WorldWideScience

Sample records for antimicrobial drug resistanceestudio

  1. Antimicrobial Drugs in Fighting against Antimicrobial Resistance.

    Science.gov (United States)

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals. PMID:27092125

  2. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Guyue eCheng

    2016-04-01

    Full Text Available The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants, the community level resistance (i.e., bilofilms and persisters is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals.

  3. Antimicrobial Drugs in the Home

    Centers for Disease Control (CDC) Podcasts

    2006-10-19

    Survey participants in the United Kingdom admitted keeping leftover antimicrobial drugs for future use and taking them without medical advice. Dr. J. Todd Weber, director of CDC's Office of Antimicrobial Resistance, advises against the practice, which can be dangerous and can promote antimicrobial drug resistance.  Created: 10/19/2006 by Emerging Infectious Diseases.   Date Released: 10/26/2006.

  4. Antimicrobial drugs for treating cholera

    OpenAIRE

    Leibovici-Weissman, Ya'ara; Neuberger, Ami; Bitterman, Roni; Sinclair, David; Salam, Mohammed Abdus; Paul, Mical

    2014-01-01

    Background Cholera is an acute watery diarrhoea caused by infection with the bacterium Vibrio cholerae, which if severe can cause rapid dehydration and death. Effective management requires early diagnosis and rehydration using oral rehydration salts or intravenous fluids. In this review, we evaluate the additional benefits of treating cholera with antimicrobial drugs. Objectives To quantify the benefit of antimicrobial treatment for patients with cholera, and determine whether there are diffe...

  5. Antimicrobial Peptides: Multifunctional Drugs for Different Applications

    Directory of Open Access Journals (Sweden)

    Lea-Jessica Albrecht

    2012-02-01

    Full Text Available Antimicrobial peptides (APs are an important part of the innate immune system in epithelial and non-epithelial surfaces. So far, many different antimicrobial peptides from various families have been discovered in non-vertebrates and vertebrates. They are characterized by antibiotic, antifungal and antiviral activities against a variety of microorganisms. In addition to their role as endogenous antimicrobials, APs participate in multiple aspects of immunity. They are involved in septic and non-septic inflammation, wound repair, angiogenesis, regulation of the adaptive immune system and in maintaining homeostasis. Due to those characteristics AP could play an important role in many practical applications. Limited therapeutic efficiency of current antimicrobial agents and the emerging resistance of pathogens require alternate antimicrobial drugs. The purpose of this review is to highlight recent literature on functions and mechanisms of APs. It also shows their current practical applications as peptide therapeutics and bioactive polymers and discusses the possibilities of future clinical developments.

  6. Using C. elegans for antimicrobial drug discovery

    Science.gov (United States)

    Desalermos, Athanasios; Muhammed, Maged; Glavis-Bloom, Justin; Mylonakis, Eleftherios

    2011-01-01

    Introduction The number of microorganism strains with resistance to known antimicrobials is increasing. Therefore, there is a high demand for new, non-toxic and efficient antimicrobial agents. Research with the microscopic nematode Caenorhabditis elegans can address this high demand for the discovery of new antimicrobial compounds. In particular, C. elegans can be used as a model host for in vivo drug discovery through high-throughput screens of chemical libraries. Areas covered This review introduces the use of substitute model hosts and especially C. elegans in the study of microbial pathogenesis. The authors also highlight recently published literature on the role of C. elegans in drug discovery and outline its use as a promising host with unique advantages in the discovery of new antimicrobial drugs. Expert opinion C. elegans can be used, as a model host, to research many diseases, including fungal infections and Alzheimer’s disease. In addition, high-throughput techniques, for screening chemical libraries, can also be facilitated. Nevertheless, C. elegans and mammals have significant differences that both limit the use of the nematode in research and the degree by which results can be interpreted. That being said, the use of C. elegans in drug discovery still holds promise and the field continues to grow, with attempts to improve the methodology already underway. PMID:21686092

  7. Strategies for antimicrobial drug delivery to biofilm.

    Science.gov (United States)

    Martin, Claire; Low, Wan Li; Gupta, Abhishek; Amin, Mohd Cairul Iqbal Mohd; Radecka, Iza; Britland, Stephen T; Raj, Prem; Kenward, Ken M A

    2015-01-01

    Biofilms are formed by the attachment of single or mixed microbial communities to a variety of biological and/or synthetic surfaces. Biofilm micro-organisms benefit from many advantages of the polymicrobial environment including increased resistance against antimicrobials and protection against the host organism's defence mechanisms. These benefits stem from a number of structural and physiological differences between planktonic and biofilm-resident microbes, but two main factors are the presence of extracellular polymeric substances (EPS) and quorum sensing communication. Once formed, biofilms begin to synthesise EPS, a complex viscous matrix composed of a variety of macromolecules including proteins, lipids and polysaccharides. In terms of drug delivery strategies, it is the EPS that presents the greatest barrier to diffusion for drug delivery systems and free antimicrobial agents alike. In addition to EPS synthesis, biofilm-based micro-organisms can also produce small, diffusible signalling molecules involved in cell density-dependent intercellular communication, or quorum sensing. Not only does quorum sensing allow microbes to detect critical cell density numbers, but it also permits co-ordinated behaviour within the biofilm, such as iron chelation and defensive antibiotic activities. Against this backdrop of microbial defence and cell density-specific communication, a variety of drug delivery systems have been developed to deliver antimicrobial agents and antibiotics to extracellular and/or intracellular targets, or more recently, to interfere with the specific mechanisms of quorum sensing. Successful delivery strategies have employed lipidic and polymeric-based formulations such as liposomes and cyclodextrins respectively, in addition to inorganic carriers e.g. metal nanoparticles. This review will examine a range of drug delivery systems and their application to biofilm delivery, as well as pharmaceutical formulations with innate antimicrobial properties

  8. Antimicrobial drug use in a small Indian community hospital

    DEFF Research Database (Denmark)

    Blomberg, M; Jensen, M Blomberg; Henry, A;

    2010-01-01

    Antimicrobial drug use and overuse have been a topic of interest for many years, lately focusing on the growing resistance worldwide. This study was conducted in a small Indian hospital, where more than 80% of all admitted patients received antimicrobial drugs. Penicillin, gentamycin, co-trimoxaz......Antimicrobial drug use and overuse have been a topic of interest for many years, lately focusing on the growing resistance worldwide. This study was conducted in a small Indian hospital, where more than 80% of all admitted patients received antimicrobial drugs. Penicillin, gentamycin, co...

  9. Veterinary Medicine Needs New Green Antimicrobial Drugs.

    Science.gov (United States)

    Toutain, Pierre-Louis; Ferran, Aude A; Bousquet-Melou, Alain; Pelligand, Ludovic; Lees, Peter

    2016-01-01

    Given that: (1) the worldwide consumption of antimicrobial drugs (AMDs) used in food-producing animals will increase over the coming decades; (2) the prudent use of AMDs will not suffice to stem the rise in human antimicrobial resistance (AMR) of animal origin; (3) alternatives to AMD use are not available or not implementable, there is an urgent need to develop novel AMDs for food-producing animals. This is not for animal health reasons, but to break the link between human and animal resistomes. In this review we establish the feasibility of developing for veterinary medicine new AMDs, termed "green antibiotics," having minimal ecological impact on the animal commensal and environmental microbiomes. We first explain why animal and human commensal microbiota comprise a "turnstile" exchange, between the human and animal resistomes. We then outline the ideal physico-chemical, pharmacokinetic, and pharmacodynamic properties of a veterinary green antibiotic and conclude that they can be developed through a rational screening of currently used AMD classes. The ideal drug will be hydrophilic, of relatively low potency, slow clearance and small volume of distribution. It should be eliminated principally by the kidney as inactive metabolite(s). For oral administration, bioavailability can be enhanced by developing lipophilic pro-drugs. For parenteral administration, slow-release formulations of existing eco-friendly AMDs with a short elimination half-life can be developed. These new eco-friendly veterinary AMDs can be developed from currently used drug classes to provide alternative agents to those currently used in veterinary medicine and mitigate animal contributions to the human AMR problem. PMID:27536285

  10. Veterinary Medicine Needs New Green Antimicrobial Drugs.

    Science.gov (United States)

    Toutain, Pierre-Louis; Ferran, Aude A; Bousquet-Melou, Alain; Pelligand, Ludovic; Lees, Peter

    2016-01-01

    Given that: (1) the worldwide consumption of antimicrobial drugs (AMDs) used in food-producing animals will increase over the coming decades; (2) the prudent use of AMDs will not suffice to stem the rise in human antimicrobial resistance (AMR) of animal origin; (3) alternatives to AMD use are not available or not implementable, there is an urgent need to develop novel AMDs for food-producing animals. This is not for animal health reasons, but to break the link between human and animal resistomes. In this review we establish the feasibility of developing for veterinary medicine new AMDs, termed "green antibiotics," having minimal ecological impact on the animal commensal and environmental microbiomes. We first explain why animal and human commensal microbiota comprise a "turnstile" exchange, between the human and animal resistomes. We then outline the ideal physico-chemical, pharmacokinetic, and pharmacodynamic properties of a veterinary green antibiotic and conclude that they can be developed through a rational screening of currently used AMD classes. The ideal drug will be hydrophilic, of relatively low potency, slow clearance and small volume of distribution. It should be eliminated principally by the kidney as inactive metabolite(s). For oral administration, bioavailability can be enhanced by developing lipophilic pro-drugs. For parenteral administration, slow-release formulations of existing eco-friendly AMDs with a short elimination half-life can be developed. These new eco-friendly veterinary AMDs can be developed from currently used drug classes to provide alternative agents to those currently used in veterinary medicine and mitigate animal contributions to the human AMR problem.

  11. 77 FR 44177 - Antimicrobial Animal Drug Sales and Distribution Reporting

    Science.gov (United States)

    2012-07-27

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 514 Antimicrobial Animal Drug Sales and Distribution Reporting AGENCY: Food and Drug Administration, HHS. ACTION: Advance notice of proposed rulemaking. SUMMARY: The Food and Drug Administration (FDA or Agency) is soliciting comments regarding...

  12. Klebsiella pneumoniae Antimicrobial Drug Resistance, United States, 1998–2010

    OpenAIRE

    Sanchez, Guillermo V.; Master, Ronald N; Clark, Richard B.; Fyyaz, Madiha; Duvvuri, Padmaraj; Ekta, Gupta; Bordon, Jose

    2013-01-01

    We studied antimicrobial-resistant Klebsiella pneumoniae for 1998–2010 by using data from The Surveillance Network. Susceptibility results (n = 3,132,354) demonstrated significant increases in resistance to all antimicrobial drugs studied, except tetracycline. Cross-resistance among carbapenem-resistant K. pneumoniae was lower for tetracycline and amikacin.

  13. Study of antimicrobial property of some hypoglycemic drugs

    Directory of Open Access Journals (Sweden)

    Arun Kumar Dash

    2011-01-01

    Full Text Available In the present work, a comparative antimicrobial study of different hypoglycemic drugs (Metformin, Phenformin, and Rosiglitazone was carried out. The main objective was to ascertain the antimicrobial activity by using "non-antibiotics" as the test substances. The antimicrobial activity was carried out against different bacteria and fungi namely Bacillus liceniformis, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Shigella flexneri, Bacillus subtilis, Staphylococcus aureus subspp., and Staphylococcus epidermidis by using disc diffusion method and agar dilution method. Ciprofloxacin was taken as the standard antibiotic. The entire procedure was carried out in an aseptic area under the laminar flow by inoculating the bacterial strain to the agar media in which the drug solution was added. Different concentrations (300 and 400 μg/ml of the standard antibiotic and selected drugs were subjected for minimum inhibitory concentration, and zone of inhibition tests and the antimicrobial activity of the selected drugs were determined.

  14. Antimicrobial resistance in commensal Escherichia coli in veal calves is associated with antimicrobial drug use.

    Science.gov (United States)

    Bosman, A B; Wagenaar, J A; Stegeman, J A; Vernooij, J C M; Mevius, D J

    2014-09-01

    The aim of this study was to determine the association between farm management factors, including antimicrobial drug usage, and resistance in commensal Escherichia coli isolates from the faeces of white veal calves. Ninety E. coli isolates from one pooled sample per farm (n = 48) were tested for their phenotypical resistance against amoxicillin, tetracycline, cefotaxime, ciprofloxacin and trimethoprim/sulfamethoxazole (TMP/SMX). Logistic regression analysis revealed the following risk factors (P 40 ADD/pc, tetracyclines (tetracycline, OR 13·1; amoxicillin, OR 6·5). In this study antimicrobial resistance in commensal E. coli was mainly associated with antimicrobial drug use. PMID:24152540

  15. Use and Misuse of Antimicrobial Drugs in Poultry and Livestock: Mechanisms of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Toni Poole* and Cynthia Sheffield

    2013-07-01

    Full Text Available Food safety begins on the farm with management practices that contribute to an abundant, safe, and affordable food supply. To attain this goal antimicrobials have been used in all stages of food animal production in the United States and elsewhere around the world at one time or another. Among food–production animals antimicrobials are used for growth promotion, disease prophylaxis or disease treatment, and are generally administered to the entire flock or herd. Over many decades bacteria have become resistant to multiple antimicrobial classes in a cumulative manner. Bacteria exhibit a number of well characterized mechanisms of resistance to antimicrobials that include: 1 modification of the antimicrobial; 2 alteration of the drug target; 3 decreased access of drug to target; and 4 implementation of an alternative metabolic pathway not affected by the drug. The mechanisms of resistance are complex and depend on the type of bacterium involved (e.g. Gram–positive or Gram–negative and the class of drug. Some bacterial species have accumulated resistance to nearly all antimicrobial classes due to a combination of intrinsic and acquired processes. This has and will continue to lead to clinical failures of antimicrobial treatment in both human and animal medicine.

  16. Antimicrobial drug susceptibility of Neisseria meningitidis strains isolated from carriers

    Directory of Open Access Journals (Sweden)

    Dayamí García

    2000-06-01

    Full Text Available When it is necessary to determine the susceptibility of Neisseria meningitidis (Nm strains to antimicrobial drugs, it is important to consider that it should be analyzed in a double context. One of them related to the use of drugs in a specific medical treatment; and the other; to chemoprophylatic drugs, both with the same purpose: the accurate selection of the “in vivo” antimicrobial agent. This requires the study of the sensitivity and resistance of strains isolated in both carriers and patients. With the aim of further studying the behavior of the strains that currently circulate in Cuba, an antimicrobial drug susceptibility study was conducted in 90 strains isolated from carriers during the first half of 1998. The agar dilution method was used to determine the minimum inhibitory concentrations (MICs to: penicillin, ampicillin, rifampin, sulfadiazine, chloramphenicol, ciprofloxacin, ceftriaxone, cefotaxime. The study of the three latter drugs was done for the first time in our country. The search for β- lactamase-producer strains was also performed. There was a predominance of penicillin sensitive strains (82,2% with an intermediate sensitivity to ampicillin (57,8%, while 70% of the strains were sensitive to sulfadiazine. Regarding the rest of the antimicrobial drugs, 100% of the strains were sensitive. The paper shows the MICs for each drug as well as the phenotypic characteristics of the strains with the penicillin and sulfadiazine sensitivity and resistance patterns. No β-lactamase-producer strains were found.

  17. Intraperiodontal pocket: An ideal route for local antimicrobial drug delivery

    Directory of Open Access Journals (Sweden)

    Sreeja C Nair

    2012-01-01

    Full Text Available Periodontal pockets act as a natural reservoir filled with gingival crevicular fluid for the controlled release delivery of antimicrobials directly. This article reflects the present status of nonsurgical controlled local intrapocket delivery of antimicrobials in the treatment of periodontitis. These sites have specialty in terms of anatomy, permeability, and their ability to retain a delivery system for a desired length of time. A number of antimicrobial products and the composition of the delivery systems, its use, clinical results, and their release are summarized. The goal in using an intrapocket device for the delivery of an antimicrobial agent is the achievement and maintenance of therapeutic drug concentration for the desired period of time. Novel controlled drug delivery system are capable of improving patient compliance as well as therapeutic efficacy with precise control of the rate by which a particular drug dosage is released from a delivery system without the need for frequent administration. These are considered superior drug delivery system because of low cost, greater stability, non-toxicity, biocompatibility, non-immunogenicity, and are biodegradable in nature. This review also focus on the importance and ideal features of periodontal pockets as a drug delivery platform for designing a suitable dosage form along with its potential advantage and limitations. The microbes in the periodontal pocket could destroy periodontal tissues, and a complete knowledge of these as well as an ideal treatment strategy could be helpful in treating this disease.

  18. Antimicrobial resistance in commensal Escherichia coli in veal calves is associated with antimicrobial drug use

    NARCIS (Netherlands)

    Bosman, A.B.; Wagenaar, J.A.; Stegeman, J.A.; Vernooij, J.C.M.; Mevius, D.J.

    2014-01-01

    The aim of this study was to determine the association between farm management factors, including antimicrobial drug usage, and resistance in commensal Escherichia coli isolates from the faeces of white veal calves. Ninety E. coli isolates from one pooled sample per farm (n = 48) were tested for the

  19. Self-medication with antimicrobial drugs in Europe

    NARCIS (Netherlands)

    Grigoryan, L; Haaijer-Ruskamp, FM; Burgerhof, JGM; Mechtler, R; Deschepper, R; Tambic-Andrasevic, A; Andrajati, R; Monnet, DL; Cunney, R; Di Matteo, A; Edelstein, H; Valinteliene, R; Alkerwi, A; Scicluna, EA; Grzesiowski, P; Bara, AC; Tesar, T; Cizman, M; Campos, J; Lundborg, CS; Birkin, J

    2006-01-01

    We surveyed the populations of 19 European countries to compare the prevalence of antimicrobial drug self-medication in the previous 12 months and intended self-medication and storage and to identify the associated demographic characteristics. By using a multistage sampling design, 1,000-3,000 adult

  20. Antimicrobial drug resistance ofStaphylococcus aureus in dairy products

    Institute of Scientific and Technical Information of China (English)

    Sasidharan S; Prema B; Yoga Latha L

    2011-01-01

    Objective:To evaluate the prevalence of multidrug resistantStaphylococcus aureus(S. aureus) in dairy products.Methods:Isolation and identification ofS. aureus were performed in3 dairy-based food products. The isolates were tested for their susceptibility to5 different common antimicrobial drugs.Results:Of50 samples examined,5 (10%) were contaminated with S. aureus. Subsequently, the5 isolates were subjected to antimicrobial resistance pattern using five antibiotic discs (methicillin, vancomycin, kanamycin, chloramphenicol and tetracycline). Sample 29 showed resistance to methicillin and vancomycin. Sample18 showed intermediate response to tetracycline. The other samples were susceptible to all the antibiotics tested.Conclusions:The results provide preliminary data on sources of food contamination which may act as vehicles for the transmission of antimicrobial-resistantStaphylococcus.Therefore, it enables us to develop preventive strategies to avoid the emergence of new strains of resistantS. aureus.

  1. Antimicrobial peptides: a new class of antimalarial drugs?

    Directory of Open Access Journals (Sweden)

    Nuno eVale

    2014-12-01

    Full Text Available A range of antimicrobial peptides (AMP exhibit activity on malaria parasites, Plasmodium spp, in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs.

  2. Ru(II)-based antimicrobials: looking beyond organic drugs.

    Science.gov (United States)

    Ramos, A I; Braga, T M; Braga, S S

    2012-03-01

    This review deals with the bactericidal, anti-fungal and even anti-parasitary properties of ruthenium complexes, both inorganic and organometallic, establishing comparisons between these and the available commercial drugs. The description is mostly composed of results found in the literature of the past two decades, complemented with relevant results from our group's research on antimicrobial ruthenium complexes. The complexes are divided into five groups according to the kind of ligands, geometry and chemical nature. The first group comprises ruthenium octahedral complexes with Schiff bases, the most well explored kind of ruthenium antimicrobials. The second group comprises complexes with planar ligands and an overall more flattened geometry, designed for DNA intercalation. In the following two groups, ruthenium complexes feature a particular functionality, which is, in one case, the presence of the PTA ligand for higher solubility in water, and, in the second, the mimicry of an active organic drug. Finally, a small section presents the most recent results on supramolecular antimicrobials comprising ruthenium, in particular a polymer and a cyclodextrin adduct. PMID:22356193

  3. Self-medication with Antimicrobial Drugs in Europe

    OpenAIRE

    Grigoryan, L.; Haaijer-Ruskamp, FM; Burgerhof, JGM; Mechtler, R; Deschepper, R.; Tambic-Andrasevic, A; Andrajati, R; Monnet, DL; Cunney, R; Di Matteo, A.; Edelstein, H; Valinteliene, R.; Alkerwi, A; Scicluna, EA; Grzesiowski, P

    2006-01-01

    We surveyed the populations of 19 European countries to compare the prevalence of antimicrobial drug self-medication in the previous 12 months and intended self-medication and storage and to identify the associated demographic characteristics. By using a multistage sampling design, 1,000-3,000 adults in each country were randomly selected. The prevalence of actual self-medication varied from 1 to 210 per 1,000 and intended self-medication from 73 to 449 per 1,000; both rates were high in east...

  4. Pharmacokinetic drug interactions of antimicrobial drugs : a systematic review on oxazolidinones, rifamycines, macrolides, fluoroquinolones, and Beta-lactams

    NARCIS (Netherlands)

    Bolhuis, Mathieu S; Panday, Prashant N; Pranger, Arianna D; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    2011-01-01

    Like any other drug, antimicrobial drugs are prone to pharmacokinetic drug interactions. These drug interactions are a major concern in clinical practice as they may have an effect on efficacy and toxicity. This article provides an overview of all published pharmacokinetic studies on drug interactio

  5. Animal Husbandry Practices in Rural Bangladesh: Potential Risk Factors for Antimicrobial Drug Resistance and Emerging Diseases

    OpenAIRE

    Roess, Amira A.; Winch, Peter J.; Ali, Nabeel A.; Akhter, Afsana; Afroz, Dilara; El Arifeen, Shams; Darmstadt, Gary L.; Baqui, Abdullah H

    2013-01-01

    Antimicrobial drug administration to household livestock may put humans and animals at risk for acquisition of antimicrobial drug–resistant pathogens. To describe animal husbandry practices, including animal healthcare-seeking and antimicrobial drug use in rural Bangladesh, we conducted semi-structured in-depth interviews with key informants, including female household members (n = 79), village doctors (n = 10), and pharmaceutical representatives, veterinarians, and government officials (n = ...

  6. Antimicrobial Drug Resistance of Vibrio cholerae, Democratic Republic of the Congo.

    Science.gov (United States)

    Miwanda, Berthe; Moore, Sandra; Muyembe, Jean-Jacques; Nguefack-Tsague, Georges; Kabangwa, Ickel Kakongo; Ndjakani, Daniel Yassa; Mutreja, Ankur; Thomson, Nicholas; Thefenne, Helene; Garnotel, Eric; Tshapenda, Gaston; Kakongo, Denis Kandolo; Kalambayi, Guy; Piarroux, Renaud

    2015-05-01

    We analyzed 1,093 Vibrio cholerae isolates from the Democratic Republic of the Congo during 1997-2012 and found increasing antimicrobial drug resistance over time. Our study also demonstrated that the 2011-2012 epidemic was caused by an El Tor variant clonal complex with a single antimicrobial drug susceptibility profile.

  7. Antimicrobial drug resistance of Escherichia coli isolated from poultry abattoir workers at risk and broilers on antimicrobials

    Directory of Open Access Journals (Sweden)

    J.W. Oguttu

    2008-05-01

    Full Text Available Antimicrobial usage in food animals increases the prevalence of antimicrobial drug resistance among their enteric bacteria. It has been suggested that this resistance can in turn be transferred to people working with such animals, e.g. abattoir workers. Antimicrobial drug resistance was investigated for Escherichia coli from broilers raised on feed supplemented with antimicrobials, and the people who carry out evisceration, washing and packing of intestines in a high-throughput poultry abattoir in Gauteng, South Africa. Broiler carcasses were sampled from 6 farms, on each of which broilers are produced in a separate 'grow-out cycle'. Per farm, 100 caeca were randomly collected 5 minutes after slaughter and the contents of each were selectively cultured for E. coli. The minimum inhibitory concentration (MIC of each isolate was determined for the following antimicrobials : doxycycline, trimethoprim, sulphamethoxazole, ampicillin, enrofloxacin, fosfomycin, ceftriaxone and nalidixic acid. The same was determined for the faeces of 29 abattoir workers and 28 persons used as controls. The majority of isolates from broilers were resistant, especially to antimicrobials that were used on the farms in the study. Overall median MICs and the number of resistant isolates from abattoir workers (packers plus eviscerators tended to be higher than for the control group. However, no statistically significant differences were observed when the median MICs of antimicrobials used regularly in poultry and percentage resistance were compared, nor could an association between resistance among the enteric E. coli from packers and those from broilers be demonstrated.

  8. A Multidisciplinary Hospital-based Antimicrobial Use Program: Impact on Hospital Pharmacy Expenditures and Drug Use

    Directory of Open Access Journals (Sweden)

    Suzette Salama

    1996-01-01

    Full Text Available The authors’ hospital embarked on a three-component, multidisciplinary, hospital-based antimicrobial use program to cut costs and reduce inappropriate antimicrobial use. Initially, antimicrobial use patterns and costs were monitored for 12 months. For the next two years, an antimicrobial use program was implemented consisting of three strategies: automatic therapeutic interchanges; antimicrobial restriction policies; and parenteral to oral conversion. The program resulted in a reduction in the antimicrobial portion of the total pharmacy drug budget from 41.6% to 28.2%. Simultaneously, the average cost per dose per patient day dropped from $11.88 in 1991 to $10.16 in 1994. Overall, mean monthly acquisition cost savings rose from $6,810 in 1992 to $27,590 in 1994. This study demonstrates that a multidisciplinary antimicrobial use program in a Canadian hospital can effect dramatic cost savings and serve as a quality assurance activity of physician antimicrobial prescribing behaviour.

  9. WATER SOLUBLE MAGNETITE NANOPARTICLES FOR ANTIMICROBIAL DRUGS DELIVERY

    Directory of Open Access Journals (Sweden)

    Dan Eduard Mihaiescu

    2012-06-01

    Full Text Available Water-soluble magnetite has been prepared through precipitation approach. These nanoparticles coated with sulfanilic acid could be dispersed in hydrated aqueous systems. The product was characterized with X-ray powder diffraction (XRD, Dynamic Light Scattering (DLS and the in vitro efficacy as antibiotic delivery vehicles as well as their influence on the eukariotic cells. The XRD pattern confirm the product to be Fe3O4. The nanoparticles with average size 10.45 nanometers are not cytotoxic and do not influence the eukariotic HeLa cell cycle, representing potential tools for the delivery of drugs in a safe manner. Water soluble magnetite improves the activity of currently used antibiotics, representing potential as a nanocarrier for these antimicrobial substances, to achieve extracellular and intracellular targets.

  10. Does variation among provincial drug formulary antimicrobial listings in Canada influence prescribing rates?

    Directory of Open Access Journals (Sweden)

    Shiona K Glass-Kaastra

    Full Text Available BACKGROUND: The financial accessibility of antimicrobial drugs to the outpatient community in Canada is governed at the provincial level through formularies. Each province may choose to list particular drugs or impose restriction criteria on products in order to guide prescribing and/or curtail costs. Although changes to formularies have been shown to change patterns in the use of individual products and alter costs, no comparison has been made among the provincial antimicrobial formularies with regards to flexibility/stringency, or an assessment of how these formularies impact overall antimicrobial use in the provinces. OBJECTIVES: To summarize provincial antimicrobial formularies and assess whether their relative flexibility/stringency had a statistical impact upon provincial prescription volume during a one year period. METHODS: Provincial drug plan formularies were accessed and summarized for all prescribed antimicrobials in Canada during 2010. The number of general and restricted benefits for each plan was compiled by antimicrobial classification. Population-adjusted prescription rates for all individual antimicrobials and by antimicrobial class were obtained from the Canadian Integrated Program for Antimicrobial Resistance Surveillance. Correlations between the number of general benefits, restricted benefits, and total benefits with the prescription rate in the provinces were assessed by Spearman rank correlation coefficients. RESULTS: Formularies varied considerably among the Canadian provinces. Quebec had the most flexible formulary, offering the greatest number of general benefits and fewest restrictions. In contrast, Saskatchewan's formulary displayed the lowest number of general benefits and most restrictions. Correlation analyses detected a single significant result; macrolide prescription rates decreased as the number of general macrolide benefits increased. All other rates of provincial antimicrobial prescribing and measures of

  11. Antimicrobial drugs usage in a tertiary care hospital –A descriptive study

    Directory of Open Access Journals (Sweden)

    Priestly Vivekkumar

    2015-10-01

    Full Text Available Background: Emergence of resistant organisms is alarmingly high all over the world. Irrational and inappropriate prescription of antimicrobials is the major contributing factor for developing drug resistance in addition to poor patient compliance. It is the high time to create awareness of antimicrobial resistance among physicians and patients. Encouraging physicians/surgeons to undergo training programmes on infectious disease control periodically would be beneficial to combat the resistant organisms, so called super bugs.Objectives: To assess the pattern of antimicrobial usage in a tertiary care hospital, to determine whether antimicrobials are prescribed judiciously.Methods: A retrospective study was conducted to determine the current antimicrobial prescribing practices at Tagore Medical College Hospital. A randomised sample of 100 inpatient case sheets of General Medicine, OBG, General Surgery, Paediatrics, Chest Medicine, Skin, and ENT from Medical Records Department was analysed with respect to oral and parenteral (iv administration of antimicrobials.Results: In this study, 53% were males and 47% were females. Majority of patients were middle aged (17-60yrs. A total of 16 antimicrobials were prescribed for 100 inpatients. The most frequently used were Metronidazole and Ciprofloxacin. Duration of treatment was minimum 3 days, maximum of 13 days and mean duration was 5.5 days. The common route by which antimicrobials were administered was Parenteral as the patients were inpatients. The Parenteral (iv drugs were Metronidazole (52%, Ciprofloxacin (42%, Cefotaxime (27%, Amikacin (7%, Ceftriaxone (7%. Among 100 prescriptions, 63% were empirical prescriptions, 12% were directed and 25% were targeted prescriptions.Conclusions: The most frequently used antimicrobials were Metronidazole and Ciprofloxacin and the condition for which the antimicrobials were commonly used was acute gastroenteritis. The proportion of targeted prescriptions was low

  12. The impact of an antimicrobial stewardship programme on the use of antimicrobials and the evolution of drug resistance.

    Science.gov (United States)

    Del Arco, A; Tortajada, B; de la Torre, J; Olalla, J; Prada, J L; Fernández, F; Rivas, F; García-Alegría, J; Faus, V; Montiel, N

    2015-02-01

    Misuse of antibiotics can provoke increased bacterial resistance. There are no immediate prospects of any new broad-spectrum antibiotics, especially any with activity against enterobacteria, coming onto the market. Therefore, programmes should be implemented to optimise antimicrobial therapy. In a quasi-experimental study, the results for the pre-intervention year were compared with those for the 3 years following the application of an antimicrobial stewardship programme. We describe 862 interventions carried out as part of the stewardship programme at the Hospital Costa del Sol from 2009 to 2011. We examined the compliance of the empirical antimicrobial treatment with the programme recommendations and the treatment optimisation achieved by reducing the antibiotic spectrum and adjusting the dose, dosing interval and duration of treatment. In addition, we analysed the evolution of the sensitivity profile of the principal microorganisms and the financial savings achieved. 93 % of the treatment recommendations were accepted. The treatment actions taken were to corroborate the empirical treatment (46 % in 2009 and 31 % in 2011) and to reduce the antimicrobial spectrum taking into account the antibiogram results (37 % in 2009 and 58 % in 2011). The main drugs assessed were imipenem/meropenem, used in 38.6 % of the cases, and cefepime (20.1 %). The sensitivity profile of imipenem against Pseudomonas aeruginosa increased by 10 % in 2011. Savings in annual drug spending (direct costs) of 30,000 Euros were obtained. Stewardship programmes are useful tools for optimising antimicrobial therapy. They may contribute to preventing increased bacterial resistance and to reducing the long-term financial cost of antibiotic treatment.

  13. 77 FR 59156 - Antimicrobial Animal Drug Sales and Distribution Reporting; Extension of Comment Period

    Science.gov (United States)

    2012-09-26

    ... notice of proposed rulemaking that published July 27, 2012 (77 FR 44177) is extended. Submit written or... . SUPPLEMENTARY INFORMATION: I. Background In the Federal Register of July 27, 2012 (77 FR 44177), FDA published... HUMAN SERVICES Food and Drug Administration 21 CFR Part 514 Antimicrobial Animal Drug Sales...

  14. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases

    OpenAIRE

    Joyce Elaine Cristina Betoni; Rebeca Passarelli Mantovani; Lidiane Nunes Barbosa; Luiz Claudio Di Stasi; Ary Fernandes Junior

    2006-01-01

    Searches for substances with antimicrobial activity are frequent, and medicinal plants have been considered interesting by some researchers since they are frequently used in popular medicine as remedies for many infectious diseases. The aim of this study was to verify the synergism between 13 antimicrobial drugs and 8 plant extracts - "guaco" (Mikania glomerata), guava (Psidium guajava), clove (Syzygium aromaticum), garlic (Allium sativum), lemongrass (Cymbopogon citratus), ginger (Zingiber o...

  15. ANTIMICROBIAL, PHYSICAL AND CHEMICAL QUALITIES OF MEDICINAL ANTISEPTIC DRUGS

    Directory of Open Access Journals (Sweden)

    Paliy D. V.

    2014-12-01

    Full Text Available In our research results of the study of antimicrobial, physical and chemical qualities of antiseptic medicines of decamethoxin (DCM. Antimicrobial activity of DCM, palisan, decasan, deseptol against srains of S.aureus (n 56, S.epidermidis (n 26, E.coli (n 24, P.mirabilis (n 11, P.vulgaris (n 8 was studied by means of method of serial dilutions. Obtained data of mass spectrometry study of antimicrobial compositions with constant concentrations of DCM have shown that medicinal forms of DCM are complex physical and chemical systems, because of different origin and number of adjuvant ingredients used during their fabrication. Among synthetic quaternary ammonium agents there have been found the substance (commercial name of medicine is decamethoxin to have high antimicrobial activity against strains of grampositive and gram-negative microorganisms, an also C.albicans. There was found that antimicrobial activity of antiseptic palisan had been higher comparably to DCM in equivalent concentration. The composition and concentrations of acting agents and the methodology of preparation of palisan have been substantiated on the basis of microbiological, mass spectrometry characteristics of antiseptics DCM, palisan.

  16. Workshop report: the 2012 antimicrobial agents in veterinary medicine: exploring the consequences of antimicrobial drug use: a 3-D approach.

    Science.gov (United States)

    Martinez, M; Blondeau, J; Cerniglia, C E; Fink-Gremmels, J; Guenther, S; Hunter, R P; Li, X-Z; Papich, M; Silley, P; Soback, S; Toutain, P-L; Zhang, Q

    2014-02-01

    Antimicrobial resistance is a global challenge that impacts both human and veterinary health care. The resilience of microbes is reflected in their ability to adapt and survive in spite of our best efforts to constrain their infectious capabilities. As science advances, many of the mechanisms for microbial survival and resistance element transfer have been identified. During the 2012 meeting of Antimicrobial Agents in Veterinary Medicine (AAVM), experts provided insights on such issues as use vs. resistance, the available tools for supporting appropriate drug use, the importance of meeting the therapeutic needs within the domestic animal health care, and the requirements associated with food safety and food security. This report aims to provide a summary of the presentations and discussions occurring during the 2012 AAVM with the goal of stimulating future discussions and enhancing the opportunity to establish creative and sustainable solutions that will guarantee the availability of an effective therapeutic arsenal for veterinary species.

  17. Drug utilization pattern of antimicrobial drugs in intensive care unit of a tertiary care hospital attached with a medical college

    Directory of Open Access Journals (Sweden)

    Rutvij Hedamba

    2016-02-01

    Conclusions: Despite of limitations of present study it gives important conclusion about how antimicrobial drugs are used in GGGH ICU. This information can be used for improvement of current treatment strategies. [Int J Basic Clin Pharmacol 2016; 5(1.000: 169-172

  18. Quorum sensing inhibitory drugs as next generation antimicrobials: worth the effort?

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Givskov, Michael Christian

    2008-01-01

    as biofilms are more tolerant to antibiotics than their planktonic counterparts. Therefore, research should identify new antimicrobial agents and their corresponding targets to decrease the biofilm-forming capability or persistence of the infectious bacteria. Here, we review one such drug target: bacterial...

  19. Triple-acting antimicrobial treatment for drug-resistant and intracellular Staphylococcus aureus.

    Science.gov (United States)

    Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over-used conventional antibiotics. Staphylococcus aureus (S. aureus) is a notorious pathogen for both animal and human health with multi-d...

  20. Therapeutic Potential of Plants as Anti-Microbials for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Ramar Perumal Samy

    2010-01-01

    Full Text Available The uses of traditional medicinal plants for primary health care have steadily increased worldwide in recent years. Scientists are in search of new phytochemicals that could be developed as useful anti-microbials for treatment of infectious diseases. Currently, out of 80% of pharmaceuticals derived from plants, very few are now being used as anti-microbials. Plants are rich in a wide variety of secondary metabolites that have found anti-microbial properties. This review highlights the current status of traditional medicine, its contribution to modern medicine, recent trends in the evaluation of anti-microbials with a special emphasis upon some tribal medicine, in vitro and in vivo experimental design for screening, and therapeutic efficacy in safety and human clinical trails for commercial outlet. Many of these commercially available compounds are crude preparations administered without performing human clinical trials. Recent methods are useful to standardize the extraction for scientific investigation of new phytochemicals and anti-microbials of traditionally used plants. It is concluded that once the local ethnomedical preparations of traditional sources are scientifically evaluated before dispensing they should replace existing drugs commonly used for the therapeutic treatment of infection. This method should be put into practice for future investigations in the field of ethnopharmacology, phytochemistry, ethnobotany and other biological fields for drug discovery.

  1. 77 FR 22328 - Guidance for Industry on the Judicious Use of Medically Important Antimicrobial Drugs in Food...

    Science.gov (United States)

    2012-04-13

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry on the Judicious Use of Medically Important Antimicrobial Drugs in Food-Producing Animals; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability...

  2. Susceptibility of Urinary Tract Bacteria to Newer Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Manjula Mehta

    2016-01-01

    Full Text Available Urinary tract infections (UTIs are among the commonest types of bacterial infections. The antibiotic treatment for UTIs is associated with important medical and economic implications. Many different microorganisms can cause UTIs though the most common pathogens are E. coli and members of family Enterobacteriaceae. The knowledge of etiology and antibiotic resistance pattern of the organisms causing urinary tract infection is essential. The present study was undertaken to evaluate trends of antibiotic susceptibility of commonly isolated uropathogens using newer antimicrobial agents, prulifloxacin, fosfomycin (FOM and doripenem. We conclude that maintaining a record of culture results and the antibiogram may help clinicians to determine the empirical and/or specific treatment based on the antibiogram of the isolate for better therapeutic outcome.

  3. Susceptibility of Urinary Tract Bacteria to Newer Antimicrobial Drugs.

    Science.gov (United States)

    Mehta, Manjula; Sharma, Jyoti; Bhardwaj, Sonia

    2016-03-15

    Urinary tract infections (UTIs) are among the commonest types of bacterial infections. The antibiotic treatment for UTIs is associated with important medical and economic implications. Many different microorganisms can cause UTIs though the most common pathogens are E. coli and members of family Enterobacteriaceae. The knowledge of etiology and antibiotic resistance pattern of the organisms causing urinary tract infection is essential. The present study was undertaken to evaluate trends of antibiotic susceptibility of commonly isolated uropathogens using newer antimicrobial agents, prulifloxacin, fosfomycin (FOM) and doripenem. We conclude that maintaining a record of culture results and the antibiogram may help clinicians to determine the empirical and/or specific treatment based on the antibiogram of the isolate for better therapeutic outcome. PMID:27275323

  4. Susceptibility of Aeromonas Hydophila Isolates to Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Igor Stojanov

    2010-05-01

    Full Text Available Aeromonas hydrophila is a microorganism widely distributed in nature: in water, soil, food. It is also part of the normal bacterial flora of many animals. As an opportune microorganism it is a secondary biological agent that contributes to the occurrence of a fish disease and its deterioration. Frequently, its presence is an indication of bad zoohygiene and zootechnical conditions in fish ponds. Reduced quality and quantity of feed, mechanical injuries, parasitosis, seasonal oscillation in temperature present some of the factors that produce favorable conditions for bacterial proliferation of aeromonas in fish ponds, so clinical symptoms of the disease occur. Aeromonas is almost always present in clinical isolates and may be unjustly accused for bad health of fish. Antibiotic therapy is applied even when the clinical findings are clear, what certainly effects the susceptibility to chemotherapeutics. The subject of our work was bacteriological examination of the material obtained from the carps with the observed skin changes and the carps without these changes. Also, antimicrobial susceptibility of Aeromonas hydrophila was tested. The aim of this research was to determined the presence of Aeromonas hydrophilia in the carp ponds and to test antibiotic susceptibility. The material consisted of the samples from the fish ponds where the carps were with and without changed skin. The method the isolation of Aeromonas hydrophila was used. The diffusion disk technique was used for testing antibiotic susceptibility. The isolates were tested for their susceptibility to Florephenikol, Flumequine, Olaqindox and Oxitetracycline. The obtained results point that antimicrobial susceptibility was the same regardless of the origin of the samples, i.e. the resistance was the same for both groups of samples (the strains isolated from the fish with skin changes and the strains from fish without changes on skin. The strains were highly resistant: 35% were resistant to

  5. Thiamin (Vitamin B1 Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets?

    Directory of Open Access Journals (Sweden)

    Qinglin Du, Honghai Wang, Jianping Xie

    2011-01-01

    Full Text Available Drug resistance of pathogens has necessitated the identification of novel targets for antibiotics. Thiamin (vitamin B1 is an essential cofactor for all organisms in its active form thiamin diphosphate (ThDP. Therefore, its metabolic pathways might be one largely untapped source of antibiotics targets. This review describes bacterial thiamin biosynthetic, salvage, and transport pathways. Essential thiamin synthetic enzymes such as Dxs and ThiE are proposed as promising drug targets. The regulation mechanism of thiamin biosynthesis by ThDP riboswitch is also discussed. As drug targets of existing antimicrobial compound pyrithiamin, the ThDP riboswitch might serves as alternative targets for more antibiotics.

  6. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases

    Directory of Open Access Journals (Sweden)

    Joyce Elaine Cristina Betoni

    2006-06-01

    Full Text Available Searches for substances with antimicrobial activity are frequent, and medicinal plants have been considered interesting by some researchers since they are frequently used in popular medicine as remedies for many infectious diseases. The aim of this study was to verify the synergism between 13 antimicrobial drugs and 8 plant extracts - "guaco" (Mikania glomerata, guava (Psidium guajava, clove (Syzygium aromaticum, garlic (Allium sativum, lemongrass (Cymbopogon citratus, ginger (Zingiber officinale, "carqueja" (Baccharis trimera, and mint (Mentha piperita - against Staphylococcus aureus strains, and for this purpose, the disk method was the antimicrobial susceptibility test performed. Petri dishes were prepared with or without dilution of plant extracts at sub-inhibitory concentrations in Mueller-Hinton Agar (MHA, and the inhibitory zones were recorded in millimeters. In vitro anti-Staphylococcus aureus activities of the extracts were confirmed, and synergism was verified for all the extracts; clove, guava, and lemongrass presented the highest synergism rate with antimicrobial drugs, while ginger and garlic showed limited synergistic capacity.

  7. Drug Utilization Study on Antimicrobial Use in Urinary Tract Infection

    Directory of Open Access Journals (Sweden)

    Sunil S Gidamudi

    2015-09-01

    Conclusion: The DDD/1000inhabitant/day of ceftriaxone was the highest (12.9. Third generation cephalosporins were used as first line drug in most cases. This group should be reserved for complicated UTIs. [Natl J Med Res 2015; 5(3.000: 216-221

  8. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne; Andersen, Jens Strodl; Aabo, Søren;

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from hum...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue.......We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...

  9. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne Nielsine; Andersen, Jens Strodl; Aabo, Søren;

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from hum...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue......We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...

