All strains were methicillin-susceptible S. aureus. We found a low prevalence of mupirocin and fusidic acid resistance (1.1% and 5.9%, respectively), but high levels of neomycin and bacitracin resistance (42.6% and 100%, respectively). Fusidic acid resistance was associated with more severe atopic dermatitis, demonstrated by higher EASI scores (median 17.8 vs 5.7, p=.009). Our results also corroborate the literature on the absence of cross-resistance between the aminoglycosides neomycin and gentamicin. Conclusions Our data, in a southern Brazilian sample of AD patients, revealed a low prevalence of mupirocin and fusidic acid resistance of S. aureus atopic eczema colonizer strains. However, for neomycin and bacitracin, which are commonly used topical antimicrobial drugs in Brazil, high levels of resistance were identified. Further restrictions on the use of these antimicrobials seem necessary to keep resistance as low as possible.

  18. EMERGING ANTIMICROBIAL RESISTANCE IN HOSPITAL A THREAT TO PUBLIC HEALTH

    OpenAIRE

    Vichal Rastogi; Pankaj Kumar Mishra; Shalini Bhatia

    2013-01-01

    Background: Antimicrobial resistance(AMR) threatens the health of many throughout the world, since both old and new infectious diseases remain a formidable public health threat. When pathogenic microorganisms can multiply beyond some critical mass in the face of invading antimicrobials, treatment outcome is compromised. This phenomenon is referred as antimicrobial resistance (AMR). Objective: This retrospective study was conducted to assess the overall antimicrobial resistance in bacteri...

  19. Potential impact of antimicrobial resistance in wildlife, environment and human health

    OpenAIRE

    Hajer eRadhouani; Nuno eSilva; Patrícia ePoeta; Carmen eTorres; Susana eCorreia; Gilberto eIgrejas

    2014-01-01

    Given the significant spatial and temporal heterogeneity in antimicrobial resistance distribution and the factors that affect its evolution, dissemination, and persistence, it is important to highlight that antimicrobial resistance must be viewed as an ecological problem. Monitoring the resistance prevalence of indicator bacteria such as Escherichia coli and enterococci in wild animals makes it possible to show that wildlife has the potential to serve as an environmental reservoir and melting...

  20. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore;

    2012-01-01

    antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de......-novo-sequenced isolates.ResultsWhen testing the 1862 GenBank files, the method identified the resistance genes with an ID = 100% (100% identity) to the genes in ResFinder. Agreement between in silico predictions and phenotypic testing was found when the method was further tested on 23 isolates of five different bacterial...

  1. ANTIMICROBIAL RESISTANCE AND ITS GLOBAL SPREAD

    Directory of Open Access Journals (Sweden)

    R P Sharma

    2010-06-01

    Full Text Available Since their discovery during the 20th century, antimicrobial agents (antibiotics and related medicinal drugs have substantially reduced the threat posed by infectious diseases. The use of these “wonder drugs”, combined with improvements in sanitation, housing, and nutrition, and the advent of widespread immunization programmes, has led to a dramatic drop in deaths from diseases that were previously widespread, untreatable, and frequently fatal. Over the years, antimicrobials have saved the lives and eased the suffering of millions of people. By helping to bring many serious infectious diseases under control, these drugs hav also contributed to the major gains in life expectancy experienced during the latter part of the last century. These gains are now seriously jeopardized by another recent development: the emergence and spread of microbes that are resistant to cheap and effective first-choice, or “first- line” drugs. The bacterial infections which contribute most to human disease are also those in which emerging microbial resistance is most evident: diarrhoeal diseases, respiratory tract infections, meningitis, sexually transmitted infections, and hospital-acquired infections. Some important examples include penicillin-resistant Streptococcus pneumoniae, vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus, multi-resistant salmonellae, and multi-resistant Mycobacterium tuberculosis. The development of resistance to drugs commonly used to treat malaria is of particular concern, as is the emerging resistance to anti-HIV drugs. Treatment, resu.lting in prolonged illness and greater risk of death, Treatment failures also lead to longer periods of infectivity, which increase the numbers of infected people moving in the community and thus expose the general population to the risk of contracting a resistant strain of infection. When infections become resistant to first-line antimicrobials, treatment has to be switched

  2. Antimicrobial Resistance in the Food Chain: A Review

    Directory of Open Access Journals (Sweden)

    Lieve Herman

    2013-06-01

    Full Text Available Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages. A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.

  3. Antimicrobial Resistance in the Food Chain: A Review

    Science.gov (United States)

    Verraes, Claire; Van Boxstael, Sigrid; Van Meervenne, Eva; Van Coillie, Els; Butaye, Patrick; Catry, Boudewijn; de Schaetzen, Marie-Athénaïs; Van Huffel, Xavier; Imberechts, Hein; Dierick, Katelijne; Daube, George; Saegerman, Claude; De Block, Jan; Dewulf, Jeroen; Herman, Lieve

    2013-01-01

    Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance. PMID:23812024

  4. Antimicrobial resistance in the food chain: a review.

    Science.gov (United States)

    Verraes, Claire; Van Boxstael, Sigrid; Van Meervenne, Eva; Van Coillie, Els; Butaye, Patrick; Catry, Boudewijn; de Schaetzen, Marie-Athénaïs; Van Huffel, Xavier; Imberechts, Hein; Dierick, Katelijne; Daube, George; Saegerman, Claude; De Block, Jan; Dewulf, Jeroen; Herman, Lieve

    2013-06-28

    Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.

  5. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: The missing link between consumption and resistance in veterinary medicine

    DEFF Research Database (Denmark)

    Garcia-Migura, Lourdes; Hendriksen, Rene S.; Fraile, Lorenzo;

    2014-01-01

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents...... used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria...... in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different...

  6. Klebsiella pneumoniae Antimicrobial Drug Resistance, United States, 1998–2010

    OpenAIRE

    Sanchez, Guillermo V.; Master, Ronald N; Clark, Richard B.; Fyyaz, Madiha; Duvvuri, Padmaraj; Ekta, Gupta; Bordon, Jose

    2013-01-01

    We studied antimicrobial-resistant Klebsiella pneumoniae for 1998–2010 by using data from The Surveillance Network. Susceptibility results (n = 3,132,354) demonstrated significant increases in resistance to all antimicrobial drugs studied, except tetracycline. Cross-resistance among carbapenem-resistant K. pneumoniae was lower for tetracycline and amikacin.

  7. Resistance to Antimicrobial Peptides in Vibrios

    Directory of Open Access Journals (Sweden)

    Delphine Destoumieux-Garzón

    2014-10-01

    Full Text Available Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.

  8. Isolation and Characterization of Antimicrobial-Resistant Nontyphoidal Salmonella enterica Serovars from Imported Food Products.

    Science.gov (United States)

    Bae, Dongryeoul; Kweon, Ohgew; Khan, Ashraf A

    2016-08-01

    The objective of this study was to determine antimicrobial resistance and elucidate the resistance mechanism in nontyphoidal Salmonella enterica serovars isolated from food products imported into the United States from 2011 to 2013. Food products contaminated with antimicrobial-resistant nontyphoidal S. enterica were mainly imported from Taiwan, Indonesia, Vietnam, and China. PCR, DNA sequencing, and plasmid analyses were used to characterize antimicrobial resistance determinants. Twentythree of 110 S. enterica isolates were resistant to various antimicrobial classes, including β-lactam, aminoglycoside, phenicol, glycopeptide, sulfonamide, trimethoprim, and/or fluoroquinolone antimicrobial agents. Twelve of the isolates were multidrug resistant strains. Antimicrobial resistance determinants blaTEM-1, blaCTX-M-9, blaOXA-1, tetA, tetB, tetD, dfrA1, dfrV, dhfrI, dhfrXII, drf17, aadA1, aadA2, aadA5, orfC, qnrS, and mutations of gyrA and parC were detected in one or more antimicrobial-resistant nontyphoidal S. enterica strains. Plasmid profiles revealed that 12 of the 23 antimicrobial-resistant strains harbored plasmids with incompatibility groups IncFIB, IncHI1, IncI1, IncN, IncW, and IncX. Epidemiologic and antimicrobial resistance monitoring data combined with molecular characterization of antimicrobial resistance determinants in Salmonella strains isolated from imported food products may provide information that can be used to establish or implement food safety programs to improve public health.

  9. Isolation and Characterization of Antimicrobial-Resistant Nontyphoidal Salmonella enterica Serovars from Imported Food Products.

    Science.gov (United States)

    Bae, Dongryeoul; Kweon, Ohgew; Khan, Ashraf A

    2016-08-01

    The objective of this study was to determine antimicrobial resistance and elucidate the resistance mechanism in nontyphoidal Salmonella enterica serovars isolated from food products imported into the United States from 2011 to 2013. Food products contaminated with antimicrobial-resistant nontyphoidal S. enterica were mainly imported from Taiwan, Indonesia, Vietnam, and China. PCR, DNA sequencing, and plasmid analyses were used to characterize antimicrobial resistance determinants. Twentythree of 110 S. enterica isolates were resistant to various antimicrobial classes, including β-lactam, aminoglycoside, phenicol, glycopeptide, sulfonamide, trimethoprim, and/or fluoroquinolone antimicrobial agents. Twelve of the isolates were multidrug resistant strains. Antimicrobial resistance determinants blaTEM-1, blaCTX-M-9, blaOXA-1, tetA, tetB, tetD, dfrA1, dfrV, dhfrI, dhfrXII, drf17, aadA1, aadA2, aadA5, orfC, qnrS, and mutations of gyrA and parC were detected in one or more antimicrobial-resistant nontyphoidal S. enterica strains. Plasmid profiles revealed that 12 of the 23 antimicrobial-resistant strains harbored plasmids with incompatibility groups IncFIB, IncHI1, IncI1, IncN, IncW, and IncX. Epidemiologic and antimicrobial resistance monitoring data combined with molecular characterization of antimicrobial resistance determinants in Salmonella strains isolated from imported food products may provide information that can be used to establish or implement food safety programs to improve public health. PMID:27497122

  10. Salt-resistant short antimicrobial peptides.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  11. Analysis of the use of antimicrobial agents and the monitoring of bacterial resistance%2011-2013年我院抗菌药物使用与细菌耐药性监测的分析

    Institute of Scientific and Technical Information of China (English)

    宋桂芳; 王韵

    2015-01-01

    Objective:To analyze relevance between the DDDs of antimicrobial agents and the drug resistance of common clinical pathogens in our hospital during 2011-2013 so as to provide a basis for guiding rational drug use. Methods:The number of consumption of antimicrobial agents and the incidence of major drug resistant pathogens were statistically analyzed and the related data were compared. Results:The DDDs of the third generation of cephalosporins, cephamycins, carbapenems and macrolides showed an upward trend, and the rates of drug resistance of main bacteria such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa Bowman/hemolytic Acinetobacter, Staphylococcus aureus and so on also showed an increasing trend. Conclusion:The DDDs of antimicrobial agents and bacterial resistance are closely related and therefore the management of antimicrobial agents should be further strengthened and improved and great attention should be paid to the monitoring of bacterial resistance.%目的:分析我院抗菌药物用药频度及与临床常见致病菌耐药情况的关联性,为指导合理用药提供依据。方法:对本院2011-2013年抗菌药物消耗数量进行统计分析,并对主要致病菌的耐药率进行统计,分析比较相关数据。结果:三代头孢菌素、头霉素类、碳青霉烯类和大环内酯类的DDDs呈上升趋势,主要致病菌大肠埃希氏菌、肺炎克雷伯氏菌、铜绿假单胞菌、鲍曼/溶血不动杆菌、金黄色葡萄球菌等的耐药率也呈逐年上升的趋势。结论:抗菌药物的DDDs对细菌耐药率关联性高,医院需要进一步加强和完善抗菌药物的管理,对细菌耐药率监测应高度重视。

  12. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future.

    Science.gov (United States)

    Unemo, Magnus; Shafer, William M

    2014-07-01

    Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection. PMID:24982323

  13. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future.

    Science.gov (United States)

    Unemo, Magnus; Shafer, William M

    2014-07-01

    Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection.

  14. The challenges of antimicrobial resistance in Brazil.

    Science.gov (United States)

    Rossi, Flávia

    2011-05-01

    Brazil is a country with continental proportions with high geographic and economic diversity. Despite its medical centers of excellence, antimicrobial resistance poses a major therapeutic challenge. Rates of methicillin-resistant Staphylococcus aureus are up to 60% and are related to an endemic Brazilian clone. Local resistance to vancomycin in Enterococci was first related to Enterococcus faecalis, which differs from European and American epidemiology. Also, local Klebsiella pneumoniae and Escherichia coli isolates producing extended-spectrum β-lactamases have a much higher prevalence (40%-50% and 10%-18%, respectively). Carbapenem resistance among the enterobacteriaceae group is becoming a major problem, and K. pneumoniae carbapenemase isolates have been reported in different states. Among nonfermenters, carbapenem resistance is strongly related to SPM-1 (Pseudomonasaeruginosa) and OXA-23 (Acinetobacter baumannii complex) enzymes, and a colistin-only susceptible phenotype has also emerged in these isolates, which is worrisome. Local actions without loosing the global resistance perspective will demand multidisciplinary actions, new policies, and political engagement.

  15. Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry.

    Science.gov (United States)

    Grant, Ar'Quette; Hashem, Fawzy; Parveen, Salina

    2016-02-01

    Salmonella and Campylobacter are major causes of foodborne related illness and are traditionally associated with consuming undercooked poultry and/or consuming products that have been cross contaminated with raw poultry. Many of the isolated Salmonella and Campylobacter that can cause disease have displayed antimicrobial resistance phenotypes. Although poultry producers have reduced on-the-farm overuse of antimicrobials, antimicrobial resistant Salmonella and Campylobacter strains still persist. One method of bio-control, that is producing promising results, is the use of lytic bacteriophages. This review will highlight the current emergence and persistence of antimicrobial resistant Salmonella and Campylobacter recovered from poultry as well as bacteriophage research interventions and limitations.

  16. Marine echinoderms as reservoirs of antimicrobial resistant bacteria

    Directory of Open Access Journals (Sweden)

    Catarina Marinho

    2014-06-01

    able to spread their genes into aquatic microorganisms, which may also contain resistance genes. Furthermore, it is known that several antibiotics from industrial sources circulate in water environments, potentially altering microbial ecosystems (Baquero et al., 2008. Once antibiotics enter the ecosystem, they can act as an ecological factor, eradicating susceptible and promoting resistant species and strains (Aminov and Mackie, 2007. The study of antibiotic resistance in aquatic organisms is pertinent, as it might indicate the variation amount of aquatic ecosystems with presumable human action. Aquatic environment play an important role in the spreading and evolution of antibiotic resistant bacteria. In this way, bacteria from different origins are able to interact, and antibiotic resistance improves as a consequence of uncontrolled exchange and shuffling of genes, genetic elements, and genetic vectors (Baquero et al., 2008. The need for monitoring and evaluate bacteria susceptibility to antibiotics in humans, animals and the environment is considered as a measure to contest the increasing of antimicrobial resistance (WHO, 2001. Enterococcus spp. and Escherichia coli mostly do not cause disease, but they may act as a reservoir of antimicrobial-resistance genes that could be transmitted to other pathogenic bacteria. In fact, both Enterococcus spp. and E. coli are experts in acquiring and transmitting resistance genes, even to phylogenetically distant bacteria, representing a worldwide concern (Martel et al., 2003, Costa et al., 2006. Enterococcus spp. is more frequently isolated from echinoderms fecal samples than E. coli bacteria, which may be due to the fact that E. coli are Gram-negative bacteria that typically are more susceptible to adverse conditions than Gram-positive bacteria (Marinho et al., 2013, Wan et al., 2009. The highest percentage of antibiotic resistance exhibited on enterococci isolates was to erythromycin, ampicillin, tetracycline, and ciprofloxacin

  17. Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    1999-01-01

    Antimicrobial agents are used in food animals for therapy and prophylaxis of bacterial infections and in feed to promote growth. The use of antimicrobial agents for food animals may cause problems in the therapy of infections by selecting for resistance among bacteria pathogenic for animals...... animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimens to limit the development of resistance is incomplete. Surveillance programmes monitoring the occurrence and development of resistance and consumption...... of antimicrobial agents are urgently needed, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine to limit the emergence and spread of antimicrobial resistance. (C) 1999 Elsevier Science B.V. and International Society of Chemotherapy. All rights reserved....

  18. A trend analysis of antimicrobial resistance in commensal Escherichia coli from several livestock species in Belgium (2011-2014)

    OpenAIRE

    Hanon, Jean-Baptiste; Jaspers, Stijn; Butaye, Patrick; Wattiau, Pierre; Méroc, Estelle; Aerts, Marc; Imberechts, Hein; Vermeersch, Katie; Van der Stede, Yves

    2015-01-01

    A temporal trend analysis was performed on antimicrobial resistance data collected over 4 consecutive years (2011-2014) in the official Belgian antimicrobial resistance monitoring programme. Commensal Escherichia coli strains were isolated from faecal samples of four livestock categories (veal calves, young beef cattle, broiler chickens and slaughter pigs) and the trends of resistance profiles were analysed. The resistance prevalence remained high (>50%) during the study period for ampicillin...

  19. Salmon aquaculture and antimicrobial resistance in the marine environment.

    Science.gov (United States)

    Buschmann, Alejandro H; Tomova, Alexandra; López, Alejandra; Maldonado, Miguel A; Henríquez, Luis A; Ivanova, Larisa; Moy, Fred; Godfrey, Henry P; Cabello, Felipe C

    2012-01-01

    Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.

  20. An economic perspective on policy to reduce antimicrobial resistance.

    Science.gov (United States)

    Coast, J; Smith, R D; Millar, M R

    1998-01-01

    Resistance to antimicrobial drugs is increasing worldwide. This resistance is, at least in part, associated with high antimicrobial usage. Despite increasing awareness, economists (and policy analysts more generally) have paid little attention to the problem. In this paper antimicrobial resistance is conceptualised as a negative externality associated with the consumption of antimicrobials and is set within the broader context of the costs and benefits associated with antimicrobial usage. It is difficult to determine the overall impact of attempting to reduce resistance, given the extremely limited ability to model the epidemiology of resistant and sensitive micro-organisms. It is assumed for the purposes of the paper, however, that dealing with resistance by reducting antimicrobial usage would lead to a positive societal benefit. Three policy options traditionally associated with environmental economics (regulation, permits and charges) are examined in relation to their potential ability to impact upon the problem of resistance. The primary care sector of the U.K.'s National Health Service provides the context for this examination. Simple application of these policies to health care is likely to be problematic, with difficulties resulting particularly from the potential reduction in clinical freedom to prescribe when appropriate, and from the desire for equity in health care provision. The paper tentatively concludes that permits could offer the best policy response to antimicrobial resistance, with the caveat that empirical research is needed to develop the most practical and efficient system. This research must be conducted alongside the required epidemiological research.

  1. Laboratory-based nationwide surveillance of antimicrobial resistance in Ghana

    Directory of Open Access Journals (Sweden)

    Opintan JA

    2015-11-01

    Full Text Available Japheth A Opintan,1 Mercy J Newman,1 Reuben E Arhin,1 Eric S Donkor,1 Martha Gyansa-Lutterodt,2 William Mills-Pappoe3 1Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, 2Pharmaceutical Services, Ministry of Health, Ghana Health Services, 3Clinical Laboratory Unit, Institutional Care Division, Ghana Health Service, Accra, Ghana Abstract: Global efforts are underway to combat antimicrobial resistance (AMR. A key target in this intervention is surveillance for local and national action. Data on AMR in Ghana are limited, and monitoring of AMR is nonexistent. We sought to generate baseline data on AMR, and to assess the readiness of Ghana in laboratory-based surveillance. Biomedical scientists in laboratories across Ghana with capacity to perform bacteriological culture were selected and trained. In-house standard operating protocols were used to perform microbiological investigations on clinical specimens. Additional microbiological tests and data analyses were performed at a centralized laboratory. Surveillance data were stored and analyzed using WHONET program files. A total of 24 laboratories participated in the training, and 1,598 data sets were included in the final analysis. A majority of the bacterial species were isolated from outpatients (963 isolates; 60.3%. Urine (617 isolates; 38.6% was the most common clinical specimen cultured, compared to blood (100 isolates; 6.3%. Ten of 18 laboratories performed blood culture. Bacteria isolated included Escherichia coli (27.5%, Pseudomonas spp. (14.0%, Staphylococcus aureus (11.5%, Streptococcus spp. (2.3%, and Salmonella enterica serovar Typhi (0.6%. Most of the isolates were multidrug-resistant, and over 80% of them were extended-spectrum beta-lactamases-producing. Minimum inhibitory concentration levels at 50% and at 90% for ciprofloxacin, ceftriaxone, and amikacin on selected multidrug-resistant bacteria species ranged between 2 µg/mL and

  2. Evaluación de la resistencia antimicrobiana en ganado bovino en Chile, utilizando E. coli como bacteria indicadora Antimicrobial resistance monitoring in cattle in Chile using E. coli as the indicator bacteria

    Directory of Open Access Journals (Sweden)

    B San Martín

    2005-01-01

    Full Text Available La resistencia antimicrobiana es un importante problema de salud pública que afecta a la mayoría de los países, teniendo un impacto negativo en control de las enfermedades bacterianas. La Organización Mundial de la Salud (OMS señala que existen evidencias que los animales de producción son un reservorio de bacterias resistentes y que deben hacerse esfuerzos entre médicos humanos y veterinarios para abordar este problema. El objetivo de este trabajo fue determinar la resistencia antimicrobiana, utilizando E. coli como bacteria indicadora. Se aislaron de contenido cecal 50 cepas de E. coli en ganado de leche (Grupo I y 72 en ganado de carne (Grupo II. Se determinaron las Concentraciones Mínimas Inhibitorias frente a ocho antimicrobianos. Los mayores porcentajes de resistencia (86% se observaron en las cepas aisladas del Grupo I; en el grupo II no superó el 11%. Los mayores niveles de resistencia se presentaron frente a oxitetraciclina, enrofloxacino, ciprofloxacino y ceftiofur, en el Grupo I, y a sulfametoxazol/trimetoprim, en el grupo II. Se observó un alto porcentaje de multirresistencia en las cepas del Grupo I, siendo el perfil enrofloxacino/ciprofloxacino/oxitetraciclina/ceftiofur el más observado (46%. Esta situación contrasta con el Grupo II, en donde menos del 3% de las cepas fueron multirresistentes. De los resultados obtenidos podemos concluir que el ganado de leche como el de carne de la Región Metropolitana no está ajeno a la problemática mundial de resistencia bacteriana, situación que también ha sido reportada en otras regiones del paísAntimicrobial resistance is an important worldwide public health problem having a negative impact on the struggle against bacterial diseases. The WHO indicates that there exists evidence that livestock are a reservoir for resistant bacteria and that medical physicians and veterinarians must work together on this problem. The aim of the present study was to monitor the antimicrobial

  3. Antimicrobial resistance in commensal Escherichia coli in veal calves is associated with antimicrobial drug use.

    Science.gov (United States)

    Bosman, A B; Wagenaar, J A; Stegeman, J A; Vernooij, J C M; Mevius, D J

    2014-09-01

    The aim of this study was to determine the association between farm management factors, including antimicrobial drug usage, and resistance in commensal Escherichia coli isolates from the faeces of white veal calves. Ninety E. coli isolates from one pooled sample per farm (n = 48) were tested for their phenotypical resistance against amoxicillin, tetracycline, cefotaxime, ciprofloxacin and trimethoprim/sulfamethoxazole (TMP/SMX). Logistic regression analysis revealed the following risk factors (P 40 ADD/pc, tetracyclines (tetracycline, OR 13·1; amoxicillin, OR 6·5). In this study antimicrobial resistance in commensal E. coli was mainly associated with antimicrobial drug use. PMID:24152540

  4. Antimicrobial resistance-a threat to the world's sustainable development.

    Science.gov (United States)

    Jasovský, Dušan; Littmann, Jasper; Zorzet, Anna; Cars, Otto

    2016-08-01

    This commentary examines how specific sustainable development goals (SDGs) are affected by antimicrobial resistance and suggests how the issue can be better integrated into international policy processes. Moving beyond the importance of effective antibiotics for the treatment of acute infections and health care generally, we discuss how antimicrobial resistance also impacts on environmental, social, and economic targets in the SDG framework. The paper stresses the need for greater international collaboration and accountability distribution, and suggests steps towards a broader engagement of countries and United Nations agencies to foster global intersectoral action on antimicrobial resistance. PMID:27416324

  5. Antimicrobial resistance-a threat to the world's sustainable development.

    Science.gov (United States)

    Jasovský, Dušan; Littmann, Jasper; Zorzet, Anna; Cars, Otto

    2016-08-01

    This commentary examines how specific sustainable development goals (SDGs) are affected by antimicrobial resistance and suggests how the issue can be better integrated into international policy processes. Moving beyond the importance of effective antibiotics for the treatment of acute infections and health care generally, we discuss how antimicrobial resistance also impacts on environmental, social, and economic targets in the SDG framework. The paper stresses the need for greater international collaboration and accountability distribution, and suggests steps towards a broader engagement of countries and United Nations agencies to foster global intersectoral action on antimicrobial resistance.

  6. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    Science.gov (United States)

    Zhao, S; Tyson, G H; Chen, Y; Li, C; Mukherjee, S; Young, S; Lam, C; Folster, J P; Whichard, J M; McDermott, P F

    2016-01-01

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2')-If, aph(2″)-Ig, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, aac(6')-Ie-aph(2″)-If, aac(6')-Im, aadE, sat4, ant(6'), aad9, aph(3')-Ic, and aph(3')-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. PMID:26519386

  7. Usage of antimicrobials and occurrence of antimicrobial resistance among bacteria from mink

    DEFF Research Database (Denmark)

    Pedersen, Karl; Hammer, Anne Sofie; Sørensen, Charlotte Mark;

    2009-01-01

    The usage of antimicrobials for treatment of mink and the occurrence of antimicrobial resistance among the most important bacterial pathogens in mink was investigated. The aim of the study was to provide data, which may serve as a basis for the formulation of recommendations for prudent Use...

  8. Antimicrobial Resistance of Escherichia fergusonii Isolated from Broiler Chickens.

    Science.gov (United States)

    Simmons, Karen; Islam, M Rashedul; Rempel, Heidi; Block, Glenn; Topp, Edward; Diarra, Moussa S

    2016-06-01

    The objective of this study was to investigate the antibiotic resistance of Escherichia fergusonii isolated from commercial broiler chicken farms. A total of 245 isolates from cloacal and cecal samples of 28- to 36-day-old chickens were collected from 32 farms. Isolates were identified using PCR, and their susceptibility to 16 antibiotics was determined by disk diffusion assay. All isolates were susceptible to meropenem, amikacin, and ciprofloxacin. The most common resistances were against ampicillin (75.1%), streptomycin (62.9%), and tetracycline (57.1%). Of the 184 ampicillin-resistant isolates, 127 were investigated using a DNA microarray carrying 75 probes for antibiotic resistance genetic determinants. Of these 127 isolates, the β-lactamase blaCMY2, blaTEM, blaACT, blaSHV, and blaCTX-M-15 genes were detected in 120 (94.5%), 31 (24.4%), 8 (6.3%), 6 (4.7%), and 4 (3.2%) isolates, respectively. Other detected genes included those conferring resistance to aminoglycosides (aadA1, strA, strB), trimethoprims (dfrV, dfrA1), tetracyclines (tetA, tetB, tetC, tetE), and sulfonamides (sul1, sul2). Class 1 integron was found in 35 (27.6%) of the ampicillin-resistant isolates. However, our data showed that the tested E. fergusonii did not carry any carbapenemase blaOXA genes. Pulsed-field gel electrophoresis revealed that the selected ampicillin-resistant E. fergusonii isolates were genetically diverse. The present study indicates that the monitoring of antimicrobial-resistant bacteria should include enteric bacteria such as E. fergusonii, which could be a reservoir of antibiotic resistance genes. The detection of isolates harboring extended-spectrum β-lactamase genes, particularly blaCTX-M-15, in this work suggests that further investigations on the occurrence of such genes in broilers are warranted.

  9. Regional, Seasonal, and Temporal Variations in the Prevalence of Antimicrobial-Resistant Escherichia coli Isolated from Pigs at Slaughter in Denmark (1997-2005)

    DEFF Research Database (Denmark)

    Abatih, E. N.; Emborg, Hanne-Dorthe; Jensen, Vibeke Frøkjær;

    2009-01-01

    Antimicrobial Resistance Monitoring and Research Programme database. The Cochran-Armitage trend test was used to detect the presence and evaluate the significance of regional, seasonal, and annual trends in the occurrence of antimicrobial-resistant E. coli for four drugs. Associations between resistance...

  10. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds.

    Science.gov (United States)

    Lin, Mao; Wu, Xiaomei; Yan, Qingpi; Ma, Ying; Huang, Lixing; Qin, Yingxue; Xu, Xiaojin

    2016-07-01

    The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored. PMID:27409235

  11. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Directory of Open Access Journals (Sweden)

    Getahun E Agga

    Full Text Available This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie. Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR Gram-negative (Escherichia coli and Salmonella enterica and Gram-positive (enterococci bacteria were determined from individual samples (n = 174. The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44 by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine, low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05 in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  12. Mechanisms of antimicrobial resistance in finfish aquaculture environments

    Directory of Open Access Journals (Sweden)

    Claudio D. Miranda

    2013-08-01

    Full Text Available Consumer demand for affordable fish drives the ever-growing global aquaculture industry. The intensification and expansion of culture conditions in the production of several finfish species has been coupled with an increase in bacterial fish disease and the need for treatment with antimicrobials. Understanding the molecular mechanisms of antimicrobial resistance prevalent in aquaculture environments is important to design effective disease treatment strategies, to prioritize the use and registration of antimicrobials for aquaculture use, and to assess and minimize potential risks to public health. In this brief article we provide an overview of the molecular mechanisms of antimicrobial resistance mechanisms in finfish aquaculture environments and highlight specific research that should provide the basis of sound, science-based policies for the use of antimicrobials in aquaculture.

  13. Use and Misuse of Antimicrobial Drugs in Poultry and Livestock: Mechanisms of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Toni Poole* and Cynthia Sheffield

    2013-07-01

    Full Text Available Food safety begins on the farm with management practices that contribute to an abundant, safe, and affordable food supply. To attain this goal antimicrobials have been used in all stages of food animal production in the United States and elsewhere around the world at one time or another. Among food–production animals antimicrobials are used for growth promotion, disease prophylaxis or disease treatment, and are generally administered to the entire flock or herd. Over many decades bacteria have become resistant to multiple antimicrobial classes in a cumulative manner. Bacteria exhibit a number of well characterized mechanisms of resistance to antimicrobials that include: 1 modification of the antimicrobial; 2 alteration of the drug target; 3 decreased access of drug to target; and 4 implementation of an alternative metabolic pathway not affected by the drug. The mechanisms of resistance are complex and depend on the type of bacterium involved (e.g. Gram–positive or Gram–negative and the class of drug. Some bacterial species have accumulated resistance to nearly all antimicrobial classes due to a combination of intrinsic and acquired processes. This has and will continue to lead to clinical failures of antimicrobial treatment in both human and animal medicine.

  14. The global threat of antimicrobial resistance: science for intervention

    Directory of Open Access Journals (Sweden)

    I. Roca

    2015-07-01

    Full Text Available In the last decade we have witnessed a dramatic increase in the proportion and absolute number of bacterial pathogens resistant to multiple antibacterial agents. Multidrug-resistant bacteria are currently considered as an emergent global disease and a major public health problem. The B-Debate meeting brought together renowned experts representing the main stakeholders (i.e. policy makers, public health authorities, regulatory agencies, pharmaceutical companies and the scientific community at large to review the global threat of antibiotic resistance and come up with a coordinated set of strategies to fight antimicrobial resistance in a multifaceted approach. We summarize the views of the B-Debate participants regarding the current situation of antimicrobial resistance in animals and the food chain, within the community and the healthcare setting as well as the role of the environment and the development of novel diagnostic and therapeutic strategies, providing expert recommendations to tackle the global threat of antimicrobial resistance.

  15. Antimicrobial drug resistance ofStaphylococcus aureus in dairy products

    Institute of Scientific and Technical Information of China (English)

    Sasidharan S; Prema B; Yoga Latha L

    2011-01-01

    Objective:To evaluate the prevalence of multidrug resistantStaphylococcus aureus(S. aureus) in dairy products.Methods:Isolation and identification ofS. aureus were performed in3 dairy-based food products. The isolates were tested for their susceptibility to5 different common antimicrobial drugs.Results:Of50 samples examined,5 (10%) were contaminated with S. aureus. Subsequently, the5 isolates were subjected to antimicrobial resistance pattern using five antibiotic discs (methicillin, vancomycin, kanamycin, chloramphenicol and tetracycline). Sample 29 showed resistance to methicillin and vancomycin. Sample18 showed intermediate response to tetracycline. The other samples were susceptible to all the antibiotics tested.Conclusions:The results provide preliminary data on sources of food contamination which may act as vehicles for the transmission of antimicrobial-resistantStaphylococcus.Therefore, it enables us to develop preventive strategies to avoid the emergence of new strains of resistantS. aureus.

  16. Analysis on Antimicrobial Resistance of Clinical Bacteria Isolated from County Hospitals and a Teaching Hospital

    Institute of Scientific and Technical Information of China (English)

    SUN Ziyong; LI Li; ZHU Xuhui; MA Yue; LI Jingyun; SHEN Zhengyi; JIN Shaohong

    2006-01-01

    The distinction of antimicrobial resistance of clinical bacteria isolated from county hospitals and a teaching hospital was investigated. Disc diffusion test was used to study the antimicrobial resistance of isolates collected from county hospitals and a teaching hospital. The data was analyzed by WHONET5 and SPSS statistic software. A total of 655 strains and 1682 strains were collected from county hospitals and a teaching hospital, respectively, in the year of 2003. The top ten pathogens were Coagulase negative staphylococci (CNS), E. coli, Klebsiella spp. , S. areus, P. aeruginosa, Enterococcus spp. , Enterobacter spp. , otherwise Salmonella spp. , Proteus spp. , Shigella spp. in county hospitals and Streptococcus spp. , Acinetobacter spp. , X. maltophilia in the teaching hospital. The prevalence of multi-drug resistant bacteria was 5% (4/86) of methicillin-resistant S. areus (MRSA), 12% (16/133) and 15.8 % (9/57) of extended-spectrum β-lactamases producing strains of E. coli and Klebsiella spp. , respectively, in county hospitals. All of the three rates were lower than that in the teaching hospital and the difference was statistically significant (P<0.01). However, the incidence of methicillin-resistant CNS (MRCNS) reached to 70 % (109/156) in the two classes of hospitals. Generally, the antimicrobial resistant rates in the county hospitals were lower than those in the teaching hospital, except the resistant rates of ciprofloxacin, erythromycin, clindamycin, SMZco which were similar in the two classes of hospitals. There were differences between county hospitals and the teaching hospital in the distribution of clinical isolates and prevalence of antimicrobial resistance. It was the basis of rational use of antimicrobial agents to monitor antimicrobial resistance by each hospital.

  17. Associations between host characteristics and antimicrobial resistance of Salmonella typhimurium.

    Science.gov (United States)

    Ruddat, I; Tietze, E; Ziehm, D; Kreienbrock, L

    2014-10-01

    A collection of Salmonella Typhimurium isolates obtained from sporadic salmonellosis cases in humans from Lower Saxony, Germany between June 2008 and May 2010 was used to perform an exploratory risk-factor analysis on antimicrobial resistance (AMR) using comprehensive host information on sociodemographic attributes, medical history, food habits and animal contact. Multivariate resistance profiles of minimum inhibitory concentrations for 13 antimicrobial agents were analysed using a non-parametric approach with multifactorial models adjusted for phage types. Statistically significant associations were observed for consumption of antimicrobial agents, region type and three factors on egg-purchasing behaviour, indicating that besides antimicrobial use the proximity to other community members, health consciousness and other lifestyle-related attributes may play a role in the dissemination of resistances. Furthermore, a statistically significant increase in AMR from the first study year to the second year was observed.

  18. Trends towards Lower Antimicrobial Susceptibility and Characterization of Acquired Resistance among Clinical Isolates of Brachyspira hyodysenteriae in Spain

    DEFF Research Database (Denmark)

    Hidalgo, Alvaro; Carvajal, Ana; Vester, Birte;

    2011-01-01

    The antimicrobial susceptibility of clinical isolates of Brachyspira hyodysenteriae in Spain was monitored, and the underlying molecular mechanisms of resistance were investigated. MICs of tylosin, tiamulin, valnemulin, lincomycin, and tylvalosin were determined for 87 B. hyodysenteriae isolates ...... G2032A and high levels of tiamulin and lincomycin MICs was found, suggesting an increasing importance of this mutation in antimicrobial resistance of clinical isolates of B. hyodysenteriae.......The antimicrobial susceptibility of clinical isolates of Brachyspira hyodysenteriae in Spain was monitored, and the underlying molecular mechanisms of resistance were investigated. MICs of tylosin, tiamulin, valnemulin, lincomycin, and tylvalosin were determined for 87 B. hyodysenteriae isolates...... by multiple-locus variable-number tandem repeats analysis. A comparison with antimicrobial susceptibility data from 2000 to 2007 showed an increase in pleuromutilin resistance over time, doubling the number of isolates with decreased susceptibility to tiamulin. No alteration in susceptibility was detected...

  19. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010-2013.

    Science.gov (United States)

    Jean, Shio-Shin; Coombs, Geoffrey; Ling, Thomas; Balaji, V; Rodrigues, Camilla; Mikamo, Hiroshige; Kim, Min-Ja; Rajasekaram, Datin Ganeswrie; Mendoza, Myrna; Tan, Thean Yen; Kiratisin, Pattarachai; Ni, Yuxing; Weinman, Barry; Xu, Yingchun; Hsueh, Po-Ren

    2016-04-01

    A total of 9599 isolates of Gram-negative bacteria (GNB) causing urinary tract infections (UTIs) were collected from 60 centres in 13 countries in the Asia-Pacific region from 2010-2013. These isolates comprised Enterobacteriaceae species (mainly Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Klebsiella oxytoca, Enterobacter cloacae and Morganella morganii) and non-fermentative GNB species (predominantly Pseudomonas aeruginosa and Acinetobacter baumannii). In vitro susceptibilities were determined by the agar dilution method and susceptibility profiles were determined using the minimum inhibitory concentration (MIC) interpretive breakpoints recommended by the Clinical and Laboratory Standards Institute in 2015. Production of extended-spectrum β-lactamases (ESBLs) amongst E. coli, K. pneumoniae, P. mirabilis and K. oxytoca isolates was determined by the double-disk synergy test. China, Vietnam, India, Thailand and the Philippines had the highest rates of GNB species producing ESBLs and the highest rates of cephalosporin resistance. ESBL production and hospital-acquired infection (isolates obtained ≥48 h after admission) significantly compromised the susceptibility of isolates of E. coli and K. pneumoniae to ciprofloxacin, levofloxacin and most β-lactams, with the exception of imipenem and ertapenem. However, >87% of ESBL-producing E. coli strains were susceptible to amikacin and piperacillin/tazobactam, indicating that these antibiotics might be appropriate alternatives for treating UTIs due to ESBL-producing E. coli. Fluoroquinolones were shown to be inappropriate as empirical therapy for UTIs. Antibiotic resistance is a serious problem in the Asia-Pacific region. Therefore, continuous monitoring of evolutionary trends in the susceptibility profiles of GNB causing UTIs in Asia is crucial. PMID:27005459

  20. Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua.

    Science.gov (United States)

    Tajkarimi, Mehrdad; Harrison, Scott H; Hung, Albert M; Graves, Joseph L

    2016-01-01

    A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism.

  1. Antimicrobial resistance of Enterococcus faecalis isolated from meat

    OpenAIRE

    Różańska Hanna; Lewtak-Piłat Aleksandra; Osek Jacek

    2015-01-01

    The aim of the study was the evaluation of the antimicrobial resistance of Enterococcus faecalis strains isolated from cattle, pig, and poultry meat. A test was performed on 111 strains using the minimum inhibitory concentration technique. The highest number of isolates (94 strains) were resistant to lincomycin, the second-highest resistance was to quinupristin/dalfopristin (88 strains), tetracycline followed (65 strains), and erythromycin resistance was also notable (40 strains). All isolate...

  2. Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken--a systematic review.

    Science.gov (United States)

    Simoneit, C; Burow, E; Tenhagen, B-A; Käsbohrer, A

    2015-01-01

    Antimicrobials play an important role in animal and human health care. It was the aim of this systematic review to assess the effects of oral administration of antimicrobials on the development of antimicrobial resistance (AMR) in Escherichia coli (E. coli) from chickens. Moreover, the effects of the administration of more than one antimicrobial and of different dosages were studied. Literature was searched in November 2012 from the electronic databases ISI Web of Science, PubMed, Scopus and a national literature database (DIMDI) as well as the database ProQuest LLC. The search was updated in March 2014. Original studies describing a treatment (A) and a control group of either non-treatment (C) or initial value (0) and determining AMR in E. coli at different sample points (SP) were included. The literature search resulted in 35 full text articles on the topic, seven (20%) of which contained sufficient information on the administered antimicrobial and the impact of treatment on AMR. Most papers described the use of more than one antimicrobial, several dosages, controls (non-treatment or pre-treatment) and measured AMR at different SPs leading to a total of 227 SPs on the impact of the use of antimicrobials on AMR in chickens. 74% of the SPs (168/227) described a higher AMR-rate in E. coli from treated animals than from controls. After the administration of a single antimicrobial, AMR increased at 72% of the SPs. Administration of more than one antimicrobial increased AMR at 82% of the SPs. Higher dosages were associated with similar or higher AMR rates. The limited number of studies for each antimicrobial agent and the high variability in the resistance effect call for more well designed studies on the impact of oral administration on AMR development and spread. PMID:25433717

  3. Antimicrobial resistance among Campylobacter jejuni isolated from raw poultry meat at retail level in Denmark

    DEFF Research Database (Denmark)

    Andersen, S. R.; Saadbye, P.; Shukri, Naseer Mahmoud;

    2006-01-01

    Campylobacter jejuni isolated from raw poultry meat collected at retail shops in Denmark in the period 1996-2003 were tested for susceptibility to seven antimicrobial agents. The food samples consisted of raw chicken meat and other raw poultry meat of domestic or imported origin. The highest levels...... of resistance among C. jejuni were observed for tetracycline, nalidixic acid and ciprofloxacin, whereas macrolide resistance was rarely detected. C. jejuni originating from other poultry meat (mainly duck and turkey meat) exhibited the highest occurrences of antimicrobial resistance monitored; approximately one...... third of the isolates were tetracycline resistant (N=100). Among chicken meat isolates, the occurrence of tetracycline resistance was significantly higher (P chicken meat (N=88) than in C. jejuni from Danish chicken meat (N=367). The same tendency was observed...

  4. Antimicrobial resistance among enterococci from pigs in three European countries

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik; Jensen, Lars Bogø;

    2002-01-01

    Enterococci from pigs in Denmark, Spain, and Sweden were examined for susceptibility to antimicrobial agents and copper and the presence of selected resistance genes. The greatest levels of resistance were found among isolates from Spain and Denmark compared to those from Sweden, which correspond...

  5. A trend analysis of antimicrobial resistance in commensal Escherichia coli from several livestock species in Belgium (2011-2014).

    Science.gov (United States)

    Hanon, Jean-Baptiste; Jaspers, Stijn; Butaye, Patrick; Wattiau, Pierre; Méroc, Estelle; Aerts, Marc; Imberechts, Hein; Vermeersch, Katie; Van der Stede, Yves

    2015-12-01

    A temporal trend analysis was performed on antimicrobial resistance data collected over 4 consecutive years (2011-2014) in the official Belgian antimicrobial resistance monitoring programme. Commensal Escherichia coli strains were isolated from faecal samples of four livestock categories (veal calves, young beef cattle, broiler chickens and slaughter pigs) and the trends of resistance profiles were analysed. The resistance prevalence remained high (>50%) during the study period for ampicillin in veal calves and chickens, for ciprofloxacin and nalidixic acid in chickens, for sulfamethoxazole in veal calves, chickens and pigs and for tetracycline in veal calves. Using logistic regression and Generalized Estimating Equation and after p value adjustment for multiple testing (Linear step-up method), statistically significant decreasing temporal trends were observed for several of the 11 tested antimicrobials in several livestock categories: in veal calves (10/11), in chickens (6/11) and in pigs (5/11). A significant increasing trend was observed for the prevalence of resistance to ciprofloxacin in chickens. Multi-resistance, considered as the resistance to at least three antimicrobials of different antibiotic classes, was observed in the four livestock categories but was significantly decreasing in veal calves, chickens and pigs. Overall, the prevalence of resistance and of multi-resistance was lowest in the beef cattle livestock category and highest in broiler chickens. These decreasing temporal trends of antimicrobial resistance might be due to a decrease of the total antimicrobial consumption for veterinary use in Belgium which was reported for the period between 2010 and 2013. The methodology and statistical tools developed in this study provide outputs which can detect shifts in resistance levels or resistance trends associated with particular antimicrobial classes and livestock categories. Such outputs can be used as objective evidence to evaluate the possible

  6. A trend analysis of antimicrobial resistance in commensal Escherichia coli from several livestock species in Belgium (2011-2014).

    Science.gov (United States)

    Hanon, Jean-Baptiste; Jaspers, Stijn; Butaye, Patrick; Wattiau, Pierre; Méroc, Estelle; Aerts, Marc; Imberechts, Hein; Vermeersch, Katie; Van der Stede, Yves

    2015-12-01

    A temporal trend analysis was performed on antimicrobial resistance data collected over 4 consecutive years (2011-2014) in the official Belgian antimicrobial resistance monitoring programme. Commensal Escherichia coli strains were isolated from faecal samples of four livestock categories (veal calves, young beef cattle, broiler chickens and slaughter pigs) and the trends of resistance profiles were analysed. The resistance prevalence remained high (>50%) during the study period for ampicillin in veal calves and chickens, for ciprofloxacin and nalidixic acid in chickens, for sulfamethoxazole in veal calves, chickens and pigs and for tetracycline in veal calves. Using logistic regression and Generalized Estimating Equation and after p value adjustment for multiple testing (Linear step-up method), statistically significant decreasing temporal trends were observed for several of the 11 tested antimicrobials in several livestock categories: in veal calves (10/11), in chickens (6/11) and in pigs (5/11). A significant increasing trend was observed for the prevalence of resistance to ciprofloxacin in chickens. Multi-resistance, considered as the resistance to at least three antimicrobials of different antibiotic classes, was observed in the four livestock categories but was significantly decreasing in veal calves, chickens and pigs. Overall, the prevalence of resistance and of multi-resistance was lowest in the beef cattle livestock category and highest in broiler chickens. These decreasing temporal trends of antimicrobial resistance might be due to a decrease of the total antimicrobial consumption for veterinary use in Belgium which was reported for the period between 2010 and 2013. The methodology and statistical tools developed in this study provide outputs which can detect shifts in resistance levels or resistance trends associated with particular antimicrobial classes and livestock categories. Such outputs can be used as objective evidence to evaluate the possible

  7. Mycoplasma bovis: Mechanisms of Resistance and Trends in Antimicrobial Susceptibility

    Science.gov (United States)

    Lysnyansky, Inna; Ayling, Roger D.

    2016-01-01

    Mycoplasma bovis is a cell-wall-less bacterium and belongs to the class Mollicutes. It is the most important etiological agent of bovine mycoplasmoses in North America and Europe, causing respiratory disease, mastitis, otitis media, arthritis, and reproductive disease. Clinical disease associated with M. bovis is often chronic, debilitating, and poorly responsive to antimicrobial therapy, resulting in significant economic loss, the full extent of which is difficult to estimate. Until M. bovis vaccines are universally available, sanitary control measures and antimicrobial treatment are the only approaches that can be used in attempts to control M. bovis infections. However, in vitro studies show that many of the current M. bovis isolates circulating in Europe have high minimum inhibitory concentrations (MIC) for many of the commercially available antimicrobials. In this review we summarize the current MIC trends indicating the development of antimicrobial resistance in M. bovis as well as the known molecular mechanisms by which resistance is acquired. PMID:27199926

  8. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Science.gov (United States)

    Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in

  9. EMERGING ANTIMICROBIAL RESISTANCE IN HOSPITAL A THREAT TO PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Vichal Rastogi

    2013-01-01

    Full Text Available Background: Antimicrobial resistance(AMR threatens the health of many throughout the world, since both old and new infectious diseases remain a formidable public health threat. When pathogenic microorganisms can multiply beyond some critical mass in the face of invading antimicrobials, treatment outcome is compromised. This phenomenon is referred as antimicrobial resistance (AMR. Objective: This retrospective study was conducted to assess the overall antimicrobial resistance in bacterial isolates from tertiary care hospitals as majority of patients here receive empirical antibiotics therapy. Method: This retrospective study was carried out in teaching hospital, Greater Noida to determine prevalence of multidrug resistance in patients in relation to empirical antibiotic therapy in hospital. Various samples (pus,urine,blood were collected for bacterial culture and antibiotic sensitivity. Results: Total 500 bacterial strains isolated from ICU, surgery, obstetrics & gynaecology and orthopaedics and their sensitivity pattern was compared in this study. The highest number of resistant bacterias were of pseudomonas sp. i.e. 21(33.87% followed by 16(25.80% of staphylococcus aureus, 12(19.35% of Escherichia coli, Klebseilla sp & Proteus vulgaris were 05(8.06% each & Citrobacter sp. 03(4.83%. Total 62(12.4% bacterial isolates were found to be resistant to multiple drugs. The 31 (50% of these resistant bacteria were prevalent in ICU, 12(19.35% in Surgery, 11(17.74% in Gynaecology, 08(12.90% in Orthopaedics.. All the bacterial strains were resistant to common antibiotics like Penicillin, Amoxicillin, Doxycycline & Cotrimoxazole and some were even resistant to Imipenem. Conclusion: Therefore we have outlined the nature of the antimicrobial resistance problem as an important health issue for national and international community. It is advised to avoid use of empirical antibiotics therapy.

  10. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuping; Zhang, Chiqian [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States); Parker, David B. [USDA Meat Animal Research Center, Clay Center, NE (United States); Snow, Daniel D. [Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, Zhi [Department of Civil and Environmental Engineering, National University of Singapore (Singapore); Li, Xu, E-mail: xuli@unl.edu [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States)

    2013-10-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3 × 10{sup −1} copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. - Highlights: • Partitioning of antimicrobials between water and sludge is compound specific. • Antimicrobial resistance genes occurred in both water and sludge. • The ARG abundance varied more substantially in swine lagoons than in cattle ponds. • Correlations between ARGs and antimicrobials are system dependent.

  11. Effect of Antimicrobial Consumption and Production Type on Antibacterial Resistance in the Bovine Respiratory and Digestive Tract.

    Directory of Open Access Journals (Sweden)

    Boudewijn Catry

    Full Text Available The aim of this study was to investigate the relationship between antimicrobial use and the occurrence of antimicrobial resistance in the digestive and respiratory tract in three different production systems of food producing animals. A longitudinal study was set up in 25 Belgian bovine herds (10 dairy, 10 beef, and 5 veal herds for a 2 year monitoring of antimicrobial susceptibilities in E. coli and Pasteurellaceae retrieved from the rectum and the nasal cavity, respectively. During the first year of observation, the antimicrobial use was prospectively recorded on 15 of these farms (5 of each production type and transformed into the treatment incidences according to the (animal defined daily dose (TIADD and (actually used daily dose (TIUDD. Antimicrobial resistance rates of 4,174 E. coli (all herds and 474 Pasteurellaceae (beef and veal herds only isolates for 12 antimicrobial agents demonstrated large differences between intensively reared veal calves (abundant and inconstant and more extensively reared dairy and beef cattle (sparse and relatively stable. Using linear mixed effect models, a strong relation was found between antimicrobial treatment incidences and resistance profiles of 1,639 E. coli strains (p<0.0001 and 309 Pasteurellaceae (p≤0.012. These results indicate that a high antimicrobial selection pressure, here found to be represented by low dosages of oral prophylactic and therapeutic group medication, converts not only the commensal microbiota from the digestive tract but also the opportunistic pathogenic bacteria in the respiratory tract into reservoirs of multi-resistance.

  12. Effect of Antimicrobial Consumption and Production Type on Antibacterial Resistance in the Bovine Respiratory and Digestive Tract.

    Science.gov (United States)

    Catry, Boudewijn; Dewulf, Jeroen; Maes, Dominiek; Pardon, Bart; Callens, Benedicte; Vanrobaeys, Mia; Opsomer, Geert; de Kruif, Aart; Haesebrouck, Freddy

    2016-01-01

    The aim of this study was to investigate the relationship between antimicrobial use and the occurrence of antimicrobial resistance in the digestive and respiratory tract in three different production systems of food producing animals. A longitudinal study was set up in 25 Belgian bovine herds (10 dairy, 10 beef, and 5 veal herds) for a 2 year monitoring of antimicrobial susceptibilities in E. coli and Pasteurellaceae retrieved from the rectum and the nasal cavity, respectively. During the first year of observation, the antimicrobial use was prospectively recorded on 15 of these farms (5 of each production type) and transformed into the treatment incidences according to the (animal) defined daily dose (TIADD) and (actually) used daily dose (TIUDD). Antimicrobial resistance rates of 4,174 E. coli (all herds) and 474 Pasteurellaceae (beef and veal herds only) isolates for 12 antimicrobial agents demonstrated large differences between intensively reared veal calves (abundant and inconstant) and more extensively reared dairy and beef cattle (sparse and relatively stable). Using linear mixed effect models, a strong relation was found between antimicrobial treatment incidences and resistance profiles of 1,639 E. coli strains (p<0.0001) and 309 Pasteurellaceae (p≤0.012). These results indicate that a high antimicrobial selection pressure, here found to be represented by low dosages of oral prophylactic and therapeutic group medication, converts not only the commensal microbiota from the digestive tract but also the opportunistic pathogenic bacteria in the respiratory tract into reservoirs of multi-resistance. PMID:26820134

  13. The antimicrobial resistance crisis: causes, consequences and management.

    Directory of Open Access Journals (Sweden)

    Carolyn Anne Michael

    2014-09-01

    Full Text Available The Antimicrobial Resistance (AMR crisis is the increasing global incidence of infectious diseases affecting the human population, which are untreatable with any known antimicrobial agent. This crisis will have a devastating cost on human society as both debilitating and lethal diseases increase in frequency and scope. Three major factors determine this crisis: 1/ The increasing frequency of AMR phenotypes amongst microbes is an evolutionary response to the widespread use of antimicrobials. 2/ The large and globally connected human population allows pathogens in any environment access to all of humanity. 3/ The extensive and often unnecessary use of antimicrobials by humanity provides the strong selective pressure that is driving the evolutionary response in the microbial world. Of these factors, the size of the human population is least amenable to rapid change. In contrast the remaining two factors may be affected, so offering a means of managing the crisis: The rate at which AMR, as well as virulence factors evolve in microbial world may be slowed by reducing the applied selective pressure. This may be accomplished by radically reducing the global use of current and prospective antimicrobials. Current management measures to legislate the use of antimicrobials and to educate the healthcare world in the issues, while useful, have not comprehensively addressed the problem of achieving an overall reduction in the human use of antimicrobials. We propose that in addition to current measures and increased research into new antimicrobials and diagnostics, a comprehensive education programme will be required to change the public paradigm of antimicrobial usage from that of a first line treatment to that of a last resort when all other therapeutic options have failed.

  14. Oral antimicrobials increase antimicrobial resistance in porcine E. coli--a systematic review.

    Science.gov (United States)

    Burow, E; Simoneit, C; Tenhagen, B-A; Käsbohrer, A

    2014-03-01

    Administration of antimicrobials to livestock increases the risk of antimicrobial resistance (AMR) in commensal bacteria. Antimicrobials in pig production are usually administered per pen via feed which implies treatment of sick alongside with healthy animals. The objective of this systematic literature review was to investigate the effect of orally administered antimicrobials on AMR in Escherichia coli of swine. Studies published in peer reviewed journals were retrieved from the international online databases ISI Web of Knowledge, PubMed, Scopus and the national electronic literature data base of Deutsches Institut für Medizinische Dokumentation und Information. The studies were assessed using the eligibility criteria English or German language, access to full paper version, defined treatment and control group (initial value or non-treatment) as well as administration and resistance testing of the same antimicrobial class. In the qualitative synthesis, only studies were included presenting the summary measures odds ratio or prevalence of resistance, the category of the applied antimicrobial and the dosage. An effect of the antimicrobial on AMR in E. coli was evaluated as an "increase", "no effect" or "decrease" if the odds or alternatively the prevalence ratio were >1.0, 1.0 or <1.0, respectively. Eleven studies, describing 36 different trials, fulfilled the eligibility criteria and were finally assessed. An increase of AMR in E. coli was found in 10 out of 11 trials comparing AMR after with AMR prior to oral treatment and in 22 of the 25 trials comparing orally treated with untreated groups. Effects expressed as odds or prevalence ratios were highest for the use of aminoglycosides, quinolones and tetracycline. There was no clear association between the reported dosage and AMR towards tetracycline. Information on antimicrobial substance and dosage was missing in 4 and 5 of the 11 finally selected studies. The 36 identified trials were inhomogenous in usage and

  15. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Antibiotic Resistance Threats in the United States, 2013 Recommend on Facebook Tweet Share Compartir This report, Antibiotic resistance threats in the United States, 2013 gives a first- ...

  16. How Fitness Reduced, Antimicrobial Resistant Bacteria Survive and Spread

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Nielsen, Søren Saxmose; Toft, Nils;

    2014-01-01

    More than 30% of E. coli strains sampled from pig farms in Denmark over the last five years were resistant to the commonly used antimicrobial tetracycline. This raises a number of questions: How is this high level sustained if resistant bacteria have reduced growth rates? Given that there are mul......More than 30% of E. coli strains sampled from pig farms in Denmark over the last five years were resistant to the commonly used antimicrobial tetracycline. This raises a number of questions: How is this high level sustained if resistant bacteria have reduced growth rates? Given...... for the individual strains in each pig were implemented. We demonstrate how competitive growth between multiple bacterial strains in individual pigs, and the transmission between pigs in a pen allow for strains of antimicrobial resistant bacteria to persist in a pig population to different extents, and how quickly...... homogenous and how resistant the bacterial population becomes. Most important: resistant bacteria are demonstrated to survive with a disadvantage in growth rate of well over 10%....