  10. Preparation of Biodegradable Silk Fibroin/Alginate Blend Films for Controlled Release of Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Yaowalak Srisuwan

    2013-01-01

    Full Text Available Silk fibroin (SF/alginate blend films have been prepared for controlled release of tetracycline hydrochloride, an antimicrobial model drug. The blend films were analysed by Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, and UV-vis spectroscopy. The functional groups of the SF/alginate blends were monitored from their FTIR spectra. The homogeneity of the blend films was observed from SEM images. The dissolution and film transparency of the blend films depended on the SF/alginate blend ratio. The in vitro drug release profile of the blend films was determined by plotting the cumulative drug release versus time. It was found that the drug release significantly decreased as the SF/alginate blend ratio increased. The results demonstrated that the SF/alginate blend films should be a useful controlled-release delivery system for water-soluble drugs.

  11. Assessment of antimicrobial drug residues in beef in Abuja, the Federal Capital Territory, Nigeria.

    Science.gov (United States)

    Omeiza, Gabriel K; Ajayi, Itopa E; Ode, Okwoche J

    2012-01-01

    Drugs administered to food-producing animals close to the time of slaughter often result in prohibited antimicrobial residues in the animal tissues at slaughter. Evidence based on the Premi® test confirmed the occurrence of antimicrobial drug residues in 89.3% of kidney and urine samples from cattle slaughtered within Abuja town where the residents rely heavily on beef as a source of protein. The administration of antibiotics close to the time of slaughter by marketers/herd owners and transporters was found to be significantly (p<0.05) higher when compared with butchers and abattoir workers. The practice of administering antibiotics to animals close to the time of slaughter was believed to be profit-motivated. The research suggests that awareness campaigns amongst the stakeholders, the enactment of appropriate laws for the control of antibiotic use and the empowerment of veterinary public health practitioners in food regulatory agencies as some of the strategies which may positively reduce the risk of antimicrobial drug residues in food animals in Nigeria. PMID:23038074

  12. Isolation of Helicobacter pylori in gastric mucosa and susceptibility to five antimicrobial drugs in Southern Chile

    Directory of Open Access Journals (Sweden)

    Laura Otth

    2011-06-01

    Full Text Available Helicobacter pylori colonizes more than 50% of the world population thus, it is considered an important cause of gastric cancer. The aim of this study was to determine the isolation frequency of H. pylori in Southern Chile from patients with symptomatology compatible with gastritis or gastric ulcer and to correlate these findings with demographic parameters of infected patients and the susceptibility profiles of the isolated strains to the antimicrobial drugs used in the eradication treatments. A total of 240 patients were enrolled in the study. Each gastric biopsy was homogenized and seeded onto blood agar plates containing a selective antibiotics mixture (DENT supplement. Plates were incubated at 37° C in a microaerophilic environment for five days. The susceptibility profiles to amoxicillin, ciprofloxacin, clarithromycin, tetracycline and metronidazole were determined using the E-test method. H. pylori was isolated from 99 patients (41.3% with slightly higher frequency in female (42% positive cultures than male (40.2% positive cultures. With regard to age and educational level, the highest isolation frequencies were obtained in patients between 21-30 (55% and 41-50 (52.6% years old, and patients with secondary (43.9% and university (46.2% educational levels. Nineteen (21.6% strains showed resistance to at least one antimicrobial drug. Tetracycline was the most active antimicrobial in vitro, whereas metronidazole was the less active. One strain (5.3% showed resistance to amoxicillin, clarithomycin and metronidazole, simultaneously.

  13. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents.

    Science.gov (United States)

    Ahn, Yong-Yeol; Lee, Deok-Sun; Burd, Henry; Blank, William; Kapatral, Vinayak

    2014-01-01

    The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

  14. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents.

    Directory of Open Access Journals (Sweden)

    Yong-Yeol Ahn

    Full Text Available The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

  15. In vitro drug resistance of clinical isolated Brucella against antimicrobial agents

    Institute of Scientific and Technical Information of China (English)

    Xiu-Li Xu; Xiao Chen; Pei-Hong Yang; Jia-Yun Liu; Xiao-Ke Hao

    2013-01-01

    Objective:To explore the antibiotic resistance of Brucella melitensisand instruct rational use of antimicrobial agents in clinical treatment ofBrucella infection.Methods:Bacteria were cultured and identified byBACTEC9120 andVITEKⅡ automicrobic system.E-test was used to detect the minimal inhibitory concentration(MIC) of antimicrobial agents in the drug susceptivity experiment.Results:A total of19 brucella strains(allBrucella melitensis) wereisolated from19 patients, who had fever betweenJanuary2010 andJune2012, and17 samples were blood, one was bone marrow, the other sample was cerebrospinal fluid.TheMIC range of ceftazidime was2.0-8.0 mg/L, rifampicin was0.06-2.0 mg/L, amikacin was4.0-12.0 mg/L, levofloxacin was2.0-8.0 mg/L, doxycycline was8.0-32.0 mg/L, sulfamethoxazole-trimethoprim was4.0-16.0 mg/L, ampicillin was1.5-2.0 mg/L and gentamicin was0.50-0.75 mg/L.Conclusions:The drugs used in this experiment cover common drugs for treatingBrcella.Meanwhile, the results are consistent with clinical efficacy.It is suggested personalized regimen according to patients’ status in treatment of Brucella.

  16. The measurement of a new antimicrobial quinolone in hair as an index of drug exposure.

    OpenAIRE

    Uematsu, T.; Nakano, M; Akiyama, H.; Nakashima, M.

    1993-01-01

    1. Scalp hair samples were obtained at 1 month intervals up to 5 months from healthy male volunteers participating in a phase I study of a new antimicrobial quinolone, OPC-17116. 2. Hair was sectioned into 1 cm lengths from the scalp end. Corresponding portions from five pieces of hair were dissolved in 1 N NaOH and assayed for OPC-17116 by h.p.l.c. 3. In all subjects taking a single dose (400 mg, n = 5) or repeated doses (400 mg day-1, twice daily, for 6.5 days, n = 6), the drug was detected...

  17. Surface Modifications of Titanium Implants by Multilayer Bioactive Coatings with Drug Delivery Potential: Antimicrobial, Biological, and Drug Release Studies

    Science.gov (United States)

    Ordikhani, Farideh; Zustiak, Silviya Petrova; Simchi, Abdolreza

    2016-04-01

    Recent strategies to locally deliver antimicrobial agents to combat implant-associated infections—one of the most common complications in orthopedic surgery—are gaining interest. However, achieving a controlled release profile over a desired time frame remains a challenge. In this study, we present an innovative multifactorial approach to combat infections which comprises a multilayer chitosan/bioactive glass/vancomycin nanocomposite coating with an osteoblastic potential and a drug delivery capacity. The bioactive drug-eluting coating was prepared on the surface of titanium foils by a multistep electrophoretic deposition technique. The adopted deposition strategy allowed for a high antibiotic loading of 1038.4 ± 40.2 µg/cm2. The nanocomposite coating exhibited a suppressed burst release with a prolonged sustained vancomycin release for up to 6 weeks. Importantly, the drug release profile was linear with respect to time, indicating a zero-order release kinetics. An in vitro bactericidal assay against Staphylococcus aureus confirmed that releasing the drug reduced the risk of bacterial infection. Excellent biocompatibility of the developed coating was also demonstrated by in vitro cell studies with a model MG-63 osteoblast cell line.

  18. [Investigation of antimicrobial and antibiofilm effects of some preservatives used in drugs, cosmetics and food products].

    Science.gov (United States)

    Güven, Nihal; Kaynak Onurdağ, Fatma

    2014-01-01

    Preservatives are added to food, drugs and other pharmaceutical products to avoid microbial contamination. For antimicrobial activity testing and preservative efficacy testing, vegetative forms of the standard test organisms are used. However, microbial biofilm formation may occur on living tissues, medical implants, industrial or drinking water pipes, natural aquatic systems, glass and plastic surfaces. In our study, it was aimed to determine the antimicrobial and antibiofilm effects of some preservatives used in drug, cosmetics and food products and to compare the minimum biofilm inhibitory concentration (MBIC) of microbial biofilm formed on glass surfaces which are commonly used in those areas and the minimum inhibitory concentration (MIC) values of the planktonic forms. In the study Pseudomonas aeruginosa ATCC 27853, Salmonella Thyphimurium SL1344, Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis NCTC 11047, Enterococcus faecalis ATCC 29212 and Candida albicans ATCC 10231 were used as the standard strains; sodium nitrate, methylparaben, prophylparaben, potassium sorbate and sodium benzoate as the preservatives; ampicillin, vancomycin, gentamicin, ciprofloxacin, amphotericin B and itraconazole as the antimicrobial agents. MIC values were determined through the guidelines of CLSI M100-S18 and M27-A3 protocols. BioTimer method was used to determine the MBIC values. The value of "colony forming unit (CFU)/glass beads" was calculated using the graphics drawn by plotting the time of color change for phenol red or resazurin against log10CFU. All experiments were done with four media at different pH values namely pH: 7, pH: 6.5, pH: 6 and pH: 5.5. According to the results of tests on planktonic forms of the microorganisms, sodium benzoate was determined to be the most effective preservative against all the microorganisms tested except S.aureus and E.faecalis. The most effective preservative against S.aureus and E.faecalis was prophylparaben. Prophylparaben

  19. [Investigation of antimicrobial and antibiofilm effects of some preservatives used in drugs, cosmetics and food products].

    Science.gov (United States)

    Güven, Nihal; Kaynak Onurdağ, Fatma

    2014-01-01

    Preservatives are added to food, drugs and other pharmaceutical products to avoid microbial contamination. For antimicrobial activity testing and preservative efficacy testing, vegetative forms of the standard test organisms are used. However, microbial biofilm formation may occur on living tissues, medical implants, industrial or drinking water pipes, natural aquatic systems, glass and plastic surfaces. In our study, it was aimed to determine the antimicrobial and antibiofilm effects of some preservatives used in drug, cosmetics and food products and to compare the minimum biofilm inhibitory concentration (MBIC) of microbial biofilm formed on glass surfaces which are commonly used in those areas and the minimum inhibitory concentration (MIC) values of the planktonic forms. In the study Pseudomonas aeruginosa ATCC 27853, Salmonella Thyphimurium SL1344, Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis NCTC 11047, Enterococcus faecalis ATCC 29212 and Candida albicans ATCC 10231 were used as the standard strains; sodium nitrate, methylparaben, prophylparaben, potassium sorbate and sodium benzoate as the preservatives; ampicillin, vancomycin, gentamicin, ciprofloxacin, amphotericin B and itraconazole as the antimicrobial agents. MIC values were determined through the guidelines of CLSI M100-S18 and M27-A3 protocols. BioTimer method was used to determine the MBIC values. The value of "colony forming unit (CFU)/glass beads" was calculated using the graphics drawn by plotting the time of color change for phenol red or resazurin against log10CFU. All experiments were done with four media at different pH values namely pH: 7, pH: 6.5, pH: 6 and pH: 5.5. According to the results of tests on planktonic forms of the microorganisms, sodium benzoate was determined to be the most effective preservative against all the microorganisms tested except S.aureus and E.faecalis. The most effective preservative against S.aureus and E.faecalis was prophylparaben. Prophylparaben

  20. Effect of Antimicrobial Use in Agricultural Animals on Drug-resistant Foodborne Campylobacteriosis in Humans: A Systematic Literature Review.

    Science.gov (United States)

    McCrackin, M A; Helke, Kristi L; Galloway, Ashley M; Poole, Ann Z; Salgado, Cassandra D; Marriott, Bernadette P

    2016-10-01

    Controversy continues concerning antimicrobial use in food animals and its relationship to drug-resistant infections in humans. We systematically reviewed published literature for evidence of a relationship between antimicrobial use in agricultural animals and drug-resistant foodborne campylobacteriosis in humans. Based on publications from the United States (U.S.), Canada and Denmark from 2010 to July 2014, 195 articles were retained for abstract review, 50 met study criteria for full article review with 36 retained for which data are presented. Two publications reported increase in macrolide resistance of Campylobacter coli isolated from feces of swine receiving macrolides in feed, and one of these described similar findings for tetracyclines and fluoroquinolones. A study in growing turkeys demonstrated increased macrolide resistance associated with therapeutic dosing with Tylan® in drinking water. One publication linked tetracycline-resistant C. jejuni clone SA in raw cow's milk to a foodborne outbreak in humans. No studies that identified farm antimicrobial use also traced antimicrobial-resistant Campylobacter from farm to fork. Recent literature confirms that on farm antibiotic selection pressure can increase colonization of animals with drug-resistant Campylobacter spp. but is inadequately detailed to establish a causal relationship between use of antimicrobials in agricultural animals and prevalence of drug-resistant foodborne campylobacteriosis in humans. PMID:26580432

  1. Antimicrobial potential of Pakistani medicinal plants against multi-drug resistance Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Rahat Ejaz

    2014-09-01

    Full Text Available Objective: To determine resistance patterns of Staphylococcus aureus (S. aureus isolated from different areas of Pakistan and to identify antimicrobial agents against multi-drug resistant S. aureus strains. Methods: A total of 67 samples (sewerage, nasal and milk were collected from different farm areas of Pakistan to identify local strains of S. aureus. Sixteen out of 67 samples were positive for S. aureus. Only 6 out of 16 S. aureus strains showed resistance to antibiotics. Then the antibacterial effect of 29 medicinal plants was evaluated on these S. aureus isolates and a standard S. aureus strain ATCC 25923. The solvents used for the extraction of plants were acetone, dimethyl sulfoxide and methanol. The in vitro antibacterial activity was performed using agar disc diffusion method. Moreover, minimum inhibitory concentration of effective medicinal plant extracts was identified through micro-dilution method to find out their 50% inhibitory concentration. Results: Plant extracts of 5 medicinal plants (Psidium guajava, Nigella sativa, Piper nigrum, Valeriana jatamansi, and Cucurbita pepo exhibited antibacterial activity against locally isolated multidrug resistant strains of S. aureus. The minimum inhibitory concentration of these extracts was ranged from 0.328 to 5.000 mg/mL. Conclusions: Plant extracts of Psidium guajava, Piper nigrum seed, Valeriana jatamansi, Cucurbita pepo and Nigella sativa showed significant in vitro antibacterial activity and thus, such findings may serve as valuable contribution in the treatment of infection and may contribute to the development of potential antimicrobial agents against multi drug resistant strains of S. aureus

  2. Susceptibility of Staphylococcus aureus Clinical Isolates to Propolis Extract Alone or in Combination with Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Mieczysław Sajewicz

    2013-08-01

    Full Text Available The objective of this study was to assess in vitro the antimicrobial activity of ethanolic extract of Polish propolis (EEPP against methicillin-sensitive Staphylococcus aureus (MSSA and methicillin-resistant Staphylococcus aureus (MRSA clinical isolates. The combined effect of EEPP and 10 selected antistaphylococcal drugs on S. aureus clinical cultures was also investigated. EEPP composition was analyzed by a High Performance Liquid Chromatography (HPLC method. The flavonoid compounds identified in Polish Propolis included flavones, flavonones, flavonolols, flavonols and phenolic acids. EEPP displayed varying effectiveness against twelve S. aureus strains, with minimal inhibitory concentration (MIC within the range from 0.39 to 0.78 mg/mL, determined by broth microdilution method. The average MIC was 0.54 ± 0.22 mg/mL, while calculated MIC50 and MIC90 were 0.39 mg/mL and 0.78 mg/mL, respectively. The minimum bactericidal concentration (MBC of the EEPP ranged from 0.78 to 3.13 mg/mL. The in vitro combined effect of EEPP and 10 antibacterial drugs was investigated using disk diffusion method-based assay. Addition of EEPP to cefoxitin (FOX, clindamycin (DA, tetracycline (TE, tobramycin (TOB, linezolid (LIN, trimethoprim+sulfamethoxazole (SXT, penicillin (P, erythromycin (E regimen, yielded stronger, cumulative antimicrobial effect, against all tested S. aureus strains than EEPP and chemotherapeutics alone. In the case of ciprofloxacin (CIP and chloramphenicol (C no synergism with EEPP was observed.

  3. Antimicrobial potential of Pakistani medicinal plants against multi-drug resistance Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    Rahat Ejaz; Usman A Ashfaq; Sobia Idrees

    2014-01-01

    Objective: To determine resistance patterns of Staphylococcus aureus (S. aureus) isolated from different areas of Pakistan and to identify antimicrobial agents against multi-drug resistant S.aureus strains. Methods: A total of 67 samples (sewerage, nasal and milk) were collected from different farm areas of Pakistan to identify local strains of S. aureus. Sixteen out of 67 samples were positive for S.aureus. Only 6 out of 16 S. aureus strains showed resistance to antibiotics. Then the antibacterial effect of 29 medicinal plants was evaluated on these S. aureus isolates and a standard S. aureus strain ATCC 25923. The solvents used for the extraction of plants were acetone, dimethyl sulfoxide and methanol. The in vitro antibacterial activity was performed using agar disc diffusion method. Moreover, minimum inhibitory concentration of effective medicinal plant extracts was identified through micro-dilution method to find out their 50% inhibitory concentration.Results:Plant extracts of 5 medicinal plants (Psidium guajava, Nigella sativa, Piper nigrum, Valeriana jatamansi, and Cucurbita pepo) exhibited antibacterial activity against locally isolated multidrug resistant strains of S. aureus. The minimum inhibitory concentration of these extracts was ranged from 0.328 to 5.000 mg/mL. Conclusions: Plant extracts of Psidium guajava, Piper nigrum seed, Valeriana jatamansi, Cucurbita pepo and Nigella sativa showed significant in vitro antibacterial activity and thus, such findings may serve as valuable contribution in the treatment of infection and may contribute to the development of potential antimicrobial agents against multi drug resistant strains of S. aureus.

  4. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    Directory of Open Access Journals (Sweden)

    Suman Jangra

    2016-09-01

    Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.

  5. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial ...

  6. Antimicrobial activity of novel chitosan/cloisite 10A nanocomposite: Preparation, optimization, characterization and drug delivery behavior.

    Science.gov (United States)

    Rou, Jyotiranjan; Mohapatra, Ranjit; Sahoo, Sunit Kumar

    2016-07-01

    The objectives of the present research project were to formulate, evaluate and perform antimicrobial study and drug delivery behavior of nanocomposite material based on biopolymer chitosan and organically modified montmorillonite clay; i.e. cloisite 10A. In the present study, chitosan / cloisite 10A nanocomposite material was formulated by solution mixing and optimized. The nanocomposite material was characterized by FTIR, zeta sizer, XRD, and SEM. Polymer/clay nanocomposite material is evaluated for its antimicrobial activity against both gram- negative and gram- positive bacteria. It was also studied for potential drug carrier system using diclofenac sodium as a model drug. Drug incorporation efficiency and drug content were also determined. SEM provided the composite shape and its surface topography. XRD data revealed the nanocrystalline composition and crystallite size. The average diameters of particles in the nanocomposite were found to be around 80 nm from both XRD report, calculated by applying Scherrer equation and zeta sizer. The antimicrobial activity report revealed that nanocomposite exhibited stronger inhibition against the microorganisms as compared to that of pure chitosan. From the in vitro drug-release study, it is observed that biopolymer/clay nanocomposite exhibited extended release period of drug as compared to the pristine chitosan. This research work provides a platform for further research on the polymer/clay nanocomposites for biomedical and drug delivery applications. PMID:27393427

  7. 5-Fluorouracil Loaded Chitosan-PVA/Na+MMT Nanocomposite Films for Drug Release and Antimicrobial Activity

    Institute of Scientific and Technical Information of China (English)

    A Babul Reddy; B Manjula; T Jayaramudu; E R Sadiku; P Anand Babu; S Periyar Selvam

    2016-01-01

    In the present study, chitosan and polyvinyl alcohol (PVA) were blended with different concentrations of sodium montmorillonite (Na?MMT) clay solution by a solvent casting method. X-ray diffraction and transition electron microscope results show that the film properties are related to the co-existence of Na?MMT intercalation/exfoliation in the blend and the interaction between chitosan–PVA and Na?MMT. 5-Fluorouracil (5-FU) was loaded with chitosan–PVA/Na?MMT nanocomposite films for in vitro drug delivery study. The antimicrobial activity of the chitosan–PVA/Na?MMT films showed significant effect against Salmonella (Gram-negative) and Staphylococcus aureus (Gram-positive), whereas 5-FU encapsulated chitosan–PVA/Na?MMT bio-nanocomposite films did not show any inhibition against bacteria. Our results indicate that combination of a flexible and soft polymeric material with high drug loading ability of a hard inorganic porous material can produce improved control over degradation and drug release. It will be an economically viable method for preparation of advanced drug delivery vehicles and biodegradable implants or scaffolds.

  8. STAPHYLOCOCCUS AUREUS NASAL CARRIAGE AMONG INJECTING AND NON-INJECTING DRUG USERS AND ANTIMICROBIAL SUSCEPTIBILITY

    Directory of Open Access Journals (Sweden)

    Mojtaba Varshochi

    2013-01-01

    Full Text Available Staphylococcus Aureus (SA is one of the most prevalent bacterial pathogens in human beings. Approximately 20% of healthy persons are persistent carriers and 60% are intermittent carriers of SA. Nasal cavity is one of the most important sites of its colonization. Intravenous (IV drug abuse has been proposed as a risk factor for colonization of SA in the nasal mucosa. The goal of this study was to determine the frequency of SA carriers in nasal cavity among IV and non-IV drug abusers (addicts, as well as to assess the antimicrobial susceptibility pattern of the positive cases. In a cross-sectional analysis of 300 drug addicts (Group I: 100 non-injecting addicts, Group II: 100 IV injecting drug addicts in rehab, Group III: 100 IV injecting drug addicts not in rehab in the infectious diseases clinics of Tabriz’s Imam Reza and Sina teaching hospitals and the rehabilitation center of Razi hospital, were investigated. Hospitalized addicts, insulin-dependent diabetic cases, HIV positive patients and those on chronic hemodialysis were excluded. The nasal mucosal sample was prepared from each case for SA isolation and its antimicrobial susceptibility was investigated by antibiogram. Eighty-four cases (28% were culture positive for SA, including 26 cases in group one, 32 cases in group two and 26 cases in group three (p = 0.55. There was only one MRSA isolate present in all the cases studied (1.2%. No resistance to linozolid, rifampin and vancomycin was observed. The resistance to erythromycin, cefoxitin, ciprofloxacin, clindamycin, co-trimoxazol and gentamicin were 3.6, 4.8, 2.4, 3.6, 1.2 and 2.4% respectively. No statistically significant differences existed between the three groups in antibacterial susceptibility pattern. Sensitivity to oxacillin using the E-test results and disc diffusion were completely consistent. The percentage of carries of SA in the anterior nasal mucosa among IV and non-IV drug addicts is not considerably higher than the

  9. The metabolic rationale for a lack of cross-reactivity between sulfonamide antimicrobials and other sulfonamide-containing drugs.

    Science.gov (United States)

    Lehmann, David F

    2012-06-01

    Sulfonamide antimicrobials (sulfamethoxazole) contain an arylamine group, oxidized by CYP2C9 to the hydroxylamine with subsequent auto-oxidation to a highly reactive [-nitroso-] intermediate is a necessary (if not sufficient) cause of drug hypersensitivity. Accordingly, xenobiotics that do not contain an arylamine cannot generate this reactive intermediate and do not cross react with sulfonamide antimicrobials. Despite this well-attested observation, product labeling and direct-to-consumer advertising for non-arylamine therapeutic classes of drugs containing the sulfonamido- functional group persist with a warning of the potential for cross-reactivity. It is hoped that by offering an explicit rationale for the lack of cross-reactivity will provide medical practitioners with a level comfort to proceed with prescribing medications such as thiazide diuretics and celecoxib for patients with a history of hypersensitivity to sulfonamide antimicrobials. PMID:23157194

  10. Bisphosphocins: novel antimicrobials for enhanced killing of drug-resistant and biofilm-forming bacteria.

    Science.gov (United States)

    Wong, Jonathan P; DiTullio, Paul; Parkinson, Steve

    2015-01-01

    The global prevalence of antibiotic resistance and the threat posed by drug-resistant superbugs are a leading challenge confronting modern medicine in the 21st century. However, the progress on the development of novel antibiotics to combat this problem is severely lagging. A more concerted effort to develop novel therapeutic agents with robust activity and unique mechanisms of action will be needed to overcome the problem of drug resistance. Furthermore, biofilm forming bacteria are known to be increasingly resistant to the actions of antibiotics and are a leading cause of mortality or morbidity in nosocomial infections. Bisphosphocins (also scientifically known as nubiotics) are novel small protonated deoxynucleotide molecules, and exert their antibacterial activity by depolarization of the bacterial cell membrane, causing bacterial cell death. Bisphosphocins may represent an effective weapon against antibiotic-resistant and biofilm-forming pathogenic bacteria. Preclinical efficacy studies in animals have shown that the compounds are safe and, efficacious against various bacterial infections, including drug-resistant pathogens. In vitro biochemical analysis confirmed that the bactericidal activity of bisphosphocins is mediated by depolarization of the bacterial cell membrane, and these compounds are better able to penetrate through bacterial biofilm and kill the biofilm encased bacteria. This article will cover the structure, mode of action, safety, efficacy and the current state of development of bisphosphocins. Together, the information presented here will present a strong case for bisphosphocins to be considered for use as new weapons to complement the existing arsenal of antimicrobial drugs and as a first line defence against drug-resistant and biofilm-forming bacteria. PMID:26597426

  11. Evidence for synergism of the antimicrobial peptide piscidin 2 with antiparasitic and antioomycete drugs.

    Science.gov (United States)

    Zahran, E; Noga, E J

    2010-12-01

    Piscidins are potent, broad-spectrum, host-produced antimicrobial peptides (AMPs) that appear to constitute the most common AMP family in teleost fish. Here, we show that piscidin 2 has potent activity against the water mould Saprolegnia, one of the most important pathogens of freshwater fish. The minimum oomyceticidal concentration (MOC₁₀₀) of piscidin 2 against zoospores of three pathogenic isolates of Saprolegnia ranged from 12.5 to 25.0 μg mL⁻¹. This piscidin concentration is well within levels that have been estimated to be present in at least some fish (1-32.5 μg mL⁻¹). In the presence of either copper or malachite green, two drugs commonly used to treat water moulds, there was evidence for partial synergism (PSYN) with piscidin 2. There was also evidence for PSYN after exposure of the ciliate parasite Tetrahymena pyriformis to piscidin 2 plus copper. Our data provide further evidence that piscidins may be an important host defence against skin and gill pathogens and that the piscidin levels in host tissue might influence the success of drug treatments. PMID:21091726

  12. Effects of the association of antifungal drugs on the antimicrobial action of endodontic sealers

    Directory of Open Access Journals (Sweden)

    Paulo Henrique WECKWERTH

    2015-01-01

    Full Text Available This in vitro study aimed to determine the susceptibility of oral specimens and ATCC lineages of Candida albicans for five endodontic sealers, which were pure and associated with two antifungal drugs, and to analyze their effect on the physical properties. For this purpose, 30 lineages of C. albicans, collected from the oral cavity of patients assisted at the endodontics clinic of the Universidade Sagrado Coração, were analyzed. Yeasts susceptibility to the sealers was tested by diffusion on agar plates. Physical properties were evaluated according to the ADA specification no. 57. The pure versions of the Sealer 26, AH Plus, Endofill, Fillapex, and Sealapex demonstrated antifungal activity, with Endofill presenting the greatest inhibition zones. All cements, except for Endofill, had their antifungal actions enhanced by addition of ketoconazole and fluconazole (p < 0.05, and the AH Plus presented the best antifungal activity. The addition of antifungal drugs did not interfere with the setting time and flowability of the sealers. It was concluded that the addition of antifungals to endodontic sealers enhanced the antimicrobial action of most cements tested without altering their physical properties.

  13. Pharmacodynamic profiling of commonly prescribed antimicrobial drugs against Escherichia coli isolates from urinary tract

    Directory of Open Access Journals (Sweden)

    Gabriel Trova Cuba

    2014-09-01

    Full Text Available Since antimicrobial resistance among uropathogens against current first line agents has affected the management of severe urinary tract infection, we determined the likelihood that antibiotic regimens achieve bactericidal pharmacodynamic exposures using Monte Carlo simulation for five antimicrobials (ciprofloxacin, ceftriaxone, piperacillin/tazobactam, ertapenem, and meropenem commonly prescribed as initial empirical treatment of inpatients with severe community acquired urinary tract infections. Minimum inhibitory concentration determination by Etest was performed for 205 Brazilian community urinary tract infection Escherichia coli strains from 2008 to 2012 and 74 E. coli bloodstream strains recovered from a surveillance study. Pharmacodynamic exposure was modeled via a 5000 subject Monte Carlo simulation. All isolates were susceptible to ertapenem and meropenem. Piperacillin/tazobactam, ceftriaxone and ciprofloxacin showed 100%, 97.5% and 83.3% susceptibility among outpatient isolates and 98.6%, 75.7% and 64.3% among inpatient isolates, respectively. Against outpatient isolates, all drugs except ciprofloxacin (82.7% in aggressive and 77.6% in conservative scenarios achieved high cumulative fraction of response: car-bapenems and piperacillin/tazobactam cumulative fraction of responses were close to 100%, and ceftriaxone cumulative fraction of response was 97.5%. Similar results were observed against inpatients isolates for carbapenems (100% and piperacillin/tazobactam (98.4%, whereas ceftriaxone achieved only 76.9% bactericidal cumulative fraction of response and ciprofloxacin 61.9% (aggressive scenario and 56.7% (conservative scenario respectively. Based on this model, standard doses of beta-lactams were predicted to deliver sufficient pharmacodynamic exposure for outpatients. However, ceftriaxone should be avoided for inpatients and ciprofloxacin empirical prescription should be avoided in both inpatients and outpatients with complicated

  14. ANTIMICROBIAL DRUG RESISTANCE IN STRAINS OF Escherichia coli ISOLATED FROM FOOD SOURCES

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin Rasheed

    2014-07-01

    Full Text Available A variety of foods and environmental sources harbor bacteria that are resistant to one or more antimicrobial drugs used in medicine and agriculture. Antibiotic resistance in Escherichia coli is of particular concern because it is the most common Gram-negative pathogen in humans. Hence this study was conducted to determine the antibiotic sensitivity pattern of E. coli isolated from different types of food items collected randomly from twelve localities of Hyderabad, India. A total of 150 samples comprising; vegetable salad, raw egg-surface, raw chicken, unpasteurized milk, and raw meat were processed microbiologically to isolate E. coli and to study their antibiotic susceptibility pattern by the Kirby-Bauer method. The highest percentages of drug resistance in isolates of E. coli were detected from raw chicken (23.3% followed by vegetable salad (20%, raw meat (13.3%, raw egg-surface (10% and unpasteurized milk (6.7%. The overall incidence of drug resistant E. coli was 14.7%. A total of six (4% Extended Spectrum β-Lactamase (ESBL producers were detected, two each from vegetable salads and raw chicken, and one each from raw egg-surface and raw meat. Multidrug resistant strains of E. coli are a matter of concern as resistance genes are easily transferable to other strains. Pathogen cycling through food is very common and might pose a potential health risk to the consumer. Therefore, in order to avoid this, good hygienic practices are necessary in the abattoirs to prevent contamination of cattle and poultry products with intestinal content as well as forbidding the use of untreated sewage in irrigating vegetables.

  15. Haemophilus paragallinarum in chickens in Indonesia: III. Antimicrobial drug sensitivity test ofHaemophilus paragallinarum from chickens suffering of coryza

    OpenAIRE

    Sri Poernomo; Sutarma Sutarma; Sang Ayu Ketut Dewi Silawatri

    1998-01-01

    An agar disc diffusion method was used to examine the sensitivity of 27 Haemophilus paragallinarum (Hpg) isolates consisted of 23 local isolates, 4 standard isolates (serotype A) and Escherichia coli ATCC 24922 as a control to eight antimicrobial drugs (ampicillin, erythromycin, oxytetracycline, doxycycline, neomycin, streptomycin, colistine and sulphanlethoxazole-trimethoprim) . Twenty one out of 23 local isolates of Hpg were sensitive to doxycycline, 19 isolates to ampsllin, 18 isolates to ...

  16. Antimicrobial activity of PVP from an Antarctic bacterium, Janthinobacterium sp. Ant5-2, on multi-drug and methicillin resistant Staphylococcus aureus

    OpenAIRE

    Huang, Jonathan P.; Mojib, Nazia; Goli, Rakesh R.; Watkins, Samantha; Ken B Waites; Ravindra, Rasik; Andersen, Dale T.; Bej, Asim K.

    2012-01-01

    Multiple drug resistant (MDR) and methicillin-resistant Staphylococcus aureus (MRSA) have become increasingly prevalent as a community acquired infection. As a result limited treatment options are available with conventional synthetic antibiotics. Bioprospecting natural products with potent antimicrobial activity show promise for developing new drugs against this pathogen. In this study, we have investigated the antimicrobial activity of a purple violet pigment (PVP) from an Antarctic bacteri...

  17. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2005-01-01

    countries, which leaves room for considerable reductions in some countries. The emergence of resistant bacteria and resistance genes due to the use of antimicrobial agents are well documented. In Denmark it has been possible to reduce the usage of antimicrobial agents for food animals significantly...

  18. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens

    OpenAIRE

    Sambanthamoorthy, Karthik; Feng, Xiaorong; Patel, Ruchi; PATEL, Sneha; Paranavitana, Chrysanthi

    2014-01-01

    Background Biosurfactants (BS) are amphiphilic compounds produced by microbes, either on the cell surface or secreted extracellularly. BS exhibit strong antimicrobial and anti-adhesive properties, making them good candidates for applications used to combat infections. In this study, our goal was to assess the in vitro antimicrobial, anti-adhesive and anti-biofilm abilities of BS produced by Lactobacillus jensenii and Lactobacillus rhamnosus against clinical Multidrug Resistant (MDR) strains o...

  19. Haemophilus paragallinarum in chickens in Indonesia: III. Antimicrobial drug sensitivity test ofHaemophilus paragallinarum from chickens suffering of coryza

    Directory of Open Access Journals (Sweden)

    Sri Poernomo

    1998-12-01

    Full Text Available An agar disc diffusion method was used to examine the sensitivity of 27 Haemophilus paragallinarum (Hpg isolates consisted of 23 local isolates, 4 standard isolates (serotype A and Escherichia coli ATCC 24922 as a control to eight antimicrobial drugs (ampicillin, erythromycin, oxytetracycline, doxycycline, neomycin, streptomycin, colistine and sulphanlethoxazole-trimethoprim . Twenty one out of 23 local isolates of Hpg were sensitive to doxycycline, 19 isolates to ampsllin, 18 isolates to oxytetracycline, 17 isolates to sulphametoxazole-trimethoprim, 16 isolates to erythromycin, and 13 isolates to neomycin, while 13 isolates were resistance to colistine and 11 isolates were also resistance to streptomycin .

  20. in Silico analysis of Escherichia coli polyphosphate kinase (PPK) as a novel antimicrobial drug target and its high throughput virtual screening against PubChem library

    OpenAIRE

    Saha, Saurav Bhaskar; Verma, Vivek

    2013-01-01

    Multiple drug resistance (MDR) in bacteria is a global health challenge that needs urgent attention. The 2011 outbreak caused by Escherichia coli O104:H4 in Europe has exposed the inability of present antibiotic arsenal to tackle the problem of antimicrobial infections. It has further posed a tremendous burden on entire pharmaceutical industry to find novel drugs and/or drug targets. Polyphosphate kinase (PPK) in bacteria plays a crucial role in helping latter to adapt to stringent conditions...

  1. Bacterial profile and patterns of antimicrobial drug resistance in intra-abdominal infections: Current experience in a teaching hospital

    Directory of Open Access Journals (Sweden)

    Neetu Shree

    2013-01-01

    Full Text Available Context: Bacterial isolates from intra-abdominal infections, in particular, peritonitis and their unpredictable antimicrobial resistance patterns, continue to be a matter of concern not only globally but regionally too. Aim: An attempt in the present study was made to study the patterns of drug resistance in bacterial isolates, especially gram negative bacilli in intra-abdominal infections (IAI in our hospital. Materials and Methods: From 100 cases of peritonitis, identification of isolates was done as per recommended methods. Antimicrobial susceptibility and extended-spectrum beta-lactamase (ESBL testing were performed following the CLSI guidelines. Results: A total of 133 clinical isolates were obtained, of which 108 were aerobes and 22 anaerobes. Fungal isolates were recovered in only three cases. Escherichia coli (47/108 emerged as the most predominant pathogen followed by Klebsiella spp. (27/108, while Bacteroides fragilis emerged as the predominant anaerobe (12/22. Among coliforms, 61.7% E. coli and 74.1% Klebsiella spp. were ESBL positive. A high level of resistance was observed for beta lactams, ciprofloxacin, amikacin, and ertapenem. Ertapenem resistance (30-41% seen in coliforms, appears as an important issue. Imipenem, tigecycline, and colistin were the most consistently active agents tested against ESBL producers. Conclusion: Drug resistance continues to be a major concern in isolates from intra-abdominal infections. Treatment with appropriate antibiotics preceded by antimicrobial resistance testing aided by early diagnosis, adequate surgical management, and knowledge of antibiotic - resistant organisms appears effective in reducing morbidity and mortality in IAI cases.

  2. Comparison of the In vitro Activity of Five Antimicrobial Drugs against Staphylococcus pseudintermedius and Staphylococcus aureus Biofilms

    Science.gov (United States)

    Ferran, Aude A.; Liu, JingJing; Toutain, Pierre-Louis; Bousquet-Mélou, Alain

    2016-01-01

    Resistance in canine pathogenic staphylococci is necessitating re-evaluation of the current antimicrobial treatments especially for biofilm-associated infections. Long, repeated treatments are often required to control such infections due to the tolerance of bacteria within the biofilm. To comply with the goal of better antibiotic stewardship in veterinary medicine, the efficacies of the available drugs need to be directly assessed on bacterial biofilms. We compared the activities of amoxicillin, cefalexin, clindamycin, doxycycline, and marbofloxacin on in vitro biofilms of Staphylococcus pseudintermedius and Staphylococcus aureus. Exposure of biofilms for 15 h to maximum concentrations of the antibiotics achievable in canine plasma only reduced biofilm bacteria by 0.5–2.0 log10 CFU, compared to the control, except for marbofloxacin which reduced S. aureus biofilms by 5.4 log10 CFU. Two-antibiotic combinations did not improve, and even decreased, bacterial killing. In comparison, 5 min-exposure to 2% chlorhexidine reduced biofilms of the two tested strains by 4 log10 CFU. Our results showed that S. pseudintermedius and S. aureus biofilms were highly tolerant to all the drugs tested, consistent with the treatment failures observed in practice. Under our in vitro conditions, the use of chlorhexidine was more efficacious than antimicrobials to reduce S. pseudintermedius biofilm. PMID:27531995

  3. Comparison of the In vitro Activity of Five Antimicrobial Drugs against Staphylococcus pseudintermedius and Staphylococcus aureus Biofilms.

    Science.gov (United States)

    Ferran, Aude A; Liu, JingJing; Toutain, Pierre-Louis; Bousquet-Mélou, Alain

    2016-01-01

    Resistance in canine pathogenic staphylococci is necessitating re-evaluation of the current antimicrobial treatments especially for biofilm-associated infections. Long, repeated treatments are often required to control such infections due to the tolerance of bacteria within the biofilm. To comply with the goal of better antibiotic stewardship in veterinary medicine, the efficacies of the available drugs need to be directly assessed on bacterial biofilms. We compared the activities of amoxicillin, cefalexin, clindamycin, doxycycline, and marbofloxacin on in vitro biofilms of Staphylococcus pseudintermedius and Staphylococcus aureus. Exposure of biofilms for 15 h to maximum concentrations of the antibiotics achievable in canine plasma only reduced biofilm bacteria by 0.5-2.0 log10 CFU, compared to the control, except for marbofloxacin which reduced S. aureus biofilms by 5.4 log10 CFU. Two-antibiotic combinations did not improve, and even decreased, bacterial killing. In comparison, 5 min-exposure to 2% chlorhexidine reduced biofilms of the two tested strains by 4 log10 CFU. Our results showed that S. pseudintermedius and S. aureus biofilms were highly tolerant to all the drugs tested, consistent with the treatment failures observed in practice. Under our in vitro conditions, the use of chlorhexidine was more efficacious than antimicrobials to reduce S. pseudintermedius biofilm. PMID:27531995

  4. New antimicrobial drug resistance and epidemiological typing patterns of Staphylococci from clinical isolates and raw meats.

    Science.gov (United States)

    Lee, Do Kyung; Hwang, Jae Ung; Baek, Eun Hye; Lee, Kang Oh; Kim, Kyung Jae; Ha, Nam Joo

    2008-08-01

    The antimicrobial susceptibilities of Staphylococcus isolated from clinical isolates and raw meats were tested for six different antimicrobial agents that are in widespread clinical use in Korea and four new antimicrobials, linezolid, quinupristin/dalfopristin, daptomycin, and tigecycline. And this study analyzed the mecA genes and genetic patterns of MRSA by performing epidemiological studies using the PCR method. 46%, 51%, and 79% of clinical isolates were identified as MRSA in 1998, 1999, and 2005, respectively, and the mecA gene was detected in 82% of these isolates. Of the 133 staphylococci isolated from raw meats, 18% of the isolates were found to be resistant to methicillin, but none of these isolates showed the presence of the mecA gene. New antimicrobials, which have rarely or not yet been used in Korean hospitals, showed high activity against all staphylococcal isolates including methicillin-resistant isolates. The randomly amplified polymorphic DNA (RAPD) patterns of MRSA isolates differed significantly between clinical isolates and raw meat isolates. PMID:18787791

  5. Fabrication and anti-microbial evaluation of drug loaded polylactide space filler intended for ridge preservation following tooth extraction

    Directory of Open Access Journals (Sweden)

    Nebu George Thomas

    2011-01-01

    Full Text Available Background: The preservation or reduction of alveolar ridge resorption following tooth extraction is important in patients especially for those intended for implants at a later stage. One way to achieve this is by using membranes, graft materials, and biodegradable space fillers to prevent alveolar bone resorption and promote regeneration. A major attraction for using biodegradable and biocompatible polymers as space fillers for ridge preservation is their safety profile in comparison to xenograft materials like lyophilized bone and collagen. Materials and Methods: Biocompatible polylactide space fillers were fabricated by fusing porous polylactide particles. The sponges were loaded with drugs by placing them in the respective solutions. Pseudomonas aeruginosa was isolated from a chronic periodontitis patient and in vitro anti-microbial evaluation was done with the drug loaded sponges. Results: Chlorhexidine loaded space filler showed significant anti microbial effect against multiple drug resistant Pseudomonas aeruginosa isolated from a patient with chronic periodontitis. Conclusion: The results of this study indicate that biodegradable drug releasing polylactide space fillers has the potential to be used for ridge preservation following tooth extraction. Release of drugs in the socket may prove useful in preventing development of alveolar osteitis post extraction which can interfere with normal healing of the socket. Synthetic biodegradable polymers also exhibit a controlled degradation rate to achieve complete resorption within the intended time.

  6. 抗菌药物不合理使用现状分析及对策%Antimicrobial unreasonable use present situation analysis and Countermeasures of drug

    Institute of Scientific and Technical Information of China (English)

    张雪艳

    2015-01-01

    目的:对不合理使用抗菌药物对疾病进行治疗的现象进行分析,并为减少此类情况的发生提出相应对策。方法通过对过去积累的抗菌药物不合理使用情况的归纳,对不合理使用抗菌药物的情况进行分析,并针对现状施以相应对策。结果经过调查统计发现,抗菌药物不合理利用的情况十分严重。结论由于抗菌药物应用不合理导致了一些细菌耐药性的增高,为临床上对细菌感染的治疗带来了较大困难,需要及时给予相应措施,尽量使抗菌药的使用合理正常。%Objective Irrational use of antimicrobial drugs for the treatment of diseases of the phenomenon analyzed, and to reduce the occurrence of such cases put forward corresponding countermeasures. Methods Through the accumulation of past irrational use of antimicrobial drugs induction, irrational use of antimicrobial agents in the case of the analysis, and to impose countermeasures against the status quo. Results After a survey found that irrational use of antimicrobial drugs situation is very serious. Conclusion Due to the unreasonable application of antimicrobial drugs has led to some increase in bacterial resistance, for the clinical treatment of bacterial infections caused great difficulties, the need for timely given the appropriate measures to try to make rational use of antimicrobial drugs properly.

  7. ANTIMICROBIALS FROM PLANTS AND THEIR USE IN THERAPEUTICS AND DRUG DISCOVERY

    Directory of Open Access Journals (Sweden)

    Neeraj Khullar

    2010-10-01

    Full Text Available As people are becoming more health conscious, there is a huge worldwide surge in the sale of phytomedicines. Ethnopharmacologists, botanists, microbiologists, and natural products chemists are combing the Earth for phytochemicals which could be developed for the treatment of diseases. This review summarizes the current status of plants used as phytomedicines, alongwth their effectiveness and toxicity. The structure, antimicrobial properties and our own work in the laboratory have also been discussed.