  17. Antimicrobial resistance in commensal Escherichia coli in veal calves is associated with antimicrobial drug use

    NARCIS (Netherlands)

    Bosman, A.B.; Wagenaar, J.A.; Stegeman, J.A.; Vernooij, J.C.M.; Mevius, D.J.

    2014-01-01

    The aim of this study was to determine the association between farm management factors, including antimicrobial drug usage, and resistance in commensal Escherichia coli isolates from the faeces of white veal calves. Ninety E. coli isolates from one pooled sample per farm (n = 48) were tested for the

  18. Antimicrobial resistance of fecal aerobic gram-negative bacilli in different age groups in a community.

    OpenAIRE

    Leistevuo, T; Leistevuo, J; Osterblad, M; Arvola, T. (Timo); Toivonen, P; Klaukka, T; Lehtonen, A; Huovinen, P.

    1996-01-01

    We measured the occurrence of antimicrobial resistance in fecal aerobic gram-negative bacilli by age in community subjects. For none of the eight antimicrobial agents studied were there any statistically significant differences in the carriage rates of resistance in different age groups. Bacterial resistance was common in all age groups, including the children, and occurred for all antimicrobial agents tested.

  19. Antimicrobial resistance patterns in Danish isolates of Flavobacterium psychrophilum

    DEFF Research Database (Denmark)

    Bruun, Morten Sichlau; Schmidt, A.S.; Madsen, Lone;

    2000-01-01

    were tested and the resulting antibiograms were used to predict the theoretical therapeutic efficacy and to evaluate if resistance had changed as a course of time. Antimicrobial agents included in this investigation were oxolinic acid (OXA), amoxicillin (AMX), potentiated sulfadiazine, oxytetracycline......The resistance pattern of Flavobacterium psychrophilum to the antimicrobial agents used in fish farming in Denmark was assessed in vitro using an agar dilution method. After identification of 387 isolates from clinical outbreaks of rainbow trout fry syndrome (RTFS) and the environment, the isolates...... (OTC) and florfenicol (FLO). We found that F. psychrophilum isolates divided in susceptible and resistant clusters reflecting the reduced efficacy in practice when using OTC and AMX. The most recent isolates were less susceptible to AMX and OXA, whereas resistance to OTC seemed stable over the last 5...

  20. Antimicrobial Resistance, Food Safety, and One Health: The Need for Convergence.

    Science.gov (United States)

    Lammie, Samantha L; Hughes, James M

    2016-01-01

    Antimicrobial resistance is a complex, multifaceted, urgent global health problem. There is increasing concern about the emergence of multidrug-resistant superbugs. These superbugs result in infections responsive to treatment with few if any currently available antimicrobial agents, reviving memories of the preantibiotic era and evoking concerns about a postantibiotic era. Use of antibiotics exerts selective pressure on pathogens as well as on commensal organisms that are part of the normal flora of humans, animals, and the environment; this favors the emergence of resistant strains and sometimes involves the food supply. Addressing this urgent threat requires implementation of a multifaceted strategy that has been articulated in the past few years; implementation will require sustained political will, investment in systems and research, and a One Health approach involving improved communication, cooperation, and collaboration among the many professional disciplines and organizations with important roles to play at the intersection of human, animal, and environmental health. Priorities include strengthened human and animal health surveillance and monitoring for resistant organisms, antimicrobial stewardship programs, infection-control programs, development and approval of new antimicrobial agents, research on innovative therapeutic approaches, development of rapid diagnostic tests and new vaccines, and educational programs that target professional groups and the public. PMID:26772408

  1. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons.

    Science.gov (United States)

    Zhang, Yuping; Zhang, Chiqian; Parker, David B; Snow, Daniel D; Zhou, Zhi; Li, Xu

    2013-10-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3×10(-1) copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. PMID:23838056

  2. Aedesin: structure and antimicrobial activity against multidrug resistant bacterial strains.

    Directory of Open Access Journals (Sweden)

    Sylvain Godreuil

    Full Text Available Multidrug resistance, which is acquired by both Gram-positive and Gram-negative bacteria, causes infections that are associated with significant morbidity and mortality in many clinical settings around the world. Because of the rapidly increasing incidence of pathogens that have become resistant to all or nearly all available antibiotics, there is a need for a new generation of antimicrobials with a broad therapeutic range for specific applications against infections. Aedesin is a cecropin-like anti-microbial peptide that was recently isolated from dengue virus-infected salivary glands of the Aedes aegypti mosquito. In the present study, we have refined the analysis of its structural characteristics and have determined its antimicrobial effects against a large panel of multidrug resistant bacterial strains, directly isolated from infected patients. Based the results from nuclear magnetic resonance spectroscopy analysis, Aedesin has a helix-bend-helix structure typical for a member of the family of α-helix anti-microbial peptides. Aedesin efficiently killed Gram-negative bacterial strains that display the most worrisome resistance mechanisms encountered in the clinic, including resistance to carbapenems, aminoglycosides, cephalosporins, 4th generation fluoroquinolones, folate inhibitors and monobactams. In contrast, Gram-positive strains were insensitive to the lytic effects of the peptide. The anti-bacterial activity of Aedesin was found to be salt-resistant, indicating that it is active under physiological conditions encountered in body fluids characterized by ionic salt concentrations. In conclusion, because of its strong lytic activity against multidrug resistant Gram-negative bacterial strains displaying all types of clinically relevant resistance mechanisms known today, Aedesin might be an interesting candidate for the development of alternative treatment for infections caused by these types of bacteria.

  3. Emerging antimicrobial resistance pattern of Helicobacter pylori in central Gujarat

    OpenAIRE

    H B Pandya; Harihar Har Agravat; J S Patel; NRK Sodagar

    2014-01-01

    Background: Antimicrobial resistance is a growing problem in H. pylori treatment. The study was intended to evaluate the prevalence of resistance amongst 80 H.pylori isolates cultured from biopsy taken during routine endoscopies in 2008-2011. Materials and Methods: 855 gastro duodenal biopsies were collected and cultured on H.pylori selective medium (containing Brucella agar and Columbia agar (Hi media), with Skirrow′s supplement (antibiotic supplement) and 7% human blood cells). H.pylori was...

  4. ANTIMICROBIAL RESISTANCE PATTERN OF STAPHYLOCOCCUS AUREUS ISOLATES FROM DAKSHINA KANNADA

    Directory of Open Access Journals (Sweden)

    Rao Venkatakrishna

    2011-03-01

    Full Text Available Methicillin resistant Staphylococcus aureus (MRSA is an important cause of infections in hospitals and pose a great challenge to the treating clinicians; even emergence of vancomycin resistance has been reported. Therefore the knowledge of prevalence of MRSA and their antimicrobial profile becomes necessary. This study is aimed to determine prevalence of MRSA and their antimicrobial sensitivity pattern in Dakshina Kannada.Clinical specimens and carrier samples were cultured as per standard methods. The isolates were identified by using catalase test, coagulase tube test, mannitol fermentation and DNAase test. Antimicrobial susceptibility test was done for the isolates as per Kirby-Bauer disc diffusion method; the isolates were also tested for methicillin resistance using oxacillin and cefoxitin discs.A total of 250 isolates were tested (200 clinical isolates and 50 from carriers and 67 MRSA isolates were obtained (52 clinical samples and 15 from carriers. The degree of resistance to penicillin, ampicillin, ciprofloxacin, clindamycin and erythromycin were 100%, 100%, 53-56%, 14-16 % and 45-48% respectively. Resistance to vancomycin was not found. As the degree of resistance of MRSA towards antibiotics varies from region to region, in vitro susceptibility testing of every isolate of MRSA in clinical laboratories is inevitable.

  5. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  6. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites.

    Science.gov (United States)

    Shah, Syed Q A; Cabello, Felipe C; L'abée-Lund, Trine M; Tomova, Alexandra; Godfrey, Henry P; Buschmann, Alejandro H; Sørum, Henning

    2014-05-01

    Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents.

  7. Azorean wild rabbits as reservoirs of antimicrobial resistant Escherichia coli.

    Science.gov (United States)

    Marinho, Catarina; Igrejas, Gilberto; Gonçalves, Alexandre; Silva, Nuno; Santos, Tiago; Monteiro, Ricardo; Gonçalves, David; Rodrigues, Tiago; Poeta, Patrícia

    2014-12-01

    Antibiotic resistance in bacteria is an increasing problem that is not only constrained to the clinical setting but also to other environments that can lodge antibiotic resistant bacteria and therefore they may serve as reservoirs of genetic determinants of antibiotic resistance. One hundred and thirty-six faecal samples from European wild rabbits (Oryctolagus cuniculus algirus) were collected on São Jorge Island in Azores Archipelago, and analysed for Escherichia coli isolates. Seventy-seven isolates (56.6%) were recovered and studied for antimicrobial resistance, one isolate per positive sample. Thirteen (16.9%), 19 (24.7%), 25 (32.4%) and 20 (26%) isolates were ascribed to A, B1, B2 and D phylogenetic groups, respectively, by specific primer polymerase chain reaction. Different E. coli isolates were found to be resistant to ampicillin (16.9%), tetracycline (1.3%), streptomycin (42.9%), sulfamethoxazole-trimethoprim (1.3%), amikacin (1.3%), tobramycin (2.6%) and nalidixic acid (1.3%). Additionally, the blaTEM, tetA, strA/strB, aadA, sul1, intI, intI2 and qacEΔ+sul1 genes were found in most resistant isolates. This study showed that E. coli from the intestinal tract of wild rabbits from Azores Archipelago are resistant to widely prescribed antibiotics in medicine and they constitute a reservoir of antimicrobial resistant genes, which may play a significant role in the spread of antimicrobial resistance. Therefore, antibiotic resistant E. coli from Azorean wild rabbits may represent an ecological and public health problem.

  8. Prevalence and Antimicrobial Resistance of Enterococcus Species: A Hospital-Based Study in China

    Directory of Open Access Journals (Sweden)

    Wei Jia

    2014-03-01

    exhibited various resistances to the same antimicrobial agent, while reserpine treatment reduced the resistance of Enterococcus species to ciprofloxacin, gatifloxacin and levofloxacin. The β-lactamase gene TEM, aminoglycoside-modifying-enzyme genes aac(6'-aph(2", aph(3'-III, ant(6-I and ant(2"-I, tetracycline resistance gene tetM, erythromycin resistance gene ermB, vancomycin resistance gene vanA and the enterococcal multidrug resistance efflux emeA gene were detected in 77%, 62%, 26%, 13%, 36%, 31%, 66%, 5% and 55% of the 100 multiple-drug resistant enterococcal isolates. Conclusions: similar to previous findings, E. faecium and E. faecalis are predominant conditionally pathogenic bacteria that cause hospital-acquired infections that can cause urinary and respiratory system infections. Multiple and high-level antimicrobial resistance is highly prevalent in the hospital isolates of Enterococcus species. Reserpine treatment inhibits the active efflux of Enterococcus species to ciprofloxacin, gatifloxacin and levofloxacin in vitro and reduces the MIC of Enterococcus species to these three fluoroquinolones. The presence of the enterococcal multidrug resistance efflux emeA gene is associated with the resistance to antibiotics in Enterococcus species. The monitoring of the prevalence and antimicrobial resistance of Enterococcus species is of great significance to guide the control and prevention of enterococcal infections.

  9. Antimicrobial resistance and clonality in Acinetobacter baumannii

    OpenAIRE

    Nemec, Alexandr

    2009-01-01

    The aim of this thesis was to obtain insight into the epidemiology and molecular basis of multidrug resistance of Acinetobacter baumannii at the population level. To this aim a number of studies were performed on strains mainly from the Czech Republic (CR) which have shown in particular that (i) the vast majority of multidrug resistant (MDR) clinical isolates of A. baumannii from CR belong to clonal lineages termed EU clone I and II; (ii) these two clones have predominated among MDR hospital ...

  10. The use of molecular typing to evaluate the dissemination of antimicrobial resistance among gram-negative rods in Brazilian hospitals

    Directory of Open Access Journals (Sweden)

    Iraci Tosin

    2003-12-01

    Full Text Available Antimicrobial resistance has increased rapidly in Brazil and worldwide during the past few years, giving rise to a growing necessity for antimicrobial resistance surveillance programs. These programs have been instituted in order to monitor bacterial resistance in various regions, and to guide empirical antimicrobial therapy. We evaluated the use of molecular typing in multicenter surveillance programs. We also studied the dissemination modes of selected resistance profiles. Antimicrobial susceptibility to various antimicrobial agents was evaluated by the reference broth microdilution method. Bacterial isolates with selected susceptibility patterns were characterized by pulsed field-gel electrophoresis (PFGE. A total of 119 Gram-negative bacteria were molecularly typed, including 22 imipenem-resistant Pseudomonas aeruginosa, 26 ESBL-producing Escherichia coli, 27 cefoxitin-resistant-ESBL-producing Klebsiella pneumoniae, 33 Enterobacter spp., 8 Citrobacter spp., and 3 S. marcescens isolates resistant to ceftazidime. The isolates were from clinically apparent bacteremia of patients hospitalized in medical centers located in 13 cities of 11 Brazilian states. Our molecular typing results revealed a great genetic diversity among isolates of the same species. However, some major PFGE patterns were found in more than one isolate. All repeated PFGE patterns were detected in only 2 isolates, which were isolated within the same institutions or in different medical centers. We conclude that the ability to characterize organisms phenotypically and genotypically is a powerful epidemiologic tool and it provides unique information that is very important for multicenter surveillance programs.

  11. Resistance of Streptococcus sanguis biofilms to antimicrobial agents

    DEFF Research Database (Denmark)

    Larsen, T; Fiehn, N E

    1996-01-01

    Bacteria living in biofilms as dental plaque on tooth surfaces are generally more resistant to antimicrobial agents than bacteria in batch culture normally used for in vitro susceptibility testing. In order to compare the resistance of free-living and surface-grown oral bacteria, the MIC of Strep......Bacteria living in biofilms as dental plaque on tooth surfaces are generally more resistant to antimicrobial agents than bacteria in batch culture normally used for in vitro susceptibility testing. In order to compare the resistance of free-living and surface-grown oral bacteria, the MIC...... of Streptococcus sanguis 804 and ATCC 10556 to amoxicillin, doxycycline and chlorhexidine was determined by a broth dilution method. Subsequently, S. sanguis biofilms established in an in vitro flow model were perfused with the antimicrobial agents for 48 h at concentrations equal to and up to 500 times the MIC......, and biofilm cell number was determined during this period. The antibiotics at the MIC did not affect the cell number of S. sanguis biofilms compared to the starting point, and only after 48 h at 500 times the MIC were the biofilm bacteria eliminated. At intermediate concentrations biofilm cell number...

  12. Efficacy of triclosan as an antimicrobial hand soap and its potential impact on antimicrobial resistance: a focused review.

    Science.gov (United States)

    Giuliano, Christopher A; Rybak, Michael J

    2015-03-01

    Triclosan is a synthetic biocide found in many household products, including antimicrobial hand soap. Levels of triclosan have been found throughout the environment and in human urine, blood, and even breast milk. Increasing levels of exposure to triclosan have led to concerns over the development of resistance to triclosan and cross-resistance to other antimicrobials. We performed a literature search to assess whether the widespread use of triclosan displays a favorable benefit: risk ratio, defined by evaluation of triclosan's efficacy as an antimicrobial hand soap and its potential effect on the development of antimicrobial resistance. Data from laboratory-based studies regarding the efficacy of triclosan are conflicting, although well-designed studies suggest no significant difference in efficacy over nonantimicrobial soap. In addition, when triclosan was introduced in a community setting, no beneficial effects were observed on the reduction of infections over nonantimicrobial soap. Resistance to triclosan and cross-resistance to antimicrobials have been consistently demonstrated in laboratory settings, although overall resistance rates and cross-resistance rates in the community setting are low. Based on the available evidence, the risk of potential antimicrobial resistance outweighs the benefit of widespread triclosan use in antimicrobial soaps.

  13. Enhancing US-Japan cooperation to combat antimicrobial resistance.

    Science.gov (United States)

    Gerbin, C Sachi

    2014-01-01

    The Global Health Security Agenda (GHSA) is aimed at preventing, detecting, and responding to infectious disease threats. To move toward these goals, the United States has committed to partner with at least 30 countries around the world. One of the objectives of the GHSA includes "[p]reventing the emergence and spread of antimicrobial drug resistant organisms." Antimicrobial resistance (AMR) has become a growing global health security problem, with inappropriate use of antimicrobial medications in humans and animals and a lack of new antimicrobial medications contributing to this problem. While AMR is a growing global concern, working on it regionally can make this multifaceted problem more manageable. The United States and Japan, both world leaders in the life sciences, are close allies that have established cooperative programs in medical research and global health that can be used to work on combating AMR and advance the GHSA. Although the United States and Japan have cooperated on health issues in the past, their cooperation on the growing problem of AMR has been limited. Their existing networks, cooperative programs, and close relationships can and should be used to work on combating this expanding problem.

  14. Antimicrobial resistance and clonality in Acinetobacter baumannii

    NARCIS (Netherlands)

    Nemec, Alexandr

    2009-01-01

    The aim of this thesis was to obtain insight into the epidemiology and molecular basis of multidrug resistance of Acinetobacter baumannii at the population level. To this aim a number of studies were performed on strains mainly from the Czech Republic (CR) which have shown in particular that (i) the

  15. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance.

    Science.gov (United States)

    Cabello, Felipe C; Godfrey, Henry P; Buschmann, Alejandro H; Dölz, Humberto J

    2016-07-01

    Aquaculture uses hundreds of tonnes of antimicrobials annually to prevent and treat bacterial infection. The passage of these antimicrobials into the aquatic environment selects for resistant bacteria and resistance genes and stimulates bacterial mutation, recombination, and horizontal gene transfer. The potential bridging of aquatic and human pathogen resistomes leads to emergence of new antimicrobial-resistant bacteria and global dissemination of them and their antimicrobial resistance genes into animal and human populations. Efforts to prevent antimicrobial overuse in aquaculture must include education of all stakeholders about its detrimental effects on the health of fish, human beings, and the aquatic ecosystem (the notion of One Health), and encouragement of environmentally friendly measures of disease prevention, including vaccines, probiotics, and bacteriophages. Adoption of these measures is a crucial supplement to efforts dealing with antimicrobial resistance by developing new therapeutic agents, if headway is to be made against the increasing problem of antimicrobial resistance in human and veterinary medicine. PMID:27083976

  16. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance.

    Science.gov (United States)

    Cabello, Felipe C; Godfrey, Henry P; Buschmann, Alejandro H; Dölz, Humberto J

    2016-07-01

    Aquaculture uses hundreds of tonnes of antimicrobials annually to prevent and treat bacterial infection. The passage of these antimicrobials into the aquatic environment selects for resistant bacteria and resistance genes and stimulates bacterial mutation, recombination, and horizontal gene transfer. The potential bridging of aquatic and human pathogen resistomes leads to emergence of new antimicrobial-resistant bacteria and global dissemination of them and their antimicrobial resistance genes into animal and human populations. Efforts to prevent antimicrobial overuse in aquaculture must include education of all stakeholders about its detrimental effects on the health of fish, human beings, and the aquatic ecosystem (the notion of One Health), and encouragement of environmentally friendly measures of disease prevention, including vaccines, probiotics, and bacteriophages. Adoption of these measures is a crucial supplement to efforts dealing with antimicrobial resistance by developing new therapeutic agents, if headway is to be made against the increasing problem of antimicrobial resistance in human and veterinary medicine.

  17. First antimicrobial resistance data and genetic characteristics of Neisseria gonorrhoeae isolates from Estonia, 2009–2013

    Directory of Open Access Journals (Sweden)

    D. Golparian

    2014-09-01

    Full Text Available Gonorrhoea is a sexually transmitted infection with major public health implications and Neisseria gonorrhoeae has developed resistance to all antimicrobials introduced for treatment. Enhanced surveillance of antimicrobial resistance in N. gonorrhoeae is crucial globally. This is the first internationally reported antimicrobial resistance data for N. gonorrhoeae from Estonia (44 isolates cultured in 2009–2013. A high prevalence of resistance was observed for azithromycin, ciprofloxacin and tetracycline. One and two isolates with resistance and decreased susceptibility to the last remaining first-line treatment option ceftriaxone, respectively, were identified. It is crucial to implement surveillance of gonococcal antimicrobial resistance (ideally also treatment failures in Estonia.

  18. Antimicrobial drug resistance of Escherichia coli isolated from poultry abattoir workers at risk and broilers on antimicrobials

    Directory of Open Access Journals (Sweden)

    J.W. Oguttu

    2008-05-01

    Full Text Available Antimicrobial usage in food animals increases the prevalence of antimicrobial drug resistance among their enteric bacteria. It has been suggested that this resistance can in turn be transferred to people working with such animals, e.g. abattoir workers. Antimicrobial drug resistance was investigated for Escherichia coli from broilers raised on feed supplemented with antimicrobials, and the people who carry out evisceration, washing and packing of intestines in a high-throughput poultry abattoir in Gauteng, South Africa. Broiler carcasses were sampled from 6 farms, on each of which broilers are produced in a separate 'grow-out cycle'. Per farm, 100 caeca were randomly collected 5 minutes after slaughter and the contents of each were selectively cultured for E. coli. The minimum inhibitory concentration (MIC of each isolate was determined for the following antimicrobials : doxycycline, trimethoprim, sulphamethoxazole, ampicillin, enrofloxacin, fosfomycin, ceftriaxone and nalidixic acid. The same was determined for the faeces of 29 abattoir workers and 28 persons used as controls. The majority of isolates from broilers were resistant, especially to antimicrobials that were used on the farms in the study. Overall median MICs and the number of resistant isolates from abattoir workers (packers plus eviscerators tended to be higher than for the control group. However, no statistically significant differences were observed when the median MICs of antimicrobials used regularly in poultry and percentage resistance were compared, nor could an association between resistance among the enteric E. coli from packers and those from broilers be demonstrated.

  19. Emerging antimicrobial resistance pattern of Helicobacter pylori in central Gujarat

    Directory of Open Access Journals (Sweden)

    H B Pandya

    2014-01-01

    Full Text Available Background: Antimicrobial resistance is a growing problem in H. pylori treatment. The study was intended to evaluate the prevalence of resistance amongst 80 H.pylori isolates cultured from biopsy taken during routine endoscopies in 2008-2011. Materials and Methods: 855 gastro duodenal biopsies were collected and cultured on H.pylori selective medium (containing Brucella agar and Columbia agar (Hi media, with Skirrow′s supplement (antibiotic supplement and 7% human blood cells. H.pylori was isolated from 80 specimens. The antimicrobial susceptibility of H.pylori isolates was carried out by the Kirby Bauer technique against metronidazole (5 µg, clarithromycin (15 µg, ciprofloxacin (5 µg, amoxicillin (10 µg, tetracycline (30 µg, erythromycin (15 µg, levofloxacin (5 µg, and furazolidone (50 µg (Sigma- Aldrich, MO. Results: 83.8% isolates were resistant to metronidazole, 58.8% were resistant to Clarithromycin 72.5% were resistant to Amoxicillin, 50% to Ciprofloxacin and 53.8% to tetracycline. furazolidone, erythromycin and Levofloxacin showed only 13.8% resistance to H.pylori. Multi drug resistance with metronidazole+ clarithromycin+ tetracycline was 85%. For all the drugs Antimicrobial resistance rate was found higher in males compare to females. Metronidazole and amoxicillin resistance was found noteworthy in patients with duodenal ulcer (p = 0.018, gastritis (P = 0.00, and in reflux esophagitis (P = 0.00. clarithromycin and tetracycline resistance was suggestively linked with duodenitis (P = 0.018, while furazolidone, erythromycin and levofloxacin showed excellent sensitivity in patients with duodenitis (P value- 0.018, gastritis (P= 0.00 and reflux esophagitis (P = 0.00. Resistance with metronidazole (P = 0.481, clarithromycin (P= 0.261, amoxicillin (P = 0.276, tetracycline (P = 0.356, ciprofloxacin (P = 0.164 was not correlated well with Age-group and Gender of the patients. Conclusion: A very high percentage of patients were infected

  20. Synthetic RNA silencing in bacteria - antimicrobial discovery and resistance breaking

    Directory of Open Access Journals (Sweden)

    James E.M. Stach

    2011-09-01

    Full Text Available The increasing incidence and prevalence of antibiotic resistance in bacteria threatens the antibiotic miracle. Conventional antimicrobial drug development has failed to replace the armamentarium needed to combat this problem, and novel solutions are urgently required. Here we review both natural and synthetic RNA silencing and its potential to provide new antibacterials through improved target selection, evaluation and screening. Furthermore, we focus on synthetic RNA silencers as a novel class of antibacterials and review their unique properties.

  1. Methodological comparisons for antimicrobial resistance surveillance in feedlot cattle

    OpenAIRE

    Katharine M Benedict; Gow, Sheryl P.; Checkley, Sylvia; Booker, Calvin W.; McAllister, Tim A; Morley, Paul S.

    2013-01-01

    Background The purpose of this study was to objectively compare methodological approaches that might be utilized in designing an antimicrobial resistance (AMR) surveillance program in beef feedlot cattle. Specifically, four separate comparisons were made to investigate their potential impact on estimates for prevalence of AMR. These included investigating potential differences between 2 different susceptibility testing methods (broth microdilution and disc diffusion), between 2 different targ...

  2. 2013年新疆地区血培养分离细菌耐药监测分析%Antimicrobial resistance monitoring of bacteria isolated from blood culture in Xinjiang area during 2013

    Institute of Scientific and Technical Information of China (English)

    张琼; 郭忠帅; 刘涛; 季萍

    2016-01-01

    Objective To understand the distribution characteristics and drug resistance of bacteria isolated from blood cul‐ture in Xinjiang area during 2013 .Methods The identification of isolated bacteria were performed by adopting the France VITEK‐Compact and the ABI series bacterial identification instruments .The antimicrobial susceptibility test was carried out by using the minimum inhibitory concentration (MIC) and Kirby‐Bauer (K‐B) methods .Results A total of 3 962 strains of bacteria were isola‐ted from clinical blood culture ,in which Gram‐positive bacteria and Gram‐negative bacteria accounted for 50 .8% and 49 .2% respec‐tively .The most frequent strains were coagulase‐negative staphylococci (31 .7% ) ,Escherichia coli (23 .2% ) ,Staphylococcus aureus (9 .5% ) ,Klebsiella pneumoniae (8 .7% ) ,Acinetobacter baumannii (3 .6% ) ,Enterobacter cloacae (2 .5% ) ,Enterococcus faecium (2 .5% ) ,Pseudomonas aeruginosa (2 .2% ) ,Enterococcus faecalis (2 .0% ) and Streptococcus pneumoniae (1 .1% ) .The detection rate of extended‐spectrum beta‐lactamase (ESBLs) producing Escherichia coli ,Klebsiella pneumoniae and Proteus mirabilis were 69 .8% ,62 .6% and 66 .7% respectively .The detection rates of methicillin‐resistant Staphylococcus aureus(MRSA) and methicillin‐resistant coagulase‐negative Staphylococcus (MRCNS) was 36 .2% and 86 .3% respectively .The pan‐drug resistant (XDR) strains of Acinetobacter baumannii ,Pseudomonas aeruginosa ,Klebsiella pneumonia were 14 strains(9 .9% ) ,1(1 .2% ) ,2 strains(0 .1% ) ,16 strains(0 .6% ) .No strains resistant to vancomycin or linezolid were found in Staphylococcus and Enterococcus faecalis .Conclusion Among blood culture isolated bacteria in Xinjiang area ,the proportion of Gram‐positive bacteria and Gram‐negative bacteria have little difference .The diversity of bacterial species exist .The resistance to commonly used antibiotics is serious .The distribution situ‐ation of blood culture isolated

  3. Antimicrobial (Drug) Resistance: Methicillin-Resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    ... Marketing Share this: Main Content Area Methicillin-Resistant Staphylococcus aureus (MRSA) During the past four decades, methicillin-resistant Staphylococcus aureus , or MRSA, has evolved from a controllable ...

  4. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002-2004

    NARCIS (Netherlands)

    Hendriksen, R.S.; Mevius, D.J.; Schroeter, A.; Teale, C.; Meunier, D.; Butaye, P.; Franco, A.; Utinane, A.; Amado, A.; Moreno, M.; Greko, C.; Stark, K.D.; Berghold, C.; Myllyniemi, A.L.; Wasyl, D.; Sunde, M.; Aerestrup, F.

    2008-01-01

    Background The project "Antibiotic resistance in bacteria of animal origin ¿ II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003¿2005, with the aim to establish a continuous monitoring of antimicrobial susceptibility among veterinary laboratories in European c

  5. Dissemination of antimicrobial-resistant clones of Salmonella enterica among domestic animals, wild animals, and humans.

    Science.gov (United States)

    Palomo, Gonzalo; Campos, Maria Jorge; Ugarte, María; Porrero, María Concepción; Alonso, Juan Manuel; Borge, Carmen; Vadillo, Santiago; Domínguez, Lucas; Quesada, Alberto; Píriz, Segundo

    2013-02-01

    Non-typhoidal salmonellosis is an important zoonotic disease caused by Salmonella enterica. This work focuses on the identification of Salmonella enterica clonal strains which, presenting a wide distribution potential, express resistance determinants that compromise effectiveness of the antimicrobial therapy. The screening was performed on 506 Salmonella enterica isolates from animals and humans, which were characterized by serovar and phage typing, genome macrorestriction and pulsed-field gel electrophoresis, and detection of phenotypic and genotypic traits for antimicrobial resistance. A Salmonella Enteritidis strain with strong quinolone resistance is spread on three host environments carrying one of the four variants found for the GyrA protein: (1) Asp87Tyr, the major polymorphism found in 39 Salmonella isolates from human origin and six from poultry; (2) Ser83Phe, with four isolates from human origin and one from white stork (Ciconia ciconia); and (3) Asp87Asn or (4) Asp87Gly, with two isolates each from human origins. Several Salmonella Typhimurium strains that presented int1 elements and the classically associated pentaresistance (ACSSuT) phenotype were found distributed between two host environments: domestic animals and humans, domestics and wild animals, or wild fauna plus humans. This study points out the importance of monitoring gut microbiota and its antimicrobial resistance from wildlife, in parallel to livestock animals and humans, especially for animal species that are in close contact with people. PMID:23360170

  6. Dissemination of antimicrobial-resistant clones of Salmonella enterica among domestic animals, wild animals, and humans.

    Science.gov (United States)

    Palomo, Gonzalo; Campos, Maria Jorge; Ugarte, María; Porrero, María Concepción; Alonso, Juan Manuel; Borge, Carmen; Vadillo, Santiago; Domínguez, Lucas; Quesada, Alberto; Píriz, Segundo

    2013-02-01

    Non-typhoidal salmonellosis is an important zoonotic disease caused by Salmonella enterica. This work focuses on the identification of Salmonella enterica clonal strains which, presenting a wide distribution potential, express resistance determinants that compromise effectiveness of the antimicrobial therapy. The screening was performed on 506 Salmonella enterica isolates from animals and humans, which were characterized by serovar and phage typing, genome macrorestriction and pulsed-field gel electrophoresis, and detection of phenotypic and genotypic traits for antimicrobial resistance. A Salmonella Enteritidis strain with strong quinolone resistance is spread on three host environments carrying one of the four variants found for the GyrA protein: (1) Asp87Tyr, the major polymorphism found in 39 Salmonella isolates from human origin and six from poultry; (2) Ser83Phe, with four isolates from human origin and one from white stork (Ciconia ciconia); and (3) Asp87Asn or (4) Asp87Gly, with two isolates each from human origins. Several Salmonella Typhimurium strains that presented int1 elements and the classically associated pentaresistance (ACSSuT) phenotype were found distributed between two host environments: domestic animals and humans, domestics and wild animals, or wild fauna plus humans. This study points out the importance of monitoring gut microbiota and its antimicrobial resistance from wildlife, in parallel to livestock animals and humans, especially for animal species that are in close contact with people.

  7. Resistance of Antimicrobial Peptide Gene Transgenic Rice to Bacterial Blight

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WU Chao; LIU Mei; LIU Xu-ri; Hu Guo-cheng; SI Hua-min; SUN Zong-xiu; LIU Wen-zhen; Fu Ya-ping

    2011-01-01

    Antimierobial peptide is a polypeptide with antimicrobial activity.Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L.subsp.japonica cv.Aichi ashahi by Agrobacterium mediated transformation system.PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in T0 generation,respectively.RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation,and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants.Four Np3 and Np5 transgenic lines in T1 generation were inoculated with ×anthomonas oryzae pv.oryzae strain CR4,and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4.The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2,Zhe 173 and OS-225.It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.

  8. Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa

    OpenAIRE

    Murray, Justine L.; Kwon, Taejoon; Marcotte, Edward M.; Whiteley, Marvin

    2015-01-01

    ABSTRACT Antimicrobial-resistant bacteria pose a serious threat in the clinic. This is particularly true for opportunistic pathogens that possess high intrinsic resistance. Though many studies have focused on understanding the acquisition of bacterial resistance upon exposure to antimicrobials, the mechanisms controlling intrinsic resistance are not well understood. In this study, we subjected the model opportunistic superbug Pseudomonas aeruginosa to 14 antimicrobials under highly controlled...

  9. ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2015-01-01

    Full Text Available The ECDC, the EFSA and the EMA have for the first time jointly explored associations between consumption of antimicrobials in humans and food-producing animals, and antimicrobial resistance in bacteria from humans and food-producing animals, using 2011 and 2012 data currently available from their relevant five EU monitoring networks. Combined data on antimicrobial consumption and corresponding resistance in animals and humans for EU MSs and reporting countries were analysed using logistic regression models for selected combinations of bacteria and antimicrobials. A summary indicator of the proportion of resistant bacteria in the main food-producing animal species was calculated for the analysis, as consumption data in food-producing animals were not available at the species level. Comparison of antimicrobial consumption data in animals and humans in 2012, both expressed in milligrams per kilogram of estimated biomass, revealed that overall antimicrobial consumption was higher in animals than in humans, although contrasting situations were observed between countries. The consumption of several antimicrobials extensively used in animal husbandry was higher in animals than in humans, while consumption of antimicrobials critically important for human medicine (such as fluoroquinolones and 3rd- and 4th-generation cephalosporins was higher in humans. In both humans and animals, positive associations between consumption of antimicrobials and the corresponding resistance in bacteria were observed for most of the combinations investigated. In some cases, a positive association was also found between antimicrobial consumption in animals and resistance in bacteria from humans. While highlighting findings of concern, these results should be interpreted with caution owing to current data limitations and the complexity of the AMR phenomenon, which is influenced by several factors besides antimicrobial consumption. Recommendations to address current data

  10. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    Science.gov (United States)

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance.

  11. Isolates of Staphylococcus aureus and saprophyticus resistant to antimicrobials isolated from the Lebanese aquatic environment.

    Science.gov (United States)

    Harakeh, Steve; Yassine, Hadi; Hajjar, Shady; El-Fadel, Mutasem

    2006-08-01

    The indiscriminate use of antimicrobials especially in developing countries has evoked serious bacterial resistance and led to the emergence of new and highly resistant strains of bacteria to commonly used antimicrobials. In Lebanon, pollution levels and bacterial infections are increasing at a high rate as a result of inadequate control measures to limit untreated effluent discharges into the sea or freshwater resources. The aim of this study was to isolate and molecularly characterize various Staphylococcus strains isolated from sea water, fresh water, sediments, and crab samples collected from representative communities along the coast of Lebanon. The results on the antimicrobial resistance indicated that the level of resistance of Staphylococcus aureus varied with various antimicrobials tested. The resistance patterns ranged between 45% in freshwater isolates and 54.8% in seawater ones. Fifty one percent of the tested isolates have shown resistance to at least one of the five tested antimicrobials; with seawater isolates exhibiting the highest rates of antimicrobial resistance.

  12. Human Health Hazards from Antimicrobial-Resistant Escherichia coli of Animal Origin

    DEFF Research Database (Denmark)

    Hammerum, A. M.; Heuer, Ole Eske

    2009-01-01

    Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may...... cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use...... of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth...

  13. How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem?

    Science.gov (United States)

    Siber, George R.

    2016-01-01

    ABSTRACT There is a growing appreciation for the role of vaccines in confronting the problem of antimicrobial resistance (AMR). Vaccines can reduce the prevalence of resistance by reducing the need for antimicrobial use and can reduce its impact by reducing the total number of cases. By reducing the number of pathogens that may be responsible for a particular clinical syndrome, vaccines can permit the use of narrower-spectrum antibiotics for empirical therapy. These effects may be amplified by herd immunity, extending protection to unvaccinated persons in the population. Because much selection for resistance is due to selection on bystander members of the normal flora, vaccination can reduce pressure for resistance even in pathogens not included in the vaccine. Some vaccines have had disproportionate effects on drug-resistant lineages within the target species, a benefit that could be more deliberately exploited in vaccine design. We describe the effects of current vaccines in controlling AMR, survey some vaccines in development with the potential to do so further, and discuss strategies to amplify these benefits. We conclude with a discussion of research and policy priorities to more fully enlist vaccines in the battle against AMR. PMID:27273824

  14. How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem?

    Directory of Open Access Journals (Sweden)

    Marc Lipsitch

    2016-06-01

    Full Text Available There is a growing appreciation for the role of vaccines in confronting the problem of antimicrobial resistance (AMR. Vaccines can reduce the prevalence of resistance by reducing the need for antimicrobial use and can reduce its impact by reducing the total number of cases. By reducing the number of pathogens that may be responsible for a particular clinical syndrome, vaccines can permit the use of narrower-spectrum antibiotics for empirical therapy. These effects may be amplified by herd immunity, extending protection to unvaccinated persons in the population. Because much selection for resistance is due to selection on bystander members of the normal flora, vaccination can reduce pressure for resistance even in pathogens not included in the vaccine. Some vaccines have had disproportionate effects on drug-resistant lineages within the target species, a benefit that could be more deliberately exploited in vaccine design. We describe the effects of current vaccines in controlling AMR, survey some vaccines in development with the potential to do so further, and discuss strategies to amplify these benefits. We conclude with a discussion of research and policy priorities to more fully enlist vaccines in the battle against AMR.

  15. Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides.

    Science.gov (United States)

    Kooi, Cora; Sokol, Pamela A

    2009-09-01

    Burkholderia cenocepacia secretes two zinc-dependent metalloproteases, designated ZmpA and ZmpB. Previously, ZmpA and ZmpB have been shown to cleave several proteins important in host defence. In this study, the ability of ZmpA and ZmpB to digest and inactivate antimicrobial peptides involved in innate immunity was examined. ZmpB but not ZmpA cleaved beta-defensin-1. ZmpA but not ZmpB cleaved the cathelicidin LL-37. Both enzymes cleaved elafin and secretory leukocyte inhibitor, which are antimicrobial peptides as well as neutrophil elastase inhibitors. Both ZmpA and ZmpB cleaved protamine, a fish antimicrobial peptide, and a zmpA zmpB mutant was more sensitive to protamine killing than the parental strain. ZmpA or ZmpB cleavage of elafin inactivated its anti-protease activity. The effect of ZmpA and ZmpB on the neutrophil proteases elastase and cathepsin G was also examined but neither enzyme was active against these host proteases. These studies suggest that ZmpA and ZmpB may influence the resistance of B. cenocepacia to host antimicrobial peptides as well as alter the host protease/anti-protease balance in chronic respiratory infections.

  16. Antimicrobial Resistance and Antimicrobial Use Associated with Laboratory-Confirmed Cases of Campylobacter Infection in Two Health Units in Ontario

    Directory of Open Access Journals (Sweden)

    Anne E Deckert

    2013-01-01

    Full Text Available AIM: A population-based study was conducted over a two-year period in the Perth District (PD and Wellington-Dufferin-Guelph (WDG health units in Ontario to document antimicrobial resistance and antimicrobial use associated with clinical cases of laboratory-confirmed campylobacteriosis.

  17. [Antimicrobial resistance forever? Judicious and appropriate use of antibiotics].

    Science.gov (United States)

    Cagliano, Stefano

    2015-06-01

    This article takes its cue from the original work of sir Alexander Fleming on penicillin, published in the first issue of Recenti Progressi in Medicina in 1946 and reproduced here on the occasion of the approaching 70-year anniversary of the journal. In 1928, at the time when penicillin was discovered, it could not be imagined that bacterial resistance to antibiotics would develop so rapidly: the introduction of every new class of antibiotics has been shortly followed by the emergence of new strains of bacteria resistant to that class. Bacterial resistance to antibiotic treatment is a huge concern. In this respect, an action plan against antimicrobial resistance has been devised in the United States that is targeted for a 50% reduction over the next five years.

  18. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004

    Directory of Open Access Journals (Sweden)

    Stärk Katharina

    2008-07-01

    Full Text Available Abstract Background The project "Antibiotic resistance in bacteria of animal origin – II" (ARBAO-II was funded by the European Union (FAIR5-QLK2-2002-01146 for the period 2003–2005, with the aim to establish a continuous monitoring of antimicrobial susceptibility among veterinary laboratories in European countries based on validated and harmonised methodologies. Available summary data of the susceptibility testing of the bacterial pathogens from the different laboratories were collected. Method Antimicrobial susceptibility data for several bovine pathogens were obtained over a three year period (2002–2004. Each year the participating laboratories were requested to fill in excel-file templates with national summary data on the occurrence of antimicrobial resistance from different bacterial species. A proficiency test (EQAS – external quality assurance system for antimicrobial susceptibility testing was conducted each year to test the accuracy of antimicrobial susceptibility testing in the participating laboratories. The data from this testing demonstrated that for the species included in the EQAS the results are comparable between countries. Results Data from 25,241 isolates were collected from 13 European countries. For Staphylococcus aureus from bovine mastitis major differences were apparent in the occurrence of resistance between countries and between the different antimicrobial agents tested. The highest frequency of resistance was observed for penicillin. For Mannheimia haemolytica resistance to ampicillin, tetracycline and trimethoprim/sulphonamide were observed in France, the Netherlands and Portugal. All isolates of Pasteurella multocida isolated in Finland and most of those from Denmark, England (and Wales, Italy and Sweden were susceptible to the majority of the antimicrobials. Streptococcus dysgalactiae and Streptococcus uberis isolates from Sweden were fully susceptible. For the other countries some resistance was observed to

  19. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas; Häussler, Susanne

    2016-08-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution. PMID:27216077

  20. Establishment of antimicrobial residue monitoring programme for food of animal origin in Sri Lanka

    International Nuclear Information System (INIS)

    Full text: Antibiotic drugs are often used both therapeutically and prophylactically in animal production, and are necessary for many production systems. However, the presence of unacceptable levels of antimicrobial residues in animal products may lead to direct effects on the consumer, such as allergies and toxicities such as dose-independent idiosyncratic reactions that can be triggered due to chloramphenicol residues. Indirect adverse reactions include the promotion of antimicrobial resistance. Further, the parent drugs and their metabolites of the nitrofuran group of antimicrobials are known to be carcinogens. In order to promote awareness on food safety and quality assurance, it is necessary to monitor antimicrobial residues in animal products. This can be done only by having well equipped laboratories and validated techniques. Sri Lanka, as an export country for cultured shrimp, needs to comply with EU regulations. The establishment of the residue monitoring programme in Sri Lanka was commenced in 2002 at the Faculty of Veterinary Medicine and Animal Science, University of Peradeniya. Three techniques have been established in Sri Lanka for monitoring antimicrobial residues in food of animal origin. The modified EU Six Plate Test (SPT) is a bioassay technique, which screens six groups of antimicrobials, namely; penicillin, aminoglycosides, fluoroquinolones, macrolides (erythromycin), tetracycline and sulphonamides. Food commodities are screened for chloramphenicol residues using a commercially available ELISA kit (Euro Diagnostica, Netherlands), which is a microtiter plate, based competitive enzyme immunoassay. A HPLC-DAD technique has been established to detect nitrofuran metobolites in shrimp including the primary metobolites of furazolidone, furaltadone, nitrofurantoin and nitrofurazon. Since July 2002 a total of 1712 samples including 900 chicken samples and 812 shrimp samples were screened for antimicrobial residues using the SPT. Since November 2002

  1. Anatomical Distribution and Genetic Relatedness of Antimicrobial Resistant E. coli from Healthy Companion Animals

    Science.gov (United States)

    Aims: Escherichia coli have been targeted for studying antimicrobial resistance in companion animals due to opportunistic infections and as a surrogate for resistance patterns in zoonotic organisms. The aim of our study examined antimicrobial resistance in E. coli isolated from various anatomical ...

  2. Antimicrobial growth promoter ban and resistance to macrolides and vancomycin in enterococci from pigs

    DEFF Research Database (Denmark)

    Boerlin, P.; Wissing, A.; Aarestrup, Frank Møller;

    2001-01-01

    Ninety-six enterococcus isolates from fecal samples of pigs receiving tylosin as an antimicrobial growth promoter and 59 isolates obtained in the same farms 5 to 6 months after the ban of antimicrobial growth promoters in Switzerland were tested for susceptibility to nine antimicrobial agents. A ....... A clear decrease in resistance to macrolides, lincosamides, and tetracycline was visible after the ban. Vancomycin-resistant Enterococcus faecium belonged to the same clonal lineage as vancomycin-resistant isolates previously isolated from Danish pigs....

  3. The bigger picture: the history of antibiotics and antimicrobial resistance displayed by scientometric data.

    Science.gov (United States)

    Brandt, Christian; Makarewicz, Oliwia; Fischer, Thomas; Stein, Claudia; Pfeifer, Yvonne; Werner, Guido; Pletz, Mathias W

    2014-11-01

    Monitoring the rapid global spread of antimicrobial resistance requires an over-regional and fast surveillance tool. Data from major surveillance studies based on aggregated results of selected sentinel laboratories or retrospective strain collections are not available for the whole scientific community and are limited by time and region. Thus, we tested an alternative approach to monitor resistance trends by automated semantic and scientometric analysis of all (>100000) related PubMed entries. A semantic search was done using 'Gene Ontology' and MeSH vocabulary and additional search terms for further data refinement. Data extraction was performed using the semantic search engine 'GoPubMed'. The timely relationship between introduction of novel β-lactam antibiotic classes into the market and emergence of respective resistance was investigated using nearly 22300 publications over the last 70 years. Further analysis was done with around 54000 publications related to 'infectious diseases' and an additional 50000 publications related to 'antimicrobial resistance' to estimate current trends in publication interest regarding resistance development since 1940. Scientometric results were compared with data from the major surveillance network EARS-Net. Furthermore, the relationship between micro-organism, year and antibiotic market introduction was investigated for eight key antibiotics using nearly 37500 publications. Owing to influencing factors such as availability of alternative antibiotics, scientometric analysis correlated only partly with resistance development. However, it provides a fast, reliable and global overview of the clinical and public health importance of a specific resistance including the period of the 1940s-1980s, when resistance surveillance studies were not yet established.

  4. Evidence-based policy for controlling antimicrobial resistance in the food chain in Denmark

    DEFF Research Database (Denmark)

    Wielinga, Pieter; Jensen, Vibeke Frøkjær; Aarestrup, Frank Møller;

    2014-01-01

    Emergence of antimicrobial resistance (AMR) in the animal reservoir forms a risk for human health. The use of antimicrobials in animals is the major cause of development of AMR in animals. In the 1990s, the use of antimicrobials in animals, particularly as a growth promoter, led to alarming level...

  5. Surveillance of antimicrobial resistance in Escherichia coli strains isolated from pigs at Spanish slaughterhouses.

    Science.gov (United States)

    Teshager, T; Herrero, I A; Porrero, M C; Garde, J; Moreno, M A; Domínguez, L

    2000-07-01

    Antimicrobial resistance can make the efficient treatment of bacterial infections in humans and animals more difficult. Antimicrobial use in food animals may be one of the factors contributing to resistance. The Spanish surveillance network VAV has established a baseline of antimicrobial resistance in Escherichia coli strains from healthy pigs. Minimum inhibitory concentration and patterns of resistance to antimicrobials used in animals and humans were determined for 205 faecal strains isolated in a sampling frame of four slaughterhouses in Spain from 220 pigs in 1998. Higher levels of resistance were seen against antimicrobial agents authorised for use in food animals especially tetracycline, sulphonamides, trimethoprim and amoxycillin. All isolates were susceptible to antimicrobials employed mainly in humans such as ceftazidime, cefotaxime, imipenem, aztreonam and amikacin.

  6. Occurrence and antimicrobial resistance of Staphylococcus aureus in bulk tank milk and milk filters

    Directory of Open Access Journals (Sweden)

    Kateřina Bogdanovičová

    2014-02-01

    Full Text Available This work is focused on the monitoring of Staphylococcus aureus prevalence in raw milk and milk filters, its antibiotic resistance and detection of methicillin resistant Staphylococcus aureus (MRSA. Samples of raw cow´s milk and milk filters were collected in the period from 2012 till 2014, from 50 dairy farms in the Czech Republic. The total of 261 samples (164 samples of raw milk and 97 milk filters were cultivated on Baird-Parker agar. Both the typical and atypical colonies were examined by plasmacoagulase test and PCR method was used for detection of species specific fragment SA442 and mecA gene. Standard disk diffusion method was used to determinate resistance to antimicrobial agents. The bacterium Staphylococcus aureus was detected on 25 farms (50%. The antimicrobial resistance showed differences between the farms. Total of 58 samples were positive for Staphylococcus aureus, of which were 37 (14.2% isolated from raw milk samples and 21 (8.1% from milk filters. From these samples we isolated 62 Staphylococcus aureus strains, 41 isolates bacteria S. aureus from raw milk (66.1% and 21 isolates S. aureus from milk filters (33.9%. The presence of antibiotic resistance in Staphylococcus aureus isolates was low, most of them were resistant to amoxicilin. According to the results obtained by the PCR method for the methicillin - resistant S. aureus (MRSA, the mecA gene was present in 6 strains (9.7%, 4 isolates obtained from milk samples (6.5% and 2 isolates from milk filters (3.2%.  These isolates can be considered as a possible source of resistance genes, which can be spread through the food chain. Nowadays, a globally unfavourable increasing trend of prevalence of methicillin resistant staphylococci strains especially Staphylococcus aureus is being observed worldwide. The improper hygiene and poor farm management practices contributed to the presence of S. aureus in the milk. This may have contributed to the high level of S. aureus isolated

  7. Risk assessment of antimicrobial usage in Danish pig production on the human exposure to antimicrobial resistant bacteria from pork

    DEFF Research Database (Denmark)

    Struve, Tina

    During the last decades, bacteria with resistance to all commonly used antimicrobial agents have been detected, thereby posing a major threat to public health. In worst case, infections with resistant bacteria can lead to treatment failure and death of humans. The evolution of bacteria resistant...... to antimicrobials are influenced by the use of antimicrobial agents, and the prudence of antimicrobial use have been emphasized since the Swann report in 1969 recommended that antibiotics used in human medicine should not be used as growth promoters in food-producing animals. In 2007, the World Health Organisation...... was investigated using selective agar plates supplemented with ceftriaxone. The occurrence of ESC producing E. coli was used as the outcome in the data analysis, where the effect of using cephalosporins, extended spectrum penicillins and tetracyclines was estimated using regression analysis. In Objective 2...

  8. OIE抗菌药耐药性国际标准%OIE International Standards on Antimicrobial Resistance

    Institute of Scientific and Technical Information of China (English)

    张苗苗; 戴梦红; 黄玲利; 王玉莲; 袁宗辉

    2012-01-01

    兽用抗菌药耐药性已经成为一个全球普遍关注的公共健康问题,各国际组织都积极采取相应的措施控制耐药性的产生和蔓延。介绍了国际组织世界动物卫生组织OIE制定的五个国际标准,包括协调抗菌药耐药性监督和检测程序指南、畜牧业抗菌药消耗量监测指南、兽用抗菌药慎用指南、抗菌药敏感性检测的实验室方法指南、动物源抗菌药耐药性对公共健康潜在影响的风险分析方法指南,以期为我国政策制定者和决策者参照国际标准制定出符合我国国情的耐药性相关指南。%Veterinary antimicrobial resistance had become a global public health issue. International organizations had actively taken appropriate measures to control the emergence and spread of antimicrobial resistance. This article introduced OIE established international standards about antimicrobial resistance including "guidelines for the harmonization of national antimicrobial resistance surveillance and monitoring programmes", "guidelines for the monitoring of the quantities of antimicrobials used in animal husbandry", "guidelines for the responsible and prudent use of antimicrobial agents in veterinary medicine", "laboratory methodologies for bacterial antimicrobial susceptibility testing", " risk assessment of public health for antimicrobial resistance arising from the use of antimicrobial in animals". The aim of the article was to institute our country resistance guidelines in accordance with Chinese conditions by constitutor and decision maker according to international standards policy.

  9. Synergistic Antimicrobial Activity of Camellia sinensis and Juglans regia against Multidrug-Resistant Bacteria

    OpenAIRE

    Amber Farooqui; Adnan Khan; Ilaria Borghetto; Kazmi, Shahana U.; Salvatore Rubino; Bianca Paglietti

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, ...

  10. Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance.

    Science.gov (United States)

    Roberts, Adam P; Mullany, Peter

    2010-12-01

    Oral microbes are responsible for dental caries and periodontal diseases and have also been implicated in a range of other diseases beyond the oral cavity. These bacteria live primarily as complex, polymicrobial biofilms commonly called dental plaque. Cells growing within a biofilm often exhibit altered phenotypes, such as increased antibiotic resistance. The stable structural properties and close proximity of the bacterial cells within the biofilm appears to be an excellent environment for horizontal gene transfer, which can lead to the spread of antibiotic resistance genes amongst the biofilm inhabitants. This article will present an overview of the different types and amount of resistance to antibiotics that have been found in the human oral microbiota and will discuss the oral inhabitants' role as a reservoir of antimicrobial resistance genes. In addition, data on the genetic support for these resistance genes will be detailed and the evidence for horizontal gene transfer reviewed, demonstrating that the bacteria inhabiting the oral cavity are a reservoir of transferable antibiotic resistance.

  11. Antimicrobial activity of medicinal plants used by aborigines of Kalahandi, Orissa, India against multidrug resistant bacteria

    Institute of Scientific and Technical Information of China (English)

    Debasmita Dubey; Mahesh C Sahu; Shakti Rath; Bimoch Projna Paty; Nagen K Debata; Rabindra N Padhy

    2012-01-01

    Objective: To evaluate the antimicrobial potency of 20 non-edible and/or poisonous plants used by an aborigine tribe (Kandha) of Kalahandi district for infectious diseases. Methods: Over a period of 5 months from two hospitals, 10 pathogenic bacteria (Staphylococcus aureus (S. aureus), Acinetobacter sp., Citrobacter freundii (C. freundii), Chromobacterium violeceum (C. violeceum),Escherichia coli (E. coli), Klebsiella sp., Proteus sp., Pseudomonas aeruginosa (P. aeruginosa) Salmonella typhi (S. typhi) and Vibrio cholerae (V. cholerae) were isolated to pure axenic cultures from clinical samples. Water and ethanolic extracts of leaves and barks were concentrated before monitoring antimicrobial activity by agar-well diffusion method. Results: All bacterial strains isolated were multidrug resistant. Ethanolic extract of most plants had effective antimicrobial activity against all the isolated multidrug resistant bacteria. Plants, Anthocephalus cadamba (A. cadamba) and Pterocarpus santalinus (P. santalinus) had antibacterial effect on all used bacteria. Water extract of several plants too had effective antimicrobial activity for all bacteria used. Effective in vitro control of MDR strains of Acinetobacter sp., C. freundii, Proteus sp. and P. aeruginosa, the most potential urinary tract infection causing organisms by plant extracts of all major plant used herein is recorded. MDR C. violaceum isolated from skin lesions was found to be resistant to imipenem, piperacillin-tazobactam and amoxyclav and was found sensitive to 13 plant extracts. Conclusion: Effective in vitro control of MDR strains of Acinetobacter sp.,C. freundii, Proteus sp. and P. aeruginosa; enteropathogenic bacteria, E. coli, S. typhi, Klebsiella sp. and V. cholerae were found to be well controlled by all plant extracts used.

  12. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter

    DEFF Research Database (Denmark)

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei;

    2016-01-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bac...... of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.......The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram......-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across...

  13. Antimicrobial resistance and prevalence of resistance genes in intestinal Bacteroidales strains

    Directory of Open Access Journals (Sweden)

    Viviane Nakano

    2011-01-01

    Full Text Available OBJECTIVE: This study examined the antimicrobial resistance profile and the prevalence of resistance genes in Bacteroides spp. and Parabacteroides distasonis strains isolated from children's intestinal microbiota. METHODS: The susceptibility of these bacteria to 10 antimicrobials was determined using an agar dilution method. β-lactamase activity was assessed by hydrolysis of the chromogenic cephalosporin of 114 Bacteriodales strains isolated from the fecal samples of 39 children, and the presence of resistance genes was tested using a PCR assay. RESULTS: All strains were susceptible to imipenem and metronidazole. The following resistance rates were observed: amoxicillin (93%, amoxicillin/clavulanic acid (47.3%, ampicillin (96.4%, cephalexin (99%, cefoxitin (23%, penicillin (99%, clindamycin (34.2% and tetracycline (53.5%. P-lactamase production was verified in 92% of the evaluated strains. The presence of the cfiA, cepA, ermF, tetQ and nim genes was observed in 62.3%, 76.3%, 27%, 79.8% and 7.8% of the strains, respectively. CONCLUSIONS: Our results indicate an increase in the resistance to several antibiotics in intestinal Bacteroides spp. and Parabacteroides distasonis and demonstrate that these microorganisms harbor antimicrobial resistance genes that may be transferred to other susceptible intestinal strains.