  8. ANTIMICROBIALS FROM PLANTS AND THEIR USE IN THERAPEUTICS AND DRUG DISCOVERY

    OpenAIRE

    Neeraj Khullar

    2010-01-01

    As people are becoming more health conscious, there is a huge worldwide surge in the sale of phytomedicines. Ethnopharmacologists, botanists, microbiologists, and natural products chemists are combing the Earth for phytochemicals which could be developed for the treatment of diseases. This review summarizes the current status of plants used as phytomedicines, alongwth their effectiveness and toxicity. The structure, antimicrobial properties and our own work in the laboratory have also been di...

  9. Isoxazoles incorporated N-substituted decahydroquinolines: a precursor to the next generation antimicrobial drug.

    Science.gov (United States)

    Babu, Mariappan; Pitchumani, Kasi; Ramesh, Penugonda

    2012-01-01

    We report here a simple entry into N-substituted decahydroisoxazoloquinoline system with substituents at position 3 and 4 from the readily available substrates for the first time. The synthesized isoxazoloquinolines were evaluated against six bacterial and four fungal strains. The results suggest that the decahydroisoxazolo[4,3-c]quinoline scaffold has the potential to be developed into therapeutically useful antimicrobial agents. PMID:22133458

  10. Plant-derived antimicrobial agents and their synergistic interaction against drug-sensitive and -resistant pathogens

    OpenAIRE

    Mulyaningsih, Sri

    2010-01-01

    Resistance toward antibiotics has become a problem on a global scale. Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE) are a major cause of morbidity and mortality in hospitalized patients. To overcome resistance, many antimicrobial agents have been investigated and Traditional Chinese Medicinal (TCM) plants were also examined as source of alternative agents. Eucalyptus globulus Labill (Myrtaceae) was the most active plant among the 84 T...

  11. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus.

    Science.gov (United States)

    Mohamed, Mohamed F; Abdelkhalek, Ahmed; Seleem, Mohamed N

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections. PMID:27405275

  12. New perspectives for natural antimicrobial peptides: application as antinflammatory drugs in a murine model

    Directory of Open Access Journals (Sweden)

    Capparelli Rosanna

    2012-11-01

    Full Text Available Abstract Background Antimicrobial peptides (AMPs are an ancient group of defense molecules. AMPs are widely distributed in nature (being present in mammals, birds, amphibians, insects, plants, and microorganisms. They display bactericidal as well as immunomodulatory properties. The aim of this study was to investigate the antimicrobial and anti-inflammatory activities of a combination of two AMPs (temporin B and the royal jellein I against Staphylococcus epidermidis. Results The temporin B (TB-KK and the royal jelleins I, II, III chemically modified at the C terminal (RJI-C, RJII-C, RJIII-C, were tested for their activity against 10 different Staphylococcus epidermidis strains, alone and in combination. Of the three royal jelleins, RJI-C showed the highest activity. Moreover, the combination of RJI-C and TB-KK (MIX displayed synergistic activity. In vitro, the MIX displayed low hemolytic activity, no NO2- production and the ability to curb the synthesis of the pro-inflammatory cytokines TNF-α and IFN-γ to the same extent as acetylsalicylic acid. In vivo, the MIX sterilized mice infected with Staphylococcus epidermidis in eleven days and inhibited the expression of genes encoding the prostaglandin-endoperoxide synthase 2 (COX-2 and CD64, two important parameters of inflammation. Conclusion The study shows that the MIX – a combination of two naturally occurring peptides - displays both antimicrobial and anti-inflammatory activities.

  13. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates

    OpenAIRE

    Wencewicz, Timothy A.; Möllmann, Ute; Long, Timothy E.; Miller, Marvin J.

    2009-01-01

    The recent rise in drug resistance found amongst community acquired infections has sparked renewed interest in developing antimicrobial agents that target resistant organisms and limit the natural selection of immune variants. Recent discoveries have shown that iron uptake systems in bacteria and fungi are suitable targets for developing such therapeutic agents. The use of siderophore-drug conjugates as “Trojan Horse” drug delivery agents has attracted particular interest in this area. This r...

  14. Drug utilization pattern of antimicrobial agents in an outpatient department of otorhinolaryngology in a tertiary care hospital: a prospective, cross-sectional study

    Directory of Open Access Journals (Sweden)

    Sanket B. Sathiya

    2016-02-01

    Conclusions: Our study shows some rational prescription patterns like less utilization of antimicrobials in ENT infections and were according to standard treatment guideline. The results of this study will be useful in future for making standard treatment guidelines. It also promotes the rational prescription and rational use of drugs. [Int J Basic Clin Pharmacol 2016; 5(1.000: 65-69

  15. Utilização de antimicrobianos em uma população urbana Use of antimicrobial drugs in an urban population

    Directory of Open Access Journals (Sweden)

    Laura S Berquó

    2004-04-01

    Full Text Available OBJETIVO: A emergência de cepas microbianas com crescentes níveis de resistência aos antimicrobianos tem sido objeto de preocupação em todo o mundo. Entre as causas apontadas para o fenômeno, está o uso abusivo e indiscriminado de drogas antimicrobianas. O presente estudo visa fornecer informações sobre o padrão de utilização dessas drogas em uma população urbana. MÉTODOS: Em um estudo transversal, de base populacional, 6.145 indivíduos de todas as idades residentes na zona urbana de Pelotas, Rio Grande do Sul, foram entrevistados sobre o uso de antimicrobianos nos 30 dias que antecederam a entrevista. RESULTADOS: A prevalência global de utilização de antimicrobianos encontrada foi de 8%. Essa foi maior entre as crianças até quatro anos de idade (14%; pOBJECTIVE: The emergence of multiresistant microorganisms has been a concerning matter worldwide in the last decades. Indiscriminate use of antibiotics has been associated to this phenomenon. The present study was designed to determine the pattern of antimicrobial drug use in an urban community. METHODS: A population-based cross-sectional study was carried out and 6,145 subjects of all ages living in the urban area of Pelotas, Brazil, were interviewed on the use of antimicrobial drugs in the 30 days previous to the interview. RESULTS: The overall prevalence of antimicrobial drug use was 8%. It was higher for children under 4 years of age (14%; p<0.001, women (9%; p=0.004 and divorced subjects (10%; p=0.02. The clinical conditions most frequently associated with antimicrobial drug use were respiratory tract infections (50%, urinary tract infections (16%, and dental infections (9%. Penicillins (41%, sulphas (17%, and tetracycline (8% were the most commonly used drugs. CONCLUSIONS: Abuse of last generation antimicrobial drugs, a concern of many experts, was not confirmed in this study. Antimicrobial drug use could be further reduced as respiratory illnesses, most frequently

  16. Antimicrobial and Herbal Drug Resistance in Enteric Bacteria Isolated from Faecal Droppings of Common House Lizard/Gecko (Hemidactylus frenatus

    Directory of Open Access Journals (Sweden)

    Bhoj R. Singh

    2013-01-01

    Full Text Available From 194 faecal dropping samples of common house geckos collected from offices (60, houses (88, integrated farm units (IFS,18 and hostels, guest houses, and dining rooms of different canteen/mess (HGM, 28, 326 bacterial isolates of enteric bacteria belonging to 17 genera and 34 species were detected. Escherichia coli were the most frequently (39 isolated followed by Citrobacter freundii (33, Klebsiella pneumonia (27, Salmonella indica (12, Enterobacter gergoviae (12, and Ent. agglomerans (11. Other important bacteria isolated from gecko droppings were Listonella damsela (2, Raoultella terrigena (3, S. salamae (2, S. houtenae (3, Edwardsiella tarda (4, Edwardsiella hoshinae (1, and Klebsiella oxytoca (2. Of the 223 isolates tested for antimicrobial drug sensitivity, 27 (12.1% had multiple drug resistance (MDR. None of the salmonellae or edwardsiellae had MDR however, MDR strains were significantly more common among Escherichia spp. (P=1.9×10-5 and isolates from IFS units (P=3.58×10-23. The most effective herbal drug, Ageratum conyzoides extract, inhibited growth of only 27.8% of strains tested followed by ethanolic extract of Zanthoxylum rhetsa (13.9%, eucalyptus oil (5.4%, patchouli oil (5.4%, lemongrass oil (3.6%, and sandalwood oil (3.1%, and Artemisia vulgaris essential oil (3.1%.

  17. Antimicrobial activity of PVP from an Antarctic bacterium, Janthinobacterium sp. Ant5-2, on multi-drug and methicillin resistant Staphylococcus aureus

    KAUST Repository

    Huang, Jonathan P.

    2012-04-11

    Multiple drug resistant (MDR) and methicillin-resistant Staphylococcus aureus (MRSA) have become increasingly prevalent as a community acquired infection. As a result limited treatment options are available with conventional synthetic antibiotics. Bioprospecting natural products with potent antimicrobial activity show promise for developing new drugs against this pathogen. In this study, we have investigated the antimicrobial activity of a purple violet pigment (PVP) from an Antarctic bacterium, Janthinobacterium sp. Ant5-2 on 15 clinical MDR and MRSA strains. The colorimetric resazurin assay was employed to determine the minimum inhibitory concentration (MIC90) of PVP against MDR and MRSA. The MIC90 ranged between 1.57 µg/mL and 3.13 µg/mL, which are significantly lower than many antimicrobials tested from natural sources against this pathogen. The spectrophotometrically determined growth analysis and total microscopic counts using Live/dead® BacLight™ fluorescent stain exhibited a steady decrease in viability of both MDR and MRSA cultures following treatment with PVP at the MIC levels. In silico predictive molecular docking study revealed that PVP could be a DNA-targeting minor groove binding antimicrobial compound. The continued development of novel antimicrobials derived from natural sources with the combination of a suite of conventional antibiotics could stem the rising pandemic of MDR and MRSA along with other deadly microbial pathogens.

  18. Distribution, detection of enterotoxigenic strains and antimicrobial drug susceptibility patterns of Bacteroides fragilis group in diarrheic and non-diarrheic feces from Brazilian infants

    Directory of Open Access Journals (Sweden)

    Débora Paula Ferreira

    2010-10-01

    Full Text Available Despite the importance of gastrointestinal diseases and their global distribution, affecting millions of individuals around the world, the role and antimicrobial susceptibility patterns of anaerobic bacteria such as those in the Bacteroides fragilis group (BFG are still unclear in young children. This study investigated the occurrence and distribution of species in the BFG and enterotoxigenic strains in the fecal microbiota of children and their antimicrobial susceptibility patterns. Diarrheic (n=110 and non-diarrheic (n=65 fecal samples from children aged 0-5 years old were evaluated. BFG strains were isolated and identified by conventional biochemical, physiological and molecular approaches. Alternatively, bacteria and enterotoxigenic strains were detected directly from feces by molecular biology. Antimicrobial drug susceptibility patterns were determined by the agar dilution method according to the guidelines for isolated bacteria. BFG was detected in 64.3% of the fecal samples (55% diarrheic and 80.4% non-diarrheic, and 4.6% were enterotoxigenic. Antimicrobial resistance was observed against ampicillin, ampicillin/sulbactam, piperacillin/tazobactam, meropenem, ceftriaxone, clindamycin and chloramphenicol. The data show that these bacteria are prevalent in fecal microbiota at higher levels in healthy children. The molecular methodology was more effective in identifying the B. fragilis group when compared to the biochemical and physiological techniques. The observation of high resistance levels stimulates thoughts about the indiscriminate use of antimicrobial drugs in early infancy. Further quantitative studies are needed to gain a better understanding of the role of these bacteria in acute diarrhea in children.

  19. Distribution, detection of enterotoxigenic strains and antimicrobial drug susceptibility patterns of bacteroides fragilis group in diarrheic and non-diarrheic feces from brazilian infants.

    Science.gov (United States)

    Ferreira, Débora Paula; Silva, Vânia Lúcia; Guimarães, Danielle Aparecida; Coelho, Cíntia Marques; Zauli, Danielle Alves Gomes; Farias, Luiz Macêdo; Carvalho, Maria Auxiliadora Roque; Diniz, Claudio Galuppo

    2010-07-01

    Despite the importance of gastrointestinal diseases and their global distribution, affecting millions of individuals around the world, the role and antimicrobial susceptibility patterns of anaerobic bacteria such as those in the Bacteroides fragilis group (BFG) are still unclear in young children. This study investigated the occurrence and distribution of species in the BFG and enterotoxigenic strains in the fecal microbiota of children and their antimicrobial susceptibility patterns. Diarrheic (n=110) and non-diarrheic (n=65) fecal samples from children aged 0-5 years old were evaluated. BFG strains were isolated and identified by conventional biochemical, physiological and molecular approaches. Alternatively, bacteria and enterotoxigenic strains were detected directly from feces by molecular biology. Antimicrobial drug susceptibility patterns were determined by the agar dilution method according to the guidelines for isolated bacteria. BFG was detected in 64.3% of the fecal samples (55% diarrheic and 80.4% non-diarrheic), and 4.6% were enterotoxigenic. Antimicrobial resistance was observed against ampicillin, ampicillin/sulbactam, piperacillin/tazobactam, meropenem, ceftriaxone, clindamycin and chloramphenicol. The data show that these bacteria are prevalent in fecal microbiota at higher levels in healthy children. The molecular methodology was more effective in identifying the B. fragilis group when compared to the biochemical and physiological techniques. The observation of high resistance levels stimulates thoughts about the indiscriminate use of antimicrobial drugs in early infancy. Further quantitative studies are needed to gain a better understanding of the role of these bacteria in acute diarrhea in children.

  20. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial for treatment. Accordingly, efforts are underway in both veterinary and human medicine to preserve the effectiveness of these drugs. ...

  1. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-08-01

    Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.

  2. Resistance to antimicrobials drugs and control measures of Salmonella spp in the poultry industry

    Directory of Open Access Journals (Sweden)

    Velhner Maja

    2013-01-01

    Full Text Available The worldwide prevalence of multiple resistant Salmonella spp is described. Clonally distributed Salmonella Enteritidis PT4 and Salmonella Typhimurium DT104 are among the most pathogenic strains for humans. Recently there have been reports on the prevalence of ST “like” monophasic 4(5,12:i strains in some countries. Vaccination strategy and antimicorbial agent therapy is also briefly discussed. Products of animal origin must be safe and without the risk of antimicrobial resistance. Subsequently, the good management practice at farm level and HACCP in feed factories are required to cope with salmonella infections. Poultry producers in developed countries have been motivated to participate in salmonella control programs, because of public awareness on safe food and risks in the food chain. Export of poultry and poultry products is more successful in the regions where Salmonella Enteritidis and Salmonella Typhimurium have been eradicated. [Projekat Ministarstva nauke Republike Srbije, br. TR31071

  3. Comparison of the in vitro activity of five antimicrobial drugs on Staphylococcus pseudintermedius and Staphylococcus aureus biofilms

    Directory of Open Access Journals (Sweden)

    Aude A Ferran

    2016-08-01

    Full Text Available Resistance in canine pathogenic staphylococci is necessitating re-evaluation of the current antimicrobial treatments especially for biofilm-associated infections. Long, repeated treatments are often required to control such infections due to the tolerance of bacteria within the biofilm. To comply with the goal of better antibiotic stewardship in veterinary medicine, the efficacies of the available drugs need to be directly assessed on bacterial biofilms.We compared the activities of amoxicillin, cefalexin, clindamycin, doxycycline and marbofloxacin on in vitro biofilms of Staphylococcus pseudintermedius and Staphylococcus aureus. Exposure of biofilms for 15 hours to maximum concentrations of the antibiotics achievable in canine plasma only reduced biofilm bacteria by 0.5 to 2.0 log10 CFU, compared to the control, except for marbofloxacin which reduced S. aureus biofilms by 5.4 log10 CFU. Two-antibiotic combinations did not improve, and even decreased, bacterial killing. In comparison, 5 min-exposure to 2 % chlorhexidine reduced biofilms of the 2 tested strains by 4 log10 CFU. Our results showed that S. pseudintermedius biofilm, unlike S. aureus biofilm, was highly tolerant to all the drugs tested, consistent with the treatment failures observed in practice. Under our conditions, the use of topical chlorhexidine would probably be the best currently available strategy to reduce S. pseudintermedius biofilm.

  4. Gemifloxacin, a Fluoroquinolone Antimicrobial Drug, Inhibits Migration and Invasion of Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jung-Yu Kan

    2013-01-01

    Full Text Available Gemifloxacin (GMF is an orally administered broad-spectrum fluoroquinolone antimicrobial agent used to treat acute bacterial exacerbation of pneumonia and bronchitis. Although fluoroquinolone antibiotics have also been found to have anti-inflammatory and anticancer effects, studies on the effect of GMF on treating colon cancer have been relatively rare. To the best of our knowledge, this is the first report to describe the antimetastasis activities of GMF in colon cancer and the possible mechanisms involved. Results have shown that GMF inhibits the migration and invasion of colon cancer SW620 and LoVo cells and causes epithelial mesenchymal transition (EMT. In addition, GMF suppresses the activation of NF-κB and cell migration and invasion induced by TNF-α and inhibits the TAK1/TAB2 interaction, resulting in decreased IκB phosphorylation and NF-κB nuclear translocation in SW620 cells. Furthermore, Snail, a critical transcriptional factor of EMT, was downregulated after GMF treatment. Overexpression of Snail by cDNA transfection significantly decreases the inhibitory effect of GMF on EMT and cell migration and invasion. In conclusion, GMF may be a novel anticancer agent for the treatment of metastasis in colon cancer.

  5. Antimicrobial drug use and risk factors associated with treatment incidence and mortality in Swiss veal calves reared under improved welfare conditions.

    Science.gov (United States)

    Lava, M; Schüpbach-Regula, G; Steiner, A; Meylan, M

    2016-04-01

    Ninety-one Swiss veal farms producing under a label with improved welfare standards were visited between August and December 2014 to investigate risk factors related to antimicrobial drug use and mortality. All herds consisted of own and purchased calves, with a median of 77.4% of purchased calves. The calves' mean age was 29±15days at purchasing and the fattening period lasted at average 120±28 days. The mean carcass weight was 125±12kg. A mean of 58±33 calves were fattened per farm and year, and purchased calves were bought from a mean of 20±17 farms of origin. Antimicrobial drug treatment incidence was calculated with the defined daily dose methodology. The mean treatment incidence (TIADD) was 21±15 daily doses per calf and year. The mean mortality risk was 4.1%, calves died at a mean age of 94±50 days, and the main causes of death were bovine respiratory disease (BRD, 50%) and gastro-intestinal disease (33%). Two multivariable models were constructed, for antimicrobial drug treatment incidence (53 farms) and mortality (91 farms). No quarantine, shared air space for several groups of calves, and no clinical examination upon arrival at the farm were associated with increased antimicrobial treatment incidence. Maximum group size and weight differences >100kg within a group were associated with increased mortality risk, while vaccination and beef breed were associated with decreased mortality risk. The majority of antimicrobial treatments (84.6%) were given as group treatments with oral powder fed through an automatic milk feeding system. Combination products containing chlortetracycline with tylosin and sulfadimidine or with spiramycin were used for 54.9%, and amoxicillin for 43.7% of the oral group treatments. The main indication for individual treatment was BRD (73%). The mean age at the time of treatment was 51 days, corresponding to an estimated weight of 80-100kg. Individual treatments were mainly applied through injections (88.5%), and included

  6. Yeast: a microbe with macro-implications to antimicrobial drug discovery.

    Science.gov (United States)

    Balibar, Carl J; Roemer, Terry

    2016-03-01

    Paramount to any rational discovery of new antibiotics displaying novel mechanisms of action is a deep knowledge of the genetic basis of microbial growth, division and virulence. The bakers' yeast,Saccharomyces cerevisiae, illustrates the highest understanding of the genetic underpinnings of microbial life, and from this framework, a systems biology paradigm has evolved, begging to be emulated in antibacterial discovery. Here, we review landmark events in the history of yeast genomics that provide this new foundation for antibacterial drug discovery. PMID:26443612

  7. Development and characterization of novel hydrogel containing antimicrobial drug for treatment of burns

    Science.gov (United States)

    Thakkar, Vaishali; Korat, Vaishali; Baldaniya, Lalji; Gohel, Mukesh; Gandhi, Tejal; Patel, Nirav

    2016-01-01

    Introduction: The aim of burn management and therapy is fast healing and epithelisation to prevent infection. The present study is concerned with the development and characterization of a novel nanaoparticulate system; cubosomes, loaded with silver sulfadiazine (SSD) and Aloe vera for topical treatment of infected burns. Methods: Cubosome dispersions were formulated by an emulsification technique using different concentrations of a lipid phase Glyceryl Monooleate (GMO) and Poloxamer 407. The optimum formulae were incorporated in an aloe vera gel containing carbopol 934, to form cubosomal hydrogels (cubogels). The cubogels were characterized by in vitro release of SSD, rheological properties, pH, bioadhesion, Transmission Electron Microscopy and in-vivo Wound Healing Study. Results: The results show that the different concentration of GMO had significant effect on particle size, % EE and in vitro drug release. From the in-vitro drug release pattern and similarity factor (f2), it was concluded that batch CG3 (15% GMO and 1% P407) exhibited complete and controlled drug release within 12 hour (i.e. 98.25%), better bio adhesion and superior burn healing as compared to the marketed product. Conclusion: The in vivo burns healing study in rats revealed that the prepared optimized cubogel containing SSD and aloe vera has superior burns healing rate than cubogel with only SSD and marketed preparation so, it may be successfully used in the treatment of deep second degree burn. PMID:27606259

  8. Differential roles of antimicrobials in the acquisition of drug resistance through activation of the SOS response in Acinetobacter baumannii.

    Science.gov (United States)

    Jara, Luis M; Cortés, Pilar; Bou, Germán; Barbé, Jordi; Aranda, Jesús

    2015-07-01

    The effect of antimicrobials on SOS-mediated mutagenesis induction depends on the bacterial species and the antimicrobial group. In this work, we studied the effect of different families of antimicrobial agents used in clinical therapy against Acinetobacter baumannii in the induction of mutagenesis in this multiresistant Gram-negative pathogen. The data showed that ciprofloxacin and tetracycline induce SOS-mediated mutagenesis, whereas colistin and meropenem, which are extensively used in clinical therapy, do not.

  9. Anti-coagulase-negative Staphylococcus activity of ethanolic extracts of propolis from two Brazilian regions and synergism with antimicrobial drugs by the E-test method

    Directory of Open Access Journals (Sweden)

    R. P. Mantovani

    2008-01-01

    Full Text Available Propolis is a natural resinous substance collected by bees from vegetal sources and its therapeutic properties have been investigated. In this work, we evaluated the inhibitory activity of ethanolic extracts of propolis (EEP from the Southeast and South of Brazil on coagulase-negative Staphylococcus (CNS growth as well as the EEP in vitro synergism with antimicrobial drugs by using the diffusion method (E-test. The EEP chemical characteristics (dry weight, pH, flavonoid and phenolic compounds were determined. Seven drugs were tested, and synergism was observed between three drugs and Southeast EEP, six drugs and South EEP, and one drug and ethanol control. Ethanolic extracts of propolis from the South of Brazil presented the greatest flavonoid content and synergism rate, while EEP from the Southeast presented the greatest anti-CNS activity and phenolic compound content. Results showed the correlation among anti-CNS activity, synergism rate and chemical characteristics of propolis.

  10. Board game versus lecture-based seminar in the teaching of pharmacology of antimicrobial drugs--a randomized controlled trial.

    Science.gov (United States)

    Karbownik, Michał S; Wiktorowska-Owczarek, Anna; Kowalczyk, Edward; Kwarta, Paulina; Mokros, Łukasz; Pietras, Tadeusz

    2016-04-01

    The effectiveness of an educational board game developed to teach the pharmacology of antimicrobial drugs to medical students was compared with the lecture-based seminar as a supplemental tool to improve short- and long-term knowledge retention and the perception of the learning method by students. A group of 124 students was randomized to board game and control groups. Short-term knowledge retention was assessed by comparing differences in post- and pre-tests scores, and long-term knowledge retention by comparing final examination scores. Both didactic methods seem to improve short-term knowledge retention to similar extent. Long-term knowledge retention of board game seminar participants was higher than those who attended the lecture-based seminar (ANCOVA, P = 0.035). The effect was most pronounced within 14 days after the intervention (ANOVA, P = 0.007). The board game was well perceived by the students. The board game seems to be a promising didactic tool, however, it should be further tested to assess its full educational utility. PMID:26912120

  11. Board game versus lecture-based seminar in the teaching of pharmacology of antimicrobial drugs--a randomized controlled trial.

    Science.gov (United States)

    Karbownik, Michał S; Wiktorowska-Owczarek, Anna; Kowalczyk, Edward; Kwarta, Paulina; Mokros, Łukasz; Pietras, Tadeusz

    2016-04-01

    The effectiveness of an educational board game developed to teach the pharmacology of antimicrobial drugs to medical students was compared with the lecture-based seminar as a supplemental tool to improve short- and long-term knowledge retention and the perception of the learning method by students. A group of 124 students was randomized to board game and control groups. Short-term knowledge retention was assessed by comparing differences in post- and pre-tests scores, and long-term knowledge retention by comparing final examination scores. Both didactic methods seem to improve short-term knowledge retention to similar extent. Long-term knowledge retention of board game seminar participants was higher than those who attended the lecture-based seminar (ANCOVA, P = 0.035). The effect was most pronounced within 14 days after the intervention (ANOVA, P = 0.007). The board game was well perceived by the students. The board game seems to be a promising didactic tool, however, it should be further tested to assess its full educational utility.

  12. Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec, Canada.

    Science.gov (United States)

    Boulianne, Martine; Arsenault, Julie; Daignault, Danielle; Archambault, Marie; Letellier, Ann; Dutil, Lucie

    2016-01-01

    An observational study was conducted of chicken and turkey flocks slaughtered at federal processing plants in the province of Quebec, Canada. The objectives were to estimate prevalence of drug use at hatchery and on farm and to identify antimicrobial resistance (AMR) in cecal Escherichia coli and Enterococcus spp. isolates and factors associated with AMR. Eighty-two chicken flocks and 59 turkey flocks were sampled. At the hatchery, the most used antimicrobial was ceftiofur in chickens (76% of flocks) and spectinomycin in turkeys (42% of flocks). Virginiamycin was the antimicrobial most frequently added to the feed in both chicken and turkey flocks. At least 1 E. coli isolate resistant to third-generation cephalosporins was present in all chicken flocks and in a third of turkey flocks. Resistance to tetracycline, streptomycin, and sulfisoxazole was detected in > 90% of flocks for E. coli isolates. Antimicrobial resistance (AMR) was observed to bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, and tetracycline in both chicken and turkey flocks for Enterococcus spp. isolates. No resistance to vancomycin was observed. The use of ceftiofur at hatchery was significantly associated with the proportion of ceftiofur-resistant E. coli isolates in chicken flocks. In turkey flocks, ceftiofur resistance was more frequent when turkeys were placed on litter previously used by chickens. Associations between drug use and resistance were observed with tetracycline (turkey) in E. coli isolates and with bacitracin (chicken and turkey), gentamicin (turkey), and tylosin (chicken) in Enterococcus spp. isolates. Further studies are needed to provide producers and veterinarians with alternative management practices and tools in order to reduce the use of antimicrobial feed additives in poultry.

  13. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of ...

  14. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) ... FEAR Act Site Map Transparency Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver ...

  15. Modulating the properties of sunflower oil based novel emulgels using castor oil fatty acid ester: prospects for topical antimicrobial drug delivery.

    Science.gov (United States)

    Behera, B; Biswal, D; Uvanesh, K; Srivastava, A K; Bhattacharya, Mrinal K; Paramanik, K; Pal, K

    2015-04-01

    The current study describes the effect of polyglycerol polyricinoleate (PGPR) on the properties of sunflower oil and span-40 based emulgels. The prepared emulgels contained PGPR in varied concentrations. The microstructure of the emulgels was characterized by bright-field microscopy. The molecular interactions amongst the components of the emulgels were studied using FTIR spectroscopy. The flow and mechanical behaviors of the emulgels were studied using cone-and-plate viscometer and static mechanical tester, respectively. The efficiency of the metronidazole-loaded emulgels as antimicrobial formulations was tested in vitro. E. coli was used as the model microorganism for the antimicrobial study. The emulgels were also explored for iontophoretic delivery applications. The biocompatibility of the emulgels was tested using human keratinocytes (HaCaT). The microscopic evaluation of the emulgels indicated formation of biphasic formulations. FTIR studies suggested a decrease in the hydrogen bonding amongst the components of the emulgels as the concentration of the PGPR was increased. Viscosity studies indicated shear-thinning property of the emulgels. An increase in the PGPR concentration resulted in the reduction in the mechanical properties of the emulgels. Incorporation of PGPR resulted in the decrease in the drug released (both passive and iontophoresis) from the emulgels. The emulgels were found to be cytocompatible in the presence of keratinocytes. The drug loaded emulgels showed good antimicrobial activity against E. coli. In gist, the developed emulgels can be tried for controlled delivery of antimicrobial drugs. The physical and the release properties of the emulgels can be modulated by incorporating PGPR in varied proportions.

  16. General principles of antimicrobial therapy.

    Science.gov (United States)

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  17. General principles of antimicrobial therapy.

    Science.gov (United States)

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community. PMID:21282489

  18. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  19. Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ali Adem Bahar

    2013-11-01

    Full Text Available The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs, a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics.

  20. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites.

    Science.gov (United States)

    Allahverdiyev, Adil M; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-08-01

    Nanotechnology is the creation of functional materials, devices and systems at atomic and molecular scales (1-100 nm), where properties differ significantly from those at a larger scale. The use of nanotechnology and nanomaterials in medical research is growing rapidly. Recently, nanotechnologic developments in microbiology have gained importance in the field of chemotherapy. Bacterial strains that are resistant to current antibiotics have become serious public health problems that raise the need to develop new bactericidal materials. Metal oxide nanoparticles, especially TiO(2) and Ag(2)O nanoparticles, have demonstrated significant antibacterial activity. Therefore, it is thought that this property of metal oxide nanoparticles could effectively be used as a novel solution strategy. In this review, we focus on the unique properties of nanoparticles, their mechanism of action as antibacterial agents and recent studies in which the effects of visible and UV-light induced TiO(2) and Ag(2)O nanoparticles on drug-resistant bacteria have been documented. In addition, from to previous results of our studies, antileishmanial effects of metal oxide nanoparticles are also demonstrated, indicating that metal oxide nanoparticles can also be effective against eukaryotic infectious agents. Conversely, despite their significant potential in antimicrobial applications, the toxicity of metal oxide nanoparticles restricts their use in humans. However, recent studies infer that metal oxide nanoparticles have considerable potential to be the first-choice for antibacterial and antiparasitic applications in the future, provided that researchers can bring new ideas in order to cope with their main problem of toxicity. PMID:21861623

  1. Elevated Risk for Antimicrobial Drug-Resistant Shigella Infection among Men Who Have Sex with Men, United States, 2011-2015.

    Science.gov (United States)

    Bowen, Anna; Grass, Julian; Bicknese, Amelia; Campbell, Davina; Hurd, Jacqueline; Kirkcaldy, Robert D

    2016-09-01

    Shigella spp. cause ≈500,000 illnesses in the United States annually, and resistance to ciprofloxacin, ceftriaxone, and azithromycin is emerging. We investigated associations between transmission route and antimicrobial resistance among US shigellosis clusters reported during 2011-2015. Of 32 clusters, 9 were caused by shigellae resistant to ciprofloxacin (3 clusters), ceftriaxone (2 clusters), or azithromycin (7 clusters); 3 clusters were resistant to >1 of these drugs. We observed resistance to any of these drugs in all 7 clusters among men who have sex with men (MSM) but in only 2 of the other 25 clusters (p<0.001). Azithromycin resistance was more common among MSM-associated clusters than other clusters (86% vs. 4% of clusters; p<0.001). For adults with suspected shigellosis, clinicians should culture feces; obtain sex histories; discuss shigellosis prevention; and choose treatment, when needed, according to antimicrobial drug susceptibility. Public health interviews for enteric illnesses should encompass sex practices; health messaging for MSM must include shigellosis prevention. PMID:27533624

  2. The effects of antimicrobial agents rectification in clinical rational drug use%抗菌药物专项整治对临床合理用药的影响

    Institute of Scientific and Technical Information of China (English)

    叶红; 李绍军

    2014-01-01

    目的:分析抗菌药物专项整治对医院抗菌药物使用的影响。方法结合消耗金额统计法和用药频度(DDDs)分析法,回顾性分析医院使用抗菌药物的数据。结果抗菌药的DDDs及消耗金额都呈现下降趋势,其中注射类药物的DDDs下降比较明显。非限制类抗菌药物的使用比例上升,特殊类抗菌药物的使用比例有比较明显的下降。结论专项整治效果明显,但仍存在部分抗菌药物用药过度、用药结构不合理、用药集中等问题,应该加强抗菌药物的管理,合理的临床用药。%Objective To analyze the effects of antimicrobial agents rectification in clinical rational drug use.Methods The data of antimicrobial drugs used in hospital was retrospectively analyzed, combined with the amount of statistics and drug consumption frequency(DDDs) analysis.Results The amount of consumption of antimicrobial drugs DDDs had shown a downward trend, in which injectable drugs DDDs decreased obviously ; Non-restricted use of antibiotics proportion rose, the proportion of the use of a special class of antimicrobial drugs declined obviously .Conclusion The rectification effect is obvious, but it may also have antimicrobial drug overdose, medication irrational structure, centralized administration and other issues, and the management of antimicrobial drugs, rational clinical use should be strengthened.

  3. Antimicrobial (Drug) Resistance: Gonorrhea

    Science.gov (United States)

    ... Marketing Share this: Main Content Area Multidrug-Resistant Neisseria gonorrhoeae (Gonorrhea) During the past 50 years, the use ... Gonorrhea is a sexually transmitted disease caused by Neisseria gonorrhoeae , a bacterium that can infect areas of the ...

  4. In vitro drug release behavior, mechanism and antimicrobial activity of rifampicin loaded low molecular weight PLGA-PEG-PLGA triblock copolymeric nanospheres.

    Science.gov (United States)

    Gajendiran, M; Divakar, S; Raaman, N; Balasubramanian, S

    2013-12-01

    Poly (lactic-co-glycolic acid) (PLGA (92:8)) and a series of PLGA-PEG-PLGA tri block copolymers were synthesized by direct melt polycondensation. The copolymers were characterized by FTIR, and 1HNMR spectroscopic techniques, viscosity, gel permeation chromatography (GPC) and powder x-ray diffraction (XRD). The rifampicin (RIF) loaded polymeric nanospheres (NPs) were prepared by ultrasonication-W/O emulsification technique. The NPs have been characterized by field emission scanning electron microscopy (FESEM), TEM, powder X-ray diffraction (XRD), UVvisible spectroscopy and DLS measurements. The drug loaded triblock copolymeric NPs have five folds higher drug content and drug loading efficiency than that of PLGA microspheres (MPs). The in vitro drug release study shows that the drug loaded NPs showed an initial burst release after that sustained release up to 72 h. All the triblock copolymeric NPs follow anomalous drug diffusion mechanism while the PLGA MPs follow non-Fickian super case-II mechanism up to 12 h. The overall in-vitro release follows second order polynomial kinetics up to 72 h. The antimicrobial activity of the RIF loaded polymer NPs was compared with that of pure RIF and tetracycline (TA). The RIF loaded triblock copolymeric NPs inhibited the bacterial growth more effectively than the pure RIF and TA. PMID:23701139

  5. Antimicrobial activity of selected Iranian medicinal plants against a broad spectrum of pathogenic and drug multiresistant micro-organisms.

    Science.gov (United States)

    Abedini, A; Roumy, V; Mahieux, S; Gohari, A; Farimani, M M; Rivière, C; Samaillie, J; Sahpaz, S; Bailleul, F; Neut, C; Hennebelle, T

    2014-10-01

    The antimicrobial activities of 44 methanolic extracts from different parts of Iranian indigenous plant species used in traditional medicines of Iran were tested against a panel of 35 pathogenic and multiresistant bacteria and 1 yeast. The antimicrobial efficacy was determined using Müller-Hinton agar in Petri dishes seeded by a multiple inoculator and minimal inhibition concentration (MIC) method. The 21 most active extracts (MIC < 0·3 mg ml(-1) for one or several micro-organisms) were submitted to a more refined measurement. The best antibacterial activity was obtained by 10 plants. Microdilution assays allowed to determinate the MIC and MBC of the 21 most active extracts. The lowest achieved MIC value was 78 μg ml(-1), with 4 extracts. This work confirms the antimicrobial activity of assayed plants and suggests further examination to identify the chemical structure of their antimicrobial compounds. Significance and impact of the study: This study describes the antimicrobial screening of Iranian plant extracts chosen according to traditional practice against 36 microbial strains, from reference culture collections or recent clinical isolates, and enables to select 4 candidates for further chemical characterization and biological assessment: Dorema ammoniacum, Ferula assa-foetida, Ferulago contracta (seeds) and Perovskia abrotanoides (aerial parts). This may be useful in the development of potential antimicrobial agents, from easily harvested and highly sustainable plant parts. Moreover, the weak extent of cross-resistance between plant extracts and antibiotics warrants further research and may promote a strategy based on less potent but time-trained products. PMID:24888993

  6. Prescription pattern of antimicrobial drugs in pediatrics outpatient department of a tertiary care teaching hospital of North India

    Directory of Open Access Journals (Sweden)

    Hitesh Mishra

    2014-04-01

    Conclusions: The high percentage of prescriptions involving antimicrobials observed in MIMS requires rational use of antimicrobials and judicious prescribing. It should be followed by the appropriate use of the selected medicine from the NLEM with frequent update of information. The implementation of antibiotic policy and treatment guidelines with periodic assessment of the clinical pharmacologist in the study area is very important in order to monitor the clinical use of these medications. [Int J Basic Clin Pharmacol 2014; 3(2.000: 385-388

  7. The antimicrobial effects of cinnamon oil against multi-drug resistant Salmonella Newport on organic leafy greens

    Science.gov (United States)

    There is generally no kill-step when preparing salad vegetables, so there is a risk for foodborne illness outbreaks due to consumption of these vegetables. Some essential oils have antimicrobial activities and could provide a natural way to reduce pathogens on fresh produce. The use of a cinnamon ...

  8. Prescription pattern of antimicrobial drugs in pediatrics outpatient department of a tertiary care teaching hospital of North India

    OpenAIRE

    Hitesh Mishra; Rajeev Mishra; Arka Mondal

    2014-01-01

    Background: The pediatric population comprises of 20-25% of the total world population, and numerous acute and chronic diseases can effect this sub population. Antibiotics are among the most frequently prescribed classes of medications for children. Methods: The study is prospective interventional study carried out in the pediatric outpatient of the MIMS for a period of 3 months (September-November 2013+1 month for analysis). Results: Most (84%) children were given single antimicrobial ...

  9. Engineering Antimicrobials Refractory to Resistance

    Science.gov (United States)

    Multi-drug resistant superbugs are a persistent problem in modern health care, demonstrating the need for a new class of antimicrobials that can address this concern. Triple-acting peptidoglycan hydrolase fusions are a novel class of antimicrobials which have qualities well suited to avoiding resis...

  10. Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Maksum Radji; Rafael Adi Agustama; Berna Elya; Conny Riana Tjampakasari

    2013-01-01

    Objective: To evaluate antibacterial activity of the Indonesian water soluble green tea extract,Camellia sinensis, against clinical isolates of methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) and multi-drug resistant Pseudomonas aeruginosa (MDR-P. aeruginosa). Methods:Antimicrobial activity of green tea extract was determined by the disc diffusion method and the minimum inhibitory concentration (MIC) was determined by the twofold serial broth dilutions method. The tested bacteria using in this study were the standard strains and multi-drug resistant clinical isolates of S. aureus and P. aeruginosa, obtained from Laboratory of Clinical Microbiology, Faculty of Medicine, University of Indonesia. Results:The results showed that the inhibition zone diameter of green tea extracts for S. aureus ATCC 25923 and MRSA were (18.970±0.287) mm, and (19.130±0.250) mm respectively. While the inhibition zone diameter for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were (17.550±0.393) mm and (17.670±0.398) mm respectively. The MIC of green tea extracts against S. aureus ATCC 25923 and MRSA were 400 µg/mL and 400 µg/mL, respectively, whereas the MIC for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were 800 µg/mL, and 800 µg/mL, respectively. Conclusions: Camellia sinensis leaves extract could be useful in combating emerging drug-resistance caused by MRSA and P. aeruginosa.

  11. Pharmacogenomics of antimicrobial agents.

    Science.gov (United States)

    Aung, Ar Kar; Haas, David W; Hulgan, Todd; Phillips, Elizabeth J

    2014-01-01

    Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use.

  12. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2015-01-01

    Full Text Available Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.

  13. Antimicrobial Pesticides

    Science.gov (United States)

    ... US EPA US Environmental Protection Agency Search Search Pesticides Share Facebook Twitter Google+ Pinterest Contact Us You are here: EPA Home » Pesticides » Antimicrobial Pesticides Antimicrobial Pesticides News and Highlights Disinfection Hierarchy Workshop - October 7 ...

  14. 我院抗菌药物应用与细菌耐药性分析%The application of antimicrobial drugs and analysis of bacterial resistance in our hospital

    Institute of Scientific and Technical Information of China (English)

    张春英

    2014-01-01

    目的:分析本院抗菌药物应用情况和细菌耐药性相关性,研究抗菌药物用药频度(DDDs)和细菌耐药性之间的关系,为临床应用抗菌药物提出合理化建议。方法对2010~2013年12种抗菌药物年用量和医院常见病原菌对这些药物的耐药性进行统计学分析,分析DDDs与细菌耐药性之间的相关性。结果2010~2013年12种抗菌药物的DDDs呈波动状况,细菌耐药率逐年上升;DDDs排名前列的药物,细菌耐药性较高。结论抗菌药物不合理应用会加速细菌耐药性的发生,合理规范地应用和管理抗菌药物可以延缓耐药菌的产生,对临床治疗有重要意义。%Objective To analyze the application of antimicrobial drugs and analysis of bacterial resistance in our hos-pital,and research the relationship between the antimicrobial drugs DDDs and bacterial resistance,so as to make ratio-nalization proposals for clinical use of antimicrobial drugs. Methods 12 kinds of antibacterial drugs’ annual consump-tion from 2010 to 2013 and resistance of common pathogens to these drug was statistically analyzed,and the correlation between DDDs and bacterial resistance was analyzed. Results The DDDs of 12 kinds of antibacterial drugs from 2010 to 2013 were in fluctuating state,and bacterial resistance rate increased year by year;the higher the rank of DDDs in antimicrobial drugs,the higher the bacterial resistance. Conclusion Unreasonable use of antimicrobial drugs will accel-erate the production of bacterial resistance.Reasonably standardized application and management of antimicrobial drugs can delay the produce of resistant,is of great significance to the clinical treatment.

  15. Danish Integrated Antimicrobial Resistance Monitoring and Research Program

    Science.gov (United States)

    Heuer, Ole E.; Emborg, Hanne-Dorthe; Bagger-Skjøt, Line; Jensen, Vibeke F.; Rogues, Anne-Marie; Skov, Robert L.; Agersø, Yvonne; Brandt, Christian T.; Seyfarth, Anne Mette; Muller, Arno; Hovgaard, Karin; Ajufo, Justin; Bager, Flemming; Aarestrup, Frank M.; Frimodt-Møller, Niels; Wegener, Henrik C.; Monnet, Dominique L.

    2007-01-01

    Resistance to antimicrobial agents is an emerging problem worldwide. Awareness of the undesirable consequences of its widespread occurrence has led to the initiation of antimicrobial agent resistance monitoring programs in several countries. In 1995, Denmark was the first country to establish a systematic and continuous monitoring program of antimicrobial drug consumption and antimicrobial agent resistance in animals, food, and humans, the Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP). Monitoring of antimicrobial drug resistance and a range of research activities related to DANMAP have contributed to restrictions or bans of use of several antimicrobial agents in food animals in Denmark and other European Union countries. PMID:18217544

  16. Susceptibilidad in vitro de Arcobacter butzleri a seis drogas antimicrobianas In vitro susceptibility of Arcobacter butzleri to six antimicrobial drugs

    Directory of Open Access Journals (Sweden)

    L. Otth

    2004-12-01

    Full Text Available Se determinaron los patrones de susceptibilidad de 50 cepas de A. butzleri mediante el método del E-test. Ninguna cepa fue resistente a gentamicina y tetraciclina, pero, hubo cepas resistentes a eritromicina (2% y ciprofloxacina (2%. Además, el 90 y el 98% de las cepas fueron resistentes a ampicilina y cloramfenicol respectivamente. Solamente dos de las 45 cepas ampicilina-resistentes fueron productoras de ß-lactamasa. Palabras clave: Arcobacter butzleri, susceptibilidad antimicrobiana, bacterias emergentes, E-test, ß-lactamasaThe susceptibility patterns of 50 A. butzleri strains to six antimicrobial agents were determined using the E-test method. No strain was found to be resistant to gentamicin and tetracycline, but two different strains (2% were resistant to erythromycin and ciprofloxacin. Ninety and 98% of the strains were resistant to ampicillin and chloramphenicol, respectively. Only two of the 45 ampicillin resistant strains were able to produce ß-lactamase.