  14. Antimicrobial-resistant Listeria species from retail meat in metro Detroit.

    Science.gov (United States)

    da Rocha, Liziane S; Gunathilaka, Gayathri U; Zhang, Yifan

    2012-12-01

    A total of 138 Listeria isolates from retail meat, including 58 Listeria welshimeri, 44 Listeria monocytogenes, and 36 Listeria innocua isolates, were characterized by antimicrobial susceptibility tests against nine antimicrobials. In addition, the 44 L. monocytogenes isolates were analyzed by serotype identification using PCR and genotyping using pulsed-field gel electrophoresis. Resistance to one or two antimicrobials was observed in 32 Listeria isolates (23.2%). No multidrug resistance was identified. Tetracycline resistance was the most common resistance phenotype and was identified in 22 Listeria isolates. A low prevalence of resistance to ciprofloxacin, erythromycin, gentamicin, and vancomycin was also detected. L. innocua isolates demonstrated the highest overall prevalence of antimicrobial resistance, 36.1%, followed by 34.1% in L. monocytogenes isolates and 6.9% in L. welshimeri isolates. Serotypes 1/2a, 1/2b, and 4b were identified in 19, 23, and 1 L. monocytogenes isolate, respectively. One isolate was untypeable. Fifteen L. monocytogenes isolates were antimicrobial resistant (12 were serotype 1/2b, 2 were 1/2a, and 1 was untypeable). A diverse population of L. monocytogenes isolates was identified, as evidenced by multiple pulsed-field gel electrophoresis patterns in the 44 isolates. The data indicate that Listeria contamination is common in retail meat. Although antimicrobial resistance still occurs at a low prevalence, multiple Listeria species can serve as reservoirs of antimicrobial resistance. Various antimicrobial susceptibilities may exist in L. monocytogenes isolates of different serotypes.

  15. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture

    DEFF Research Database (Denmark)

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik;

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance...... antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp...... missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed...

  16. Antimicrobial Resistance of Staphylococcal Strains Isolated from Various Pathological Products

    Directory of Open Access Journals (Sweden)

    Laura-Mihaela SIMON

    2010-12-01

    Full Text Available Background: The optimal choice of antimicrobial therapy is an important problem in hospital environment in which the selection of resistant and virulent strains easy occurs. S. aureus and especially MRSA(methicillin-resistant S. aureus creates difficulties in both treatment and prevention of nosocomial infections. Aim: The purpose of this study is to determine the sensitivity and the resistance to chemotherapy of staphylococci strains isolated from various pathological products. Material and Method: We identified Staphylococccus species after morphological appearance, culture properties, the production of coagulase, hemolisines and the enzyme activity. The susceptibility tests were performed on Mueller-Hinton medium according to CLSI (Clinical and Laboratory Standards Institute. Results: The strains were: MSSA (methicillin-susceptible S. aureus (74%, MRSA (8%, MLS B (macrolides, lincosamides and type B streptogramines resistance (12% and MRSA and MLS B (6%. MRSA strains were more frequently isolated from sputum. MRSA associated with the MLS B strains were more frequently isolated from pus. MLS B strains were more frequently isolated from sputum and throat secretions. All S. aureus strains were susceptible to vancomycin and teicoplanin. Conclusions: All staphylococcal infections require resistance testing before treatment. MLS B shows a high prevalence among strains of S. aureus. The association between MLS B and MRSA remains a major problem in Romania.

  17. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2005-01-01

    countries, which leaves room for considerable reductions in some countries. The emergence of resistant bacteria and resistance genes due to the use of antimicrobial agents are well documented. In Denmark it has been possible to reduce the usage of antimicrobial agents for food animals significantly...

  18. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes

    Science.gov (United States)

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J. M.; Paulsen, Peter; Szostak, Michael P.; Humphrey, Tom

    2015-01-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  19. Microarray Evaluation of Antimicrobial Resistance and Virulence of Escherichia coli Isolates from Portuguese Poultry

    OpenAIRE

    Nuno Mendonça; Rui Figueiredo; Catarina Mendes; Card, Roderick M.; Anjum, Muna F.; Gabriela Jorge da Silva

    2016-01-01

    The presence of antimicrobial resistance and virulence factors of 174 Escherichia coli strains isolated from healthy Portuguese Gallus gallus was evaluated. Resistance profiles were determined against 33 antimicrobials by microbroth dilution. Resistance was prevalent for tetracycline (70%) and ampicillin (63%). Extended-spectrum beta-lactamase (ESBL) phenotype was observed in 18% of the isolates. Multidrug resistance was found in 56% of isolates. A subset of 74 isolates were screened by DNA m...

  20. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes.

    Science.gov (United States)

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J M; Paulsen, Peter; Szostak, Michael P; Humphrey, Tom; Hilbert, Friederike

    2015-07-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health.

  1. Resistance to antimicrobial peptides in Gram-negative bacteria.

    Science.gov (United States)

    Gruenheid, Samantha; Le Moual, Hervé

    2012-05-01

    Antimicrobial peptides (AMPs) are present in virtually all organisms and are an ancient and critical component of innate immunity. In mammals, AMPs are present in phagocytic cells, on body surfaces such as skin and mucosa, and in secretions and body fluids such as sweat, saliva, urine, and breast milk, consistent with their role as part of the first line of defense against a wide range of pathogenic microorganisms including bacteria, viruses, and fungi. AMPs are microbicidal and have also been shown to act as immunomodulators with chemoattractant and signaling activities. During the co-evolution of hosts and bacterial pathogens, bacteria have developed the ability to sense and initiate an adaptive response to AMPs to resist their bactericidal activity. Here, we review the various mechanisms used by Gram-negative bacteria to sense and resist AMP-mediated killing. These mechanisms play an important role in bacterial resistance to host-derived AMPs that are encountered during the course of infection. Bacterial resistance to AMPs should also be taken into consideration in the development and use of AMPs as anti-infective agents, for which there is currently a great deal of academic and commercial interest.

  2. Antimicrobial resistance profiles and genetic characterisation of macrolide resistant isolates of Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Priscila AM Nakamura

    2011-03-01

    Full Text Available In this study, 100 clinical isolates of Streptococcus agalactiae recovered from genitourinary tract specimens of non-pregnant individuals living in Rio de Janeiro were submitted for antimicrobial susceptibility testing, detection of macrolide resistance genes and evaluation of the genetic diversity of erythromycin-resistant isolates. By agar diffusion method, all isolates were susceptible to ceftazidime, penicillin and vancomycin. Isolates were resistant to levofloxacin (1%, clindamycin (5%, erythromycin (11% and tetracycline (83% and were intermediated to erythromycin (4% and tetracycline (6%. Erythromycin-resistant and intermediated isolates presented the following phenotypes: M (n = 3, constitutive macrolide-lincosamide-streptogramin B (MLS B, n = 5 and inductive MLS B (n = 7. Determinants of macrolide resistance genes, erm and mef, were detected in isolates presenting MLS B and M phenotypes, respectively. Randomly amplified polymorphic DNA profiles of erythromycin-resistant isolates were clustered into two major groups of similarity.

  3. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Hahm

    2011-09-01

    Full Text Available Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.

  4. Eight-year Surveillance of Antimicrobial Resistance among Enterococcus Spp. Isolated in the First Bethune Hospital

    Science.gov (United States)

    Xu, Jiancheng; Wang, Liqiang; Wang, Kai; Zhou, Qi

    This study was to investigate the antimicrobial resistance of Enterococcus spp. isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 1446 strains of Enterococcus spp. were collected from urine 640 (44.3%), sputum 315 (21.8%), secretions and pus 265 (18.3%) during the past 8 years. The rates of high-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium were 57.4%∼75.9% and 69.0%∼93.8% during the past 8 years, respectively. No Enterococcus spp. was resistant to vancomycin. The antimicrobial resistance of Enterococcus spp. had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  5. Ministry of Health National Antimicrobial Resistant Investigation Net 2010 annual report: Bacterial resistances monitor of women urine samples%卫生部全国细菌耐药监测网2010年女性尿标本细菌耐药监测

    Institute of Scientific and Technical Information of China (English)

    齐慧敏; 吕媛; 钱霞

    2011-01-01

    Objective To summarize bacterial resistance in the women clinical urine culture samples collected in 2010 from 129 hospitals of Ministry of Health Antibiotic Resistance Monitoring Network ( Mohna-rin ). Methods Conventional culture, automatic clinical microbiological system, disk diffusion and E - test methods were used for antibacterial activity of antimicrobial agents and resistances and sensitivity were calculated by using WHONET 5. 6 software. Results A total of 21904 strains of bacteria were isolated,of which 51. 47% of E. Coli,Enterococcus faecalis ( 7. 66% ) , Enterococcus faecium ( 7. 59% ) , Klebsiella pneumonia (6. 82% ) and Proteus mirabilis (3. 55% ) , respectively. The antimicrobial agents with lower antibiotic resistance rates of E. Coli were carbapen-ems ( ^ 1.5%), fosfomycin ( 2. 4% ) , piperacillin / tazobactam (3. 5% ) , cefoperazone/sulbactam (4. 7% ) , amikacin (7. 4% ) , nitro-furantoin (6. 9% ) , cefoxitin ( 12. 6% ) , and amoxicillin/clavulanic acid (21. 1% ), respectively. That of Enterococcus spp. Were linezolid (0), glycopeptides (0.4% -5.1%), fosfomycin (6.7% -17.2%) and nitrofurantoin (6. 6% - 47. 9% ), respectively. Conclusion E. Coli remains the urinary tract infection major pathogen but the proportion of Enterococci was significantly increased.%目的 总结我国2010年临床女性患者尿标本来源细菌耐药状况.方法用常规方法,培养分离卫生部全国细菌耐药性监测网(Mohnarin)所属129家医院2010年度女性尿标本中的细菌,用自动化临床微生物测定方法、纸片法或E- test法,测定细菌药物敏感性,用WHONET 5.6软件进行分析.结果 共分离细菌21904株.其中排在前5位的依次为大肠埃希菌(51.47%)、粪肠球菌(7.66%)、屎肠球菌(7.59%)、肺炎克雷伯杆菌(6.82%)及奇异变形杆菌(3.55%).对大肠埃希菌耐药率较低的抗生素,依次为碳青霉烯类(≤1.5%)、磷霉素(2.4%)、哌拉西林/他唑巴坦(3.5

  6. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections.

    Science.gov (United States)

    Ng, Victor W L; Chan, Julian M W; Sardon, Haritz; Ono, Robert J; García, Jeannette M; Yang, Yi Yan; Hedrick, James L

    2014-11-30

    The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation. Much effort has been made to develop macromolecular antimicrobial agents that are less susceptible to resistance as they function by microbial membrane disruption. Antimicrobial hydrogels constitute an important class of macromolecular antimicrobial agents, which have been shown to be effective in preventing and treating multidrug-resistant infections. Advances in synthetic chemistry have made it possible to tailor molecular structure and functionality to impart broad-spectrum antimicrobial activity as well as predictable mechanical and rheological properties. This has significantly broadened the scope of potential applications that range from medical device and implant coating, sterilization, wound dressing, to antimicrobial creams for the prevention and treatment of multidrug-resistant infections. In this review, advances in both chemically and physically cross-linked natural and synthetic hydrogels possessing intrinsic antimicrobial properties or loaded with antibiotics, antimicrobial polymers/peptides and metal nanoparticles are highlighted. Relationships between physicochemical properties and antimicrobial activity/selectivity, and possible antimicrobial mechanisms of the hydrogels are discussed. Approaches to mitigating toxicity of metal nanoparticles that are encapsulated in hydrogels are reviewed. In addition, challenges and future perspectives in the development of safe and effective antimicrobial hydrogel systems especially involving co-delivery of antimicrobial polymers/peptides and conventional antimicrobial agents for eventual clinical applications are presented.

  7. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections.

    Science.gov (United States)

    Ng, Victor W L; Chan, Julian M W; Sardon, Haritz; Ono, Robert J; García, Jeannette M; Yang, Yi Yan; Hedrick, James L

    2014-11-30

    The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation. Much effort has been made to develop macromolecular antimicrobial agents that are less susceptible to resistance as they function by microbial membrane disruption. Antimicrobial hydrogels constitute an important class of macromolecular antimicrobial agents, which have been shown to be effective in preventing and treating multidrug-resistant infections. Advances in synthetic chemistry have made it possible to tailor molecular structure and functionality to impart broad-spectrum antimicrobial activity as well as predictable mechanical and rheological properties. This has significantly broadened the scope of potential applications that range from medical device and implant coating, sterilization, wound dressing, to antimicrobial creams for the prevention and treatment of multidrug-resistant infections. In this review, advances in both chemically and physically cross-linked natural and synthetic hydrogels possessing intrinsic antimicrobial properties or loaded with antibiotics, antimicrobial polymers/peptides and metal nanoparticles are highlighted. Relationships between physicochemical properties and antimicrobial activity/selectivity, and possible antimicrobial mechanisms of the hydrogels are discussed. Approaches to mitigating toxicity of metal nanoparticles that are encapsulated in hydrogels are reviewed. In addition, challenges and future perspectives in the development of safe and effective antimicrobial hydrogel systems especially involving co-delivery of antimicrobial polymers/peptides and conventional antimicrobial agents for eventual clinical applications are presented. PMID:25450263

  8. Ecological study on antimicrobial-resistant zoonotic bacteria transmitted by flies in cattle farms.

    Science.gov (United States)

    Mohammed, Asmaa N; Abdel-Latef, Gihan K; Abdel-Azeem, Naglaa M; El-Dakhly, Khaled Mohamed

    2016-10-01

    Flies were qualitatively and quantitatively monitored on both livestock animals and the surrounding environment to investigate their role as a potential carrier for antimicrobial-resistant bacteria of zoonotic importance in cattle farms. This was done by the use of visual observations and animal photography; meanwhile, in the surrounding environment, flies were collected using sticky cards and then microscopically identified. Representative fly samples were cultured for bacterial isolation, biochemical identification, and then tested against common 12 antibiotics. The total average of dipterous flies in examined farms was 400.42 ± 6.2. Culicoides biting midges were the most common existing species (70.01 %) followed by house flies, stable flies, and mosquitoes (18.31, 7.74, and 3.91 %, respectively) at X (2) = 9.0, P house flies could be considered as a potential carrier for multi-drug-resistant bacteria of zoonotic importance. Furthermore, cows' environment has an essential role in propagation and wide spread of antimicrobial-resistant bacterial pathogens.

  9. Antimicrobial resistance and biological governance: explanations for policy failure.

    Science.gov (United States)

    Wallinga, D; Rayner, G; Lang, T

    2015-10-01

    The paper reviews the state of policy on antimicrobial use and the growth of antimicrobial resistance (AMR). AMR was anticipated at the time of the first use of antibiotics by their originators. For decades, reports and scientific papers have expressed concern about AMR at global and national policy levels, yet the problem, first exposed a half-century ago, worsened. The paper considers the explanations for this policy failure and the state of arguments about ways forward. These include: a deficit of economic incentivisation; complex interventions in behavioural dynamics; joint and separate shifts in medical and animal health regimes; consumerism; belief in technology; and a narrative that in a 'war on bugs' nature can be beaten by human ingenuity. The paper suggests that these narratives underplay the biological realities of the human-animal-biosphere being in constant flux, an understanding which requires an ecological public health analysis of AMR policy development and failure. The paper suggests that effective policy change requires simultaneous actions across policy levels. No single solution is possible, since AMR is the result of long-term human intervention which has accelerated certain trends in the evolution of a microbial ecosystem shared by humans, animals and other biological organisms inhabiting that ecosystem. Viewing the AMR crisis today through an ecological public health lens has the advantage of reuniting the social-ecological and bio-ecological perspectives which have been separated within public health. PMID:26454427

  10. Control of Neisseria gonorrhoeae in the era of evolving antimicrobial resistance.

    Science.gov (United States)

    Barbee, Lindley A; Dombrowski, Julia C

    2013-12-01

    Neisseria gonorrhoeae has developed resistance to all previous first-line antimicrobial therapies over the past 75 years. Today the cephalosporins, the last available antibiotic class that is sufficiently effective, are also threatened by evolving resistance. Screening for asymptomatic gonorrhea in women and men who have sex with men, treating with a dual antibiotic regimen, ensuring effective partner therapy, and remaining vigilant for treatment failures constitute critical activities for clinicians in responding to evolving antimicrobial resistance. This article reviews the epidemiology, history of antimicrobial resistance, current screening and treatment guidelines, and future treatment options for gonorrhea.

  11. Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides

    DEFF Research Database (Denmark)

    Kubicek-Sutherland, Jessica Z.; Lofton, Hava; Vestergaard, Martin;

    2016-01-01

    Background: The clinical development of antimicrobial peptides (AMPs) is currently under evaluation to combat the rapid increase in MDR bacterial pathogens. However, many AMPs closely resemble components of the human innate immune system and the ramifications of prolonged bacterial exposure to AMPs...... suggest that therapeutic use of AMPs could select for virulent mutants with crossresistance to human innate immunity as well as antibiotic therapy. Thus, therapeutic use of AMPs and the implications of cross-resistance need to be carefully monitored and evaluated....... of sepsis. Results: AMP-resistant Staphylococcus aureus mutants often displayed little to no fitness cost and caused invasive disease in mice. Further, this phenotype coincided with diminished susceptibility to both clinically prescribed antibiotics and human defence peptides. Conclusions: These findings...

  12. Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa

    Science.gov (United States)

    Murray, Justine L.; Kwon, Taejoon; Marcotte, Edward M.

    2015-01-01

    ABSTRACT Antimicrobial-resistant bacteria pose a serious threat in the clinic. This is particularly true for opportunistic pathogens that possess high intrinsic resistance. Though many studies have focused on understanding the acquisition of bacterial resistance upon exposure to antimicrobials, the mechanisms controlling intrinsic resistance are not well understood. In this study, we subjected the model opportunistic superbug Pseudomonas aeruginosa to 14 antimicrobials under highly controlled conditions and assessed its response using expression- and fitness-based genomic approaches. Our results reveal that gene expression changes and mutant fitness in response to sub-MIC antimicrobials do not correlate on a genomewide scale, indicating that gene expression is not a good predictor of fitness determinants. In general, fewer fitness determinants were identified for antiseptics and disinfectants than for antibiotics. Analysis of gene expression and fitness data together allowed the prediction of antagonistic interactions between antimicrobials and insight into the molecular mechanisms controlling these interactions. PMID:26507235

  13. Antimicrobial-Resistant Escherichia coli in Public Beach Waters in Quebec

    Directory of Open Access Journals (Sweden)

    Patricia Turgeon

    2012-01-01

    Full Text Available INTRODUCTION: Human exposure to antimicrobial-resistant bacteria may result in the transfer of resistance to commensal or pathogenic microbes present in the gastrointestinal tract, which may lead to severe health consequences and difficulties in treatment of future bacterial infections. It was hypothesized that the recreational waters from beaches represent a source of antimicrobial-resistant Escherichia coli for people engaging in water activities.

  14. Changing trends in antimicrobial-resistant pneumococci: it's not all bad news.

    Science.gov (United States)

    Low, Donald E

    2005-08-15

    In the early 1990s, we witnessed a dramatic and relentless increase in multidrug-resistant pneumococci worldwide. However, there is now evidence of decreasing resistance to some antimicrobials in some regions of the world. This may well be a result of several initiatives to promote the judicious use of antimicrobials, as well as the introduction of the pneumococcal conjugate vaccine, suggesting that the fight against resistance is maybe not futile.

  15. Prevalence of antimicrobial resistance and integrons in Escherichia Coli from Punjab, Pakistan

    Directory of Open Access Journals (Sweden)

    Idrees Muhammad

    2011-06-01

    Full Text Available Antimicrobial resistance was studied in Escherichia coli strains isolated from urine samples of 457 patients suffering from urinary tract infection. High prevalence of class 1 integrons (43.56%, sulfamethoxazole resistance genes sul1 (45.54% and sul2 (51.48% along with occurrence of quinolone resistance genes was detected in multi drug resistance isolates.

  16. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs

    DEFF Research Database (Denmark)

    Pedersen, Karl; Pedersen, Kristina; Jensen, Helene;

    2007-01-01

    Objectives: To study the occurrence of antimicrobial resistance among common bacterial pathogens from dogs and relate resistance patterns to data on consumption of antimicrobials. Methods: The antimicrobial susceptibility patterns of 201 Staphylococcus intermedius, 37 Streptococcus canis, 39...... Pseudomonas aeruginosa, 25 Pasteurella multocida, 29 Proteus spp. and 449 Escherichia coli isolates from clinical submissions from dogs were determined by a broth-dilution method for determination of minimal inhibitory concentration. Data for consumption of antimicrobials were retrieved from Vet......Stat, a national database for reporting antimicrobial prescriptions. Results: The majority of the antimicrobials prescribed for dogs were broad-spectrum compounds, and extended-spectrum penicillins, cephalosporins and sulphonamides 1 trimethoprim together accounted for 81% of the total amount used for companion...

  17. Antimicrobial resistance in methicillin susceptible and methicillin resistant Staphylococcus pseudintermedius of canine origin

    DEFF Research Database (Denmark)

    Moodley, Arshnee; Damborg, Peter Panduro; Nielsen, Søren Saxmose

    2014-01-01

    from dogs in 27 countries between 1980 and 2013. Resistance to the most common antimicrobials tested for in published studies and important for the treatment of staphylococcal infections in dogs were assessed separately for methicillin resistant (MRSP) and methicillin susceptible (MSSP) isolates...... are collected and presented in a more harmonized way to allow more precise comparison of susceptibility patterns between studies. One way to accomplish this would be through systematic surveillance either at the country-level or at a larger scale across countries e.g. EU level....

  18. Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam

    NARCIS (Netherlands)

    V.T. Nguyen; J.J. Carrique-Mas; T.H Ngo; H.M. Ho; T.T. Ha; J.I. Campbell; T.N. Nguyen; N.N. Hoang; V.M. Pham; J.A. Wagenaar; A. Hardon; Q.H. Thai; C. Schultsz

    2015-01-01

    Objectives: To describe the prevalence of antimicrobial resistance among commensal Escherichia coli isolates on household and small-scale chicken farms, common in southern Vietnam, and to investigate the association of antimicrobial resistance with farming practices and antimicrobial usage. Methods:

  19. Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam

    NARCIS (Netherlands)

    Trung, Nguyen Vinh; Carrique-Mas, Juan J; Thi Hoa, Ngo; Mai, Ho Huynh; Tuyen, Ha Thanh; Campbell, James I; Nhung, Nguyen Thi; Nhung, Hoang Ngoc; Van Minh, Pham; Wagenaar, Jaap A; Hardon, Anita; Hieu, Thai Quoc; Schultsz, Constance

    2015-01-01

    OBJECTIVES: To describe the prevalence of antimicrobial resistance among commensal Escherichia coli isolates on household and small-scale chicken farms, common in southern Vietnam, and to investigate the association of antimicrobial resistance with farming practices and antimicrobial usage. METHODS:

  20. An assessment of antimicrobial resistant disease threats in Canada.

    Directory of Open Access Journals (Sweden)

    Michael J Garner

    Full Text Available Antimicrobial resistance (AMR of infectious agents is a growing concern for public health organizations. Given the complexity of this issue and how widespread the problem has become, resources are often insufficient to address all concerns, thus prioritization of AMR pathogens is essential for the optimal allocation of risk management attention. Since the epidemiology of AMR pathogens differs between countries, country-specific assessments are important for the determination of national priorities.To develop a systematic and transparent approach to AMR risk prioritization in Canada.Relevant AMR pathogens in Canada were selected through a transparent multi-step consensus process (n=32. Each pathogen was assessed using ten criteria: incidence, mortality, case-fatality, communicability, treatability, clinical impact, public/political attention, ten-year projection of incidence, economic impact, and preventability. For each pathogen, each criterion was assigned a numerical score of 0, 1, or 2, and multiplied by criteria-specific weighting determined through researcher consensus of importance. The scores for each AMR pathogen were summed and ranked by total score, where a higher score indicated greater importance. A sensitivity analysis was conducted to determine the effects of changing the criteria-specific weights.The AMR pathogen with the highest total weighted score was extended spectrum B-lactamase-producing (ESBL Enterobacteriaceae (score=77. When grouped by percentile, ESBL Enterobacteriaceae, Clostridium difficile, carbapenem-resistant Enterobacteriaceae, and methicillin-resistant Staphylococcus aureus were in the 80-100th percentile.This assessment provides useful information for prioritising public health strategies regarding AMR resistance at the national level in Canada. As the AMR environment and challenges change over time and space, this systematic and transparent approach can be adapted for use by other stakeholders domestically and

  1. Animal Husbandry Practices in Rural Bangladesh: Potential Risk Factors for Antimicrobial Drug Resistance and Emerging Diseases

    OpenAIRE

    Roess, Amira A.; Winch, Peter J.; Ali, Nabeel A.; Akhter, Afsana; Afroz, Dilara; El Arifeen, Shams; Darmstadt, Gary L.; Baqui, Abdullah H

    2013-01-01

    Antimicrobial drug administration to household livestock may put humans and animals at risk for acquisition of antimicrobial drug–resistant pathogens. To describe animal husbandry practices, including animal healthcare-seeking and antimicrobial drug use in rural Bangladesh, we conducted semi-structured in-depth interviews with key informants, including female household members (n = 79), village doctors (n = 10), and pharmaceutical representatives, veterinarians, and government officials (n = ...

  2. Studies on Antimicrobial Resistance Transfer In vitro and Existent Selectivity of Avian Antimicrobial-Resistant Enterobacteriaccae In vivo

    Institute of Scientific and Technical Information of China (English)

    SONG Li; NING Yi-bao; ZHANG Qi-jing; YANG Cheng-huai; GAO Guang; HAN Jian-feng

    2008-01-01

    Increasing antimicrobial resistance (AR) has become a severe problem of public health in the world, whereas control of the AR of bacteria will be based on investigation of the AR mechanism. Furthermore, understanding the existent selectivity of AR organisms from animals can prevent the emergence and diffusion of AR effectively. PCR amplifications of gyrA and parC genes have been performed for detecting fluoroquinolones-resistance (FR) genes. A conjugational transfer test has been carried out using a donor which is resistant to tetracycline (TE), ampicillin (AMP), sulfamethoxazole-trimethoprim (SXT), and a recipient which is sensitive to TE, AMP, and SXT. The AR strains have been passed 20 passages. Two groups of chicken inoculated multi-AR Escherichia coli (E. Coli) and multi-AR Salmonella, respectively, are mix-fed. The result shows that amino acid codons of Ser-83 and Asp-87 are mutations from gyrA and there are no mutations from parCgenes in all the FR strains. Resistance to TE, AM, and SXT can transfer among E. Coli and the conjugal transfer frequency of TE is 3 × 10-7. AR can inherit in 20 passages at least. The multi-AR E. Coli and Salmonella can be isolated from all chickens three days after inoculation but CIP-resistant strains decrease during the time run out and disappear at 23 days after inoculation. The results indicate that the mutations of gene gyrA are correlative with the FR phenotype. AR genes that are not connected to the chromosome can transfer horizontally and vertically. AR bacteria can diffuse quickly and eliminate naturally from the host if the chicken is not under the pressure of this antibiotic.

  3. EARSS: European Antimicrobial Resistance Surveillance System; data from the Netherlands .Incidence and resistance rates for Streptococcus pneumoniae and Staphylococcus aureus

    NARCIS (Netherlands)

    Goettsch WG; Neeling AJ de; CIE; LIO

    2001-01-01

    In a porspective prevalence and incidence survey in The Netherlands in 1999 antimicrobial susceptibility data on invasive Streptococcus pneumoniae and Staphylococcus aureus infections were collected sithin the framework of European Antomicrobial Resistance Surveillance System (EARSS). The EARSS proj

  4. Antimicrobial Resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from Raw Fish and Seafood Imported into Switzerland.

    Science.gov (United States)

    Boss, Renate; Overesch, Gudrun; Baumgartner, Andreas

    2016-07-01

    A total of 44 samples of salmon, pangasius (shark catfish), shrimps, and oysters were tested for the presence of Escherichia coli, enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus, which are indicator organisms commonly used in programs to monitor antibiotic resistance. The isolated bacterial strains, confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, were tested against a panel of 29 antimicrobial agents to obtain MICs. Across the four sample types, Enterococcus faecalis (59%) was most common, followed by E. coli (55%), P. aeruginosa (27%), and S. aureus (9%). All bacterial species were resistant to some antibiotics. The highest rates of resistance were in E. faecalis to tetracycline (16%), in E. coli to ciprofloxacin (22%), and in S. aureus to penicillin (56%). Antibiotic resistance was found among all sample types, but salmon and oysters were less burdened than were shrimps and pangasius. Multidrug-resistant (MDR) strains were exclusively found in shrimps and pangasius: 17% of pangasius samples (MDR E. coli and S. aureus) and 64% of shrimps (MDR E. coli, E. faecalis, and S. aureus). Two of these MDR E. coli isolates from shrimps (one from an organic sample) were resistant to seven antimicrobial agents. Based on these findings, E. coli in pangasius, shrimps, and oysters, E. faecalis in pangasius, shrimps, and salmon, and P. aeruginosa in pangasius and shrimps are potential candidates for programs monitoring antimicrobial resistance. Enrichment methods for the detection of MDR bacteria of special public health concern, such as methicillin-resistant S. aureus and E. coli producing extended-spectrum β-lactamases and carbapenemases, should be implemented.

  5. Antimicrobial Drug Resistance of Vibrio cholerae, Democratic Republic of the Congo.

    Science.gov (United States)

    Miwanda, Berthe; Moore, Sandra; Muyembe, Jean-Jacques; Nguefack-Tsague, Georges; Kabangwa, Ickel Kakongo; Ndjakani, Daniel Yassa; Mutreja, Ankur; Thomson, Nicholas; Thefenne, Helene; Garnotel, Eric; Tshapenda, Gaston; Kakongo, Denis Kandolo; Kalambayi, Guy; Piarroux, Renaud

    2015-05-01

    We analyzed 1,093 Vibrio cholerae isolates from the Democratic Republic of the Congo during 1997-2012 and found increasing antimicrobial drug resistance over time. Our study also demonstrated that the 2011-2012 epidemic was caused by an El Tor variant clonal complex with a single antimicrobial drug susceptibility profile.

  6. Association between antimicrobial resistance and virulence genes in Escherichia coli obtained from blood and faeces

    DEFF Research Database (Denmark)

    Bagger-Skjøt, Line; Sandvang, Dorthe; Frimodt-Møller, Niels;

    2007-01-01

    Escherichia coli isolates obtained from faeces (n = 85) and blood (n = 123) were susceptibility tested against 17 antimicrobial agents and the presence of 9 virulence genes was determined by PCR. Positive associations between several antimicrobial resistances and 2 VF genes (iutA and traT) were...

  7. Monitoring forest soil properties with electrical resistivity

    OpenAIRE

    Paillet, Y.; Cassagne, N.; Brun, J.J.

    2010-01-01

    Maintenance and monitoring of soil fertility is a key issue for sustainable forest management. Vital ecosystem processes may be affected by management practices which change the physical, chemical and biological properties of the soil. This study is the first in Europe to use electrical resistivity as a non-invasive method to determine forest soil properties rapidly in the field in a monitoring purpose. We explored the correlations between electrical resistivity and forest soil properties on ...

  8. Prevalence, Antimicrobial Resistance, and Genotypic Characterization of Vancomycin-Resistant Enterococci in Meat Preparations.

    Science.gov (United States)

    Guerrero-Ramos, Emilia; Molina-González, Diana; Blanco-Morán, Sonia; Igrejas, Gilberto; Poeta, Patrícia; Alonso-Calleja, Carlos; Capita, Rosa

    2016-05-01

    A total of 160 samples of poultry (80), pork (40), and beef (40) preparations (red sausages, white sausages, hamburgers, meatballs, nuggets, minced meat, escalope, and crepes) were tested in northwestern Spain to determine the prevalence of vancomycin-resistant enterococci (VRE). VRE were detected in 38 (23.8%) samples (37.5% of poultry, 15.0% of pork, and 5.0% of beef samples). One strain per food sample was further characterized. Isolates were identified as Enterococcus faecium (14 strains), E. durans (10), E. hirae (7), E. gallinarum (5), and E. casseliflavus-E. flavescens (2). All strains showed resistance or intermediate susceptibility to three or more antimicrobials of clinical significance, in addition to vancomycin. High rates of resistance or intermediate susceptibility were observed for teicoplanin (81.6% of isolates), chloramphenicol (81.6%), erythromycin (100%), quinupristin-dalfopristin (89.5%), and ciprofloxacin (81.6%). A moderate rate of resistance or intermediate susceptibility emerged for ampicillin (34.2%) and tetracycline (36.8%). Genes encoding antimicrobial resistance and virulence were studied by PCR. The vanA, vanB, vanC-1, and vanC-2/3 genes were identified in 27, 1, 5, and 2 isolates, respectively. Other resistance genes or transposon sequences found were tet(L), tet(M), Tn5397 (tetracycline), erm(A), erm(B) (erythromycin), vat(D), and vat(E) (quinupristin-dalfopristin). Most isolates were free of virulence determinants (agg, hyl, and efaAfm genes were detected in one, one, and five strains, respectively). Strains were classified as not biofilm producers (crystal violet assay; 4 isolates) or weak biofilm producers (34 isolates). Cluster analysis (EcoRI ribotyping) suggested a strong genetic relationship among isolates from different types of meat preparations, animal species, and retail outlets. Meat preparations might play a role in the spread through the food chain of VRE with several resistance and virulence genes.

  9. Prevalence, Antimicrobial Resistance, and Genotypic Characterization of Vancomycin-Resistant Enterococci in Meat Preparations.

    Science.gov (United States)

    Guerrero-Ramos, Emilia; Molina-González, Diana; Blanco-Morán, Sonia; Igrejas, Gilberto; Poeta, Patrícia; Alonso-Calleja, Carlos; Capita, Rosa

    2016-05-01

    A total of 160 samples of poultry (80), pork (40), and beef (40) preparations (red sausages, white sausages, hamburgers, meatballs, nuggets, minced meat, escalope, and crepes) were tested in northwestern Spain to determine the prevalence of vancomycin-resistant enterococci (VRE). VRE were detected in 38 (23.8%) samples (37.5% of poultry, 15.0% of pork, and 5.0% of beef samples). One strain per food sample was further characterized. Isolates were identified as Enterococcus faecium (14 strains), E. durans (10), E. hirae (7), E. gallinarum (5), and E. casseliflavus-E. flavescens (2). All strains showed resistance or intermediate susceptibility to three or more antimicrobials of clinical significance, in addition to vancomycin. High rates of resistance or intermediate susceptibility were observed for teicoplanin (81.6% of isolates), chloramphenicol (81.6%), erythromycin (100%), quinupristin-dalfopristin (89.5%), and ciprofloxacin (81.6%). A moderate rate of resistance or intermediate susceptibility emerged for ampicillin (34.2%) and tetracycline (36.8%). Genes encoding antimicrobial resistance and virulence were studied by PCR. The vanA, vanB, vanC-1, and vanC-2/3 genes were identified in 27, 1, 5, and 2 isolates, respectively. Other resistance genes or transposon sequences found were tet(L), tet(M), Tn5397 (tetracycline), erm(A), erm(B) (erythromycin), vat(D), and vat(E) (quinupristin-dalfopristin). Most isolates were free of virulence determinants (agg, hyl, and efaAfm genes were detected in one, one, and five strains, respectively). Strains were classified as not biofilm producers (crystal violet assay; 4 isolates) or weak biofilm producers (34 isolates). Cluster analysis (EcoRI ribotyping) suggested a strong genetic relationship among isolates from different types of meat preparations, animal species, and retail outlets. Meat preparations might play a role in the spread through the food chain of VRE with several resistance and virulence genes. PMID:27296421

  10. Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group

    Directory of Open Access Journals (Sweden)

    Schierack Peter

    2009-10-01

    Full Text Available Abstract Background Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. Results In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. Conclusion The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine. Trial Registration The study was approved by the local animal welfare committee of the "Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit" Berlin

  11. Clonal spread of antimicrobial-resistant Escherichia coli isolates among pups in two kennels

    Directory of Open Access Journals (Sweden)

    Takahashi Toshio

    2011-02-01

    Full Text Available Abstract Although the dog breeding industry is common in many countries, the presence of antimicrobial resistant bacteria among pups in kennels has been infrequently investigated. This study was conducted to better understand the epidemiology of antimicrobial-resistant Escherichia coli isolates from kennel pups not treated with antimicrobials. We investigated susceptibilities to 11 antimicrobials, and prevalence of extended-spectrum β-lactamase (ESBL in 86 faecal E. coli isolates from 43 pups in two kennels. Genetic relatedness among all isolates was assessed using pulsed-field gel electrophoresis (PFGE. Susceptibility tests revealed that 76% of the isolates were resistant to one or more of tested antimicrobials, with resistance to dihydrostreptomycin most frequently encountered (66.3% followed by ampicillin (60.5%, trimethoprim-sulfamethoxazole (41.9%, oxytetracycline (26.7%, and chloramphenicol (26.7%. Multidrug resistance, defined as resistance against two or more classes of antimicrobials, was observed in 52 (60.5% isolates. Three pups in one kennel harboured SHV-12 ESBL-producing isolates. A comparison between the two kennels showed that frequencies of resistance against seven antimicrobials and the variation in resistant phenotypes differed significantly. Analysis by PFGE revealed that clone sharing rates among pups of the same litters were not significantly different in both kennels (64.0% vs. 88.9%, whereas the rates among pups from different litters were significantly different between the two kennels (72.0% vs. 33.3%, P E. coli clones, including multidrug-resistant and ESBL-producing clones. It is likely that resistant and susceptible bacteria can clonally spread among the same and/or different litters thus affecting the resistance prevalence.

  12. 76 FR 14402 - Draft Action Plan-A Public Health Action Plan To Combat Antimicrobial Resistance

    Science.gov (United States)

    2011-03-16

    ... without change, including any personal or proprietary information provided. To download an electronic... reached with individual input from State and local health agencies, universities, professional societies... To Combat Antimicrobial Resistance AGENCY: Centers for Disease Control and Prevention...

  13. Prevalence and Incidence of Antimicrobial-Resistant Organisms among Hospitalized Inflammatory Bowel Disease Patients

    Directory of Open Access Journals (Sweden)

    Alon Vaisman

    2013-01-01

    Full Text Available BACKGROUND: Patients with inflammatory bowel disease (IBD experience frequent hospitalizations and use of immunosuppressive medications, which may predispose them to colonization with antimicrobial-resistant organisms (ARO.

  14. The changing epidemiology of bacteraemias in Europe : trends from the European Antimicrobial Resistance Surveillance System

    NARCIS (Netherlands)

    de Kraker, M. E. A.; Jarlier, V.; Monen, J. C. M.; Heuer, O. E.; van de Sande, N.; Grundmann, H.

    2013-01-01

    We investigated bacteraemia trends for five major bacterial pathogens, Staphylococcus aureus, Escherichia coli, Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium, and determined how expanding antimicrobial resistance influenced the total burden of bacteraemias in Europe. Aetio

  15. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    DEFF Research Database (Denmark)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo;

    2015-01-01

    to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing...... protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma......High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent...

  16. Temporal profile of antimicrobial resistance exhibited by strains of Staphylococcus spp. isolated from cases of bovine mastitis for 20 years (1992-2011

    Directory of Open Access Journals (Sweden)

    Ananda Paula Kowalski

    2015-06-01

    Full Text Available Records of in vitro susceptibility tests performed between 1992 and 2011 were retrospectively reviewed in order to evaluate the dynamic profiles of possible changes in antimicrobial resistance of Staphylococcus spp. isolated from milk samples of cows with mastitis during two decades. The results of 2,430 isolates tested by disk diffusion technique for susceptibility to oxacillin, penicillin, ampicillin, cephalexin, norfloxacin, tetracycline, sulfazotrim, gentamicin, and neomycin were analysed. Comparisons were performed between the percentages of resistance to antimicrobials and their classes and also between the decades studied. Additionally, the possible tendency or changes in the behaviour of these pathogens against the major drugs used in the last two decades were evaluated using regression analysis. The highest rates of resistance (P<0.0001 were observed for the beta-lactams (34.3%, with exception of cephalexin (6.9%, and for the tetracyclines (28%. Similar resistance rates (7.6% to 15.7% were observed among the other drugs. Regression analysis showed a reduction in resistance to penicillin and ampicillin throughout the period, whilst for oxacillin and neomycin a decrease in the resistance was observed during the first decade, followed by an increase. A trend towards decreased resistance was found for sulfazotrim, whereas for the other antimicrobials no decrease was observed. The results indicated no trend towards increased resistance for most antimicrobials tested. Nevertheless, it is necessary to monitor the resistance patterns of these pathogens in order to save these drugs as a therapeutic reserve

  17. Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment.

    Science.gov (United States)

    Gómez, Diego; Azón, Ester; Marco, Noelia; Carramiñana, Juan J; Rota, Carmina; Ariño, Agustín; Yangüela, Javier

    2014-09-01

    A total of 336 Listeria isolates from ready-to-eat (RTE) meat products and meat-processing environments, consisting of 206 Listeria monocytogenes, and 130 Listeria innocua isolates, were characterized by disc diffusion assay and minimum inhibitory concentration (MIC) values for antimicrobial susceptibility against twenty antimicrobials. Resistance to one or two antimicrobials was observed in 71 L. monocytogenes isolates (34.5%), and 56 L. innocua isolates (43.1%). Multidrug resistance was identified in 24 Listeria isolates, 18 belonging to L. innocua (13.9%) and 6 to L. monocytogenes (2.9%). Oxacillin resistance was the most common resistance phenotype and was identified in 100% Listeria isolates. A medium prevalence of resistance to clindamycin (39.3% isolates) and low incidence of resistance to tetracycline (3.9% isolates) were also detected. Listeria isolates from RTE meat products displayed higher overall antimicrobial resistance (31.3%) than those from the environment (13.4%). All the strains assayed were sensitive to the preferred antibiotics used to treat listeriosis. Results showed that although antimicrobial resistance in L. monocytogenes still occurs at a low prevalence, L. innocua can form a reservoir of resistance genes which may transfer between bacterial species, including transference to organisms capable of causing disease in humans.

  18. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health.

    Science.gov (United States)

    Cabello, Felipe C; Godfrey, Henry P; Tomova, Alexandra; Ivanova, Larisa; Dölz, Humberto; Millanao, Ana; Buschmann, Alejandro H

    2013-07-01

    The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated.

  19. Bovine salmonellosis in Northeast of Iran: Frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    Directory of Open Access Journals (Sweden)

    Hessam A. Halimi

    2014-01-01

    Conclusion: The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background.

  20. Duration of colonization with antimicrobial-resistant bacteria after ICU discharge

    NARCIS (Netherlands)

    Haverkate, Manon R; Derde, Lennie P G; Brun-Buisson, Christian; Bonten, Marc J M; Bootsma, Martin C J

    2014-01-01

    PURPOSE: Readmission of patients colonized with antimicrobial-resistant bacteria (AMRB) is important in the nosocomial dynamics of AMRB. We assessed the duration of colonization after discharge from the intensive care unit (ICU) with highly resistant Enterobacteriaceae (HRE), methicillin-resistant S

  1. Associations of Streptococcus suis serotype 2 ribotype profiles with clinical disease and antimicrobial resistance

    DEFF Research Database (Denmark)

    Rasmussen, S. R.; Aarestrup, Frank Møller; Jensen, N. E.;

    1999-01-01

    A total of 122 Streptococcus suis serotype 2 strains were characterized thoroughly by comparing clinical and pathological observations, ribotype profiles, and antimicrobial resistance. Twenty-one different ribotype profiles were found and compared by cluster analysis, resulting in the identificat......A total of 122 Streptococcus suis serotype 2 strains were characterized thoroughly by comparing clinical and pathological observations, ribotype profiles, and antimicrobial resistance. Twenty-one different ribotype profiles were found and compared by cluster analysis, resulting in the...

  2. PREVALENCE AND ANTIMICROBIAL RESISTANCE ASSESSMENT OF SUBCLINICAL MASTITIS IN MILK SAMPLES FROM SELECTED DAIRY FARMS

    OpenAIRE

    Murugaiyah Marimuthu; Faez Firdaus Jesse Abdullah; Konto Mohammed; Sangeetha D/O Sarvananthan Poshpum; Lawan Adamu; Abdinasir Yusuf Osman; Yusuf Abba; Abdulnasir Tijjani

    2014-01-01

    This study was conducted in order to determine the prevalence and bacteriological assessment of subclinical mastitis and antimicrobial resistance of bacterial isolates from dairy cows in different farms around Selangor, Malaysia. A total of 120 milk samples from 3 different farms were randomly collected and tested for subclinical mastitis using California Mastitis Test (CMT), as well as for bacterial culture for isolation, identification and antimicrobial resistance. The most prevalent bacter...

  3. Distribution of antimicrobial-resistant lactic acid bacteria in natural cheese in Japan.

    Science.gov (United States)

    Ishihara, Kanako; Nakajima, Kumiko; Kishimoto, Satoko; Atarashi, Fumiaki; Muramatsu, Yasukazu; Hotta, Akitoyo; Ishii, Satomi; Takeda, Yasuyuki; Kikuchi, Masanori; Tamura, Yutaka

    2013-10-01

    To determine and compare the extent of contamination caused by antimicrobial-resistant lactic acid bacteria (LAB) in imported and domestic natural cheeses on the Japanese market, LAB were isolated using deMan, Rogosa and Sharpe (MRS) agar and MRS agar supplemented with six antimicrobials. From 38 imported and 24 Japanese cheeses, 409 LAB isolates were obtained and their antimicrobial resistance was tested. The percentage of LAB resistant to dihydrostreptomycin, erythromycin, and/or oxytetracycline isolated from imported cheeses (42.1%) was significantly higher than that of LAB resistant to dihydrostreptomycin or oxytetracycline from cheeses produced in Japan (16.7%; P=0.04). Antimicrobial resistance genes were detected in Enterococcus faecalis (tetL, tetM, and ermB; tetL and ermB; tetM) E. faecium (tetM), Lactococcus lactis (tetS), Lactobacillus (Lb.), casei/paracasei (tetM or tetW), and Lb. rhamnosus (ermB) isolated from seven imported cheeses. Moreover, these E. faecalis isolates were able to transfer antimicrobial resistance gene(s). Although antimicrobial resistance genes were not detected in any LAB isolates from Japanese cheeses, Lb. casei/paracasei and Lb. coryniformis isolates from a Japanese farm-made cheese were resistant to oxytetracycline (minimal inhibitory concentration [MIC], 32 µg/mL). Leuconostoc isolates from three Japanese farm-made cheeses were also resistant to dihydrostreptomycin (MIC, 32 to >512 µg/mL). In conclusion, the present study demonstrated contamination with antimicrobial-resistant LAB in imported and Japanese farm-made cheeses on the Japanese market, but not in Japanese commercial cheeses.

  4. ANTIMICROBIAL RESISTANT PATTERN OF FECAL ESCHERICHIA COLI IN SELECTED BROILER FARMS OF EASTERN HARARGE ZONE, ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Tesfaheywet Zeryehun

    2013-12-01

    Full Text Available A study was conducted to determine the pattern of antimicrobial resistance in Escherichia coli isolated from Cloacal swab of broiler chickens in selected farms of Eastern Harrarge zone of Ethiopia. Isolation and identification of Escherichia coli were done by using enrichment media, selective media, and biochemical tests. 65 selected isolates were subjected to 9 antimicrobial agents to determine their resistance by the disk diffusion method. Accordingly, the resistance of E.coli was tetracycline (90%, streptomycin (78%, ampicillin (60%, amoxicillin (56%, erythromycin (45%, ciprofloxacin (38%, and chloramphenicol (15%. None of the isolates showed resistance to gentamicin. Sensitivity was observed in case of 80%, 77%, 44%, 32%, 26%, 20%, 20%, 15%, and 10% of the isolates for chloramphenicol, gentamicin, ciprofloxacin, amoxicillin, ampicillin, streptomycin, erythromycin, and tetracycline, respectively. Intermediate resistance/susceptibility was recorded for 5-35% of the isolates. 92.3% of the isolates tested showed multidrug resistance for 2 or more antimicrobials and the highest levels (18.5% of multidrug-resistant E. coli were observed for 3 antimicrobials accounting 7.7% for tetracycline-ampicillin-streptomycin and 10.8% for tetracycline-ampicillin-amoxicillin. This study showed resistance against the antibiotics that are commonly used in poultry. Furthermore, it was concluded that gentamicin, chloramphenicole and ciproflaxin will be the first drugs of choice to resist infections caused by E. coli in chicken in Ethiopia. These findings confirm significant increase in the incidence of antimicrobial resistance in the E. coli isolates which is most probably due to increased use of antibiotics as feed additives for growth promotion and prevention of diseases and use of inappropriate antibiotics for treatment of diseases. Hence, excess or abusive use of antimicrobials should be guarded through judicious application of antimicrobials

  5. Serotypes and Antimicrobial Resistance of Human Nontyphoidal Isolates of Salmonella enterica from Crete, Greece

    Directory of Open Access Journals (Sweden)

    Sofia Maraki

    2014-01-01

    Full Text Available We report on the serotype distribution and the antimicrobial resistance patterns to 20 different antimicrobials of 150 Salmonella enterica strains isolated from stools of diarrhoeal patients on the island of Crete over the period January 2011-December 2012. Among the S. enterica serotypes recovered, Enteritidis was the most prevalent (37.3%, followed by Typhimurium (28.7% and Newport (8.7%. No resistance was detected to extended-spectrum cephalosporins and carbapenems. Rates of resistance to ampicillin, amoxicillin/clavulanic acid, chloramphenicol, tetracycline, and cotrimoxazole were 9.3%, 4%, 2%, 15.3%, and 8.7%, respectively. Resistance to ≥4 antibiotics was primarily observed for serotypes Typhimurium and Hadar. Enteritidis remains the predominant serotype in Crete. Although low resistance to most antimicrobials was detected, continued surveillance of susceptibility is needed due to the risk of resistance.

  6. Biotic stress resistance in agriculture through antimicrobial peptides.

    Science.gov (United States)

    Sarika; Iquebal, M A; Rai, Anil

    2012-08-01

    Antimicrobial peptides (AMPs) are the hosts' defense molecules against microbial pathogens and gaining extensive research attention worldwide. These have been reported to play vital role of host innate immunity in response to microbial challenges. AMPs can be used as a natural antibiotic as an alternative of their chemical counterpart for protection of plants/animals against diseases. There are a number of sources of AMPs including prokaryotic and eukaryotic organisms and are present, both in vertebrates and invertebrates. AMPs can be classified as cationic or anionic, based on net charges. Large number of databases and tools are available in the public domain which can be used for development of new genetically modified disease resistant varieties/breeds for agricultural production. The results of the biotechnological research as well as genetic engineering related to AMPs have shown high potential for reduction of economic losses of agricultural produce due to pathogens. In this article, an attempt has been made to introduce the role of AMPs in relation to plants and animals. Their functional and structural characteristics have been described in terms of its role in agriculture. Different sources of AMPs and importance of these sources has been reviewed in terms of its availability. This article also reviews the bioinformatics resources including different database tools and algorithms available in public domain. References of promising biotechnology research in relation to AMPs, prospects of AMPs for further development of genetically modified varieties/breeds are highlighted. AMPs are valuable resource for students, researchers, educators and medical and industrial personnel.

  7. Superbugs: should antimicrobial resistance be included as a cost in economic evaluation?

    Science.gov (United States)

    Coast, J; Smith, R D; Millar, M R

    1996-01-01

    This paper argues that increasing resistance to antimicrobials is an important social externality that has not been captured at the level of economic appraisal. The paper explicitly considers reasons why the externality of antimicrobial resistance has not generally been included as a cost in economic evaluations comparing management strategies for infectious diseases. Four reasons are considered: first, that the absolute cost of antimicrobial resistance is too small to be worth including; second, that there is an implicit discounting of the costs of antimicrobial resistance on the basis of time preference which makes the cost too small to be worth including; third, that there is an implicit discounting of the costs of antimicrobial resistance on the basis of uncertainty which makes the cost too small to be worth including; and fourth, that the costs are too difficult to measure. Although there does not appear to be methodological justification for excluding the costs of antimicrobial resistance, it seems likely that, because of the practical difficulties associated with measuring these costs, they will continue to be ignored. The paper concludes with a discussion of the applicability of standard policy responses used to deal with externalities in other areas of welfare economics.

  8. Molecular Characterization and Antimicrobial Resistance Profile of Methicillin-Resistant Staphylococcus aureus in Retail Chicken.

    Science.gov (United States)

    Sallam, Khalid Ibrahim; Abd-Elghany, Samir Mohammed; Elhadidy, Mohamed; Tamura, Tomohiro

    2015-10-01

    The emergence of livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) in food-producing animals is of increasing interest, raising questions about the presence of MRSA in food of animal origin and potential sources of transmission to humans via the food chain. In this study, the prevalence, molecular characterization, virulence factors, and antimicrobial susceptibility patterns of MRSA isolates from 200 retail raw chicken samples in Egypt were determined. MRSA was detected by positive amplification of the mecA gene in 38% (76 of 200) of chicken samples analyzed. This represents a potential public health threat in Egypt, as this contamination rate seems to be the highest among other studies reported worldwide. Furthermore, genes encoding α-hemolysin (hla) and staphylococcal enterotoxins (sea, seb, and sec) were detected in all of the 288 MRSA isolates. Nonetheless, none of the strains tested carried tst, the gene encoding toxic shock syndrome toxin 1. Antimicrobial resistance of MRSA isolates was most frequently detected against penicillin (93.4%), ampicillin (88.9%), and cloxacillin (83.3%). These results suggest that retail chicken might be a significant potential source for transmission of multidrug-resistant and toxigenic S. aureus in Egypt. This underlines the need for stricter hygienic measures in chicken production in Egypt to minimize the risk of transmission of these strains to consumers. To the best of our knowledge, this is the first study that reports the isolation and molecular characterization of MRSA in retail chicken samples in Egypt.

  9. Antimicrobial resistance and molecular analysis of methicillin-resistant Staphylococcus aureus collected in a Spanish hospital.

    Science.gov (United States)

    Hernández-Porto, Miriam; Lecuona, María; Aguirre-Jaime, Armando; Castro, Beatriz; Delgado, Teresa; Cuervo, Milagros; Pedroso, Yanet; Arias, Ángeles

    2015-04-01

    Clonal distribution of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals may differ according to the geographic location and time period. Knowledge of MRSA clonal epidemiology in hospital settings involves much more than the study of healthcare-associated MRSA (HA-MRSA) clones. In recent years, investigators have documented the introduction of both community-associated MRSA (CA-MRSA) and livestock-associated MRSA (LA-MRSA) clones, the emergence of clones carrying Staphylococcal cassette chromosome mec (SCCmec) XI, and the genetic diversity among sporadic MRSA isolates. The allocation of certain antibiotypes to dominant MRSA clones in an institution allows their use as phenotypic markers for a preliminary search for new clones, early detection of clonal shift, and as a guide for better empirical therapy, infection control, and treatment within a particular institution. For these reasons, we identified 938 strains detected in a System of Universal Active Surveillance of MRSA in clinical samples during the period 2009-2010, obtaining the clonal distribution of MRSA at the Hospital Universitario de Canarias (Tenerife, Spain) and the relationship between antimicrobial susceptibility and three major clones present. The antibiotypes that best defined the ST5-MRSA-IV (Pediatric) clone showed resistance to tobramycin and susceptibility to clindamycin, erythromycin, gentamicin, rifampin, trimethoprim-sulfamethoxazole, vancomycin, quinupristin/dalfopristin, and linezolid, whereas the ST22-MRSA-IV clone (EMRSA-15) showed susceptibility to these antibiotics, and finally, the ST36-MRSA-II clone (EMRSA-16) was resistant to clindamycin, erythromycin, and tobramycin and susceptible to the remaining antimicrobials. Similar observations would allow the early detection of changes in clonal epidemiology by analysis of antimicrobial susceptibility of the isolates within a single institution. PMID:25365597

  10. Molecular epidemiology and antimicrobial resistance of methicillin-resistant Staphylococcus aureus bloodstream isolates in Taiwan, 2010.

    Directory of Open Access Journals (Sweden)

    Chih-Jung Chen

    Full Text Available The information of molecular characteristics and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus (MRSA is essential for control and treatment of diseases caused by this medically important pathogen. A total of 577 clinical MRSA bloodstream isolates from six major hospitals in Taiwan were determined for molecular types, carriage of Panton-Valentine leukocidin (PVL and sasX genes and susceptibilities to 9 non-beta-lactam antimicrobial agents. A total of 17 genotypes were identified in 577 strains by pulsotyping. Five major pulsotypes, which included type A (26.2%, belonging to sequence type (ST 239, carrying type III staphylococcal chromosomal cassette mec (SCCmec, type F (18.9%, ST5-SCCmecII, type C (18.5%, ST59-SCCmecIV, type B (12.0%, ST239-SCCmecIII and type D (10.9%, ST59-SCCmecVT/IV, prevailed in each of the six sampled hospitals. PVL and sasX genes were respectively carried by ST59-type D strains and ST239 strains with high frequencies (93.7% and 99.1%, respectively but rarely detected in strains of other genotypes. Isolates of different genotypes and from different hospitals exhibited distinct antibiograms. Multi-resistance to ≥3 non-beta-lactams was more common in ST239 isolates (100% than in ST5 isolates (97.2%, P = 0.0347 and ST59 isolates (8.2%, P<0.0001. Multivariate analysis further indicated that the genotype, but not the hospital, was an independent factor associated with muti-resistance of the MRSA strains. In conclusion, five common MRSA clones with distinct antibiograms prevailed in the major hospitals in Taiwan in 2010. The antimicrobial susceptibility pattern of invasive MRSA was mainly determined by the clonal distribution.

  11. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota.

    OpenAIRE

    LeonCantas; LinaM.Cavaco; CéliaManaia; FionaWalsh; MagdalenaPopowska; HemdaGarelick; HelmutBürgmann

    2013-01-01

    The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance genes have been suggested to originate from environmental bacteria, as clinicall...

  12. Antimicrobial treatment of nosocomial meticillin-resistant Staphylococcus aureus (MRSA) pneumonia: current and future options.

    Science.gov (United States)

    Welte, Tobias; Pletz, Mathias W

    2010-11-01

    Meticillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of nosocomial pneumonia. Inadequate or inappropriate antimicrobial therapy, often caused by antimicrobial resistance, is associated with increased mortality for these infections. Agents currently recommended for the treatment of MRSA pneumonia include vancomycin and linezolid in the USA, and vancomycin, linezolid, teicoplanin and quinupristin/dalfopristin in Europe. Antimicrobials such as tigecycline and daptomycin, although approved for the treatment of some MRSA infections, have not demonstrated efficacy equivalent to the approved agents for MRSA pneumonia. Further agents lack data from randomised controlled trials (e.g. fosfomycin, fusidic acid or rifampicin in combination with vancomycin). Antimicrobial agents that have recently been approved or are being investigated as treatments for MRSA infections include the lipoglycopeptides telavancin (approved for the treatment of complicated skin and skin-structure infections in the USA and Canada), dalbavancin and oritavancin, the cephalosporins ceftobiprole and ceftaroline, and the dihydrofolate reductase inhibitor iclaprim. To be an effective treatment for MRSA pneumonia, antimicrobial agents must have activity against antimicrobial-resistant S. aureus, penetrate well into the lung, have a low potential for resistance development and have a good safety profile. Here, the available data for current and potential future MRSA pneumonia antimicrobials are reviewed and discussed. PMID:20724119

  13. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome.

    Science.gov (United States)

    Hartmann, Erica M; Hickey, Roxana; Hsu, Tiffany; Betancourt Román, Clarisse M; Chen, Jing; Schwager, Randall; Kline, Jeff; Brown, G Z; Halden, Rolf U; Huttenhower, Curtis; Green, Jessica L

    2016-09-20

    Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust. PMID:27599587

  14. Prevalence and Antimicrobial Resistance in Escherichia coli from Food Animals in Lagos, Nigeria.

    Science.gov (United States)

    Adenipekun, Eyitayo O; Jackson, Charlene R; Oluwadun, Afolabi; Iwalokun, Bamidele A; Frye, Jonathan G; Barrett, John B; Hiott, Lari M; Woodley, Tiffanie A

    2015-06-01

    Foodborne bacteria are often associated with human infections; these infections can become more complicated to treat if the bacteria are also resistant to antimicrobials. In this study, prevalence, antimicrobial resistance, and genetic relatedness of Escherichia coli among food producing animals from Lagos, Nigeria, was investigated. From December 2012 to June 2013, E. coli were isolated from fecal samples of healthy cattle, chicken, and swine. Antimicrobial susceptibility testing against 22 antimicrobials was performed using broth microdilution with the Sensititre™ system. Clonal types were determined by pulsed-field gel electrophoresis (PFGE). From the analysis, 211/238 (88.7%), 170/210 (81%), and 136/152 (89.5%) samples from cattle, chicken, and swine, respectively, were positive for E. coli. A subset of those isolates (n=211) selected based on β-lactamase production was chosen for further study. Overall, E. coli exhibited the highest resistance to tetracycline (124/211; 58.8%), trimethoprim/sulfamethoxazole (84/211; 39.8%), and ampicillin (72/211; 34.1%). Approximately 40% of the isolates were pan-susceptible, and none of the isolates were resistant to amikacin, cefepime, ceftazidime, ertapenem, meropenem, or tigecycline. Among the resistant isolates, 28 different resistance patterns were observed; 26 of those were characterized as multi-drug resistant (MDR; resistance to ≥2 antimicrobials). One isolate was resistant to 13 different antimicrobials representing five different antimicrobial classes. Using PFGE, MDR E. coli were genetically diverse and overall did not group based on source; identical PFGE patterns were detected among isolates from different sources. These results suggest that isolates cannot be attributed to specific sources, and some may be present across all of the sources. Results from this study indicate that food-producing animals in Nigeria are a reservoir of MDR E. coli that may be transferred to humans via the food chain. PMID

  15. Diversity of Plasmids and Antimicrobial Resistance Genes in Multidrug-Resistant Escherichia coli Isolated from Healthy Companion Animals.

    Science.gov (United States)

    Jackson, C R; Davis, J A; Frye, J G; Barrett, J B; Hiott, L M

    2015-09-01

    The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of genetic elements in antimicrobial resistant Escherichia coli from healthy companion animals. In our previous study, from May to August, 2007, healthy companion animals (155 dogs and 121 cats) from three veterinary clinics in the Athens, GA, USA area were sampled and multidrug-resistant E. coli (n = 36; MDR, resistance to ≥ 2 antimicrobial classes) were obtained. Of the 25 different plasmid replicon types tested by PCR, at least one plasmid replicon type was detected in 94% (34/36) of the MDR E. coli; four isolates contained as many as five different plasmid replicons. Nine replicon types (FIA, FIB, FII, I2, A/C, U, P, I1 and HI2) were identified with FIB, FII, I2 as the most common pattern. The presence of class I integrons (intI) was detected in 61% (22/36) of the isolates with eight isolates containing aminoglycoside- and/or trimethoprim-resistance genes in the variable cassette region of intI. Microarray analysis of a subset of the MDR E. coli (n = 9) identified the presence of genes conferring resistance to aminoglycosides (aac, aad, aph and strA/B), β-lactams (ampC, cmy, tem and vim), chloramphenicol (cat), sulfonamides (sulI and sulII), tetracycline [tet(A), tet(B), tet(C), tet(D) and regulator, tetR] and trimethoprim (dfrA). Antimicrobial resistance to eight antimicrobials (ampicillin, cefoxitin, ceftiofur, amoxicillin/clavulanic acid, streptomycin, gentamicin, sulfisoxazole and trimethoprim-sulfamethoxazole) and five plasmid replicons (FIA, FIB, FII, I1 and I2) were transferred via conjugation. The presence of antimicrobial resistance genes, intI and transferable plasmid replicons indicate that E. coli from companion animals may play an important role in the

  16. Prevalence and antimicrobial susceptibility pattern of methicillin resistant Staphylococcus aureus isolates from Trinidad & Tobago

    Directory of Open Access Journals (Sweden)

    Monteil Michele

    2006-07-01

    Full Text Available Abstract Background Methicillin-resistant Staphylococcus aureus (MRSA has become increasingly prevalent worldwide since it was first reported in a British hospital. The prevalence however, varies markedly in hospitals in the same country, and from one country to another. We therefore sought to document comprehensively the prevalence and antimicrobial susceptibility pattern of MRSA isolates in Trinidad and Tobago. Methods All Staphylococcus aureus isolates encountered in routine clinical specimens received at major hospitals in the country between 2000 and 2001 were identified morphologically and biochemically by standard laboratory procedures including latex agglutination test (Staphaurex Plus; Murex Diagnostics Ltd; Dartford, England; tube coagulase test with rabbit plasma (Becton, Dickinson & Co; Sparks, MD, USA, and DNase test using DNase agar (Oxoid Ltd; Basingstoke, Hampshire, England. MRSA screening was performed using Mueller-Hinton agar containing 6 μg oxacillin and 4% NaCl, latex agglutination test (Denka Seiken Co. Ltd, Tokyo, Japan and E-test system (AB Biodisk, Solna, Sweden. Susceptibility to antimicrobial agents was determined by the modified Kirby Bauer disc diffusion method while methicillin MICs were determined with E-test system. Results Of 1,912 S. aureus isolates received, 12.8% were methicillin (oxacillin resistant. Majority of the isolates were recovered from wound swabs (86.9% and the least in urine (0.4% specimens. Highest number of isolates was encountered in the surgical (62.3% and the least from obstetrics and gynaecology (1.6% facilities respectively. Large proportions of methicillin sensitive isolates are >85% sensitive to commonly used and available antimicrobials in the country. All MRSA isolates were resistant to ceftriaxone, erythromycin, gentamicin and penicillin but were 100% sensitive to vancomycin, rifampin and chloramphenicol. Conclusion There is a progressive increase in MRSA prevalence in the country but

  17. Longitudinal surveillance of outpatient β-lactam antimicrobial use in Canada, 1995 to 2010

    Directory of Open Access Journals (Sweden)

    Shiona K Glass-Kaastra

    2014-01-01

    Full Text Available INTRODUCTION: β-lactam antimicrobials are the most commonly prescribed group of antimicrobials in Canada, and are categorized by the WHO as critically and highly important antimicrobials for human medicine. Because antimicrobial use is commonly associated with the development of antimicrobial resistance, monitoring the volume and patterns of use of these agents is highly important.

  18. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    Science.gov (United States)

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  19. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    International Nuclear Information System (INIS)

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08–5.30 mg cadmium, 1.1–32.0 mg chrome, 22.4–3387.6 mg copper, <2.0–26.7 mg lead, <0.01–0.11 mg mercury, 3.1–97.3 mg nickel and 93.0–8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against β-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against β-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  20. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mueller, Christa [Institute for Agroecology, Organic Farming and Soil Protection, Bavarian State Research Center for Agriculture (LfL), Lange Point 12, 85354 Freising (Germany); Harms, Katrin S. [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mikolajewski, Sabine [Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 4, 85354 Freising (Germany); Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany)

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  1. Antimicrobial Resistance Expressed by Neisseria gonorrhoeae: A Major Global Public Health Problem in the 21st Century.

    Science.gov (United States)

    Unemo, Magnus; Del Rio, Carlos; Shafer, William M

    2016-06-01

    Neisseria gonorrhoeae is a strictly human pathogen that is typically transmitted by sexual contact. The associated disease gonorrhea has plagued humankind for thousands of years, with a current estimated incidence of 78 million cases per year. Advances in antimicrobial discovery in the 1920s and 1930s leading to the discovery of sulfonamides and penicillin begun the era of effective antimicrobial treatment of gonorrhea. Unfortunately, the gonococcus developed decreased susceptibility or even resistance to these initially employed antibiotics, a trend that continued over subsequent decades with each new antibiotic that was brought into clinical practice. As this pattern of resistance has continued into the 21st century, there is now reason for great concern, especially in an era when few new antibiotics have prospects for use as treatment of gonorrhea. Here, we review the history of gonorrhea treatment regimens and gonococcal resistance to antibiotics, the mechanisms of resistance, resistance monitoring schemes that exist in different international settings, global responses to the challenge of resistance, and prospects for future treatment regimens in the 21st century. PMID:27337478

  2. Diversity of antimicrobial resistance and virulence genes in methicillin-resistant non-Staphylococcus aureus staphylococci from veal calves.

    Science.gov (United States)

    Argudín, M Angeles; Vanderhaeghen, Wannes; Butaye, Patrick

    2015-04-01

    In this study we determined whether methicillin-resistant non-Staphylococcus aureus (MRNAS) from veal calves may be a potential reservoir of antimicrobial-resistance and virulence genes. Fifty-eight MRNAS were studied by means of DNA-microarray and PCR for detection of antimicrobial resistance and virulence genes. The isolates carried a variety of antimicrobial-resistance genes [aacA-aphD, aadD, aph3, aadE, sat, spc, ampA, erm(A), erm(B), erm(C), erm(F), erm(T), lnu(A), msr(A)-msr(B), vga(A), mph(C), tet(K), tet(M), tet(L), cat, fexA, dfrA, dfrD, dfrG, dfrK, cfr, fusB, fosB, qacA, qacC, merA-merB]. Some isolates carried resistance genes without showing the corresponding resistance phenotype. Most MRNAS carried typical S. aureus virulence factors like proteases (sspP) and enterotoxins (seg) genes. Most Staphylococcus epidermidis isolates carried the arginine catabolic element, and nearly 40% of the Staphylococcus sciuri isolates carried leukocidins, and/or fibronectin-binding protein genes. MRNAS were highly multi-resistant and represent an important reservoir of antimicrobial resistance and virulence genes. PMID:25637268

  3. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Science.gov (United States)

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  4. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Amber Farooqui

    Full Text Available Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  5. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Science.gov (United States)

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens. PMID:25719410

  6. Plant-derived antimicrobial agents and their synergistic interaction against drug-sensitive and -resistant pathogens

    OpenAIRE

    Mulyaningsih, Sri

    2010-01-01

    Resistance toward antibiotics has become a problem on a global scale. Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE) are a major cause of morbidity and mortality in hospitalized patients. To overcome resistance, many antimicrobial agents have been investigated and Traditional Chinese Medicinal (TCM) plants were also examined as source of alternative agents. Eucalyptus globulus Labill (Myrtaceae) was the most active plant among the 84 T...

  7. Development of a DNA microarray to detect antimicrobial resistance genes identified in the national center for biotechnology information database

    Science.gov (United States)

    High density genotyping techniques are needed for investigating antimicrobial resistance especially in the case of multi-drug resistant (MDR) isolates. To achieve this all antimicrobial resistance genes in the NCBI Genbank database were identified by key word searches of sequence annotations and the...

  8. The prevalence of antimicrobial resistance in clinical isolates from Gulf Corporation Council countries

    Directory of Open Access Journals (Sweden)

    Aly Mahmoud

    2012-07-01

    Full Text Available Abstract Background The burden of antimicrobial resistance worldwide is substantial and is likely to grow. Many factors play a role in the emergence of resistance. These resistance mechanisms may be encoded on transferable genes, which facilitate the spread of resistance between bacterial strains of the same and/or different species. Other resistance mechanisms may be due to alterations in the chromosomal DNA which enables the bacteria to withstand the environment and multiply. Many, if not most, of the Gulf Corporation Council (GCC countries do not have clear guidelines for antimicrobial use, and lack policies for restricting and auditing antimicrobial prescriptions. Objective The aim of this study is to review the prevalence of antibiotic resistance in GCC countries and explore the reasons for antibiotic resistance in the region. Methodology The PubMed database was searched using the following key words: antimicrobial resistance, antibiotic stewardship, prevalence, epidemiology, mechanism of resistance, and GCC country (Saudi Arabia, Qatar, Bahrain, Kuwait, Oman, and United Arab Emirates. Results From January1990 through April 2011, there were 45 articles published reviewing antibiotic resistance in the GCC countries. Among all the GCC countries, 37,295 bacterial isolates were studied for antimicrobial resistance. The most prevalent microorganism was Escherichia coli (10,073/44%, followed by Klebsiella pneumoniae (4,709/20%, Pseudomonas aeruginosa (4,287/18.7%, MRSA (1,216/5.4%, Acinetobacter (1,061/5%, with C. difficile and Enterococcus representing less than 1%. Conclusion In the last 2 decades, E. coli followed by Klebsiella pneumoniae were the most prevalent reported microorganisms by GCC countries with resistance data.

  9. Antimicrobial resistance programs in canada 1995-2010: a critical evaluation

    Directory of Open Access Journals (Sweden)

    Conly John M

    2012-02-01

    Full Text Available Abstract Background In Canada, systematic efforts for controlling antibiotic resistance began in 1997 following a national Consensus Conference. The Canadian strategy produced 27 recommendations, one of which was the formation of the Canadian Committee on Antibiotic Resistance (CCAR. In addition several other organizations began working on a national or provincial basis over the ensuing years on one or more of the 3 identified core areas of the strategy. Critical evaluation of the major programs within Canada which focused on antimicrobial resistance and the identified core components has not been previously conducted. Findings Data was collected from multiple sources to determine the components of four major AMR programs that were considered national based on their scope or in the delivery of their mandates. Assessment of program components was adapted from the report from the International Forum on Antibiotic Resistance colloquium. Most of the programs used similar tools but only the Do Bugs Need Drugs Program (DBND had components directed towards day cares and schools. Surveillance programs for antimicrobial resistant pathogens have limitations and/or significant sources of bias. Overall, there has been a 25.3% decrease in oral antimicrobial prescriptions in Canada since 1995, mainly due to decreases in β lactams, sulphonamides and tetracyclines in temporal association with multiple programs with the most comprehensive and sustained national programs being CCAR and DBND. Conclusions Although there has been a substantial decrease in oral antimicrobial prescriptions in Canada since 1995, there remains a lack of leadership and co-ordination of antimicrobial resistance activities.

  10. Antimicrobial resistance in eight US hospitals along the US-Mexico border, 2000-2006.

    Science.gov (United States)

    Benoit, S R; Ellingson, K D; Waterman, S H; Pearson, M L

    2014-11-01

    Antimicrobial resistance (AR) is a growing problem worldwide and international travel, cross-border migration, and antimicrobial use may contribute to the introduction or emergence of AR. We examined AR rates and trends along the US-Mexico border by analysing microbiology data from eight US hospitals in three states bordering Mexico. Microbiology data were ascertained for the years 2000-2006 and for select healthcare and community pathogens including, three Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and three Gram-positive (Staphylococcus aureus, Enterococcus, Streptococcus pneumoniae) pathogens and 10 antimicrobial-pathogen combinations. Resistance was highest in S. aureus (oxacillin resistance 45·7%), P. aeruginosa (quinolone resistance 22·3%), and E. coli (quinolone resistance 15·6%); six (60%) of the 10 antimicrobial-pathogen combinations studied had a significantly increasing trend in resistance over the study period. Potential contributing factors in the hospital and community such as infection control practices and antimicrobial use (prescription and non-prescription) should be explored further in the US-Mexico border region.

  11. The impact of an antimicrobial stewardship programme on the use of antimicrobials and the evolution of drug resistance.

    Science.gov (United States)

    Del Arco, A; Tortajada, B; de la Torre, J; Olalla, J; Prada, J L; Fernández, F; Rivas, F; García-Alegría, J; Faus, V; Montiel, N

    2015-02-01

    Misuse of antibiotics can provoke increased bacterial resistance. There are no immediate prospects of any new broad-spectrum antibiotics, especially any with activity against enterobacteria, coming onto the market. Therefore, programmes should be implemented to optimise antimicrobial therapy. In a quasi-experimental study, the results for the pre-intervention year were compared with those for the 3 years following the application of an antimicrobial stewardship programme. We describe 862 interventions carried out as part of the stewardship programme at the Hospital Costa del Sol from 2009 to 2011. We examined the compliance of the empirical antimicrobial treatment with the programme recommendations and the treatment optimisation achieved by reducing the antibiotic spectrum and adjusting the dose, dosing interval and duration of treatment. In addition, we analysed the evolution of the sensitivity profile of the principal microorganisms and the financial savings achieved. 93 % of the treatment recommendations were accepted. The treatment actions taken were to corroborate the empirical treatment (46 % in 2009 and 31 % in 2011) and to reduce the antimicrobial spectrum taking into account the antibiogram results (37 % in 2009 and 58 % in 2011). The main drugs assessed were imipenem/meropenem, used in 38.6 % of the cases, and cefepime (20.1 %). The sensitivity profile of imipenem against Pseudomonas aeruginosa increased by 10 % in 2011. Savings in annual drug spending (direct costs) of 30,000 Euros were obtained. Stewardship programmes are useful tools for optimising antimicrobial therapy. They may contribute to preventing increased bacterial resistance and to reducing the long-term financial cost of antibiotic treatment.

  12. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo;

    2016-01-01

    Background: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have...... generated by a mathematical model of the competitive growth of multiple strains of Escherichia coli.Results: Simulation studies showed that sequential use of tetracycline and ampicillin reduced the level of double resistance, when compared to the combination treatment. The effect of the cycling frequency...... frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes....

  13. The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria

    DEFF Research Database (Denmark)

    Guardabassi, L.; Wong, Danilo Lo Fo; Dalsgaard, A.

    2002-01-01

    The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria were investigated in two large-scale municipal treatment plants during a period of six months. Total and relative numbers of resistant bacteria were determined in raw sewage, treated sewage and anae...

  14. Proteomics as the final step in the functional metagenomics study of antimicrobial resistance

    Directory of Open Access Journals (Sweden)

    Fiona eFouhy

    2015-03-01

    Full Text Available The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the chromosomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments.

  15. Patterns of antimicrobial resistance in pathogenic Escherichia coli isolates from cases of calf enteritis during the spring-calving season.

    Science.gov (United States)

    Gibbons, James F; Boland, Fiona; Buckley, James F; Butler, Francis; Egan, John; Fanning, Séamus; Markey, Bryan K; Leonard, Finola C

    2014-05-14

    Neonatal enteritis is a common condition of young calves and can be caused by pathogenic strains of Escherichia coli. We hypothesised that on-farm antimicrobial use would result in an increased frequency of resistance in these strains during the calving season. We also sought to determine if the frequency of resistance reflected on-farm antimicrobial use. Faecal samples were collected from cases of calf enteritis on 14 spring-calving dairy farms during two 3 week periods: Period 1 - February 11th through March 2nd 2008 and Period 2 - April 14th through May 5th 2008. E. coli were cultured from these samples, pathogenic strains were identified and antimicrobial susceptibility testing was carried out on these pathogenic isolates. Antimicrobial prescribing data were collected from each farm for the previous 12 months as an indicator of antimicrobial use. The correlation between antimicrobial use and resistance was assessed using Spearman's correlation coefficient. Logistic regression analysis was used to investigate the relationship between resistance, sampling period and pathotype. Penicillins and aminopenicillins, streptomycin, and tetracyclines were the most frequently prescribed antimicrobials and the greatest frequencies of resistance were detected to these 3 antimicrobial classes. A strong correlation (ρ=0.879) was observed between overall antimicrobial use and frequencies of antimicrobial resistance on farms. Sampling period was significant in the regression model for ampicillin resistance while pathotype was significant in the models for streptomycin, tetracycline and trimethoprim/sulphamethoxazole resistance. The frequencies of resistance observed have implications for veterinary therapeutics and prudent antimicrobial use. Resistance did not increase during the calving season and factors other than antimicrobial use, such as calf age and bacterial pathotype, may influence the occurrence of resistance in pathogenic E. coli.

  16. Bacterial flora and antimicrobial resistance in raw frozen cultured seafood imported to Denmark.

    Science.gov (United States)

    Noor Uddin, Gazi M; Larsen, Marianne Halberg; Guardabassi, Luca; Dalsgaard, Anders

    2013-03-01

    Intensified aquaculture includes the use of antimicrobials for disease control. In contrast to the situation in livestock, Escherichia coli and enterococci are not part of the normal gastrointestinal flora of fish and shrimp and therefore not suitable indicators of antimicrobial resistance in seafood. In this study, the diversity and phenotypic characteristics of the bacterial flora in raw frozen cultured and wild-caught shrimp and fish were evaluated to identify potential indicators of antimicrobial resistance. The bacterial flora cultured on various agar media at different temperatures yielded total viable counts of 4.0 × 10(4) to 3.0 × 10(5) CFU g(-1). Bacterial diversity was indicated by 16S rRNA sequence analysis of 84 isolates representing different colony types; 24 genera and 51 species were identified. Pseudomonas spp. (23% of isolates), Psychrobacter spp. (17%), Serratia spp. (13%), Exiguobacterium spp. (7%), Staphylococcus spp. (6%), and Micrococcus spp. (6%) dominated. Disk susceptibility testing of 39 bacterial isolates to 11 antimicrobials revealed resistance to ampicillin, amoxicillin-clavulanic acid, erythromycin, and third generation cephalosporins. Resistance to third generation cephalosporins was found in Pseudomonas, a genus naturally resistant to most β-lactam antibiotics, and in Staphylococcus hominis. Half of the isolates were susceptible to all antimicrobials tested. Results indicate that identification of a single bacterial resistance indicator naturally present in seafood at point of harvest is unlikely. The bacterial flora found likely represents a processing rather than a raw fish flora because of repeated exposure of raw material to water during processing. Methods and appropriate indicators, such as quantitative PCR of resistance genes, are needed to determine how antimicrobials used in aquaculture affect resistance of bacteria in retailed products.

  17. Antimicrobial-resistant enterococci in animals and meat: a human health hazard?

    Science.gov (United States)

    Hammerum, Anette M; Lester, Camilla H; Heuer, Ole E

    2010-10-01

    Enterococcus faecium and Enterococcus faecalis belong to the gastrointestinal flora of humans and animals. Although normally regarded harmless commensals, enterococci may cause a range of different infections in humans, including urinary tract infections, sepsis, and endocarditis. The use of avoparcin, gentamicin, and virginiamycin for growth promotion and therapy in food animals has lead to the emergence of vancomycin- and gentamicin-resistant enterococci and quinupristin/dalfopristin-resistant E. faecium in animals and meat. This implies a potential risk for transfer of resistance genes or resistant bacteria from food animals to humans. The genes encoding resistance to vancomycin, gentamicin, and quinupristin/dalfopristin have been found in E. faecium of human and animal origin; meanwhile, certain clones of E. faecium are found more frequently in samples from human patients, while other clones predominate in certain animal species. This may suggest that antimicrobial-resistant E. faecium from animals could be regarded less hazardous to humans; however, due to their excellent ability to acquire and transfer resistance genes, E. faecium of animal origin may act as donors of antimicrobial resistance genes for other more virulent enterococci. For E. faecalis, the situation appears different, as similar clones of, for example, vancomycin- and gentamicin-resistant E. faecalis have been obtained from animals and from human patients. Continuous surveillance of antimicrobial resistance in enterococci from humans and animals is essential to follow trends and detect emerging resistance. PMID:20578915

  18. New antimicrobial contact catalyst killing antibiotic resistant clinical and waterborne pathogens

    International Nuclear Information System (INIS)

    Microbial growth on medical and technical devices is a big health issue, particularly when microorganisms aggregate to form biofilms. Moreover, the occurrence of antibiotic-resistant bacteria in the clinical environment is dramatically growing, making treatment of bacterial infections very challenging. In search of an alternative, we studied a novel antimicrobial surface coating based on micro galvanic elements formed by silver and ruthenium with surface catalytic properties. The antimicrobial coating efficiently inhibited the growth of the nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium as demonstrated by the growth inhibition on agar surface and in biofilms of antibiotic resistant clinical E. faecalis, E. faecium, and S. aureus isolates. It also strongly reduced the growth of Legionella in a drinking water pipeline and of Escherichia coli in urine. We postulate a mode of action of the antimicrobial material, which is independent of the release of silver ions. Thus, the novel antimicrobial coating could represent an alternative to combat microbial growth avoiding the toxic side effects of high levels of silver ions on eukaryotic cells. - Highlights: • The novel antimicrobial inhibits growth of clinical staphylococci and enterococci. • The novel antimicrobial inhibits growth of Legionella in drinking water. • A putative mode of action of the antimicrobial coating is presented

  19. New antimicrobial contact catalyst killing antibiotic resistant clinical and waterborne pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Guridi, A. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Diederich, A.-K. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Aguila-Arcos, S.; Garcia-Moreno, M. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Blasi, R.; Broszat, M. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Schmieder, W.; Clauss-Lendzian, E. [Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Sakinc-Gueler, T. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Andrade, R. [Advanced Research Facilities (SGIker), University of the Basque Country, UPV/EHU, 48940 Leioa (Spain); Alkorta, I. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Meyer, C.; Landau, U. [Largentec GmbH, Am Waldhaus 32, 14129 Berlin (Germany); Grohmann, E., E-mail: elisabeth.grohmann@googlemail.com [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany)

    2015-05-01

    Microbial growth on medical and technical devices is a big health issue, particularly when microorganisms aggregate to form biofilms. Moreover, the occurrence of antibiotic-resistant bacteria in the clinical environment is dramatically growing, making treatment of bacterial infections very challenging. In search of an alternative, we studied a novel antimicrobial surface coating based on micro galvanic elements formed by silver and ruthenium with surface catalytic properties. The antimicrobial coating efficiently inhibited the growth of the nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium as demonstrated by the growth inhibition on agar surface and in biofilms of antibiotic resistant clinical E. faecalis, E. faecium, and S. aureus isolates. It also strongly reduced the growth of Legionella in a drinking water pipeline and of Escherichia coli in urine. We postulate a mode of action of the antimicrobial material, which is independent of the release of silver ions. Thus, the novel antimicrobial coating could represent an alternative to combat microbial growth avoiding the toxic side effects of high levels of silver ions on eukaryotic cells. - Highlights: • The novel antimicrobial inhibits growth of clinical staphylococci and enterococci. • The novel antimicrobial inhibits growth of Legionella in drinking water. • A putative mode of action of the antimicrobial coating is presented.

  20. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium.

    OpenAIRE

    Parra-Lopez, C; Baer, M. T.; Groisman, E A

    1993-01-01

    The innate immunity of vertebrates and invertebrates to microbial infection is mediated in part by small cationic peptides with antimicrobial activity. Successful pathogens have evolved mechanisms to withstand the antibiotic activity of these molecules. We have isolated a set of genes from Salmonella typhimurium which are required for virulence and resistance to the antimicrobial peptides melittin and protamine. Sequence analysis of a 5.7 kb segment from the wild-type plasmid conferring resis...

  1. Impact of media: self-medication and the rising problem of antimicrobial resistance

    OpenAIRE

    Manali M Mahajan; Sujata Dudhgaonkar

    2014-01-01

    Antimicrobial agents (AMAs) are one of the most commonly used as well as misused drugs. Antimicrobial resistance is an important growing global health issue which needs urgent addressal. Self-medication involves the use of medicinal products by the patient to treat self-recognized disorders, symptoms, recurrent diseases, or minor health problems. Medicines for self-medication are often called over the counter (OTC) drugs, which are available without a doctor's prescription through pharmaci...

  2. In vitro antimicrobial activity of linezolid tested against vancomycin-resistant enterococci isolated in Brazilian hospitals

    OpenAIRE

    Reis Adriana O.; Cordeiro Julio C. R.; Machado Antonia M.O.; Sader Helio S.

    2001-01-01

    The emergence of vancomycin-resistant enterococci (VRE) has been described recently in Brazil. This is in contrast to the USA and Europe, where the VRE appeared in the late 1980s. The progressive increase in VRE isolation poses important problems in the antimicrobial therapy of nosocomial infections. Treatment options and effective antimicrobial agents for VRE are often limited and the possibility of transfer of vancomycin genes to other Gram-positive microorganisms continues. In the search f...

  3. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens

    OpenAIRE

    Sambanthamoorthy, Karthik; Feng, Xiaorong; Patel, Ruchi; PATEL, Sneha; Paranavitana, Chrysanthi

    2014-01-01

    Background Biosurfactants (BS) are amphiphilic compounds produced by microbes, either on the cell surface or secreted extracellularly. BS exhibit strong antimicrobial and anti-adhesive properties, making them good candidates for applications used to combat infections. In this study, our goal was to assess the in vitro antimicrobial, anti-adhesive and anti-biofilm abilities of BS produced by Lactobacillus jensenii and Lactobacillus rhamnosus against clinical Multidrug Resistant (MDR) strains o...

  4. CNS SPECIES AND ANTIMICROBIAL RESISTANCE IN CLINICAL AND SUBCLINICAL BOVINE MASTITIS

    OpenAIRE

    Persson Waller, K.; Aspán, A; Nyman, A.; Persson, Y.; Grönlund Andersson, U.

    2011-01-01

    Abstract Coagulase-negative staphylococci (CNS) are often associated with bovine mastitis. Knowledge about the relative importance of specific CNS species in different types of mastitis, and differences in antimicrobial resistance among CNS species is, however, scarce. Therefore, the aims of this study were to compare prevalence and antimicrobial susceptibility of CNS species in clinical and subclinical mastitis using material from two national surveys. Overall, S. chromogenes and ...

  5. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    Science.gov (United States)

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria. PMID:27617798

  6. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat.

    Science.gov (United States)

    Bortolaia, V; Espinosa-Gongora, C; Guardabassi, L

    2016-02-01

    Enterococci and staphylococci are frequent contaminants on poultry meat. Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are also well-known aetiological agents of a wide variety of infections resulting in major healthcare costs. This review provides an overview of the human health risks associated with the occurrence of these opportunistic human pathogens on poultry meat with particular focus on the risk of food-borne transmission of antimicrobial resistance. In the absence of conclusive evidence of transmission, this risk was inferred using data from scientific articles and national reports on prevalence, bacterial load, antimicrobial resistance and clonal distribution of these three species on poultry meat. The risks associated with ingestion of antimicrobial-resistant enterococci of poultry origin comprise horizontal transfer of resistance genes and transmission of multidrug-resistant E. faecalis lineages such as sequence type ST16. Enterococcus faecium lineages occurring in poultry meat products are distantly related to those causing hospital-acquired infections but may act as donors of quinupristin/dalfopristin resistance and other resistance determinants of clinical interest to the human gut microbiota. Ingestion of poultry meat contaminated with S. aureus may lead to food poisoning. However, antimicrobial resistance in the toxin-producing strains does not have clinical implications because food poisoning is not managed by antimicrobial therapy. Recently methicillin-resistant S. aureus of livestock origin has been reported on poultry meat. In theory handling or ingestion of contaminated meat is a potential risk factor for colonization by methicillin-resistant S. aureus. However, this risk is presently regarded as negligible by public health authorities. PMID:26706616

  7. Prevalence and characterization of antimicrobial-resistant Escherichia coli isolated from conventional and organic vegetables.

    Science.gov (United States)

    Kim, Sara; Woo, Gun-Jo

    2014-10-01

    To compare the characteristics and to identify the epidemiological relationships of Escherichia coli isolated from organic and conventional vegetables, the antimicrobial resistance and genetic properties of E. coli were investigated from 2010 to 2011. E. coli was isolated from 1 of 111 (0.9%) organic vegetables and from 20 of 225 (8.9%) conventional vegetables. The majority of strains were isolated from the surrounding farming environment (n=27/150 vs. 49/97 in organic vs. conventional samples). The majority of the vegetable strains were isolated from the surrounding farming environments. E. coli isolated from organic vegetables showed very low antimicrobial resistance rates except for cephalothin, ranging from 0% to 17.9%, while the resistance rates to cephalothin (71%) were extremely high in both groups. E. coli isolates expressed various resistance genes, which most commonly included blaTEM, tet(A), strA, strB, and qnrS. However, none of the isolates harbored tet(D), tet(E), tet(K), tet(L), tet(M), or qnrA. The transferability of tet gene, tet(A), and tet(B) was identified in tetracycline-resistant E. coli, and the genetic relationship was confirmed in a few cases from different sources. With regard to the lower antimicrobial resistance found in organic produce, this production mode seems able to considerably reduce the selection of antimicrobial-resistant bacteria on vegetables. PMID:25140978

  8. Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host.

    Science.gov (United States)

    Dobson, Adam J; Purves, Joanne; Rolff, Jens

    2014-09-01

    Antimicrobial peptides (AMPs) have been proposed as new class of antimicrobial drugs, following the increasing prevalence of bacteria resistant to antibiotics. Synthetic AMPs are functional analogues of highly evolutionarily conserved immune effectors in animals and plants, produced in response to microbial infection. Therefore, the proposed therapeutic use of AMPs bears the risk of 'arming the enemy': bacteria that evolve resistance to AMPs may be cross-resistant to immune effectors (AMPs) in their hosts. We used a panel of populations of Staphylococcus aureus that were experimentally selected for resistance to a suite of individual AMPs and antibiotics to investigate the 'arming the enemy' hypothesis. We tested whether the selected strains showed higher survival in an insect model (Tenebrio molitor) and cross-resistance against other antimicrobials in vitro. A population selected for resistance to the antimicrobial peptide iseganan showed increased in vivo survival, but was not more virulent. We suggest that increased survival of AMP-resistant bacteria almost certainly poses problems to immune-compromised hosts.

  9. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne; Andersen, Jens Strodl; Aabo, Søren;

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from hum...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue.......We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...

  10. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne Nielsine; Andersen, Jens Strodl; Aabo, Søren;

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from hum...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue......We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...

  11. A new strategy to fight antimicrobial resistance: the revival of old antibiotics

    Directory of Open Access Journals (Sweden)

    Nadim eCassir

    2014-10-01

    Full Text Available The increasing prevalence of hospital- and community-acquired infections caused by multidrug-resistant bacterial pathogens is limiting the options for effective antibiotic therapy. Moreover, this alarming spread of antimicrobial resistance has not been paralleled by the development of novel antimicrobials. Resistance to the scarce new antibiotics is also emerging. In this context, the rational use of older antibiotics could represent an alternative for the treatment of multidrug-resistant bacterial pathogens. This strategy would help to optimize the armamentarium of antibiotics so as to preserve the effectiveness of new antibiotics and avoid the prescription of drugs known to favor the spread of resistance (i.e., quinolones. Furthermore, from a global economic perspective, this strategy could be useful in public health, given that several of these cheapest forgotten antibiotics are not available in many countries. We will review here the successful treatment of multidrug-resistant bacterial infections with old antibiotics and discuss their place in current practice.

  12. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England

    Directory of Open Access Journals (Sweden)

    Williams Nicola J

    2010-04-01

    Full Text Available Abstract Background Escherichia coli isolates of equine faecal origin were investigated for antibiotic resistance, resistance genes and their ability to perform horizontal transfer. Methods In total, 264 faecal samples were collected from 138 horses in hospital and community livery premises in northwest England, yielding 296 resistant E. coli isolates. Isolates were tested for susceptibility to antimicrobial drugs by disc diffusion and agar dilution methods in order to determine minimum inhibitory concentrations (MIC. PCR amplification was used to detect genes conferring resistance to: ampicillin (TEM and SHV beta-lactamase, chloramphenicol (catI, catII, catIII and cml, tetracycline (tetA, tetB, tetC, tetD, tet E and tetG, and trimethoprim (dfrA1, dfrA9, dfrA12, dfrA13, dfr7, and dfr17. Results The proportion of antibiotic resistant isolates, and multidrug resistant isolates (MDR was significantly higher in hospital samples compared to livery samples (MDR: 48% of hospital isolates; 12% of livery isolates, p dfr, TEM beta-lactamase, tet and cat, conferring resistance to trimethoprim, ampicillin, tetracycline and chloramphenicol, respectively. Within each antimicrobial resistance group, these genes occurred at frequencies of 93% (260/279, 91%, 86.8% and 73.5%, respectively; with 115/296 (38.8% found to be MDR isolates. Conjugation experiments were performed on selected isolates and MDR phenotypes were readily transferred. Conclusions Our findings demonstrate that E. coli of equine faecal origin are commonly resistant to antibiotics used in human and veterinary medicine. Furthermore, our results suggest that most antibiotic resistance observed in equine E. coli is encoded by well-known and well-characterized resistant genes common to E. coli from man and domestic animals. These data support the ongoing concern about antimicrobial resistance, MDR, antimicrobial use in veterinary medicine and the zoonotic risk that horses could potentially pose to

  13. Proteomics as the final step in the functional metagenomics study of antimicrobial resistance

    OpenAIRE

    Fouhy, Fiona; Stanton, Catherine; Cotter, Paul D.; Hill, Colin; Walsh, Fiona

    2015-01-01

    The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient...

  14. Impact of integrated fish farming on antimicrobial resistance in a pond environment

    DEFF Research Database (Denmark)

    Petersen, Andreas; Andersen, Jens Strodl; Kaewmak, T.;

    2002-01-01

    investigated the impact of integrated fish farming on the levels of antimicrobial-resistant bacteria in a pond environment. One integrated broiler chicken-fish farm was studied for 2 months immediately after the start of a new fish production cycle. A significant increase over time in the resistance to six......-resistant bacteria from animal manure. Potential risks to human health were not addressed in this study and remain to be elucidated....

  15. Molecular Characterization and Antimicrobial Susceptibility of Fluoroquinolone-Resistant or -Susceptible Streptococcus pneumoniae from Hong Kong

    OpenAIRE

    Morrissey, Ian; Farrell, David J.; Bakker, Sarah; Buckridge, Sylvie; Felmingham, David

    2003-01-01

    Fluoroquinolone resistance in Streptococcus pneumoniae isolated from Hong Kong as part of Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin 1999/2000 was found to be due to the spread of the Spain23F-1 clone (mainly a Spain23F-1-14 variant). All the isolates were multidrug resistant but were susceptible to quinupristin-dalfopristin, linezolid, and telithromycin. The Spain23F-1 clone also occurred among antimicrobial-susceptible isolates, which suggests th...

  16. spa typing and antimicrobial resistance of Staphylococcus aureus from healthy humans, pigs and dogs in Tanzania

    DEFF Research Database (Denmark)

    Katakweba, Abdul S.; Muhairwa, Amandus P.; Espinosa-Gongora, Carmen;

    2016-01-01

    from 100 humans, 100 pigs and 100 dogs in Morogoro Municipal. Each swab was enriched in Mueller Hinton broth with 6.5% NaCl and subcultured on chromogenic agar for S. aureus detection. Presumptive S. aureus colonies were confirmed to the species level by nuc PCR and analysed by spa typing....... Antimicrobial susceptibility patterns were determined by disc diffusion method. Results: S. aureus was isolated from 22 % of humans, 4 % of pigs and 11 % of dogs. A total of 21 spa types were identified: 13, 7 and 1 in human, dogs, and pigs, respectively. Three spa types (t314, t223 and t084) were shared...... between humans and dogs. A novel spa type (t10779) was identified in an isolate recovered from a colonized human. Antimicrobials tested revealed resistance to ampicillin in all isolates, moderate resistances to other antimicrobials with tetracycline resistance being the most frequent. Conclusion: S...

  17. Antimicrobial resistance of Staphylococcus species isolated from Lebanese dairy-based products.

    Science.gov (United States)

    Zouhairi, O; Saleh, I; Alwan, N; Toufeili, I; Barbour, E; Harakeh, S

    2012-12-04

    The study evaluated the antimicrobial resistance of molecularly characterized strains of Staphylococcus aureus and S. saprophyticus isolated from 3 Lebanese dairy-based food products that are sometimes consumed raw: kishk, shanklish and baladi cheese. Suspected Staphylococcus isolates were identified initially using standard biochemical tests, then strains that were confirmed by polymerase chain reaction (29 S. aureus and 17 S. saprophyticus) were evaluated for their susceptibility to different antimicrobials. The highest levels of contamination with staphylococci were in baladi cheese. Resistance rates ranged from 67% to gentamicin to 94% to oxacillin and clindamycin. The results suggest that these locally made dairy-based foods may act as vehicles for the transmission of antimicrobial-resistant Staphylococcus spp.

  18. Enteric bacterial pathogens in children with diarrhea in Niger: diversity and antimicrobial resistance.

    Directory of Open Access Journals (Sweden)

    Céline Langendorf

    Full Text Available Although rotavirus is the leading cause of severe diarrhea among children in sub-Saharan Africa, better knowledge of circulating enteric pathogenic bacteria and their antimicrobial resistance is crucial for prevention and treatment strategies.As a part of rotavirus gastroenteritis surveillance in Maradi, Niger, we performed stool culture on a sub-population of children under 5 with moderate-to-severe diarrhea between April 2010 and March 2012. Campylobacter, Shigella and Salmonella were sought with conventional culture and biochemical methods. Shigella and Salmonella were serotyped by slide agglutination. Enteropathogenic Escherichia coli (EPEC were screened by slide agglutination with EPEC O-typing antisera and confirmed by detection of virulence genes. Antimicrobial susceptibility was determined by disk diffusion. We enrolled 4020 children, including 230 with bloody diarrhea. At least one pathogenic bacterium was found in 28.0% of children with watery diarrhea and 42.2% with bloody diarrhea. Mixed infections were found in 10.3% of children. EPEC, Salmonella and Campylobacter spp. were similarly frequent in children with watery diarrhea (11.1%, 9.2% and 11.4% respectively and Shigella spp. were the most frequent among children with bloody diarrhea (22.1%. The most frequent Shigella serogroup was S. flexneri (69/122, 56.5%. The most frequent Salmonella serotypes were Typhimurimum (71/355, 20.0%, Enteritidis (56/355, 15.8% and Corvallis (46/355, 13.0%. The majority of putative EPEC isolates was confirmed to be EPEC (90/111, 81.1%. More than half of all Enterobacteriaceae were resistant to amoxicillin and co-trimoxazole. Around 13% (46/360 Salmonella exhibited an extended-spectrum beta-lactamase phenotype.This study provides updated information on enteric bacteria diversity and antibiotic resistance in the Sahel region, where such data are scarce. Whether they are or not the causative agent of diarrhea, bacterial infections and their antibiotic

  19. Phylogenetic analysis reveals common antimicrobial resistant Campylobacter coli population in antimicrobial-free (ABF and commercial swine systems.

    Directory of Open Access Journals (Sweden)

    Macarena P Quintana-Hayashi

    Full Text Available The objective of this study was to compare the population biology of antimicrobial resistant (AR Campylobacter coli isolated from swine reared in the conventional and antimicrobial-free (ABF swine production systems at farm, slaughter and environment. A total of 200 C. coli isolates selected from fecal, environmental, and carcass samples of ABF (n = 100 and conventional (n = 100 swine production systems were typed by multilocus sequence typing (MLST. Sequence data from seven housekeeping genes was analyzed for the identification of allelic profiles, sequence types (STs and clonal complex determination. Phylogenetic trees were generated to establish the relationships between the genotyped isolates. A total of 51 STs were detected including two novel alleles (glnA 424 and glyA 464 and 14 novel STs reported for the first time. The majority of the C. coli isolates belonged to ST-854 (ABF: 31, conventional: 17, and were grouped in clonal complex ST-828 (ABF: 68%, conventional: 66%. The mean genetic diversity (H for the ABF (0.3963+/-0.0806 and conventional (0.4655+/-0.0714 systems were similar. The index of association (I(A(S for the ABF (I(A(S= 0.1513 and conventional (I(A(S = 0.0991 C. coli populations were close to linkage equilibrium, indicative of a freely recombining population. Identical STs were detected between the pigs and their environment both at farm and slaughter. A minimum spanning tree revealed the close clustering of C. coli STs that originated from swine and carcass with those from the environment. In conclusion, our study reveals a genotypic diverse C. coli population that shares a common ancestry in the conventional and ABF swine production systems. This could potentially explain the high prevalence of antimicrobial resistant C. coli in the ABF system in the absence of antimicrobial selection pressure.

  20. Phylogenetic analysis reveals common antimicrobial resistant Campylobacter coli population in antimicrobial-free (ABF) and commercial swine systems.

    Science.gov (United States)

    Quintana-Hayashi, Macarena P; Thakur, Siddhartha

    2012-01-01

    The objective of this study was to compare the population biology of antimicrobial resistant (AR) Campylobacter coli isolated from swine reared in the conventional and antimicrobial-free (ABF) swine production systems at farm, slaughter and environment. A total of 200 C. coli isolates selected from fecal, environmental, and carcass samples of ABF (n = 100) and conventional (n = 100) swine production systems were typed by multilocus sequence typing (MLST). Sequence data from seven housekeeping genes was analyzed for the identification of allelic profiles, sequence types (STs) and clonal complex determination. Phylogenetic trees were generated to establish the relationships between the genotyped isolates. A total of 51 STs were detected including two novel alleles (glnA 424 and glyA 464) and 14 novel STs reported for the first time. The majority of the C. coli isolates belonged to ST-854 (ABF: 31, conventional: 17), and were grouped in clonal complex ST-828 (ABF: 68%, conventional: 66%). The mean genetic diversity (H) for the ABF (0.3963+/-0.0806) and conventional (0.4655+/-0.0714) systems were similar. The index of association (I(A)(S)) for the ABF (I(A)(S)= 0.1513) and conventional (I(A)(S) = 0.0991) C. coli populations were close to linkage equilibrium, indicative of a freely recombining population. Identical STs were detected between the pigs and their environment both at farm and slaughter. A minimum spanning tree revealed the close clustering of C. coli STs that originated from swine and carcass with those from the environment. In conclusion, our study reveals a genotypic diverse C. coli population that shares a common ancestry in the conventional and ABF swine production systems. This could potentially explain the high prevalence of antimicrobial resistant C. coli in the ABF system in the absence of antimicrobial selection pressure. PMID:22984540

  1. Antimicrobial resistance, virulence determinants and genetic profiles of clinical and nonclinical Enterococcus cecorum from poultry.

    Science.gov (United States)

    Jackson, C R; Kariyawasam, S; Borst, L B; Frye, J G; Barrett, J B; Hiott, L M; Woodley, T A

    2015-02-01

    Enterococcus cecorum has been implicated as a possible cause of disease in poultry. However, the characteristics that contribute to pathogenesis of Ent. cecorum in poultry have not been defined. In this study, Ent. cecorum from carcass rinsates (n = 75) and diseased broilers and broiler breeders (n = 30) were compared based upon antimicrobial resistance phenotype, the presence of virulence determinants and genetic relatedness using pulsed-field gel electrophoresis (PFGE). Of the 16 antimicrobials tested, Ent. cecorum from carcass rinsates and clinical cases were resistant to ten and six of the antimicrobials, respectively. The majority of Ent. cecorum from carcass rinsates was resistant to lincomycin (54/75; 72%) and tetracycline (46/75; 61.3%) while the highest level of resistance among clinical Ent. cecorum was to tetracycline (22/30; 73.3%) and erythromycin (11/30; 36.7%). Multidrug resistance (resistance to ≥2 antimicrobials) was identified in Ent. cecorum from carcass rinsates (53/75; 70.7%) and diseased poultry (18/30; 60%). Of the virulence determinants tested, efaAfm was present in almost all of the isolates (104/105; 99%). Using PFGE, the majority of clinical isolates clustered together; however, a few clinical isolates grouped with Ent. cecorum from carcass rinsates. These data suggest that distinguishing the two groups of isolates is difficult based upon the characterization criteria used.

  2. The Evolution of Antimicrobial Resistance in Respiratory Pathogens in Canada: What are the Clinical Consequences?

    Directory of Open Access Journals (Sweden)

    Donald E Low

    1998-01-01

    Full Text Available The use of antimicrobial agents has led to reductions in illnesses and deaths from a variety of infectious diseases. Antimicrobial resistance has followed the introduction of almost every new antimicrobial agent and is now emerging as an important public health problem, especially in respiratory tract pathogens in the community. During the past decade in Canada, a rapid and relentless increase in antimicrobial resistance in Streptococcus pneumoniae and Haemophilus inflluenzae has been witnessed. Adverse implications as a result of the treatment of an infection with an antibiotic to which the offending pathogen is resistant have been recognized in only a few infectious disease syndromes (eg. bacterial meningitis. More often, resistance in vitro does not result in resistance in vivo (eg, respiratory tract infections. Therefore, before recommendations regarding empirical or directed therapy are changed, it is essential that evidence to support those decisions is obtained. More important, the prevention and control of such resistance must be addressed by reducing the burden of antibiotic selective pressure by curtailing inappropriate antibiotic use.

  3. Multilocus sequence typing and antimicrobial resistance of Campylobacter jejuni isolated from dairy calves in Austria

    Directory of Open Access Journals (Sweden)

    Daniela eKlein-Jöbstl

    2016-02-01

    Full Text Available Human campylobacteriosis is primarily associated with poultry but also cattle. In this study, 55 Campylobacter jejuni strains isolated from 382 dairy calves’ feces were differentiated by multilocus sequence typing and tested for antimicrobial resistance. The most prevalent sequence type (ST was ST883 (20.0%, followed by ST48 (14.5%, and ST50 (9.1%. In contrast to ST48 and ST50, ST883 has rarely been described in cattle previously. Furthermore, risk factor analysis was performed for the presence of the most prevalent STs in these calves. Multiple regression analysis revealed that the type of farm (organic versus conventional and calf housing (place, and individual versus group were identified as significantly (p<0.05 associated with the presence of ST883 in calves, and ST50 was associated with calf diarrhea. Antimicrobial resistance was detected in 58.2% of the isolates. Most of the resistant isolates (81.3% were resistant to more than one antimicrobial. Most frequently, resistance to ciprofloxacin (49.1%, followed by nalidixic acid with (42.8%, and tetracycline (14.5% was observed. The results of the present study support the hypothesis that dairy calves may serve as a potential reservoir for Campylobacter jejuni and pose a risk for transmission, including antimicrobial resistant isolates to the environment and to humans.

  4. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa

    Directory of Open Access Journals (Sweden)

    Evelyn Madoroba

    2016-03-01

    Full Text Available Antimicrobial resistant Salmonella are among the leading causes of foodborne infections. Our aim was to determine Salmonella contamination during cattle slaughter in South African rural abattoirs (n = 23 and environmental samples. Furthermore, antimicrobial resistance patterns of the Salmonella isolates were determined. Samples of cattle faeces (n = 400, carcass sponges (n = 100, intestinal contents (n = 62, hides (n = 67, and water from the abattoirs (n = 75 were investigated for Salmonella species using microbiological techniques and species-specific polymerase chain reaction targeting the invA gene. In total 92 Salmonella species isolates were recovered. The Salmonella mean frequency of occurrence on hides, carcasses, and intestinal contents was 35.37% (n = 81. Eleven faecal samples (2.75% tested positive for Salmonella. The predominant serovar was Salmonella Enteritidis. Diverse serovars that were identified on carcasses were not necessarily found on the hides and intestinal contents. The inconsistent occurrence of the diverse Salmonella serovars on hides, carcasses, and intestinal contents implies that in addition to carriage on hides and in intestinal contents, other external factors also play an important role regarding carcass contamination. The 92 Salmonella were serotyped and tested for susceptibility towards the following antimicrobials: ampicillin, cefotaxime, enrofloxacin, kanamycin, and oxytetracycline using the disk diffusion method. Most Salmonella (n = 66; 71.7% isolates were resistant to at least one antimicrobial with highest resistance observed towards oxytetracycline (51.90%, which highlights the need for strict hygiene during slaughter and prudent antimicrobial use during animal production. In conclusion, cattle slaughtered in South African rural abattoirs harbour diverse Salmonella serovars that are resistant to antimicrobials, which could be a public health risk. The findings should assist policymakers with improving

  5. Coke fouling monitoring by electrical resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Bombardelli, Clovis; Mari, Livia Assis; Kalinowski, Hypolito Jose [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)

    2008-07-01

    An experimental method to simulate the growth of the coke fouling that occurs in the oil processing is proposed relating the thickness of the encrusted coke to its electrical resistivity. The authors suggest the use of the fouling electrical resistivity as a transducer element for determining its thickness. The sensor is basically two electrodes in an electrically isolated device where the inlay can happen in order to compose a purely resistive transducer. Such devices can be easily constructed in a simple and robust form with features capable to face the high temperatures and pressures found in relevant industrial processes. For validation, however, it is needed a relationship between the electrical resistivity and the fouling thickness, information not yet found in the literature. The present work experimentally simulates the growth of a layer of coke on an electrically insulating surface, equipped with electrodes at two extremities to measure the electrical resistivity during thermal cracking essays. The method is realized with a series of consecutive runs. The results correlate the mass of coke deposited and its electrical resistivity, and it can be used to validate the coke depositions monitoring employing the resistivity as a control parameter. (author)

  6. Antimicrobial resistance predicts death in Tanzanian children with bloodstream infections: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Msangi Viola

    2007-05-01

    Full Text Available Abstract Background Bloodstream infection is a common cause of hospitalization, morbidity and death in children. The impact of antimicrobial resistance and HIV infection on outcome is not firmly established. Methods We assessed the incidence of bloodstream infection and risk factors for fatal outcome in a prospective cohort study of 1828 consecutive admissions of children aged zero to seven years with signs of systemic infection. Blood was obtained for culture, malaria microscopy, HIV antibody test and, when necessary, HIV PCR. We recorded data on clinical features, underlying diseases, antimicrobial drug use and patients' outcome. Results The incidence of laboratory-confirmed bloodstream infection was 13.9% (255/1828 of admissions, despite two thirds of the study population having received antimicrobial therapy prior to blood culture. The most frequent isolates were klebsiella, salmonellae, Escherichia coli, enterococci and Staphylococcus aureus. Furthermore, 21.6% had malaria and 16.8% HIV infection. One third (34.9% of the children with laboratory-confirmed bloodstream infection died. The mortality rate from Gram-negative bloodstream infection (43.5% was more than double that of malaria (20.2% and Gram-positive bloodstream infection (16.7%. Significant risk factors for death by logistic regression modeling were inappropriate treatment due to antimicrobial resistance, HIV infection, other underlying infectious diseases, malnutrition and bloodstream infection caused by Enterobacteriaceae, other Gram-negatives and candida. Conclusion Bloodstream infection was less common than malaria, but caused more deaths. The frequent use of antimicrobials prior to blood culture may have hampered the detection of organisms susceptible to commonly used antimicrobials, including pneumococci, and thus the study probably underestimates the incidence of bloodstream infection. The finding that antimicrobial resistance, HIV-infection and malnutrition predict fatal

  7. Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002 – 2004: the ARBAO-II study

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Mevius, Dik J; Schroeter, Andreas;

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin - II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003-05. The aim of this project was to establish a program for the continuous monitoring of antimicrobial susceptibility...... of pathogenic and indicator bacteria from food animals using validated and harmonised methodologies. In this report the first data on the occurrence of antimicrobial resistance among bacteria causing infections in pigs are reported. Methods: Susceptibility data from 17,642 isolates of pathogens and indicator...... susceptible to all drugs tested with the exceptions of a low frequency of resistance to tetracycline and trimethoprim - sulphonamide. Data for S. suis were obtained from six countries. In general, a high level of resistance to tetracycline (48.0 - 92.0%) and erythromycin (29.1 - 75.0%) was observed in all...

  8. Antimicrobial Resistance Spread and the Role of Mobile Genetic Elements

    NARCIS (Netherlands)

    M.A. Khan (Mushtaq Ahmad)

    2010-01-01

    textabstractAlexander Fleming discovered the first antimicrobial agent, penicillin (a β-lactam), in 1928 in the mold Penicillium notatum. Penicillin was initially found to be active against staphylococcal strains, which at that time were a major source of infectious diseases. Indeed, the mortality r

  9. Emerging Infectious Diseases, Antimicrobial Resistance and Millennium Development Goals: Resolving the Challenges through One Health

    Directory of Open Access Journals (Sweden)

    G. V. Asokan

    2014-01-01

    Full Text Available Most emerging infectious diseases are zoonoses, which could severely hamper reaching the targets of millennium development goals (MDG. Five out of the total eight MDG’s are strongly associated with the Emerging Infectious Diseases (EIDs. Recent emergence and dissemination of drug-resistant pathogens has accelerated and prevent reaching the targets of MDG, with shrinking of therapeutic arsenal, mostly due to antimicrobial resistance (AMR. World Health Organization (WHO has identified AMR as 1 of the 3 greatest threats to global health. Until now, methicillin-resistant staphylococcus aureus (MRSA and vancomycin-resistant enterococci (VRE have been observed in hospital-acquired infections. In India, within a span of three years, New Delhi metallo-β-lactamase prevalence has risen from three percent in hospitals to twenty- fifty percent and is found to be colistin resistant as well. Routine use of antimicrobials in animal husbandry accounts for more than 50% in tonnage of all antimicrobial production to promote growth and prophylaxis. This has consequences to human health and environmental contamination with a profound impact on the environmental microbiome, resulting in resistance. Antibiotic development is now considered a global health crisis. The average time required to receive regulatory approval is 7.2 years. Moreover, the clinical approval success is only 16%. To overcome resistance in antimicrobials, intersectoral partnerships among medical, veterinary, and environmental disciplines, with specific epidemiological, diagnostic, and therapeutic approaches are needed. Joint efforts under “One Health”, beyond individual professional boundaries are required to stop antimicrobial resistance against zoonoses (EID and reach the MDG.