  17. The antimicrobial effects of cinnamon leaf oil against multi-drug resistant Salmonella Newport on organic leafy greens.

    Science.gov (United States)

    Todd, Jennifer; Friedman, Mendel; Patel, Jitendra; Jaroni, Divya; Ravishankar, Sadhana

    2013-08-16

    There is generally no kill-step when preparing salad vegetables, so there is a greater risk for foodborne illness from contaminated vegetables. Some essential oils have antimicrobial activities and could provide a natural way to reduce pathogens on fresh produce. The objective of this study was to investigate the antimicrobial activity of cinnamon oil wash against Salmonella enterica serotype Newport on organic leafy greens. Organic romaine and iceberg lettuce, and organic baby and mature spinach were inoculated with Salmonella Newport and then dip treated in a phosphate buffered saline (PBS) control and 3 different concentrations (0.1, 0.3, and 0.5% v/v) of cinnamon oil. The treatment time varied at either 1 or 2min, and storage temperature varied at either 4 or 8°C. Samples were collected at days 0, 1, and 3. For romaine and iceberg lettuce, S. Newport was not recovered on day 3 for 2min 0.3% and 0.5% cinnamon oil treatments. For mature spinach, S. Newport was not recovered by day 3 for the 2min 0.3% and 0.5% 4°C treatments. For baby spinach, there was no recovery of S. Newport by day 1 for all 0.5% treatments. Overall, the cinnamon oil treatments were concentration and time dependent with higher concentrations and longer treatment times providing the greatest reduction in S. Newport population on leafy greens. In addition, the treatments had a residual effect with the greatest reduction generally seen on the last day of sampling. Storage temperature did not have a significant effect on the reduction of S. Newport. Based on the results of this study, cinnamon oil has the potential to be used as a treatment option for washing organic baby and mature spinach, and iceberg and romaine lettuces. PMID:23911760

  18. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... En Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, ... Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of ...

  19. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    Science.gov (United States)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  20. Microbial receptor assay for rapid detection and identification of seven families of antimicrobial drugs in milk: collaborative study

    International Nuclear Information System (INIS)

    A microbial competitive receptor assay for detecting residues of antibiotic families in milk was studied collaboratively by 13 laboratories. In this method, microbial cells added to a milk sample provide specific binding sites for which 14C or 3H labeled drug competes with drug resides in the sample. The 14C or 3H binding to the specific binding sites is measured in a scintillation counter and compared with a zero standard milk. If the sample is statistically different from the zero standard, it is positive. The assay takes about 15 min. The binding reaction occurs between the receptor site and the drug functional group, so all members of a drug family are detected. In this case, beta-lactams, tetracyclines, macrolides, aminoglycosides, novobiocin, chloramphenicol, and sulfonamides, including p-amino-benzoic acid (PABA) and its other analogs, are detectable. The incidence of false negative determinations among samples is about 1%; the incidence of false positives is about 3%. For negative cases, the relative standard deviations for repeatability ranged from 0 to 5% and for reproducibility from 0 to 6%. For positive cases, relative standard deviations ranged from 0 to 13% for repeatability and from 0 to 14% for reproducibility. The method has been adopted official first action

  1. Analysis of Antimicrobial Resistance Genes in Multiple Drug Resistant (MDR) Salmonella enterica Isolated from Animals and Humans

    Science.gov (United States)

    Background: Multiple Drug Resistant (MDR) foodborne bacteria are a concern in animal and human health. Identification of resistance genes in foodborne pathogens is necessary to determine similarities of resistance mechanisms in animal, food and human clinical isolates. This information will help us ...

  2. Evaluation of antimicrobial and phytochemical screening of Fennel, Juniper and Kalonji essential oils against multi drug resistant clinical isolates

    Institute of Scientific and Technical Information of China (English)

    Sharmishtha Purkayastha; Rittee Narain; Praveen Dahiya

    2012-01-01

    Objective: The inhibitory effects of essential oils including fennel, juniper and kalonji from Foeniculum Vulgare, Juniperus Osteosperma and Nigella Sativa on multi drug resistant clinical isolates were investigated. All the oils have been evaluated for phytochemical constituents, antibacterial activity and TLC bioautography assay. Methods: Preliminary phytochemical analysis was performed. The antibacterial potential of essential oils from fennel, juniper and kalonji fennel, juniper and kalonji was evaluated by agar well diffusion method against multi drug resistant clinical isolates. The antibacterial effect was investigated using the TLC-bioautographic method. Results: Preliminary phytochemical analysis demonstrated the presence of most of the phytochemicals including saponins, cardiac glycosides, steroids, terpenoids, flavonoids and tannins. Antibacterial activity of essential oils was assessed on eight multi-drug resistant (MDR) clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains. All the oils tested showed significant to moderate antibacterial activity toward all tested strains except Acinetobacter sp and Staphylococcus aureus MRSA. The maximum zone of inhibition was found to be 25依0.12 mm for juniper oil followed by 21依0.085 mm for kalonji oil againstStaphylococcus aureus 2. Thin layer chromatography and bioautography assay demonstrated well-defined growth inhibition zones against Staphylococcus aureus 2 and E. coli for juniper essential oil in correspondence with tannins observed at Rf values of 0.07 and 0.57. Conclusions: Based on the present study, the essential oils from juniper and kalonji possess antibacterial activity against several multi drug resistant pathogenic bacteria and thus can be used as a base for the development of new potent drugs and phytomedicine.

  3. Antimicrobial Drug Resistance of Salmonella enterica Serovar Typhi in Asia and Molecular Mechanism of Reduced Susceptibility to the Fluoroquinolones▿

    OpenAIRE

    Chau, Tran Thuy; Campbell, James Ian; Galindo, Claudia M; Van Minh Hoang, Nguyen; Diep, To Song; Nga, Tran Thu Thi; Vinh Chau, Nguyen Van; Tuan, Phung Quoc; Page, Anne Laure; Ochiai, R Leon; Schultsz, Constance; Wain, John; Bhutta, Zulfiqar A.; Parry, Christopher M.; Sujit K Bhattacharya

    2007-01-01

    This study describes the pattern and extent of drug resistance in 1,774 strains of Salmonella enterica serovar Typhi isolated across Asia between 1993 and 2005 and characterizes the molecular mechanisms underlying the reduced susceptibilities to fluoroquinolones of these strains. For 1,393 serovar Typhi strains collected in southern Vietnam, the proportion of multidrug resistance has remained high since 1993 (50% in 2004) and there was a dramatic increase in nalidixic acid resistance between ...

  4. Penetration of antimicrobials to pulmonary epithelial lining fluid and muscle and impact of drug physicochemical properties determined by microdialysis

    DEFF Research Database (Denmark)

    Rottbøll, Lisa Amanda Holm; Friis, Christian

    2016-01-01

    positioned 2 to 4cm distal to the tracheal bifurcature and in M. gluteobiceps and were calibrated by retrodialysis by drug. RESULTS: Mean AUCPELF/PLASMA(fu) and mean AUCMUSCLE/PLASMA(fu) ratios were respectively for gentamicin (0.8, 0.7), sulfadiazine (1.1, 0.7), cefquinome (1.3, 1.5) minocycline (1.6, 0.7...

  5. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  6. Aqueous and Organic Solvent-Extracts of Selected South African Medicinal Plants Possess Antimicrobial Activity against Drug-Resistant Strains of Helicobacter pylori: Inhibitory and Bactericidal Potential

    Directory of Open Access Journals (Sweden)

    Collise Njume

    2011-09-01

    Full Text Available The aim of this study was to identify sources of cheap starting materials for the synthesis of new drugs against Helicobacter pylori. Solvent-extracts of selected medicinal plants; Combretum molle, Sclerocarya birrea, Garcinia kola, Alepidea amatymbica and a single Strychnos species were investigated against 30 clinical strains of H. pylori alongside a reference control strain (NCTC 11638 using standard microbiological techniques. Metronidazole and amoxicillin were included in these experiments as positive control antibiotics. All the plants demonstrated anti-H. pylori activity with zone diameters of inhibition between 0 and 38 mm and 50% minimum inhibitory concentration (MIC50 values ranging from 0.06 to 5.0 mg/mL. MIC50 values for amoxicillin and metronidazole ranged from 0.001 to 0.63 mg/mL and 0.004 to 5.0 mg/mL respectively. The acetone extracts of C. molle and S. birrea exhibited a remarkable bactericidal activity against H. pylori killing more than 50% of the strains within 18 h at 4× MIC and complete elimination of the organisms within 24 h. Their antimicrobial activity was comparable to the control antibiotics. However, the activity of the ethanol extract of G. kola was lower than amoxicillin (P < 0.05 as opposed to metronidazole (P > 0.05. These results demonstrate that S. birrea, C. molle and G. kola may represent good sources of compounds with anti-H. pylori activity.

  7. Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates.

    Science.gov (United States)

    Hariharan, Harry; Matthew, Vanessa; Fountain, Jacqueline; Snell, Alicia; Doherty, Devin; King, Brittany; Shemer, Eran; Oliveira, Simone; Sharma, Ravindra N

    2011-03-01

    In a 2-year period 54 feral cats were captured in Grenada, West Indies, and a total of 383 samples consisting of swabs from rectum, vagina, ears, eyes, mouth, nose and wounds/abscesses, were cultured for aerobic bacteria and campylobacters. A total of 251 bacterial isolates were obtained, of which 205 were identified to species level and 46 to genus level. A commercial bacterial identification system (API/Biomerieux), was used for this purpose. The most common species was Escherichia coli (N=60), followed by Staphylococcus felis/simulans (40), S. hominis (16), S. haemolyticus (12), Streptococcus canis (9), Proteus mirabilis (8), Pasteurella multocida (7), Streptococcus mitis (7), Staphylococcus xylosus (7), S. capitis (6), S. chromogenes (4), S. sciuri (3), S. auricularis (2), S. lentus (2), S. hyicus (2), Streptococcus suis (2) and Pseudomonas argentinensis (2). Sixteen other isolates were identified to species level. A molecular method using 16S rRNA sequencing was used to confirm/identify 22 isolates. Salmonella or campylobacters were not isolated from rectal swabs. E. coli and S. felis/simulans together constituted 50% of isolates from vagina. S. felis/simulans was the most common species from culture positive ear and eye samples. P. multocida was isolated from 15% of mouth samples. Coagulase-negative staphylococci were the most common isolates from nose and wound swabs. Staphylococcus aureus, or S. intemedius/S. pseudintermedius were not isolated from any sample. Antimicrobial drug resistance was minimal, most isolates being susceptible to all drugs tested against, including tetracycline. PMID:20627391

  8. Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates

    Directory of Open Access Journals (Sweden)

    Praveen Dahiya

    2012-01-01

    Full Text Available The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60% inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%. The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus.

  9. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Machado, Diana; Pires, David; Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  10. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Diana Machado

    Full Text Available Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction

  11. Antimicrobials, stress and mutagenesis.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2014-10-01

    Full Text Available Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs mostly target the cell wall, a microbial 'Achilles heel', it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient 'weapons' of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the 'Achilles heel' has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.

  12. Recent Advances in Antimicrobial Polymers: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Keng-Shiang Huang

    2016-09-01

    Full Text Available Human safety and well-being is threatened by microbes causing numerous infectious diseases resulting in a large number of deaths every year. Despite substantial progress in antimicrobial drugs, many infectious diseases remain difficult to treat. Antimicrobial polymers offer a promising antimicrobial strategy for fighting pathogens and have received considerable attention in both academic and industrial research. This mini-review presents the advances made in antimicrobial polymers since 2013. Antimicrobial mechanisms exhibiting either passive or active action and polymer material types containing bound or leaching antimicrobials are introduced. This article also addresses the applications of these antimicrobial polymers in the medical, food, and textile industries.

  13. Analysis of patients with antimicrobial drug use and drug resistance in 2011%2011年住院患者抗菌药物使用及耐药情况分析

    Institute of Scientific and Technical Information of China (English)

    游亮; 赵雪竹

    2014-01-01

    Objective To improve the rational use level of antimicrobial agents through analysis of antimicrobial agents application and drug resistance of the patients in our hospital in 2011 .Methods The patients′antimicrobial agents application statistics were analyzed by using defined daily dose(DDD) and drug resistance was analyzed accordingly .Results The submission of microbiologi-cal testing sample in our hospital was low ,and the selection of antibiotics was not in accordance with susceptibility results .Resist-ance rates of Gram-positive bacteria to vancomycin ,linezolid ,furan ,cotrimoxazole were less than 30% ,and the others were higher than 65% .Resistance rates of pseudomonas aeruginosa to imipenem and meropenem were 37 .8% and 43 .5% .Resistance rates of Acinetobacter baumannii to the two carbapenem were 66 .7% and 72 .3% .Conclusion We must strengthen the management of an-tibiotics usage to further improve the antibacterial drug classification management level and slow down the occurrence of antibacte-rial resistance .%目的:通过对2011年住院患者抗菌药物使用及耐药情况的分析,以期提高对抗菌药物的合理使用水平。方法统计2011年住院患者抗菌药物使用的相关数据,使用限定日剂量值(DDD值)分析方法,并结合抗菌药物耐药情况进行分析。结果我院的微生物样本送检率较低,抗菌药物选用未严格按照药敏结果。革兰氏阳性菌对万古霉素、利奈唑胺、呋喃妥因、复方新诺明的耐药性均小于30%,其他均高于65%。亚胺培南、美罗培南对铜绿假单胞菌的耐药率分别为37.8%和43.5%。两个碳青霉烯类鲍曼不动杆菌的耐药率分别为66.7%和72.3%,高于平均水平。结论我院须加强抗菌药物使用的管理,进一步提高抗菌药物分级管理水平,减缓细菌耐药性的发生。

  14. Antimicrobial Drug Resistance of Salmonella enterica Serovar Typhi in Asia and Molecular Mechanism of Reduced Susceptibility to the Fluoroquinolones▿

    Science.gov (United States)

    Chau, Tran Thuy; Campbell, James Ian; Galindo, Claudia M.; Van Minh Hoang, Nguyen; Diep, To Song; Nga, Tran Thu Thi; Van Vinh Chau, Nguyen; Tuan, Phung Quoc; Page, Anne Laure; Ochiai, R. Leon; Schultsz, Constance; Wain, John; Bhutta, Zulfiqar A.; Parry, Christopher M.; Bhattacharya, Sujit K.; Dutta, Shanta; Agtini, Magdarina; Dong, Baiqing; Honghui, Yang; Anh, Dang Duc; Canh, Do Gia; Naheed, Aliya; Albert, M. John; Phetsouvanh, Rattanaphone; Newton, Paul N.; Basnyat, Buddha; Arjyal, Amit; La, Tran Thi Phi; Rang, Nguyen Ngoc; Phuong, Le Thi; Van Be Bay, Phan; von Seidlein, Lorenz; Dougan, Gordon; Clemens, John D.; Vinh, Ha; Hien, Tran Tinh; Chinh, Nguyen Tran; Acosta, Camilo J.; Farrar, Jeremy; Dolecek, Christiane

    2007-01-01

    This study describes the pattern and extent of drug resistance in 1,774 strains of Salmonella enterica serovar Typhi isolated across Asia between 1993 and 2005 and characterizes the molecular mechanisms underlying the reduced susceptibilities to fluoroquinolones of these strains. For 1,393 serovar Typhi strains collected in southern Vietnam, the proportion of multidrug resistance has remained high since 1993 (50% in 2004) and there was a dramatic increase in nalidixic acid resistance between 1993 (4%) and 2005 (97%). In a cross-sectional sample of 381 serovar Typhi strains from 8 Asian countries, Bangladesh, China, India, Indonesia, Laos, Nepal, Pakistan, and central Vietnam, collected in 2002 to 2004, various rates of multidrug resistance (16 to 37%) and nalidixic acid resistance (5 to 51%) were found. The eight Asian countries involved in this study are home to approximately 80% of the world's typhoid fever cases. These results document the scale of drug resistance across Asia. The Ser83→Phe substitution in GyrA was the predominant alteration in serovar Typhi strains from Vietnam (117/127 isolates; 92.1%). No mutations in gyrB, parC, or parE were detected in 55 of these strains. In vitro time-kill experiments showed a reduction in the efficacy of ofloxacin against strains harboring a single-amino-acid substitution at codon 83 or 87 of GyrA; this effect was more marked against a strain with a double substitution. The 8-methoxy fluoroquinolone gatifloxacin showed rapid killing of serovar Typhi harboring both the single- and double-amino-acid substitutions. PMID:17908946

  15. 2008-2011年剖宫产围手术期抗菌药物使用分析%Analysis of perioperative use of antimicrobial drugs in cesarean section from 2008 to 2011

    Institute of Scientific and Technical Information of China (English)

    吴秀萍; 张丽萍

    2012-01-01

    Objective: To investigate the use of antibacterial drugs during caesarean operation in the recent four years in our hospital, and to evaluate the rationality of drug use. Methods: One hundred and ninety-five ce-sarean section cases from 2008 to 2011 in our hospital were randomly sampled. The choice of antibiotics, medication time, medication duration, antimicrobial drug cost and other aspects were analyzed. Results: All of the 195 cases prophylacticly used antibacterial drugs. In 2008, the drugs were chosen based on experience, the first dose was given after the cesarean section, penicillin sodium or lincomycin was used in combination with metronidazole, and the average duration was 3. 21 days. Since 2009, the use of antimicrobial drugs was standardized. Cefazolin sodium or clindamycin DX was used, the first dose was given after umbilical cord cutting, and the average duration was 2. 36 days. The ratios of antimicrobial drug costs to hospitalization expense in the four years were all less than 1.00% . Conclusion: The perioperative antimicrobial use for caesarean operation in the last four years in our hospital has been changing for more rational, but the medication duration was too long.%目的:了解我院近4年剖宫产围手术期抗菌药物使用情况,评价用药的合理性.方法:随机抽查2008 -2011年我院剖宫产病历195份,从抗菌药物品种的选择、首次用药时机、使用疗程、抗菌药物费用等方面进行分析.结果:195例剖宫产手术患者中,100%预防性使用抗菌药物.2008年凭经验预防用药,首剂均在术后开始,选用青霉素钠或林可霉素联用甲硝唑,平均用药3.21 d.2009年开始规范用药,单用头孢唑啉钠或克林霉素,首剂于断脐后使用,平均用药2.36 d.4年抗菌药物费用占住院费用比均<1.00%.结论:4年来,我院剖宫产围手术期抗菌药物使用逐年规范,但预防用药时间偏长,欠合理.

  16. Understanding the mechanisms and drivers of antimicrobial resistance.

    Science.gov (United States)

    Holmes, Alison H; Moore, Luke S P; Sundsfjord, Arnfinn; Steinbakk, Martin; Regmi, Sadie; Karkey, Abhilasha; Guerin, Philippe J; Piddock, Laura J V

    2016-01-01

    To combat the threat to human health and biosecurity from antimicrobial resistance, an understanding of its mechanisms and drivers is needed. Emergence of antimicrobial resistance in microorganisms is a natural phenomenon, yet antimicrobial resistance selection has been driven by antimicrobial exposure in health care, agriculture, and the environment. Onward transmission is affected by standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel, and migration. Strategies to reduce antimicrobial resistance by removing antimicrobial selective pressure alone rely upon resistance imparting a fitness cost, an effect not always apparent. Minimising resistance should therefore be considered comprehensively, by resistance mechanism, microorganism, antimicrobial drug, host, and context; parallel to new drug discovery, broad ranging, multidisciplinary research is needed across these five levels, interlinked across the health-care, agriculture, and environment sectors. Intelligent, integrated approaches, mindful of potential unintended results, are needed to ensure sustained, worldwide access to effective antimicrobials. PMID:26603922

  17. Erros de administração de antimicrobianos identificados em estudo multicêntrico brasileiro Antimicrobial drug administration errors identified in Brazilian multicentric study

    Directory of Open Access Journals (Sweden)

    Tatiane Cristina Marques

    2008-06-01

    Full Text Available Erros de administração de antimicrobianos são relevantes, pois podem interferir na segurança do paciente e no desenvolvimento de resistência microbiana. O objetivo desse estudo foi identificar os antimicrobianos associados a erros de administração de medicamentos. Estudo multicêntrico, descritivo e exploratório, realizado em unidades de clínica médica de cinco hospitais por meio de técnica observacional, durante 30 dias. Os erros foram classificados em categorias: dose, medicamento não prescrito, via, paciente e horário. A classificação farmacológica dos antimicrobianos foi realizada segundo o Sistema Anatômico Terapêutico Químico (ATC. Os fármacos de intervalo terapêutico estreito foram identificados. A análise estatística descritiva foi realizada no software SPSS 11.5. Foram identificados 1500 erros, sendo 277 (18,5% com antimicrobianos. Os tipos de erros foram: de horário 87,7%; de dose 6,9%; de medicamento não autorizado 3,2%, de via 1,5% e de paciente 0,7%. Foram identificados 36 antimicrobianos e as classes ATC mais freqüentes foram: fluorquinolonas 13,9%, combinações de penicilinas 13,9%, macrolídeos 8,3% e cefalosporina de terceira geração 5,6%. Os fármacos de intervalo terapêutico estreito corresponderam a 16,7% dos antimicrobianos. Os erros com antimicrobianos analisados podem ser fontes de estudo e melhoria no processo de utilização racional de medicamentos e segurança do paciente.Medication administration errors (MAE are the most frequent kind of medication errors. Errors with antimicrobial drugs (AD are relevant because they may interfere in patient safety and in the development of microbial resistance. The aim of this study is to analyze the AD errors detected in a Brazilian multicentric study of MAE. It was a descriptive and exploratory study carried out in clinical units in five Brazilian teaching hospitals. The hospitals were investigated during 30 days. MAE were detected by observation

  18. Antimicrobial Polymer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Wright, Stacy C. (Flint, MI); Taylor, Andrew C. (Ann Arbor, MI)

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  19. Treatment of Chronic Suppurative Otitis Media with Antimicrobial Drugs:Clinical Analysis of 352 Cases%抗菌药物治疗慢性化脓性中耳炎352例临床分析

    Institute of Scientific and Technical Information of China (English)

    金鹏

    2015-01-01

    OBJECTIVE:To analyze the clinical rational use of antimicrobial agents in the treatment of chronic suppurative otitis media.METHODS:The clinical data of 352 patients with chronic suppurative otitis media randomly selected in Xiangyang First People's Hospital between January 2013 and June 2014 were analyzed retrospectively. RESULTS:Of the 352 ear canal discharge samples, pathogens were isolated in 321 ( positive bacterial culture rate of 91.19%) .Antimicrobial agents were use in all (100.00%) .CONCLUSION:The clinical use of antimicrobial agents should be rational based on bacterial culture and drug resistance, meanwhile attaching importance to the mode of administration and frequency of use of antimicrobial agents in order to enhance the level of clinical rational use of antimicrobial agents.%目的:分析慢性化脓性中耳炎治疗中抗菌药物合理应用情况。方法:随机选择襄阳市第一人民医院2013年1月至2014年6月间慢性化脓性中耳炎352例病例临床治疗资料进行回顾性分析。结果:352例耳道分泌物标本中分离出病原菌分泌物标本321例(细菌培养阳性率为91.19%);本组患者抗菌药物利用率达到100.00%。结论:临床抗菌药物应用时应根据细菌培养、耐药性结果合理用药,并注意给药方式、使用频率,以提升医院抗菌药物的临床合理用药水平。

  20. Antimicrobial technology in orthopedic and spinal implants

    Science.gov (United States)

    Eltorai, Adam EM; Haglin, Jack; Perera, Sudheesha; Brea, Bielinsky A; Ruttiman, Roy; Garcia, Dioscaris R; Born, Christopher T; Daniels, Alan H

    2016-01-01

    Infections can hinder orthopedic implant function and retention. Current implant-based antimicrobial strategies largely utilize coating-based approaches in order to reduce biofilm formation and bacterial adhesion. Several emerging antimicrobial technologies that integrate a multidisciplinary combination of drug delivery systems, material science, immunology, and polymer chemistry are in development and early clinical use. This review outlines orthopedic implant antimicrobial technology, its current applications and supporting evidence, and clinically promising future directions. PMID:27335811

  1. Susceptibility Profile of Staphylococcus epidermidis and Staphylococcus haemolyticus Isolated from Blood Cultures to Vancomycin and Novel Antimicrobial Drugs over a Period of 12 Years.

    Science.gov (United States)

    Pinheiro, Luiza; Brito, Carla Ivo; Pereira, Valéria Cataneli; Oliveira, Adilson; Bartolomeu, Ariane Rocha; Camargo, Carlos Henrique; Cunha, Maria Lourdes Ribeiro Souza

    2016-06-01

    The aim of this study was to evaluate the antimicrobial susceptibility profile of 85 Staphylococcus epidermidis and 84 Staphylococcus haemolyticus strains isolated from blood cultures to oxacillin, vancomycin, tigecycline, linezolid, daptomycin, and quinupristin/dalfopristin over a period of 12 years. S. epidermidis and S. haemolyticus isolated from blood cultures of inpatients, attended at a teaching hospital, were analyzed for the presence of the mecA gene and by SCCmec typing. The minimum inhibitory concentration (MIC) values of tigecycline, linezolid, daptomycin, quinupristin/dalfopristin, and vancomycin were determined. Isolates exhibiting vancomycin MICs of ≥2 μg/ml were typed by pulsed-field gel electrophoresis (PFGE). The rate of mecA positivity was 92.9% and 100% in S. epidermidis and S. haemolyticus, respectively. The most frequent SCCmec types were type III (53.2%) in S. epidermidis and type I (32.1%) in S. haemolyticus. All isolates were susceptible to linezolid and daptomycin, but 7.1% of S. haemolyticus and 2.3% of S. epidermidis isolates were resistant to tigecycline, and 1.2% each of S. haemolyticus and S. epidermidis were resistant and intermediately resistant to quinupristin/dalfopristin, respectively. S. epidermidis exhibited higher vancomycin MICs (40% with MIC of ≥2 μg/ml). Clonal typing of strains with vancomycin MIC of ≥2 μg/ml revealed the presence of different PFGE types of S. epidermidis and S. haemolyticus over a period of up to 4 years (2002-2004, 2005-2008, 2006-2009, 2010-2011). Despite the observation of a high prevalence of mecA, the clinical strains were fully susceptible to vancomycin and to the new drugs linezolid, daptomycin, tigecycline, and quinupristin/dalfopristin. The PFGE types with vancomycin MIC of ≥2 μg/ml exhibited a great diversity of SCCmec cassettes, demonstrating that S. epidermidis and S. haemolyticus may easily acquire these resistance-conferring genetic elements. PMID:26623676

  2. An "Unlikely" Pair: The Antimicrobial Synergy of Polymyxin B in Combination with the Cystic Fibrosis Transmembrane Conductance Regulator Drugs KALYDECO and ORKAMBI.

    Science.gov (United States)

    Schneider, Elena K; Azad, Mohammad A K; Han, Mei-Ling; Tony Zhou, Qi; Wang, Jiping; Huang, Johnny X; Cooper, Matthew A; Doi, Yohei; Baker, Mark A; Bergen, Phillip J; Muller, Mark T; Li, Jian; Velkov, Tony

    2016-07-01

    Novel combination therapies are desperately needed for combating lung infections caused by bacterial "superbugs". This study aimed to investigate the synergistic antibacterial activity of polymyxin B in combination with the cystic fibrosis (CF) drugs KALYDECO (ivacaftor) and ORKAMBI (ivacaftor + lumacaftor) against Gram-negative pathogens that commonly colonize the CF lung, in particular, the problematic Pseudomonas aeruginosa. The in vitro synergistic activity of polymyxin B combined with ivacaftor or lumacaftor was assessed using checkerboard and static time-kill assays against a panel of polymyxin-susceptible and polymyxin-resistant P. aeruginosa isolates from the lungs of CF patients. Polymyxin B, ivacaftor, and lumacaftor were ineffective when used individually against polymyxin-resistant (MIC ≥ 4 mg/L) isolates. However, when used together, the combination of clinically relevant concentrations of polymyxin B (2 mg/L) combined with ivacaftor (8 mg/L) or ivacaftor (8 mg/L) + lumacaftor (8 mg/L) displayed synergistic killing activity against polymyxin-resistant P. aeruginosa isolates as demonstrated by a 100-fold decrease in the bacterial count (CFU/mL) even after 24 h. The combinations also displayed excellent antibacterial activity against P. aeruginosa under CF relevant conditions in a sputum medium assay. The combination of lumacaftor (alone) with polymyxin B showed additivity against P. aeruginosa. The potential antimicrobial mode of action of the combinations against P. aeruginosa was investigated using different methods. Treatment with the combinations induced cytosolic GFP release from P. aeruginosa cells and showed permeabilizing activity in the nitrocefin assay, indicating damage to both the outer and inner Gram-negative cell membranes. Moreover, scanning and transmission electron micrographs revealed that the combinations produce outer membrane damage to P. aeruginosa cells that is distinct from the effect of each compound per se. Ivacaftor was also

  3. Antimicrobial hydrogels for the treatment of infection.

    Science.gov (United States)

    Veiga, Ana Salomé; Schneider, Joel P

    2013-11-01

    The increasing prevalence of microbial infections, especially those associated with impaired wound healing and biomedical implant failure has spurred the development of new materials having antimicrobial activity. Hydrogels are a class of highly hydrated material finding use in diverse medical applications such as drug delivery, tissue engineering, as wound fillers, and as implant coatings, to name a few. The biocompatible nature of many gels make them a convenient starting platform to develop selectively active antimicrobial materials. Hydrogels with antimicrobial properties can be obtained through the encapsulation or covalent immobilization of known antimicrobial agents, or the material itself can be designed to possess inherent antimicrobial activity. In this review we present an overview of antimicrobial hydrogels that have recently been developed and when possible provide a discussion relevant to their mechanism of action.

  4. Ⅰ类切口预防性抗菌药物使用率的调查分析%Investigation and Analysis of Preventability Antimicrobial Drugs Utilization Ratio of Type I Incision

    Institute of Scientific and Technical Information of China (English)

    徐少银; 顾新; 张海霞; 孙蓉蓉

    2016-01-01

    Objective To analyze the reasons of antimicrobial drugs high prevention usage rate in Ⅰ incision surgery perioperative. Methods A general survey of type Ⅰ incision surgery perioperative preventive medications was taken in a grade 3 and first-class hospital in a quarter of 2014 and compared with the overall situation, and use of quality management tools to analyze possible cause of the prophylactic usage rate on the high side. Results In the past three years, the type Ⅰ incision operation preventive antimicrobial rate from 80.56% decreased to 48.53%, do not meet the indicators prescribed by the health planning commission. Research data show that antimicrobial drugs in principle usage rate is higher (47.55%), do not need to use 9.28% of the diseases is not rational drug use behavior. Drugs, the lack of professional knowledge, the lack of training, the index set of component ratio is high and no difference, disease prevention regulation does not reach the designated position, etc were the reasons for hospital type Ⅰ incision preventive antimicrobial agents usage. Conclusion Hospital should strengthen the knowledge training and examination for perioperative antimicrobial drugs for type Ⅰ incision; Combined with antibacterial drug monitoring and control system, strengthen the guidance of clinical pharmacists function; Recommend the health administrative department to differentiate setting parameter values of type Ⅰ incision prophylaxis.%目的 分析Ⅰ类切口手术围术期抗菌药物预防使用率偏高的原因.方法 通过普查某三甲医院2014 年某一季度Ⅰ类切口手术围术期预防用药情况,与医院 Ⅰ 类切口抗菌药物预防用药总体情况进行对比,同时利用质量管理工具分析导致预防用药率偏高的可能原因.结果 抗菌药物专项整治三年间,Ⅰ 类切口手术预防性抗菌药物比率由 80.56%降为 48.53%,未达到卫计委规定的指标.研究数据中原则上需要预防用

  5. Survey on antimicrobial residues in raw milk and antimicrobial use in dairy farms in the Emilia-Romagna region, Italy

    Directory of Open Access Journals (Sweden)

    Andrea Serraino

    2013-09-01

    Full Text Available This survey investigated the antimicrobials most commonly used in dairy herds and antimicrobial residues most frequently detected in milk to evaluate the suitability of rapid screening tests to determine antimicrobial residues in milk. The investigation was carried out in 45 dairy herds consulting the farm administration records and in a national dairy industry collecting milk from almost all the dairy farms studied. Data were recorded on: i treatments with drugs containing antimicrobials during the 12 months prior to the visit; ii antimicrobial active substances present in the drugs; iii data from routine controls to detect antimicrobial residues (52,771 samples. The antimicrobial classes most commonly used were penicillins, cephalosporins, fluoroquinolones, macrolides, sulphonamides, tetracyclines, aminoglycosides and lyncosamides; the most frequently used antimicrobial not belonging to any of the previous groups was riphaximin. Sixty-four samples collected from milk trucks yielded antimicrobial residues exceeding the detection limit of the screening test used: sulphonamide residues were the most prevalent (3.4%, followed by tetracycline (0.3% and penicillins and cephalosporins (0.03%. The antimicrobial classes most commonly used on dairy farms are the same as the residues most frequently detected in milk. The association of several commercially available rapid test kits proved satisfactory for determination of the veterinary antimicrobial drugs most used on dairy farms but at least five kits are required. Therefore, knowledge of the most frequently used veterinary drugs and periodic monitoring are required for the dairy industry to develop a targeted and effective control plan.

  6. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics...... is associated with an increased risk of adverse effects, more frequent re-attendance and increased medicalization of self-limiting conditions. Antibiotic overprescribing is a particular problem in primary care, where viruses cause most infections. About 90% of all antibiotic prescriptions are issued by general...... practitioners, and respiratory tract infections are the leading reason for prescribing. Multifaceted interventions to reduce overuse of antibiotics have been found to be effective and better than single initiatives. Interventions should encompass the enforcement of the policy of prohibiting the over...

  7. Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Sigrid Mayrhofer

    2011-01-01

    Full Text Available Strains of the genus Bifidobacterium are frequently used as probiotics, for which the absence of acquired antimicrobial resistance has become an important safety criterion. This clarifies the need for antibiotic susceptibility data for bifidobacteria. Based on a recently published standard for antimicrobial susceptibility testing of bifidobacteria with broth microdilution method, the range of susceptibility to selected antibiotics in 117 animal bifidobacterial strains was examined. Narrow unimodal MIC distributions either situated at the low-end (chloramphenicol, linezolid, and quinupristin/dalfopristin or high-end (kanamycin, neomycin concentration range could be detected. In contrast, the MIC distribution of trimethoprim was multimodal. Data derived from this study can be used as a basis for reviewing or verifying present microbiological breakpoints suggested by regulatory agencies to assess the safety of these micro-organisms intended for the use in probiotics.

  8. Animation of Antimicrobial Resistance

    Science.gov (United States)

    ... Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it ... Veterinary Medicine is cited as the corporate author. Animation Animation of Antimicrobial Resistance (WMV - 19.2MB) 9: ...

  9. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... 08 Animation of Antimicrobial Resistance (text version) Arabic Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) French ...

  10. Prevalence of enterobacteriaceae in Tupinambis merianae (Squamata: Teiidae) from a captive facility in Central Brazil, with a profile of antimicrobial drug resistance in Salmonella enterica

    OpenAIRE

    Andréa de Moraes Carvalho; Ayrton Klier Péres Júnior; Maria Auxiliadora Andrade; Valéria de Sá Jayme

    2013-01-01

    The present study reports the presence of enterobacteriaceae in Tegu Lizards (Tupinambis merianae)from a captive facility in central Brazil. From a total of 30 animals, 10 juveniles and 20 adults (10 males, 10 females), 60 samples were collected, in two periods separated by 15 days. The samples were cultivated in Xylose-lysine-deoxycholate agar (XLT4) and MacConkey agar. The Salmonella enterica were tested for antimicrobial susceptibility. A total of 78 bacteria was isolated, of wich 27 were ...

  11. 阳离子抗菌肽的杀菌及抗药性机制的研究进展%Research Progress on Cationic Antimicrobial Peptides in Antibacterial and Drug-resistant Mechanism

    Institute of Scientific and Technical Information of China (English)

    洪军; 胡建业

    2012-01-01

    阳离子抗菌肽是生物体抵御外源性病原微生物入侵而产生的一类小分子多肽,广泛分布于生物体内,具有广谱抗菌活性,是生物体先天性免疫防御系统的重要组成部分.除了具有抗细菌功能外,还具有抗真菌、抗原虫、抗病毒及抑制肿瘤细胞等功能,并对正常的真核细胞毒性较低,是新一代抗生素的理想替代品,但是同抗生素一样,部分细菌也能对抗菌肽产生抗药性.作者将从阳离子抗菌肽的杀菌及抗药性机制等方面进行阐述.%Cationic antimicrobial peptides were a class of small peptides with anti-extrogenous pathogen invasion. As an important component of congenital immune defense system against infections, they were widely distributed in vivo. It exhibited potent and broad-spectrum activities against both Gram-positive and Gram-negative bacteria, fungi, viruses, protozoa, and cancer cells,and normal eukaryotic cells with low toxicity. It was an ideal alternative to a new generation of antibiotics. However, the same as antibiotics, some bacteria were resistant to certain antimicrobial peptides. The antibacterial and drug-resistant mechanism of the cationic antimicrobial peptides were summarized in the article to provide certain reference.

  12. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System ... Note: If you need help accessing information in different file formats, see Instructions for Downloading ...

  13. Analysis on the utilization of antimicrobials and bacterial drug resistance in our hospital in 2010%我院2010年抗菌药物应用与细菌耐药性分析

    Institute of Scientific and Technical Information of China (English)

    王霞

    2012-01-01

    目的 总结首都医科大学附属北京佑安医院抗菌药物应用及细菌耐药情况.方法 采用回顾性调查方法,对2010年住院药房抗菌药物的消耗量、用药频度(DDDs)及病原菌耐药情况进行统计分析.结果 头孢菌素类、喹诺酮类和头霉素类抗菌药物的DDDs排在前3位,分别为33 508.2、32 630.5及27 135.3.临床分离的常见病原菌是大肠埃希菌、葡萄球菌、肺炎克雷伯菌、铜绿假单胞菌和屎肠球菌.除铜绿假单胞菌对亚胺培南、美罗培南耐药率达30%外.大肠埃希菌、肺炎克雷伯菌和阴沟肠杆菌对阿米卡星、亚胺培南和美罗培南耐药率最低,革兰阳性球菌对万古霉素和利奈唑胺耐药率最低.结论 应加强抗菌药物分级管理和细菌耐药监测工作,根据病原菌种类及细菌药敏试验结果选择抗菌药物.%Objective To investigate the utilization of antimicrobials and the situations of drug- resistance bacteria in Beijing You'an hospital and to provide reference for use of drugs in the clinic. Methods The consumption of antimicrobials, defined daily doses (DDDs) and drug-resistance bacteria for inpatients in the hospital 2010 were analyzed statistically. Results The top three categories of antimicrobials in the list of DDDs were cephalosporins (33 508.2), quinolones (32 630.5) and cephalomycin (27 135.3). The general bacteria were Escherichia coli, Klebsiella pneumoniae, Pseudomonsa aeruginosa. The resistance rates of Escherichia coli, Klebsiella pneumaniae, and Enterobacter cloacae were the lowest to amikacin, imipenem and meropenem. For gram -positive bacteria, the vancomycin -resistance and linezolid-resistance were minimum. Conclusions Great importance should be attached to classification management of antimicrobials and bacterial drug resistance monitoring. Rational use of antibacterials should base on the kinds of pathogenic bacteria and results of drug susceptibility.

  14. Antimicrobial resistance of thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Engberg, J.

    2001-01-01

    Campylobacter has become the leading cause of zoonotic enteric infections in developed and developing countries world-wide. Antimicrobial resistance has emerged among Campylobacter mainly as a consequence of the use of antimicrobial agents in food animal production. Resistance to drugs of choice...... for the treatment of infections, macrolides and fluoroquinolones has emerged as a clinical problem and interventions to reduce this are recommended. Resistance to fluoroquinolones and macrolides is mediated by chromosomal mutations. Resistance to other relevant antimicrobial agents, mediated by...... acquired resistance genes, has not become widespread so far. However, resistance genes originating from both Gram-positive and Gram-negative bacterial species have been found, showing the potential for acquired resistance to emerge in Campylobacter....

  15. 肝功能不全住院患者抗菌药物的用药分析%Analysis of use of antimicrobial drugs by hospitalized patients with Liver Dysfunction

    Institute of Scientific and Technical Information of China (English)

    周隆参

    2013-01-01

    Objective Patients with liver dysfunction are prone to bacterial infection, liver is the most important organs of liver drug metabolism in vivo, inappropriate use of drugs is prone to toxic reactions. So analysis of use of antimicrobial drugs by hospitalized patients with liver dysfunction is necessary in order to evaluate the rationality of drug’s using. Method:Using the review investigation method, investigated 165 cases of hospitalized patients with liver dysfunction at some hospitals in2011. According to the provisions of WHO recommended daily dose (DDD value), Drug utilization index (DUI) and plasma albumin (ALB), total bilirubin in the blood (TB), prothrombin time, glutamic pyruvic transaminase (ALT), ascites and hepatic encephalopathy in the case, statistical y analyzed the use of antimicrobial drugs in patients. Results: Among the 165 cases of liver function, 113 cases of patients had used antibiotics, 27 cases were cured, accounting for 23.89%; 78 cases were improved, accounting for 69.03%; 8 cases weren’t cured, accounting for 6.19%; and 1 died, accounting for 0.88%. The value was not more than 1 DUI. Conclusion: The use of antimicrobial drugs by patients with liver dysfunction was reasonable in hospital, had no significant adverse drug reactions.%  目的肝功能不全患者较易发生细菌感染,而肝脏又是体内药物代谢的最重要器官,用药不当易发生毒性反应,对肝功能不全住院患者抗菌药物的临床应用情况进行分析,评价其用药的合理性。方法采用回顾性调查方法,对2011年165例患有肝功能不全患者的住院情况做研究,根据WHO推荐的规定日剂量(DDD值),药物利用指数(DUI)以及血浆白蛋白(ALB)、血内总胆红素(TB)、凝血酶原时间、谷丙转氨酶(ALT)、腹水及肝性脑病的情况对有使用抗菌药物的患者病历进行统计分析。结果165例肝功能患者中有113例有使用抗菌药物,其中治愈27

  16. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    An increasing number of reported cases of drug resistant Staphylococcus aureus and Pseudomonas aeruginosa, demonstrate the urgent need for new therapeutics that are effective against such and other multi-drug resistant bacteria. Antimicrobial peptides have for two decades now been looked upon as...

  17. 细菌耐药性与抗菌药物使用及手卫生关系的研究%Analysis of the effect of antimicrobial drug use and hand hygiene to the bacterial resistance

    Institute of Scientific and Technical Information of China (English)

    谢多双; 张蓬华; 胡荍; 符湘云; 王惠芳; 罗清钦; 杨宏伟

    2014-01-01

    Objective To preliminarily analyze the effect of antimicrobial drug use and the hand hygiene compliance of medical staff to the degrees of bacterial resistance and provide reference for clinical rational drug use and hospital in-fection control. Methods The statistics of the antibiotic resistance of pathogens, the intensity of use of antimicrobial a-gents, the hand hygiene compliance of the medical staff from July 2011 to December 2013 in a hospital, and their mathematical statistical correlations were conducted. Results During the study period, it was found that both the an-tibacterial use density of inpatients and the bacterial resistance of some pathogens continued to decline from 73.6 to 41.3, and the hand hygiene compliance rate of the medical staff continued to improve from 25% to 55% and above. In the same period, the bacterial resistances correlated the intensity of antimicrobial drug use and the hand hygiene com-pliance rates, and the correlation coefficients for r were among 0.332- 0.924 and-0.181 - -0.983 respectively. Con-clusion Comprehensive interventions can effectively reduce bacterial drug resistance, including regulating the use of antimicrobial agents, the implementation of multi-resistant isolation measures especially hand hygiene.%目的:探讨细菌耐药性与住院患者抗菌药物使用强度及医务人员手卫生依从性之间的关系,为遏制细菌耐药性加剧及医院感染控制工作提供参考。方法收集2011年7月~2013年12月某院住院患者中分离的病原菌耐药率及同期住院患者中抗菌药物使用强度和医务人员手卫生依从率,并统计其数理相关关系。结果抗菌药物使用强度从73.6%持续下降到41.3%,医务人员手卫生依从率从25%左右持续提高到55%以上;同期细菌对部分抗菌药物耐药率与该抗菌药物使用强度相关系数r在0.332~0.924之间,与手卫生依从率相关系数r在-0.181~-0.983之间。结论规范抗菌药物使用、落

  18. Functions of antimicrobial peptides in host defense and immunity.

    Science.gov (United States)

    Beisswenger, Christoph; Bals, Robert

    2005-06-01

    Antimicrobial peptides (AMPs) are effector molecules of the innate immune system. AMPs have a broad antimicrobial spectrum and lyse microbial cells by interaction with biomembranes. Besides their direct antimicrobial function, they have multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis, immune induction, and protease-antiprotease balance. Furthermore, AMPs qualify as prototypes of innovative drugs that may be used as antibiotics, anti-lipopolysaccharide drugs, or modifiers of inflammation. This review summarizes the current knowledge about the basic and applied biology of antimicrobial peptides and discusses features of AMPs in host defense and inflammation.

  19. Prevalence of enterobacteriaceae in Tupinambis merianae (Squamata: Teiidae from a captive facility in Central Brazil, with a profile of antimicrobial drug resistance in Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Andréa de Moraes Carvalho

    2013-06-01

    Full Text Available The present study reports the presence of enterobacteriaceae in Tegu Lizards (Tupinambis merianaefrom a captive facility in central Brazil. From a total of 30 animals, 10 juveniles and 20 adults (10 males, 10 females, 60 samples were collected, in two periods separated by 15 days. The samples were cultivated in Xylose-lysine-deoxycholate agar (XLT4 and MacConkey agar. The Salmonella enterica were tested for antimicrobial susceptibility. A total of 78 bacteria was isolated, of wich 27 were from juveniles of T. merianae, 30 from adult males and 21 from adult females. Salmonella enterica was the most frequent bacteria followed by Citrobacter freundii, Escherichia coli, Enterobacter sakasakii, Kluivera sp., Citrobacter amalonaticus, Serratia marcescens, Citrobacter diversus, Yersinia frederiksenii, Serratia odorifera, and Serratia liquefaciens. Salmonella enterica subsp. diarizonae and houtenae showed resistance to cotrimoxazole, and serum Salmonella enterica Worthington showed resistance to tetracycline and gentamicin. Salmonella enterica Panama and S. enterica subsp. diarizonae showed intermediate sensitivity to cotrimoxazole. In addition to Enterobacteriaceae in the Tegu lizard, pathogenic serotypes of S. enterica also occur, and their antimicrobial resistance was confirmed.

  20. 控制抗菌药物滥用:技术基础、利益结构与政府监管%Controlling Antimicrobial Drug Abuse: Based on Technology Infrastructure, Interest Structure and Government Regulation

    Institute of Scientific and Technical Information of China (English)

    于挺; 谢闽; 戈梅

    2011-01-01

    Currently, antimicrobial drug abuse has become an important issue on human public health. Although the abuse controlling is closely related to the technological field, the fundamental solution on the problem requires to be considered in the view of society ~and economy, especially of the interest balance among the various groups and government regulation, as it is uhimately socio-economic problems. The abuse problem can be described as no effect from current drugs, too expensive medical treatment and slow R&D progress on new drugs. As the technological infrastructure is always involved in the interest relationship of the various groups, when the interest structure can not match the technology infrastructure, and with weak regulatory constraints, it is bound to the problem. Based on the above, the definition of antimicrobial drug abuse, the nature and source of the problem and the experience at home and abroad had been analyzed. Combined with Shanghai regional characteristics, strategies and programs on controlling antimicrobial drug abuse were discussed.%当前,抗茵药物滥用已成为危害人类公共健康的重要问题。尽管滥用的控制与技术领域密切相关,但这个问题的根本解决需要从社会、经济的角度加以综合考量,特别是要从各个利益主体之间的相互制衡与政府监管的角度来考量,因而归根结底是社会经济问题。抗菌药滥用问题主要表现为药不治病、治病太贵、研发进展缓慢三个方面,问题的根源在于抗茵药物所涉及的技术基础与相关利益主体的利益关系总是交织在一起的,当利益结构不能与技术基础相匹配,而且监管约束无力时,就必然会出现这个问题。为此,研究分别对抗菌药滥用的界定、问题的本质与根源、国内外经验借鉴进行了分析,并结合上海特色,对控制抗茵药滥用的策略与方案进行了探讨。

  1. Antimicrobial peptides.

    Science.gov (United States)

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  2. Determination of the Antimicrobial Effects of Hydro-Alcoholic Extract of Cannabis Sativa on Multiple Drug Resistant Bacteria Isolated from Nosocomial Infections

    Directory of Open Access Journals (Sweden)

    Hossein Sarmadyan

    2014-02-01

    Full Text Available Background: The science of identification and employment of medicinal plants dates back to the early days of man on earth. Cannabis (hashish is the most common illegal substance used in the United States and was subjected to extensive research as a powerful local disinfecting agent for mouth cavity and skin and an anti-tubercular agent in 1950. Methods: Clinical strains were isolated from hospitalized patients in Vali-e-Asr Hospital of Arak. The hydro-alcoholic extract of cannabis (5 g was prepared following liquid-liquid method and drying in 45˚C. The antimicrobial properties of the extract were determined through disk diffusion and determination of MIC (Minimum Inhibitory Concentration. Results: First, the sensitivity of bacteria was detected based on disk diffusion method and the zone of inhibition was obtained for MRSA (12 mm, S.aureus 25923 (14 mm, E. coli ESBL+: (10 mm, and Klebsiella pneumoniae (7 mm. Disk diffusion for Pseudomonas and Acinetobacter demonstrated no inhibitory zones. Through Broth dilution method, MIC of cannabis extract on the bacteria was determined: E.coli 25922: 50µg/ml, E.coli ESBL+:100 µg/ml, S.aureus 25923:25 µg/ml, MRSA: 50 µg/ml, Pseudomona aeroginosaESBL+> 100 µg/ml, Pseudomonas: 100 µg/ml, Klebsiella pneumoniae: 100 µg/ml, and Acinetobacter baumannii> 1000. Conclusion: The maximum anti-microbial effect of the hydro-alcoholic extract of cannabis was seen for gram positive cocci, especially S. aureus, whereas non-fermentative gram negatives presented resistance to the extract. This extract had intermediate effect on Enterobacteriacae family. Cannabis components extracted through chemical analysis can perhaps be effective in treatment of nosocomial infections.

  3. Study on the relationship between the use of antimicrobial agents and the bacterial drug resistance in 2012-2014%对2012-2014年抗菌药物使用情况与细菌耐药相关性的研究

    Institute of Scientific and Technical Information of China (English)

    孙璇; 陈强; 蒋学林; 张裕祥

    2016-01-01

    Objective:To explore the relationship between the medication frequency of antimicrobial agents and the drug resistance rate in hospital.Methods:The related data of number of pharmacy store,bacteria detection and drug resistance were analyzed.Results:Beginning in 2013,with the medication frequency of antimicrobial agents decreased significantly,especially the reduction of cephalosporins drug dosage,the sensitivity of the bacteria to antimicrobial agents was recovered.The medication frequency ranked the top 4 were cephalosporins,quinolones,penicillins and aminoglycosides.Conclusion:The clinical use of antimicrobial agents should be strictly reasonable,strengthening the supervision of the use of antimicrobial agents can delay the occurrence of bacterial drug resistance.%目的:探讨抗菌药物用药频度和医院耐药率的关系。方法:分析药库出库数量和细菌检出和耐药情况相关数据。结果:从2013年开始,随着抗菌药物的用药频度明显下降,尤其是头孢菌素类药物用量的减少,细菌对于抗菌药物的敏感性在恢复。用药频度排名前4位分别为头孢菌素类、喹诺酮类、青霉素类、氨基糖苷类。结论:临床使用抗菌药物应严格、合理,加强抗菌药物使用的监管,能够延缓细菌耐药性的发生。

  4. An institutional review of antimicrobial stewardship interventions.

    Science.gov (United States)

    Cao, Henry; Phe, Kady; Laine, Gregory A; Russo, Hannah R; Putney, Kimberly S; Tam, Vincent H

    2016-09-01

    In order to combat increasing rates of bacterial resistance, many institutions have implemented antimicrobial stewardship programmes (ASPs) to improve antibiotic use. To ascertain the potential impact of our stewardship programme at Baylor St Luke's Medical Center (Houston, TX), antimicrobial-related interventions were analysed over a 4-year period. ASP recommendations related to antimicrobial therapy from 2009 to 2012 were retrieved from the hospital electronic database and were retrospectively reviewed. The number of interventions for each time period was adjusted to the hospital census data. The interventions were randomly assessed and categorised for clinical significance based on established institutional guidelines. In total, 14654 non-duplicate antimicrobial therapy interventions were retrieved, of which 11874 (81.0%) were audited for accuracy. Approximately 13 interventions were made per 1000 patient-days, but there were no significant patterns observed regarding the number of interventions performed from month to month (range 8-21). The most frequent types of interventions were related to inappropriate dosing (39.0%), antimicrobial selection (20.5%) and drug allergy (13.0%). Serious adverse drug events (ADEs) were potentially avoided in 20.7% of all interventions. Cumulative potential cost avoidance was more than US$6.5 million. In our institution, proper drug and dose selection were the major components of the ASP. Without focusing solely on reduction of drug acquisition costs, implementation of an ASP could still be cost effective by improving the quality of patient care and avoiding ADEs with serious consequences. PMID:27530844

  5. Tendencia del perfil de sensibilidad antimicrobiana de los aislamientos de sangre en un hospital oncológico (1998-2003 Trend of antimicrobial drug-susceptibility of blood isolates at an oncological center (1998-2003

    Directory of Open Access Journals (Sweden)

    Patricia Cornejo-Juárez

    2005-07-01

    oncological hospital. MATERIAL AND METHODS: All strains obtained from blood cultures from 1998 to 2003 were included and processed using the Bactec and Microscan system to determinate isolates and susceptibility to antimicrobials. The percent difference (increase or decrease was obtained by comparing the frequency of resistance at baseline and at the end of the study. RESULTS: A total of 2 071 positive blood cultures were obtained; 59.7% of isolates were Gram negative bacteria, 35.7% Gram-positive bacteria and 4.6% were yeasts. E.coli was the most frequent isolated (18.6%, followed by Staphylococcus. epidermidis (12.7% and Klebsiella spp (9%. Throughout the study the susceptibility of Gram negative bacteria was stable and over 88% for most of the antimicrobials tested (except for Pseudomonas aeruginosa. Ciprofloxacin susceptibility for Escherichia coli stayed around 50%. Susceptibility to amikacin was higher than that to gentamicin. Staphylococcus aureus susceptibility for oxacillin was 96% and that for vancomycin 100%. S. epidermidis susceptibility for oxacillin was 14% and for vancomycin was 98.6%. No strains of vancomycin-resistant enterococci were found. All Streptococcus pneumoniae strains were penicillin susceptible. CONCLUSIONS: The drug-resistance found in this hospital is the result of the control in the use of antimicrobials, the hospital nosocomial infection program and the use of drug combination in all patients with bacteremia.

  6. 21 CFR 866.1700 - Culture medium for antimicrobial susceptibility tests.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Culture medium for antimicrobial susceptibility tests. 866.1700 Section 866.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....1700 Culture medium for antimicrobial susceptibility tests. (a) Identification. A culture medium...

  7. Antimicrobial susceptibility patterns of ESBL Escherichia coli isolated from community and hospital-acquired urinary tract infections

    Directory of Open Access Journals (Sweden)

    Najwa Al Mously

    2016-01-01

    Conclusion: This study highlights the source and current antimicrobial susceptibility pattern of ESBL E. coli. Since bacterial multidrug resistance is an increasingly existing problem, periodical monitoring of antimicrobial susceptibility, rotating the use of effective antimicrobial drugs, and research for finding novel drugs and their rational use should be considered.

  8. Role of MRP Transporters in Regulating Antimicrobial Drug Inefficacy and Oxidative Stress-induced Pathogenesis during HIV-1 and TB Infections

    Directory of Open Access Journals (Sweden)

    Upal eRoy

    2015-09-01

    Full Text Available Multi-Drug Resistance Proteins (MRPs are members of the ATP binding cassette (ABC drug-efflux transporter superfamily. MRPs are known to regulate the efficacy of a broad range of anti-retroviral drugs (ARV used in highly active antiretroviral therapy (HAART and antibacterial agents used in Tuberculus Bacilli (TB therapy. Due to their role in efflux of glutathione (GSH conjugated drugs, MRPs can also regulate cellular oxidative stress, which may contribute to both HIV and/or TB pathogenesis. This review focuses on the characteristics, functional expression, and modulation of known members of the MRP family in HIV infected cells exposed to ARV drugs and discusses their known role in drug-inefficacy in HIV/TB-induced dysfunctions. Currently, nine members of the MRP family (MRP1-MRP9 have been identified, with MRP1 and MRP2 being the most extensively studied. Details of the other members of this family have not been known until recently, but differential expression has been documented in inflammatory tissues. Researchers have found that the distribution, function and reactivity of members of MRP family vary in different types of lymphocytes and macrophages, and are differentially expressed at the basal and apical surfaces of both endothelial and epithelial cells. Therefore, the prime objective of this review is to delineate the role of MRP transporters in HAART and TB therapy and their potential in precipitating cellular dysfunctions manifested in these chronic infectious diseases. We also provide an overview of different available options and novel experimental strategies that are being utilized to overcome the drug resistance and disease pathogenesis mediated by these membrane transporters.

  9. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  10. SecA inhibitors: next generation antimicrobials

    Institute of Scientific and Technical Information of China (English)

    Weixuan Chen; Arpana Chaudhary; Jianmei Cui; Jinshan Jin; Yinghsin Hsieh; Hsiuchin Yang; Yingju Huang; Phang C. Tai; Binghe Wang

    2012-01-01

    Health problems caused by bacterial infection have become a major public health concern in recent years due to the widespread emergence of drug-resistant bacterial strains.Therefore,the need for the development of new types of antimicrobial agents,especially those with a novel mechanism of action,is urgent.SecA,one of the key components of the secretion (Sec) pathway,is a new promising target for antimicrobial agent design.In recent years,promising leads targeting SecA have been identified and the feasibility of developing antimicrobial agents through the inhibition of SecA has been demonstrated.We hope this review will help stimulate more research in this area so that new antimicrobials can be obtained by targeting SecA.

  11. Statistical metamodeling for revealing synergistic antimicrobial interactions.

    Science.gov (United States)

    Chen, Hsiang Chia; Chen, Chia Hsiang; Gau, Vincent; Zhang, Donna D; Liao, Joseph C; Wang, Fei-Yue; Wong, Pak Kin

    2010-01-01

    Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO) scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future. PMID:21124958

  12. Statistical metamodeling for revealing synergistic antimicrobial interactions.

    Directory of Open Access Journals (Sweden)

    Hsiang Chia Chen

    Full Text Available Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future.

  13. Antimicrobial profiles of bacterial clinical isolates from the Gabonese National Laboratory of Public Health: data from routine activity

    Directory of Open Access Journals (Sweden)

    Léonard Kouegnigan Rerambiah

    2014-12-01

    Conclusions: The antimicrobial resistance profiles seen here are of concern. To control the spread of drug-resistant bacteria, clinicians should be cognizant of their local antimicrobial resistance patterns.

  14. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System About NARMS Bacteria (NARMS) NARMS at Work Reports ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  15. Historical Perspective on the Regulation of Antimicrobial Residues in Food in the United States

    OpenAIRE

    Miller, Margaret Ann

    2011-01-01

    In the US, antimicrobials used in animals for both therapeutic and growth promotion purposes are considered animals drugs. Antimicrobial drugs are used in animals to treat and prevent disease, and to increase production. Before any animal drug can be legally marketed in the US, the drug’s sponsor must have a New Animal Drug Application (NADA) approved by the Food and Drug Administration (FDA). Within FDA, the Center for Veterinary Medicine (CVM) is responsible for determining when an an...

  16. Antimicrobial interactions (synergy) of teicoplanin with two broad-spectrum drugs (cefotaxime, ofloxacin) tested against gram-positive isolates from Germany and the United States.

    Science.gov (United States)

    Jones, R N; Marshall, S A; Grimm, H

    1997-10-01

    Teicoplanin, a glycopeptide, has been widely used in some nations alone and in empiric therapy combinations to address infections caused by Gram-positive cocci. However, glycopeptide resistance and the increasing incidence of oxacillin-resistant staphylococci have compromised contemporary chemotherapy. In this study, teicoplanin was tested in combinations with ampicillin, cefotaxime with and without desacetylcefotaxime, and ofloxacin against 151 Gram-positive cocci to assess the potential for enhanced action. The strains included recent isolates from the United States and Germany having well-characterized resistance mechanisms (oxacillin-resistant staphylococci, vancomycin-resistant enterococci), each tested by NCCLS methods, checkerboard synergy tests, and kill-curves. Teicoplanin alone was active (MIC90s, 0.25-2 micrograms/mL) against all species except vanA enterococci. Drug interactions of teicoplanin with beta-lactams revealed synergy and partial synergy versus oxacillin-resistant Staphylococcus spp. (67-100%) and vancomycin-resistant enterococci (70-100%), many at clinically achievable drug concentrations. However, confirming kill-curve experiments showed static action and no significant bactericidal effect. Combinations of ofloxacin with teicoplanin or cefotaxime plus desacetylcefotaxime showed a dominant additive and indifferent interaction. Teicoplanin continues to be a viable alternative to vancomycin, especially in combination therapy with selected broad-spectrum cephalosporins or fluoroquinolones. Many emerging pathogens that test resistant to individual drugs appear to be inhibited by tested combinations, extending their potential clinical utility.

  17. Prescribing pattern of antimicrobials in various clinical departments of a tertiary care hospital

    OpenAIRE

    Rohith V.; Manjunatha C. H.; Anusha N.; Jayasheela J.; Isabella Topno

    2016-01-01

    Background: Antimicrobials are one of the most commonly used group of drugs. Their overuse and inappropriate use is one of the major concerns today. Assessment of prescribing pattern of antimicrobials provides insight into the health consequences and helps update antimicrobial usage guidelines. Hence this study was conducted with an objective to analyse the prescribing pattern of the antimicrobials. Methods: A cross sectional study was conducted based on the prescriptions collected from D...

  18. Risk factors in the management of antimicrobial agents in nursing

    Directory of Open Access Journals (Sweden)

    Regina Consolação dos Santos

    2016-06-01

    Full Text Available Current retrospective, descriptive, document-based study identified the risk factors in the administration of antimicrobial drugs by the nursing team. The hospital records at the Hematology and Oncology clinics of patients treated with antimicrobial agents in a hospital in the center-western region of the state of Minas Gerais, Brazil, between January 2008 and December 2011, were analyzed. Data were investigated with IBM program, Statistical Package of Social Sciences (SPSS 21.0 and inferential statistics. Chi-square and Fisher´s exact tests were employed to assess the differences between the categorical variables. Risk factors related to the administration of antimicrobial agents by the nursing team comprised lack of records of phlogistic infection signs; inadequate schedules for the administration of antimicrobial drugs; lack of precaution and isolation measures and of swab sampling. Continuous education programs for nurses, focusing on safe administration of antimicrobial agents, are highly relevant.

  19. Epithelial antimicrobial peptides in host defense against infection

    Directory of Open Access Journals (Sweden)

    Bals Robert

    2000-10-01

    Full Text Available Abstract One component of host defense at mucosal surfaces seems to be epithelium-derived antimicrobial peptides. Antimicrobial peptides are classified on the basis of their structure and amino acid motifs. Peptides of the defensin, cathelicidin, and histatin classes are found in humans. In the airways, α-defensins and the cathelicidin LL-37/hCAP-18 originate from neutrophils. β-Defensins and LL-37/hCAP-18 are produced by the respiratory epithelium and the alveolar macrophage and secreted into the airway surface fluid. Beside their direct antimicrobial function, antimicrobial peptides have multiple roles as mediators of inflammation with effects on epithelial and inflammatory cells, influencing such diverse processes as proliferation, immune induction, wound healing, cytokine release, chemotaxis, protease-antiprotease balance, and redox homeostasis. Further, antimicrobial peptides qualify as prototypes of innovative drugs that might be used as antibiotics, anti-lipopolysaccharide drugs, or modifiers of inflammation.

  20. Characterization of Aquifex aeolicus 4-diphosphocytidyl-2C-methyl-d-erythritol kinase – ligand recognition in a template for antimicrobial drug discovery

    OpenAIRE

    Sgraja, Tanja; Alphey, Magnus S.; Ghilagaber, Stephanos; Marquez, Rudi; Robertson, Murray N.; Hemmings, Jennifer L; Lauw, Susan; Rohdich, Felix; Bacher, Adelbert; Eisenreich, Wolfgang; Illarionova, Victoria; Hunter, William N.

    2008-01-01

    4-Diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) catalyses the ATP-dependent conversion of 4-diphosphocytidyl-2C-methyl-d-erythritol (CDPME) to 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate with the release of ADP. This reaction occurs in the non-mevalonate pathway of isoprenoid precursor biosynthesis and because it is essential in important microbial pathogens and absent from mammals it represents a potential target for anti-infective drugs. We set out to characterize the bioc...

  1. The quest for optimal antimicrobial therapy

    NARCIS (Netherlands)

    Mol, Petrus Gerardus Maria

    2005-01-01

    Since the discovery of sulphonam ides and penicillin in the 1930's, and their widespread use in clinical practice during World War II a plethora of new antimicrobial agents have entered the market. Initial optim ism has faded that these new drugs would eliminate infectious diseases as killer disease

  2. Prospective assessment of antimicrobial prescribing pattern at a tertiary care hospital

    Directory of Open Access Journals (Sweden)

    R Selvaraj

    2015-10-01

    Full Text Available Background: Antimicrobial agents (AMA are the greatest contribution to 20th century, which are used for cure and prevention of infections. Widespread use of antimicrobials has facilitated the development of resistance. Aim: The present study was done to screen rational use of antimicrobials in the medicine outpatient department of a teaching hospital. Methods: A total of 650 prescriptions were collected from the medicine OPD. Prescriptions containing antimicrobial drugs were analyzed for appropriateness in dosage, duration of therapy and fixed dose drug combinations (FDCs. The antimicrobials were grouped using the anatomical therapeutic chemical (ATC codes. Statistical analysis: Data was analyzed by percentage. Results: Out of 650 patients, 180 patients (27.65% received antimicrobials. Among them 25.33% patients were prescribed one antimicrobial and 18.88% were prescribed antimicrobial FDCs. Out of the 180 prescriptions, 47% were irrational. The most commonly prescribed antimicrobial categories were β-lactam antimicrobials (35.09%, followed by fluoroquinolones (18.88% and combinations of antimicrobials from different groups (13.85%. Conclusion: Higher frequency of irrational antimicrobial prescriptions suggests that antimicrobial restriction policies and a multidisciplinary effort to reduce usage are urgently required.

  3. Antimicrobial Peptides: Versatile Biological Properties

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    2013-01-01

    Full Text Available Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.

  4. Variation in Outpatient Oral Antimicrobial Use Patterns among Canadian Provinces, 2000 to 2010

    Directory of Open Access Journals (Sweden)

    Shiona K Glass-Kaastra

    2014-01-01

    Full Text Available BACKGROUND: The volume and patterns of antimicrobial drug use are key variables to consider when developing guidelines for prescribing, and programs to address stewardship and combat the increasing prevalence of antimicrobial resistant pathogens. Because drug programs are regulated at the provincial level, there is an expectation that antibiotic use may vary among provinces.

  5. Drug: D00858 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available gard (TN) C22H30Cl2N10. (C6H12O7)2 896.3198 897.7572 D00858.gif Antimicrobial Same as: C08038 Therapeutic ca...of drugs in Japan [BR:br08301] 2 Agents affecting individual organs 26 Epidermides 261 Antimicrobial

  6. [The theory and practice of the creation of antisignature oligodeoxyribonucleotides as universal antimicrobial agents (the principles of a drug technology of the 21st century)].

    Science.gov (United States)

    Skrypal', I H

    1997-01-01

    Gene-directed and anti-sense (mRNA-directed) synthetic oligonucleotides (SO) have a common main shortcoming. That is the necessity to introduce intercalators to their composition for the stronger interaction with targets to prevent their separation from the latter by DNA-polymerase and RNA-polymerase complexes which work on genome or with mRNA by ribosomes moving along them. Intercalation leads to considerable loss of SO selectivity in respect to the target. The author substantiates advantages of another type of SO which action is directed to blocking of the function of signature sequences of ribosomal RNA (rRNA) that completely ceases the self-assembly of ribosomal subunits and totally excludes the process of translation and synthesis of proteins. Such type SO advantages are as follows: a) a short chain which includes 8-13 nucleotides altogether; b) absence of the necessity of intercalation; c) high specificity in respect to targets; d) high stability in respect to nucleases action under modification by one of the methods of internucleotide bonds and, e) a possibility to deliver any microorganism to the cells when allowing for auxotrophy of the latter in respect to one or another substance. It is foreseen that antisignature SO can become most promising among the drugs called to block the functions of nucleic acids of the agents of the disease.

  7. Minimal inhibitory concentrations of modern topical antimicrobials

    Directory of Open Access Journals (Sweden)

    T. N. Vorontsova

    2014-01-01

    Full Text Available Aim. To measure minimal inhibitory concentration (MIC values for modern topical antimicrobials against common ocular pathogens.Methods.Antimicrobials most commonly used in ophthalmology (fluoroquinolones and aminoglycosides are dose-dependent drugs, i.e., the rate of microbial death increases in direct proportion to their concentrations. To determine MICs, we applied Hi Comb MIC Test (E-test. 105 patients aged 2 months through 7 years which were diagnosed with various inflammatory disorders of anterior segment were  xamined. MIC values for most commonly used antimicrobials, i.e., ciprofloxacin / Cipromed (Sentiss Pharma, Gurgaon, India, ofloxacin / Floxal (Baush & Lomb, Rochester, New-York, levofloxacin / Signicef (Sentiss Pharma, Gurgaon, India, moxifloxacin / Vigamox (Alcon, Fort Worth, Texas, gatifloxacin / Zymar (Allergan, Irvine, California, and tobramycin / Tobrex (Alcon, Fort Worth, Texas, were measured.Results. The analysis revealed that the most effective antibacterial drug against microbial isolates in children (i.e., Staphylococci spp. was levofloxacin. MIC for this agent against Streptococci spp. and Gram-negative microbes was low as well. Moxifloxacin is preferred for the treatment of ocular inflammation provoked by Streptococci spp. as MIC of this antimicrobial against Streptococci spp. was the lowest. MIC of ciprofloxacin against Gram-negative flora was the lowest. These data demonstrate generally recognized high efficacy of this drug. MIC value for tobramycin against all bacterial isolates was the highest.

  8. 77 FR 11133 - Draft Guidance for Industry on Complicated Urinary Tract Infections: Developing Drugs for...

    Science.gov (United States)

    2012-02-24

    ... infection caused by bacterial pathogens that show resistance to most antibacterial drugs on in vitro... entitled ``Complicated Urinary Tract Infections and Pyelonephritis--Developing Antimicrobial Drugs...

  9. DRAMP: a comprehensive data repository of antimicrobial peptides.

    Science.gov (United States)

    Fan, Linlin; Sun, Jian; Zhou, Meifeng; Zhou, Jie; Lao, Xingzhen; Zheng, Heng; Xu, Hanmei

    2016-01-01

    The growing problem of antibiotic-resistant microorganisms results in an urgent need for substitutes to conventional antibiotics with novel modes of action and effective activities. Antimicrobial peptides (AMPs), produced by a wide variety of living organisms acting as a defense mechanism against invading pathogenic microbes, are considered to be such promising alternatives. AMPs display a broad spectrum of antimicrobial activity and a low propensity for developing resistance. Therefore, a thorough understanding of AMPs is essential to exploit them as antimicrobial drugs. Considering this, we developed a comprehensive user-friendly data repository of antimicrobial peptides (DRAMP), which holds 17349 antimicrobial sequences, including 4571 general AMPs, 12704 patented sequences and 74 peptides in drug development. Entries in the database have detailed annotations, especially detailed antimicrobial activity data (shown as target organism with MIC value) and structure information. Annotations also include accession numbers crosslinking to Pubmed, Swiss-prot and Protein Data Bank (PDB). The website of the database comes with easy-to-operate browsing as well as searching with sorting and filtering functionalities. Several useful sequence analysis tools are provided, including similarity search, sequence alignment and conserved domain search (CD-Search). DRAMP should be a useful resource for the development of novel antimicrobial peptide drugs. PMID:27075512

  10. Study of the chemical chelates and anti-microbial effect of some metal ions in nanostructural form on the efficiency of antibiotic therapy "norfloxacin drug"

    Science.gov (United States)

    Refat, Moamen S.; El-Hawary, W. F.; Mohamed, Mahmoud A.

    2012-04-01

    This paper has reviewed the chemical and biological impact resulting from the interaction between norfloxacin (norH) antibiotic drug and two lanthanide (lanthanum(III) and cerium(III)) metal ions, which prepared in normal and nano-features. La(III) and Ce(III) complexes were synthesized with chemical formulas [La(nor)3]·3H2O and [Ce(nor)3]·2H2O. Lanthanum and cerium(III) ions coordinated toward norH with a hexadentate geometry. The norH acts as deprotonated bidentate ligand through the oxygen atom of carbonyl group and the oxygen atom of carboxylic group. Elemental analysis, FT-IR spectral, electrical conductivity, thermal analysis (TG/DTA), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurements have been used to characterize the mentioned isolated complexes. The Coats-Redfern and Horowitz-Metzger integral methods are used to estimate the kinetic parameters for the major successive steps detectable in the TG curve. The brightness side in this study is to take advantage for the preparation and characterization of single phases of La2O3 and CeO2 nanoparticles using urea as precursors via a solid-state decomposition procedure. The norH ligand in comparison with both cases (normal and nano-particles) of lanthanide complexes were screened against for antibacterial (Escherichia Coli, Staphylococcus Aureus, Bacillus subtilis and Pseudomonas aeruginosa) and antifungal (Aspergillus Flavus and Candida Albicans) activities. The highest antibacterial and antifungal activities data of the nano-particles complexes were observed with more potent than the free norH and normal lanthanide complexes.

  11. Antimicrobial resistance and spread of multi drug resistant Escherichia coli isolates collected from nine urology services in the Euregion Meuse-Rhine.

    Directory of Open Access Journals (Sweden)

    Christina F M van der Donk

    Full Text Available We determined the prevalence and spread of antibiotic resistance and the characteristics of ESBL producing and/or multi drug resistant (MDR Escherichia coli isolates collected from urine samples from urology services in the Euregio Meuse-Rhine, the border region of the Netherlands (n=176, Belgium (n=126 and Germany (n=119. Significant differences in resistance between the three regions were observed. Amoxicillin-clavulanic acid resistance ranged from 24% in the Netherlands to 39% in Belgium (p=0.018, from 20% to 40% (p<0.004 for the fluoroquinolones and from 20% to 40% (p=0.018 for the folate antagonists. Resistance to nitrofurantoin was less than 5%. The prevalence of ESBL producing isolates varied from 2% among the Dutch isolates to 8% among the German ones (p=0.012 and were mainly CTX-M 15. The prevalence of MDR isolates among the Dutch, German and Belgian isolates was 11%, 17% and 27%, respectively (p< =0.001 for the Belgian compared with the Dutch isolates. The majority of the MDR and ESBL producing isolates belonged to ST131. This study indicates that most antibiotics used as first choice oral empiric treatment for UTIs (amoxicillin-clavulanic acid, fluoroquinolones and folate antagonists are not appropriate for this purpose and that MDR strains such as CTX-M producing ST131 have spread in the entire Euregion. Our data stress the importance of ward specific surveillance to optimize empiric treatment. Also, prudent use of antibiotics and further research to alternative agents are warranted.

  12. Research on lung infection prevention and rational use of antimicrobial drugs by pulmonary infected patients%肺部感染患者合理应用抗菌药物的研究

    Institute of Scientific and Technical Information of China (English)

    妥建军; 蒋群宁; 邵忠华

    2015-01-01

    OBJECTIVE To analyze the rational use of antibiotics and prevention of pulmonary infections so as to a‐chieve effective prevention and control of multidrug‐resistant hospital infections and the proper use of antimicrobial drugs .METHODS Totally 200 cases of pulmonary infected patients who received treatment in our hospital were randomly selected from Dec .2010 to Dec .2013 .Etiological test and drug sensitive test were conducted to bron‐choalveolar lavage fluid samples through bacteria identification and drug susceptibility analysis .All data were ana‐lyzed by SPSS 12 .0 software .RESULTS Totally 103 strains of positive pathogenic bacteria were isolated in the bronchoalveolar lavage fluid samples from 200 patients ,with the positive rate of 51 .5% .A total of 135 strains of pathogens were isolated ,dominated by 88 strains of gram‐negative bacteria which accounting for 65 .2% .Acineto‐bacter baumannii ,Pseudomonas aeruginosa ,Klebsiella pneumonia ,and Escherichiacoli were found highly resist‐ant to clinical ordinary antibiotics .And they were 100% resistant to ampicillin ,ceftriaxone ,ceftazidime ,tetracy‐cline ,and nitrofurantoin .CONCLUSION The gram‐negative bacteria is the most common pathogens in pulmonary infections .Medical staff should use antibiotics rationally to control the drug resistance of pathogens according to the features of high drug resistance rate and high positive rate of isolated bacteria and apply targeted intervention .%目的:对肺部感染的防治与抗菌药物合理用药展开分析,实现多药耐药医院感染的有效预防与控制,达到抗菌药物正确运用的目的。方法随机选取2010年12月-2013年12月接收治疗的200例肺部感染患者,通过细菌鉴定及药敏分析,对支气管肺泡灌洗液标本进行病原学检测及药敏试验,数据采用SPSS 12.0软件进行统计分析。结果200例肺部感染患者支气管肺泡灌洗液培养分离病原菌阳性标本103

  13. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Hahm

    2011-09-01

    Full Text Available Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.

  14. Antimicrobial synergy between carprofen and doxycycline against methicill-inresistant Staphylococcus pseudintermedius ST71

    DEFF Research Database (Denmark)

    Brochmann, Rikke Prejh; Helmfrid, Linn Alexandra; Jana, Bimal;

    2016-01-01

    Background: New therapeutic strategies are needed to face the rapid spread of multidrug-resistant staphylococci in veterinary medicine. The objective of this study was to identify synergies between antimicrobial and non-antimicrobial drugs commonly used in companion animals as a possible strategy...... to restore antimicrobial susceptibility in methicillin-resistant Staphylococcus pseudintermedius (MRSP). Results: A total of 216 antimicrobial/non-antimicrobial drug combinations were screened by disk diffusion using a clinical MRSP sequence type (ST) 71 strain resistant to all six antimicrobials tested...... (ampicillin, ciprofloxacin, clindamycin, doxycycline, oxacillin and trimethoprim/sulfamethoxazole). The most promising drug combination (doxycycline-carprofen) was further assessed by checkerboard testing extended to four additional MRSP strains belonging to ST71 or ST68, and by growth inhibition experiments...

  15. Drug: D03318 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D03318 Drug Wood creosote (JP16); Creosote (TN) Therapeutic category: 2619 ATC code: R05CA08 Therapeutic...mides 261 Antimicrobial agents 2619 Others D03318 Wood creosote (JP16) Anatomical Therapeutic Chemical (ATC)

  16. Drug: D04723 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ATC code: D08AG03 Therapeutic category of drugs in Japan [BR:br08301] 2 Agents affecting individual organs 26 Epidermides 261 Antimic...robial agents 2612 Iodates D04723 Iodine tincture (JP16)

  17. Drug: D04732 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available drugs in Japan [BR:br08301] 2 Agents affecting individual organs 26 Epidermides 261 Antimicrobial agents 2619 Others D04732 Isopropanol - methylated alcohol mixt PubChem: 17398151 ...

  18. Using Informatics and the Electronic Medical Record to Describe Antimicrobial Use in the Clinical Management of Diarrhea Cases at 12 Companion Animal Practices

    OpenAIRE

    R Michele Anholt; John Berezowski; Ribble, Carl S.; Margaret L Russell; Craig Stephen

    2014-01-01

    Antimicrobial drugs may be used to treat diarrheal illness in companion animals. It is important to monitor antimicrobial use to better understand trends and patterns in antimicrobial resistance. There is no monitoring of antimicrobial use in companion animals in Canada. To explore how the use of electronic medical records could contribute to the ongoing, systematic collection of antimicrobial use data in companion animals, anonymized electronic medical records were extracted from 12 particip...

  19. Antimicrobial peptides in innate immune responses.

    Science.gov (United States)

    Sørensen, Ole E; Borregaard, Niels; Cole, Alexander M

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development.

  20. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...... diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development Udgivelsesdato: 2008...

  1. Antimicrobial and Biophysical Properties of Surfactant Supplemented with an Antimicrobial Peptide for Treatment of Bacterial Pneumonia

    NARCIS (Netherlands)

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    BACKGROUND: Antibiotic resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multi-drug resistant bacterial infections. Antimicrobial peptides (AMPs) have been sugges

  2. Evaluation of Antimicrobial Activity of Root Extracts of Abitulon indicum

    Directory of Open Access Journals (Sweden)

    Krishna Rao MORTHA

    2015-06-01

    Full Text Available Antimicrobial activity of Abitulon indicum roots was studied against seven pathogenic bacteria and three fungal strains by agar well diffusion method. Antimicrobial activity was recorded for hexane, chloroform, methanol, ethanol and aqueous extracts. Alcohol (ethanol and methanol extracts exhibited the highest degree of antimicrobial activity compared to aqueous, chloroform and hexane extracts. Pseudomonas aeruginosa was turned out to be the most susceptible bacterium to the crude root chemical constituents, using the standard Tetracycline and Clotrimazole. Minimum inhibition concentration values of hexane, chloroform, methanol, ethanol and aqueous extracts were determined by the agar dilution method and ranged between 62.5 and 1,000 µg. The study suggested that the root extracts possess bioactive compounds with antimicrobial activity against the tested bacteria and fungi, revealing a significant scope to develop a novel broad spectrum of antimicrobial drug formulation from Abitulon indicum.

  3. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  4. Antimicrobial Ionic Liquids with Fumarate Anion

    Directory of Open Access Journals (Sweden)

    Biyan He

    2013-01-01

    Full Text Available The shortage of new antimicrobial drugs and increasing resistance of microbe to antimicrobial agents have been of some concern. The formulation studies of new antibacterial and antifungal agents have been an active research field. Ionic liquids are known as designed liquids with controllable physical/chemical/biological properties and specific functions, which have been attracting considerable interest over recent years. However, no attention has been made towards the preparation of ionic liquids with antimicrobial activities. In this paper, a new class of ionic liquids (ILs with fumarate anion was synthesized by neutralization of aqueous 1-butyl-3-methylimidazolium hydroxide with equimolar monoester fumarate and characterized using NMR and thermal gravimetric analysis. The ILs are soluble in water and polar organic solvents and also soluble in the common ILs. The antimicrobial activities of the ILs are more active than commercially available potassium sorbate and are greatly affected by the alkyl chain length. The significant antimicrobial properties observed in this research suggest that the ILs may have potential applications in the modern biotechnology.

  5. Antimicrobial and cell-penetrating properties of penetratin analogs

    DEFF Research Database (Denmark)

    Bahnsen, Jesper Søborg; Franzyk, Henrik; Sandberg-Schaal, Anne;

    2013-01-01

    Cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs) show great potential as drug delivery vectors and new antibiotic drug entities, respectively. The current study deals with the properties of a variety of peptide analogs derived from the well-known CPP penetratin as well as...

  6. The quality of outpatient antimicrobial prescribing: A comparison between two areas of northern and southern Europe

    DEFF Research Database (Denmark)

    Malo, Sara; Bjerrum, Lars; Feja, Cristina;

    2014-01-01

    Institute for Health Data and Disease Control in Denmark, and from the Aragon Information System of Drug Consumption. The number of Defined Daily Doses (DDD) of the different substances were calculated, and the quality of the antimicrobial prescription was analysed using the 'Drug Utilization 90 %' method...... and the European Surveillance of Antimicrobial Consumption (ESAC) quality indicators for outpatient antimicrobial use. RESULTS: The majority of the prescriptions (90 % of total DDD) were comprised of 14 (of 39) different antimicrobials in Denmark, based mainly on narrow spectrum penicillin, and 11 (of 59...

  7. 复杂尿路感染常见致病菌的分布及抗菌药物的应用%The distribution of pathogens and antimicrobial drugs application in complex urinary tract infection

    Institute of Scientific and Technical Information of China (English)

    祝丹

    2016-01-01

    Objective To investigate the distribution of pathogens and antimicrobial drugs application in complex urinary tract infection. Methods The clinical data of 1 215 cases with complicated urinary tract infection in our hospital from June 2014 to June 2015 were analyzed, retrospectively, while the application status of antimicrobial drugs were analyzed. Results There were 840 Gram-negative bacteria, 260 Gram-positive bacteria and 115 fungi in pathogenic bacteria, accounted for 69.14%, 21.40% and 9.47%, respectively. The percentage of Gram-negative bacteria was significantly higher than that of the other two bacteria groups, with significant differences (χ2 = 16.32, P = 0.0000). Total of 840 strains of Gram-negative bacteria were collected, including E. coli, Klebsiella pneumoniae, Proteus mirabilis as main flora, a total of 675 (80.36%) strains. The drug resistance rate of 3 strains to gentamicin, ciprofloxacin and penicillin and 3 generation cephalosporins except for ceftazidime were higher than 50%, which were less than 10% to the imipenem, amikacin, cefperazone-sulbactam. There were 260 strains of Gram-positive bacteria, including Fecal enterococcus, Urine enterococcus as main flora, both for a total of 204 strains, accounting for 78.46%. Vancomycin, teicoplanin, linezolid had no drug resistance to Enterococcus. The high concentration of gentamicin, ciprofloxacin had high resistance to Enterococcus. Conclusions The main pathogenic bacteria of complex urinary tract infection are Gram-negative bacteria, while ampicillin/clavulanic acid, cefoperazone and ceftriaxone, amikacin, aztreonam and imipenem and meropenem were all effective.%目的:探讨导致复杂尿路感染的常见致病菌的分布并分析抗菌药物的应用现状。方法对2014年6月~2015年6月于某院接受治疗的1215例复杂尿路感染病例进行回顾性分析,并探究抗菌药物的应用状况。结果病原菌分类中革兰阴性菌、革兰阳性菌及真菌分别为840、260

  8. Quaternary Salts of Chitosan: History, Antimicrobial Features, and Prospects

    Directory of Open Access Journals (Sweden)

    Douglas de Britto

    2011-01-01

    Full Text Available Recently, increasing attention has been paid to water-soluble derivatives of chitosan at its applications. The chemical characteristics and the antimicrobial properties of these salts can play significant role in pharmacological and food areas mainly as carriers for drug delivery systems and as antimicrobial packaging materials. In the current paper, a historical sequence of the main preparative methods, physical chemistry aspects, and antimicrobial activity of chitosan quaternized derivatives are presented and briefly discussed. In general, the results indicated that the quaternary derivatives had better inhibitory effects than the unmodified chitosan.