  10. Human health hazard from antimicrobial-resistant enterococci in animals and food

    DEFF Research Database (Denmark)

    Heuer, Ole Eske; Hammerum, Anette Marie; Collignon, P.;

    2006-01-01

    . The potential hazard to human health from antimicrobial-resistant enterococci in animals is questioned by some scientists because of evidence of host specificity of enterococci. Similarly, the occurrences of specific nosocomial clones of enterococci in hospitals have lead to the misconception that antimicrobial......-resistant animal enterococci should be disregarded as a human health hazard. On the basis of review of the literature, we find that neither the results provided by molecular typing that classify enterococci as host-specific organisms nor the occurrence of specific nosocomial clones of enterococci provide reasons...

  11. RETROSPECTIVE STUDY OF ANTIMICROBIAL RESIDUES AND RESISTANCE IN SWINE IN ABA ABIA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    P. NWIYI

    2014-05-01

    Full Text Available Antimicrobials are used by livestock farmers to prevent and control infection. Antimicrobials are also included at sub-therapeutic doses in animal feed as growth promoters and to improve feed efficiency in intensive farming. The aim of this study was to evaluate the antimicrobial residues and resistance that could arise due to antimicrobial use in swine. The study was carried out between September 10th and December 10th 2013 in some selected swine farms in Ogbor Hill water side in Aba, Abia state. The study involved visiting the various farms, evaluating the records of previous treatment. Also the state zonal veterinary clinics visited and record of farms was collected for analysis. From the result obtained, in raining season in a given year, the frequency of tetracycline usage recorded 83.3%, penicillin recorded 75.0%, while sulfonamide recorded 25.0%. Tylosin and ivermox were the least and recorded 8.4% usage each. The swine treatment was done by the farmers hence there was consistent over-dosage of antimicrobials to the pigs as the manufacture’s guide was not complied with. The report from the records showed that some of the pigs were slaughtered and sold in the market at any time without recourse to drug with-draw. This result could be one of the responsible reasons for antimicrobial residues and resistance in swine and indeed livestock.

  12. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Mevius, Dik J; Schroeter, Andreas;

    2008-01-01

    from 13 European countries. For Staphylococcus aureus from bovine mastitis major differences were apparent in the occurrence of resistance between countries and between the different antimicrobial agents tested. The highest frequency of resistance was observed for penicillin. For Mannheimia haemolytica...

  13. Understanding the contribution of environmental factors in the spread of antimicrobial resistance.

    Science.gov (United States)

    Fletcher, Stephanie

    2015-07-01

    The overuse and abuse of antibiotics have contributed to the global epidemic of antibiotic resistance. Current evidence suggests that widespread dependency on antibiotics and complex interactions between human health, animal husbandry and veterinary medicine, have contributed to the propagation and spread of resistant organisms. The lack of information on pathogens of major public health importance, limited surveillance, and paucity of standards for a harmonised and coordinated approach, further complicates the issue. Despite the widespread nature of antimicrobial resistance, limited focus has been placed on the role of environmental factors in propagating resistance. There are limited studies that examine the role of the environment, specifically water, sanitation and hygiene factors that contribute to the development of resistant pathogens. Understanding these elements is necessary to identify any modifiable interactions to reduce or interrupt the spread of resistance from the environment into clinical settings. This paper discusses some environmental issues that contribute to antimicrobial resistance, including soil related factors, animal husbandry and waste management, potable and wastewater, and food safety, with examples drawn mainly from the Asian region. The discussion concludes that some of the common issues are often overlooked and whilst there are numerous opportunities for environmental factors to contribute to the growing burden of antimicrobial resistance, a renewed focus on innovative and traditional environmental approaches is needed to tackle the problem. PMID:25921603

  14. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa.

    Science.gov (United States)

    Madoroba, Evelyn; Kapeta, Daniel; Gelaw, Awoke K

    2016-01-01

    Antimicrobial resistant Salmonella are among the leading causes of foodborne infections. Our aim was to determine Salmonella contamination during cattle slaughter in South African rural abattoirs (n = 23) and environmental samples. Furthermore, antimicrobial resistance patterns of the Salmonella isolates were determined. Samples of cattle faeces (n = 400), carcass sponges (n = 100), intestinal contents (n = 62), hides (n = 67), and water from the abattoirs (n = 75) were investigated for Salmonella species using microbiological techniques and species-specific polymerase chain reaction targeting the invA gene. In total 92 Salmonella species isolates were recovered. The Salmonella mean frequency of occurrence on hides, carcasses, and intestinal contents was 35.37% (n = 81). Eleven faecal samples (2.75%) tested positive for Salmonella. The predominant serovar was Salmonella Enteritidis. Diverse serovars that were identified on carcasses were not necessarily found on the hides and intestinal contents. The inconsistent occurrence of the diverse Salmonella serovars on hides, carcasses, and intestinal contents implies that in addition to carriage on hides and in intestinal contents, other external factors also play an important role regarding carcass contamination. The 92 Salmonella were serotyped and tested for susceptibility towards the following antimicrobials: ampicillin, cefotaxime, enrofloxacin, kanamycin, and oxytetracycline using the disk diffusion method. Most Salmonella (n = 66; 71.7%) isolates were resistant to at least one antimicrobial with highest resistance observed towards oxytetracycline (51.90%), which highlights the need for strict hygiene during slaughter and prudent antimicrobial use during animal production. In conclusion, cattle slaughtered in South African rural abattoirs harbour diverse Salmonella serovars that are resistant to antimicrobials, which could be a public health risk. The findings should assist policymakers with improving implementation

  15. Characterization of antimicrobial resistance in Salmonella enterica strains isolated from Brazilian poultry production.

    Science.gov (United States)

    Mattiello, Samara P; Drescher, Guilherme; Barth, Valdir C; Ferreira, Carlos A S; Oliveira, Sílvia D

    2015-11-01

    Antimicrobial resistance profiles and presence of resistance determinants and integrons were evaluated in Salmonella enterica strains from Brazilian poultry. The analysis of 203 isolates showed that those from the poultry environment (88 isolates) were significantly more resistant to antimicrobials than isolates from other sources, particularly those isolated from poultry by-product meal (106 isolates). Thirty-seven isolates were resistant to at least three antimicrobial classes. Class 1 integrons were detected in 26 isolates, and the analysis of the variable region between the 5' conserved segment (CS) and 3' CS of each class 1 integron-positive isolate showed that 13 contained a typical 3' CS and 14 contained an atypical 3' CS. One Salmonella Senftenberg isolate harbored two class 1 integrons, showing both typical and atypical 3' CSs. The highest percentage of resistance was found to sulfonamides, and sul genes were detected in the majority of the resistant isolates. Aminoglycoside resistance was detected in 50 isolates, and aadA and aadB were present in 28 and 32 isolates, respectively. In addition, strA and strB were detected in 78.1 and 65.6% isolates resistant to streptomycin, respectively. Twenty-one isolates presented reduced susceptibility to β-lactams and harbored bla(TEM), bla(CMY), and/or bla(CTX-M). Forty isolates showed reduced susceptibility to tetracycline, and most presented tet genes. These results highlight the importance of the environment as a reservoir of resistant Salmonella, which may enable the persistence of resistance determinants in the poultry production chain, contributing, therefore, to the debate regarding the impacts that antimicrobial use in animal production may exert in human health.

  16. Antimicrobial Resistance Profiles of Salmonella spp. from Agricultural Environments in Fruit Production Systems.

    Science.gov (United States)

    Gomba, Annancietar; Chidamba, Lizyben; Korsten, Lise

    2016-09-01

    Foodborne disease outbreaks involving fresh produce have increased in recent years. The risk of infection from contaminated food is worsened by the increased prevalence of antibiotic-resistant strains. This study evaluated the prevalence of antibiotic resistance in Salmonella isolates (n = 263) from agricultural production systems through to the final packed product. Salmonella isolates were preliminarily identified by matrix-assisted laser desorption ionization-time-of-flight mass spectroscopy (MALDI-TOF MS) and API 20E and identities confirmed by invA gene polymerase chain reaction. Antimicrobial susceptibility was performed with 15 antimicrobial agents using the Kirby-Bauer disk diffusion test. Of the 263 Salmonella isolates assessed, 59.3% were resistant to one or more antimicrobials. The most frequently detected resistance was against chloramphenicol and kanamycin (46.7%), trimethoprim-sulfamethoxazole (28%), and streptomycin (14%), and the less frequently detected resistance was toward ampicillin (1.14%), amikacin (0.76%), and amoxicillin-clavulanic acid (0.38%). Multiple antimicrobial resistance (MAR) (resistance to ≥3 antibiotics) was found in 48.7% (76/156) isolates. The most common MAR phenotype was to chloramphenicol and trimethoprim/sulfamethoxazole-kanamycin (43.6%). Resistance to chloramphenicol, kanamycin, or trimethoprim/sulfamethoxazole was only observed in MAR phenotypes. All isolates were susceptible to ceftiofur, cefoxitin, ceftriaxone, ciprofloxacin, nalidixic acid, gentamicin, and tetracycline. This study confirms the importance of fresh produce production environments as potential reservoirs and fresh produce as carriers of antibiotic-resistant Salmonella spp. with significant clinical importance. Further studies to evaluate the actual level of health risk from these pathogens should include characterization of the antibiotic resistance determinant genes among the isolates. PMID:27294335

  17. Clinical Impact of Antimicrobial Resistance in European Hospitals : Excess Mortality and Length of Hospital Stay Related to Methicillin-Resistant Staphylococcus aureus Bloodstream Infections

    NARCIS (Netherlands)

    de Kraker, Marlieke E. A.; Wolkewitz, Martin; Davey, Peter G.; Grundmann, Hajo

    2011-01-01

    Antimicrobial resistance is threatening the successful management of nosocomial infections worldwide. Despite the therapeutic limitations imposed by methicillin-resistant Staphylococcus aureus (MRSA), its clinical impact is still debated. The objective of this study was to estimate the excess mortal

  18. Bordetella pertussis lipid A glucosamine modification confers resistance to cationic antimicrobial peptides and increases resistance to outer membrane perturbation.

    Science.gov (United States)

    Shah, Nita R; Hancock, Robert E W; Fernandez, Rachel C

    2014-08-01

    Bordetella pertussis, the causative agent of whooping cough, has many strategies for evading the human immune system. Lipopolysaccharide (LPS) is an important Gram-negative bacterial surface structure that activates the immune system via Toll-like receptor 4 and enables susceptibility to cationic antimicrobial peptides (CAMPs). We show modification of the lipid A region of LPS with glucosamine increased resistance to numerous CAMPs, including LL-37. Furthermore, we demonstrate that this glucosamine modification increased resistance to outer membrane perturbation.

  19. MOLECULAR-PHYLOGENETIC CHARACTERIZATION AND ANTIMICROBIAL RESISTANCE OF Escherichia coli ISOLATED FROM GOATS WITH DIARRHEA

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeida Guimarães

    2015-10-01

    Full Text Available Neonatal diarrhea determines significant changes in feed conversion, causing productivity loss in caprine herds. The antimicrobial resistance in bacteria is characterized as an important public health issue; therefore, Escherichia coli may be characterized as an important pathogen due to expressing virulence mechanisms responsible for significant clinical conditions in humans and animals. The present study evaluated the presence of E. coli among 117 caprine fecal samples and analyzed the isolates for antimicrobial resistance. Suggestive colonies were submitted to biochemical screening followed by genotypic group determination and phylogenetic analysis; further, the samples were submitted to antimicrobials susceptibility test. E. coli, Salmonella spp, Shigella sonnei and Enterobacter aerogenes were identified. E. coli isolates were phylogenetically classified as B2 (9/39, D (19/39, B1 (7/39 e A (4/29 groups. The analysis of the isolates also revealed the presence of K99 (04/39 and Stx (02/39 virulence factors. Antimicrobial susceptibility test revealed sensitive isolates to Chloramphenicol, Streptomycin, Amoxicillin and Ciprofloxacin, being all resistant to Lincomycin, Vancomycin and Penicillin. The results support the need of establishing restricted protocols for antimicrobial use, a fundamental procedure for health improvement in Brazilian caprine herds.

  20. Trends in the resistance to antimicrobial agents of Streptococcus suis isolates from Denmark and Sweden.

    Science.gov (United States)

    Aarestrup, F M; Rasmussen, S R; Artursson, K; Jensen, N E

    1998-08-28

    This study was conducted to determine the MIC values of historical and contemporary Streptoccocus suis (serotypes 2 and 7) from Denmark and S. suis (serotype 2) from Sweden. A total of 52 isolates originating from 1967 through 1981 and 156 isolates from 1992 through 1997 in Denmark and 13 isolates from Sweden were examined for their MICs against 20 different antimicrobial agents. Most antimicrobials were active against most isolates. A frequent occurrence of resistance to sulphamethoxazole was observed, with most resistance among historic isolates of serotype 7 and least resistance among isolates from Sweden. A large number of the isolates was resistant to macrolides. However, all historic serotype 2 isolates from Denmark were susceptible, whereas 20.4% of the contemporary isolates were resistant. Among serotype 7 isolates 23.3% of the historic isolates were resistant to macrolides, whereas resistance was found in 44.8% of the contemporary isolates. All isolates from Sweden were susceptible to macrolides. Time-associated frequency of resistance to tetracycline was also found. Only a single historic isolate of serotype 2 was resistant to tetracycline, whereas 43.9% of the contemporary serotype 2 isolates and 15.5% of the contemporary serotype 7 isolates were resistant. Only one (7.7%) of the isolates from Sweden was resistant. The differences in resistance between historic and contemporary isolates from Denmark were statistically significant. This study demonstrated a significant serotype-associated difference in the susceptibility to macrolides and tetracycline and demonstrated that an increase in resistance among S. suis isolates has taken place during the last 15 years to the two most commonly used antimicrobial agents (tylosin and tetracycline) in pig production in Denmark. PMID:9810623

  1. Bacterial resistance to ciprofloxacin in Greece: results from the National Electronic Surveillance System. Greek Network for the Surveillance of Antimicrobial Resistance.

    OpenAIRE

    Vatopoulos, A. C.; Kalapothaki, V.; Legakis, N. J.

    1999-01-01

    According to 1997 susceptibility data from the National Electronic System for the Surveillance of Antimicrobial Resistance, Greece has high rates of ciprofloxacin resistance. For most species, the frequency of ciprofloxacin-resistant isolates (from highest to lowest, by patient setting) was as follows: intensive care unit > surgical > medical > outpatient. Most ciprofloxacin-resistant strains were multidrug resistant.

  2. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Voicu, Georgeta; Dogaru, Ionuţ; Meliţă, Daniela; Meştercă, Raluca; Spirescu, Vera; Stan, Eliza; Tote, Eliza [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Mogoantă, Laurenţiu [University of Medicine and Pharmacy of Craiova, Research Center for Microscopic Morphology and Immunology (Romania); Mogoşanu, George Dan [University of Medicine and Pharmacy of Craiova, Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Truşcă, Roxana [Metav SA-CD S.A. (Romania); Vasile, Eugeniu [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Iordache, Florin [Institute of Cellular Biology and Pathology of Romanian Academy, “Nicolae Simionescu”, Department of Fetal and Adult Stem Cell Therapy (Romania); Chifiriuc, Mariana-Carmen [University of Bucharest, Microbiology Department, Faculty of Biology (Romania); Holban, Alina Maria [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania)

    2015-05-15

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET–TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications.

  3. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    International Nuclear Information System (INIS)

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET–TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications

  4. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Palloma Rodrigues Marinho

    2009-08-01

    Full Text Available Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3 isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  5. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus.

    Science.gov (United States)

    Mohamed, Mohamed F; Abdelkhalek, Ahmed; Seleem, Mohamed N

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections. PMID:27405275

  6. Antimicrobial resistance and virulence factors in Escherichia coli from swedish dairy calves

    Directory of Open Access Journals (Sweden)

    de Verdier Kerstin

    2012-01-01

    Full Text Available Abstract Background In Sweden, knowledge about the role of enteropathogenic Escherichia coli in neonatal calf diarrhea and the occurrence of antimicrobial resistance in E. coli from young calves is largely unknown. This has therapeutic concern and such knowledge is also required for prudent use of antimicrobials. Methods In a case control study Esherichia coli isolated from faecal samples from dairy calves were phenotyped by biochemical fingerprinting and analyzed for virulence genes by PCR. Antimicrobial susceptibility was tested by determination of minimum inhibitory concentration (MIC. Farm management data were collected and Fisher's exact test and univariable and multivariable logistic regression analysis were performed. Results Of 95 E. coli tested for antimicrobial susceptibility 61% were resistant to one or more substances and 28% were multi-resistant. The virulence gene F5 (K99 was not found in any isolate. In total, 21 out of 40 of the investigated virulence genes were not detected or rarely detected. The virulence genes espP, irp, and fyuA were more common in resistant E. coli than in fully susceptible isolates (P terZ was associated with calf diarrhea (P ≤ 0.01. The participating 85 herds had a median herd size of 80 lactating cows. Herds with calf diarrhea problems were larger (> 55 cows; P P There was no association between calf diarrhea and diversity of enteric E. coli. Conclusions Antimicrobial resistance was common in E. coli from pre-weaned dairy calves, occurring particularly in calves from herds experiencing calf diarrhea problems. The results indicate that more factors than use of antimicrobials influence the epidemiology of resistant E. coli. Enteropathogenic E. coli seems to be an uncommon cause of neonatal calf diarrhea in Swedish dairy herds. In practice, calf diarrhea should be regarded holistically in a context of infectious agents, calf immunity, management practices etc. We therefore advice against routine

  7. THE STUDY OF RESISTENCE OF STAPHYLOCOCCUS AUREUS STRAINS TO ANTIMICROBIALS

    Directory of Open Access Journals (Sweden)

    Nazarchuk GG

    2012-12-01

    Full Text Available In the research work the results of the study of resistance forming to antibiotics, antiseptics and decametoxine composition with modified polysaccharides in S.aureus strains are presented. The development of resistance to penicillins, cephalosporins, glycopeptides, macrolides is shown. Slow forming of resistance to decasan and decametoxine composition with carboxymethylamylum, oxyethylcellulose was determined.

  8. A literature review of antimicrobial resistance in Pathogens associated with bovine respiratory disease.

    Science.gov (United States)

    DeDonder, K D; Apley, M D

    2015-12-01

    The objective of this paper was to perform a critical review of the literature as it pertains to the current status of antimicrobial resistance in pathogens associated with bovine respiratory disease (BRD) in beef cattle and to provide a concise yet informative narrative on the most relevant publications available. As such, the scientific literature contained in PubMed, AGRICOLA, and CAB were searched in February of 2014 for articles related to susceptibility testing of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni from cases of BRD. Titles and abstracts were read and 105 articles that were relevant to the subject of BRD antibiotic resistance were attained for further review. After the application of exclusion criterion (publications must have originated from North America, be in English, adhere to standards set forth by the Clinical and Laboratory Standards Institute, and be concerning antimicrobial resistance in BRD in beef cattle), 16 articles remained and are the focus of this publication. Due to the disparate data from the few studies that investigate susceptibility testing of BRD pathogens, a quantitative assessment or meta-analysis was not performed on the studies presented in this review. However, considering diagnostic lab data, there appears to be a clear trend of a decrease in susceptibility of the three major BRD pathogens to the antimicrobials used commonly for treatment and control of BRD. Studies performing sensitivity testing on healthy cattle report much lower resistance, but it remains unclear if this is because of a true lack of resistance mechanisms, or if the isolates do contain quiescent genes for resistance that are only phenotypically expressed following the administration of an antimicrobial for either treatment or control of BRD. Future research to address this question of genotype and phenotypic expression before and after antimicrobial administration will further advance our knowledge in this area.

  9. Investigation of antimicrobial resistance in Escherichia coli and enterococci isolated from Tibetan pigs.

    Directory of Open Access Journals (Sweden)

    Peng Li

    Full Text Available OBJECTIVES: This study investigated the antimicrobial resistance of Escherichia coli and enterococci isolated from free-ranging Tibetan pigs in Tibet, China, and analyzed the influence of free-ranging husbandry on antimicrobial resistance. METHODS: A total of 232 fecal samples were collected from Tibetan pigs, and the disk diffusion method was used to examine their antimicrobial resistance. Broth microdilution and agar dilution methods were used to determine minimum inhibitory concentrations for antimicrobial agents for which disks were not commercially available. RESULTS: A total of 129 E. coli isolates and 84 Enterococcus isolates were recovered from the fecal samples. All E. coli isolates were susceptible to amoxicillin/clavulanic acid, and 40.4% were resistant to tetracycline. A small number of isolates were resistant to florfenicol (27.9%, ampicillin (27.9%, sulfamethoxazole/trimethoprim (19.4%, nalidixic acid (19.4%, streptomycin (16.2% and ceftiofur (10.9%, and very low resistance rates to ciprofloxacin (7.8%, gentamicin (6.9%, and spectinomycin (2.3% were observed in E. coli. All Enterococcus isolates, including E. faecium, E. faecalis, E. hirae, and E. mundtii, were susceptible to amoxicillin/clavulanic acid and vancomycin, but showed high frequencies of resistance to oxacillin (92.8%, clindamycin (82.1%, tetracycline (64.3%, and erythromycin (48.8%. Resistance rates to florfenicol (17.9%, penicillin (6.0%, ciprofloxacin (3.6%, levofloxacin (1.2%, and ampicillin (1.2% were low. Only one high-level streptomycin resistant E. faecium isolate and one high-level gentamicin resistant E. faecium isolate were observed. Approximately 20% and 70% of E. coli and Enterococcus isolates, respectively, were defined as multidrug-resistant. CONCLUSIONS: In this study, E. coli and Enterococcus isolated from free-ranging Tibetan pigs showed relatively lower resistance rates than those in other areas of China, where more intensive farming practices are

  10. Antimicrobial resistance in Salmonella enterica subsp. enterica serovar typhimurium from humans and production animals

    DEFF Research Database (Denmark)

    Seyfarth, Anne Mette; Wegener, Henrik Caspar; FrimodtMoller, N.

    1997-01-01

    to the State Serum Institute during August 1993 (228 isolates). The animal strains were isolated from clinical or subclinical infections in cattle (48 isolates), pigs (99 isolates) or poultry (98 isolates), all from 1993. All strains were tested against 22 different antimicrobial agents used in both human...... and veterinary medicine with the tablet diffusion method. Strains were also phage-typed and the plasmid content determined in all resistant strains. Ribotyping was performed on selected strains. Of 228 human isolates tested, 19.3% of the strains were resistant to one or more antimicrobial agent compared with 10...... infections contracted outside Denmark, most often in southern Europe or south-east Asia. Resistance in human strains was most common against tetracycline (13%), ampicillin (12%), sulphonamide (12%), streptomycin (10%) and chloramphenicol (8%). The resistance pattern differed somewhat in animal isolates...

  11. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Yoko Miyasaki

    Full Text Available The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii.

  12. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii.

    Science.gov (United States)

    Miyasaki, Yoko; Rabenstein, John D; Rhea, Joshua; Crouch, Marie-Laure; Mocek, Ulla M; Kittell, Patricia Emmett; Morgan, Margie A; Nichols, Wesley Stephen; Van Benschoten, M M; Hardy, William David; Liu, George Y

    2013-01-01

    The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii) is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii. PMID:23630600

  13. Antimicrobial resistance in Enterococcus spp. isolated from environmental samples in the area of intensive poultry production

    Science.gov (United States)

    In this study, we investigated antimicrobial resistance of Enterococcus spp. from different environmental compartments including litter from two farms, 12 surface and 28 groundwater sites in an area of intensive poultry production and litter application. The enumerated isolates (n=250) were tested ...

  14. PREVALENCE AND ANTIMICROBIAL RESISTANCE ASSESSMENT OF SUBCLINICAL MASTITIS IN MILK SAMPLES FROM SELECTED DAIRY FARMS

    Directory of Open Access Journals (Sweden)

    Murugaiyah Marimuthu

    2014-01-01

    Full Text Available This study was conducted in order to determine the prevalence and bacteriological assessment of subclinical mastitis and antimicrobial resistance of bacterial isolates from dairy cows in different farms around Selangor, Malaysia. A total of 120 milk samples from 3 different farms were randomly collected and tested for subclinical mastitis using California Mastitis Test (CMT, as well as for bacterial culture for isolation, identification and antimicrobial resistance. The most prevalent bacteria was Staphylococcus sp. (55%, followed by Bacillus sp., (21% and Corynebacterium sp., (7%, Yersinia sp. and Neisseria sp. both showed 5% prevalence, other species with prevalence below 5% are Acinetobacter sp., Actinobacillus sp., Vibrio sp., Pseudomonas sp., E.coli, Klebsiella sp. and Chromobacter sp. Selected Staphylococcus sp. showed a mean antimicrobial resistance of 73.3% to Ampicillin, 26.7% to Penicillin, Methicillin and Compound Sulphonamide each, 20% to Oxacillin, Amoxycillin and Cefuroxime, 13.3% to Polymyxin B, Erythromycin, Ceftriaxone and Azithromycin and 6.7% to Streptomycin, Clindamycin, Lincomycin and Tetracycline each. This study indicates the need for urgent and effective control measures to tackle the increase in prevalence of subclinical mastitis and their antimicrobial resistance in the study area.

  15. 76 FR 21907 - Draft Action Plan-A Public Health Action Plan To Combat Antimicrobial Resistance

    Science.gov (United States)

    2011-04-19

    ... the draft, A Public Health Action Plan to Combat Antimicrobial Resistance (76 FR 14402). Written and... electronically to: http://www.regulations.gov . All comments received will be posted publicly without change..., reflected a broad-based consensus of participating Federal agencies, which was reached with individual...

  16. Comparison of antimicrobial resistance determinants among Salmonella, Campylobacter, Escherichia coli, and Enterococcus isolated from Swine

    Science.gov (United States)

    Introduction: The importance of Salmonella, Campylobacter, E.coli, and Enterococcus as carriers of antimicrobial resistance is well known, but limited work has been done to examine the relationship between this phenotypic characteristic and genotypic attributes among strains isolated in similar set...

  17. Triple-acting antimicrobial treatment for drug-resistant and intracellular Staphylococcus aureus.

    Science.gov (United States)

    Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over-used conventional antibiotics. Staphylococcus aureus (S. aureus) is a notorious pathogen for both animal and human health with multi-d...

  18. Antimicrobial Activity of Quinupristin-Dalfopristin Combined with Other Antibiotics against Vancomycin-Resistant Enterococci

    OpenAIRE

    Eliopoulos, G M; Wennersten, C B

    2002-01-01

    Interactions between quinupristin-dalfopristin and six other antimicrobials were examined by checkerboard arrays against 50 clinical isolates of vancomycin-resistant Enterococcus faecium selected to represent a range of susceptibilities to individual agents. Unequivocal synergistic or antagonistic interactions at clinically relevant concentrations were infrequently encountered when the streptogramin was combined with chloramphenicol, ampicillin, imipenem, vancomycin, or teicoplanin. Combinati...

  19. Identification and antimicrobial resistance of members from the Enterobacteriaceae family isolated from canaries (Serinus canaria

    Directory of Open Access Journals (Sweden)

    Ruben V. Horn

    2015-06-01

    Full Text Available Abstract: The Enterobacteriaceae family contains potentially zoonotic bacteria, and their presence in canaries is often reported, though the current status of these in bird flocks is unknown. Therefore, this study aimed to identify the most common genera of enterobacteria from canaries (Serinus canaria and their antimicrobial resistance profiles. From February to June of 2013, a total of 387 cloacal swab samples from eight domiciliary breeding locations of Fortaleza city, Brazil, were collected and 58 necropsies were performed in canaries, which belonged to the Laboratory of Ornithological Studies. The samples were submitted to microbiological procedure using buffered peptone water and MacConkey agar. Colonies were selected according to their morphological characteristics on selective agar and submitted for biochemical identification and antimicrobial susceptibility. A total of 61 isolates were obtained, of which 42 were from cloacal swabs and 19 from necropsies. The most isolated bacteria was Escherichia coli with twenty five strains, followed by fourteen Klebsiellaspp., twelve Enterobacterspp., seven Pantoea agglomerans, two Serratiaspp. and one Proteus mirabilis. The antimicrobial to which the strains presented most resistance was sulfonamides with 55.7%, followed by ampicillin with 54.1% and tetracycline with 39.3%. The total of multidrug-resistant bacteria (MDR was 34 (55.7%. In conclusion, canaries harbor members of the Enterobacteriaceae family and common strains present a high antimicrobial resistance rate, with a high frequency of MDR bacteria.

  20. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens

    NARCIS (Netherlands)

    Kwakman, P.H.S.; Boer, den L.; Ruyter-Spira, C.; Creemers-Molenaar, T.; Helsper, J.P.F.G.; Vandenbroucke-Grauls, C.M.J.E.; Zaat, S.A.J.; Velde, te A.A.

    2011-01-01

    Honey has potent activity against both antibioticsensitive and -resistant bacteria, and is an interesting agent for topical antimicrobial application to wounds. As honey is diluted by wound exudate, rapid bactericidal activity up to high dilution is a prerequisite for its successful application. We

  1. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens

    NARCIS (Netherlands)

    P.H.S. Kwakman; L. de Boer; C.P. Ruyter-Spira; T. Creemers-Molenaar; J.P.F.G. Helsper; C.M.J.E. Vandenbroucke-Grauls; S.A.J. Zaat; A.A. te Velde

    2011-01-01

    Honey has potent activity against both antibiotic-sensitive and -resistant bacteria, and is an interesting agent for topical antimicrobial application to wounds. As honey is diluted by wound exudate, rapid bactericidal activity up to high dilution is a prerequisite for its successful application. We

  2. Antimicrobial Resistance Profiles and Diversity in Salmonella from Humans and Cattle, 2004-2011.

    Science.gov (United States)

    Afema, J A; Mather, A E; Sischo, W M

    2015-11-01

    Analysis of long-term anti-microbial resistance (AMR) data is useful to understand source and transmission dynamics of AMR. We analysed 5124 human clinical isolates from Washington State Department of Health, 391 cattle clinical isolates from the Washington Animal Disease Diagnostic Laboratory and 1864 non-clinical isolates from foodborne disease research on dairies in the Pacific Northwest. Isolates were assigned profiles based on phenotypic resistance to 11 anti-microbials belonging to eight classes. Salmonella Typhimurium (ST), Salmonella Newport (SN) and Salmonella Montevideo (SM) were the most common serovars in both humans and cattle. Multinomial logistic regression showed ST and SN from cattle had greater probability of resistance to multiple classes of anti-microbials than ST and SN from humans (P Salmonella may be due to greater diversity of sources entering the human population compared to cattle or due to continuous evolution in the human environment. Also, AMR diversity was greater in clinical compared to non-clinical cattle Salmonella, and this could be due to anti-microbial selection pressure in diseased cattle that received treatment. The use of bootstrapping techniques showed that although there were shared profiles between humans and cattle, the expected and observed number of profiles was different, suggesting Salmonella and associated resistance from humans and cattle may not be wholly derived from a common population.

  3. Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Agersø, Yvonne; Ahrens, Peter;

    2000-01-01

    to ciprofloxacin. Only six (7%) S. aureus isolates and one Staphylococcus saprophyticus were penicillin resistant. Resistance to sulphamethoxazole was observed among 16 (19%) of S. aureus isolates and two coagulase negative staphylococci (CNS). Twenty (24%) of the S. aureus isolates were resistant to erythromycin...... of conventional biochemical testing and 16S rDNA sequencing. The most common species were Staphylococcus aureus (83), Staphylococcus hyicus (11), Staphylococcus xylosus (9) and Staphylococcus cohnii (6). The isolates were susceptible to most antimicrobials tested. A high frequency of S. aureus (30%) was resistant...

  4. Emerging Infectious Diseases, Antimicrobial Resistance and Millennium Development Goals: Resolving the Challenges through One Health

    OpenAIRE

    G. V. Asokan; R. K. Kasimanickam

    2014-01-01

    Most emerging infectious diseases are zoonoses, which could severely hamper reaching the targets of millennium development goals (MDG). Five out of the total eight MDG’s are strongly associated with the Emerging Infectious Diseases (EIDs). Recent emergence and dissemination of drug-resistant pathogens has accelerated and prevent reaching the targets of MDG, with shrinking of therapeutic arsenal, mostly due to antimicrobial resistance (AMR). World Health Organization (WHO has identified AMR a...

  5. Investigation of integrons/cassettes in antimicrobial-resistant Escherichia coli isolated from food animals in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this study,326 Escherichia coli isolates from food animals collected during the last four decades in China were characterized using antimicrobial susceptibility testing and screening for integrons/cassettes.Minimum inhibitory concentration(MIC) testing indicated that the antimicrobial resistance of E.coli has increased since the 1970s.The findings of this study present a warning to veterinary practitioners about the excessive use of antimicrobials,and suggest the necessity for surveillance and control of antimicrobial resistance in veterinary clinical medicine in China.

  6. Comparison of antimicrobial resistant Escherichia coli in wild and captive Japanese serows.

    Science.gov (United States)

    Kinjo, T; Minamoto, N; Sugiyama, M; Sugiyama, Y

    1992-10-01

    The fecal Escherichia coli isolated from wild Japanese serows living in mountainous areas away from humans and those from captive serows kept in human areas were examined for antimicrobial resistance and the possession of transferable R plasmids. Of 874 E. coli strains isolated from 283 wild serows in 1980-1981, only 11 (1.3%) were resistant to at least one of 6 antimicrobial drugs; ampicillin, streptomycin, tetracycline, chloramphenicol, kanamycin and sulfadimethoxin. Seven (2.5%) individuals were found to carry resistant E. coli. To heighten the isolation frequency of drug-resistant strains, fecal samples of 244 wild serows in 1983-1984 were cultured directly onto drug-supplemented media. Only 12 (4.9%) serows were shown to have drug-resistant E. coli. No transferable R plasmid was detected among a total of 87 resistant strains from wild serows. In contrast, all 33 captive serows except one which was kept only one day after capture, showed resistant E. coli and 20 (60.6%) serows were excreting R plasmid-carrying E. coli. Of 161 drug-resistant strains from captive serows, 50 (31.1%) were found to carry R plasmids. Wild serows seemed to readily change to harbor resistant E. coli almost as soon they were reared in human areas without direct exposure to drugs. These results lead to the conclusion that drug-resistant E. coli can probably be used as microbial indicator for natural environmental pollution. PMID:1420561

  7. 日本兽用抗菌药耐药性监控系统及风险管理%The Japanese Veterinary Antimicrobial Resistance Montitoring System and Risk Management

    Institute of Scientific and Technical Information of China (English)

    马苏; 张晶; 杜昕波

    2015-01-01

    介绍日本兽用抗菌药耐药性监控系统并分析日本食品动物源细菌耐药现状和抗菌药使用情况,以期为我国动物源细菌耐药性监控管理提供参考和借鉴。%This paper introduced the Japanese veterinary antimicrobial resistance monitoring systems ( JVARM ) . The purpose of this study was to analyze the antimicrobial resistance in bacteria in food-producing animals and the consumption of antimicrobial drugs used in animals in Japan, which should be used for reference during the surveillance and management of antimicrobial resistance from animal source in China.

  8. Predicting Antimicrobial Resistance Prevalence and Incidence from Indicators of Antimicrobial Use: What Is the Most Accurate Indicator for Surveillance in Intensive Care Units?

    Directory of Open Access Journals (Sweden)

    Élise Fortin

    Full Text Available The optimal way to measure antimicrobial use in hospital populations, as a complement to surveillance of resistance is still unclear. Using respiratory isolates and antimicrobial prescriptions of nine intensive care units (ICUs, this study aimed to identify the indicator of antimicrobial use that predicted prevalence and incidence rates of resistance with the best accuracy.Retrospective cohort study including all patients admitted to three neonatal (NICU, two pediatric (PICU and four adult ICUs between April 2006 and March 2010. Ten different resistance/antimicrobial use combinations were studied. After adjustment for ICU type, indicators of antimicrobial use were successively tested in regression models, to predict resistance prevalence and incidence rates, per 4-week time period, per ICU. Binomial regression and Poisson regression were used to model prevalence and incidence rates, respectively. Multiplicative and additive models were tested, as well as no time lag and a one 4-week-period time lag. For each model, the mean absolute error (MAE in prediction of resistance was computed. The most accurate indicator was compared to other indicators using t-tests.Results for all indicators were equivalent, except for 1/20 scenarios studied. In this scenario, where prevalence of carbapenem-resistant Pseudomonas sp. was predicted with carbapenem use, recommended daily doses per 100 admissions were less accurate than courses per 100 patient-days (p = 0.0006.A single best indicator to predict antimicrobial resistance might not exist. Feasibility considerations such as ease of computation or potential external comparisons could be decisive in the choice of an indicator for surveillance of healthcare antimicrobial use.

  9. Antimicrobial resistance of enterococcal blood isolates at a pediatric care hospital in India.

    Science.gov (United States)

    Kapoor, Lata; Randhawa, V S; Deb, Monorama

    2005-04-01

    Enterococci are one of the leading causes of nosocomial infections. In recent years, enterococci have become increasingly resistant to a wide range of antimicrobial agents. From April to October 2001, a study was conducted to speciate and determine the antimicrobial susceptibility of 50 isolates of enterococci from bacteremic children. These isolates were tested for antimicrobial susceptibility to the commonly used antibiotics. Screening for vancomycin resistance was done by the agar screen method, and the results were confirmed by determining the minimum inhibitory concentration (MIC) using the agar dilution method. It was observed that 33 isolates were Enterococcus faecium, followed by E. faecalis (10), E. durans (4), and E. dispar (3). Seventy-two percent of strains were resistant to ampicillin, 46% to amoxicillin + clavulanic acid, 72% to ciprofloxacin, 54% to doxycyclin, and 74% to erythromycin. Sixty-six percent of isolates showed high-level gentamicin resistance and 42% showed high-level streptomycin resistance. Four strains showed raised MIC to vancomycin (8 microg/ml). It was concluded that multidrug resistant E. faecium is emerging as an important agent of bacteremia in children. PMID:15858289

  10. Identification and antimicrobial resistance of microflora colonizing feral pig (Sus scrofa of Brazilian Pantanal

    Directory of Open Access Journals (Sweden)

    SS Lessa

    2011-06-01

    Full Text Available Antimicrobial resistance of bacteria is a worldwide problem affecting wild life by living with resistant bacteria in the environment. This study presents a discussion of outside factors environment on microflora of feral pigs (Sus scrofa from Brazilian Pantanal. Animals had samples collected from six different body sites coming from two separated geographic areas, Nhecolandia and Rio Negro regions. With routine biochemical tests and commercial kits 516 bacteria were identified, with 240 Gram-positive, predominantly staphylococci (36 and enterococci (186 strains. Among Gram-negative (GN bacteria the predominant specimens of Enterobacteriaceae (247 mainly represented by Serratia spp. (105, Escherichia coli (50, and Enterobacter spp. (40 and specimens not identified (7. Antimicrobial susceptibility was tested against 17 drugs by agar diffusion method. Staphylococci were negative to production of enterotoxins and TSST-1, with all strains sensitive towards four drugs and highest resistance toward ampicillin (17%. Enterococci presented the highest sensitivity against vancomycin (98%, ampicillin (94% and tetracycline (90%, and highest resistance pattern toward oxacillin (99%, clindamycin (83%, and cotrimoxazole (54%. In GN the highest resistance was observed with Serratia marcescens against CFL (98%, AMC (66% and AMP (60% and all drugs was most effective against E. coli SUT, TET (100%, AMP, TOB (98%, GEN, CLO (95%, CFO, CIP (93%. The results show a new profile of oxacillin-resistant enterococci from Brazilian feral pigs and suggest a limited residue and spreading of antimicrobials in the environment, possibly because of low anthropogenic impact reflected by the drug susceptibility profile of bacteria isolated.

  11. Antimicrobial Resistance and Virulence Factors of Escherichia coli in Cheese Made from Unpasteurized Milk in Three Cities in Brazil.

    Science.gov (United States)

    Ribeiro, Laryssa Freitas; Barbosa, Mayhara Martins Cordeiro; Pinto, Fernanda de Rezende; Maluta, Renato Pariz; Oliveira, Mônica Costa; de Souza, Viviane; de Medeiros, Maria Izabel Merino; Borges, Lucimara Antonio; do Amaral, Luiz Augusto; Fairbrother, John Morris

    2016-09-01

    the presence of antimicrobial resistance, which should be monitored. PMID:27258947

  12. Antimicrobial Resistance in Enterococci Isolated from Turkey Flocks Fed Virginiamycin

    OpenAIRE

    Welton, L. A.; Thal, L A; Perri, M B; Donabedian, S; McMahon, J.; Chow, J. W.; Zervos, M J

    1998-01-01

    From 125 separate cloacal cultures from three turkey flocks fed virginiamycin, 104 Enterococcus faecium and 186 Enterococcus faecalis isolates were obtained. As the turkeys aged, there was a higher percentage of quinupristin-dalfopristin-resistant E. faecium isolates, with isolates from the oldest flock being 100% resistant. There were no vancomycin-resistant enterococci. Results of pulsed-field gel electrophoresis (PFGE) indicated there were 11 PFGE types of E. faecalis and 7 PFGE types of E...

  13. Risk factors associated with the antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Daniele C. Beuron

    2014-10-01

    Full Text Available The objective of this study was to evaluate herd management practices and mastitis treatment procedures as risk factors associated with Staphylococcus aureus antimicrobial resistance. For this study, 13 herds were selected to participate in the study to evaluate the association between their management practices and mastitis treatment procedures and in vitro antimicrobial susceptibility. A total of 1069 composite milk samples were collected aseptically from the selected cows in four different periods over two years. The samples were used for microbiological culturing of S. aureus isolates and evaluation of their antimicrobial susceptibility. A total of 756 samples (70.7% were culture-positive, and S. aureus comprised 27.77% (n=210 of the isolates. The S. aureus isolates were tested using the disk-diffusion susceptibility assay with the following antimicrobials: ampicillin 10mg; clindamycin 2μg; penicillin 1mg; ceftiofur 30μg; gentamicin 10mg; sulfa-trimethoprim 25μg; enrofloxacin 5μg; sulfonamide 300μg; tetracycline 30μg; oxacillin 1mg; cephalothin 30μg and erythromycin 5μg. The variables that were significantly associated with S. aureus resistance were as follows: the treatment of clinical mastitis for ampicillin (OR=2.18, dry cow treatment for enrofloxacin (OR=2.11 and not sending milk samples for microbiological culture and susceptibility tests, for ampicillin (OR=2.57 and penicillin (OR=4.69. In conclusion, the identification of risk factors for S. aureus resistance against various mastitis antimicrobials is an important information that may help in practical recommendations for prudent use of antimicrobial in milk production.

  14. Evaluation of Petrifilm™ Select E. coli Count Plate medium to discriminate antimicrobial resistant Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jensen Lars

    2008-09-01

    Full Text Available Abstract Background Screening and enumeration of antimicrobial resistant Escherichia coli directly from samples is needed to identify emerging resistant clones and obtain quantitative data for risk assessment. Aim of this study was to evaluate the performance of 3M™ Petrifilm™ Select E. coli Count Plate (SEC plate supplemented with antimicrobials to discriminate antimicrobial-resistant and non-resistant E. coli. Method A range of E. coli isolates were tested by agar dilution method comparing the Minimal Inhibitory Concentration (MIC for eight antimicrobials obtained by Mueller-Hinton II agar, MacConkey agar and SEC plates. Kappa statistics was used to assess the levels of agreement when classifying strains as resistant, intermediate or susceptible. Results SEC plate showed that 74% of all strains agreed within ± 1 log2 dilution when comparing MICs with Mueller-Hinton II media. High agreement levels were found for gentamicin, ampicillin, chloramphenicol and cefotaxime, resulting in a kappa value of 0.9 and 100% agreement within ± 1 log2 dilution. Significant variances were observed for oxytetracycline and sulphamethoxazole. Further tests showed that the observed discrepancy in classification of susceptibility to oxytetracycline by the two media could be overcome when a plate-dependent breakpoint of 64 mg/L was used for SEC plates. For sulphamethoxazole, SEC plates provided unacceptably high MICs. Conclusion SEC plates showed good agreement with Mueller-Hinton II agar in MIC studies and can be used to screen and discriminate resistant E. coli for ampicillin, cephalothin, streptomycin, chloramphenicol, cefotaxime and gentamicin using CLSI standardized breakpoints, but not for sulphamethoxazole. SEC plates can also be used to discriminate oxytetracycline-resistant E. coli if a plate-dependent breakpoint value of 64 mg/L is used.

  15. Phage types and antimicrobial resistance among Danish bovine Staphylococcus aureus isolates since the 1950s

    DEFF Research Database (Denmark)

    Vintov, Jan; Aarestrup, Frank Møller; Zinn, C. E.;

    2003-01-01

    A total of 292 bovine Staphylococcus aureus isolates obtained from the 1950s (86 isolates), 1992 (107 isolates), and 2000 (99 isolates) were examined for antimicrobial susceptibility and phage typing. The same types of S. aureus (80, 52, 3A, 3A/3C, 42E, 77) were found among the isolates from all...... three time periods, representing 43.3% of the typeable isolates. This indicates that the Danish S. aureus population related to bovine mastitis has remained relatively unchanged over the last 50 years. The occurrence of antimicrobial resistance has remained low in Denmark in comparison to other...

  16. Antimicrobial Stewardship in Acute Care Centres: A Survey of 68 Hospitals in Quebec

    Directory of Open Access Journals (Sweden)

    Vincent Nault

    2008-01-01

    Full Text Available BACKGROUND: Antimicrobial stewardship programs (ASPs and quantitative monitoring of antimicrobial use are required to ensure that antimicrobials are used appropriately in the acute care setting, and have the potential to reduce costs and limit the spread of antimicrobial-resistant organisms and Clostridium difficile. Currently, it is not known what proportion of Quebec hospitals have an ASP and/or monitor antimicrobial use.

  17. Antimicrobial susceptibility and tetracycline resistance determinant genotyping of Gallibacterium anatis

    DEFF Research Database (Denmark)

    Bojesen, Anders M.; Vazquez, Maria E.; Bager, Ragnhild J.;

    2011-01-01

    these figures were 67% and 42%, respectively, for the reference strains.Genotyping of tetracycline resistance determinants was performed with primers specific for tet(A–E, H, K–M, O). Strains positive for tet(B), tet(H) and tet(L) were identified, however, in 20 out of 49 tetracycline resistant strains...

  18. The global threat of antimicrobial resistance: science for intervention

    NARCIS (Netherlands)

    Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.C.; Heure, O.E.; Kahlmeter, G.; Kruse, H.; Laxminarayan, R.; Liebana, E.; Lopez-Cerero, L.; MacGowan, A.; Martins, M.; Rodriguez-Bano, J.; Rolain, J.M.; Segovia, C.; Sigauque, B.; Taconelli, E.; Wellington, E.; Vila, J.

    2015-01-01

    In the last decade we have witnessed a dramatic increase in the proportion and absolute number of bacterial pathogens resistant to multiple antibacterial agents. Multidrug-resistant bacteria are currently considered as an emergent global disease and a major public health problem. The B-Debate meetin

  19. Engineering MRSA antimicrobials that are refractory to resistance development

    Science.gov (United States)

    Methicillin resistant Staphylococcus aureus (MRSA) is one of the most costly multi-drug resistant pathogens to both human animal health, with billions of dollars are spent annually to treat human infections. MRSA is also appearing in livestock (bovine, porcine, poultry) as well as companion animal...

  20. Antimicrobial susceptibility and clarithromycin resistance patterns of Helicobacter pylori clinical isolates in Vietnam.

    Science.gov (United States)

    Quek, Camelia; Pham, Son T; Tran, Kieu T; Pham, Binh T; Huynh, Loc V; Luu, Ngan B L; Le, Thao K T; Quek, Kelly; Pham, Van H

    2016-01-01

    Helicobacter pylori is a gastric pathogen that causes several gastroduodenal disorders such as peptic ulcer disease and gastric cancer.  Eradication efforts of H. pylori are often hampered by antimicrobial resistance in many countries, including Vietnam.  Here, the study aimed to investigate the occurrence of antimicrobial resistance among H. pylori clinical isolates across 13 hospitals in Vietnam.  The study further evaluated the clarithromycin resistance patterns of H. pylori strains.  In order to address the study interests, antimicrobial susceptibility testing, epsilometer test and PCR-based sequencing were performed on a total of 193 strains isolated from patients, including 136 children (3-15 years of age) and 57 adults (19-69 years of age).  Antimicrobial susceptibility testing showed that the overall resistance to amoxicillin, clarithromycin, levofloxacin, metronidazole, and tetracycline was 10.4%, 85.5%, 24.4%, 37.8%, and 23.8% respectively.  The distribution of minimum inhibitory concentrations (MICs) of clarithromycin-resistant strains was 85.5% with MIC >0.5 μg/mL.  The majority of the clarithromycin resistant isolates (135 of 165 subjects) have MICs ranging from 2 μg/mL to 16 μg/mL.  Furthermore, sequencing detection of mutations in 23S rRNA gene revealed that strains resistant and susceptible to clarithromycin contained both A2143G and T2182C mutations.  Of all isolates, eight clarithromycin-resistant isolates (MIC >0.5 μg/mL) had no mutations in the 23S rRNA gene.  Collectively, these results demonstrated that a proportion of clarithromycin-resistant H. pylori strains, which are not related to the 23S rRNA gene mutations, could be potentially related to other mechanisms such as the presence of an efflux pump or polymorphisms in the CYP2C19 gene.  Therefore, the present study suggests that providing susceptibility testing prior to treatment or alternative screening strategies for antimicrobial resistance is important for future clinical

  1. 卫生部全国细菌耐药监测网2011年女性尿标本来源细菌耐药监测%Ministry of Health National Antimicrobial Resistance Investigation Net annual report of 2011 : bacterial resistances monitor of women urine samples

    Institute of Scientific and Technical Information of China (English)

    齐慧敏; 吕媛

    2012-01-01

    Objective To summarize bacterial resistance in the women clinical urine culture samples collected in 2011 from 149 hospitals of Mohnarin. Methods Conventional culture, automatic clinical microbiological system, disk diffusion and E — test methods were used for antibacterial activity of antimicrobial agents and resistances and sensitivity were calculated by using WHONET5. 6 software. Results A total of 32682 strains of bacteria were isolated, of which of E. Coli, Enterococcus faeci-um, Enterococcus faecalis, Klebsiella pneumonia and Proteus mirabilis, respectively. The antimicrobial agents with lower antibiotic resistance rates of E. Coli were carbapenems ( 0.6%), piperacillin/tazobactam (3. 7% ) , nitrofurantoin ( 5. 3% ) , cefoperazone / sulbactam ( 5. 5% ) , amikacin (6. 0% ) ,fosfomycin (8. 7% ) .cefoxitin ( 12. 0% ) ,ticarcillin/ clavulanic acid (12. 5% ) , and amoxicillin/clavulanic acid ( 15. 5% ) , respectively. That of Enterococcus spp. Were teicoplanin(0. 4% -2. 4% ), vancomycin ( 1. 2% — 4. 6% ) , amoxicillin / clavulanic acid (1.4% — 11.3%), piperacillin/tazobactam (8. 1 - 15. 5% ) ,fosfomycin (5. 3% -20. 2% ) and nitrofurantoin (5. 9% - 49. 0% ) , respectively. No linezol id resistant Enterococcus were found. Conclusion E. Coli remains the urinary tract infection major pathogen but the proportion of Enterococci was significantly increased. The overall results of antibiotic resistance were serious. Nitrofurantoin, fosfomycin and amoxicillin / clavulanic acid can be chose as empirical treatment of oral antibiotics. Antimicrobial agents with enzyme inhibitor, cephamycin aminoglycosides and carbapenems can be chose as empirical treatment of injection antibiotics.%目的 总结我国2011年临床女性尿标本来源细菌耐药状况.方法 149家医院女性尿标本中的细菌,用自动化临床微生物测定方法、纸片法或E-test法测定细菌药物敏感性,用WHONET 5.6软件进行分析.结果 共分离细菌32682株,其中排在前5位

  2. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat

    DEFF Research Database (Denmark)

    Bortolaia, V.; Gongora, Carmen Espinosa; Guardabassi, L.

    2016-01-01

    Enterococci and staphylococci are frequent contaminants on poultry meat. Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are also well-known aetiological agents of a wide variety of infections resulting in major healthcare costs. This review provides an overview of the human...... interest to the human gut microbiota. Ingestion of poultry meat contaminated with S. aureus may lead to food poisoning. However, antimicrobial resistance in the toxin -producing strains does not have clinical implications because food poisoning is not managed by antimicrobial therapy. Recently methicillin......-resistant S. aureus of livestock origin has been reported on poultry meat. In theory handling or ingestion of contaminated meat is a potential risk factor for colonization by methicillin-resistant S. aureus. However, this risk is presently regarded as negligible by public health authorities. Clinical...

  3. Isolation and partial characterization of actinomycetes with antimicrobial activity against multidrug resistant bacteria

    Institute of Scientific and Technical Information of China (English)

    Smriti Singh; Pramod Kumar; N Gopalan; Bhuvnesh Shrivastava; RC Kuhad; Hotam Singh Chaudhary

    2012-01-01

    Objective: To isolate strains of Actinomycetes from different locations of Gwalior to evaluate its antimicrobial activity against multidrug resistant pathogenic strains. Method: Soil samples collected from different niche habitats of Gwalior were serially diluted and plated on selective media. Potential colonies were further purified and stored in agar slants and glycerol stocks. Isolates were biochemically characterized and purified isolates were test against pathogenic microorganisms for screening. Isolates with antagonistic properties were inoculated in production media and secondary metabolites or antimicrobial products were extracted. Result: The seven actinomycetes strains showing maximum antibacterial activity were isolated further characterized based on their colony characteristics and biochemical analyses. The isolates were screened for their secondary metabolites activity on three human pathogenic bacteria are Escherichia coli (E. coli), Methicillin-Resistant Staphylococcus aureus (S. aureus) and Vancomycin-Resistant Enterococci (VRE). Discussion: The strain MITS 1005 was found to be more active against the test bacteria.

  4. The in vitro fitness cost of antimicrobial resistance in Escherichia coli varies with the growth conditions

    DEFF Research Database (Denmark)

    Petersen, Andreas; Aarestrup, Frank Møller; Olsen, John Elmerdahl

    2009-01-01

    significantly when the bacteria were grown under all stress conditions tested, while the cost in 1/3 Luria–Bertani was not significantly changed in a streptomycin+rifampicin mutant. The increase in the fitness cost depended in a nonregular manner on the strain/stress combination. The fitness cost of plasmid....... However, the growth potential of bacteria with antimicrobial resistances did not increase in a straightforward manner in these in vitro experiments and is therefore probably even more difficult to predict in vivo.......The objective of this study was to investigate the influence of stressful growth conditions on the fitness cost of antimicrobial resistance in Escherichia coli BJ4 caused by chromosomal mutations and plasmid acquisition. The fitness cost of chromosomal streptomycin resistance increased...

  5. Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: A mini-review.

    Science.gov (United States)

    Stratev, Deyan; Odeyemi, Olumide A

    2016-01-01

    Aeromonas hydrophila is a Gram-negative, oxidase-positive, facultative, anaerobic, opportunistic aquatic pathogen. A. hydrophila produces virulence factors, such as hemolysins, aerolysins, adhesins, enterotoxins, phospholipase and lipase. In addition to isolation from aquatic sources, A. hydrophila has been isolated from meat and meat products, milk and dairy products, and vegetables. However, various studies showed that this opportunistic pathogen is resistant to commercial antibiotics. This is attributed to factors such as the indiscriminate use of antibiotics in aquaculture, plasmids or horizontal gene transfer. In this report, we highlight the occurrence, prevalence and antimicrobial resistance of A. hydrophila isolated from different food samples. The presence of antimicrobial-resistant A. hydrophila in food poses threats to public and aquatic animal health. PMID:26588876

  6. Ecological aspects of the antimicrobial resistence in bacteria of importance to humn infections

    Directory of Open Access Journals (Sweden)

    Meirelles-Pereira Frederico de

    2002-01-01

    Full Text Available In view of the intimate relationship of humans with coastal lagoons (used for recreation, tourism, water supply, etc., the discharge of domestic effluents may lead to the establishment of routes of dissemination of pathogenic microorganisms, including microorganisms carrying genes for resistance to antimicrobials, through the surrounding human communities. The objective of the present investigation was to relate the presence of antimicrobial-resistant bacteria to the environmental characteristics of three coastal lagoons, comparing the results with those from hospital sewage. Of the lagoons evaluated, two (Geribá and Imboassica receive domestic sewage discharge, and the other (Cabiúnas is still in a natural state. We isolated in a culture medium containing 32 ¼ µg/ml of Cephalothin, fecal coliforms (E. coli, non-fecal coliforms (Klebsiella, Enterobacter, Serratia, and Citrobacter, non-glucose-fermenting Gram-negative bacilli, and Aeromonas sp. In cultures from the hospital drain we found strains showing numerous markers for resistance to most of the 11 antimicrobials tested. On the other hand, in cultures from Cabiúnas and Imboassica lagoons, we found strains showing resistance only to antibiotics frequently observed in non-selective situations (considered as "common" markers. The capacity for dilution in the ecosystem, and salinity appeared related with the occurrence of multi-resistant bacterial strains. The intensity of recent fecal contamination was not shown to be associated with the numbers and types of markers found.