  9. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    Science.gov (United States)

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  10. Continued intervention classⅠ incision surgery to prevent antimicrobial resistance of rational drug use%持续干预措施对Ⅰ类切口手术预防抗菌药物使用合理性的影响

    Institute of Scientific and Technical Information of China (English)

    赵倩

    2015-01-01

    ObjectiveTo investigate the influence on rational use of prevent antimicrobial agents in classⅠ incision surgery treated with the continued interventions.Methods 150 patients with class I incision before intervention group were collected from January 2012 to January 2013 in our hospital, 150 cases after the intervention group were collected from January 2014 to January 2015, the continuous intervention on prevent use of the antibiotics rationality in Class I incision was from October 2013.ResultsThe antibiotics use rate, within 24 hours discontinuation rate, antimicrobial drug costs, antimicrobial agents/total hospital costs of after intervention group were lower than before intervention group, rational of drug selection, Medication time was higher than before intervention group(P<0.05).Conclusion After the implementation of the of our hospital continued intervention class I incision of antibiotics incision surgery to prevent inappropriate drug significantly improved utilization and deactivation rates lower within 24 hours, easing the financial burden of patients, improve the antimicrobial rational drug use.%目的:探讨持续干预措施对Ⅰ类切口手术预防抗菌药物使用合理性的影响。方法干预前组150例患者均来自2012年1月~2013年1月我院Ⅰ类切口手术患者,干预后组150例患者均来自2014年1月~2015年1月,我院于2013年10月对Ⅰ类切口手术预防抗菌药物使用合理性进行持续干预。结果干预后抗菌药物使用率、24h内停用率、抗菌药物费用、抗菌药物/总住院费用均低于干预前,药物选择、用药时限合理性高于干预前(P<0.05)。结论我院实施持续干预措施后Ⅰ类切口手术预防抗菌药物不合理用药现象明显改善,使用率及24h内停用率均降低,缓解了患者的经济负担,提高了抗菌药物使用的合理性。

  11. Investigation on Antimicrobial Drug Resistance to Escherichia coli Isolates from A Farm in Tacheng Xinj iang%新疆塔城某规模化养殖场大肠埃希菌耐药性调查

    Institute of Scientific and Technical Information of China (English)

    南海辰; 夏利宁; 刘英玉; 翟少华; 底丽娜

    2014-01-01

    为了解新疆塔城某规模化养殖场分离的大肠埃希菌对临床常用抗菌药物的耐药情况,从该规模化养殖场中采集的水样、饲料样、牛粪样及羊粪样中分离大肠埃希菌。采用微量肉汤法检测其对抗菌药物的耐药情况。结果表明,采集牛源饮用水样35份,分离率100.0%(35/35),分离的大肠埃希菌仅对阿莫西林/克拉维酸(31.4%)和氨苄西林(20.0%)2种抗菌药物耐药;牛源饲料样15份,分离率86.7%(13/15),分离的大肠埃希菌对氨苄西林(30.8%)、阿莫西林/克拉维酸(23.1%)、安普霉素(15.4%)、诺氟沙星(7.7%)、恩诺沙星(7.7%)和庆大霉素(7.7%)6种抗菌药物耐药;牛粪样20份,分离率100.0%(20/20),分离的大肠埃希菌对氨苄西林(60.0%)、阿莫西林/克拉维酸(50.0%)、恩诺沙星(40.0%)、庆大霉素(40.0%)、头孢噻呋(35.0%)、阿米卡星(25.0%)、诺氟沙星(10.0%)和环丙沙星(10.0%)8种抗菌药物耐药;羊粪样55份,分离率100.0%(55/55),分离的大肠埃希菌对阿莫西林/克拉维酸(25.5%)、氨苄西林(12.7%)、庆大霉素(5.5%)、头孢噻呋(3.6%)、诺氟沙星(1.8%)、恩诺沙星(1.8%)和阿米卡星(1.8%)7种抗菌药物耐药。新疆塔城牛源大肠埃希菌对常用抗菌药物多药耐药情况较严重,临床用药需谨慎,且可能存在粪源菌污染水源和饲料的风险。%In order to investigate commonly used antimicrobial drug resistance to Escherichia coli isolates from a farm in Tacheng,Xinj iang,the minimal inhibitory concentrations (MIC)of the antimicrobial drugs to these isolates from drinking water,feed,bovine feces and ovine feces were determined by the broth mi-cro-dilution method.The results showed that:3 5 E.coli isolates were confirmed

  12. 77 FR 22327 - Draft Guidance for Industry on New Animal Drugs and New Animal Drug Combination Products...

    Science.gov (United States)

    2012-04-13

    ... concerns regarding the development of antimicrobial resistance in human and animal bacterial pathogens when... those products consistent with FDA's GFI 209, ``The Judicious Use of Medically Important Antimicrobial... of a final guidance entitled ``The Judicious Use of Medically Important Antimicrobial Drugs in...

  13. Antimicrobial resistance in Dschang, Cameroon

    Directory of Open Access Journals (Sweden)

    Fusi-Ngwa Catherine Kesah

    2013-01-01

    Full Text Available Background: Health-care-associated and community infections remain problematic in most of Africa where the increasing incidences of diseases, wars, poverty, malnutrition, and general environmental deterioration have led to the gradual collapse of the health-care system. Detection of antimicrobial resistance (AMR remains imperative for the surveillance purposes and optimal management of infectious diseases. This study reports the status of AMR in pathogens in Dschang. Materials and Methods: From May 2009 to March 2010, the clinical specimens collected at two hospitals were processed accorded to the standard procedures. Antibiotic testing was performed by E test, and antimycotics by disc-agar diffusion, as recommended by the Clinical and Laboratory Standards Institute on pathogens comprising Staphylococcus aureus (100 strains, Enterococcus faecalis (35, Klebsiella pneumoniae (75, Escherichia coli (50, Proteus mirabilis (30, Pseudomonas aruginosa (50, Acinetobacter species (20, and Candida albicans (150 against common antimicrobials. Results: There was no vancomycin resistance in the cocci, the minimum inhibitory concentration for 90% of these strains MIC 90 was 3 μg/ml, methicillin-resistant S. aureus (MRSA was 43%, benzyl penicillin 89% resistance in S. aureus as opposed to 5.7% in E. faecalis. Low resistance (<10% was recorded to cefoxitin, cefotaxime, and nalidixic acid (MIC 90 3-8 μg/ml against the coliforms, and to ticarcillin, aztreonam, imipenem, gentamicin, and ciprofloxacin among the non-enterobacteria; tetracycline, amoxicillin, piperacillin, and chloramphenicol were generally ineffective. Resistance rates to fluconazole, clotrimazole, econazole, and miconazole were <55% against C. albicans. The pathogens tested exhibited multidrug-resistance. Conclusion: The present findings were intended to support antimicrobial stewardship endeavors and empiric therapy. The past, present, and the future investigations in drug efficacy will continue

  14. Antimicrobial and biofilm inhibiting diketopiperazines.

    Science.gov (United States)

    de Carvalho, M P; Abraham, W-R

    2012-01-01

    Diketopiperazines are the smallest cyclic peptides known. 90% of Gram-negative bacteria produce diketopiperazines and they have also been isolated from Gram-positive bacteria, fungi and higher organisms. Biosynthesis of cyclodipeptides can be achieved by dedicated nonribosomal peptide synthetases or by a novel type of synthetases named cyclopeptide synthases. Since the first report in 1924 a large number of bioactive diketopiperazines was discovered spanning activities as antitumor, antiviral, antifungal, antibacterial, antiprion, antihyperglycemic or glycosidase inhibitor agents. As infections are of increasing concern for human health and resistances against existing antibiotics are growing this review focuses on the antimicrobial activities of diketopiperazines. The antibiotic bicyclomycin is a diketopiperazine and structure activity studies revealed the unique nature of this compound which was finally developed for clinical applications. The antimicrobial activities of a number of other diketopiperazines along with structure activity relationships are discussed. Here a special focus is on the activity-toxicity problem of many compounds setting tight limitations to their application as drugs. Not only these classical antimicrobial activities but also proposed action in modulating bacterial communication as a new target to control biofilms will be evaluated. Pathogens organized in biofilms are difficult to eradicate because of the increase of their tolerance for antibiotics for several orders. Diketopiperazines were reported to modulate LuxR-mediated quorum-sensing systems of bacteria, and they are considered to influence cell-cell signaling offering alternative ways of biofilm control by interfering with microbial communication. Concluding the review we will finally discuss the potential of diketopiperazines in the clinic to erase biofilm infections.

  15. From antimicrobial to anticancer peptides. A review.

    OpenAIRE

    Diana eGaspar; A. Salomé eVeiga; Miguel A.R.B. eCastanho

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective...

  16. 抗菌肽histatherin研究进展%Research Progress of Antimicrobial Peptide Histatherin

    Institute of Scientific and Technical Information of China (English)

    高帅; 鞠志花; 宿烽; 王长法

    2011-01-01

    抗菌肽产于机体组织、具有广谱抗菌活性和独特抗菌的机制.对抗菌肽的研究有助于开发抗菌肽药物、进行动物抗性育种和培育抗菌肽转基因动物.论文对一种新的牛抗菌肽histatherin的研究进展进行概述.%As the drug-resistance and challenge to food safety caused by the abuse of antibiotics is becoming serious , more and more attentions have been attracted to the antimicrobial peptides, which has characteristics of antimicrobial mechanism and wide antimicrobial spectrum. The research on antimicrobial peptides will contribute to antimicrobial peptides drug development, resistive breeding, and transgenic animal breeding. This article introduced the studies about a new bovine antimicrobial peptide-histatherin.

  17. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... issue of antimicrobial resistance is that the subject material appears abstract and is complex. This video was ... can develop and spread. All FDA CVM produced material may be copied, reproduced, and distributed as long ...

  18. Antimicrobial outcomes in plasma medicine

    Science.gov (United States)

    Ryan, Thomas P.; Stalder, Kenneth R.; Woloszko, Jean

    2015-03-01

    Plasma is referred to as the fourth state of matter and is frequently generated in the environment of a strong electric field. The result consists of highly reactive species--ions, electrons, reactive atoms and molecules, and UV radiation. Plasma Medicine unites a number of fields, including Physics, Plasma Chemistry, Cell Biology, Biochemistry, and Medicine. The treatment modality utilizes Cold Atmospheric Plasma (CAP), which is able to sterilize and treat microbes in a nonthermal manner. These gas-based plasma systems operate at close to room temperature and atmospheric pressure, making them very practical for a range of potential treatments and are highly portable for clinical use throughout the health care system. The hypothesis is that gas based plasma kills bacteria, fungus, and viruses but spares mammalian cells. This paper will review systematic work which shows examples of systems and performance in regards to antimicrobial effects and the sparing of mammalian cells. The mechanism of action will be discussed, as well as dosing for the treatment of microbial targets, including sterilization processes, another important healthcare need. In addition, commercial systems will be overviewed and compared, along with evidence-based, patient results. The range of treatments cover wound treatment and biofilms, as well as antimicrobial treatment, with little chance for resistance and tolerance, as in drug regimens. Current clinical studies include applications in dentistry, food treatment, cancer treatment, wound treatment for bacteria and biofilms, and systems to combat health care related infections.

  19. Antimicrobial resistance in wildlife

    OpenAIRE

    Vittecoq, M.; Godreuil, S.; Prugnolle, Franck; Durand, P.; Brazier, L; Renaud, N; Arnal, A.; Aberkane, S.; Jean-Pierre, H.; Gauthier-Clerc, M; Thomas, F.; Renaud, F.

    2016-01-01

    The spread of antimicrobial resistance is of major concern for human health and leads to growing economic costs. While it is increasingly hypothesized that wildlife could play an important role in antimicrobial-resistant bacteria dynamics, empirical data remain scarce. The present work builds on a systematic review of the available data in order to highlight the main information we have and to suggest research pathways that should be followed if we aim to fill the gaps in our current knowledg...

  20. Antimicrobial compounds in tears.

    Science.gov (United States)

    McDermott, Alison M

    2013-12-01

    The tear film coats the cornea and conjunctiva and serves several important functions. It provides lubrication, prevents drying of the ocular surface epithelia, helps provide a smooth surface for refracting light, supplies oxygen and is an important component of the innate defense system of the eye providing protection against a range of potential pathogens. This review describes both classic antimicrobial compounds found in tears such as lysozyme and some more recently identified such as members of the cationic antimicrobial peptide family and surfactant protein-D as well as potential new candidate molecules that may contribute to antimicrobial protection. As is readily evident from the literature review herein, tears, like all mucosal fluids, contain a plethora of molecules with known antimicrobial effects. That all of these are active in vivo is debatable as many are present in low concentrations, may be influenced by other tear components such as the ionic environment, and antimicrobial action may be only one of several activities ascribed to the molecule. However, there are many studies showing synergistic/additive interactions between several of the tear antimicrobials and it is highly likely that cooperativity between molecules is the primary way tears are able to afford significant antimicrobial protection to the ocular surface in vivo. In addition to effects on pathogen growth and survival some tear components prevent epithelial cell invasion and promote the epithelial expression of innate defense molecules. Given the protective role of tears a number of scenarios can be envisaged that may affect the amount and/or activity of tear antimicrobials and hence compromise tear immunity. Two such situations, dry eye disease and contact lens wear, are discussed here.

  1. Repurposing celecoxib as a topical antimicrobial agent

    Directory of Open Access Journals (Sweden)

    Mohamed N. Seleem

    2015-07-01

    Full Text Available There is an urgent need for new antibiotics and alternative strategies to combat multidrug-resistant bacterial pathogens, which are a growing clinical issue. Repurposing existing approved drugs with known pharmacology and toxicology is an alternative strategy to accelerate antimicrobial research and development. In this study, we show that celecoxib, a marketed inhibitor of cyclooxygenase-2, exhibits broad-spectrum antimicrobial activity against Gram-positive pathogens from a variety of genera, including Staphylococcus, Streptococcus, Listeria, Bacillus, and Mycobacterium, but not against Gram-negative pathogens. However, celecoxib is active against all of the Gram-negative bacteria tested, including strains of, Acinetobacter, and Pseudomonas, when their intrinsic resistance is artificially compromised by outer membrane permeabilizing agents such as colistin. The effect of celecoxib on incorporation of radioactive precursors into macromolecules in Staphylococcus aureus was examined. The primary antimicrobial mechanism of action of celecoxib was the dose-dependent inhibition of RNA, DNA, and protein synthesis. Further, we demonstrate the in vivo efficacy of celecoxib in a methicillin-resistant S. aureus (MRSA infected Caenorhabditis elegans whole animal model. Topical application of celecoxib (1 and 2% significantly reduced the mean bacterial count in a mouse model of MRSA skin infection. Further, celecoxib decreased the levels of all inflammatory cytokines tested, including tumor necrosis factor-α, interleukin-6, interleukin-1 beta, and monocyte chemo attractant protein-1 in wounds caused by MRSA infection. Celecoxib also exhibited synergy with many conventional antimicrobials when tested against four clinical isolates of S. aureus. Collectively, these results demonstrate that celecoxib alone, or in combination with traditional antimicrobials, has a potential to use as a topical drug for the treatment of bacterial skin infections.

  2. Antimicrobial peptides of multicellular organisms

    Science.gov (United States)

    Zasloff, Michael

    2002-01-01

    Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

  3. ANTIMICROBIAL RESISTANCE AND ITS GLOBAL SPREAD

    Directory of Open Access Journals (Sweden)

    R P Sharma

    2010-06-01

    Full Text Available Since their discovery during the 20th century, antimicrobial agents (antibiotics and related medicinal drugs have substantially reduced the threat posed by infectious diseases. The use of these “wonder drugs”, combined with improvements in sanitation, housing, and nutrition, and the advent of widespread immunization programmes, has led to a dramatic drop in deaths from diseases that were previously widespread, untreatable, and frequently fatal. Over the years, antimicrobials have saved the lives and eased the suffering of millions of people. By helping to bring many serious infectious diseases under control, these drugs hav also contributed to the major gains in life expectancy experienced during the latter part of the last century. These gains are now seriously jeopardized by another recent development: the emergence and spread of microbes that are resistant to cheap and effective first-choice, or “first- line” drugs. The bacterial infections which contribute most to human disease are also those in which emerging microbial resistance is most evident: diarrhoeal diseases, respiratory tract infections, meningitis, sexually transmitted infections, and hospital-acquired infections. Some important examples include penicillin-resistant Streptococcus pneumoniae, vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus, multi-resistant salmonellae, and multi-resistant Mycobacterium tuberculosis. The development of resistance to drugs commonly used to treat malaria is of particular concern, as is the emerging resistance to anti-HIV drugs. Treatment, resu.lting in prolonged illness and greater risk of death, Treatment failures also lead to longer periods of infectivity, which increase the numbers of infected people moving in the community and thus expose the general population to the risk of contracting a resistant strain of infection. When infections become resistant to first-line antimicrobials, treatment has to be switched

  4. Antimicrobial peptides in echinoderm host defense.

    Science.gov (United States)

    Li, Chun; Blencke, Hans-Matti; Haug, Tor; Stensvåg, Klara

    2015-03-01

    Antimicrobial peptides (AMPs) are important effector molecules in innate immunity. Here we briefly summarize characteristic traits of AMPs and their mechanisms of antimicrobial activity. Echinoderms live in a microbe-rich marine environment and are known to express a wide range of AMPs. We address two novel AMP families from coelomocytes of sea urchins: cysteine-rich AMPs (strongylocins) and heterodimeric AMPs (centrocins). These peptide families have conserved preprosequences, are present in both adults and pluteus stage larvae, have potent antimicrobial properties, and therefore appear to be important innate immune effectors. Strongylocins have a unique cysteine pattern compared to other cysteine-rich peptides, which suggests a novel AMP folding pattern. Centrocins and SdStrongylocin 2 contain brominated tryptophan residues in their native form. This review also includes AMPs isolated from other echinoderms, such as holothuroidins, fragments of beta-thymosin, and fragments of lectin (CEL-III). Echinoderm AMPs are crucial molecules for the understanding of echinoderm immunity, and their potent antimicrobial activity makes them potential precursors of novel drug leads. PMID:25445901

  5. Antimicrobial peptides in echinoderm host defense.

    Science.gov (United States)

    Li, Chun; Blencke, Hans-Matti; Haug, Tor; Stensvåg, Klara

    2015-03-01

    Antimicrobial peptides (AMPs) are important effector molecules in innate immunity. Here we briefly summarize characteristic traits of AMPs and their mechanisms of antimicrobial activity. Echinoderms live in a microbe-rich marine environment and are known to express a wide range of AMPs. We address two novel AMP families from coelomocytes of sea urchins: cysteine-rich AMPs (strongylocins) and heterodimeric AMPs (centrocins). These peptide families have conserved preprosequences, are present in both adults and pluteus stage larvae, have potent antimicrobial properties, and therefore appear to be important innate immune effectors. Strongylocins have a unique cysteine pattern compared to other cysteine-rich peptides, which suggests a novel AMP folding pattern. Centrocins and SdStrongylocin 2 contain brominated tryptophan residues in their native form. This review also includes AMPs isolated from other echinoderms, such as holothuroidins, fragments of beta-thymosin, and fragments of lectin (CEL-III). Echinoderm AMPs are crucial molecules for the understanding of echinoderm immunity, and their potent antimicrobial activity makes them potential precursors of novel drug leads.

  6. Antimicrobial Peptides in Innate Immunity against Mycobacteria.

    Science.gov (United States)

    Shin, Dong-Min; Jo, Eun-Kyeong

    2011-10-01

    Antimicrobial peptides/proteins are ancient and naturallyoccurring antibiotics in innate immune responses in a variety of organisms. Additionally, these peptides have been recognized as important signaling molecules in regulation of both innate and adaptive immunity. During mycobacterial infection, antimicrobial peptides including cathelicidin, defensin, and hepcidin have antimicrobial activities against mycobacteria, making them promising candidates for future drug development. Additionally, antimicrobial peptides act as immunomodulators in infectious and inflammatory conditions. Multiple crucial functions of cathelicidins in antimycobacterial immune defense have been characterized not only in terms of direct killing of mycobacteria but also as innate immune regulators, i.e., in secretion of cytokines and chemokines, and mediating autophagy activation. Defensin families are also important during mycobacterial infection and contribute to antimycobacterial defense and inhibition of mycobacterial growth both in vitro and in vivo. Hepcidin, although its role in mycobacterial infection has not yet been characterized, exerts antimycobacterial effects in activated macrophages. The present review focuses on recent efforts to elucidate the roles of host defense peptides in innate immunity to mycobacteria.

  7. 75 FR 45646 - Design of Clinical Trials of Aerosolized Antimicrobials for the Treatment of Cystic Fibrosis...

    Science.gov (United States)

    2010-08-03

    ... the Treatment of Cystic Fibrosis; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION... management and/or treatment of patients with cystic fibrosis. Aerosolized antimicrobials are used to treat... design of clinical trials of aerosolized antimicrobials in patients with cystic fibrosis. The input...

  8. Screening of various leaf extracts of Chromolaena odorata L. for biochemical constituents and antimicrobial sensitivity

    Directory of Open Access Journals (Sweden)

    Nagesh Kamath

    2015-02-01

    Conclusions: The ethanolic extract of C. odorata exhibited significant antimicrobial activity. The plant extracts could be used to treat resistant form of prevailing infections. Successful antimicrobial drugs can be developed out of these extracts if specific compounds are isolated and purified. [Int J Basic Clin Pharmacol 2015; 4(1.000: 89-97

  9. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.

  10. An economic perspective on policy to reduce antimicrobial resistance.

    Science.gov (United States)

    Coast, J; Smith, R D; Millar, M R

    1998-01-01

    Resistance to antimicrobial drugs is increasing worldwide. This resistance is, at least in part, associated with high antimicrobial usage. Despite increasing awareness, economists (and policy analysts more generally) have paid little attention to the problem. In this paper antimicrobial resistance is conceptualised as a negative externality associated with the consumption of antimicrobials and is set within the broader context of the costs and benefits associated with antimicrobial usage. It is difficult to determine the overall impact of attempting to reduce resistance, given the extremely limited ability to model the epidemiology of resistant and sensitive micro-organisms. It is assumed for the purposes of the paper, however, that dealing with resistance by reducting antimicrobial usage would lead to a positive societal benefit. Three policy options traditionally associated with environmental economics (regulation, permits and charges) are examined in relation to their potential ability to impact upon the problem of resistance. The primary care sector of the U.K.'s National Health Service provides the context for this examination. Simple application of these policies to health care is likely to be problematic, with difficulties resulting particularly from the potential reduction in clinical freedom to prescribe when appropriate, and from the desire for equity in health care provision. The paper tentatively concludes that permits could offer the best policy response to antimicrobial resistance, with the caveat that empirical research is needed to develop the most practical and efficient system. This research must be conducted alongside the required epidemiological research.

  11. Antimicrobial stewardship: Limits for implementation

    NARCIS (Netherlands)

    Sinha, Bhanu

    2014-01-01

    Antibiotic stewardship programme (ASP) is a multifaceted approach to improve patients' clinical outcomes, prevent the emergence of antimicrobial resistance, and reduce hospital costs by prudent and focused antimicrobial use. Development of local treatment guidelines according to local ecology, rapid

  12. [New antimicrobials against Gram-positive organisms].

    Science.gov (United States)

    Montejo, M

    2008-01-01

    Glycopeptides have been the antimicrobials most commonly used for infections by Gram-positive organisms and methicillin resistant S. aureus (MRSA). In recent years, however, glycopeptide resistance and tolerance have become a serious problem. Thus, enterococci highly resistant to vancomycin, vancomycin-intermediate/ resistant S. aureus (VISA), and vancomycin tolerance in S. aureus are found, and increased therapeutic failure and mortality are clinically reported with vancomycin MIC for S. aureus > or = 1.5-2 microg/mL. When faced with these organisms, we therefore need potent bactericidal antimicrobials that may be empirically administered, effective against susceptible and resistant pathogens, easily dosed, with few adverse effects and no significant interaction with other drugs, and that can be administered in an outpatient setting. In bacteremia by methicillin-susceptible S. aureus, use of vancomycin is associated to a greater failure and mortality rate as compared to semisynthetic penicillins. New treatment options for MRSA infections include daptomycin, linezolid, tygecycline, and quinupristin/dalfopristin. New anti-MRSA drugs are also under development, including glycopeptides (dalbavancin, telavancin, and oritavancin), ceftobiprole, and iclaprim. This paper reviews the new antimicrobials against Gram-positive organisms. PMID:18957022

  13. Antimicrobial Graft Copolymer Gels.

    Science.gov (United States)

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  14. A strategy for antimicrobial regulation based on fluorescent conjugated oligomer-DNA hybrid hydrogels.

    Science.gov (United States)

    Cao, Ali; Tang, Yanli; Liu, Yue; Yuan, Huanxiang; Liu, Libing

    2013-06-21

    New fluorescent oligo(phenylene ethynylene)-DNA hydrogels have been prepared and used for the controllable biocidal activity driven by DNase. This study opens a new way of controllable drug release and antimicrobial regulation.

  15. Therapeutic antimicrobial peptides may compromise natural immunity.

    Science.gov (United States)

    Habets, Michelle G J L; Brockhurst, Michael A

    2012-06-23

    Antimicrobial peptides (AMPs) have been proposed as a promising new class of antimicrobials despite warnings that therapeutic use could drive the evolution of pathogens resistant to our own immunity peptides. Using experimental evolution, we demonstrate that Staphylococcus aureus rapidly evolved resistance to pexiganan, a drug-candidate for diabetic leg ulcer infections. Evolved resistance was costly in terms of impaired growth rate, but costs-of-resistance were completely ameliorated by compensatory adaptation. Crucially, we show that, in some populations, experimentally evolved resistance to pexiganan provided S. aureus with cross-resistance to human-neutrophil-defensin-1, a key component of the innate immune response to infection. This unintended consequence of therapeutic use could drastically undermine our innate immune system's ability to control and clear microbial infections. Our results therefore highlight grave potential risks of AMP therapies, with implications for their development.

  16. STUDY OF PRESCRIBING PATTERNS OF ANTIMICROBIAL AGENTS IN THE PAEDIATRIC WARDS AT TERTIARY TEACHING CARE HOSPITAL, GUJARAT

    Directory of Open Access Journals (Sweden)

    Vipul Prajapati* and J.D. Bhatt

    2012-07-01

    Full Text Available Background: Prescription of drugs, which needs to be continuously assessed and refined according to disease progression. It not only reflects the physician’s knowledge about drugs but also his/her skill in diagnose and attitude towards selecting the most appropriate cost-effective treatment. Antimicrobials are among the most commonly prescribed drugs in hospital. As per literature, they account for over 50% of total value of drugs sold in our country. Such studies have been sparse from Gujarat and hence, this study was undertaken.Methods: Retrospective study was carried out by collecting 350 prescriptions containing antimicrobial agents in paediatric department at Sir Sayajirao General (SSG Hospital, Vadodara to assess the prescribing patterns of antimicrobial agents. All information about the drugs details recorded in pre-tested Proforma that was finalized by our Pharmacology department. Results: Total 350 prescriptions containing 690 antimicrobial drugs were prescribed in patients during study. Of them aminoglycosides (233; 33.77% was frequently prescribed followed by β-lactam group (191; 27.68 and cephalosporins (176; 25.5%. Average numbers of antimicrobials per prescription was 1.97.Out of 690 antimicrobial prescribed, 576(83.48% were prescribed by generic name, while 114(16.52% were prescribed by trade name. Total numbers of antimicrobial prescribed by parenteral route were 599 (86.81%, while only 91(13.18% antimicrobial agents were prescribed by oral route. Out of 350 prescriptions two or more than two antimicrobial agents were prescribed in 249(71.14% prescriptions, while 101(28.85% prescriptions constitute one antimicrobial agent. Conclusion: Results indicates need for improving the prescribing pattern of drugs and minimizing the use of antimicrobial agents. It is suggested that further detail analysis to judge the rationality of the therapy is necessary.

  17. Analysis on Application of Antimicrobial Drugs and Bacterial Resistance in Orthopedics Department of A TCM Hospital in 2013%2013年某中医院骨科病区抗菌药物使用与细菌耐药性分析

    Institute of Scientific and Technical Information of China (English)

    孙毅东; 张美容; 张劲新; 叶凌云; 林爱华

    2015-01-01

    ABSTRACTObjective:To investigate the application of antimicrobial drugs and bacteriology in orthopedics de-partment of our hospital so as to provide a clinical reference for the rational use of antimicrobial agents.Methods:The application of antimicrobial drugs,the results of bacterial examination and bacterial resistance in orthopedics department of our hospital in 2013 were analyzed statistically by a retrospective investigation method.Results:The top three drug categories based on the DDDs sequence of the use of antibacterials were cephalosporins(9 536.4), penicillins(613.9)and quinolones(445.0),and the top three drugs were cefathiamidine(3 036.7),cefazolin (2 293.0)and cefuroxime(1 688.5). In l46 strains of detected bacteria,100 strains were Gram-negative bacteria (68.5%),includingEscherichiacoli,KlebsiellapneumoniaeandPseudomonasaeruginosa,31 strains were Gram-positive bacteria(21.2%)which was mainlyStaphylococcus,and 15 strains of fungi(10.3%),of which Candidaalbicanswas the main part. The drug sensitive rate of Gram-positive bacteria was higher,but Gram-nega-tive bacteria and fungi had a lower drug sensitivity rate of antimicrobial agents ranked at forefront of DDDs.Con-clusion:The application of antimicrobial drugs did not lead to an extensive bacterial resistance in orthopedics de-partment of our hospital in 2013. The strict grasp of drug use indications and reasonable administration of antimicro-bial drugs were critical points to obtain a low rate of bacterial resistance. Traditional Chinese medicine syndrome differentiation was one of the possible reasons.%目的:调查我院骨科病区抗菌药物的应用及细菌学情况,为提高抗菌药物合理应用水平提供依据。方法:采用回顾性调查方法,对骨科病区2013年1-12月抗菌药物的使用情况、细菌学检查结果及其耐药性进行统计、分析。结果:各类抗菌药物使用按用药频度(DDDs)排序,前3位分别为头孢菌素类(9536.4

  18. Human Health Consequences of Use of Antimicrobial Agents in Aquaculture

    DEFF Research Database (Denmark)

    Heuer, Ole Eske; Kruse, H.; Grave, K.;

    2009-01-01

    Intensive use of antimicrobial agents in aquaculture provides a selective pressure creating reservoirs of drug-resistant bacteria and transferable resistance genes in fish pathogens and other bacteria in the aquatic environment. From these reservoirs, resistance genes may disseminate by horizontal...... gene transfer and reach human pathogens, or drug-resistant pathogens from the aquatic environment may reach humans directly. Horizontal gene transfer may occur in the aquaculture environment, in the food chain, or in the human intestinal tract. Among the antimicrobial agents commonly used...... in aquaculture, several are classified by the World Health Organisation as critically important for use in humans. Occurrence of resistance to these antimicrobial agents in human pathogens severely limits the therapeutic options in human infections. Considering the rapid growth and importance of aquaculture...

  19. Impact of media: self-medication and the rising problem of antimicrobial resistance

    OpenAIRE

    Manali M Mahajan; Sujata Dudhgaonkar

    2014-01-01

    Antimicrobial agents (AMAs) are one of the most commonly used as well as misused drugs. Antimicrobial resistance is an important growing global health issue which needs urgent addressal. Self-medication involves the use of medicinal products by the patient to treat self-recognized disorders, symptoms, recurrent diseases, or minor health problems. Medicines for self-medication are often called over the counter (OTC) drugs, which are available without a doctor's prescription through pharmaci...

  20. Combined antimicrobial susceptibility test against pan-drug-resistant Acinetobacter baumannii with E-test and microdilution checkerboard assay%应用E-test法、肉汤微量稀释棋盘法检测泛耐药鲍曼不动杆菌的试验

    Institute of Scientific and Technical Information of China (English)

    王铁山; 苏建荣

    2013-01-01

    Objective To evaluate the activity of antibiotics against pan-drug-resistant (PDR) Acinetobacter baumannii by combination antimicrobial susceptibility test in viro with epsilometric methods (Etest method) and microdilution checkerboard (CB method),and to detect a good correlation between timekill curve with the above mentioned two assays.Methods Thirty-one clinical isolates of PDR Acinetobacter baumannii were selected for mono and combination antimicrobial susceptibility test in vitro by E-test and CB method,then a comparison was conducted between the test results and the time-kill curve.Mono drugs involved tigecycline,colistin,imipenem and amikacin,and combinations involved two of drugs above,and three drugs involved imipenem/tigecycline,plus amikacin combination.Results Synergistic effect was detected in imipenem plus colistin and tigecycline plus imipenem combination.A high comparability was revealed between the E-test method with antimicrobial drugs added into the culture medium and the time-kill curves.Synergy in the combination of imipenem/tigecycline,plus amikacin was detected by the CB method and time-kill curves.Conclusion The results showed that the effect of specific combination of antibiotics against PDR Acinetobacter baumannii could be predicted by testing their synergistic effect with combination antimicrobial susceptibility test.%目的 比较E-test法和肉汤微量稀释棋盘法(CB法)检测体外联合药敏试验并与时间杀菌曲线对比的观察.方法 选择31株泛耐药(PDR)鲍曼不动杆菌临床株进行体外试验,分为替加环素、可立其丁、亚胺培南、阿米卡星单用和两药组合,亚胺培南+替加环素+阿米卡星三药组合也由CB法测试.这些测试的结果与时间杀菌曲线进行比较.结果 亚胺培南+可立其丁、替加环素+亚胺培南能检测到协同作用.培养基中加入抗菌药物的E-test法联合药敏试验与时间杀菌曲线更具有可比性.在三药组合中由CB法和

  1. Optimizing antimicrobial therapy in children.

    Science.gov (United States)

    Long, Sarah S

    2016-07-01

    Management of common infections and optimal use of antimicrobial agents are presented, highlighting new evidence from the medical literature that enlightens practice. Primary therapy of staphylococcal skin abscesses is drainage. Patients who have a large abscess (>5 cm), cellulitis or mixed abscess-cellulitis likely would benefit from additional antibiotic therapy. When choosing an antibiotic for outpatient management, the patient, pathogen and in vitro drug susceptibility as well as tolerability, bioavailability and safety characteristics of antibiotics should be considered. Management of recurrent staphylococcal skin and soft tissue infections is vexing. Focus is best placed on reducing density of the organism on the patient's skin and in the environment, and optimizing a healthy skin barrier. With attention to adherence and optimal dosing, acute uncomplicated osteomyelitis can be managed with early transition from parenteral to oral therapy and with a 3-4 week total course of therapy. Doxycycline should be prescribed when indicated for a child of any age. Its use is not associated with dental staining. Azithromycin should be prescribed for infants when indicated, whilst being alert to an associated ≥2-fold excess risk of pyloric stenosis with use under 6 weeks of age. Beyond the neonatal period, acyclovir is more safely dosed by body surface area (not to exceed 500 mg/m(2)/dose) than by weight. In addition to the concern of antimicrobial resistance, unnecessary use of antibiotics should be avoided because of potential later metabolic effects, thought to be due to perturbation of the host's microbiome. PMID:27263076

  2. Antimicrobial properties of berries

    OpenAIRE

    Puupponen-Pimiä, Riitta

    2007-01-01

    Berries, especially their antimicrobial properties, have been studied intensively at VTT over the past ten years in several research projects. In these in vitro studies phenolic berry extracts of common Nordic berries selectively inhibited the growth of harmful bacteria and human intestinal pathogens, without affecting the growth of beneficial lactic acid bacteria.

  3. Triclosan antimicrobial polymers

    Science.gov (United States)

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling

  4. World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies to Control Antimicrobial Resistance From Food Animal Production.

    Science.gov (United States)

    Collignon, Peter C; Conly, John M; Andremont, Antoine; McEwen, Scott A; Aidara-Kane, Awa

    2016-10-15

    Antimicrobial use in food animals selects for antimicrobial resistance in bacteria, which can spread to people. Reducing use of antimicrobials-particularly those deemed to be critically important for human medicine-in food production animals continues to be an important step for preserving the benefits of these antimicrobials for people. The World Health Organization ranking of antimicrobials according to their relative importance in human medicine was recently updated. Antimicrobials considered the highest priority among the critically important antimicrobials were quinolones, third- and fourth-generation cephalosporins, macrolides and ketolides, and glycopeptides. The updated ranking allows stakeholders in the agriculture sector and regulatory agencies to focus risk management efforts on drugs used in food animals that are the most important to human medicine. In particular, the current large-scale use of fluoroquinolones, macrolides, and third-generation cephalosporins and any potential use of glycopeptides and carbapenems need to be addressed urgently.

  5. Antimicrobial Stewardship for a Geriatric Behavioral Health Population

    Directory of Open Access Journals (Sweden)

    Kristen Ellis

    2016-01-01

    Full Text Available Antimicrobial resistance is a growing public health concern. Antimicrobial stewardship and multi-disciplinary intervention can prevent inappropriate antimicrobial use and improve patient care. Special populations, especially older adults and patients with mental health disorders, can be particularly in need of such intervention. The purpose of this project was to assess the impact of pharmacist intervention on appropriateness of antimicrobial prescribing on a geriatric psychiatric unit (GPU. Patients ≥18 years old prescribed oral antibiotics during GPU admission were included. Antimicrobial appropriateness was assessed pre- and post-pharmacist intervention. During the six-month pre- and post-intervention phase, 63 and 70 patients prescribed antibiotics were identified, respectively. Subjects in the post-intervention group had significantly less inappropriate doses for indication compared to the pre-intervention group (10.6% vs. 23.9%, p = 0.02, and significantly less antibiotics prescribed for an inappropriate duration (15.8% vs. 32.4%, p < 0.01. There were no significant differences for use of appropriate drug for indication or appropriate dose for renal function between groups. Significantly more patients in the post intervention group had medications prescribed with appropriate dose, duration, and indication (51% vs. 66%, p = 0.04. Pharmacist intervention was associated with decreased rates of inappropriate antimicrobial prescribing on a geriatric psychiatric unit.

  6. Susceptibility of coagulase positive staphylococci isolated from cow&apos;s mammary gland to antibacterial drugs

    OpenAIRE

    Savić-Rajić Nataša; Katić Vera

    2009-01-01

    Coagulase positive staphylococci are one of the most common causes of chronic udder infection. Indiscriminate use of antimicrobial drugs and their presence in the environment where animals live has led to coagulase positive staphylococci strains resistant to antimicrobial means. Proper and timely treatment of sub-clinical mastitis, based on the most effective use of antimicrobial drugs, is the key to good health of the milk herd. The aim was to determine the antimicrobial efficacy of selected...

  7. Antimicrobial activity ofGymnema sylvestre (Asclepiadaceae)

    Institute of Scientific and Technical Information of China (English)

    Beverly C. David; G. Sudarsanam

    2013-01-01

    Objective:To evaluate antimicrobial activities of aqueous, methanol, chloroform and hexane extract of leaves plant ofGymnema sylvestre(G. sylvestre).Methods:The antimicrobial screening of the extracts ofG. sylvestre against most prevalent microbes likeStaphylococcus aureus(S. aureus),Bacillus cereus(B. cereus),Klebsiella pneumoniae(K. pneumoniae),Escherichia coli(E. coli),Candida albicans(C. albicans),Candida tropicalis(C. tropicalis),Candida krusei(C. krusei) andCandida kefyr(C. kefyr) by agar well diffusion method, minimum inhibitory concentration, minimum bactericidal concentration, minimum fungicidal concentration were carried out. Results:The aqueous and methanol leaf extract showed significant antibacterial and antifungal activities against the selected microorganisms when compared to the standard drugs respectively. Conclusions:The dried scale leaves ofG. sylvestre might represent a new antimicrobial source with stable, biologically active components that can establish a scientific base for the use in modern medicine.

  8. Phytochemical and Antimicrobial Studies of Chlorophytum borivilianum

    Directory of Open Access Journals (Sweden)

    Guno Sindhu Chakraborthy

    2009-07-01

    Full Text Available Extracts of leaves and stems of Chlorophytum borivilianum were subjected to preliminary phytochemical screening and in-vitro antimicrobial studies. The results of the preliminary investigation revealed the presence of alkaloids, glycosides, steroidal nucleus, saponins and tannins in both parts. The methanolic extract of leaf and stems part were investigated for antimicrobial activity using agar disc diffusion method. Six clinical strains of human pathogenic microorganisms, comprising 3 Gram +ve, 1 Gram -ve and 2 fungi were utilized in the studies. The leaf extract of Chlorophytum borivilianum displayed overwhelming concentration dependent antimicrobial properties, inhibiting the growth of Staphylococcus aureus and Bacillus cereus, far above that of ampicillin used in a concentration of 1.0 g/ml. The extract was less sensitive to 2 Gram -ve bacteria in the assay. In antifungal assay, the growth of Aspergillus niger and Candida albicans, were inhibited in the same manner comparable to voriconazole the reference drug used in the study. The methanol extract of stem also displayed a concentration related antibacterial activity, inhibiting the growth of S. aureus comparable to ampicillin at 1.0 g/ml. The extract was least active against Escherichia coli with a mild activity at 1.0 g/ml. The extract exhibited weak activities against C. albicans as well as A. niger. Both plant parts seem to justify their ethno medical uses.

  9. Antimicrobial peptides in Echinoderms

    Directory of Open Access Journals (Sweden)

    C Li

    2010-05-01

    Full Text Available Antimicrobial peptides (AMPs are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, dissimilar to other known AMPs. A family of heterodimeric AMPs, named centrocins, are also present in S. droebachiensis. Lysozymes and fragments of larger proteins, such as beta-thymocins, actin, histone 2A and filamin A have also been shown to display antimicrobial activities in echinoderms. Future studies on AMPs should be aimed in revealing how echinoderms use these AMPs in the immune response against microbial pathogens.

  10. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Baby Joseph

    2013-12-01

    Conclusions: Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens.

  11. [Neruda and antimicrobial resistance].

    Science.gov (United States)

    Cotera, Alejandro

    2011-07-01

    Antimicrobial resistance has been a problem in medicine, since their incorporation to clinical practice. Numerous papers have been written on the subject. The analysis of two poems by Pablo Neruda "How much does a man live" and "Larynx", included in the volume "Estravagario" and published for the first time in 1957 and 1958, give us an incredible revelation about the concept of resistance. In these poems aureomycin, the first antimicrobial of the family of tetracyclines, was included as a poetic figure and the therapeutic action of antimicrobials was described. "Never so much bugs died I tons of them fell I but the few that remained olive I manifested their perversity". These writings incorporated novel concepts, even for physicians of that time and described the closeness of death that a patient may perceive during the course of a given disease. The capacity of Pablo Neruda to extract the essence of situations and to anticipate to conditions that only years later became clinically relevant problems, is noteworthy.

  12. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health A to Z ... Pin it Email Print The Food and Drug Administration's (FDA's) Center for Veterinary Medicine (CVM) produced a ...

  13. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & ... back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products

  14. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ... by Product Area Product Areas back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ...

  15. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Food and Drug Administration's (FDA's) Center for Veterinary Medicine (CVM) produced a nine-minute animation explaining how ... efforts are underway in both veterinary and human medicine to preserve the effectiveness of these drugs. One ...

  16. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Health and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health A to ... Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics ...

  17. Antimicrobial prophylaxis in minor and major surgery.

    Science.gov (United States)

    Bassetti, M; Righi, E; Astilean, A; Corcione, S; Petrolo, A; Farina, E C; De Rosa, F G

    2015-01-01

    Surgical site infections (SSIs) are a frequent cause of morbidity following surgical procedures. Gram-positive cocci, particularly staphylococci, cause many of these infections, although Gram-negative organisms are also frequently involved. The risk of developing a SSI is associated with a number of factors, including aspects of the operative procedure itself, such as wound classification, and patient-related variables, such as preexisting medical conditions. Antimicrobial prophylaxis (AP) plays an important role in reducing SSIs, especially if patient-related risk factors for SSIs are present. The main components of antimicrobial prophylaxis are: timing, selection of drugs and patients, duration and costs. Compliance with these generally accepted preventive principles may lead to overall decreases in the incidence of these infections. Ideally the administration of the prophylactic agent should start within 30 minutes from the surgical incision. The duration of the AP should not exceed 24 hours for the majority of surgical procedures. The shortest effective period of prophylactic antimicrobial administration is not known and studies have demonstrated that post-surgical antibiotic administration is unnecessary. Furthermore, there were no proven benefits in multiple dose regimens when compared to single-dose regimens. The choice of an appropriate prophylactic antimicrobial agent should be based primarily on efficacy and safety. Broad spectrum antibiotics should be avoided due to the risk of promoting bacterial resistance. Cephalosporins are the most commonly used antibiotics in surgical prophylaxis; specifically, cefazolin or cefuroxime are mainly used in the prophylaxis regimens for cardio-thoracic surgery, vascular surgery, hip or knee arthroplasty surgery, neurosurgical procedures and gynecologic and obstetric procedures. A review of the prophylactic regimens regarding the main surgical procedures is presented. PMID:24561611

  18. Development of a DNA microarray to detect antimicrobial resistance genes identified in the national center for biotechnology information database

    Science.gov (United States)

    High density genotyping techniques are needed for investigating antimicrobial resistance especially in the case of multi-drug resistant (MDR) isolates. To achieve this all antimicrobial resistance genes in the NCBI Genbank database were identified by key word searches of sequence annotations and the...

  19. Sinergismo entre óleos essenciais e drogas antimicrobianas sobre linhagens de Staphylococcus aureus e Escherichia coli isoladas de casos clínicos humanos Synergism between essential oils and antimicrobial drugs against Staphylooccus aureus and Escherichia coli strains from human infections

    Directory of Open Access Journals (Sweden)

    Juliana A. A. Zago

    2009-12-01

    Full Text Available Estudos com plantas e utilização em terapias combinatórias têm sido estimulados. Verificou-se as possíveis interações entre óleos essenciais de plantas [canela (Cinnamomum zeylanicum Blume Lauraceae, capim-cidreira (Cymbopogon citratus (DC. Stapf, Poaceae, hortelã-pimenta (Mentha piperita L. Lamiaceae, gengibre (Zingiber officinale Roscoe Zingiberaceae, cravo-da-índia (Caryophillus aromaticus L. Myrtaceae e alecrim (Rosmarinus officinalis L. Lamiaceae] combinados a oito drogas antimicrobianas frente a doze linhagens de Staphylococcus aureus e doze de Escherichia coli isoladas de humanos. Após determinação da Concentração Inibitória Mínima (CIM para os óleos pelo método da diluição foram realizados ensaios para verificação de sinergismo entre os óleos essenciais e os antimicrobianos pela metodologia de Kirby & Bauer. S. aureus foi mais suscetível às interações óleos e drogas, tendo o óleo de capim cidreira apresentado sinergismo com as oito drogas testadas, seguido pelo óleo de hortelã com sete drogas. Nos ensaios com E. coli, houve sinergismo apenas para os óleos de alecrim (três drogas e capim-cidreira (duas drogas. Não ocorreram casos de antagonismo e os resultados de sinergismo foram influenciados pelos microrganismos estudados.The studies with plants and combinatory therapy have been stimulated. The interactions between cinnamon (Cinnamomun zeylanicum Blume Lauraceae, lemon grass (Cymbopogon citratus (DC. Stapf, Poaceae, mint (Mentha piperita L. Lamiaceae, ginger (Zingiber officinale Roscoe Zingiberaceae, clove (Caryophillus aromaticus L. Myrtaceae and rosemary (Rosmarinus officinalis L. Lamiaceae and eight antimicrobial drug was carried. It was made against twelve S. aureus and twelve E.coli strains isolated from human specimens. After minimal inhibitory concentration (MIC values determination of essential oils by dilution agar method, the synergism assays were performed by Kirby and Bauer method. The S

  20. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Rajmohan Rajamuthiah

    Full Text Available Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC: 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs. The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively, but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.

  1. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes.

    Science.gov (United States)

    Rudramurthy, Gudepalya Renukaiah; Swamy, Mallappa Kumara; Sinniah, Uma Rani; Ghasemzadeh, Ali

    2016-01-01

    Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals). Antimicrobials are considered "miracle drugs" and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs) depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future. PMID:27355939

  2. Prescription pattern of antimicrobials in tertiary care hospital in central India

    Directory of Open Access Journals (Sweden)

    Pallavi Dnyaneshwar Admane

    2015-03-01

    Full Text Available Objective: Antimicrobial agents are the greatest contribution to 20th century, which are used for cure and prevention of infections. Widespread use of antimicrobials has facilitated the development of resistance.Aim: the study was to assess the use of antimicrobials in tertiary care hospital in Maharashtra.Method: Prescription audit was done to assess the use of antimicrobials. Total 1942 prescriptions were analyzed for average number of drugs prescribed, antimicrobials prescribed by generic name or brand name, percentage of antibiotics among the prescribed drugs, use of fixed drug combinations, if any.Statistical analysis used: Data was analyzed by percentage.Result: Demographic analysis showed that out of 1942 patients in OPD, most were male (56.38 and in the age group between 35 to 50 years.  In 1942 prescription, 30.25% drugs were antimicrobials. Three drugs were prescribed in 52.15% of the prescription, followed by 4 drugs in 19.78% prescriptions.  79.18% prescriptions were prescribed by generic name while 20.82% were prescribed by brand name. 29.18% of drugs were fixed dose combinations of all the antibiotics were prescribed empirically on the basis of provisional diagnosis. Of the total of antibiotics prescribed, amoxicillin was prescribed in 50.66% of patients, followed by cotrimoxazole in 26.05 % patients, cephalexin (8.50%   were used commonly.  Conclusion: The rational use of antimicrobial agents is one of the main contributors to control worldwide emergence of antibacterial resistance, side effects and reduced cost of the treatment.

  3. Antimicrobial dental implant functionalization strategies -A systematic review.

    Science.gov (United States)

    Grischke, Jasmin; Eberhard, Jörg; Stiesch, Meike

    2016-01-01

    Biofilm formation on dental implant surfaces is a serious threat. Up to 50% of all implants show signs of irreversible tissue destruction. The aim of the present systematic review was to summarize the state of the art of strategies to functionalize antimicrobial dental implant surfaces. We searched the following electronic database: SCOPUS, MEDLINE and GOOGLE SCHOLAR and identified relevant controlled trials that evaluated the efficiency of new biomaterial strategies to modify dental implant surfaces, in such a way that biofilm formation was inhibited. The search yielded 2,990 potentially relevant publications. A total of 142 publications met the inclusion criteria. Analysis found that it may be concluded that silver-implanted surfaces, drug-loaded surfaces, surfaces with antimicrobial peptides, bioactive and biopassive polymer coatings as well as nanoscale or UV-activatable surfaces enhance antimicrobial activity compared to commercial pure titanium. PMID:27477219

  4. Phytochemical characterization and antimicrobial activity of Curcuma xanthorrhiza Roxb.

    Institute of Scientific and Technical Information of China (English)

    Mary Helen PA; Susheela Gomathy K; Jayasree S; Nizzy AM; Rajagopal B; Jeeva S

    2012-01-01

    Objective: To study the antimicrobial activity and phytochemical characterization of essential oil isolated from the rhizome of Curcuma xanthorrhiza against pathogenic bacteria and fungi.Methods:Fresh rhizomes of Curcuma xanthorrhiza were subjected to hydro distillation process to obtain essential oil and characterized by Gas Chromatography- Mass Spectroscopy (GC-MS). The essential oil was evaluated for antibacterial and antifungal activity against thirteen pathogenic bacteria and six fungi by the disc diffusion method. Results: GC – MS analysis of the essential oil extracted from the rhizome of Curcuma xanthorrhiza contained the derivatives of xanthorihizol, camphene and curcumene, monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene, hydrocarbons and other minor compounds. The antimicrobial activity of the oil showed significant inhibitory activity against the human pathogenic bacteria, no activity was observed against the fungi Aspergillus niger and Fusarium oxysporum. Conclusions: The findings of the present study indicate that the rhizome extract of Curcuma xanthorrhiza possess secondary metabolites and potential to develop antimicrobial drugs.

  5. Antimicrobial Potential Of Azadirachta Indica Against Pathogenic Bacteria And Fungi

    Directory of Open Access Journals (Sweden)

    Mohammad Asif

    2012-11-01

    Full Text Available Drugs from natural sources are used for treating various diseases since the ancient times. From the literature it is clear that various type of pharmacological and biological activities are associated with Azadirachta indica. Theleave oil of A. indica is known to have good antimicrobial potential. The oil of A. indica leaves, was tested against the different infectious microorganisms [Gram positive bacteria and Gram-negative bacteria], such as bacterial strains; S. aureus, E. coli, B. cerus, P. vulgaris, S. typhi, K. pneumonae, S. dysenterae and Fungal strains; F. oxysporum, A. flavus, A. fumigates, A. niger, C. albicans, Cladosporium sp., M. canis, M. gypseum, T. rubrum, T. mentagrophytes, P. notatum and P. citrinum etc.The results showed that level of antimicrobial activities of the A.indica oil depends on both the protein and carbohydrate contents. Generally, the high level of protein and carbohydrate contents of extract had better antimicrobial activities.

  6. Antimicrobial management of intra-abdominal infections:Literature's guidelines

    Institute of Scientific and Technical Information of China (English)

    Massimo Sartelli; Fausto Catena; Federico Coccolini; Antonio Daniele Pinna

    2012-01-01

    Antimicrobial management of severe intra-abdominal infections (IAIs) involves a delicate balance of optimizing empirical therapy,which has been shown to improve clinical outcomes,while simultaneously reducing unnecessary antimicrobial use.Two sets of guidelines for the management of intra-abdominal infections were recently published.In 2010,the Surgical Infection Society and the Infectious Diseases Society of America (SIS-IDSA)created guidelines for the diagnosis and management of complicated IAIs.The new SIS-IDSA guidelines replace those previously published in 2002 and 2003.The World Society of Emergency Surgery (WSES) guidelines represent additional contributions,made by specialists worldwide,to the debate regarding proper antimicrobial drug methodology.These guidelines represent the conclusions of the consensus conference held in Bologna,Italy,in July 2010 during the first congress of the WSES.

  7. Ammonium derivatives of chromenones and quinolinones as lead antimicrobial agents

    Indian Academy of Sciences (India)

    Shilpi Gupta; Seema Singh; Abha Kathuria; Manish Kumar; Sweta Sharma; Ram Kumar; Virinder S Parmar; Bharat Singh; Anjali Gupta; Erik Van Der Eycken; Gainda L Sharma; Sunil K Sharma

    2012-03-01

    A series of novel ammonium derivatives were synthesized and examined for their antimicrobial efficacy. Comparison of antimicrobial spectrum revealed that compounds 9, 11, 16 and 23 had strong potential against pathogens in vitro. Cytotoxicity results showed compound 9 to be least toxic, it is non-toxic to A549 and U87 cells in MTT assay and exhibits marginal toxicity (15-20%) to human erythrocytes at a concentration of 1000 g/ml as compared to 100% lysis of cells by 31.25 g/ml of the standard drug amphotericin B. This compound has MIC values in the range of 1.95-31.25 g/disc in DDA against different pathogens and may considered to be an important lead antimicrobial molecule for further exploration.

  8. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  9. Antimicrobial properties of nudibranchs tissues extracts from South Andaman, India

    Institute of Scientific and Technical Information of China (English)

    Kota Veeraswamy Reddy; Raju Mohanraju; Kada Narayana Murthy; Chatragadda Ramesh; Perumal Karthick

    2015-01-01

    Objective:To evaluate the antimicrobial properties of tissues extracts of different nudibranchs such asPhyllidia varicosa, Plakobranchus ocellatus, Phyllidiella rosans andHalgerda stricklandi against bacterial and fungal pathogens. Methods: Nudibranchs tissue samples were subjected to organic solvent extraction for antimicrobial activity by well diffusion method. Results: The crude extract 50μL (0.2 mg) ofPhyllidia varicosa showed the maximum inhibitory zone (22 mm) againstShigella flexneri.Plakobranchus ocellatus extract of 50μL (0.2 mg) showed the maximum inhibitory zone againstShigella flexneri (22 mm) and Staphylococcus aureus (19 mm) and no significant activity was found against the fungal pathogens. Conclusions:This work reveals that nudibranch tissues contain the antimicrobial secondary metabolites, which leads the significant activity against bacterial pathogens and further emphasizes detailed study on novel drug discovery from nudibranch tissues against certain human bacterial infections.

  10. Nanoparticle-Based Antimicrobials: Surface Functionality is Critical

    Science.gov (United States)

    Gupta, Akash; Landis, Ryan F.; Rotello, Vincent M.

    2016-01-01

    Bacterial infections cause 300 million cases of severe illness each year worldwide. Rapidly accelerating drug resistance further exacerbates this threat to human health. While dispersed (planktonic) bacteria represent a therapeutic challenge, bacterial biofilms present major hurdles for both diagnosis and treatment. Nanoparticles have emerged recently as tools for fighting drug-resistant planktonic bacteria and biofilms. In this review, we present the use of nanoparticles as active antimicrobial agents and drug delivery vehicles for antibacterial therapeutics. We further focus on how surface functionality of nanomaterials can be used to target both planktonic bacteria and biofilms. PMID:27006760

  11. Gallium(iii) and iron(iii) complexes of quinolone antimicrobials.

    Science.gov (United States)

    Mjos, Katja Dralle; Cawthray, Jacqueline F; Polishchuk, Elena; Abrams, Michael J; Orvig, Chris

    2016-08-16

    Iron is an essential nutrient for many microbes. According to the "Trojan Horse Hypothesis", biological systems have difficulties distinguishing between Fe(3+) and Ga(3+), which constitutes the antimicrobial efficacy of the gallium(iii) ion. Nine novel tris(quinolono)gallium(iii) complexes and their corresponding iron(iii) analogs have been synthesized and fully characterized. Quinolone antimicrobial agents from three drug generations were used in this study: ciprofloxacin, enoxacin, fleroxacin, levofloxacin, lomefloxacin, nalidixic acid, norfloxacin, oxolinic acid, and pipemidic acid. The antimicrobial efficacy of the tris(quinolono)gallium(iii) complexes was studied against E. faecalis and S. aureus (both Gram-positive), as well as E. coli, K. pneumonia, and P. aeruginosa (all Gram-negative) in direct comparison to the tris(quinolono)iron(iii) complexes and the corresponding free quinolone ligands at various concentrations. For the tris(quinolono)gallium(iii) complexes, no combinational antimicrobial effects between Ga(3+) and the quinolone antimicrobial agents were observed. PMID:27315225

  12. Antimicrobial susceptibilities of Clostridium difficile.

    OpenAIRE

    Shuttleworth, R; Taylor, M.; Jones, D M

    1980-01-01

    The antimicrobial susceptibilities of 78 strains of Clostridium difficile isolated from patients with and without gastrointestinal symptoms were determined and compared. Strains from patients with symptoms were more likely to show resistance to antibiotics. The antimicrobial susceptibilities of toxigenic and non-toxigenic strains were found to be similar.

  13. Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules

    Directory of Open Access Journals (Sweden)

    Ioannis L. Liakos

    2016-04-01

    Full Text Available Cellulose acetate (CA nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs, with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  14. How to fight antimicrobial resistance.

    Science.gov (United States)

    Foucault, Cédric; Brouqui, Philippe

    2007-03-01

    Antimicrobial misuse results in the development of resistance and superbugs. Over recent decades, resistance has been increasing despite continuing efforts to control it, resulting in increased mortality and cost. Many authorities have proposed local, regional and national guidelines to fight against this phenomenon, and the usefulness of these programmes has been evaluated. Multifaceted intervention seems to be the most efficient method to control antimicrobial resistance. Monitoring of bacterial resistance and antibiotic use is essential, and the methodology has now been homogenized. The implementation of guidelines and infection control measures does not control antimicrobial resistance and needs to be reinforced by associated measures. Educational programmes and rotation policies have not been evaluated sufficiently in the literature. Combination antimicrobial therapy is inefficient in controlling antimicrobial resistance.

  15. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 ... Regulatory Information Safety Emergency Preparedness International ...

  16. Drug: D04726 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D04726 Drug Medicinal soap (JP16); Medicinal soap (TN) Therapeutic category: 2359 2...ual organs 23 Digestive organ agents 235 Purgatives, clysters 2359 Others D04726 Medicinal soap (JP16) 26 Ep...idermides 261 Antimicrobial agents 2616 Medical soaps D04726 Medicinal soap (JP16) PubChem: 17398150 ...

  17. Drug: D00068 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available CYP2E1 [HSA:1571] Therapeutic category of drugs in Japan [BR:br08301] 2 Agents affecting individual organs 26 Epidermides 261 Antimic...robial agents 2615 Alcohols D00068 Anhydrous ethanol (JP16); Alcohol (USP) 4 Agents

  18. Drug: D05662 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D05662 Drug Pyrithione sodium (USAN); Sodium omadine (TN) C5H4NOS. Na 148.9911 149.1461 D05662.gif Antimicro...bial [topical] CAS: 15922-78-8 PubChem: 47207323 LigandBox: D05662 NIKKAJI: J66.622

  19. Drug: D06144 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 305 643.7312 D06144.gif Antimicrobial penicillin binding proteins inhibitor ko00550 Peptidoglycan biosynthes...D06144 Drug Tigemonam dicholine (USAN); Tigemen (TN) C12H13N5O9S2. (C5H14NO)2 643.2

  20. Drug: D01078 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D01078 Drug Telithromycin (JAN/USAN/INN); TEL; Ketek (TN) C43H65N5O10 811.4731 812.0037 D01078.gif Antimicro...bial [via inhibition of bacterial protein synthesis] Same as: C12009 ATC code: J01F

  1. Drug: D00240 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D00240 Drug Aztreonam (JP16/USP/INN); AZT; Azactam (TN) C13H17N5O8S2 435.0519 435.4328 D00240.gif Antimicrob...ial Same as: C06840 Therapeutic category: 6122 ATC code: J01DF01 penicillin binding

  2. World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies for the Use of Antimicrobials in Food Production Animals

    DEFF Research Database (Denmark)

    Collignon, P.; Powers, J. H.; Chiller, T. M.;

    2009-01-01

    The use of antimicrobials in food animals creates an important source of antimicrobial-resistant bacteria that can spread to humans through the food supply. Improved management of the use of antimicrobials in food animals, particularly reducing the usage of those that are "critically important......" for human medicine, is an important step toward preserving the benefits of antimicrobials for people. The World Health Organization has developed and applied criteria to rank antimicrobials according to their relative importance in human medicine. Clinicians, regulatory agencies, policy makers, and other...... stakeholders can use this ranking when developing risk management strategies for the use of antimicrobials in food production animals. The ranking allows stakeholders to focus risk management efforts on drugs used in food animals that are the most important to human medicine and, thus, need to be addressed...

  3. Eight-year Surveillance of Antimicrobial Resistance among Enterococcus Spp. Isolated in the First Bethune Hospital

    Science.gov (United States)

    Xu, Jiancheng; Wang, Liqiang; Wang, Kai; Zhou, Qi

    This study was to investigate the antimicrobial resistance of Enterococcus spp. isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 1446 strains of Enterococcus spp. were collected from urine 640 (44.3%), sputum 315 (21.8%), secretions and pus 265 (18.3%) during the past 8 years. The rates of high-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium were 57.4%∼75.9% and 69.0%∼93.8% during the past 8 years, respectively. No Enterococcus spp. was resistant to vancomycin. The antimicrobial resistance of Enterococcus spp. had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  4. Antimicrobial activity of antiproteinases.

    Science.gov (United States)

    Sallenave, J M

    2002-04-01

    Low-molecular-mass neutrophil elastase inhibitors have been shown to be important in the control of lung inflammation. In addition to inhibiting the enzyme neutrophil elastase, these low-molecular-mass compounds (10 kDa) have been shown to have other activities. For example, secretory leucocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor/SKALP (skin-derived antileucoproteinase)/elafin have also been shown to have "defensin"-like antimicrobial activities. Indeed, these inhibitors have antimicrobial properties in vitro against bacteria, fungi and, potentially, HIV. In addition, we have shown, using an adenovirus-mediated gene transfer overexpression strategy, that elafin is also active against Pseudomonas aeruginosa infection in mice in vivo. The mechanism of action is currently under investigation. In addition to these direct or indirect effects on microbes, it has been shown that lipopolysaccharide is able to up-regulate SPLI production in macrophages in vitro, and that the addition of recombinant SLPI to human monocytes or the transfection of macrophages with SPLI can down-regulate pro-inflammatory mediators such as tumour necrosis factor, presumably to limit self-damaging excessive inflammation. Using viral gene transfer vectors, we are currently investigating the potential of these inhibitors in various models of inflammation in vivo. PMID:12023836

  5. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary ... by Product Area Product Areas back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary ...

  6. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Department of Health and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health ... Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & ...

  7. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... U.S. Department of Health and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health ... No FEAR Act Site Map Transparency Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue ...

  8. Synthesis, characterization, thermal and antimicrobial studies of diabetic drug models: Complexes of vanadyl(II) sulfate with ascorbic acid (vitamin C), riboflavin (vitamin B2) and nicotinamide (vitamin B3)

    Science.gov (United States)

    Refat, Moamen S.

    2010-04-01

    The oxovanadium(II) complexes of the different vitamins like ascorbic acid (vitamin C; Vit. C), riboflavin (vitamin B2; Vit. B2) and nicotinamide (vitamin B3; Vit. B3) were synthesized and characterized by elemental analysis, molar conductance, IR, electronic, magnetic measurements, thermal studies, XRD and SEM. Conductance measurements indicated that the vanadyl(II) complexes of Vit. B2 and Vit. B3 are 1:2 electrolytes except for [VO(Vit. C) 2(H 2O) 2] complex is non-electrolyte. IR data show that Vit. B2 is bidentate ligand against azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione but Vit. B3 and Vit. C acts as a monodentate ligand through pyridine nitrogen and hydroxo oxygen of furan ring, respectively. Electronic spectral measurements indicated that all VO(II) complexes have a square-pyramidal geometry. Magnetic measurements for the new vanadyl(II) complexes are in a good agreement with the proposed formula. Thermal analyses (TG/DSC) of the studied complexes show that the decomposition process takes place in more than two steps. XRD refer that VO(II) complexes have an amorphous behavior. The surface morphology of the complexes was studied by SEM. The antimicrobial activities of the ligands and its complexes indicate that the vanadyl(II) complexes possess high antibacterial and antifungal activities towards the bacterial species and the fungal species than start ligands.

  9. Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae Essential Oil

    Directory of Open Access Journals (Sweden)

    Jasmina M. Glamočlija

    2011-01-01

    Full Text Available The present study was undertaken to investigate the chemical composition and effectiveness of the essential oil isolated from Echinophora spinosa on different bacterial and fungal species. Chemical analysis (GC/MS showed that δ³-carene (60,86 %, α-phellandrene (7,12%, p-cymene (6,22 %, myrcene (4,82 % and β-phellandrene (2,73 % were dominant components in this oil. Essential oil tested showed good antimicrobial activity. Antimicrobial potential of this oil was higher than potential of commercial antimicrobial drugs tested, streptomycin, bifonozole and ketoconazole.

  10. Purification and in vitro Activity of an Antimicrobial Peptide from Skin of Rana Temporaria Chensinensis, David

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jie; MENG Qing-fan; XU Xue-song; TIAN Xiao-le; JIANG Fu-jia; LI Qing-shan; TENG Li-rong

    2007-01-01

    In this study, an antimicrobial component (RTCI) was purified from the skin of Rana temporaria chensinensis,David. Antimicrobial activities of RTCI against clinical multi-drug resistant bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureaus, Klebsiella oxytoca, Klebsiella pneumoniae, Enterococcus faecalis, and Proteus mirabilis were measured in vitro by means of minimal inhibitory concentration and time-kill studies.The results indicate that RTCI could inhibit the growth of these bacteria at a proper concentration and suggest that RTCI shows a better antimicrobial activity to Gram-negative bacterial strains than to Gram-positive bacterial strains.

  11. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes

    Directory of Open Access Journals (Sweden)

    Gudepalya Renukaiah Rudramurthy

    2016-06-01

    Full Text Available Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals. Antimicrobials are considered “miracle drugs” and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.

  12. A Simple Assay to Screen Antimicrobial Compounds Potentiating the Activity of Current Antibiotics

    OpenAIRE

    Junaid Iqbal; Ruqaiyyah Siddiqui; Shahana Urooj Kazmi; Naveed Ahmed Khan

    2013-01-01

    Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract of Juglans regia tree bark was tested a...

  13. Antimicrobial, antioxidant, and synergistic properties of two nutraceutical plants: Terminalia catappa L. and Colocasia esculenta L.

    OpenAIRE

    Chanda, Sumitra; RAKHOLIYA, Kalpna; DHOLAKIA, Komal; BARAVALIA, Yogesh

    2013-01-01

    Antibiotics have been effective in treating infectious diseases, but resistance to these drugs has led to the emergence of new and reemergence of old infectious diseases. Using a combination of plant extracts and antibiotics is one way of combating these multidrug-resistant microorganisms. The aim of this investigation was to evaluate the antimicrobial and antioxidant properties of 2 nutraceutical plants: Terminalia catappa and Colocasia esculenta. The antimicrobial activity of the plants was...

  14. Antimicrobial Drug–Selection Markers for Burkholderia pseudomallei and B. mallei

    OpenAIRE

    Schweizer, Herbert P.; Peacock, Sharon J.

    2008-01-01

    Genetic research into the select agents Burkholderia pseudomallei and B. mallei is currently hampered by a paucity of approved antimicrobial drug–selection markers. The strict regulations imposed on researchers in the United States but not in other parts of the world lead to discrepancies in practice, hinder distribution of genetically modified strains, and impede progress in the field. Deliberation and decisions regarding alternative selection markers (antimicrobial and nonantimicrobial drug...

  15. Challenges with gonorrhea in the era of multi-drug and extensively drug resistance - are we on the right track?

    Science.gov (United States)

    Unemo, Magnus; Golparian, Daniel; Shafer, William M

    2014-06-01

    Neisseria gonorrhoeae has retained antimicrobial resistance to drugs previously recommended for first-line empiric treatment of gonorrhea, and resistance to ceftriaxone, the last option for monotherapy, is evolving. Crucial actions to combat this developing situation include implementing response plans; considering use of dual antimicrobial regimens; enhancing surveillance of gonorrhea, gonococcal antimicrobial resistance, treatment failures and antimicrobial use/misuse and improving prevention, early diagnosis, contact tracing and treatment. The ways forward also include an intensified research to identify novel antimicrobial resistance determinants and develop and evaluate appropriate use of molecular antimicrobial resistance testing, ideally point-of-care and with simultaneous detection of gonococci, to supplement culture-based methods and ideally guide tailored treatment. It is crucial with an enhanced understanding of the dynamics of the national and international emergence, transmission and evolution of antimicrobial-resistant gonococcal strains. Genome sequencing combined with epidemiological metadata will detail these issues and might also revolutionize the molecular antimicrobial resistance testing. Ultimately, novel antimicrobials are essential and some antimicrobials in development have shown potent in vitro activity against gonococci. Several of these antimicrobials deserve further attention for potential future treatment of gonorrhea. PMID:24702589

  16. Polymyxins: Antimicrobial susceptibility concerns and therapeutic options

    Directory of Open Access Journals (Sweden)

    V Balaji

    2011-01-01

    Full Text Available The increasing prevalence of multidrug-resistant nosocomial pathogens such as Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae poses a great challenge to the treating physicians. The paucity of newer effective antimicrobials has led to renewed interest in the polymyxin group of drugs, as a last resort for treatment of gram-negative bacterial infections. There is a dearth of information on the pharmacological properties of colistin, leading to difficulties in selecting the right dose, dosing interval, and route of administration for treatment, especially in critically-ill patients. The increasing use of colistin over the last few years necessitates the need for accurate and reliable in vitro susceptibility testing methods. Development of heteroresistant strains as a result of colistin monotherapy is also a growing concern. There is a compelling need from the clinicians to provide options for probable and possible colistin combination therapy for multidrug-resistant bacterial infections in the ICU setting. Newer combination drug synergy determination tests are being developed and reported. There are no standardized recommendations from antimicrobial susceptibility testing reference agencies for the testing and interpretation of these drug combinations. Comparison and analysis of these reported methodologies may help to understand and assist the microbiologist to choose the best method that produces accurate results at the earliest. This will help clinicians to select the appropriate combination therapy. In this era of multidrug resistance it is important for the microbiology laboratory to be prepared, by default, to provide timely synergistic susceptibility results in addition to routine susceptibility, if warranted. Not as a favour or at request, but as a responsibility.

  17. [Antimicrobial susceptibility of Neisseria gonorrhoeae strains determined by disk diffusion].

    Science.gov (United States)

    Llanes Caballero, R; Acosta Giraldo, J C; Sosa Puente, J; Guzmán Hernández, D; Gutiérrez González, O; Llop Hernández, A

    1999-01-01

    The Gonoccocus Laboratory of "Pedro Kourí" Tropical Medicine Institute carried out a study of in vitro susceptibility of Neisseria gonorrhoeae to penicillin, tetracycline, cefuroxime ceftriaxone, cefotaxine and ciprofoxacin by means of a disk diffusion method with the culture medium agar base GC plus supplement. In the first phase, the method was standardized and the reference N. gonorrhoeae ATCC 49226 strain was used whereas in the second phase, 50 gonococcal strains isolated in 8 provinces during 1995 and 1996 were examined. The results of such standardization confirmed that the antimicrobial susceptibility values were within the allowable limits. 52 and 34% of strains were resistant to penicillin and tetracycline respectively and all of them showed susceptibility to the rest of evaluated antimicrobial drugs. We recommend the use of the disk diffusion method for surveillance of gonococci resistance to these drugs in our country. PMID:10887570

  18. Bactericidal synergy of lysostaphin in combination with antimicrobial peptides.

    Science.gov (United States)

    Desbois, A P; Coote, P J

    2011-08-01

    Drug-resistant staphylococci constitute a serious problem that urgently requires the discovery of new therapeutic agents. There has been a resurgence in interest in using lysostaphin (a specific anti-staphylococcal enzyme) as a treatment for infections caused by these important pathogens. However, bacterial resistance to lysostaphin is a problem, but the use of a combination treatment may surmount this issue. In this present study, using viable counts from suspension incubations, lysostaphin is shown to be synergistically bactericidal in combination with various conventional antimicrobial peptides, the antimicrobial protein bovine lactoferrin, a lantibiotic (nisin), and certain lipopeptides used clinically (colistin, daptomycin and polymyxin B). Combinations that act in synergy are of clinical importance as these reduce the doses of the compounds needed for effective treatments and decrease the chances of resistance being selected. The use of lysostaphin in combination with a peptide may represent a new avenue in tackling drug-resistant staphylococci. PMID:21311938

  19. Antibacterial Cleaning Products and Drug Resistance

    OpenAIRE

    Aiello, Allison E.; Marshall, Bonnie; Levy, Stuart B.; Della-Latta, Phyllis; Lin, Susan X.; Larson, Elaine

    2005-01-01

    We examined whether household use of antibacterial cleaning and hygiene products is an emerging risk factor for carriage of antimicrobial drug–resistant bacteria on hands of household members. Households (N = 224) were randomized to use of antibacterial or nonantibacterial cleaning and hygiene products for 1 year. Logistic regression was used to assess the influence of antibacterial product use in homes. Antibacterial product use did not lead to a significant increase in antimicrobial drug re...

  20. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  1. [Antimicrobial susceptibility in Chile 2012].

    Science.gov (United States)

    Cifuentes-D, Marcela; Silva, Francisco; García, Patricia; Bello, Helia; Briceño, Isabel; Calvo-A, Mario; Labarca, Jaime

    2014-04-01

    Bacteria antimicrobial resistance is an uncontrolled public health problem that progressively increases its magnitude and complexity. The Grupo Colaborativo de Resistencia, formed by a join of experts that represent 39 Chilean health institutions has been concerned with bacteria antimicrobial susceptibility in our country since 2008. In this document we present in vitro bacterial susceptibility accumulated during year 2012 belonging to 28 national health institutions that represent about 36% of hospital discharges in Chile. We consider of major importance to report periodically bacteria susceptibility so to keep the medical community updated to achieve target the empirical antimicrobial therapies and the control measures and prevention of the dissemination of multiresistant strains.

  2. Analysis of Drug Resistance and Resistant Genes of Salmonella toβ-lactams Antimicrobial Agents Isolated from Pigs in Guizhou Province%贵州省猪源沙门氏菌对β-内酰胺类药耐药性及耐药基因分析

    Institute of Scientific and Technical Information of China (English)

    曹正花; 谭艾娟; 吕世明; 王雄; 杜国琴

    2016-01-01

    In order to analyse the resistance toβ-lactams antimicrobial agents and the prevalence of resistant genes of Salmonella in Guizhou province,130 Salmonella strains were isolated and iden-tified from 9 different regions of scale pig farms.The drug sensitivity to 8 kinds ofβ-lactams anti-microbial agents were determined by using the broth microdilution method.Allβ-lactams resistant isolates were detected for the presences of TEM,OXA,CTX-M and SHV genes by PCR.The re-sults showed that drug resistance of Salmonella to the commonly usedβ-lactams antimicrobial agents was very serious,and the resistance rate to ceftazidime was the highest (100%),followed by ampicillin and amoxicillin,were 76.15% and 80.77%,respectively.The resistance rates of ceft-iofur and cephalexin were the lowest (46.15%).Salmonella strains were all of multiple drug re-sistance,of which double resistance was at lowest (2.31%),and eightfold resistance was highest (4.62%),multidrug resistance mainly concentrated in fourfold to sevenfold,accounted for 88.46%.PCR results showed that TEM,OXA,CTX-M genes detection rate were 85%,75% and 46%,respectively,while the SHV gene was not inspected.Resistant phenotype was basically con-sistent with resistant genes.The results indicated that the resistance of Salmonella stains from pig toβ-lactams antimicrobial agents were widespread,and ceftazidime was particularly serious. The TEM,OXA and CTX-M genes were mainly carriedβ-lactams resistant genes in Salmonella isolates from Guizhou province.It had a great relationship between the prevalence of resistance genes and growth of antimicrobial resistance.%为了解贵州省猪源沙门氏菌对β-内酰胺类抗菌药物耐药性及其耐药基因的流行情况,本试验从贵州省9个地区规模养猪场中分离鉴定130株沙门氏菌,采用微量肉汤稀释法测定其对常用的8种β-内酰胺类抗菌药物的敏感性,并用PCR法对β-内酰胺酶耐药基因进行检测。结果显示,沙门氏菌对常

  3. Atividade antimicrobiana do extrato de Anacardium occidentale Linn. em amostras multiresistentes de Staphylococcus aureus Antimicrobial activity of the hydroalcoholic extract of Anacardium occidentale Linn. against multi-drug resistant strains of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jackeline G. da Silva

    2007-12-01

    Full Text Available Plantas medicinais com propriedades terapêuticas são de grande relevância em todo o mundo, principalmente em países em desenvolvimento. A planta Anacardium occidentale Linn. é largamente usada na medicina tradicional na nossa região, como antidiarréico, para amigdalite, bronquites, artrites, e antiiflamatório. No presente estudo avaliou-se a ação antimicrobiana do extrato hidroalcóolico da casca do caule do cajueiro frente a amostras de Staphylococcus aureus resistentes e sensíveis à meticilina, obtidas a partir de pacientes internados do Hospital Universitário/Universidade Federal da Paraíba. A atividade antimicrobiana foi determinada pelo método de difusão em meio sólido para a determinação da Concentração Inibitória Mínima do extrato, e foi observada no total de 30 amostras, pela presença ou não do halo de inibição. Todas as amostras ensaiadas mostraram-se sensíveis à ação do extrato do cajueiro, com diâmetros dos halos de inibição variando de 10 a 20 mm, demonstrando grande eficácia do cajueiro. Assim, o uso desta planta na nossa região pode inferir uma alternativa terapêutica eficiente e de baixo custo, contra infecções bacterianas causadas por Staphylococcus aureus.Medicinal plants with therapeutical properties are of great significance in the whole world, especially in developing countries. Anacardium occidentale Linn. is a plant widely used in the traditional medicine in our region against diarrhea, tonsillitis, bronchitis, arthritis, and inflammation. In this paper, the antimicrobial activity of the hydroalcoholic extract of the cashew tree stem was evaluated against samples of meticillin-resistant and meticillin-sensible Staphylococcus aureus, attained from patients interned at Hospital Universitário/Universidade Federal da Paraíba. The antimicrobial activity was determined by the diffusion method in solid milieu to determine the Minimum Inhibitory Concentration (MIC of the extract, and it was

  4. Antimicrobial properties of hemoglobin.

    Science.gov (United States)

    Sheshadri, Preethi; Abraham, Jayanthi

    2012-12-01

    Hemoglobin consists of a heme containing component and a globin unit. It exists as a tetramer with 2 α subunits and 2 β subunits in adults and with 2 α subunits and 2 γ chains in infants. On proteolytic cleavage, hemoglobin breaks down to produce many biologically active compounds, among which are hemocidins, those which exhibit antimicrobial property. The generation of these peptides does not depend on the blood group, Rhesus factor, age and sex of the healthy donors. The microbicidal activity has been observed against a variety of gram positive and Gram-negative bacteria, and against filamentous fungi, yeast and even certain parasites. The discovery of hemocidins opens a new field for research into the details of the peptides acting as second line of defence in boosting the innate immune system of the organisms.

  5. Salt-resistant short antimicrobial peptides.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  6. Staphylococcus aureus resistance to topical antimicrobials in atopic dermatitis*

    Science.gov (United States)

    Bessa, Giancarlo Rezende; Quinto, Vanessa Petry; Machado, Daiane Corrêa; Lipnharski, Caroline; Weber, Magda Blessmann; Bonamigo, Renan Rangel; D'Azevedo, Pedro Alves

    2016-01-01

    Background Topical antimicrobial drugs are indicated for limited superficial pyodermitis treatment, although they are largely used as self-prescribed medication for a variety of inflammatory dermatoses, including atopic dermatitis. Monitoring bacterial susceptibility to these drugs is difficult, given the paucity of laboratory standardization. Objective To evaluate the prevalence of Staphylococcus aureus topical antimicrobial drug resistance in atopic dermatitis patients. Methods We conducted a cross-sectional study of children and adults diagnosed with atopic dermatitis and S. aureus colonization. We used miscellaneous literature reported breakpoints to define S. aureus resistance to mupirocin, fusidic acid, gentamicin, neomycin and bacitracin. Results A total of 91 patients were included and 100 S. aureus isolates were analyzed. All strains were methicillin-susceptible S. aureus. We found a low prevalence of mupirocin and fusidic acid resistance (1.1% and 5.9%, respectively), but high levels of neomycin and bacitracin resistance (42.6% and 100%, respectively). Fusidic acid resistance was associated with more severe atopic dermatitis, demonstrated by higher EASI scores (median 17.8 vs 5.7, p=.009). Our results also corroborate the literature on the absence of cross-resistance between the aminoglycosides neomycin and gentamicin. Conclusions Our data, in a southern Brazilian sample of AD patients, revealed a low prevalence of mupirocin and fusidic acid resistance of S. aureus atopic eczema colonizer strains. However, for neomycin and bacitracin, which are commonly used topical antimicrobial drugs in Brazil, high levels of resistance were identified. Further restrictions on the use of these antimicrobials seem necessary to keep resistance as low as possible.

  7. Antimicrobial Potential Of Azadirachta Indica Against Pathogenic Bacteria And Fungi

    OpenAIRE

    Mohammad Asif

    2012-01-01

    Drugs from natural sources are used for treating various diseases since the ancient times. From the literature it is clear that various type of pharmacological and biological activities are associated with Azadirachta indica. Theleave oil of A. indica is known to have good antimicrobial potential. The oil of A. indica leaves, was tested against the different infectious microorganisms [Gram positive bacteria and Gram-negative bacteria], such as bacterial strains; S. aureus, E. coli, B. cerus, ...

  8. Synthetic RNA silencing in bacteria - antimicrobial discovery and resistance breaking

    Directory of Open Access Journals (Sweden)

    James E.M. Stach

    2011-09-01

    Full Text Available The increasing incidence and prevalence of antibiotic resistance in bacteria threatens the antibiotic miracle. Conventional antimicrobial drug development has failed to replace the armamentarium needed to combat this problem, and novel solutions are urgently required. Here we review both natural and synthetic RNA silencing and its potential to provide new antibacterials through improved target selection, evaluation and screening. Furthermore, we focus on synthetic RNA silencers as a novel class of antibacterials and review their unique properties.

  9. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... About FDA Contact FDA Browse by Product Area Product Areas back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products

  10. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary ... The Food and Drug Administration's (FDA's) Center for Veterinary Medicine (CVM) produced a nine-minute animation explaining how ...

  11. Antimicrobial Use-Related Problems and Predictors among Hospitalized Medical In-Patients in Southwest Ethiopia: Prospective Observational Study

    Science.gov (United States)

    Yadesa, Tadele Mekuriya; Gudina, Esayas Kebede; Angamo, Mulugeta Tarekegn

    2015-01-01

    Background The spread of antimicrobial resistance in developing countries is associated with complex and interconnected factors, such as excessive and unnecessary prescribing of antimicrobials, increased self-prescribing by the people and poor quality of available antimicrobials. Moreover, the failure to implement infection control practices and the dearth of routine susceptibility testing and surveillance magnify the problems. This may spread the inappropriateness of prescribing, ending up with the spread of antimicrobial resistance. Objective The aim of this study was to assess antimicrobial use related problems and associated factors among patients admitted at Jimma University specialized hospital. Methods A hospital based prospective observational study design was employed at medical wards of Jimma University specialized hospital, Ethiopia. Data collected from patient medication charts and from the patients was analyzed using SPSS, version 16.0. Logistic regression was used to determine the associations between variables. Statistical significance was considered at p-value <0.05. Results Out of 152 study participants, at least one antimicrobial use problem was identified among 115(75.7%). Accordingly, additional antimicrobials were needed by 45(29.6%) of the patients, whereas they were unnecessary among 44(28.9%). Similarly, 17% of the patients were noncompliant to at least one antimicrobial therapy, while 8.6% experienced at least one type of adverse drug reaction. On the other hand, the coverage of the infectious medical condition in the national guidelines (AOR = 4.888) and the duration of hospital stay (AOR = 3.086) were the determinants of the antimicrobial use problems. Conclusion Most of the antimicrobial use problems identified were related to delay of initiation of effective antimicrobials and excessive use; use without indication or using duplicates of broad spectrum antimicrobials or use for longer duration than recommended. The coverage of the

  12. Antimicrobial seafood packaging: a review.

    Science.gov (United States)

    Singh, Suman; Ho Lee, Myung; Park, Lnsik; Shin, Yangjai; Lee, Youn Suk

    2016-06-01

    Microorganisms are the major cause of spoilage in most seafood products; however, only few microbes, called the specific spoilage organisms (SSOs), contribute to the offensive off-flavors associated with seafood spoilage. In food, microbial degradation manifests itself as spoilage, or changes in the sensory properties of a food product, rendering it unsuitable for human consumption. The use of antimicrobial substances can control the general microflora as well as specific microorganisms related to spoilage to provide products with higher safety and better quality. Many antimicrobial compounds have been evaluated in film structures for use in seafood, especially organic acids and their salts, enzymes, bacteriocins; some studies have considered inorganic compounds such as AgSiO2, zinc oxide, silver zeolite, and titanium oxide. The characteristics of some organic antimicrobial packaging systems for seafood and their antimicrobial efficiency in film structures are reviewed in this article. PMID:27478206

  13. Automation of antimicrobial activity screening.

    Science.gov (United States)

    Forry, Samuel P; Madonna, Megan C; López-Pérez, Daneli; Lin, Nancy J; Pasco, Madeleine D

    2016-03-01

    Manual and automated methods were compared for routine screening of compounds for antimicrobial activity. Automation generally accelerated assays and required less user intervention while producing comparable results. Automated protocols were validated for planktonic, biofilm, and agar cultures of the oral microbe Streptococcus mutans that is commonly associated with tooth decay. Toxicity assays for the known antimicrobial compound cetylpyridinium chloride (CPC) were validated against planktonic, biofilm forming, and 24 h biofilm culture conditions, and several commonly reported toxicity/antimicrobial activity measures were evaluated: the 50 % inhibitory concentration (IC50), the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Using automated methods, three halide salts of cetylpyridinium (CPC, CPB, CPI) were rapidly screened with no detectable effect of the counter ion on antimicrobial activity. PMID:26970766

  14. Medicamentos utilizados em transplante de medula óssea: um estudo sobre combinações dos antimicrobianos potencialmente interativos Medicamentos utilizados en casos de trasplante de médula ósea: un estudio sobre combinaciones antimicrobianas potencialmente interactivas Drugs used in bone marrow transplantation: a study about combinations of antimicrobial potentially interactives

    Directory of Open Access Journals (Sweden)

    Rosimeire Barbosa Fonseca

    2008-12-01

    ón de medicamentos potencialmente interactivos fue frecuente en estos pacientes, condición que asociada a la polifarmacia y a la distribución simultánea de horarios en su administración podría predisponer al paciente a efectos adversos, afectando la seguridad en el tratamiento.The study aimed at characterizing the profile of the drugs and identify combinations between potentially interactive anti-microbial drugs used in patients who underwent bone marrow transplantation (BMT. The analysis covered 70 prescription medications for BMT patients hospitalized at Instituto do Coração, São Paulo, Brazil. Medications were classified according to the Alpha system, listing their interactive potential and pharmacological characteristics according to literature. Data were analyzed through descriptive statistics. Results showed that 72.7% of drugs presented an interactive potential, with precipitators (79.2% and fluconazole (85.7%, high-lighted as the most involved anti-microbial in the combinations, associated to omeprazole in 40% of the samples. BMT patients were frequently administered combinations of potentially interactive drugs. This condition, when associated with simultaneous schedules, could predispose patients to undesirable events, thus affecting the security of the therapy.