  7. Antimicrobial resistance of non-typhoidal Salmonella isolates from egg layer flocks and egg shells.

    Science.gov (United States)

    Pande, Vivek V; Gole, Vaibhav C; McWhorter, Andrea R; Abraham, Sam; Chousalkar, Kapil K

    2015-06-16

    This study was conducted to examine the antimicrobial resistance (AMR) of Salmonella spp. isolated from commercial caged layer flocks in New South Wales and South Australia. All Salmonella isolates (n=145) were subjected to phenotypic and genotypic characterisation of AMR and carriage of integrons. The majority of Salmonella isolates (91.72%) were susceptible to all antimicrobials tested in this study. Limited resistance was observed to amoxicillin and ampicillin (5.51%), tetracycline (4.13%), cephalothin (2.06%) and trimethoprim (0.68%). None of the isolates were resistant to cefotaxime, ceftiofur, ciprofloxacin, chloramphenicol, gentamycin, neomycin or streptomycin. A low frequency of Salmonella isolates (4.83%) harboured antimicrobial resistance genes and a class 1 integron. The most commonly detected AMR genes among the Salmonella isolates were blaTEM (2.07%), tet A (1.38%) and dhfrV (0.69%). Overall, Salmonella enterica isolates exhibited a low frequency of AMR and represent a minimal public health risk associated with the emergence of multidrug resistant Salmonella spp. from the Australian layer industry.

  8. Antimicrobial resistance in pathogens causing urinary tract infections in a rural community of Odisha, India

    Directory of Open Access Journals (Sweden)

    Muktikesh Dash

    2013-01-01

    Full Text Available Background: Antimicrobial resistance of urinary tract pathogens has increased worldwide. Empiric treatment of community-acquired urinary tract infection (CA-UTI is determined by antimicrobial resistance patterns of uropathogens in a population of specific geographical location. Objectives: This study was conducted to determine the prevalence of CA-UTI in rural Odisha, India, and the effect of gender and age on its prevalence as well as etiologic agents and the resistance profile of the bacterial isolates. Materials and Methods: Consecutive clean-catch mid-stream urine samples were collected from 1670 adult patients. The urine samples were processed and microbial isolates were identified by conventional methods. Antimicrobial susceptibility testing was performed on all bacterial isolates by Kirby Bauer′s disc diffusion method. Results: The prevalence of UTI was significantly higher in females compared with males (females 45.2%, males 18.4%, OR = 2.041, 95% CI = 1.64-2.52, P ≤ 0.0001. Young females within the age group of 18-37 years and elderly males (≥68 years showed high prevalence of UTI. Escherichia coli (68.8% was the most prevalent isolate followed by Enterococcus spp. (9.7%. Amikacin and nitrofurantoin were the most active antimicrobial agents which showed low resistance rate of 5.8% and 9.8%, respectively. Conclusion: Our study revealed E. coli as the pre-dominant bacterial pathogen. Nitrofurantoin should be used as empirical therapy for uncomplicated CA-UTIs. In the Indian setting, routine urine cultures may be advisable, since treatment failure is likely to occur with commonly used antimicrobials. Therefore, development of regional surveillance programs is necessary for implementation of national CA-UTI guidelines.

  9. Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options.

    Directory of Open Access Journals (Sweden)

    Jianghui Wang

    Full Text Available BACKGROUND: To overcome the increasing resistance of pathogens to existing antibiotics the 10×'20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes. PRINCIPAL FINDING: We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. CONCLUSIONS AND SIGNIFICANCE: Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens.

  10. Antimicrobial resistance trends among canine Escherichia coli isolates obtained from clinical samples in the northeastern USA, 2004–2011

    OpenAIRE

    Cummings, Kevin J.; Aprea, Victor A.; Altier, Craig

    2015-01-01

    Our objectives were to describe the antimicrobial susceptibility of Escherichia coli isolates from dogs in the northeastern USA and to identify temporal trends in resistance to selected antimicrobial agents. Data were collected retrospectively for all canine E. coli isolates from clinical samples submitted to Cornell University’s Animal Health Diagnostic Center between January 1, 2004 and December 31, 2011. Antimicrobial susceptibility testing was performed on 3519 canine E. coli isolates; fr...

  11. Resistance to Antimicrobials Mediated by Efflux Pumps in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Isabel Couto

    2013-03-01

    Full Text Available Resistance mediated by efflux has been recognized in Staphylococcus aureus in the last few decades, although its clinical relevance has only been recognized recently. The existence of only a few studies on the individual and overall contribution of efflux to resistance phenotypes associated with the need of well-established methods to assess efflux activity in clinical isolates contributes greatly to the lack of solid knowledge of this mechanism in S. aureus. This study aims to provide information on approaches useful to the assessment and characterization of efflux activity, as well as contributing to our understanding of the role of efflux to phenotypes of antibiotic resistance and biocide tolerance in S. aureus clinical isolates. The results described show that efflux is an important contributor to fluoroquinolone resistance in S. aureus and suggest it as a major mechanism in the early stages of resistance development. We also show that efflux plays an important role on the reduced susceptibility to biocides in S. aureus, strengthening the importance of this long neglected resistance mechanism to the persistence and proliferation of antibiotic/biocide-resistant S. aureus in the hospital environment.

  12. Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance.

    Directory of Open Access Journals (Sweden)

    Chakrit Sawasdidoln

    Full Text Available BACKGROUND: Burkholderia pseudomallei, a gram-negative bacterium that causes melioidosis, was reported to produce biofilm. As the disease causes high relapse rate when compared to other bacterial infections, it therefore might be due to the reactivation of the biofilm forming bacteria which also provided resistance to antimicrobial agents. However, the mechanism on how biofilm can provide tolerance to antimicrobials is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: The change in resistance of B. pseudomallei to doxycycline, ceftazidime, imipenem, and trimethoprim/sulfamethoxazole during biofilm formation were measured as minimum biofilm elimination concentration (MBEC in 50 soil and clinical isolates and also in capsule, flagellin, LPS and biofilm mutants. Almost all planktonic isolates were susceptible to all agents studied. In contrast, when they were grown in the condition that induced biofilm formation, they were markedly resistant to all antimicrobial agents even though the amount of biofilm production was not the same. The capsule and O-side chains of LPS mutants had no effect on biofilm formation whereas the flagellin-defective mutant markedly reduced in biofilm production. No alteration of LPS profiles was observed when susceptible form was changed to resistance. The higher amount of N-acyl homoserine lactones (AHLs was detected in the high biofilm-producing isolates. Interestingly, the biofilm mutant which produced a very low amount of biofilm and was sensitive to antimicrobial agents significantly resisted those agents when grown in biofilm inducing condition. CONCLUSIONS/SIGNIFICANCE: The possible drug resistance mechanism of biofilm mutants and other isolates is not by having biofilm but rather from some factors that up-regulated when biofilm formation genes were stimulated. The understanding of genes related to this situation may lead us to prevent B. pseudomallei biofilms leading to the relapse of melioidosis.

  13. Role of shellfish hatchery as a reservoir of antimicrobial resistant bacteria.

    Science.gov (United States)

    Miranda, Claudio D; Rojas, Rodrigo; Garrido, Marcela; Geisse, Julieta; González, Gerardo

    2013-09-15

    The main aim of this study was to determine the occurrence of resistant bacteria in florfenicol-treated and untreated scallop larval cultures from a commercial hatchery and to characterize some selected florfenicol-resistant strains. Larval cultures from untreated and treated rearing tanks exhibited percentages of copiotrophic bacteria resistant to florfenicol ranging from 0.03% to 10.67% and 0.49-18.34%, respectively, whereas florfenicol resistance among oligotrophic bacteria varied from 1.44% to 35.50% and 3.62-95.71%, from untreated and treated larvae, respectively. Florfenicol resistant microbiota from reared scallop larvae mainly belonged to the Pseudomonas and Pseudoalteromonas genus and were mainly resistant to florfenicol, chloramphenicol, streptomycin and co-trimoxazole. This is the first study reporting antimicrobial resistant bacteria associated to a shellfish hatchery and the results suggest that a continuous surveillance of antimicrobial resistance even in absence of antibacterial therapy is urgently required to evaluate potential undesirable consequences on the surrounding environments.

  14. A longitudinal study of antimicrobial resistant faecal bacteria in sediments collected from a hospital wastewater system

    Directory of Open Access Journals (Sweden)

    Jakob Ryd Ottoson

    2012-03-01

    Full Text Available The objective with this study was to determine and follow antimicrobial resistance in faecal bacteria over time in hospital wastewater pipe sediment. A further aim was to determine bacterial growth rates of sensitive, intermediate and resistant intestinal enterococci in different ciprofloxacin concentrations as a measure of bacterial fitness.A system enabling the collection of settled particles over time was installed at Kalmar County Hospital. Samples were collected bi-monthly for a 14-month period. Coliform bacteria and enterococci were isolated from the sediment with standard methods and investigated for resistance to ciprofloxacin (CIP, imipenem (IMI, trimetroprim-sulfamethoxazole (TS, ampicillin (AMP and vancomycin (VAN by the disc diffusion method. Resistant isolates were further typed with the PhenePlateTM system. Growth assessments were performed with an automated spectrophotometer.The rate of intestinal enterococci resistance was <0.6, 1.3, 1.9 and 13% to VAN, IMI, AMP and CIP respectively. Coliform resistance frequencies were 1.1, 2.2 and 2.2% to CIP, IMI and TS respectively. At two sampling occasions, significantly higher rates of ciprofloxacin resistant enterococci were found and the establishment of a resistant clone in the sewer was indicated by the PhP-analysis. Ciprofloxacin resistant intestinal enterococci had a significantly longer lag-phase time than sensitive isolates, but from 500 µg ml−1 (half MIC resistant isolates had a competitive advantage in terms of significantly faster generation time.Despite high concentration of antimicrobials in the sediment, resistance frequencies were generally low. This can depend on limited growth possibilities for faecal bacteria. However, the establishment of a resistant clone shows that hospital sewers can serve as a reservoir for antibiotic resistant bacteria.

  15. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture

    DEFF Research Database (Denmark)

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik;

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance....... used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have...

  16. Zoo Animals as Reservoirs of Gram-Negative Bacteria Harboring Integrons and Antimicrobial Resistance Genes▿

    OpenAIRE

    Ahmed, Ashraf M.; Motoi, Yusuke; Sato, Maiko; Maruyama, Akito; Watanabe, Hitoshi; Fukumoto, Yukio; Shimamoto, Tadashi

    2007-01-01

    A total of 232 isolates of gram-negative bacteria were recovered from mammals, reptiles, and birds housed at Asa Zoological Park, Hiroshima prefecture, Japan. Forty-nine isolates (21.1%) showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing identified class 1 and class 2 integrons and many β-lactamase-encoding genes, in addition to a novel AmpC β-lactamase gene, blaCMY-26. Furthermore, the plasmid-mediated quinolone resistance g...

  17. Antimicrobial resistance and susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Schuetz, Audrey N

    2014-09-01

    Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed.

  18. Current perspectivesin pathogenesis and antimicrobial resistance of enteroaggregative Escherichia coli.

    Science.gov (United States)

    Kong, Haishen; Hong, Xiaoping; Li, Xuefen

    2015-08-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen that causes acute and persistent diarrhea in children and adults. While the pathogenic mechanisms of EAEC intestinal colonization have been uncovered (including bacterial adhesion, enterotoxin and cytotoxin secretion, and stimulation of mucosal inflammation), those of severe extraintestinal infections remain largely unknown. The recent emergence of multidrug resistant EAEC represents an alarming public health threat and clinical challenge, and research on the molecular mechanisms of resistance is urgently needed.

  19. Resistance to Antimicrobials Mediated by Efflux Pumps in Staphylococcus aureus

    OpenAIRE

    Isabel Couto; Leonard Amaral; José Melo-Cristino; Miguel Viveiros; Cláudia Palma; Elisabete Junqueira; Costa, Sofia S.

    2013-01-01

    Resistance mediated by efflux has been recognized in Staphylococcus aureus in the last few decades, although its clinical relevance has only been recognized recently. The existence of only a few studies on the individual and overall contribution of efflux to resistance phenotypes associated with the need of well-established methods to assess efflux activity in clinical isolates contributes greatly to the lack of solid knowledge of this mechanism in S. aureus. This study aims to provide inform...

  20. Monitoring the agricultural landscape for insect resistance

    Science.gov (United States)

    Casas, Joseph; Glaser, J. A.; Copenhaver, Ken

    Farmers in 25 countries on six continents are using plant biotechnology to solve difficult crop production challenges and conserve the environment. In fact, 13.3 million farmers, which include 90 percent of the farming in developing countries, choose to plant biotech crops. Over the past decade, farmers increased area planted in genetically modified (GM) crops by more than 10 percent each year, thus increasing their farm income by more than 44 billion US dollars (1996-2007), and achieved economic, environmental and social benefits in crops such as soybeans, canola, corn and cotton. To date, total acres of biotech crops harvested exceed more than 2 billion with a proven 13-year history of safe use. Over the next decade, expanded adoption combined with current research on 57 crops in 63 countries will broaden the advantages of genetically modified foods for growers, consumers and the environment. Genetically modified (GM) crops with the ability to produce toxins lethal to specific insect pests are covering a larger percentage of the agricultural landscape every year. The United States department of Agriculture (USDA) estimated that 63 percent of corn and 65 percent of cotton contained these specific genetic traits in 2009. The toxins could protect billions of dollars of loss from insect damage for crops valued at greater than 165 billion US dollars in 2008. The stable and efficient production of these crops has taken on even more importance in recent years with their use, not only as a food source, but now also a source of fuel. It is in the best interest of the United States Environmental Protection Agency (USEPA) to ensure the continued efficacy of toxin producing GM crops as their use reduces pesticides harmful to humans and animals. However, population genetics models have indicated the risk of insect pests developing resistance to these toxins if a high percentage of acreage is grown in these crops. The USEPA is developing methods to monitor the agricultural

  1. Recent advances in the potential interconnection between antimicrobial resistance to biocides and antibiotics.

    Science.gov (United States)

    Oggioni, Marco R; Furi, Leonardo; Coelho, Joana R; Maillard, Jean-Yves; Martínez, José L

    2013-04-01

    Interconnection between microbial resistance to biocides and antibiotics is a topic of increasing interest given the recent changes in European legislation and claims of a risk of biocide use on bacterial resistance. In the second International Conference on Antimicrobial Research held in Lisbon in November 2012, a workshop specifically addressed this topic, presentations included approaches to risk assessment and investigations into the molecular mechanisms of biocide resistance and co- and cross-resistance to antibiotics. The overall conclusion was that, even if each biocide represents a specific case, there is scientific evidence that biocides select for biocide resistance, but that there is, so far, no conclusive evidence that this also determined or will determine an increase in antibiotic resistance.

  2. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik;

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genetic data will most likely require complete or nearly complete genomes. Current approaches to this are laborious and/or costly. Emerging technologies such as nanopore based single DNA strand sensing could perhaps provide a solution in the future....

  3. Antimicrobial resistance profiling and molecular subtyping of Campylobacter spp. from processed turkey

    Directory of Open Access Journals (Sweden)

    Sherwood Julie S

    2009-09-01

    Full Text Available Abstract Background Campylobacter is a major cause of human disease worldwide and poultry are identified as a significant source of this pathogen. Most disease in humans is associated with the consumption of contaminated poultry or cross-contamination with other foods. The primary drugs of choice for treatment of human campylobacteriosis include erythromycin and ciprofloxacin. In this study, we investigated the prevalence of resistance to erythromycin and ciprofloxacin in Campylobacter isolates recovered from turkey carcasses at two processing plants in the Upper Midwest US. Further analysis of a subset of isolates was carried out to assess resistance and genotype profiles. Results Campylobacter isolates from plant A (n = 439; including 196 C. coli and 217 C. jejuni and plant B (n = 362, including 281 C. coli and 62 C. jejuni were tested for susceptibility to ciprofloxacin and erythromycin using agar dilution. C. coli were more frequently resistant than C. jejuni in both plants, including resistance to ciprofloxacin (28% of C. jejuni and 63% of C. coli, plant B; and 11% of C. coli, plant A. Erythromycin resistance was low among C. jejuni (0% plant A and 0.3% plant B compared to C. coli (41%, plant A and 17%, plant B. One hundred resistant and susceptible isolates were selected for additional antimicrobial susceptibility testing, restriction fragment length polymorphism analysis of the flaA gene (fla typing, and pulsed-field gel electrophoresis (PFGE. Fla-PFGE types obtained (n = 37 were associated with a specific plant with the exception of one type that was isolated from both plants. C. coli isolates (n = 65 were grouped into 20 types, while C. jejuni isolates (n = 35 were grouped into 17 types. Most isolates with identical fla-PFGE patterns shared identical or very similar antimicrobial resistance profiles. PFGE alone and composite analysis using fla-PFGE with resistance profiles separated C. jejuni and C. coli into distinct groups. Conclusion

  4. Prevalence, characteristics, and antimicrobial resistance patterns of Salmonella in retail pork in Jiangsu province, eastern China.

    Science.gov (United States)

    Li, Yu-Chen; Pan, Zhi-Ming; Kang, Xi-Long; Geng, Shi-Zhong; Liu, Zhong-Yi; Cai, Yin-Qiang; Jiao, Xin-An

    2014-02-01

    Salmonella is commonly isolated from raw pork and is a leading cause of foodborne illness. Because China has the highest rate of pork consumption and the largest number of pig breeding facilities in the world, an epidemiological analysis of Salmonella species from pork in China is warranted. In this study, pork samples (n = 1,096) were collected from 20 major free markets in four cities of Jiangsu province from August 2010 to December 2012. A total of 163 Salmonella isolates were recovered from 154 Salmonella-positive samples. Among 14 Salmonella serovars identified, Derby (47.9%) was most prevalent, followed by Typhimurium (10.4%), Meleagridis (9.2%), Anatum (8.6%), and London (6.7%). Antimicrobial sensitivity testing revealed that 134 (82.2%) of the isolates were resistant to at least one antimicrobial agent, and 41 (25.2%) were resistant to more than three antimicrobials. The highest resistance was to tetracycline (66.3% of isolates) followed by ampicillin (39.9%), trimethoprim-sulfamethoxazole (31.3%), and nalidixic acid (30.1%). Multilocus sequence typing analysis revealed 14 sequence type (ST) patterns; ST40 was the most common (77 isolates) followed by ST64 (19 isolates). Our research revealed a high prevalence of Salmonella in retail pork. Diversity among the Salmonella isolates was high in terms of serovar and genotype, and multidrug resistance was prevalent. Multilocus sequence type was generally associated with serovar and provided a reliable prediction of the most common Salmonella serovars.

  5. Antimicrobial Susceptibility of Bordetella bronchiseptica Isolates from Swine and Companion Animals and Detection of Resistance Genes.

    Directory of Open Access Journals (Sweden)

    Sandra Prüller

    Full Text Available Bordetella bronchiseptica causes infections of the respiratory tract in swine and other mammals and is a precursor for secondary infections with Pasteurella multocida. Treatment of B. bronchiseptica infections is conducted primarily with antimicrobial agents. Therefore it is essential to get an overview of the susceptibility status of these bacteria. The aim of this study was to comparatively analyse broth microdilution susceptibility testing according to CLSI recommendations with an incubation time of 16 to 20 hours and a longer incubation time of 24 hours, as recently proposed to obtain more homogenous MICs. Susceptibility testing against a panel of 22 antimicrobial agents and two fixed combinations was performed with 107 porcine isolates from different farms and regions in Germany and 43 isolates obtained from companion animals in Germany and other European countries. Isolates with increased MICs were investigated by PCR assays for the presence of resistance genes. For ampicillin, all 107 porcine isolates were classified as resistant, whereas only a single isolate was resistant to florfenicol. All isolates obtained from companion animals showed elevated MICs for β-lactam antibiotics and demonstrated an overall low susceptibility to cephalosporines. Extension of the incubation time resulted in 1-2 dilution steps higher MIC50 values of porcine isolates for seven antimicrobial agents tested, while isolates from companion animals exhibited twofold higher MIC50/90 values only for tetracycline and cefotaxime. For three antimicrobial agents, lower MIC50 and MIC90 values were detected for both, porcine and companion animal isolates. Among the 150 isolates tested, the resistance genes blaBOR-1 (n = 147, blaOXA-2, (n = 4, strA and strB (n = 17, sul1 (n = 10, sul2 (n = 73, dfrA7 (n = 3 and tet(A (n = 8 were detected and a plasmid localisation was identified for several of the resistance genes.

  6. Antimicrobial resistance and presence of the SXT mobile element in Vibrio spp. isolated from aquaculture facilities.

    Science.gov (United States)

    García-Aljaro, Cristina; Riera-Heredia, Jordi; Blanch, Anicet R

    2014-07-01

    The aim of this work was to assess the susceptibility of Vibrio spp. strains isolated from fish cultures against some usually applied antibiotics and the occurrence of the SXT mobile genetic element among them. Antimicrobial resistance was assessed by the standard disk diffusion technique while the presence of the SXT mobile genetic element was determined by conventional PCR. High levels of resistance to ampicillin (70%), cefoxitin (44%), streptomycin (31%), aztreonam (25%) and sulfamethoxazole (21%) were detected, and a high inter-and-intraspecies diversity in the resistance profile was observed for the majority of the analysed isolates. The SXT mobile genetic element was detected in only 4 isolates belonging to the species V. diazotrophicus (1), V. mediterranei (2) and V. vulnificus (1), which showed a variable antibiotic resistance profile. Horizontal antibiotic resistance gene transfer from the V. diazotrophicus SXT-positive strain to a laboratory E. coli strain was demonstrated under laboratory conditions. Our results suggest that the Vibrio spp. isolated from aquaculture facilities analysed in this study, although not being pathogenic, they constitute a source of antimicrobial resistance genes that could be mobilized to other bacterial populations through mobile genetic elements. However, the low occurrence of the SXT element in these isolates supports the hypothesis that this element is not involved in the development of resistance in the majority of Vibrio spp. in the examined aquaculture facilities.

  7. Microarray Evaluation of Antimicrobial Resistance and Virulence of Escherichia coli Isolates from Portuguese Poultry

    Directory of Open Access Journals (Sweden)

    Nuno Mendonça

    2016-01-01

    Full Text Available The presence of antimicrobial resistance and virulence factors of 174 Escherichia coli strains isolated from healthy Portuguese Gallus gallus was evaluated. Resistance profiles were determined against 33 antimicrobials by microbroth dilution. Resistance was prevalent for tetracycline (70% and ampicillin (63%. Extended-spectrum beta-lactamase (ESBL phenotype was observed in 18% of the isolates. Multidrug resistance was found in 56% of isolates. A subset of 74 isolates were screened by DNA microarrays for the carriage of 88 antibiotic resistance genes and 62 virulence genes. Overall, 37 different resistance genes were detected. The most common were tet(A (72%, blaTEM (68%, and sul1 (47%, while 21% isolates harbored an ESBL gene (blaCTX-M group 1, group 2, or group 9. Of these, 96% carried the increased serum survival (iss virulence gene, while 89% presented the enterobactin siderophore receptor protein (iroN, 70% the temperature-sensitive hemagglutinin (tsh, and 68% the long polar fimbriae (lpfA virulence genes associated with extraintestinal pathogenic E. coli. In conclusion, prevalence of antibiotic resistant E. coli from the microbiota of Portuguese chickens was high, including to extended spectrum cephalosporins. The majority of isolates seems to have the potential to trigger extraintestinal human infection due to the presence of some virulence genes. However, the absence of genes specific for enteropathogenic E. coli reduces the risk for human intestinal infection.

  8. Antimicrobial use and resistance in aquaculture: findings of a globally administered survey of aquaculture-allied professionals.

    Science.gov (United States)

    Tuševljak, N; Dutil, L; Rajić, A; Uhland, F C; McClure, C; St-Hilaire, S; Reid-Smith, R J; McEwen, S A

    2013-09-01

    There is limited published information regarding antimicrobial use (AMU) and antimicrobial resistance (AMR) in aquaculture. Our objective was to determine the opinions of aquaculture-allied professionals around the world on the frequency of AMU and AMR in common aquatic species. The study questionnaire included five sections: respondent demographics, extent of AMU in aquaculture, frequency of observations of AMR in aquaculture, AMR monitoring and surveillance and antimicrobial susceptibility testing in various jurisdictions. It was administered in English and Spanish to 604 professionals in 25 countries and with varying expertise in aquaculture. The response rate was 33% (199/604). Over half of the participants had >10 years of experience in aquaculture: 70% (140/199) were involved in fish health/clinical work and their primary experience was with salmon, tilapia, trout, shrimp (including prawn) and/or catfish. Tetracycline use was reported by 28%, 46%, 18%, 37% and 9% of respondents working with catfish, salmon, tilapia, trout and shrimp, respectively. Resistance to tetracycline in one or more species of bacteria was reported as 'frequent-to-almost always' for the same aquaculture species by 39%, 28%, 17%, 52% and 36% of respondents, respectively. 'Frequent-to-almost always' use of quinolone was reported by 70% (32/46) and 67% (8/12) of respondents from the United States and Canada, respectively, where quinolone products are not approved for aquaculture, and extra-label fluoroquinolone use is either prohibited (United States) or discouraged (Canada). Similar frequencies of quinolone use were also reported by the majority of respondents from Europe [70% (7/10)] and Asia [90% (9/10)] where labelled indications exist. This baseline information can be used to prioritize research or surveillance for AMU and AMR in aquaculture.

  9. New antimicrobial drug resistance and epidemiological typing patterns of Staphylococci from clinical isolates and raw meats.

    Science.gov (United States)

    Lee, Do Kyung; Hwang, Jae Ung; Baek, Eun Hye; Lee, Kang Oh; Kim, Kyung Jae; Ha, Nam Joo

    2008-08-01

    The antimicrobial susceptibilities of Staphylococcus isolated from clinical isolates and raw meats were tested for six different antimicrobial agents that are in widespread clinical use in Korea and four new antimicrobials, linezolid, quinupristin/dalfopristin, daptomycin, and tigecycline. And this study analyzed the mecA genes and genetic patterns of MRSA by performing epidemiological studies using the PCR method. 46%, 51%, and 79% of clinical isolates were identified as MRSA in 1998, 1999, and 2005, respectively, and the mecA gene was detected in 82% of these isolates. Of the 133 staphylococci isolated from raw meats, 18% of the isolates were found to be resistant to methicillin, but none of these isolates showed the presence of the mecA gene. New antimicrobials, which have rarely or not yet been used in Korean hospitals, showed high activity against all staphylococcal isolates including methicillin-resistant isolates. The randomly amplified polymorphic DNA (RAPD) patterns of MRSA isolates differed significantly between clinical isolates and raw meat isolates. PMID:18787791

  10. Nonlinear Stochastic Modelling of Antimicrobial resistance in Bacterial Populations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber

    This thesis applies mathematical modelling and statistical methods to investigate the dynamics and mechanisms of bacterial evolution. More specifically it is concerned with the evolution of antibiotic resistance in bacteria populations, which is an increasing problem for the treatment of infections...... with antibiotics than the non-mutators. In another study a new hypothesis for the long term role of mutator bacteria is tested. This model suggests that mutators can work as "genetic work stations", where multiple mutations occur and subsequently are transmitted to the non-mutator population by conjugation....... Another study in this thesis is concerned with the spread of colonization with resistant bacteria between patients in a hospital and people in the related catchment population. The resistance considered is extended-spectrumbeta-lactamases, and it is the first time a model has been developed for the spread...

  11. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota

    Directory of Open Access Journals (Sweden)

    Leon eCantas

    2013-05-01

    Full Text Available The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antibacterial resistance, factors that favor its spread, strategies and limitations for its control and the need for continuous training of all stake-holders i.e. medical, veterinary, public health and other relevant professionals as well as human consumers of antibiotic drugs, in the appropriate use of antimicrobials.

  12. Antimicrobial resistance of Staphylococcus spp. from small ruminant mastitis in Brazil

    Directory of Open Access Journals (Sweden)

    Chirles A. França

    2012-08-01

    Full Text Available The study aimed to determine the antimicrobial resistance patterns and to identify molecular resistance markers in Staphylococcus spp. (n=210 isolated from small ruminant mastitis in Brazil. The antimicrobial resistance patterns were evaluated by the disk diffusion test and by detection of the presence of mecA, blaZ, ermA, ermB, ermC and msrA genes by PCR. The efflux pump test was performed using ethidium bromide and biofilm production was determined by Congo red agar test along with PCR for detection of the icaD gene. The isolates were most resistant to amoxicillin (50.0%, streptomycin (42.8%, tetracycline (40.4%, lincomycin (39.0% and erythromycin (33.8%. Pan-susceptibility to all tested drugs was observed in 71 (33.8% isolates and 41 Staphylococcus isolates were positive for the efflux pump. Although phenotypic resistance to oxacillin was observed in 12.8% of the isolates, none harbored the mecA gene. However, 45.7% of the isolates harbored blaZ indicating that beta-lactamase production was the main mechanism associated with staphylococci resistance to beta-lactams in the present study. The other determinants of resistance to antimicrobial agents ermA, ermB, ermC, and msrA were observed in 1.4%, 10.4%, 16.2%, and 0.9% of the isolates, respectively. In addition, the icaD gen was detected in 32.9% of the isolates. Seventy three isolates (54 from goats and 19 from sheep were negative for all resistance genes tested and 69 isolates presented two or more resistance genes. Association among blaZ, ermA, ermB, ermC and efflux pump were observed in 17 isolates, 14 of which originated from goats and three from sheep. The data obtained in this study show the resistance of the isolates to beta-lactamics, which may be associated with the use of antimicrobial drugs without veterinary control.

  13. SSTAR, a Stand-Alone Easy-To-Use Antimicrobial Resistance Gene Predictor.

    Science.gov (United States)

    de Man, Tom J B; Limbago, Brandi M

    2016-01-01

    We present the easy-to-use Sequence Search Tool for Antimicrobial Resistance, SSTAR. It combines a locally executed BLASTN search against a customizable database with an intuitive graphical user interface for identifying antimicrobial resistance (AR) genes from genomic data. Although the database is initially populated from a public repository of acquired resistance determinants (i.e., ARG-ANNOT), it can be customized for particular pathogen groups and resistance mechanisms. For instance, outer membrane porin sequences associated with carbapenem resistance phenotypes can be added, and known intrinsic mechanisms can be included. Unique about this tool is the ability to easily detect putative new alleles and truncated versions of existing AR genes. Variants and potential new alleles are brought to the attention of the user for further investigation. For instance, SSTAR is able to identify modified or truncated versions of porins, which may be of great importance in carbapenemase-negative carbapenem-resistant Enterobacteriaceae. SSTAR is written in Java and is therefore platform independent and compatible with both Windows and Unix operating systems. SSTAR and its manual, which includes a simple installation guide, are freely available from https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-. IMPORTANCE Whole-genome sequencing (WGS) is quickly becoming a routine method for identifying genes associated with antimicrobial resistance (AR). However, for many microbiologists, the use and analysis of WGS data present a substantial challenge. We developed SSTAR, software with a graphical user interface that enables the identification of known AR genes from WGS and has the unique capacity to easily detect new variants of known AR genes, including truncated protein variants. Current software solutions do not notify the user when genes are truncated and, therefore, likely nonfunctional, which makes phenotype predictions less accurate. SSTAR

  14. Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Frimodt-Møller, Niels; Franzyk, Henrik

    2012-01-01

    -lactamase-producing Escherichia coli was assessed by testing an array comprising different types of cationic peptidomimetics obtained by a general monomer-based solid-phase synthesis protocol. Most of the peptidomimetics possessed high to moderate activity toward multidrug-resistant E. coli as opposed to the corresponding...

  15. The fight against Antimicrobial Resistance: Important recent publications

    DEFF Research Database (Denmark)

    Minssen, Timo

    2014-01-01

    that this serious threat is no longer a mere forecast for the future. AMR is a contemporary problem in every region of the world and has the potential to affect anyone, of any age, in any country. Consequently the WHO report concludes that antibiotic resistance is now a major threat to public health that needs...

  16. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance.

    Science.gov (United States)

    Docobo-Pérez, F; Drusano, G L; Johnson, A; Goodwin, J; Whalley, S; Ramos-Martín, V; Ballestero-Tellez, M; Rodriguez-Martinez, J M; Conejo, M C; van Guilder, M; Rodríguez-Baño, J; Pascual, A; Hope, W W

    2015-09-01

    The aim of this study was to improve the understanding of the pharmacokinetic-pharmacodynamic relationships of fosfomycin against extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains that have different fosfomycin MICs. Our methods included the use of a hollow fiber infection model with three clinical ESBL-producing E. coli strains. Human fosfomycin pharmacokinetic profiles were simulated over 4 days. Preliminary studies conducted to determine the dose ranges, including the dose ranges that suppressed the development of drug-resistant mutants, were conducted with regimens from 12 g/day to 36 g/day. The combination of fosfomycin at 4 g every 8 h (q8h) and meropenem at 1 g/q8h was selected for further assessment. The total bacterial population and the resistant subpopulations were determined. No efficacy was observed against the Ec42444 strain (fosfomycin MIC, 64 mg/liter) at doses of 12, 24, or 36 g/day. All dosages induced at least initial bacterial killing against Ec46 (fosfomycin MIC, 1 mg/liter). High-level drug-resistant mutants appeared in this strain in response to 12, 15, and 18 g/day. In the study arms that included 24 g/day, once or in a divided dose, a complete extinction of the bacterial inoculum was observed. The combination of meropenem with fosfomycin was synergistic for bacterial killing and also suppressed all fosfomycin-resistant clones of Ec2974 (fosfomycin MIC, 1 mg/liter). We conclude that fosfomycin susceptibility breakpoints (≤64 mg/liter according to CLSI [for E. coli urinary tract infections only]) should be revised for the treatment of serious systemic infections. Fosfomycin can be used to treat infections caused by organisms that demonstrate lower MICs and lower bacterial densities, although relatively high daily dosages (i.e., 24 g/day) are required to prevent the emergence of bacterial resistance. The ratio of the area under the concentration-time curve for the free, unbound fraction of fosfomycin versus the MIC

  17. Complex Electrical Resistivity for Monitoring DNAPL Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Stephen R. Brown; David Lesmes; John Fourkas

    2003-09-12

    Nearly all Department of Energy (DOE) facilities have landfills and buried waste areas. Of the various contaminants present at these sites, dense non-aqueous phase liquids (DNAPL) are particularly hard to locate and remove. There is an increasing need for external or non-invasive sensing techniques to locate DNAPLs in the subsurface and to track their spread and monitor their breakdown or removal by natural or engineered means. G. Olhoeft and colleagues have published several reports based on laboratory studies using the complex resistivity method which indicate that organic solvents, notably toluene, PCE, and TCE, residing in clay-bearing soils have distinctive electrical signatures. These results have suggested to many researchers the basis of an ideal new measurement technique for geophysical characterization of DNAPL pollution. Encouraged by these results we proposed to bring the field measurement of complex resistivity as a means of pollution characterization from the conceptual stage to practice. We planned to document the detectability of clay-organic solvent interactions with geophysical measurements in the laboratory, develop further understanding of the underlying physical and chemical mechanisms, and then apply these observations to develop field techniques. As with any new research endeavor we note the extreme importance of trying to reproduce the work of previous researchers to ensure that any effects observed are due to the physical phenomena occurring in the specimen and not due to the particular experimental apparatus or method used. To this end, we independently designed and built a laboratory system, including a sample holder, electrodes, electronics, and data analysis software, for the measurement of the complex electrical resistivity properties of soil contaminated with organic solvents. The capabilities and reliability of this technique were documented. Using various standards we performed measurement accuracy, repeatability, and noise immunity

  18. Foodborne urinary tract infections (FUTIs: a new paradigm for antimicrobial-resistant foodborne illness

    Directory of Open Access Journals (Sweden)

    Lora eNordstrom

    2013-03-01

    Full Text Available Urinary tract infections (UTIs are among the most common bacterial infections worldwide. Disproportionately affecting women, UTIs exact a substantial public burden each year in terms of direct medical expenses, decreased quality of life, and lost productivity. Increasing antimicrobial resistance among strains of extraintestinal pathogenic E. coli challenges successful treatment of UTIs. Community-acquired UTIs were long considered sporadic infections, typically caused by the patients’ native gastrointestinal microbiota; however, the recent recognition of UTI outbreaks with probable foodborne origins has shifted our understanding of UTI epidemiology. Along with this paradigm shift come new opportunities to disrupt the infection process and possibly quell increasing resistance, including the elimination of nontherapeutic antimicrobial use in food-animal production.

  19. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    Science.gov (United States)

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria. PMID:22029522

  20. Macrolides and lincosamides in cattle and pigs: use and development of antimicrobial resistance.

    Science.gov (United States)

    Pyörälä, Satu; Baptiste, Keith Edward; Catry, Boudewijn; van Duijkeren, Engeline; Greko, Christina; Moreno, Miguel A; Pomba, M Constança Matias Ferreira; Rantala, Merja; Ružauskas, Modestas; Sanders, Pascal; Threlfall, E John; Torren-Edo, Jordi; Törneke, Karolina

    2014-05-01

    Macrolides and lincosamides are important antibacterials for the treatment of many common infections in cattle and pigs. Products for in-feed medication with these compounds in combination with other antimicrobials are commonly used in Europe. Most recently approved injectable macrolides have very long elimination half-lives in both pigs and cattle, which allows once-only dosing regimens. Both in-feed medication and use of long-acting injections result in low concentrations of the active substance for prolonged periods, which causes concerns related to development of antimicrobial resistance. Acquired resistance to macrolides and lincosamides among food animal pathogens, including some zoonotic bacteria, has now emerged. A comparison of studies on the prevalence of resistance is difficult, since for many micro-organisms no agreed standards for susceptibility testing are available. With animal pathogens, the most dramatic increase in resistance has been seen in the genus Brachyspira. Resistance towards macrolides and lincosamides has also been detected in staphylococci isolated from pigs and streptococci from cattle. This article reviews the use of macrolides and lincosamides in cattle and pigs, as well as the development of resistance in target and some zoonotic pathogens. The focus of the review is on European conditions.

  1. Antimicrobial resistance in community and nosocomial Escherichia coli urinary tract isolates, London 2005 – 2006

    Directory of Open Access Journals (Sweden)

    Wareham David W

    2008-06-01

    Full Text Available Abstract Background Escherichia coli is the commonest cause of community and nosocomial urinary tract infection (UTI. Antibiotic treatment is usually empirical relying on susceptibility data from local surveillance studies. We therefore set out to determine levels of resistance to 8 commonly used antimicrobial agents amongst all urinary isolates obtained over a 12 month period. Methods Antimicrobial susceptibility to ampicillin, amoxicillin/clavulanate, cefalexin, ciprofloxacin, gentamicin, nitrofurantoin, trimethoprim and cefpodoxime was determined for 11,865 E. coli urinary isolates obtained from community and hospitalised patients in East London. Results Nitrofurantoin was the most active agent (94% susceptible, followed by gentamicin and cefpodoxime. High rates of resistance to ampicillin (55% and trimethoprim (40%, often in combination were observed in both sets of isolates. Although isolates exhibiting resistance to multiple drug classes were rare, resistance to cefpodoxime, indicative of Extended spectrum β-lactamase production, was observed in 5.7% of community and 21.6% of nosocomial isolates. Conclusion With the exception of nitrofurantoin, resistance to agents commonly used as empirical oral treatments for UTI was extremely high. Levels of resistance to trimethoprim and ampicillin render them unsuitable for empirical use. Continued surveillance and investigation of other oral agents for treatment of UTI in the community is required.

  2. Antimicrobial Resistance and Molecular Typing of Salmonella Stanley Isolated from Humans, Foods, and Environment.

    Science.gov (United States)

    Yang, Xiaowei; Kuang, Dai; Meng, Jianghong; Pan, Haijian; Shen, Junqing; Zhang, Jing; Shi, Weimin; Chen, Qi; Shi, Xianming; Xu, Xuebin; Zhang, Jianmin

    2015-12-01

    Salmonella enterica serovar Stanley is an important serovar that has been increasingly identified in human salmonellosis. The present study aimed to investigate the antimicrobial resistance and molecular typing of 88 Salmonella Stanley strains isolated from humans (diarrhea patients, n = 64; and healthy carrier, n = 1), foods (aquatic products, n = 16; vegetable, n = 1; and pork, n = 1), and environment (waste water, n = 2; and river water, n = 3) in Shanghai, China from 2006 to 2012. Nearly half of the strains were resistant to sulfafurazole (43/88, 48.9%), and many were resistant to streptomycin (35/88, 39.8%), tetracycline (22/88, 25%), and nalidixic acid (19/88, 21.6%). Approximately a quarter of the strains (24/88, 27.3%) were resistant to more than three antimicrobials, and five had ACSSuT resistance type. Six clusters (A-F) were identified by pulsed-field gel electrophoresis (PFGE) with 80% similarity. Interestingly, strains in the same cluster identified by PFGE possessed similar antibiotic resistance patterns. PFGE typing also indicated that aquatic products might serve as a transmission reservoir for Salmonella Stanley infections in humans.

  3. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.

    Science.gov (United States)

    Nuri, Reut; Shprung, Tal; Shai, Yechiel

    2015-11-01

    Multidrug resistance bacteria are a major concern worldwide. These pathogens cannot be treated with conventional antibiotics and thus alternative therapeutic agents are needed. Antimicrobial peptides (AMPs) are considered to be good candidates for this purpose. Most AMPs are short and positively charged amphipathic peptides, which are found in all known forms of life. AMPs are known to kill bacteria by binding to the negatively charged bacterial surface, and in most cases cause membrane disruption. Resistance toward AMPs can be developed, by modification of bacterial surface molecules, secretion of protective material and up-regulation or elimination of specific proteins. Because of the general mechanisms of attachment and action of AMPs, bacterial resistance to AMPs often involves biophysical and biochemical changes such as surface rigidity, cell wall thickness, surface charge, as well as membrane and cell wall modification. Here we focus on the biophysical, surface and surrounding changes that bacteria undergo in acquiring resistance to AMPs. In addition we discuss the question of whether bacterial resistance to administered AMPs might compromise our innate immunity to endogenous AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  4. Effects of in-feed chlortetracycline prophylaxis of beef cattle on animal health and antimicrobial-resistant Escherichia coli

    Science.gov (United States)

    Concerns have been raised that in-feed chlortetracycline (CTC) may increase antimicrobial resistance (AMR), specifically tetracycline-resistant (TETr) Escherichia coli, and third-generation cephalosporin-resistant (3GCr) E. coli. We evaluated the impact of a 5-day in-feed CTC prophylaxis on animal h...

  5. A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium.

    OpenAIRE

    Parra-Lopez, C; Lin, R; Aspedon, A; Groisman, E A

    1994-01-01

    The ability of invading pathogens to proliferate within host tissues requires the capacity to resist the killing effects of a wide variety of host defense molecules. sap mutants of the facultative intracellular parasite Salmonella typhimurium exhibit hypersensitivity to antimicrobial peptides, cannot survive within macrophages in vitro and are attenuated for mouse virulence in vivo. We conducted a molecular genetic analysis of the sapG locus and showed that it encodes a product that is 99% id...

  6. In vitro antimicrobial activity of linezolid tested against vancomycin-resistant enterococci isolated in Brazilian hospitals

    Directory of Open Access Journals (Sweden)

    Reis Adriana O.

    2001-01-01

    Full Text Available The emergence of vancomycin-resistant enterococci (VRE has been described recently in Brazil. This is in contrast to the USA and Europe, where the VRE appeared in the late 1980s. The progressive increase in VRE isolation poses important problems in the antimicrobial therapy of nosocomial infections. Treatment options and effective antimicrobial agents for VRE are often limited and the possibility of transfer of vancomycin genes to other Gram-positive microorganisms continues. In the search for antimicrobial agents for multiresistant Gram-positive cocci, compounds such as linezolid and quinupristin/dalfopristin have been evaluated. The present study was conducted to evaluate the in vitro activity of the oxazolidinone linezolid and 10 other antimicrobial agents, including quinupristin-dalfopristin, against multiresistant enterococci isolated in Brazilian hospitals. Thirty-three vancomycin resistant isolates (17 Enterococcus faecium and 16 E. faecalis, were analyzed. Strains were isolated from patients at São Paulo Hospital, Oswaldo Cruz Hospital, Hospital do Servidor Público Estadual, Santa Marcelina Hospital, Santa Casa de Misericórdia de São Paulo, and Hospital de Clínicas do Paraná. The samples were tested by a broth microdilution method following the National Committee for Clinical Laboratory Standards (NCCLS recommendations. All isolates were molecular typed using pulsed-field gel electrophoresis (PFGE. Linezolid was the most active compound against these multiresistant enterococci, showing 100% inhibition at the susceptible breakpoints. Quinupristin/dalfopristin and teicoplanin showed poor activity against both species. The molecular typing results suggest that there has been interhospital spread of vancomycin resistant E. faecium and E. faecalis among Brazilian hospitals. The results of this study indicate that linezolid is an appropriate therapeutic option for the treatment of vancomycin-resistant enterococci infections in Brazil.

  7. Determination of Antimicrobial Activity and Resistance to Oxidation of Moringa peregrina Seed Oil

    Directory of Open Access Journals (Sweden)

    Ioanna Chinou

    2012-02-01

    Full Text Available The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid were used for comparison. The resistance to oxidation of the extracted seed oil was also determined.

  8. Determination of antimicrobial activity and resistance to oxidation of moringa peregrina seed oil.

    Science.gov (United States)

    Lalas, Stavros; Gortzi, Olga; Athanasiadis, Vasilios; Tsaknis, John; Chinou, Ioanna

    2012-01-01

    The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid) were used for comparison. The resistance to oxidation of the extracted seed oil was also determined. PMID:22367027

  9. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines

    OpenAIRE

    Erickson, David L.; Lew, Cynthia S.; Brittany Kartchner; Porter, Nathan T.; S Wade McDaniel; Jones, Nathan M.; Sara Mason; Erin Wu; Eric Wilson

    2016-01-01

    Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25....

  10. Molecular detection and antimicrobial resistance of Aeromonas from houseflies (Musca domestica) in Iran

    OpenAIRE

    Davood Ommi; Seyed Mohammadreza Hashemian; Elahe Tajbakhsh; Faham Khamesipour

    2015-01-01

    ABSTRACT Objective. This study aimed to report the molecular detection and antimicrobial resistance of Aeromonas among houseflies (Musca domestica) in Shahrekord and Isfahan provinces of Iran. Materials and methods. Flies were caught from household kitchens, cattle farms, animal hospitals, human hospitals, slaughter house and poultry farms and put in collection separate sterile tubes. Isolation was accomplished by culture of flies in alkaline peptone water followed by identification with Aer...

  11. Occurrence and antimicrobial resistance patterns of Listeria monocytogenes isolated from vegetables

    OpenAIRE

    Vanessa de Vasconcelos Byrne; Ernesto Hofer; Deyse Christina Vallim; Rogeria Comastri de Castro Almeida

    2016-01-01

    Abstract Although the consumption of fresh and minimally processed vegetables is considered healthy, outbreaks related to the contamination of these products are frequently reported. Among the food-borne pathogens that contaminate vegetables is Listeria monocytogenes, a ubiquitous organism that exhibits the ability to survive and multiply at refrigerated temperatures. This study aimed to evaluate the occurrence of L. monocytogenes in vegetables as well as the antimicrobial resistance of isola...

  12. [The role of antimicrobial stewardship programs in the control of bacterial resistance].

    Science.gov (United States)

    Pasquau, J; Sadyrbaeva, S; De Jesús, S E; Hidalgo-Tenorio, C

    2016-09-01

    In order to improve infection prognosis and reduce the existing microbial resistance problem (a challenge similar to that of climate change), a higher implication of the Administration, an increased level of social awareness and the development of specific corporate networks, including the pharmaceutical industry, is needed. However, we must first consolidate Antimicrobial Stewardship Programmes with experts who seek to improve antibiotic therapy effectivity in severe infections and to reduce global antibiotic exposure. PMID:27608314

  13. Heterogeneity among Virulence and Antimicrobial Resistance Gene Profiles of Extraintestinal Escherichia coli Isolates of Animal and Human Origin

    OpenAIRE

    Maynard, Christine; Bekal, Sadjia; Sanschagrin, François; Levesque, Roger C.; Brousseau, Roland; Masson, Luke; Larivière, Serge; Harel, Josée

    2004-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) isolates collected from different infected animals and from human patients with extraintestinal infections in 2001 were characterized for their phenotypic and genotypic antimicrobial resistance profiles, genotypes, and key virulence factors. Among the 10 antimicrobial agents tested, resistance to ampicillin, tetracycline, and sulfonamides was most frequent. Multiresistant strains were found in both the animal and the human groups of isolates...

  14. Antimicrobial susceptibility/resistance and molecular epidemiological characteristics of Neisseria gonorrhoeae in 2009 in Belarus.

    Science.gov (United States)

    Glazkova, Slavyana; Golparian, Daniel; Titov, Leonid; Pankratova, Nataliya; Suhabokava, Nataliya; Shimanskaya, Irina; Domeika, Marius; Unemo, Magnus

    2011-08-01

    Increased antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global concern, and ultimately gonorrhoea may become untreatable. Nonetheless, AMR data from East-Europe are scarce beyond Russia, and no AMR data or other characteristics of gonococci have been reported from Belarus for more than 20 years. The aim was to describe the prevalence of AMR, and report molecular epidemiological characteristics of gonococci circulating in 2009 in Belarus. In a sample of 80 isolates, resistance prevalences to antimicrobials used for gonorrhoea treatment in Belarus were: Ceftriaxone 0%, spectinomycin 0%, azithromycin 17.3%, tetracycline 25.9%, ciprofloxacin 34.6% and erythromycin 59.2%. The isolates displayed no penA mosaic alleles, 38 porB gene sequences and 35 N. gonorrhoeae multiantigen sequence types, of which 20 have not been described before worldwide. Due to the high levels of antimicrobial resistance, only ceftriaxone and spectinomycin can be recommended for empirical treatment of gonorrhoea in Belarus according to WHO recommendations. Continuous gonococcal AMR surveillance in Eastern Europe is crucial. This is now initiated in Belarus using WHO protocols.

  15. Antimicrobial Activity of a Halocidin-Derived Peptide Resistant to Attacks by Proteases ▿

    Science.gov (United States)

    Shin, Yong Pyo; Park, Ho Jin; Shin, Seo Hwa; Lee, Young Shin; Park, Seungmi; Jo, Sungho; Lee, Yong Ho; Lee, In Hee

    2010-01-01

    Cationic antimicrobial peptides (AMPs) have attracted a great deal of interest as a promising candidate for a novel class of antibiotics that might effectively treat recalcitrant infections caused by a variety of microbes that are resistant to currently available drugs. However, the AMPs are inherently limited in that they are inevitably susceptible to attacks by proteases generated by human and pathogenic microbes; this vulnerability severely hinders their pharmaceutical use in human therapeutic protocols. In this study, we report that a halocidin-derived AMP, designated HG1, was found to be resistant to proteolytic degradation. As a result of its unique structural features, HG1 proved capable of preserving its antimicrobial activity after incubation with trypsin, chymotrypsin, and human matrix metalloprotease 7 (MMP-7). Additionally, HG1 was observed to exhibit profound antimicrobial activity in the presence of fluid from human skin wounds or proteins extracted from the culture supernatants of Staphylococcus aureus and Pseudomonas aeruginosa. Greater understanding of the structural motifs of HG1 required for its protease resistance might provide feasible ways to solve the problems intrinsic to the development of an AMP-based antibiotic. PMID:20385874

  16. Cultivable Bacterial Microbiota of Northern Bobwhite (Colinus virginianus): A New Reservoir of Antimicrobial Resistance?

    Science.gov (United States)

    Su, Hongwen; McKelvey, Jessica; Rollins, Dale; Zhang, Michael; Brightsmith, Donald J.; Derr, James; Zhang, Shuping

    2014-01-01

    The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations. PMID:24937705

  17. Cultivable bacterial microbiota of northern bobwhite (Colinus virginianus: a new reservoir of antimicrobial resistance?

    Directory of Open Access Journals (Sweden)

    Hongwen Su

    Full Text Available The northern bobwhite (Colinus virginianus is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57% followed by Actinobacteria (24%, Proteobacteria (17% and Bacteroidetes (0.02%. Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations.

  18. In vitro activity of antimicrobial combinations against multidrug-resistant Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Denissani Aparecida Ferrari dos Santos Lima

    2013-06-01

    Full Text Available Introduction Pseudomonas aeruginosa isolates related to nosocomial infections are often resistant to multiple antibacterial agents. In this study, antimicrobial combinations were evaluated to detect in vitro synergy against clinical isolates of P. aeruginosa. Methods Four clinical P. aeruginosa isolates were selected at random among other isolates from inpatients treated at the public University hospital in Ribeirão Preto, SP, Brazil. Two isolates were susceptible to imipenem (IPM-S and several other antimicrobials, while the other two isolates were imipenem and multidrug resistant (IPM-R. The checkerboard method was used to assess the interactions between antimicrobials. Results Combinations of imipenem or other anti-Pseudomonas drugs with complementary antibiotics, such as aminoglycosides, fosfomycin and rifampin, reached synergy rates of 20.8%, 50%, 62.5% and 50% for the two IPM-S and two IPM-R Pseudomonas isolates, respectively. Imipenem, piperacillin-tazobactam and ceftazidime yielded a greater synergy rate than cefepime or ciprofloxacin. Synergist combinations were more commonly observed when the complementary drug was tobramycin (65% or fosfomycin (57%. Conclusions Some antibacterial combinations led to significant reductions of the minimum inhibitory concentrations of both drugs, suggesting that they could be clinically applied to control infections caused by multidrug-resistant P. aeruginosa.

  19. Unraveling Antimicrobial Resistance Genes and Phenotype Patterns among Enterococcus faecalis Isolated from Retail Chicken Products in Japan

    OpenAIRE

    Arata Hidano; Takehisa Yamamoto; Yoko Hayama; Norihiko Muroga; Sota Kobayashi; Takeshi Nishida; Toshiyuki Tsutsui

    2015-01-01

    Multidrug-resistant enterococci are considered crucial drivers for the dissemination of antimicrobial resistance determinants within and beyond a genus. These organisms may pass numerous resistance determinants to other harmful pathogens, whose multiple resistances would cause adverse consequences. Therefore, an understanding of the coexistence epidemiology of resistance genes is critical, but such information remains limited. In this study, our first objective was to determine the prevalence...

  20. Prevalence and Antimicrobial Resistance of Vibrio spp. in Retail and Farm Shrimps in Ecuador.

    Science.gov (United States)

    Sperling, L; Alter, T; Huehn, S

    2015-11-01

    The aim of this study was to investigate the prevalence of Vibrio spp. in shrimp at retail and in shrimp farms in Ecuador and to determine the antimicrobial agent resistance patterns of farm isolates. The presence of genes linked to early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) also was evaluated. Vibrio spp. were isolated from retail shrimps in Cuenca, Ecuador, and farm shrimps originating from provinces El Oro and Guayas, Ecuador. A total of 229 shrimp samples were collected, of which 71 originated from retail markets in Cuenca and 158 came from shrimp farms. Overall, 219 (95.6%) samples tested positive for Vibrio spp. Vibrio parahaemolyticus (80.8%) was the most common species detected, followed by Vibrio alginolyticus (50.2%), Vibrio cholerae (11.3%), and Vibrio vulnificus (3.5%). None of the V. parahaemolyticus isolates carried the virulence-associated tdh and trh genes. In V. parahaemolyticus shrimp farm isolates, high resistance was found to ampicillin (92.2%), and intermediate resistance was found to tetracycline (51.3%) and amikacin (22.1%). Of the V. parahaemolyticus strains, 68 were resistant to at least three antimicrobial agents, and 2 were resistant to seven antimicrobial agents simultaneously. Up to 18 resistant isolates were found for V. alginolyticus, whereas V. vulnificus and V. cholerae isolates were more susceptible. None of the V. parahaemolyticus isolates carried the EMS-AHPND plasmid. The results of this study revealed the ubiquitous occurrence of Vibrio spp. in shrimps at retail and on shrimp farms in Ecuador.

  1. Prevalence and Antimicrobial Resistance of Vibrio spp. in Retail and Farm Shrimps in Ecuador.

    Science.gov (United States)

    Sperling, L; Alter, T; Huehn, S

    2015-11-01

    The aim of this study was to investigate the prevalence of Vibrio spp. in shrimp at retail and in shrimp farms in Ecuador and to determine the antimicrobial agent resistance patterns of farm isolates. The presence of genes linked to early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) also was evaluated. Vibrio spp. were isolated from retail shrimps in Cuenca, Ecuador, and farm shrimps originating from provinces El Oro and Guayas, Ecuador. A total of 229 shrimp samples were collected, of which 71 originated from retail markets in Cuenca and 158 came from shrimp farms. Overall, 219 (95.6%) samples tested positive for Vibrio spp. Vibrio parahaemolyticus (80.8%) was the most common species detected, followed by Vibrio alginolyticus (50.2%), Vibrio cholerae (11.3%), and Vibrio vulnificus (3.5%). None of the V. parahaemolyticus isolates carried the virulence-associated tdh and trh genes. In V. parahaemolyticus shrimp farm isolates, high resistance was found to ampicillin (92.2%), and intermediate resistance was found to tetracycline (51.3%) and amikacin (22.1%). Of the V. parahaemolyticus strains, 68 were resistant to at least three antimicrobial agents, and 2 were resistant to seven antimicrobial agents simultaneously. Up to 18 resistant isolates were found for V. alginolyticus, whereas V. vulnificus and V. cholerae isolates were more susceptible. None of the V. parahaemolyticus isolates carried the EMS-AHPND plasmid. The results of this study revealed the ubiquitous occurrence of Vibrio spp. in shrimps at retail and on shrimp farms in Ecuador. PMID:26555534

  2. Antimicrobial-resistant and ESBL-producing Escherichia coli in different ecological niches in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mahmudur Rashid

    2015-07-01

    Full Text Available Introduction: The rapid and wide-scale environmental spread of multidrug-resistant bacteria in different ecosystems has become a serious issue in recent years. Objectives: To investigate the epidemiology of antimicrobial resistance and extended spectrum beta-lactamase (ESBL in Bangladeshi wild birds and aquatic environments, samples were taken from Open Bill Stork (Anastomus oscitans (OBS and the nearby water sources. Methods: Water and fresh fecal samples were collected from several locations. All samples were processed and cultured for Escherichia coli and tested for antibiotic susceptibility against commonly used antibiotics. ESBL producers were characterized at genotypic level using polymerase chain reaction (PCR, sequencing, multilocus sequence typing, and rep-PCR. Results and discussion: A total of 76 E. coli isolates from the 170 OBS and 8 E. coli isolates from three river sources were isolated. In total, 29% of E. coli isolated from OBS and all of the E. coli isolated from water sources were resistant to at least one of the tested antimicrobials. Resistant phenotypes were observed with all antimicrobials except tigecycline, gentamicin, imipenem, and chloramphenicol. Multidrug resistance was observed in 2.6% of OBS and 37.5% of the water isolates. Also, 1.2% of the ESBL-producing E. coli were isolated from OBS, whereas 50% of the E. coli isolated from water sources were ESBL producers possessing the CTX-M-15 gene. The most concerning aspect of our findings was the presence of human-associated E. coli sequence types in the water samples, for example, ST156-complex156, ST10-complex10 and ST46. Conclusion: This study reports the presence of multidrug-resistant ESBL-producing E. coli in OBSs and nearby aquatic sources in Bangladesh.

  3. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota

    DEFF Research Database (Denmark)

    Cantas, L.; Shah, Syed Q A; Cavaco, Lina;

    2013-01-01

    strategies for the control of bacterial infections. This review examines the global picture of antimicrobial resistance, factors that favor its spread, strategies, and limitations for its control and the need for continuous training of all stake-holders i.e., medical, veterinary, public health, and other....... As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative...

  4. Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam

    OpenAIRE

    Nguyen, V.T.; CARRIQUE-MAS, J. J.; Ngo, T.H; Ho, H M; Ha, T.T.; CAMPBELL, J. I.; Nguyen, T N; Hoang, N.N.; PHAM, V. M.; Wagenaar, J. A.; Hardon, A.; Thai, Q.H.; Schultsz, C

    2015-01-01

    Objectives: To describe the prevalence of antimicrobial resistance among commensal Escherichia coli isolates on household and small-scale chicken farms, common in southern Vietnam, and to investigate the association of antimicrobial resistance with farming practices and antimicrobial usage. Methods: We collected data on farming and antimicrobial usage from 208 chicken farms. E. coli was isolated from boot swab samples using MacConkey agar (MA) and MA with ceftazidime, nalidixic acid or gentam...

  5. An Antimicrobial Metabolite from Bacillus sp.: Significant activity against pathogenic bacteria including multidrug-resistant clinical strains

    Directory of Open Access Journals (Sweden)

    AJAY GHOSH CHALASANI

    2015-12-01

    Full Text Available In this study, the cell free modified trypticase soya broth (pH 7.4+0.2 of Bacillus subtilis URID 12.1 showed significant antimicrobial activity against multidrug-resistant strains of Staphylococcus aureus, S. epidermidis, Streptococcus pyogenes and Enterococcus faecalis. The partially purified antimicrobial molecule was found to be resistant to extremes of pH and temperatures and also to higher concentrations of trypsin and proteinase K. The antimicrobial molecule was purified by a three-step method that included reverse-phased high performance liquid chromatography (RP-HPLC. The minimum inhibitory concentration (MIC values were determined for 11 species of bacteria using a microbroth dilution technique. The HPLC-purified fraction showed the MICs ranging from 0.5 to 1 µg/ml for methicillin and vancomycin resistant Staphylococcus aureus (MVRSA and methicillin-resistant Staphylococcus epidermidis (MRSE strains. The molecular mass of the antimicrobial compound was determined to be 842.37 Da. The same antimicrobial fraction showed negligible haemolytic activity against human red blood cells even at a concentration as high as 100µg/ml. Because of its significant antimicrobial activity at low MIC values coupled with its non-haemolytic property, it may prove to be a novel antimicrobial lead molecule.

  6. Antimicrobial Resistance in Enterococcus spp. Isolated from Environmental Samples in an Area of Intensive Poultry Production

    Directory of Open Access Journals (Sweden)

    Patricia A. Chambers

    2013-03-01

    Full Text Available Enterococcus spp. from two poultry farms and proximate surface and ground water sites in an area of intensive poultry production were tested for resistance to 16 clinical antibiotics. Resistance patterns were compared to assess trends and possible correlations for specific antimicrobials and levels of resistance. Enterococci were detected at all 12 surface water sites and three of 28 ground water sites. Resistance to lincomycin, tetracycline, penicillin and ciprofloxacin in poultry litter isolates was high (80.3%, 65.3%, 61.1% and 49.6%, respectively. Resistance in the surface water to the same antibiotics was 87.1%, 24.1%, 7.6% and 12.9%, respectively. Overall, 86% of litter isolates, 58% of surface water isolates and 100% of ground water isolates were resistant to more than one antibiotic. Fifty-four different resistance patterns were recognised in isolates obtained from litter and environmental samples and several E. faecium and E. faecalis isolates from litter and environment samples shared the same resistance pattern. Multiple antibiotic resistant (MAR indices calculated to assess health risks due to the presence of resistant enterococci suggested an increased presence of antibiotics in surface water, likely from poultry sources as no other wastewater contributions in the area were documented.

  7. Antimicrobial Resistance and Neisseria gonorrhoeae Multiantigen Sequence Typing Profile of Neisseria gonorrhoeae in New Delhi, India.

    Science.gov (United States)

    Mahajan, Neeraj; Sood, Seema; Singh, Rajendra; Kapil, Arti; Das, Bimal Kumar; Sreenivas, Vishnubhatla; Kar, Hemanta Kumar; Sharma, Vinod Kumar

    2016-08-01

    Molecular epidemiology of 100 consecutive gonococcal isolates collected between April 2010 and October 2013 from New Delhi was investigated using Neisseria gonorrhoeae multiantigen sequence typing (NG-MAST) along with its association with antimicrobial resistance profiles. Neisseria gonorrhoeae isolates were assigned into 60 different sequence types and 43 (71.6%) were novel. Sole representation was seen in 76.6% sequence types. There was significant association between ST6058 and resistance to penicillin (P = 0.00) and tetracycline (P = 0.002). PMID:27414684

  8. Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage

    Directory of Open Access Journals (Sweden)

    Ziola Barry

    2009-09-01

    Full Text Available Abstract Background Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol. Use of antimicrobial compounds (e.g., hop-compounds, Penicillin by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Results Lactic acid bacteria susceptibility test broth medium (LSM used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Conclusion Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed.

  9. Effect of Antimicrobial Use in Agricultural Animals on Drug-resistant Foodborne Campylobacteriosis in Humans: A Systematic Literature Review.

    Science.gov (United States)

    McCrackin, M A; Helke, Kristi L; Galloway, Ashley M; Poole, Ann Z; Salgado, Cassandra D; Marriott, Bernadette P

    2016-10-01

    Controversy continues concerning antimicrobial use in food animals and its relationship to drug-resistant infections in humans. We systematically reviewed published literature for evidence of a relationship between antimicrobial use in agricultural animals and drug-resistant foodborne campylobacteriosis in humans. Based on publications from the United States (U.S.), Canada and Denmark from 2010 to July 2014, 195 articles were retained for abstract review, 50 met study criteria for full article review with 36 retained for which data are presented. Two publications reported increase in macrolide resistance of Campylobacter coli isolated from feces of swine receiving macrolides in feed, and one of these described similar findings for tetracyclines and fluoroquinolones. A study in growing turkeys demonstrated increased macrolide resistance associated with therapeutic dosing with Tylan® in drinking water. One publication linked tetracycline-resistant C. jejuni clone SA in raw cow's milk to a foodborne outbreak in humans. No studies that identified farm antimicrobial use also traced antimicrobial-resistant Campylobacter from farm to fork. Recent literature confirms that on farm antibiotic selection pressure can increase colonization of animals with drug-resistant Campylobacter spp. but is inadequately detailed to establish a causal relationship between use of antimicrobials in agricultural animals and prevalence of drug-resistant foodborne campylobacteriosis in humans. PMID:26580432

  10. Antimicrobial resistance dashboard application for mapping environmental occurrence and resistant pathogens.

    Science.gov (United States)

    Stedtfeld, Robert D; Williams, Maggie R; Fakher, Umama; Johnson, Timothy A; Stedtfeld, Tiffany M; Wang, Fang; Khalife, Walid T; Hughes, Mary; Etchebarne, Brett E; Tiedje, James M; Hashsham, Syed A

    2016-03-01

    An antibiotic resistance (AR) Dashboard application is being developed regarding the occurrence of antibiotic resistance genes (ARG) and bacteria (ARB) in environmental and clinical settings. The application gathers and geospatially maps AR studies, reported occurrence and antibiograms, which can be downloaded for offline analysis. With the integration of multiple data sets, the database can be used on a regional or global scale to identify hot spots for ARGs and ARB; track and link spread and transmission, quantify environmental or human factors influencing presence and persistence of ARG harboring organisms; differentiate natural ARGs from those distributed via human or animal activity; cluster and compare ARGs connections in different environments and hosts; and identify genes that can be used as proxies to routinely monitor anthropogenic pollution. To initially populate and develop the AR Dashboard, a qPCR ARG array was tested with 30 surface waters, primary influent from three waste water treatment facilities, ten clinical isolates from a regional hospital and data from previously published studies including river, park soil and swine farm samples. Interested users are invited to download a beta version (available on iOS or Android), submit AR information using the application, and provide feedback on current and prospective functionalities.

  11. Prevalence and genetic relatedness of antimicrobial-resistant Escherichia coli isolated from animals, foods and humans in Iceland.

    Science.gov (United States)

    Thorsteinsdottir, T R; Haraldsson, G; Fridriksdottir, V; Kristinsson, K G; Gunnarsson, E

    2010-05-01

    The prevalence of resistant bacteria in food products in Iceland is unknown, and little is known of the prevalence in production animals. The aim of this study was to investigate the prevalence and genetic relatedness of antimicrobial-resistant Escherichia coli from healthy pigs and broiler chicken, pork, broiler meat, slaughterhouse personnel and outpatients in Iceland. A total of 419 E. coli isolates were tested for antimicrobial susceptibility using a microbroth dilution method (VetMIC), and resistant strains were compared using pulsed-field gel electrophoresis (PFGE). All samples were screened for enrofloxacin-resistant strains with selective agar plates. The resistance rates among E. coli isolates were moderate to high from caecal and meat samples of pigs (54.1% and 28%), broilers (33.6% and 52%) and slaughterhouse personnel (39.1%), whereas isolates from outpatients showed moderate resistance rates (23.1%). Of notice was resistance to quinolones (minimum inhibitory concentrations: nalidixic acid > or = 32, ciprofloxacin > or = 0.12 and enrofloxacin > or = 0.5), particularly among broiler and broiler meat isolates (18.2% and 36%), as there is no known antimicrobial selection pressure in the broiler production in Iceland. The majority (78.6%) of the resistant E. coli isolates was genotypically different, based on PFGE fingerprint analyses and clustering was limited. However, the same resistance pattern and pulsotype were found among isolates from broiler meat and a slaughterhouse worker, indicating spread of antimicrobial-resistant E. coli from animals to humans. Diverse resistance patterns and pulsotypes suggest the presence of a large population of resistant E. coli in production animals in Iceland. This study gives baseline information on the prevalence of antimicrobial-resistant E. coli from production animals, and their food products in Iceland and the moderate to high resistance rates emphasize the need for continuing surveillance. Further studies on the

  12. Provincial and Temporal Variation in Macrolide and Lincosamide Antimicrobial Use by Outpatients in Canada, 1995 to 2010

    Directory of Open Access Journals (Sweden)

    Shiona K Glass-Kaastra

    2014-01-01

    Full Text Available INTRODUCTION: Because antimicrobial use is commonly associated with the development of antimicrobial resistance, monitoring the volume and patterns of use of these agents is very important.

  13. Antimicrobial resistance of Salmonella serovars isolated from beef at retail markets in the north Vietnam.

    Science.gov (United States)

    Thai, Truong Ha; Hirai, Takuya; Lan, Nguyen Thi; Shimada, Akinori; Ngoc, Pham Thi; Yamaguchi, Ryoji

    2012-09-01

    Approximately 39.9% (63/158) of beef samples collected from retail markets in Hanoi from January to June 2009 were Salmonella-positive. Nine Salmonella serovars, Anatum (28.6%), Rissen (25.4%), Weltevreden (12.7%), Typhimurium (7.9%), Derby (7.9%), Lexington (7.9%), Dublin (4.6%), Newport (3.2%) and London (1.8%), were identified. Thirty-seven (58.7%) of the 63 Salmonella isolates were resistant to at least one antimicrobial tested, of which 29 (46%) isolates showed multidrug resistance (MDR). The isolates were commonly resistant to tetracycline (46.0%), sulphonamide (39.7%), ampicilline (31.7%), streptomycin (30.2%), trimethoprim (28.6%), kanamycin (28.6%) and chloramphenicol (22.2%). Fourteen (bla(TEMV), bla(OXA-1), aadA1, aadA2, sul1, tetA, tetB, tetG, cmlA1, floR, dfrA1, dfrA12, aac (3)-IV and aphA1-1AB) out of 22 antimicrobial resistance genes were detected by PCR from the resistant isolates. The catA1, Kn, blaPSE-1 genes and plasmid-mediated quinolones resistance (PMQR) genes such as qnrA, qnrB, qnrS, qepA and acc (6')-ib-cr were not detected. Mutations in the gyrA gene leading to the amino acid changes Ser83Phe and/or Asp87Asn were found in 6 out of the 11 quinolone-resistant isolates. The data revealed that multidrug resistant Salmonella strains were widely distributed in north Vietnam via the food chain and might contain multiple genes specifying identical resistant phenotypes. Thus, continuous studies are necessary to clarify the mechanisms of MDR in Salmonella and its spread in the livestock market.

  14. Antimicrobial resistance of coagulase-negative staphylococci and lactic acid bacteria from industrially produced dairy products

    Directory of Open Access Journals (Sweden)

    Nevijo Zdolec

    2013-03-01

    Full Text Available In this research, the susceptibility to clindamycin, tetracycline, amikacin, amoxicillin + clavulanic acid, enrofloxacine, vancomycin, trimethoprim + sulphametoxazol, tobramycin, chloramphenicol, ciprofloxacin, erythromycin, penicillin and trimethoprim was tested in coagulase-negative staphylococci (n=78 and lactic acid bacteria (n=30 by means of disk diffusion test and E-test. The isolates were collected from soft and hard cheeses, butter and brine. All isolates of coagulase-negative staphylococci were susceptible to clindamycin, amikacin, amoxicillin + clavulanic acid, enrofloxacine, vancomycin, chloramphenicol and ciprofloxacin according to CLSI breakpoints. A total of 30 staphylococci isolates (38.46 % were resistant to erythromycin, 18 to penicillin (23.07 %, 4 to tetracycline (5.12 %, and one isolate to trimethoprim, tobramicin and trimethoprim + sulphametoxazol (1.28 %. Among 78 tested staphylococci, 35 of them were resistant to at least one antimicrobial substance (44.87 %. The rate of resistant isolates of different soft cheese types ranged from 22 to 70 %, while resistant staphylococci were absent in hard cheese and brine. The growth of lactic acid bacteria was not influenced by trimethoprim + sulphametoxazol (n=29, vancomycin (n=29, trimethoprim (n=28, amikacin (n=10 and tobramycin (n=10. The results show that significant part of apathogenic microbiota in different dairy products is phenotypically resistant to antimicrobial agents.

  15. Antimicrobial potential of Pakistani medicinal plants against multi-drug resistance Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Rahat Ejaz

    2014-09-01

    Full Text Available Objective: To determine resistance patterns of Staphylococcus aureus (S. aureus isolated from different areas of Pakistan and to identify antimicrobial agents against multi-drug resistant S. aureus strains. Methods: A total of 67 samples (sewerage, nasal and milk were collected from different farm areas of Pakistan to identify local strains of S. aureus. Sixteen out of 67 samples were positive for S. aureus. Only 6 out of 16 S. aureus strains showed resistance to antibiotics. Then the antibacterial effect of 29 medicinal plants was evaluated on these S. aureus isolates and a standard S. aureus strain ATCC 25923. The solvents used for the extraction of plants were acetone, dimethyl sulfoxide and methanol. The in vitro antibacterial activity was performed using agar disc diffusion method. Moreover, minimum inhibitory concentration of effective medicinal plant extracts was identified through micro-dilution method to find out their 50% inhibitory concentration. Results: Plant extracts of 5 medicinal plants (Psidium guajava, Nigella sativa, Piper nigrum, Valeriana jatamansi, and Cucurbita pepo exhibited antibacterial activity against locally isolated multidrug resistant strains of S. aureus. The minimum inhibitory concentration of these extracts was ranged from 0.328 to 5.000 mg/mL. Conclusions: Plant extracts of Psidium guajava, Piper nigrum seed, Valeriana jatamansi, Cucurbita pepo and Nigella sativa showed significant in vitro antibacterial activity and thus, such findings may serve as valuable contribution in the treatment of infection and may contribute to the development of potential antimicrobial agents against multi drug resistant strains of S. aureus

  16. Antimicrobial potential of Pakistani medicinal plants against multi-drug resistance Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    Rahat Ejaz; Usman A Ashfaq; Sobia Idrees

    2014-01-01

    Objective: To determine resistance patterns of Staphylococcus aureus (S. aureus) isolated from different areas of Pakistan and to identify antimicrobial agents against multi-drug resistant S.aureus strains. Methods: A total of 67 samples (sewerage, nasal and milk) were collected from different farm areas of Pakistan to identify local strains of S. aureus. Sixteen out of 67 samples were positive for S.aureus. Only 6 out of 16 S. aureus strains showed resistance to antibiotics. Then the antibacterial effect of 29 medicinal plants was evaluated on these S. aureus isolates and a standard S. aureus strain ATCC 25923. The solvents used for the extraction of plants were acetone, dimethyl sulfoxide and methanol. The in vitro antibacterial activity was performed using agar disc diffusion method. Moreover, minimum inhibitory concentration of effective medicinal plant extracts was identified through micro-dilution method to find out their 50% inhibitory concentration.Results:Plant extracts of 5 medicinal plants (Psidium guajava, Nigella sativa, Piper nigrum, Valeriana jatamansi, and Cucurbita pepo) exhibited antibacterial activity against locally isolated multidrug resistant strains of S. aureus. The minimum inhibitory concentration of these extracts was ranged from 0.328 to 5.000 mg/mL. Conclusions: Plant extracts of Psidium guajava, Piper nigrum seed, Valeriana jatamansi, Cucurbita pepo and Nigella sativa showed significant in vitro antibacterial activity and thus, such findings may serve as valuable contribution in the treatment of infection and may contribute to the development of potential antimicrobial agents against multi drug resistant strains of S. aureus.

  17. Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment.

    Science.gov (United States)

    Rowe, Will; Verner-Jeffreys, David W; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan J; Pearce, Gareth P

    2016-01-01

    The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes (ARGs). In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess effluents that are entering the aquatic environment. Here we describe a metagenomic assessment for two types of effluent entering a river catchment. We investigated the diversity and abundance of resistance genes, mobile genetic elements (MGEs) and pathogenic bacteria. Findings were normalised to a background sample of river source water. Our results show that effluent contributed an array of genes to the river catchment, the most abundant being tetracycline resistance genes tetC and tetW from farm effluents and the sulfonamide resistance gene sul2 from wastewater treatment plant (WWTP) effluents. In nine separate samples taken across 3 years, we found 53 different genes conferring resistance to seven classes of antimicrobial. Compared to the background sample taken up river from effluent entry, the average abundance of genes was three times greater in the farm effluent and two times greater in the WWTP effluent. We conclude that effluents disperse ARGs, MGEs and pathogenic bacteria within a river catchment, thereby contributing to environmental reservoirs of ARGs.

  18. Prevalence and Antimicrobial-Resistance of Pseudomonas aeruginosa in Swimming Pools and Hot Tubs

    Directory of Open Access Journals (Sweden)

    Jonathan K. Lutz

    2011-02-01

    Full Text Available Pseudomonas aeruginosa is an important opportunistic pathogen in recreational waters and the primary cause of hot tub folliculitis and otitis externa. The aim of this surveillance study was to determine the background prevalence and antimicrobial resistance profile of P. aeruginosa in swimming pools and hot tubs. A convenience sample of 108 samples was obtained from three hot tubs and eight indoor swimming pools. Water and swab samples were processed using membrane filtration, followed by confirmation with polymerase chain reaction. Twenty-three samples (21% were positive for P. aeruginosa, and 23 isolates underwent susceptibility testing using the microdilution method. Resistance was noted to several antibiotic agents, including amikacin (intermediate, aztreonam, ceftriaxone, gentamicin, imipenem, meropenem (intermediate, ticarcillin/clavulanic acid, tobramycin (intermediate, and trimethoprim/sulfamethoxazole. The results of this surveillance study indicate that 96% of P. aeruginosa isolates tested from swimming pools and hot tubs were multidrug resistant. These results may have important implications for cystic fibrosis patients and other immune-suppressed individuals, for whom infection with multidrug-resistant P. aeruginosa would have greater impact. Our results underlie the importance of rigorous facility maintenance, and provide prevalence data on the occurrence of antimicrobial resistant strains of this important recreational water-associated and nosocomial pathogen.

  19. Counts, serovars, and antimicrobial resistance phenotypes of Salmonella on raw chicken meat at retail in Colombia.

    Science.gov (United States)

    Donado-Godoy, Pilar; Clavijo, Viviana; León, Maribel; Arevalo, Alejandra; Castellanos, Ricardo; Bernal, Johan; Tafur, Mc Allister; Ovalle, Maria Victoria; Alali, Walid Q; Hume, Michael; Romero-Zuñiga, Juan Jose; Walls, Isabel; Doyle, Michael P

    2014-02-01

    The objective of this study was to determine Salmonella counts, serovars, and antimicrobial-resistant phenotypes on retail raw chicken carcasses in Colombia. A total of 301 chicken carcasses were collected from six departments (one city per department) in Colombia. Samples were analyzed for Salmonella counts using the most-probable-number method as recommended by the U.S. Department of Agriculture, Food Safety Inspection Service protocol. A total of 378 isolates (268 from our previous study) were serotyped and tested for antimicrobial susceptibility. The overall Salmonella count (mean log most probable number per carcass ± 95% confidence interval) and prevalence were 2.1 (2.0 to 2.3) and 37%, respectively. There were significant differences (P retail store type (wet markets, supermarkets, and independent markets), and poultry company (chicken produced by integrated or nonintegrated company). Frozen chicken had the lowest Salmonella levels compared with chicken stored at other temperatures, chickens from wet markets had higher levels than those from other retail store types, and chicken produced by integrated companies had lower levels than nonintegrated companies. Thirty-one Salmonella serovars were identified among 378 isolates, with Salmonella Paratyphi B tartrate-positive (i.e., Salmonella Paratyphi B dT+) the most prevalent (44.7%), followed by Heidelberg (19%), Enteritidis (17.7%), Typhimurium (5.3%), and Anatum (2.1%). Of all the Salmonella isolates, 35.2% were resistant to 1 to 5 antimicrobial agents, 24.6% to 6 to 10, and 33.9% to 11 to 15. Among all the serovars obtained, Salmonella Paratyphi B dT+ and Salmonella Heidelberg were the most antimicrobial resistant. Salmonella prevalence was determined to be high, whereas cell numbers were relatively low. These data can be used in developing risk assessment models for preventing the transmission of Salmonella from chicken to humans in Colombia. PMID:24490916

  20. The frequency and antimicrobial resistance patterns of nosocomial pathogens recovered from cancer patients and hospital environments

    Institute of Scientific and Technical Information of China (English)

    Aymen; Mudawe; Nurain; Naser; Eldin; Bilal; Mutasim; Elhadi; Ibrahim

    2015-01-01

    Objective:To determine the prevalence and antimicrobial resistance rates of nosocomial pathogens isolated from cancer patients and hospital environments.Methods:A descriptive cross-sectional study was conducted between December 2010 to May 2013 at Radiation and Isotopes Centre of Khartoum,Sudan.A total of 1 503 samples(505 clinical and 998 environmental)were examined.Isolates were identified,and their antimicrobial susceptibility was determined using standard laboratory procedures.Results:Out of 505 clinical samples,nosocomial pathogens were found as 48.1%.Among hospital environment samples,bacterial contaminants were detected in 29.7%of samples.The main microorganisms recovered from cancer patients were Proteus spp.(23.5%),Escherichia coli(22.2%),Pseudomonas aeruginosa(P.aeruginosa)(21.0%)and Staphylococcus aureus(20.2%).The most frequent isolates from hospital environments were Bacillus spp.(50.0%),Staphylococcus aureus(14.2%)and P.aeruginosa(11.5%).The proportions of resistance among Gram-negative pathogens from cancer patients were high for ampicillin,cefotaxime,ceftazidime and ceftriaxone.Moderate resistance rates were recorded to ciprofloxacin,such as 51.0%for P.aeruginosa,21.7%for Klebsiella pneumoniae and 55.5%for Escherichia coli.Except Klebsiella,there were no significant differences(P0.05)of resistance rates between Gram-negative isolates from cancer patients to those from the hospital environments.The proportions of extended-spectrum b-lactamase producing isolates from cancer patients were not differ significantly(P=0.763)from those collected from the hospital environments(49.2%;91/185 vs.47%;32/68).Conclusions:The prevalence of nosocomial infection among cancer patients was high(48.1%)with the increasing of antimicrobial resistance rates.Hospital environments are potential reservoirs for nosocomial infections,which calls for intervention program to reduce environmental transmission of pathogens.

  1. The frequency and antimicrobial resistance patterns of nosocomial pathogens recovered from cancer patients and hospital environments

    Institute of Scientific and Technical Information of China (English)

    Aymen Mudawe Nurain; Naser Eldin Bilal; Mutasim Elhadi Ibrahim

    2015-01-01

    Objective: To determine the prevalence and antimicrobial resistance rates of nosocomial pathogens isolated from cancer patients and hospital environments. Methods: A descriptive cross-sectional study was conducted between December 2010 to May 2013 at Radiation and Isotopes Centre of Khartoum, Sudan. A total of 1 503 samples (505 clinical and 998 environmental) were examined. Isolates were identified, and their antimicrobial susceptibility was determined using standard laboratory procedures. Results: Out of 505 clinical samples, nosocomial pathogens were found as 48.1%. Among hospital environment samples, bacterial contaminants were detected in 29.7%of samples. The main microorganisms recovered from cancer patients were Proteus spp. (23.5%), Escherichia coli (22.2%), Pseudomonas aeruginosa (P. aeruginosa) (21.0%) and Staphylococcus aureus (20.2%). The most frequent isolates from hospital environ-ments were Bacillus spp. (50.0%), Staphylococcus aureus (14.2%) and P. aeruginosa (11.5%). The proportions of resistance among Gram-negative pathogens from cancer patients were high for ampicillin, cefotaxime, ceftazidime and ceftriaxone. Moderate resistance rates were recorded to ciprofloxacin, such as 51.0%for P. aeruginosa, 21.7%for Klebsiella pneumoniae and 55.5%for Escherichia coli. Except Klebsiella, there were no significant differences (P ? 0.05) of resistance rates between Gram-negative isolates from cancer patients to those from the hospital environments. The proportions of extended-spectrum b-lactamase producing isolates from cancer patients were not differ significantly (P=0.763) from those collected from the hospital environments (49.2%;91/185 vs. 47%;32/68). Conclusions: The prevalence of nosocomial infection among cancer patients was high (48.1%) with the increasing of antimicrobial resistance rates. Hospital environments are potential reservoirs for nosocomial infections, which calls for intervention program to reduce environmental transmission of pathogens.

  2. Potential Sources and Transmission of Salmonella and Antimicrobial Resistance in Kampala, Uganda.

    Science.gov (United States)

    Afema, Josephine A; Byarugaba, Denis K; Shah, Devendra H; Atukwase, Esther; Nambi, Maria; Sischo, William M

    2016-01-01

    In sub‒Saharan Africa, non‒typhoidal Salmonellae (NTS) cause invasive disease particularly in children and HIV infected adults, but the disease epidemiology is poorly understood. Between 2012 and 2013, we investigated NTS sources and transmission in Kampala. We detected Salmonella in 60% of the influent and 60% of the effluent samples from a wastewater treatment plant and 53.3% of the influent and 10% of the effluent samples from waste stabilization ponds that serve the human population; 40.9% of flush‒water samples from ruminant slaughterhouses, 6.6% of the poultry fecal samples from live bird markets and 4% of the fecal samples from swine at slaughter; and in 54.2% of the water samples from a channel that drains storm-water and effluents from the city. We obtained 775 Salmonella isolates, identified 32 serovars, and determined resistance to 15 antimicrobials. We genotyped common serovars using multiple‒locus variable number tandem repeats analysis or pulsed‒field gel electrophoresis. In addition, we analyzed 49 archived NTS isolates from asymptomatic livestock and human clinical cases. Salmonella from ruminant and swine sources were mostly pan‒susceptible (95%) while poultry isolates were generally more resistant. Salmonella Kentucky isolated from poultry exhibited extensive drug resistance characterized by resistance to 10 antimicrobials. Interestingly, similar genotypes of S. Kentucky but with less antimicrobial resistance (AMR) were found in poultry, human and environmental sources. The observed AMR patterns could be attributed to host or management factors associated with production. Alternatively, S. Kentucky may be prone to acquiring AMR. The factors driving AMR remain poorly understood and should be elucidated. Overall, shared genotypes and AMR phenotypes were found in NTS from human, livestock and environmental sources, suggesting zoonotic and environmental transmissions most likely occur. Information from this study could be used to control

  3. Potential Sources and Transmission of Salmonella and Antimicrobial Resistance in Kampala, Uganda.

    Directory of Open Access Journals (Sweden)

    Josephine A Afema

    Full Text Available In sub‒Saharan Africa, non‒typhoidal Salmonellae (NTS cause invasive disease particularly in children and HIV infected adults, but the disease epidemiology is poorly understood. Between 2012 and 2013, we investigated NTS sources and transmission in Kampala. We detected Salmonella in 60% of the influent and 60% of the effluent samples from a wastewater treatment plant and 53.3% of the influent and 10% of the effluent samples from waste stabilization ponds that serve the human population; 40.9% of flush‒water samples from ruminant slaughterhouses, 6.6% of the poultry fecal samples from live bird markets and 4% of the fecal samples from swine at slaughter; and in 54.2% of the water samples from a channel that drains storm-water and effluents from the city. We obtained 775 Salmonella isolates, identified 32 serovars, and determined resistance to 15 antimicrobials. We genotyped common serovars using multiple‒locus variable number tandem repeats analysis or pulsed‒field gel electrophoresis. In addition, we analyzed 49 archived NTS isolates from asymptomatic livestock and human clinical cases. Salmonella from ruminant and swine sources were mostly pan‒susceptible (95% while poultry isolates were generally more resistant. Salmonella Kentucky isolated from poultry exhibited extensive drug resistance characterized by resistance to 10 antimicrobials. Interestingly, similar genotypes of S. Kentucky but with less antimicrobial resistance (AMR were found in poultry, human and environmental sources. The observed AMR patterns could be attributed to host or management factors associated with production. Alternatively, S. Kentucky may be prone to acquiring AMR. The factors driving AMR remain poorly understood and should be elucidated. Overall, shared genotypes and AMR phenotypes were found in NTS from human, livestock and environmental sources, suggesting zoonotic and environmental transmissions most likely occur. Information from this study could be

  4. The relationship between antimicrobial consumption and the rates of resistance of Klebsiela pneumoniae in respiratory unit

    Institute of Scientific and Technical Information of China (English)

    YANG Xin-yun; ZHUO Chao; XIAO Xiang-lin; YUAN Jin-Ping; YANG Ling

    2008-01-01

    Objective To investigate the relationship between the consumption of antibacterial agents and resistance rate of Klebsiela pneumoniae(KP)in the hospital respiratory unit for 3 consecutive years in 2005-2007. Methods The total antibacterial consumption expressed as defined DDDs/100BD, as well as resistance rate of total KP and producing ESBLs KP were collected, and their correlation was analyzed. Results The rate of resistance of KP to cefoperazone/sulbactam, Cefepime, Imipenem, Moxifloxacin was significantly positively associated with the consumption of Cefotaxime, Ceftazidime, Moxifloxacin, Amikacin respectively;A significant positive association was observed between the rate of resistance of KP to Piperacillin/Tazobactam, Ceftriaxone and the consumption of Imipenem; The rate of resistance of KP to Piperacillin, Cefotaxime, Ciprofloxacin was significantly positively associated with the consumption of Levofloxacin. ESBLs producing bacilli of KP were detected in 44 of 75 isolates (58.7%), The rate of resistance of producing ES-BLs KP to Piperacillin/Tazobactarn, Ceftriaxone was significantly positively associated with the consumption of Imipenem, Ceftazidime; A significant positive association was observed between the rate of resistance of producing ESBLs KP to Piperacillin, Imipenem and the consumption of Moxifloxacin. There was no significant correlation in other drugs. Conclusions A relationship existed between antimicrobial consumption and rates of resistance of KP in the hospital respiratory unit. We must use antibiotics carefully and with reason to control and lessen the drug resistance of bacterial.

  5. High Mortality from Blood Stream Infection in Addis Ababa, Ethiopia, Is Due to Antimicrobial Resistance.

    Directory of Open Access Journals (Sweden)

    Teshale Seboxa

    Full Text Available Managing blood stream infection in Africa is hampered by lack of bacteriological support needed for antimicrobial stewardship, and background data needed for empirical treatment. A combined pro- and retrospective approach was used to overcome thresholds in clinical research in Africa.Outcome and characteristics including age, HIV infection, pancytopenia and bacteriological results were studied in 292 adult patients with two or more SIRS criteria using univariate and confirming multivariate logistic regression models. Expected randomly distributed resistance covariation was compared with observed co-resistance among gram-negative enteric bacteria in 92 paediatric blood culture isolates that had been harvested in the same hospital during the same period of time.Mortality was fivefold increased among patients with positive blood culture results [50.0% vs. 9.8%; OR 11.24 (4.38-25.88, p < 0.0001], and for this group of patients mortality was significantly associated with antimicrobial resistance [OR 23.28 (3.3-164.4, p = 0.002]. All 11 patients with Enterobacteriaceae resistant to 3rd. generation cephalosporins died. Eighty-nine patients had pancytopenia grade 3-4. Among patients with negative blood culture results, mortality was significantly associated with pancytopenia [OR 3.12 (1.32-7.39, p = 0.01]. HIV positivity was not associated with increased mortality. Antimicrobial resistance that concerned gram-negative enteric bacteria, regardless of species, was characterized by co-resistance between third generation cephalosporins, gentamicin, chloramphenicol, and co-trimoxazole.Mortality was strongly associated with growth of bacteria resistant to empirical treatment, and these patients were dead or dying when bacteriological reports arrived. Because of co-resistance, alternative efficient antibiotics would not have been available in Ethiopia for 8/11 Enterobacteriaceae-infected patients with isolates resistant to third generation cephalosporins

  6. High Mortality from Blood Stream Infection in Addis Ababa, Ethiopia, Is Due to Antimicrobial Resistance

    Science.gov (United States)

    Seboxa, Teshale; Amogne, Wondwossen; Abebe, Workeabeba; Tsegaye, Tewodros; Azazh, Aklilu; Hailu, Workagegnehu; Fufa, Kebede; Grude, Nils; Henriksen, Thor-Henrik

    2015-01-01

    Background Managing blood stream infection in Africa is hampered by lack of bacteriological support needed for antimicrobial stewardship, and background data needed for empirical treatment. A combined pro- and retrospective approach was used to overcome thresholds in clinical research in Africa. Methods Outcome and characteristics including age, HIV infection, pancytopenia and bacteriological results were studied in 292 adult patients with two or more SIRS criteria using univariate and confirming multivariate logistic regression models. Expected randomly distributed resistance covariation was compared with observed co-resistance among gram-negative enteric bacteria in 92 paediatric blood culture isolates that had been harvested in the same hospital during the same period of time. Results Mortality was fivefold increased among patients with positive blood culture results [50.0% vs. 9.8%; OR 11.24 (4.38–25.88), p < 0.0001], and for this group of patients mortality was significantly associated with antimicrobial resistance [OR 23.28 (3.3–164.4), p = 0.002]. All 11 patients with Enterobacteriaceae resistant to 3rd. generation cephalosporins died. Eighty-nine patients had pancytopenia grade 3–4. Among patients with negative blood culture results, mortality was significantly associated with pancytopenia [OR 3.12 (1.32–7.39), p = 0.01]. HIV positivity was not associated with increased mortality. Antimicrobial resistance that concerned gram-negative enteric bacteria, regardless of species, was characterized by co-resistance between third generation cephalosporins, gentamicin, chloramphenicol, and co-trimoxazole. Conclusion Mortality was strongly associated with growth of bacteria resistant to empirical treatment, and these patients were dead or dying when bacteriological reports arrived. Because of co-resistance, alternative efficient antibiotics would not have been available in Ethiopia for 8/11 Enterobacteriaceae-infected patients with isolates resistant to third

  7. Characterization of Antimicrobial Resistance Patterns and Detection of Virulence Genes in Campylobacter Isolates in Italy

    Directory of Open Access Journals (Sweden)

    Elisabetta Di Giannatale

    2014-02-01

    Full Text Available Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis and detection of virulence genes (sequencing and DNA microarray analysis. The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%, tetracycline (55.86% and nalidixic acid (55.17%. Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations.

  8. MOLECULAR IDENTIFICATION AND ANTIMICROBIAL RESISTANCE PATTERN OF SEVEN CLINICAL ISOLATES OF Nocardia spp. IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Larissa Anuska Zeni CONDAS

    2015-06-01

    Full Text Available Nocardia is a ubiquitous microorganism related to pyogranulomatous infection, which is difficult to treat in humans and animals. The occurrence of the disease is on the rise in many countries due to an increase in immunosuppressive diseases and treatments. This report of cases from Brazil presents the genotypic characterization and the antimicrobial susceptibility pattern using the disk-diffusion method and inhibitory minimal concentration with E-test® strips. In summary, this report focuses on infections in young adult men, of which three cases were cutaneous, two pulmonary, one neurological and one systemic. The pulmonary, neurological and systemic cases were attributed to immunosuppressive diseases or treatments. Sequencing analysis of the 16S rRNA segments (1491 bp identified four isolates of Nocardia farcinica, two isolates of Nocardia nova and one isolate of Nocardia asiatica. N. farcinica was involved in two cutaneous, one systemic and other pulmonary cases; N. nova was involved in one neurological and one pulmonary case; and Nocardia asiatica in one cutaneous case. The disk-diffusion antimicrobial susceptibility test showed that the most effective antimicrobials were amikacin (100%, amoxicillin/clavulanate (100%, cephalexin (100% and ceftiofur (100%, while isolates had presented most resistance to gentamicin (43%, sulfamethoxazole/trimethoprim (43% and ampicillin (29%. However, on the inhibitory minimal concentration test (MIC test, only one of the four isolates of Nocardia farcinica was resistant to sulfamethoxazole/trimethoprim.

  9. MOLECULAR IDENTIFICATION AND ANTIMICROBIAL RESISTANCE PATTERN OF SEVEN CLINICAL ISOLATES OF Nocardia spp. IN BRAZIL.

    Science.gov (United States)

    Condas, Larissa Anuska Zeni; Ribeiro, Márcio Garcia; Muro, Marisol Domingues; de Vargas, Agueda Palmira Castagna; Matsuzawa, Tetsuhiro; Yazawa, Katsukiyo; Siqueira, Amanda Keller; Salerno, Tatiana; Lara, Gustavo Henrique Batista; Risseti, Rafaela Mastrangelo; Ferreira, Karen Spadari; Gonoi, Tohru

    2015-01-01

    Nocardia is a ubiquitous microorganism related to pyogranulomatous infection, which is difficult to treat in humans and animals. The occurrence of the disease is on the rise in many countries due to an increase in immunosuppressive diseases and treatments. This report of cases from Brazil presents the genotypic characterization and the antimicrobial susceptibility pattern using the disk-diffusion method and inhibitory minimal concentration with E-test® strips. In summary, this report focuses on infections in young adult men, of which three cases were cutaneous, two pulmonary, one neurological and one systemic. The pulmonary, neurological and systemic cases were attributed to immunosuppressive diseases or treatments. Sequencing analysis of the 16S rRNA segments (1491 bp) identified four isolates of Nocardia farcinica, two isolates of Nocardia nova and one isolate of Nocardia asiatica. N. farcinica was involved in two cutaneous, one systemic and other pulmonary cases; N. nova was involved in one neurological and one pulmonary case; and Nocardia asiatica in one cutaneous case. The disk-diffusion antimicrobial susceptibility test showed that the most effective antimicrobials were amikacin (100%), amoxicillin/clavulanate (100%), cephalexin (100%) and ceftiofur (100%), while isolates had presented most resistance to gentamicin (43%), sulfamethoxazole/trimethoprim (43%) and ampicillin (29%). However, on the inhibitory minimal concentration test (MIC test), only one of the four isolates of Nocardia farcinica was resistant to sulfamethoxazole/trimethoprim. PMID:26200967

  10. Occurrence of multidrug resistant Salmonella in antimicrobial-free (ABF) swine production systems.

    Science.gov (United States)

    Thakur, Siddhartha; Tadesse, Daniel A; Morrow, Morgan; Gebreyes, Wondwossen A

    2007-12-15

    This cross-sectional study was conducted to determine the prevalence and antimicrobial resistance of Salmonella species in swine reared in the intensive (indoor) and extensive (outdoor) ABF production systems at farm and slaughter in North Carolina, U.S.A. We sampled a total of 279 pigs at farm (extensive 107; intensive 172) and collected 274 carcass swabs (extensive 124; intensive 150) at slaughter. Salmonella species were tested for their susceptibility against 12 antimicrobial agents using the Kirby-Bauer disk diffusion method. Serogrouping was done using polyvalent and group specific antisera. A total of 400 salmonellae were isolated in this study with a significantly higher Salmonella prevalence from the intensive (30%) than the extensive farms (0.9%) (Pslaughter, significantly higher Salmonella was isolated at the pre- and post-evisceration stages from extensively (29% pre-evisceration and 33.3% post-evisceration) than the intensively (2% pre-evisceration and 6% post-evisceration) reared swine (Ppressure. In addition, it also highlights the possible role played by slaughterhouse and other environmental factors in the contamination and dissemination of antimicrobial resistant Salmonella in ABF production systems. PMID:17644277

  11. Impact of Antimicrobial Stewardship Programme on Carbapenem Resistance in Gram Negative Isolates in an Indian Tertiary Care Hospital

    Directory of Open Access Journals (Sweden)

    Namita Jaggi

    2012-01-01

    Full Text Available Problem statement: Increasing Antimicrobial resistance in the World is constantly becoming a Global threat and there is an urgent need to prevent its spread. Various studies of last decade have shown reduced trends of antimicrobial resistance in the pathogens as an outcome of the Antimicrobial Stewardship Programs. In view of this, the present four years’ study was carried out to analyse the impact of Antimicrobial Stewardship Programs on carbapenem resistance in Gram negative isolates in a Tertiary care hospital in India. It involved a retrospective analysis of carbapenem resistance in Gram negatives for one year (July 2007 to June 2008, followed by prospective evaluation of the impact of stewardship interventions on resistance patterns (July 2008 to Jun 2011. Approach: Our study was staged into four parts: (1 July 2007 to June 2008: Resistance patterns of Gram negative isolates-E.coli, Klebsiella, Pseudomonas and Acinetobacter baumannii towards carbapenems were studied. (2 July 2008: Phase I intervention programme Implementation of an antibiotic policy in the hospital. (3 July 2008 to June 2010: The Impact of Phase I intervention programme was assessed subsequently. (4 July 2010 to June 2011: Phase II intervention programme: Formation and effective functioning of the antimicrobial stewardship committee. Results: The percentage resistance towards carbapenems in E.coli, Klebsiella, Pseudomonas and A. baumannii from July 2007-June 2008 was 1.07, 13.1, 21.3 and 12.5% respectively. Phase I intervention programme was initiated in July 2008 and Phase II in July 2010 and a subsequent reduction of 4.03% was observed in the carbapenem resistant Pseudomonas in the last stage of study period following the interventions. However the resistance in the other Gram negatives (E. coli, Klebsiella and A. baumannii rose and then stabilized. Conclusion: An antimicrobial stewardship programme with sustained and multifaceted efforts is essential to control the

  12. Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers.

    Science.gov (United States)

    Wu, Hao; Wang, Mingyu; Liu, Yuqing; Wang, Xinhua; Wang, Yunkun; Lu, Jinxing; Xu, Hai

    2016-09-01

    The prevalence of antimicrobial resistant Klebsiella pneumoniae in poultry products has been a public concern, as it severely endangers food safety and human health. In this study, we investigated 90 antimicrobial resistant Klebsiella strains that were isolated from a commercial broiler slaughter plant in Shandong province of China. Nearly all (89/90) of the isolates were identified as infectious phylogenetic group KpI-type K. pneumoniae. Out of these 90 strains, 87 (96.7%) were multidrug-resistant isolates, and 87 (96.7%) were extended-spectrum beta-lactamase (ESBL)-producing isolates. An analysis of the prevalence of quinolone resistance genes showed that 7.8%, 77.8%, 26.7%, and 2.2% of the strains carried the qnrA, qnrB, qnrS, and qepA genes, respectively. An analysis of beta-lactam resistance genes showed that a high percentage of the strains contain the blaTEM (76.7%), blaSHV (88.9%), and blaCTX-M (75.6%) genes, among which three blaSHV subtypes (blaSHV-1, n=30; blaSHV-11, n=38; blaSHV-12, n=12) and three blaCTX-M subtypes (blaCTX-M-14, n=14; blaCTX-M-15, n=35; blaCTX-M-55, n=19) were found. A further investigation of mobile genetic elements involved in horizontal multidrug resistance gene transfer showed the presence of class 1 and 2 integrons in 77 (85.6%) and five (5.6%) isolates, respectively, while no class 3 integrons were detected. Four types of class 1 integrons containing specific gene cassette arrays (dfrA12-orfF-aadA2, dfrA17-aadA5, dfrA1-aadA1, and empty) were identified. Only one gene cassette array (dfrA1-sat2-aadA1) was detected in the class 2 integrons. Furthermore, four different types of insertion sequence common region 1 (ISCR1)-mediated downstream structures were successfully identified in 46 class 1 integron-positive isolates, among which ISCR1-sapA-like-qnrB2-qacEΔ1 was the most commonly observed structure. Chi-square tests revealed a significant association between ESBL genes, plasmid-mediated quinolone resistance (PMQR) genes, and

  13. Serotypes and antimicrobial resistance of meningeal isolates of Streptococcus pneumonia. Cuba, 2007-2012

    Directory of Open Access Journals (Sweden)

    Gilda Toraño-Peraza

    2014-12-01

    Full Text Available An observational study was conducted to know the serotypes and antimicrobial susceptibility of isolates of Streptococcus pneumoniae responsible for meningitis in Cuba, where there is no vaccine yet to prevent invasive pneumococcal disease. The study included the total number of isolates submitted to the "Pedro Kourí" Institute between 2007 and 2012 (N=237. Serotypes identification was performed using capsular swelling test and antimicrobial susceptibility was studied by determining the minimum inhibitory concentration using the broth microdilution method. Predominant serotypes were 6A, 6B, 14, 19F and 23F and other non-vaccinal 18 serogroups/serotypes were identified in 29.1% of the isolates. A tendency to an increased resistance to penicillin (44.3 % was observed; the most common resistance patterns were: penicillin-trimethoprim/sulfamethoxazole and penicillin-erythromycin (21.1% and 10.5%, respectively. The largest number of isolates resistant to penicillin was in serotypes 6B, 14, 19F and 23F and the possibility of resistant non-vaccine serotypes emergence should be considered. The results show that 70.4 % of the isolates studied corresponds to the serotypes included in 13-valent conjugated pneumococcal vaccine, but with 10-valent it would achieve a lower vaccination potential coverage (56.1%. This information must be considered when evaluating the decision to use in Cuba any commercially available vaccine or the proposal of another strategy of vaccination from autochthonous vaccine candidates.

  14. After genomics, what proteomics tools could help us understand the antimicrobial resistance of Escherichia coli?

    Science.gov (United States)

    Radhouani, Hajer; Pinto, Luís; Poeta, Patrícia; Igrejas, Gilberto

    2012-06-01

    Proteomic approaches have been considerably improved during the past decade and have been used to investigate the differences in protein expression profiles of cells grown under a broad spectrum of growth conditions and with different stress factors including antibiotics. In Europe, the most significant disease threat remains the presence of microorganisms that have become resistant to antimicrobials and so it is important that different scientific tools are combined to achieve the largest amount of knowledge in this area of expertise. The emergence and spread of the antibiotic-resistant Gram-negative pathogens, such as Escherichia coli, can lead to serious problem public health in humans. E. coli, a very well described prokaryote, has served as a model organism for several biological and biotechnological studies increasingly so since the completion of the E. coli genome-sequencing project. The purpose of this review is to present an overview of the different proteomic approaches to antimicrobial-resistant E. coli that will be helpful to obtain a better knowledge of the antibiotic-resistant mechanism(s). This can also aid to understand the molecular determinants involved with pathogenesis, which is essential for the development of effective strategies to combat infection and to reveal new therapeutic targets. This article is part of a Special Issue entitled: Proteomics: The clinical link.

  15. Antimicrobial resistance and virulence profiles of Salmonella isolated from butcher shops in Minas Gerais, Brazil.

    Science.gov (United States)

    Cossi, Marcus Vinícius Coutinho; Burin, Raquel Cristina Konrad; Lopes, Danilo Augusto; Dias, Mariane Rezende; Castilho, Natalia Parma Augusto de; de Arruda Pinto, Paulo Sérgiode; Nero, Luís Augusto

    2013-09-01

    Salmonella can contaminate finished products of butcher shops, mainly through cross-contamination of utensils exposed to raw materials. To identify the main sources of contamination with this foodborne pathogen in four butcher shop environments, surface samples were obtained from employees' hands, cutting boards, knives, floor of the refrigeration room, meat grinders, and meat tenderizers (32 samples per area) and analyzed for Salmonella using the International Organization for Standardization method 6579, with modifications. Suspect isolates were identified by PCR (targeting ompC), and confirmed Salmonella isolates were subjected to pulsed-field gel electrophoresis (after treatment with restriction enzyme XbaI), analyzed for the presence of virulence genes (invA, sefA, and spvC), and screened for resistance to 12 antimicrobials. Salmonella isolates was identified only on cutting boards (five samples) from three butcher shops. Fifteen isolates were confirmed as Salmonella belonging to four pulse types (similarity of 71.1 to 100%). The invA gene was detected in 13 isolates, and the sefA was found in 8 isolates; no isolate carried spvC. All tested isolates were resistant to clindamycin and sensitive to amikacin and cefotaxine, and all isolates were resistant to at least 3 of the 12 antimicrobials tested. The results indicate the importance of cutting boards as a source of Salmonella contamination in butcher shops. The presence of multidrug-resistant Salmonella strains possessing virulence genes highlights the health risks for consumers.

  16. Prevalence of antimicrobial resistance in Escherichia coli and Klebsiella spp. in rural South India.

    Science.gov (United States)

    Sekar, Ramalingam; Mythreyee, Manoharan; Srivani, Seetharaman; Amudhan, Murugesan

    2016-06-01

    The emergence and dissemination of antimicrobial resistance (AMR) is an important public health problem as resistant organisms cause difficult-to-treat infections. In this study, the prevalence of AMR in Escherichia coli and Klebsiella spp. in rural South India was examined in order to aid empirical therapy. A cross-sectional prospective study was conducted during the period from January 2012 to December 2014. Routine clinical isolates of E. coli and Klebsiella spp. were tested for antimicrobial susceptibility to β-lactams, aminoglycosides, fluoroquinolones, tetracyclines, colistin and nitrofurantoin by the Kirby-Bauer disk diffusion method and the data were documented and analyzed with one per patient analysis using WHONET software. A total of 2292 non-duplicate clinical isolates were recovered during the study period, including 1338 E. coli and 954 Klebsiella spp. The prevalence of AMR in the total isolates was as follows: amikacin, 17.3%; ertapenem, 14.4%; doripenem, 4.5%; colistin, 13.2%; and tigecycline, 4.1%. The study results indicate a high prevalence of carbapenem resistance in Klebsiella spp. especially from pus and urinary isolates, whilst the prevalence of aztreonam and fluoroquinolone resistance was very high in E. coli. PMID:27436473

  17. Influence of a non-hospital medical care facility on antimicrobial resistance in wastewater.

    Directory of Open Access Journals (Sweden)

    Mathias Bäumlisberger

    Full Text Available The global widespread use of antimicrobials and accompanying increase in resistant bacterial strains is of major public health concern. Wastewater systems and wastewater treatment plants are considered a niche for antibiotic resistance genes (ARGs, with diverse microbial communities facilitating ARG transfer via mobile genetic element (MGE. In contrast to hospital sewage, wastewater from other health care facilities is still poorly investigated. At the instance of a nursing home located in south-west Germany, in the present study, shotgun metagenomics was used to investigate the impact on wastewater of samples collected up- and down-stream in different seasons. Microbial composition, ARGs and MGEs were analyzed using different annotation approaches with various databases, including Antibiotic Resistance Ontologies (ARO, integrons and plasmids. Our analysis identified seasonal differences in microbial communities and abundance of ARG and MGE between samples from different seasons. However, no obvious differences were detected between up- and downstream samples. The results suggest that, in contrast to hospitals, sewage from the nursing home does not have a major impact on ARG or MGE in wastewater, presumably due to much less intense antimicrobial usage. Possible limitations of metagenomic studies using high-throughput sequencing for detection of genes that seemingly confer antibiotic resistance are discussed.

  18. A One Health approach to antimicrobial resistance surveillance: is there a business case for it?

    Science.gov (United States)

    Queenan, Kevin; Häsler, Barbara; Rushton, Jonathan

    2016-10-01

    Antimicrobial resistance is a global problem of complex epidemiology, suited to a broad, integrated One Health approach. Resistant organisms exist in humans, animals, food and the environment, and the main driver of this resistance is antimicrobial usage. A One Health conceptual framework for surveillance is presented to include all of these aspects. Global and European (regional and national) surveillance systems are described, highlighting shortcomings compared with the framework. Policy decisions rely on economic and scientific evidence, so the business case for a fully integrated system is presented. The costs of integrated surveillance are offset by the costs of unchecked resistance and the benefits arising from interventions and outcomes. Current estimates focus on costs and benefits of human health outcomes. A One Health assessment includes wider societal costs of lost labour, changes in health-seeking behaviour, impacts on animal health and welfare, higher costs of animal-origin food production, and reduced consumer confidence in safety and international trade of such food. Benefits of surveillance may take years to realise and are dependent on effective and accepted interventions. Benefits, including the less tangible, such as improved synergies and efficiencies in service delivery and more timely and accurate risk identification, should also be recognised. By including these less tangible benefits to society, animal welfare, ecosystem health and resilience, together with the savings and efficiencies through shared resources and social capital-building, a stronger business case for a One Health approach to surveillance can be made. PMID:27496533

  19. A One Health approach to antimicrobial resistance surveillance: is there a business case for it?

    Science.gov (United States)

    Queenan, Kevin; Häsler, Barbara; Rushton, Jonathan

    2016-10-01

    Antimicrobial resistance is a global problem of complex epidemiology, suited to a broad, integrated One Health approach. Resistant organisms exist in humans, animals, food and the environment, and the main driver of this resistance is antimicrobial usage. A One Health conceptual framework for surveillance is presented to include all of these aspects. Global and European (regional and national) surveillance systems are described, highlighting shortcomings compared with the framework. Policy decisions rely on economic and scientific evidence, so the business case for a fully integrated system is presented. The costs of integrated surveillance are offset by the costs of unchecked resistance and the benefits arising from interventions and outcomes. Current estimates focus on costs and benefits of human health outcomes. A One Health assessment includes wider societal costs of lost labour, changes in health-seeking behaviour, impacts on animal health and welfare, higher costs of animal-origin food production, and reduced consumer confidence in safety and international trade of such food. Benefits of surveillance may take years to realise and are dependent on effective and accepted interventions. Benefits, including the less tangible, such as improved synergies and efficiencies in service delivery and more timely and accurate risk identification, should also be recognised. By including these less tangible benefits to society, animal welfare, ecosystem health and resilience, together with the savings and efficiencies through shared resources and social capital-building, a stronger business case for a One Health approach to surveillance can be made.

  20. High Prevalence of Antimicrobial-resistant Gram-negative Colonization in Hospitalized Cambodian Infants

    Science.gov (United States)

    Pol, Sreymom; Soeng, Sona; Sar, Poda; Neou, Leakhena; Chea, Phal; Day, Nicholas PJ; Cooper, Ben S.; Turner, Claudia

    2016-01-01

    Background: Antimicrobial-resistant Gram-negative infections are a significant cause of mortality in young infants. We aimed to determine characteristics of, and risk factors for, colonization and invasive infection caused by 3rd generation cephalosporin (3GC) or carbapenem-resistant organisms in outborn infants admitted to a neonatal unit (NU) in Cambodia. Methods: During the first year of operation, patients admitted to the Angkor Hospital for Children NU, Siem Reap, Cambodia, underwent rectal swabbing on admission and twice weekly until discharge. Swabs were taken also from 7 environmental sites. Swabs were cultured to identify 3GC or carbapenem-resistant Acinetobacter sp., Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Results: The study included 333 infants with a median age at NU admission of 10 days (range, 0–43). Colonization by ≥1 3GC-resistant organism was detected in 85.9% (286/333). Admission swabs were collected in 289 infants: 61.9% were colonized by a 3GC-resistant organism at the time of admission, and a further 23.2% were colonized during hospitalization, at a median of 4 days [95% confidence interval: 3–5]. Probiotic treatment (hazard ratio: 0.58; 95% confidence interval: 0.35–0.98) was associated with delayed colonization. Colonization by a carbapenem-resistant organism occurred in 25 (7.5%) infants. Six infants had NU-associated K. pneumoniae bacteremia; phenotypically identical colonizing strains were found in 3 infants. Environmental colonization occurred early. Conclusions: Colonization by antimicrobial-resistant Gram-negative organisms occurred early in hospitalized Cambodian infants and was associated with subsequent invasive infection. Trials of potential interventions such as probiotics are needed. PMID:27124686

  1. Prevalence and antimicrobial resistance of listeria species isolated from different types of raw meat in Iran.

    Science.gov (United States)

    Rahimi, Ebrahim; Yazdi, Farzad; Farzinezhadizadeh, Hussein

    2012-12-01

    Listeria and particularly Listeria monocytogenes are important foodborne pathogens that can cause listeriosis and severe complications in immunocompromised individuals, children, pregnant women, and the elderly. The objective of this study was to determine the prevalence of Listeria spp. in raw meat in Iran. From July 2010 to November 2011, a total of 1,107 samples of various raw meats were obtained from randomly selected retail butcher shops. The results of conventional bacteriologic and PCR methods revealed that 141 samples (12.7%) were positive for Listeria spp. The highest prevalence of Listeria was found in raw buffalo meat samples (7 of 24 samples; 29.2%) followed by quail meat (26 of 116 samples; 22.4%), partridge meat (13 of 74 samples; 17.6%), and chicken meat (27 of 160 samples; 16.9%). The most common species recovered was Listeria innocua (98 of 141 strains; 75.9 % ); the remaining isolates were L. monocytogenes (19.1% of strains), Listeria welshimeri (6.4% of strains), Listeria seeligeri (3.5% of strains), and Listeria grayi (1.4% of strains). Susceptibilities of the 141 strains to 11 antimicrobial drugs were determined using the disk diffusion assay. Overall, 104 (73.8%) of the Listeria isolates were resistant to one or more antimicrobials, and 17.0% of the isolates were resistant to three or more antimicrobials. The present study provides the first baseline data on the prevalence of Listeria in raw meat derived from sheep, goat, buffalo, quail, partridge, chicken, and ostrich in Iran and the susceptibility of these isolates to antimicrobials.

  2. Antimicrobial resistance in indicator Escherichia coli isolates from free-ranging livestock and sympatric wild ungulates in a natural environment (Northeastern Spain).

    Science.gov (United States)

    Navarro-Gonzalez, N; Porrero, M C; Mentaberre, G; Serrano, E; Mateos, A; Domínguez, L; Lavín, S

    2013-10-01

    Antimicrobial resistance was assessed in indicator Escherichia coli isolates from free-ranging livestock and sympatric wild boar (Sus scrofa) and Iberian ibex (Capra pyrenaica) in a National Game Reserve in northeastern Spain. The frequency of antimicrobial resistance was low (0% to 7.9%). However, resistance to an extended-spectrum cephalosporin and fluoroquinolones was detected.

  3. Agriculture and food animals as a source of antimicrobial-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Economou V

    2015-04-01

    provide some insights into possible solutions to this major health issue. Keywords: antimicrobial resistance, farm animals, food safety, foodborne pathogens, alternatives to antibiotics

  4. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2015-01-01

    limiting data on both use of antimicrobial agents, occurrence and spread of resistance as well as impact on human health. However, in recent years, emerging issues related to methicillin-resistant Staphylococcus aureus, Clostridium difficile, Escherichia coli and horizontally transferred genes indicates...... burden and the effect of interventions, there is a need for global harmonized integrated and continuous surveillance of antimicrobial usage and antimicrobial resistance, preferably associated with data on production and animal diseases to determine the positive and negative impact of reducing...

  5. Occurrence of antimicrobial resistant bacteria in healthy dogs and cats presented to private veterinary hospitals in southern Ontario: A preliminary study

    OpenAIRE

    Murphy, Colleen; Reid-Smith, Richard J.; Prescott, John F.; Bonnett, Brenda N; Poppe, Cornelis; Boerlin, Patrick; Weese, J. Scott; Janecko, Nicol; McEwen, Scott A

    2009-01-01

    The prevalence and patterns of antimicrobial susceptibility of fecal Escherichia coli, Salmonella spp., extended β-lactamase producing E. coli (ESBL-E. coli), methicillin-resistant Staphylococcus aureus (MRSA), and methicillin-resistant Staphylococcus pseudintermedius (MRSP) were determined for healthy dogs (n = 188) and cats (n = 39) from veterinary hospitals in southern Ontario that had not had recent exposure to antimicrobials. The prevalence of antimicrobial resistance in E. coli was as f...

  6. Presence of antimicrobial resistance in coliform bacteria from hatching broiler eggs with emphasis on ESBL/AmpC-producing bacteria.

    Science.gov (United States)

    Mezhoud, H; Chantziaras, I; Iguer-Ouada, M; Moula, N; Garmyn, A; Martel, A; Touati, A; Smet, A; Haesebrouck, F; Boyen, F

    2016-08-01

    Antimicrobial resistance is recognized as one of the most important global health challenges. Broilers are an important reservoir of antimicrobial resistant bacteria in general and, more particularly, extended-spectrum β-lactamases (ESBL)/AmpC-producing Enterobacteriaceae. Since contamination of 1-day-old chicks is a potential risk factor for the introduction of antimicrobial resistant Enterobacteriaceae in the broiler production chain, the presence of antimicrobial resistant coliform bacteria in broiler hatching eggs was explored in the present study. Samples from 186 hatching eggs, collected from 11 broiler breeder farms, were inoculated on MacConkey agar with or without ceftiofur and investigated for the presence of antimicrobial resistant lactose-positive Enterobacteriaceae, particularly, ESBL/AmpC-producers. Escherichia coli and Enterobacter cloacae were obtained from the eggshells in 10 out of 11 (10/11) sampled farms. The majority of the isolates were recovered from crushed eggshells after external decontamination suggesting that these bacteria are concealed from the disinfectants in the egg shell pores. Antimicrobial resistance testing revealed that approximately 30% of the isolates showed resistance to ampicillin, tetracycline, trimethoprim and sulphonamides, while the majority of isolates were susceptible to amoxicillin-clavulanic acid, nitrofurantoin, aminoglycosides, florfenicol, neomycin and apramycin. Resistance to extended-spectrum cephalosporins was detected in eight Enterobacteriaceae isolates from five different broiler breeder farms. The ESBL phenotype was confirmed by the double disk synergy test and blaSHV-12, blaTEM-52 and blaACT-39 resistance genes were detected by PCR. This report is the first to present broiler hatching eggs as carriers and a potential source of ESBL/AmpC-producing Enterobacteriaceae for broiler chicks.

  7. Evaluation of antimicrobial resistance and virulence of enterococci from equipment surfaces, raw materials, and traditional cheeses.

    Science.gov (United States)

    Gaglio, Raimondo; Couto, Natacha; Marques, Cátia; de Fatima Silva Lopes, Maria; Moschetti, Giancarlo; Pomba, Constança; Settanni, Luca

    2016-11-01

    Forty enterococci isolated along the production chains of three traditional cheeses (PDO Pecorino Siciliano, PDO Vastedda della Valle del Belìce, and Caciocavallo Palermitano) made in Sicily (southern Italy) were studied for the assessment of their antibiotic resistance and virulence by a combined phenotypic/genotypic approach. A total of 31 Enterococcus displayed resistance to at least one or more of the antimicrobials tested. The strains exhibited high percentages of resistance to erythromycin (52.5%), ciprofloxacin (35.0%), quinupristin-dalfopristin (20.0%), tetracycline (17.5%), and high-level streptomycin (5.0%). The presence of tet(M), cat(pC221), and aadE genes for resistance to tetracycline, chloramphenicol, and streptomycin, respectively, was registered in all strains with resistance phenotype. The erm(B) gene was not detected in any erythromycin-resistant strain. The Enterococcus strains were further tested by PCR for the presence of virulence genes, namely, gelE, asa1, efaA, ace, and esp. Twenty strains were positive for all virulence genes tested. Among the enterococci isolated from final cheeses, three strains (representing 33.3% of total cheese strains) were sensible to all antimicrobials tested and did not carry any virulence factor. Although this study confirmed that the majority of dairy enterococci are vectors for the dissemination of antimicrobial resistance and virulence genes, only two strains showed a high resistance to aminoglycosides, commonly administered to combat enterococci responsible for human infections. Furthermore, the presence of the strains E. casseliflavus FMAC163, E. durans FMAC134B, and E. faecium PON94 without risk determinants, found at dominating levels over the Enterococcus populations in the processed products, stimulates further investigations for their future applications in cheese making. All strains devoid of the undesired traits were isolated from stretched cheeses. Thus, this cheese typology represents an

  8. Detection and monitoring of insect resistance to transgenic Bt crops

    Institute of Scientific and Technical Information of China (English)

    FANGNENG HUANG

    2006-01-01

    Transgenic crops expressing Bacillus thuringiensis (Bt) endotoxins have become one of the most important tools for managing corn and cotton insect pests in the US and other countries. The widespread adoption of transgenic Bt crops could place a high degree of selection pressure on the target insect populations and accelerate development of resistance, raising concerns about the long-term durability of Bt plants as an effective pest management tool. Conservation of Bt susceptibility in insects has become one of the most active research areas in modern agriculture. One of the key factors for a successful Bt resistance management plan is to have a cost-effective monitoring system that can provide information on: (i) the initial Bt resistance allele frequencies at low levels in field insect populations; and (ii) early shifts in Bt resistance allele frequencies so that proactive measures for managing resistance can be deployed well before field control failures. Developing such a monitoring program has been difficult because: (i) resistance traits that occur at very low frequencies are hard to detect; (ii) many factors affect the sensitivity and accuracy of a Bt resistance monitoring program; and (iii) monitoring resistance is costly. Several novel methods for detecting Bt resistance alleles developed during the last decade have made a cost-effective monitoring system possible. Future studies should focus on how to improve and standardize the methodologies for insect sampling and Bt resistance detection.

  9. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Baloda, S.; Boye, Mette;

    2001-01-01

    From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural soil......, when possible, were collected. Soil from a well-characterized Danish farm soil (Hojbakkegaard) was collected for comparison. The Psudomonas spp. and B. cereus were chosen as representative for Gram-negative and Gram-positive indigenous soil bacteria to test the effect of spread of animal waste...... on selection of resistance among soil bacteria. No variations in resistance levels were observed between farms; but when the four differently treated soils were compared, resistance was seen for carbadox, chloramphenicol, nalidixan (nalidixic acid), nitrofurantoin, streptomycin and tetracycline for Pseudomonas...

  10. Association between phage types and antimicrobial resistance among bovine isolates of Staphylococcus aureus in 10 countries

    DEFF Research Database (Denmark)

    Vintov, J.; Aarestrup, Frank Møller; Zinn, C. E.;

    2003-01-01

    associated with penicillin resistance in contrast to phage group I (P = 0.0023) and phage complex-80 (P = 0.0066). This study confirms that a large number of phage types of S. aureus cause bovine mastitis, but that some types predominate. In addition, these findings could indicate that the use of penicillin...... in the bovine environment has selected for specific types of S. aureus in countries with a high frequency of resistance. (C) 2003 Elsevier B.V. All rights reserved.......This study was conducted to investigate the diversity of phage types and associations between penicillin resistance and phage types among 815 Staphylococcus aureus isolates from bovine mastitis in nine European countries and USA. All isolates were examined for susceptibility to antimicrobial agents...

  11. Association between phage types and antimicrobial resistance among bovine Staphylococcus aureus from 10 countries

    DEFF Research Database (Denmark)

    Vintov, J.; Aarestrup, Frank Møller; Zinn, C. E.;

    2003-01-01

    associated with penicillin resistance in contrast to phage group I (P = 0.0023) and phage complex-80 (P = 0.0066). This study confirms that a large number of phage types of S. aureus cause bovine mastitis, but that some types predominate. In addition, these findings could indicate that the use of penicillin...... in the bovine environment has selected for specific types of S. aureus in countries with a high frequency of resistance.......This study was conducted to investigate the diversity of phage types and associations between penicillin resistance and phage types among 815 Staphylococcus aureus isolates from bovine mastitis in nine European countries and USA. All isolates were examined for susceptibility to antimicrobial agents...

  12. Multirresistência antimicrobiana em cepas de Escherichia coli isoladas de cadelas com piometra Antimicrobial multi-resistance of Escherichia coli strains isolated from bitches with pyometra

    Directory of Open Access Journals (Sweden)

    V.M. Lara

    2008-08-01

    Full Text Available The antimicrobial sensibility of Escherichia coli strains isolated from the uterine content of bitches was evaluated. Fifteen E. coli strains were tested in relation to their susceptibility to different antimicrobials. The results demonstrated 100% of resistance to all tested drugs, being a quite conflicting finding compared to other works, which observed variable resistance of those bacteria to different antimicrobials but not the same multi-resistance pattern. The detection of those multi-resistance strains configures a problem, with important implications on the antimicrobial therapy. Therefore, additional investigations for a best characterization and extension of this problem are needed.

  13. Public health measures to control the spread of antimicrobial resistance in Neisseria gonorrhoeae in men who have sex with men

    NARCIS (Netherlands)

    Xiridou, M; Soetens, L C; Koedijk, F D H; VAN DER Sande, M A B; Wallinga, J

    2015-01-01

    Gonorrhoea is one of the most common sexually transmitted infections. The control of gonorrhoea is extremely challenging because of the repeated development of resistance to the antibiotics used for its treatment. We explored different strategies to control the spread of antimicrobial resistance and

  14. The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2013-05-01

    Full Text Available The antimicrobial resistance data among zoonotic and indicator bacteria in 2011, submitted by 26 European Union Member States, were jointly analysed by the European Food Safety Authority and the European Centre for Disease Prevention and Control. Data covered resistance in zoonotic Salmonella and Campylobacter isolates from humans, food and animals, and in indicator Escherichia coli and enterococci isolates from animals and food. Data on methicillin-resistant Staphylococcus aureus in animals and food were also presented. Resistance in isolates from humans were mainly interpreted using clinical breakpoints, while animal and food isolate resistance was interpreted using epidemiological cut-off values. Resistance was commonly found in isolates from humans, animals and food, although disparities in resistance were frequently observed between Member States. High resistance levels were recorded to ampicillin, tetracyclines and sulfonamides in Salmonella isolates from humans, while resistance to third-generation cephalosporins and fluoroquinolones remained low. In Salmonella and indicator Escherichia coli isolates from fowl, pigs, cattle and meat thereof, resistance to ampicillin, tetracyclines and sulfonamides was also commonly detected, while resistance to third-generation cephalosporins was low. Moderate to high resistance to (fluoroquinolones was observed in Salmonella isolates from turkeys, fowl and broiler meat. In Campylobacter isolates from human cases, resistance to ampicillin, ciprofloxacin, nalidixic acid and tetracyclines was high, while resistance to erythromycin was low to moderate. High resistance to ciprofloxacin, nalidixic acid and tetracyclines was observed in Campylobacter isolates from fowl, broiler meat, pigs and cattle, whereas much lower levels were observed for erythromycin and gentamicin. Among the indicator enterococci isolates from animals and food, resistance to tetracyclines and erythromycin was commonly detected. The

  15. Antimicrobial resistance of Helicobacter pylori strains to five antibiotics, including levofloxacin, in Northwestern Turkey

    Directory of Open Access Journals (Sweden)

    Reyhan Caliskan

    2015-06-01

    Full Text Available INTRODUCTION: Antibiotic resistance is the main factor that affects the efficacy of current therapeutic regimens against Helicobacter pylori. This study aimed to determine the rates of resistance to efficacy clarithromycin, amoxicillin, tetracycline, levofloxacin and metronidazole among H. pylori strains isolated from Turkish patients with dyspepsia. METHODS: H. pylori was cultured from corpus and antrum biopsies that were collected from patients with dyspeptic symptoms, and the antimicrobial susceptibility of H. pylori was determined using the E-test (clarithromycin, amoxicillin, tetracycline, metronidazole and levofloxacin according to the EUCAST breakpoints. Point mutations in the 23S rRNA gene of clarithromycin-resistant strains were investigated using real-time PCR. RESULTS: A total of 98 H. pylori strains were isolated, all of which were susceptible to amoxicillin and tetracycline. Of these strains, 36.7% (36/98 were resistant to clarithromycin, 35.5% (34/98 were resistant to metronidazole, and 29.5% (29/98 were resistant to levofloxacin. Multiple resistance was detected in 19.3% of the isolates. The A2143G and A2144G point mutations in the 23S rRNA-encoding gene were found in all 36 (100% of the clarithromycin-resistant strains. Additionally, the levofloxacin MIC values increased to 32 mg/L in our H. pylori strains. Finally, among the clarithromycin-resistant strains, 27.2% were resistant to levofloxacin, and 45.4% were resistant to metronidazole. CONCLUSIONS: We conclude that treatment failure after clarithromycin- or levofloxacin-based triple therapy is not surprising and that metronidazole is not a reliable agent for the eradication of H. pylori infection in Turkey.

  16. Relationship between antimicrobial resistance and aminoglycoside-modifying enzyme gene expressions in Acinetobacter baumannii

    Institute of Scientific and Technical Information of China (English)

    SHI Wei-feng; JIANG Jian-ping; MI Zu-huang

    2005-01-01

    Background Acinetobacter baumannii is one of the main gram-negative bacilli in clinical practice. Nosocomial infections caused by multi-drug resistance Acinetobacter baumannii is very difficult to treat. This study was designed to investigate the antimicrobial resistance characteristics and four resistant gene expressions of aminoglycoside-modifying enzymes including N-acetyltransferases and O-phosphotransferases in Acinetobacter baumannii. Methods Bacterial identification and antimicrobial susceptibility test were performed by PhoenixTM system in 247 strains of Acinetobacter baumannii. Minimal inhibitory concentrations (MICs) of seven aminoglycosides including gentamicin, amikacin, kanamycin, tobramycin, netilmicin, neomycin and streptomycin in 15 strains of multi-drug resistant Acinetobacter baumannii were detected by agar dilution. Four aminoglycoside-modifying enzyme genes were amplified by polymerase chain reaction (PCR) and verified by DNA sequencer.Results The resistance rates of 247 strains of Acinetobacter baumannii against cefotaxime, levofloxacin, piperacillin, aztreonam, tetracycline, ciprofloxacin and chloramphenicol were more than 50%. Imipenem and meropenem showed high antibacterial activities with resistance rates of 3.2% and 4.1%. MIC50 and MIC90 of gentamicin, amikacin, streptomycin and kanamycin in 15 strains of multi-drug resistant Acinetobacter baumanii were all more than 1024 mg/L, and the resistance rates were 100%, 100%, 100% and 93.3%, respectively. But their resistance rates to tobramycin, netilmicin and neomycin were 86.7%, 93.3% and 46.7%, respectively. Three modifying enzyme genes, including aacC1, aacC2 and aacA4 genes, were found in 15 strains, but aphA6 had not been detected. Their positive rates were 93.3%, 20.0% and 20.0%, respectively. These three genes existed simultaneously in No.19 strain. Nucleotide sequences of aacC1, aacC2 and aacA4 genes shared 100%, 97.9% and 99.7% identities with GenBank genes (AY307113, S68058 and AY

  17. Occurrence and antimicrobial resistance patterns of Listeria monocytogenes isolated from vegetables

    Directory of Open Access Journals (Sweden)

    Vanessa de Vasconcelos Byrne

    2016-06-01

    Full Text Available Abstract Although the consumption of fresh and minimally processed vegetables is considered healthy, outbreaks related to the contamination of these products are frequently reported. Among the food-borne pathogens that contaminate vegetables is Listeria monocytogenes, a ubiquitous organism that exhibits the ability to survive and multiply at refrigerated temperatures. This study aimed to evaluate the occurrence of L. monocytogenes in vegetables as well as the antimicrobial resistance of isolates. The results showed that 3.03% of samples were contaminated with L. monocytogenes, comprising 2.22% of raw vegetables and 5.56% of ready-to-eat vegetables. Multiplex PCR confirmed the virulence potential of the isolates. Antimicrobial resistance profiling showed that 50% of the isolates were susceptible to the antibiotics used. The resistance of one isolate to penicillin G, a commonly employed therapeutic agent, and the presence of serotype 4b, a serotype commonly associated with food-borne outbreaks, could be potential health hazards for consumers.

  18. 'Disperse abroad in the land': the role of wildlife in the dissemination of antimicrobial resistance.

    Science.gov (United States)

    Arnold, Kathryn E; Williams, Nicola J; Bennett, Malcolm

    2016-08-01

    Antimicrobial resistance (AMR) has been detected in the microbiota of many wildlife species, including long-distance migrants. Inadequately treated wastes from humans and livestock dosed with antimicrobial drugs are often assumed to be the main sources of AMR to wildlife. While wildlife populations closely associated with human populations are more likely to harbour clinically important AMR related to that found in local humans and livestock, AMR is still common in remote wildlife populations with little direct human influence. Most reports of AMR in wildlife are survey based and/or small scale, so researchers can only speculate on possible sources and sinks of AMR or the impact of wildlife AMR on clinical resistance. This lack of quantitative data on the flow of AMR genes and AMR bacteria across the natural environment could reflect the numerous AMR sources and amplifiers in the populated world. Ecosystems with relatively simple and well-characterized potential inputs of AMR can provide tractable, but realistic, systems for studying AMR in the natural environment. New tools, such as animal tracking technologies and high-throughput sequencing of resistance genes and mobilomes, should be integrated with existing methodologies to understand how wildlife maintains and disperses AMR.

  19. 'Disperse abroad in the land': the role of wildlife in the dissemination of antimicrobial resistance.

    Science.gov (United States)

    Arnold, Kathryn E; Williams, Nicola J; Bennett, Malcolm

    2016-08-01

    Antimicrobial resistance (AMR) has been detected in the microbiota of many wildlife species, including long-distance migrants. Inadequately treated wastes from humans and livestock dosed with antimicrobial drugs are often assumed to be the main sources of AMR to wildlife. While wildlife populations closely associated with human populations are more likely to harbour clinically important AMR related to that found in local humans and livestock, AMR is still common in remote wildlife populations with little direct human influence. Most reports of AMR in wildlife are survey based and/or small scale, so researchers can only speculate on possible sources and sinks of AMR or the impact of wildlife AMR on clinical resistance. This lack of quantitative data on the flow of AMR genes and AMR bacteria across the natural environment could reflect the numerous AMR sources and amplifiers in the populated world. Ecosystems with relatively simple and well-characterized potential inputs of AMR can provide tractable, but realistic, systems for studying AMR in the natural environment. New tools, such as animal tracking technologies and high-throughput sequencing of resistance genes and mobilomes, should be integrated with existing methodologies to understand how wildlife maintains and disperses AMR. PMID:27531155

  20. Staphylococcus aureus isolated from handmade sweets: Biofilm formation, enterotoxigenicity and antimicrobial resistance.

    Science.gov (United States)

    Kroning, Isabela Schneid; Iglesias, Mariana Almeida; Sehn, Carla Pohl; Valente Gandra, Tatiane Kuka; Mata, Marcia Magalhães; da Silva, Wladimir Padilha

    2016-09-01

    Staphylococcus aureus is the second most important pathogen involved in foodborne outbreaks in Brazil. Because of their widespread distribution and biofilm forming ability, handmade sweets are easily contaminated with S. aureus. The aim of this study was to isolate and identify coagulase-positive staphylococci (CPS) from handmade sweets produced in Pelotas City/Brazil. The virulence potential was checked by evaluating the presence of the staphylococcal enterotoxin genes, icaA and icaD genes, the biofilm forming potential and antimicrobial resistance of the isolates. It was find just S. aureus among the CPS isolates. All the S. aureus isolates had biofilm forming ability on stainless steel and more than half of them on polystyrene surfaces. The majority of the isolates carried the icaA (66.6%) and icaD (58.4%) genes and some of them had the genes encoding enterotoxins A (33.4%) and B (16.6%). Furthermore, the majority of the isolates (83%) were resistant to at least one of the tested antimicrobials and multidrug resistance was observed in 8.4% of the isolates. The isolates had virulence potential, and half of them were enterotoxigenic. In addition, the ability of all the isolates to produce biofilms highlights the danger posed by these potentially virulent microorganisms persisting in food manufacturing environments. PMID:27217365

  1. Antimicrobial Resistant Pattern of Escherichia Coli Strains Isolated from Pediatric Patients in Jordan

    Directory of Open Access Journals (Sweden)

    Mohammad Alshara

    2011-05-01

    Full Text Available The present study was conducted to investigate antimicrobial resistant pattern of Escherichia coli (E. coli strains isolated from clinical specimens of Jordanian pediatric patients during the period from January to December 2008. A total of 444 E. coli strains were isolated from clinical specimens and tested for their susceptibility to different antimicrobial drugs. Overall, high resistance rate was observed for ampicillin (84%, followed by amoxicillin-clavulanic acid (74.3%, cotrimoxazole (71%, nalidixic acid (47.3%, cephalothin (41%. Lower resistance rates were observed for amikacin (0% followed by Cefotaxime (11%, Ceftriaxone (11.7%, ciprofloxacin (14.5%, Norfloxacin (16.5%, gentamicin (17.3% cephalexin (20.9%, Ceftazidime (22.5%, cefixime (29.6%, and cefaclor (32.8%. Ampicillin, amoxicillin-clavulanic acid and cotrimoxazole were found to be ineffective at in vitro inhibition of the E. coli of pediatric origin. Amikacin was highly effective for E. coli with susceptibility rate of 100%. The majority of E. coli strains were susceptible to third generation cephalosporins and fluoroquinolones.

  2. Etiology and antimicrobial resistance of community-acquired pneumonia in adult patients in China

    Institute of Scientific and Technical Information of China (English)

    TAO Li-li; DENG Wei-wu; HU Bi-jie; HE Li-xian; WEI Li; XIE Hong-mei; WANG Bao-qing; LI Hua-ying; CHEN Xue-hua; ZHOU Chun-mei

    2012-01-01

    Background Appropriate antimicrobial therapy of community-acquired pneumonia (CAP) is mainly based on the distribution of etiology and antimicrobial resistance of major pathogens.We performed a prospective observational study of adult with CAP in 36 hospitals in China.Methods Etiological pathogens were isolated in each of the centers,and all of the isolated pathogens were sent to Zhongshan Hospital for antimicrobial susceptibility tests using agar dilution.Results A total of 593 patients were enrolled in this study,and 242 strains of bacteria were isolated from 225 patients.Streptococcus pneumoniae (79/242,32.6%) was the most frequently isolated pathogen,followed by Haemophilus influenzae (55/242,22.7%) and Klebsiella pneumoniae (25/242,10.3%).Totally 527 patients underwent serological tests for atypical pathogens; Mycoplasma pneumoniae and Chlamydia pneumoniae infections were identified in 205 (38.9%)and 60 (11.4%) patients respectively.Legionella pneumophila infections were identified in 4.0% (13/324) of patients.The non-susceptibility rate of isolated Streptococcus pneumoniae to erythromycin and penicillin was 63.2% and 19.1%respectively.Six patients died from the disease,the 30-day mortality rate was 1.1% (6/533).Conclusions The top three bacteria responsible for CAP in Chinese adults were Streptococcus pneumonia,Haemophitus influenza and Klebsiella pneumonia.There was also a high prevalence of atypical pathogens and mixed pathogens.The resistance rates of the major isolated pathogens were relatively low except for the high prevalence of macrolide resistance in Streptococcus pneumoniae.

  3. Antimicrobial resistance in community and nosocomial Escherichia coli urinary tract isolates, London 2005 – 2006

    OpenAIRE

    Wareham David W.; Krahe Daniel; Bean David C

    2008-01-01

    Abstract Background Escherichia coli is the commonest cause of community and nosocomial urinary tract infection (UTI). Antibiotic treatment is usually empirical relying on susceptibility data from local surveillance studies. We therefore set out to determine levels of resistance to 8 commonly used antimicrobial agents amongst all urinary isolates obtained over a 12 month period. Methods Antimicrobial susceptibility to ampicillin, amoxicillin/clavulanate, cefalexin, ciprofloxacin, gentamicin, ...

  4. Impact of media: self-medication and the rising problem of antimicrobial resistance

    Directory of Open Access Journals (Sweden)

    Manali M. Mahajan

    2014-10-01

    Self-medication involves the use of medicinal products by the patient to treat self-recognized disorders, symptoms, recurrent diseases, or minor health problems. Medicines for self-medication are often called over the counter (OTC drugs, which are available without a doctor's prescription through pharmacies, mostly in the developing countries. Self-medication particularly with antibiotics has been widely reported, leading the World Health Organization to call attention to its dangers as a cause of antimicrobial resistance. [Int J Basic Clin Pharmacol 2014; 3(5.000: 921-922

  5. Multilocus Sequence Typing and Antimicrobial Resistance of Campylobacter jejuni Isolated from Dairy Calves in Austria

    OpenAIRE

    Klein-Jöbstl, Daniela; Sofka, Dmitri; Iwersen, Michael; Drillich, Marc; Hilbert, Friederike

    2016-01-01

    Human campylobacteriosis is primarily associated with poultry but also cattle. In this study, 55 Campylobacter jejuni strains isolated from 382 dairy calves’ feces were differentiated by multilocus sequence typing and tested for antimicrobial resistance. The most prevalent sequence type (ST) was ST883 (20.0%), followed by ST48 (14.5%), and ST50 (9.1%). In contrast to ST48 and ST50, ST883 has rarely been described in cattle previously. Furthermore, risk factor analysis was performed for the pr...

  6. Virulence Factors of Staphylococcus aureus Isolated from Korean Pork bulgogi: Enterotoxin Production and Antimicrobial Resistance

    OpenAIRE

    Jung, Byeong Su; Lee, Yong Ju; Lee, Na-Kyoung; Kim, Hyoun Wook; Oh, Mi-Hwa; Paik, Hyun-Dong

    2015-01-01

    The aim of this study was to investigate the antimicrobial resistance profiles of and the enterotoxin gene distribution in 4 strains of Staphylococcus aureus (S10-2, S10-3, S12-2, and S13-2) isolated from 90 bulgogi samples. The S. aureus enterotoxin H gene (seh) was found in all the strains, while the S. aureus enterotoxin A gene (sea) was found only in 3 of the 4 strains. The S10-2 strain expressed a combination of enterotoxin genes - seg, seh, sei, sej, selm, and seln. The strains S10-2 an...

  7. Antimicrobial susceptibility of non-enterococcal intrinsic glycopeptide-resistant Gram-positive organisms.

    Science.gov (United States)

    Vay, Carlos; Cittadini, Roxana; Barberis, Claudia; Hernán Rodríguez, Carlos; Perez Martínez, Herminia; Genero, Fabiana; Famiglietti, Angela

    2007-02-01

    Non-enterococcal Gram-positive bacteria that are intrinsically vancomycin-resistant have been infrequently isolated in association with serious infections. However, well-documented infections have lately been reported with increasing frequency. Because these organisms may be pathogens, we tested the MICs of 19 antimicrobial agents by the agar dilution method for predicting susceptibility. The activity of these antimicrobial agents was assessed against 28 strains (Lactobacillus rhamnosus, 6; Lactobacillus acidophilus, 1; Lactobacillus casei, 1; Lactobacillus fermentum, 2; Lactobacillus brevis, 1; Lactobacillus plantarum, 1; Weissella confusa, 2; Leuconostoc mesenteroides, 7; Leuconostoc lactis, 4; Pediococcus acidilactici, 2; Pediococcus pentosaceus, 1), isolated from clinical specimens in an Argentinian university hospital from 1997 to 2003. The MICs of penicillin for 67% of the Lactobacillus strains and 100% of the Leuconostoc spp. and Pediococcus spp. strains tested were in the 0.25-2 microg/mL range. Erythromycin was the most active antimicrobial overall. Multiresistance was observed in 2 strains (Lactobacillus rhamnosus, 1; Lactobacillus plantarum, 1).

  8. Antimicrobial resistance monitoring of gram-negative bacilli isolated from 15 teaching hospitals in 2014 in China%2014年中国15家教学医院革兰阴性杆菌耐药性监测分析

    Institute of Scientific and Technical Information of China (English)

    王启; 王辉; 俞云松; 徐修礼; 孙自镛; 路娟; 杨滨; 张莉滟; 胡志东

    2015-01-01

    Objective To investigate the current situation of antimicrobial resistance of nosocomial gram-negative bacilli in 2014 in China.Methods About 1 430 consecutive and non-repetitive strains of gram-negative bacilli were isolated from 15 teaching hospitals from March to August in 2014.All of these isolates were sent to the central laboratory for reidentification and susceptibility testing.The minimal inhibitory concentration (MIC)of meropenem and other antibacterial agents were determined by agar dilution method.The data were analyzed by using WHONET-5.6 software.Results The activity of antimicrobial agents against Enterobacteriaceae was listed as followings in descending order of susceptibility:meropenem (94.7%,913/964),amikacin (94.4%,910/964),imipenem (88.5%,853/964),ertapenem (87.8%,847/964),piperacillin-tazobactam (87.2%,841/964),cefoperazone-sulbactam (86.7%,836/964),polymyxin B (77%,742/964),cefepime (74.5%,718/964),cefiazidime (71.8%,692/964),levofloxacin(71.1%,685/964),ciprofloxacin (67.7%,653/964),minocyline (64.2%,619/964),ceftriaxone (56.8%,548/964),cefotaxime (55.8%,538/964),cefoxitin (45.5%,439/964).The prevalence of extended-spectrum beta-lactamases (ESBLs) was 57.6% (114/198)in E.coli and 24.6% (49/199) in Klebsiella pneumonia.The sensitivity of E.coli to carbapenems,amikacin,piperacillin-tazobactam,polymyxin B and cefoperazone-sulbactam was all over 80%.However,over 60% E.coli strains were resistant to ciprofloxacin,levofloxacin,ceflriaxone and cefotaxime.Polymyxin B was the most susceptible antibiotic to Klebsiella pneumoniae (99.5% sensitive),followed by amikacin (89.9%),meropenem (86.4%),imipenem (86.4%) and piperacillin-tazobactam (81.9%),while ceftriaxone (60.8%) and cefotaxime (59.8%) were less sensitive.The activity of antimicrobial agents against E.cloacae,E.aerogenes and Citrobacter freundii was listed as followings in descending order of susceptibility:meropenem (96.1%-97.4

  9. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria

    OpenAIRE

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U.; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, ...

  10. A Transporter Interactome Is Essential for the Acquisition of Antimicrobial Resistance to Antibiotics

    Science.gov (United States)

    Shuster, Yonatan; Steiner-Mordoch, Sonia; Alon Cudkowicz, Noemie; Schuldiner, Shimon

    2016-01-01

    Awareness of the problem of antimicrobial resistance (AMR) has escalated and drug-resistant infections are named among the most urgent problems facing clinicians today. Our experiments here identify a transporter interactome and portray its essential function in acquisition of antimicrobial resistance. By exposing E. coli cells to consecutive increasing concentrations of the fluoroquinolone norfloxacin we generated in the laboratory highly resistant strains that carry multiple mutations, most of them identical to those identified in clinical isolates. With this experimental paradigm, we show that the MDTs function in a coordinated mode to provide an essential first-line defense mechanism, preventing the drug reaching lethal concentrations, until a number of stable efficient alterations occur that allow survival. Single-component efflux transporters remove the toxic compounds from the cytoplasm to the periplasmic space where TolC-dependent transporters expel them from the cell. We postulate a close interaction between the two types of transporters to prevent rapid leak of the hydrophobic substrates back into the cell. The findings change the prevalent concept that in Gram-negative bacteria a single multidrug transporter, AcrAB-TolC type, is responsible for the resistance. The concept of a functional interactome, the process of identification of its members, the elucidation of the nature of the interactions and its role in cell physiology will change the existing paradigms in the field. We anticipate that our work will have an impact on the present strategy searching for inhibitors of AcrAB-TolC as adjuvants of existing antibiotics and provide novel targets for this urgent undertaking. PMID:27050393

  11. Antimicrobial resistance in bacteria isolated from aquatic environments in Brazil: a systematic review

    Directory of Open Access Journals (Sweden)

    Ermeton Duarte do Nascimento

    2014-04-01

    Full Text Available This article discusses antibiotic resistance in bacteria isolated from aquatic environments in Brazil, taking into account isolation sites, the main reported antimicrobial agents, the genes involved in resistance, the most prevalent bacterial genera and species, and the main mechanisms of resistance. This review is based upon specialized literature, consulting published scientific articles selected from the SciELO, PubMed and LILACS databases. Based upon the inclusion criteria, we selected 21 articles, most (61.6% were from PubMed, with the highest prevalence for work done in the Southeast region (71.4% in freshwater environments (71.4%, and the major focus on farm ponds (28.6%. Gram-negative bacteria are the most studied (71.4% and the Aeromonas spp. was the one found most frequently (19.0%. The most frequently used antimicrobials were chloramphenicol (81.0%, gentamicin (76.2%, sulpha/trimethroprim (71.4%, ampicillin (61.9% and tetracycline (71.4%; and the ones with higher prevalence of resistance were chloramphenicol (58.8%, sulpha/trimethroprim (78.5% and ampicillin (84.6%. It was found that studies on resistance in other aquatic environments have not yet been conducted in Brazil, especially in the North and Northeast regions, where irregular rainfall distribution leads to the use of reservoirs as supply sources during the dry season, highlighting concerns regarding the quality, contamination and maintenance of these resources, as the water is intended for human use or for production purposes.

  12. Antimicrobial Resistance and Molecular Characteristics of Nasal Staphylococcus aureus Isolates From Newly Admitted Inpatients.

    Science.gov (United States)

    Chen, Xu; Sun, Kangde; Dong, Danfeng; Luo, Qingqiong; Peng, Yibing; Chen, Fuxiang

    2016-05-01

    Staphylococcus aureus, or methicillin-resistant S. aureus (MRSA), is a significant pathogen in both nosocomial and community infections. Community-associated MRSA (CA-MRSA) strains tend to be multi-drug resistant and to invade hospital settings. This study aimed to assess the antimicrobial resistance and molecular characteristicsof nasal S. aureus among newlyadmitted inpatients.In the present study, 66 S. aureus isolates, including 10 healthcare-associated MRSA (HA-MRSA), 8 CA-MRSA, and 48 methicillin-sensitive S. aureus (MSSA) strains, were found in the nasal cavities of 62 patients by screening 292 newlyadmitted patients. Antimicrobial resistance and molecular characteristics of these isolates, including spa-type, sequence type (ST) and SCCmec type, were investigated. All isolates were sensitive to linezolid, teicoplanin, and quinupristin/dalfopristin, but high levels of resistance to penicillin and erythromycin were detected. According to D-test and erm gene detection results, the cMLS(B) and iMLS(B) phenotypes were detected in 24 and 16 isolates, respectively. All 10 HA-MRSA strains displayed the cMLS(B) phenotypemediated by ermA or ermA/ermC, while the cMLS(B) CA-MRSA and MSSA strains carried the ermB gene. Molecular characterization revealedall 10 HA-MRSA strains were derived from the ST239-SCCmec III clone, and four out of eight CA-MRSA strains were t437-ST59-SCCmec V. The results suggest that patients play an indispensable role in transmitting epidemic CA-MRSA and HA-MRSA strains. PMID:26915614

  13. Antimicrobial resistance determinants in Staphylococcus spp. recovered from birds of prey in Portugal.

    Science.gov (United States)

    Sousa, Margarida; Silva, Nuno; Igrejas, Gilberto; Silva, Filipe; Sargo, Roberto; Alegria, Nuno; Benito, Daniel; Gómez, Paula; Lozano, Carmen; Gómez-Sanz, Elena; Torres, Carmen; Caniça, Manuela; Poeta, Patrícia

    2014-07-16

    Antibiotic resistance among wild animals represent an emerging public health concern. The objective of this study was to analyze the staphylococcal nasal microbiota in birds of prey and their content in antimicrobial resistance determinants. Nasal samples from 16 birds of prey were collected, swabs were dipped and incubated into BHI broth [6.5% NaCl] and later seeded on manitol salt agar and oxacillin-resistance screening agar base media. Staphylococcal colonies were isolated from both media and were identified by biochemical and molecular methods. Susceptibility testing to 18 antimicrobial agents was performed by disk-diffusion method. Six of the 16 tested animals carried staphylococci (37.5%) and 7 isolates of the following species were recovered: Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Staphylococcus sciuri rodentium, Staphylococcus cohnii urealitycum, and Staphylococcus gallinarum. The S. aureus isolate was penicillin-resistant (with blaZ gene) but methicillin-susceptible and was ascribed to spa-type t012, sequence-type ST30 and agr-type III. The S. epidermidis isolate carried blaZ, mecA, mrs(A/B), mphC, tet(K), drfA, and fusC genes, ica operon, and was typed as ST35. The genes ant6'-Ia, tet(K), tet(L), dfrG, cat221, cat194, and cat223 were detected in S. saprophyticus or S. gallinarum isolates. Birds of prey seem to be a natural reservoir of S. aureus and coagulase-negative staphylococci resistant to multiple antibiotics. Due to the convergence between habitats, the contact between wildlife, other animals and humans is now more common and this involves an increased possibility of interchange of these microorganisms in the different ecosystems.

  14. Antimicrobial resistance determinants in Staphylococcus spp. recovered from birds of prey in Portugal.

    Science.gov (United States)

    Sousa, Margarida; Silva, Nuno; Igrejas, Gilberto; Silva, Filipe; Sargo, Roberto; Alegria, Nuno; Benito, Daniel; Gómez, Paula; Lozano, Carmen; Gómez-Sanz, Elena; Torres, Carmen; Caniça, Manuela; Poeta, Patrícia

    2014-07-16

    Antibiotic resistance among wild animals represent an emerging public health concern. The objective of this study was to analyze the staphylococcal nasal microbiota in birds of prey and their content in antimicrobial resistance determinants. Nasal samples from 16 birds of prey were collected, swabs were dipped and incubated into BHI broth [6.5% NaCl] and later seeded on manitol salt agar and oxacillin-resistance screening agar base media. Staphylococcal colonies were isolated from both media and were identified by biochemical and molecular methods. Susceptibility testing to 18 antimicrobial agents was performed by disk-diffusion method. Six of the 16 tested animals carried staphylococci (37.5%) and 7 isolates of the following species were recovered: Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Staphylococcus sciuri rodentium, Staphylococcus cohnii urealitycum, and Staphylococcus gallinarum. The S. aureus isolate was penicillin-resistant (with blaZ gene) but methicillin-susceptible and was ascribed to spa-type t012, sequence-type ST30 and agr-type III. The S. epidermidis isolate carried blaZ, mecA, mrs(A/B), mphC, tet(K), drfA, and fusC genes, ica operon, and was typed as ST35. The genes ant6'-Ia, tet(K), tet(L), dfrG, cat221, cat194, and cat223 were detected in S. saprophyticus or S. gallinarum isolates. Birds of prey seem to be a natural reservoir of S. aureus and coagulase-negative staphylococci resistant to multiple antibiotics. Due to the convergence between habitats, the contact between wildlife, other animals and humans is now more common and this involves an increased possibility of interchange of these microorganisms in the different ecosystems. PMID:24679961

  15. Using Informatics and the Electronic Medical Record to Describe Antimicrobial Use in the Clinical Management of Diarrhea Cases at 12 Companion Animal Practices

    OpenAIRE

    R Michele Anholt; John Berezowski; Ribble, Carl S.; Margaret L Russell; Craig Stephen

    2014-01-01

    Antimicrobial drugs may be used to treat diarrheal illness in companion animals. It is important to monitor antimicrobial use to better understand trends and patterns in antimicrobial resistance. There is no monitoring of antimicrobial use in companion animals in Canada. To explore how the use of electronic medical records could contribute to the ongoing, systematic collection of antimicrobial use data in companion animals, anonymized electronic medical records were extracted from 12 particip...

  16. Antimicrobial Resistance

    Science.gov (United States)

    ... bacteria, viruses, and fungi— is among modern medicine's great achievements. The German physician Paul Ehrlich developed a narrow-spectrum antibiotic called Salvarsan in 1909 for treatment of syphilis. Discovery of penicillin by Alexander Fleming followed in 1928. By the mid 1940s, ...

  17. Prevalence of antimicrobial resistance of Streptococcus pneumoniae in Chinese children: four hospitals surveillance

    Institute of Scientific and Technical Information of China (English)

    沈叙庄; 陆权; 叶启慈; 张国成; 俞桑洁; 张泓; 邓秋莲; 杨永弘

    2003-01-01

    Objective To investigate the nasal carriage of antibiotic-resistant pneumococci in children of <5 years old in the following four cities, Beijing, Shanghai, Guangzhou and Xi'an.Methods A total of 647 pneumococci strains were isolated and detected. Minimal inhibition concentrations (MICs) of antibiotics were determined by E-test. Disk diffusion test was used for the measurement of antimicrobial susceptibility.Results Prevalence of penicillin non-susceptible Streptococcus pneumoniae in the four cities was 41%, with Guangzhou (60.8%) ranking first, followed by Xi'an (45%), Shanghai (37%) and Beijing (25.9%). The majority of penicillin non-susceptibility isolates (23.9%-53.8%) had a low level of resistance (MIC 0.64-1.5 μg/ml). The most sensitive antimicrobials in terms of percentage of susceptible organisms were amoxicillin-clavulanic acid (99.4%), followed by ceftriaxone (92.1%); cefurxime and cefaclor were slightly more sensitive than penicillin with susceptibility of 74.8% and 77.9%. Erythromycin, tetracycline and TMP-SMZ were highly resistant (83.6%, 82.1% and 76.2% respectively). Among erythromycin resistant isolates, 100% were resistant to azithromycin, 98.6% to clarithromycin, 97.2% to roxithromycin and spiramycin, and 96.6% to clindamycin. 97.2% (141/145) were typical of the macrolides-lincosamides-streptogramons B (MLSB ) resistance phenotype, and 2.8% (4/145) were M phenotype. The group of PRSP was with significantly higher rates of non-susceptibility for ceftriaxone (18.4%), cefurxime (58.6%), cefaclor (53.4%), compared with the group of PEN-S (0.5%, 1.8% and 0.2%, respectively) and the rate of multi-drug resistance in the isolates of PRSP group (92.9%) was significantly higher than that of PEN-S group (59.2%).Conclusion The rates of penicillin and multi-drug resistance among isolates of pneumococci carried nasally in are high children and the high prevalence of multi-drug resistance in the Chinese population may be becoming one of the most serious

  18. Prevalence of Nontyphoidal Salmonella and Salmonella Strains with Conjugative Antimicrobial-Resistant Serovars Contaminating Animal Feed in Texas.

    Science.gov (United States)

    Hsieh, Yi-Cheng; Poole, Toni L; Runyon, Mick; Hume, Michael; Herrman, Timothy J

    2016-02-01

    The objective of this study was to characterize 365 nontyphoidal Salmonella enterica isolates from animal feed. Among the 365 isolates, 78 serovars were identified. Twenty-four isolates (7.0%) were recovered from three of six medicated feed types. Three of these isolates derived from the medicated feed, Salmonella Newport, Salmonella Typhimurium var. O 5- (Copenhagen), and Salmonella Lexington var. 15+ (Manila), displayed antimicrobial resistance. Susceptibility testing revealed that only 3.0% (12) of the 365 isolates displayed resistance to any of the antimicrobial agents. These 12 isolates were recovered from unmedicated dry beef feed (n = 3), medicated dry beef feed (n = 3), cabbage culls (n = 2), animal protein products (n = 2), dry dairy cattle feed (n = 1), and fish meal (n = 1). Only Salmonella Newport and Salmonella Typhimurium var. O 5- (Copenhagen) were multidrug resistant. Both isolates possessed the IncA/C replicon and the blaCMY-2 gene associated with cephalosporin resistance. Plasmid replicons were amplified from 4 of 12 resistant isolates. Plasmids (40 kb) were Salmonella Montevideo and Salmonella Kentucky. Conjugation experiments were done using 7 of the 12 resistant isolates as donors. Only Salmonella Montevideo, possessing a plasmid and amplifying IncN, produced transconjugants. Transconjugants displayed the same antimicrobial resistance profile as did the donor isolate. Three isolates that amplified replicons corresponding to IncA/C or IncHI2 did not produce transconjugants at 30 or 37°C. The results of this study suggest that the prevalence of antimicrobial-resistant Salmonella contaminating animal feed is low in Texas. However, Salmonella was more prevalent in feed by-products; fish meal had the highest prevalence (84%) followed by animal protein products (48%). Ten of the 35 feed types had no Salmonella contamination. Further investigation is needed to understand the possible role of specific feed types in the dissemination of antimicrobial

  19. Antimicrobial resistance of 100 Salmonella strains isolated from Gallus gallus in 4 wilayas of Algeria.

    Science.gov (United States)

    Bounar-Kechih, S; Hamdi, T M; Mezali, L; Assaous, F; Rahal, K

    2012-05-01

    This study aims at identifying serotypes and surveying the antimicrobial resistance and plasmid support of resistance of 100 Salmonella strains, which were isolated from 96 out of 506 (18.97%) samples taken from different production farms in the wilayas (i.e., Algerian states) of Tizi-Ouzou, Bouira, Bejaïa, and Boumerdes in 2007. The highest percentage of Salmonella (48%) was recorded in Bouira. Thirteen serotypes were identified among the 100 Salmonella strains used in this study. The most prevalent ones were Salmonella Heidelberg (24%), Salmonella Enteritidis (20%), Salmonella Albany (16%), and Salmonella Typhimurium (9%). The strains showed resistance to 8 of the 34 antibiotics tested. Fifty-three percent of strains were resistant to at least one antibiotic, among which 15.09% were multiresistant. The most frequently observed resistance was to quinolones (58.49%), with a contribution of 94.74% of Salmonella Heidelberg resistant strains. The plasmid transfer performed on 53 strains showed that only 11 exhibited one or more markers of resistance, the most frequent being ampicillin, followed by tetracycline, then cotrimoxazole, sulphonamides, and kanamycin, in that order. The tetracycline characteristics were present in 72.72% of transconjugants, those of the β-lactams and sulphonamides in 27.27% each and those of the aminosides in 9.09%. The incompatibility groups of plasmids belong to the F1me and Com1 classes, and the molecular weight of the plasmid DNA was greater than 100 kb. The phenotypic and genotypic results indicate a clonal dissemination in the Gallus gallus species in this particular study; this phenomenon could generate resistant bacteria and transferable genes of resistance to humans.

  20. Antimicrobial resistance of 100 Salmonella strains isolated from Gallus gallus in 4 wilayas of Algeria.

    Science.gov (United States)

    Bounar-Kechih, S; Hamdi, T M; Mezali, L; Assaous, F; Rahal, K

    2012-05-01

    This study aims at identifying serotypes and surveying the antimicrobial resistance and plasmid support of resistance of 100 Salmonella strains, which were isolated from 96 out of 506 (18.97%) samples taken from different production farms in the wilayas (i.e., Algerian states) of Tizi-Ouzou, Bouira, Bejaïa, and Boumerdes in 2007. The highest percentage of Salmonella (48%) was recorded in Bouira. Thirteen serotypes were identified among the 100 Salmonella strains used in this study. The most prevalent ones were Salmonella Heidelberg (24%), Salmonella Enteritidis (20%), Salmonella Albany (16%), and Salmonella Typhimurium (9%). The strains showed resistance to 8 of the 34 antibiotics tested. Fifty-three percent of strains were resistant to at least one antibiotic, among which 15.09% were multiresistant. The most frequently observed resistance was to quinolones (58.49%), with a contribution of 94.74% of Salmonella Heidelberg resistant strains. The plasmid transfer performed on 53 strains showed that only 11 exhibited one or more markers of resistance, the most frequent being ampicillin, followed by tetracycline, then cotrimoxazole, sulphonamides, and kanamycin, in that order. The tetracycline characteristics were present in 72.72% of transconjugants, those of the β-lactams and sulphonamides in 27.27% each and those of the aminosides in 9.09%. The incompatibility groups of plasmids belong to the F1me and Com1 classes, and the molecular weight of the plasmid DNA was greater than 100 kb. The phenotypic and genotypic results indicate a clonal dissemination in the Gallus gallus species in this particular study; this phenomenon could generate resistant bacteria and transferable genes of resistance to humans. PMID:22499877

  1. Prevalence of multi-antimicrobial-agent resistant, shiga toxin and enterotoxin producing Escherichia coli in surface waters of river Ganga.

    Science.gov (United States)

    Ram, Siya; Vajpayee, Poornima; Shanker, Rishi

    2007-11-01

    The consumption of polluted surface water for domestic and recreational purposes by large populations in developing nations is a major cause of diarrheal disease related mortality. The river Ganga and its tributaries meet 40% of the water requirement for drinking and irrigation in India. In this study, Escherichia coli isolates (n=75) of the river Ganga water were investigated for resistance to antimicrobial agents (n=15) and virulence genes specific to shiga toxin (STEC) and enterotoxin producing E. coli (ETEC). E. coli isolates from the river Ganga water exhibit resistance to multiple antimicrobial agents. The distribution of antimicrobial agent resistance in E. colivaries significantly (chi2: 81.28 at df = 24, p river Ganga water poses increased risk of infections in the human population.

  2. Occurrence of Antimicrobial Resistance in Fish-Pathogenic and Environmental Bacteria Associated with Four Danish Rainbow Trout Farms

    DEFF Research Database (Denmark)

    Schmidt, Anja S.; Bruun, Morten Sichlau; Dalsgaard, Inger;

    2000-01-01

    Surveillance of bacterial susceptibility to five antimicrobial agents was performed during a 1-year period in and around four freshwater fish farms situated along a stream in western Denmark Besides assessing the levels of antibiotic resistance among the culturable fraction of microorganisms in...... and outlet samples, the increase of the antibiotic-resistant proportions observed among the culturable microflora was more pronounced and statistically significant among the motile aeromonads. High levels of individual and multiple antimicrobial resistances were demonstrated within the collected...... standardized agar dilution method. A markedly decreased susceptibility of F, psychrophilum isolates to most antimicrobial agents presently available for use in Danish aquaculture was detected, while the collected Y. ruckeri isolates remained largely sensitive to all therapeutic substances. Comparing the inlet...

  3. Prevalence of multi-antimicrobial-agent resistant, shiga toxin and enterotoxin producing Escherichia coli in surface waters of river Ganga.

    Science.gov (United States)

    Ram, Siya; Vajpayee, Poornima; Shanker, Rishi

    2007-11-01

    The consumption of polluted surface water for domestic and recreational purposes by large populations in developing nations is a major cause of diarrheal disease related mortality. The river Ganga and its tributaries meet 40% of the water requirement for drinking and irrigation in India. In this study, Escherichia coli isolates (n=75) of the river Ganga water were investigated for resistance to antimicrobial agents (n=15) and virulence genes specific to shiga toxin (STEC) and enterotoxin producing E. coli (ETEC). E. coli isolates from the river Ganga water exhibit resistance to multiple antimicrobial agents. The distribution of antimicrobial agent resistance in E. colivaries significantly (chi2: 81.28 at df = 24, p river Ganga water poses increased risk of infections in the human population. PMID:18044515

  4. Characterization of Antimicrobial Resistance of Listeria monocytogenes Strains Isolated from a Pork Processing Plant and Its Respective Meat Markets in Southern China.

    Science.gov (United States)

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei; Wang, Wenyan; Shi, Lei; Yan, He; Meng, Hecheng

    2016-05-01

    A total of 78 Listeria monocytogenes isolates from a pork processing plant and the respective meat markets in southern China were examined. This number includes 60 isolates from pork at markets, 5 from cooked pork products at markets, 10 from pork at a processing plant, and 3 from food-contact surfaces at the processing plant. All isolates were subjected to serotyping, antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), and molecular basis of antibiotic resistance. Four serogroups were identified among the 78 tested isolates, with serogroup I (serotypes: 1/2a and 3a) being predominant (42.3%, 33/78). Antimicrobial resistance was most frequently observed for tetracycline (20.5%, 16/78), streptomycin (9.0%, 7/78), cefotaxime (7.7%, 6/78), and gentamicin (6.4%, 5/78). Multiple resistances occurred among 10.2% (8/78) isolates. All strains were sensitive to ampicillin, ampicillin/sulbactam, imipenem, ciprofloxacin, levofloxacin, trimethoprim/sulfamethoxazole, and vancomycin. Two isolates were resistant to five antimicrobials. Twelve strains carried tet(M) and located on Tn916. PFGE analysis revealed genetic heterogeneity among individual serotypes. Two predominant PFGE types were found persistent from the processing plant to markets indicating that these two types of isolates were able to survive under environmental adverse conditions from the processing plant to markets, which need to be monitored. Compared to samples from the pork processing plant, the prevalence of L. monocytogenes in meat market samples tended to be higher, serovar was more variable, and the antibiotic resistance range was wider, probably due to secondary contamination. Therefore, stringent hygiene measures and bacteriological controls should be observed to reduce the risk of transmission of L. monocytogenes from food to humans. PMID:27058266

  5. Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream.

    Science.gov (United States)

    Arslan, Seza; Eyi, Ayla; Küçüksarı, Rümeysa

    2014-02-01

    Bacillus spp. can be recovered from almost every environment. It is also found readily in foods, where it may cause food spoilage and/or food poisoning due to its toxigenic and pathogenic nature, and extracellular enzymes. In this study, 29 Bacillus cereus group strains from ice cream were examined for the presence of following virulence genes hblC, nheA, cytK and ces genes, and tested for a range of the extracellular enzymes, and antimicrobial susceptibility. The strains were found to produce extracellular enzymes: proteolytic and lipolytic activity, gelatin hydrolysis and lecithinase production (100%), DNase production (93.1%) and amylase activity (93.1%). Of 29 strains examined, 24 (82.8%)