  15. A Study of Anti-Microbial Effect of Pycnocycla Spinosa's Fruit Extracts

    Directory of Open Access Journals (Sweden)

    M. Jalali, Ph.D.

    2007-09-01

    Full Text Available Background and purpose: Infectious diseases account for approximately one-half of all deaths in tropical country. In developed country, despite the progress made on the control of disease, incidence of epidemics due to drug resistant microorganisms and unknown diseases spreading microbes pose enormous public health concerns. On the other hand, in spite of improvements in food production hygiene, food safety is increasingly an important health issue. There is, therefore, still a need for new antimicrobial agent to reduce or eliminate foodborne pathogen as well as food spoilage microorganisms. Historically, plants play a major role in primary health-care as therapeutic remedies in developing countries. The screening of plant extracts has been of great interest to scientists for the discovery of new drugs effective in the treatment of infectious disease. Umbelleferea is known to be a potential source for the antimicrobial agents. The present study attempts to investigate the antimicrobial activity of Pycnocycla spinosa as a member of Umbelleferea against selected microorganisms.Materials and Methods: The plants were collected from Isfahan and different solvent extracts of plants were prepared. Then, the antimicrobial activity of extract was determined, using disk diffusion method. The minimal inhibitory concentration (MIC was determined by tube dilution method.Results: Results demonstrated that different extracts of plants indicate antimicrobial activity against bucillu subtilis, aspergiluse niger and candida albicans. Generally, the antimicrobial activity of the plant’s fruit extracts is considered medium.Conclusion: Pycnocycla spinosa fruit's extract showed medium antimicrobial activity. Hydroalcoholic extract of the fruit demonstrated higher antimicrobial activity. This may reflect a low concentration of active components in extracts. Further studies are needed to investigate antimicrobial activity of the plant's essential oil and other parts

  16. Distinct Profiling of Antimicrobial Peptide Families

    KAUST Repository

    Khamis, Abdullah M.

    2014-11-10

    Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a potential substitute for conventional antibiotics. Designing new AMPs using current in-silico approaches is, however, challenging due to the absence of suitable models, large number of design parameters, testing cycles, production time and cost. To date, AMPs have merely been categorized into families according to their primary sequences, structures and functions. The ability to computationally determine the properties that discriminate AMP families from each other could help in exploring the key characteristics of these families and facilitate the in-silico design of synthetic AMPs. Results: Here we studied 14 AMP families and sub-families. We selected a specific description of AMP amino acid sequence and identified compositional and physicochemical properties of amino acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity, specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified discriminative properties have been shown to be compositional or functional characteristics of the corresponding AMP family in literature. We suggest that these properties could serve as guides for in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic and has a potential to be applied for characterization of any protein family.

  17. Molecular Targets of β-Lactam-Based Antimicrobials: Beyond the Usual Suspects

    OpenAIRE

    Konaklieva, Monika I.

    2014-01-01

    The common practice in antibacterial drug development has been to rapidly make an attempt to find ever-more stable and broad-spectrum variants for a particular antibiotic, once a drug resistance for that antibiotic is detected. We are now facing bacterial resistance toward our clinically relevant antibiotics of such a magnitude that the conversation for antimicrobial drug development ought to include effective new antibiotics with alternative mechanisms of action. The electrophilic β-lactam r...

  18. Human Antimicrobial Peptides and Proteins

    OpenAIRE

    Guangshun Wang

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified ...

  19. Antimicrobials for bacterial bioterrorism agents.

    Science.gov (United States)

    Sarkar-Tyson, Mitali; Atkins, Helen S

    2011-06-01

    The limitations of current antimicrobials for highly virulent pathogens considered as potential bioterrorism agents drives the requirement for new antimicrobials that are suitable for use in populations in the event of a deliberate release. Strategies targeting bacterial virulence offer the potential for new countermeasures to combat bacterial bioterrorism agents, including those active against a broad spectrum of pathogens. Although early in the development of antivirulence approaches, inhibitors of bacterial type III secretion systems and cell division mechanisms show promise for the future.

  20. Antimicrobial Use: A Risk Factor or a Protective Factor for Acquiring Campylobacteriosis?

    DEFF Research Database (Denmark)

    Koningstein, Maike; Simonsen, Jacob; Helms, Morten;

    2011-01-01

    Background. It is well acknowledged that the use of antimicrobial drugs in food animals leads to antimicrobial drug resistance in foodborne bacteria such as Campylobacter; however, the role of human antimicrobial usage is much less investigated. The aim of this study was to quantify the odds...... was reduced 1 month after exposure to macrolides (OR, 0.72; 95% confidence interval [CI], 0.56–0.92). Macrolide exposure 1 month to 2 years before infection was associated with an increased risk of a Campylobacter diagnosis (OR, 1.5; 95% CI, 1.4–1.6). A history of fluoroquinolone use was also associated...... with increased risk (OR, 2.5; 95% CI, 1.8–3.5). This risk was higher for resistant isolates than for susceptible ones. CONCLUSIONS: Treatment with macrolides may protect against Campylobacter infection for a limited period of time, possibly due to the antibacterial effects of the drug or its metabolites...

  1. Different patterns of inappropriate antimicrobial use in surgical and medical units at a tertiary care hospital in Switzerland: a prevalence survey.

    Directory of Open Access Journals (Sweden)

    Alexia Cusini

    Full Text Available BACKGROUND: Unnecessary or inappropriate use of antimicrobials is associated with the emergence of antimicrobial resistance, drug toxicity, increased morbidity and health care costs. Antimicrobial use has been reported to be incorrect or not indicated in 9-64% of inpatients. We studied the quality of antimicrobial therapy and prophylaxis in hospitalized patients at a tertiary care hospital to plan interventions to improve the quality of antimicrobial prescription. METHODOLOGY/PRINCIPAL FINDINGS: Experienced infectious diseases (ID fellows performed audits of antimicrobial use at regular intervals among all patients--with or without antimicrobials--hospitalized in predefined surgical, medical, haemato-oncological, or intensive care units. Data were collected from medical and nursing patient charts with a standardized questionnaire. Appropriateness of antimicrobial use was evaluated using a modified algorithm developed by Gyssens et al.; the assessment was double-checked by a senior ID specialist. We evaluated 1577 patients of whom 700 (44.4% had antimicrobials, receiving a total of 1270 prescriptions. 958 (75.4% prescriptions were for therapy and 312 (24.6% for prophylaxis. 37.0% of therapeutic and 16.6% of prophylactic prescriptions were found to be inappropriate. Most frequent characteristics of inappropriate treatments included: No indication (17.5%; incorrect choice of antimicrobials (7.6%; incorrect application of drugs (9.3%; and divergence from institutional guidelines (8%. Characteristics of inappropriate prophylaxes were: No indication (9%; incorrect choice of antimicrobials (1%; duration too long or other inappropriate use (6.7%. Patterns of inappropriate antimicrobial varied widely in the different hospital units; empirical prescriptions were more frequently incorrect than prescriptions based on available microbiological results. CONCLUSIONS/SIGNIFICANCE: Audits of individual patient care provide important data to identify local

  2. Drug Facts

    Medline Plus

    Full Text Available ... People Drug Abuse Hurts Families Drug Abuse Hurts Kids Drug Abuse Hurts Unborn Children Drug Abuse Hurts ... Children and Teens Stay Drug-Free Talking to Kids About Drugs: What To Say if You Were ...

  3. Towards the establishment and standardization of a veterinary antimicrobial resistance surveillance and monitoring programme in South Africa

    Directory of Open Access Journals (Sweden)

    H. Nel

    2004-11-01

    Full Text Available The objective of this study was to establish a repeatable, standardized laboratory procedure for monitoring the development of antimicrobial resistance in bacteria isolated from animals and food of animal origin in South Africa, with reagents prepared in-house. The emergence of resistance and the spread of resistant bacteria can be limited by implementing a veterinary antimicrobial drug policy, in which inter alia systematic monitoring and prudent use play essential roles. The bacteria included in this study represented three different categories, namely zoonotic bacteria (Salmonella, indicator bacteria (Escherichia coli, Enterococcus faecalis and Enterococcus faecium and veterinary pathogens (Mannheimia haemolytica. Thirty isolates of each species were collected with the aim of standardizing the laboratory methodology for a future national veterinary surveillance and monitoring programme. Susceptibility to ten selected antimicrobial drugs was determined by means of minimum inhibitory concentrations (MICs using the microdilution method. The method according to the National Committee for Clinical Laboratory Standards was used as the standard. Multi-well plates containing varying dilutions of antimicrobial drugs and prepared in-house for MIC determinations, yielded repeatable results. Storage of plates for 2 months at -70 oC did not influence results meaningfully. Within this limited sample of bacteria, MIC results did not indicate meaningful resistance against any of the ten selected antimicrobial drugs. The findings of the study will be used to establish a national veterinary antimicrobial resistance surveillance and monitoring programme in South Africa. To allow for international comparison of data, harmonisation of the surveillance and monitoring programme in accordance with global trends is encouraged. Ideally it should be combined with a programme monitoring the quantities of antimicrobial drugs used. The aim is to contribute to slowing down

  4. Drug interactions of anti-microbial agents used in hematopoietic stem cell transplantation Interacciones medicamentosas de antimicrobianos utilizados en trasplante de células madre hematopoyéticas Interações medicamentosas de antimicrobianos utilizados em transplante de células-tronco hematopoéticas

    Directory of Open Access Journals (Sweden)

    Rosimeire Barbosa Fonseca Guastaldi

    2011-08-01

    Full Text Available This study analyzed potential drug interactions (PDIs of antimicrobials used in patients of hematopoietic stem cell transplantation and identified associated factors. The sample consisted of 70 patients admitted to a hospital in São Paulo. The PDIs were analyzed through the consultation of the Drug Interactions Facts and Drug Interactions Handbook. Descriptive statistics and logistic regression were used. Half of the sample was exposed to 13 PDIs, which occurred with fluconazole (53.8%, ciprofloxacin (30.8% and sulfamethoxazole-trimethoprim (15.4%. Most (92.3% were of moderate severity, with good evidence (61.6%, early delayed effect (61.5% and need to have their therapy monitored (76.9%. Patients with four or more medications (pEl estudio analizó interacciones medicamentosas potenciales (IMP de antimicrobianos usados en pacientes sometidos a trasplante de células madre hematopoyéticas e identificó los factores asociados las IMP. La casuística fue compuesta por 70 pacientes internados en un Hospital de Sao Paulo. Las IMP fueron a través de la consulta al Drug Interactions Facts y Drug Interactions Handbook. En el análisis de los datos se utilizó estadística descriptiva y regresión logística. Mitad de la muestra fue expuesta a 13 IMP, que ocurrieron con fluconazol (53,8%, ciprofloxacina (30,8% y sulfametoxazol+trimetoprima (15,4%. La mayoría (92,3% presentó gravedad moderada, inicio de efecto demorado (61,5% y necesidad de monitorizar la terapia (76,9%. Cuatro o más medicamentos (pNeste estudo, analisaram-se as interações medicamentosas potenciais (IMP de antimicrobianos, usados em pacientes submetidos a transplante de células-tronco hematopoiéticas e foram identificdos os fatores associados às IMPs. A casuística foi composta por 70 pacientes internados em hospital do município de São Paulo. As IMPs foram analisadas através da consulta ao Drug Interactions Facts e Drug Interactions Handbook. Na análise dos dados, utilizou

  5. Evaluation of antimicrobial consumption in Campania Region, Italy

    Directory of Open Access Journals (Sweden)

    Simona Cammarota

    2008-01-01

    Full Text Available Introduction: the antibiotic usage in Italy is above the European average. From several years the Campania was the first Italian region in terms of antimicrobial consumption. Aim: to evaluate antibiotic utilisation in primary health care in Campania, a region of approximately 5.7 million inhabitants in the south of Italy. Method: we collected, from an electronic database, all prescription drugs reimbursed in 2005. The cohort was defined as the population of subjects receiving at least one prescription of any antimicrobial agent for systemic use, classified according to their therapeutic role using Anatomic Therapeutic Chemical (ATC classification. Drugs cost and consumption were quantified using National Health Service (NHS prospective and Defined Daily Dose system (DDD respectively. All costs were expressed in Euro 2005. Results: antiinfectives agents (ATC J was the second class of drugs in terms of cost, representing 16.1% of the regional drug expenditure. Their consumption were 33 DDD/1000 inhabitants/day. Stratifying by age antibiotic use was highest in children and elderly subjects. Penicillins, macrolides and cephalosporins were the most prescribed antibiotic classes in all age groups. Discussion: despite guidelines introduced to limit the prescription of parenteral antibiotics to the patients who are most likely to benefit from it, they were mostly prescribed. This represented a serious problem for the development of drug-resistant bacteria.

  6. Development of antimicrobial and scar preventive chitosan hydrogel wound dressings.

    Science.gov (United States)

    Anjum, Sadiya; Arora, Abha; Alam, M S; Gupta, Bhuvanesh

    2016-07-11

    Antimicrobial and scar preventive wound dressings were developed by coating a blend of chitosan (CS), polyethylene glycol (PEG) and polyvinyl pyrolidone (PVP) on the cotton fabric and subsequent freeze drying. The miscibility of blend systems and functional group interaction were investigated by attenuated total reflectance-infra red spectroscopy. The scanning electron microscopy of the coated fabric revealed porous structure. The porosity of the material was 54-70% and the pore size was in the range of 75-120μm depending on the blend composition. The air permeability diminished as the PVP content increased. The water vapour transmission rate was in the range of 2000-3500g/m(2)day which may offer to be proper material for the wound dressing with moderate exudate absorption. Tetracycline hydrochloride was used as model drug within the hydrogel matrix. The cumulative release of drug was found to be ∼80% of the total loading after ∼48h. The drug loaded dressings showed good antimicrobial nature against both gram positive and gram negative bacteria. In vivo wound healing and tissue compatibility studies were carried out over a period of 21 days on full-thickness skin wounds created on male Wistar rats. Fast healing was observed in drug loaded dressing treated wounds with minimum scarring, as compared to the other groups. These results suggest that drug loaded dressing could provide scar preventive wound healing. PMID:27163526

  7. Rational use of antimicrobials in dentistry during pregnancy.

    Science.gov (United States)

    Lodi, Karina Bortolin; Carvalho, Luis Felipe das Chagas e Silva de; Koga-Ito, Cristiane Yumi; Carvalho, Valéria Abrantes Pinheiro; Rocha, Rosilene Fernandes da

    2009-01-01

    The use of medicines during pregnancy deserves special attention from dentists due to the potential risks to fetal development. The prescription of antimicrobial drugs during this period must be based not only on the etiology of the disease but also on the drug's effect on the embryo, which may be toxic, possibly leading to irreversible lesions. Interest in studies of the teratogenic effects of drugs increased in response to reports of the high incidence of phocomelia in patients treated with thalidomide. Although teratogenicity has long been known, pregnant women today are still exposed to this risk. The effects of drugs depend on the level of susceptibility of the fetus and on the period of exposure during pregnancy. In this context, and considering the paucity of studies on this subject in dentistry, the aim of this review was to offer an up-to-date compilation of data on the antimicrobial drugs most frequently used during pregnancy and the effects of their use. PMID:19114950

  8. Editorial of the Special Issue Antimicrobial Polymers

    Directory of Open Access Journals (Sweden)

    Iolanda Francolini

    2013-09-01

    Full Text Available The special issue “Antimicrobial Polymers” includes research and review papers concerning the recent advances on preparation of antimicrobial polymers and their relevance to industrial settings and biomedical field. Antimicrobial polymers have recently emerged as promising candidates to fight microbial contamination onto surfaces thanks to their interesting properties. In this special issue, the main strategies pursued for developing antimicrobial polymers, including polymer impregnation with antimicrobial agents or synthesis of polymers bearing antimicrobial moieties, were discussed. The future application of these polymers either in industrial or healthcare settings could result in an extremely positive impact not only at the economic level but also for the improvement of quality of life.

  9. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.

    Science.gov (United States)

    Maddox, T W; Clegg, P D; Williams, N J; Pinchbeck, G L

    2015-11-01

    Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined.

  10. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.

    Science.gov (United States)

    Maddox, T W; Clegg, P D; Williams, N J; Pinchbeck, G L

    2015-11-01

    Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined. PMID:26084443

  11. Enhancing US-Japan cooperation to combat antimicrobial resistance.

    Science.gov (United States)

    Gerbin, C Sachi

    2014-01-01

    The Global Health Security Agenda (GHSA) is aimed at preventing, detecting, and responding to infectious disease threats. To move toward these goals, the United States has committed to partner with at least 30 countries around the world. One of the objectives of the GHSA includes "[p]reventing the emergence and spread of antimicrobial drug resistant organisms." Antimicrobial resistance (AMR) has become a growing global health security problem, with inappropriate use of antimicrobial medications in humans and animals and a lack of new antimicrobial medications contributing to this problem. While AMR is a growing global concern, working on it regionally can make this multifaceted problem more manageable. The United States and Japan, both world leaders in the life sciences, are close allies that have established cooperative programs in medical research and global health that can be used to work on combating AMR and advance the GHSA. Although the United States and Japan have cooperated on health issues in the past, their cooperation on the growing problem of AMR has been limited. Their existing networks, cooperative programs, and close relationships can and should be used to work on combating this expanding problem.

  12. Antimicrobial Peptides from Plants

    Science.gov (United States)

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  13. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  14. Antimicrobial peptides in annelids

    Directory of Open Access Journals (Sweden)

    A Tasiemski

    2008-06-01

    Full Text Available Gene encoded antimicrobial peptides (AMPs are widely distributed among living organisms including plants, invertebrates and vertebrates. They constitute important effectors of the innate immune response by exerting multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis and immune induction. In invertebrates, most of the data describe the characterization and/or the function of AMPs in the numerically and economically most representative group which are arthropods. Annelids are among the first coelomates and are therefore of special phylogenetic interest. Compared to other invertebrate groups, data on annelid’s immunity reveal heavier emphasis on the cellular than on the humoral response suggesting that immune defense of annelids seems to be principally developed as cellular immunity.This paper gives an overview of the variety of AMPs identified in the three classes of annelids, i.e. polychaetes, oligochaetes and achaetes. Their functions, when they have been studied, in the humoral or cellular response of annelids are also mentioned.

  15. Antimicrobial peptides in crustaceans

    Directory of Open Access Journals (Sweden)

    RD Rosa

    2010-11-01

    Full Text Available Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP families are currently recognized, although the great majority (14 families comes from members of the order Decapoda. Crustacean AMPs are generally cationic, gene-encoded molecules that are mainly produced by circulating immune-competent cells (hemocytes or are derived from unrelated proteins primarily involved in other biological functions. In this review, we tentatively classified the crustacean AMPs into four main groups based on their amino acid composition, structural features and multi-functionality. We also attempted to summarize the current knowledge on their implication both in an efficient response to microbial infections and in crustacean survival.

  16. Regional, Seasonal, and Temporal Variations in the Prevalence of Antimicrobial-Resistant Escherichia coli Isolated from Pigs at Slaughter in Denmark (1997-2005)

    DEFF Research Database (Denmark)

    Abatih, E. N.; Emborg, Hanne-Dorthe; Jensen, Vibeke Frøkjær;

    2009-01-01

    Antimicrobial Resistance Monitoring and Research Programme database. The Cochran-Armitage trend test was used to detect the presence and evaluate the significance of regional, seasonal, and annual trends in the occurrence of antimicrobial-resistant E. coli for four drugs. Associations between resistance...

  17. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available HHS U.S. Department of Health and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health A to Z Index Follow FDA En Español Search FDA Submit search Popular Content Home ...

  18. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available HHS U.S. Department of Health and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health A to Z Index Follow FDA En Español Search FDA Submit search ...

  19. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... back to top Popular Content Home Latest Recalls Report an Adverse Event MedWatch Safety Alerts News Releases Consumer Updates About FDA Contact FDA Browse by Product Area Product Areas back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ...

  20. Antimicrobial Susceptibility of Multi-drug Resistant Acinetobacter Baumannii and Pseudomonas Aeruginosa Isolates from 27 Hospitals in China%全国27所医院多重耐药鲍曼不动杆菌及铜绿假单胞菌对12种抗菌药物的敏感性

    Institute of Scientific and Technical Information of China (English)

    范欣; 张琪; 肖永红; 徐英春; 肖盟; 杨启文; 窦红涛; 郭莉娜; 王贺; 原英; 王澎; 赵颖

    2014-01-01

    目的:研究医院感染相关多重耐药鲍曼不动杆菌(multi-drug resistant Acinetobacter baumannii, MDR-AB)及多重耐药铜绿假单胞菌( multi-drug resistant Pseudomonas aeruginosa, MDR-PA)对12种抗菌药物的敏感性。方法收集2011年8月至2012年7月全国27所教学医院分离的医院感染相关MDR-AB及MDR-PA菌株。所有菌株均分离自有明确感染意义的临床标本,严格排除痰及筛查性拭子。菌株收集后统一在微生物实验室采用微量肉汤稀释法,测定其对12种抗菌药物的最小抑菌浓度(minimum inhibitory concentration, MIC),并同时用CLSI M100-S24及M100-S23/S21鲍曼不动杆菌和铜绿假单胞菌的碳青霉烯类新旧折点进行对比分析。结果本研究共收集到MDR-AB 664株,未发现全耐药鲍曼不动杆菌;收集到MDR-PA 268株,其中有4株全耐药铜绿假单胞菌。外科病房及ICU病房是多重耐药菌株的主要来源。 MDR-AB对黏菌素的敏感率最高,为96.8%;替加环素的敏感率为72.6%,其余药物的敏感率均低于55%。 MDR-PA对黏菌素的敏感率仅为72.4%,但对阿米卡星的敏感率(64.2%)明显高于MDR-AB (16.7%)。在CLSI折点改变后, MDR-AB对亚胺培南及美罗培南的敏感率仅分别下降了1.3%和0.6%,但MDR-PA对亚胺培南及美罗培南的敏感率分别下降了5.5%和8.6%。 ICU病房来源的MDR-AB及MDR-PA对碳青霉烯酶类药物敏感率都明显低于外科及其他病房。不同地域来源多重耐药菌株的耐药谱有所差异。结论黏菌素和替加环素对MDR-AB有良好的抗菌活性,黏菌素及阿米卡星对MDR-PA抗菌活性较好。%Objective To investigate the antimicrobial susceptibilities of nosocomial multi-drug resistant Acinetobacter baumannii ( MDR-AB) and multi-drug resistant Pseudomonas aeruginosa ( MDR-PA) isolates. Methods MDR-AB and MDR-PA isolates were collected between August 2011 and July 2012

  1. Identification and antimicrobial susceptibility patterns of bacteria causing otitis externa in dogs.

    Science.gov (United States)

    Zamankhan Malayeri, Hamed; Jamshidi, Shahram; Zahraei Salehi, Taghi

    2010-06-01

    Bacterial agents are considered important pathogens causing external otitis in dogs. It is essential to carry out bacterial culture and antimicrobial susceptibility test in the case of otitis externa, particularly for chronic or recurring cases. Sterile swab samples were obtained from terminal part of vertical ear canals of 74 dogs with otitis externa for cytology, bacterial culture and antimicrobial susceptibility test. Cytologic smears were stained using Gram and Giemsa staining methods. Aerobic bacterial culture performed on blood agar and MacConkey agar. Among total number of 92 isolated bacteria, 68 were Staphylococcus intermedius. Other isolated bacteria included: Pseudomonas aeruginosa, Proteus mirabilis, Escherichia coli, Pasteurella canis, and six other species of coagulase-negative Staphylococcus. Antimicrobial susceptibility test were performed for all isolated bacteria using 14 antibiotics. Based on the results of this study, all isolated Staphylococcus spp. were sensitive to amikacin, enrofloxacin, and rifampin, and had low resistance to gentamicin, cephalothin and ceftriaxone. More than half of gram-positive isolates were resistant to penicillin and ampicillin. Generally, all isolated gram-negative bacteria, were sensitive to amikacin and enrofloxacin, and had low resistance to ceftriaxone and gentamicin. They were highly resistant to penicillin, eythromycin, and cephalothin. Regarding the results of this study, in cases of uncomplicated otitis externa, it is possible to select antimicrobial drugs merely based on cytology, but it is recommended to perform bacterial culture and antimicrobial susceptibility test. However, in complicated or refractory cases, antimicrobials should be selected based on bacterial culture and antimicrobial susceptibility test.

  2. Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA).

    Science.gov (United States)

    Sartelli, Massimo; Weber, Dieter G; Ruppé, Etienne; Bassetti, Matteo; Wright, Brian J; Ansaloni, Luca; Catena, Fausto; Coccolini, Federico; Abu-Zidan, Fikri M; Coimbra, Raul; Moore, Ernest E; Moore, Frederick A; Maier, Ronald V; De Waele, Jan J; Kirkpatrick, Andrew W; Griffiths, Ewen A; Eckmann, Christian; Brink, Adrian J; Mazuski, John E; May, Addison K; Sawyer, Rob G; Mertz, Dominik; Montravers, Philippe; Kumar, Anand; Roberts, Jason A; Vincent, Jean-Louis; Watkins, Richard R; Lowman, Warren; Spellberg, Brad; Abbott, Iain J; Adesunkanmi, Abdulrashid Kayode; Al-Dahir, Sara; Al-Hasan, Majdi N; Agresta, Ferdinando; Althani, Asma A; Ansari, Shamshul; Ansumana, Rashid; Augustin, Goran; Bala, Miklosh; Balogh, Zsolt J; Baraket, Oussama; Bhangu, Aneel; Beltrán, Marcelo A; Bernhard, Michael; Biffl, Walter L; Boermeester, Marja A; Brecher, Stephen M; Cherry-Bukowiec, Jill R; Buyne, Otmar R; Cainzos, Miguel A; Cairns, Kelly A; Camacho-Ortiz, Adrian; Chandy, Sujith J; Che Jusoh, Asri; Chichom-Mefire, Alain; Colijn, Caroline; Corcione, Francesco; Cui, Yunfeng; Curcio, Daniel; Delibegovic, Samir; Demetrashvili, Zaza; De Simone, Belinda; Dhingra, Sameer; Diaz, José J; Di Carlo, Isidoro; Dillip, Angel; Di Saverio, Salomone; Doyle, Michael P; Dorj, Gereltuya; Dogjani, Agron; Dupont, Hervé; Eachempati, Soumitra R; Enani, Mushira Abdulaziz; Egiev, Valery N; Elmangory, Mutasim M; Ferrada, Paula; Fitchett, Joseph R; Fraga, Gustavo P; Guessennd, Nathalie; Giamarellou, Helen; Ghnnam, Wagih; Gkiokas, George; Goldberg, Staphanie R; Gomes, Carlos Augusto; Gomi, Harumi; Guzmán-Blanco, Manuel; Haque, Mainul; Hansen, Sonja; Hecker, Andreas; Heizmann, Wolfgang R; Herzog, Torsten; Hodonou, Adrien Montcho; Hong, Suk-Kyung; Kafka-Ritsch, Reinhold; Kaplan, Lewis J; Kapoor, Garima; Karamarkovic, Aleksandar; Kees, Martin G; Kenig, Jakub; Kiguba, Ronald; Kim, Peter K; Kluger, Yoram; Khokha, Vladimir; Koike, Kaoru; Kok, Kenneth Y Y; Kong, Victory; Knox, Matthew C; Inaba, Kenji; Isik, Arda; Iskandar, Katia; Ivatury, Rao R; Labbate, Maurizio; Labricciosa, Francesco M; Laterre, Pierre-François; Latifi, Rifat; Lee, Jae Gil; Lee, Young Ran; Leone, Marc; Leppaniemi, Ari; Li, Yousheng; Liang, Stephen Y; Loho, Tonny; Maegele, Marc; Malama, Sydney; Marei, Hany E; Martin-Loeches, Ignacio; Marwah, Sanjay; Massele, Amos; McFarlane, Michael; Melo, Renato Bessa; Negoi, Ionut; Nicolau, David P; Nord, Carl Erik; Ofori-Asenso, Richard; Omari, AbdelKarim H; Ordonez, Carlos A; Ouadii, Mouaqit; Pereira Júnior, Gerson Alves; Piazza, Diego; Pupelis, Guntars; Rawson, Timothy Miles; Rems, Miran; Rizoli, Sandro; Rocha, Claudio; Sakakhushev, Boris; Sanchez-Garcia, Miguel; Sato, Norio; Segovia Lohse, Helmut A; Sganga, Gabriele; Siribumrungwong, Boonying; Shelat, Vishal G; Soreide, Kjetil; Soto, Rodolfo; Talving, Peep; Tilsed, Jonathan V; Timsit, Jean-Francois; Trueba, Gabriel; Trung, Ngo Tat; Ulrych, Jan; van Goor, Harry; Vereczkei, Andras; Vohra, Ravinder S; Wani, Imtiaz; Uhl, Waldemar; Xiao, Yonghong; Yuan, Kuo-Ching; Zachariah, Sanoop K; Zahar, Jean-Ralph; Zakrison, Tanya L; Corcione, Antonio; Melotti, Rita M; Viscoli, Claudio; Viale, Perluigi

    2016-01-01

    Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs. PMID:27429642

  3. Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds.

    Science.gov (United States)

    Navarri, Marion; Jégou, Camille; Meslet-Cladière, Laurence; Brillet, Benjamin; Barbier, Georges; Burgaud, Gaëtan; Fleury, Yannick

    2016-03-01

    The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites. PMID:26978374

  4. Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Marion Navarri

    2016-03-01

    Full Text Available The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness, as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.

  5. Antimicrobial resistance in Scandinavia after ban of antimicrobial growth promoters.

    Science.gov (United States)

    Bengtsson, Björn; Wierup, Martin

    2006-01-01

    The banned use of antimicrobial growth promoters resulted in a considerably decreased use of antimicrobials in food animal production in Sweden (65%), Denmark (47%), Norway (40%) and Finland (27%). The current prevalence of antimicrobial resistance in animal bacterial populations is also considerably lower than in some other countries in the EU. In the swine production, no or limited effect was found in the finisher production (>25 to 30 kg). Temporary negative effects occurred during the post weaning period (7-30 kg). In Denmark, the cost of production from birth to slaughter per pig produced increased by approximately 1.0 euro with a high variability between pig producers. In the broiler production the termination had no significant negative effect on animal health and welfare or on production economy.

  6. A review on antimicrobial efficacy of some traditional medicinal plants in Tamilnadu

    Directory of Open Access Journals (Sweden)

    HEMALATHA MUNUSWAMY

    2013-01-01

    Full Text Available Infectious diseases are one of the major problems in developing as well as developed countries. Traditional medicinal plants are widely used to treat the microbial diseases due to their rich source of antimicrobial activity and less cost. The different plant parts such as seed, fruit, root, bark, stem, leaf and even the whole plant were extracted using different solvents like ethanol, methanol, chloroform, acetone, petroleum ether, alcohol, and ethyl acetate. These extracts were tested by diffusion method against gram positive, gram negative bacteria and fungi to assess their antimicrobial activity. This review provides a lucid data of nearly 70 traditional medicinal plants with antimicrobial activity and this would open up the scope for further analysis of medicinal plant extracts to develop effective antimicrobial drugs.

  7. Antimicrobial activity of endophytic fungus Fusarium sp. isolated from medicinal honeysuckle plant

    Directory of Open Access Journals (Sweden)

    Zhang Huiru

    2016-01-01

    Full Text Available Endophytes of plants have a wide range of strains comprising important sources of various bioactive metabolites. An endophytic fungus was isolated from honeysuckle, an important Chinese medicinal plant. The phylogenetic and physiological characterization indicated that the isolated strain JY2corresponded to Fusarium sp. The culture filtrate of JY2displayed antagonism activity against some pathogenic bacteria owing to the existence of antimicrobial compounds. The filtrate revealed the strongest in vitro antimicrobial activity on Pseudomonas aeruginosa by increasing the permeability of cell membranes. The antibacterial extract was fractionated and purifiedusing silica gel chromatography. Five different bioactive compounds were isolated by bioactivity-guided fractionation from the culture extracts of JY2, and preliminarily identified by HPLC-MS spectral data. These results suggest that Fusarium sp. features a potentially remarkable antimicrobial activity and could be valuable to discover the new drugs or agents for antimicrobial purposes.

  8. PRELIMINARY PHYTOCHEMICAL INVESTIGATION AND IN VITRO ANTIMICROBIAL ACTIVITY OF ETHANOLIC EXTRACT OF SONNERATIA APETALA PLANT

    Directory of Open Access Journals (Sweden)

    V. Prabhu Teja

    2013-06-01

    Full Text Available The aim of present study is to investigate the phytochemical constituents and antimicrobial activity of Ethanolic extract of Sonneratia apetala. Preliminary Phytochemical tests revealed the presence of alkaloids, flavonoids, tannins, saponins, phytosterols and carbohydrates. Antimicrobial activity was evaluated by Agar well Diffusion method. In vitro screening of Sonneratia apetala mangrove Ethanolic plant extract showed species specific activity in inhibiting growth of bacteria and fungi. The Ethanolic plant extract showed good activity against selected gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, Staphylococcus werneri, gram-negative bacteria (Pseudomonas putida, Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumonia and fungal strain (Candida albicans. The observations revealed significant zone of inhibition and supports to antimicrobial activity. The bioactive compounds responsible for these antimicrobial activities could be isolated and identified to develop a new drug of pharmaceutical interest.

  9. The Design and Construction of K11: A Novel α-Helical Antimicrobial Peptide

    Directory of Open Access Journals (Sweden)

    Huang Jin-Jiang

    2012-01-01

    Full Text Available Amphipathic α-helical antimicrobial peptides comprise a class of broad-spectrum agents that are used against pathogens. We designed a series of antimicrobial peptides, CP-P (KWKSFIKKLTSKFLHLAKKF and its derivatives, and determined their minimum inhibitory concentrations (MICs against Pseudomonas aeruginosa, their minimum hemolytic concentrations (MHCs for human erythrocytes, and the Therapeutic Index (MHC/MIC ratio. We selected the derivative peptide K11, which had the highest therapeutic index (320 among the tested peptides, to determine the MICs against Gram-positive and Gram-negative bacteria and 22 clinical isolates including Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Klebsiella pneumonia. K11 exhibited low MICs (less than 10 μg/mL and broad-spectrum antimicrobial activity, especially against clinically isolated drug-resistant pathogens. Therefore, these results indicate that K11 is a promising candidate antimicrobial peptide for further studies.

  10. Antipyretic and antimicrobial potential of Sida spinosa linn. aqueous root extract

    Directory of Open Access Journals (Sweden)

    Basheer Ahmed Mannasaheb

    2013-05-01

    Full Text Available Objective: Antipyretic and antimicrobial potential of Sida spinosa Linn. Aqueous root extract was evaluated using aspirin and chloramphenicol as standard drugs.Materials and methods: Roots were collected and extracted with water. The doses of the extract selected were 200 and 400 mg/kg b.w, according to OECD guidelines. Antipyretic potential was evaluated in Brewer’s yeast induced pyrexia in rats along with Antimicrobial activity by agar well diffusion technique.Results: Aqueous extract demonstrated highly significant (P<0.01 antipyretic activity during various assessment times (1-5 h when challenged in yeast induced pyrexia test. Maximum attenuation (65.73% at 3h was observed at 400mg/kg o.p.Antimicrobial activity against S. aureus, B. subtilis, E. coli and S. aeruginosa, was carried out. All microbes were sensitive and activity was concentration dependent.Conclusion: Sida spinosa Linn. root possesses potent antipyretic and antimicrobial activity and has therapeutic potential.

  11. A review on antimicrobial efficacy of some traditional medicinal plants in Tamilnadu

    Institute of Scientific and Technical Information of China (English)

    MUNUSWAMY HEMALATHA; Thirunavukkarasu Thirumalai; Rajamani Saranya; Erusan Kuppan Elumalai; Ernest David

    2013-01-01

    Infectious diseases are one of the major problems in developing as well as developed countries. Traditional medicinal plants are widely used to treat the microbial diseases due to their rich source of antimicrobial activity and less cost.The different plant parts such as seed, fruit, root, bark, stem, leaf and even the whole plant were extracted using different solvents like ethanol, methanol, chloroform, acetone, petroleum ether, alcohol, and ethyl acetate.These extracts were tested by diffusion method against gram positive, gram negative bacteria and fungi to assess their antimicrobial activity.This review provides a lucid data of nearly70 traditional medicinal plants with antimicrobial activity and this would open up the scope for further analysis of medicinal plant extracts to develop effective antimicrobial drugs.

  12. An assessment of antimicrobial consumption in food producing animals in Kenya

    DEFF Research Database (Denmark)

    Mitema, E.S.; Kikuvi, G.M.; Wegener, Henrik Caspar;

    2001-01-01

    that the tetracyclines, sulfonamides and trimethoprim, nitrofurans aminoglycosides, P-lactams and the quinolones are the most commonly used drugs in food-producing animals in Kenya. Tetracyclines contributed approximately 55% of the total consumption, and there was an increasing trend in the consumption of quinolones...... to evaluate antimicrobial usage patterns by animal species, route of administration, antimicrobial class and type of use from 1995 to 1999 in Kenya. Theses data are essential for risk analysis and planning and can be helpful in interpreting resistance surveillance data, and evaluating the effectiveness...... of prudent use efforts and antimicrobial resistance mitigation strategies. Data on quantities of active substance classes were collected from the official records of the Pharmacy and Poisons Board of the Ministry of Health and analysed in MS Excel 2000 program. The mean antimicrobial consumption for the 5...

  13. Antimicrobial activities of squalamine mimics.

    Science.gov (United States)

    Kikuchi, K; Bernard, E M; Sadownik, A; Regen, S L; Armstrong, D

    1997-07-01

    We investigated the antimicrobial properties of compounds with structural features that were designed to mimic those of squalamine, an antibiotic isolated from the stomach of the dogfish shark. The mimics, like squalamine, are sterol-polyamine conjugates. Unlike squalamine, the mimics were simple to prepare, at high yield, from readily available starting materials. Several squalamine mimics showed activity against gram-negative rods, gram-positive cocci including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and fungi. Some had little or no hemolytic activity. The hydrophobicity of the sterol backbone and the length and the cationic charge of the side chains appeared to be critical determinants of activity. One of the squalamine mimics, SM-7, was bactericidal against Escherichia coli, Pseudomonas aeruginosa, and S. aureus; its activity was decreased by divalent or monovalent cations and by bovine serum albumin. Subinhibitory concentrations of SM-7 markedly enhanced the antimicrobial activity of rifampin against gram-negative rods. These results suggest that the compounds may disrupt an outer membrane of gram-negative rods. Squalamine mimics are a new class of broad-spectrum antimicrobial agents. The antagonism of their activity by serum and albumin and their hemolytic properties may limit their use as systemic agents. The squalamine mimics, because of their potencies, broad spectra of antimicrobial activity, and potential for systemic toxicity, appear to be good candidates for development as topical antimicrobial agents. PMID:9210661

  14. 某院2009年至2011年抗菌药物的利用分析%Antimicrobial Drug Utilization Analysis in A Hspital from 2009 to 2011

    Institute of Scientific and Technical Information of China (English)

    王亚峰; 马全明

    2013-01-01

    目的:了解我院抗菌药物应用情况及趋势。方法统计、分析2009~2011年各类抗菌药物销售金额、用药频度(DDDS)。结果抗菌药物销售金额在逐年增加,但抗菌药物销售金额占药品总销售金额的比例在2011年大幅下降;头孢菌素类销售金额均占抗菌药物销售金额的55%以上,头孢菌素类及青霉类的DDDS排序一直居前三位。结论我院使用最多的抗菌药物是头孢菌素类、青霉素类、碳青霉烯和其他β-内酰胺类,不合理使用抗菌药物的现象正在改观,需进一步加强抗菌药物临床应用管理,促进合理使用。%Objective To understand the application and trend of the antibacterials in our hospital. Methods To gather statistics and analyze the amount of sales and the frequence of drug use (DDDS) of all kinds of the antibacterials from 2009 to 2011. Results The amount of sales of the antibacterials have increased year by year, but the proportion in the total amount of sales of drugs declined sharply in 2011. The amount of sales of the cephalosporines accounted for more than 50%of the amount of sales of the antibacterials. The DDDS of the cephalosporines and the penicillines have been in the top three. Conclusion The cephalosporines, the penicillines, the carbapenems and otherβ-Lactams were used at most in our hospital, and the unreasonable application has been changed. The management of the clinical application of the antibacterials needs further strengthening to promote the rational use.

  15. Water Soluble Usnic Acid-Polyacrylamide Complexes with Enhanced Antimicrobial Activity against Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Iolanda Francolini

    2013-04-01

    Full Text Available Usnic acid, a potent antimicrobial and anticancer agent, poorly soluble in water, was complexed to novel antimicrobial polyacrylamides by establishment of strong acidic-base interactions. Thermal and spectroscopic analysis evidenced a molecular dispersion of the drug in the polymers and a complete drug/polymer miscibility for all the tested compositions. The polymer/drug complexes promptly dissolved in water and possessed a greater antimicrobial activity against Staphylococcus epidermidis than both the free drug and the polymer alone. The best results were obtained with the complex based on the lowest molecular weight polymer and containing a low drug content. Such a complex showed a larger inhibition zone of bacterial growth and a lower minimum inhibitory concentration (MIC with respect to usnic acid alone. This improved killing effect is presumably due to the reduced size of the complexes that allows an efficient cellular uptake of the antimicrobial complexes. The killing effect extent seems to be not significantly dependent on usnic acid content in the samples.

  16. Antimicrobial susceptibility of staphylococci isolated from otitis externa in dogs.

    Science.gov (United States)

    Lilenbaum, W; Veras, M; Blum, E; Souza, G N

    2000-07-01

    Samples were obtained from 65 unmedicated adult dogs, processed for isolation of Staphylococcus species and tested for susceptibility to penicillin G, gentamicin, oxacillin, tetracycline, trimethoprim-sulphamethoxazole, streptomycin, ampicillin and rifampin. Forty-four isolates were obtained, which represents 67.7% of samples. Coagulase-negative species were most commonly found, and the most frequently isolated staphylococcus species were Staph. epidermidis and Staph. aureus. Other species, such as Staph. simulans, Staph. haemolyticus, Staph. saprophyticus and Staph. intermedius were also isolated. Resistance to antibiotics was frequently observed, with 90.9% of the isolates showing resistance to at least one drug. The most active antimicrobial agents against staphylococci isolated from otitis externa of dogs were rifampin and oxacillin. Multidrug resistance was a common finding, and one strain of Staph. haemolyticus species, was resistant to all tested antimicrobial agents. Resistance to three or more different drugs was a common finding, observed in 16 strains (36.4%) of both coagulase-positive and coagulase-negative staphylococci. This study highlights the emergence of cases of otitis externa determined by coagulase-negative staphylococcus strains and once more emphasizes the need for bacterial culture with species identification and susceptibility testing of swab specimens from the ear canal in order to choose appropriate antimicrobial agents.

  17. Preparation, spectroscopic and thermal characterization of new La(III), Ce(III), Sm(III) and Y(III) complexes of enalapril maleate drug. In vitro antimicrobial assessment studies

    Science.gov (United States)

    Refat, Moamen S.; Al-Azab, Fathi M.; Al-Maydama, Hussein M. A.; Amin, Ragab R.; Jamil, Yasmin M. S.

    2014-02-01

    The 1:1 M ratio metal complexes of enalapril maleate hypertensive drug with La(III), Ce(III), Sm(III) and Y(III) were synthesized. The suggested structures of the resulted complexes based on the results of elemental analyses, molar conductivity, (infrared, UV-visible and fluorescence) spectra, effective magnetic moment, thermal analysis (TG), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) were discussed. The infrared spectral data were suggested that enalapril reacts with metal ions as an ionic bidentate ligand through its carboxylate oxygen and the amide carbonyl oxygen, but in case of the Sm(III) complex, it reacted as a monodentate through its amide carbonyl oxygen. Maleate moiety acts with all these metals as bidentate ligand through its carboxylate or carbonyl oxygen. The kinetic and thermodynamic parameters such as: Ea, ΔH*, ΔS* and ΔG* were estimated from the DTG curves. The antibacterial evaluation of the enalapril maleate and their complexes were also performed against some gram positive and negative bacteria as well as fungi.

  18. Multirresistência antimicrobiana em cepas de Escherichia coli isoladas de cadelas com piometra Antimicrobial multi-resistance of Escherichia coli strains isolated from bitches with pyometra

    Directory of Open Access Journals (Sweden)

    V.M. Lara

    2008-08-01

    Full Text Available The antimicrobial sensibility of Escherichia coli strains isolated from the uterine content of bitches was evaluated. Fifteen E. coli strains were tested in relation to their susceptibility to different antimicrobials. The results demonstrated 100% of resistance to all tested drugs, being a quite conflicting finding compared to other works, which observed variable resistance of those bacteria to different antimicrobials but not the same multi-resistance pattern. The detection of those multi-resistance strains configures a problem, with important implications on the antimicrobial therapy. Therefore, additional investigations for a best characterization and extension of this problem are needed.

  19. Drug Facts

    Medline Plus

    Full Text Available ... Addiction? Addiction Risk Factors Does Addiction Run in Families? Why Is It So Hard to Quit Drugs? ... Drug Abuse Hurts Other People Drug Abuse Hurts Families Drug Abuse Hurts Kids Drug Abuse Hurts Unborn ...

  20. Drug Facts

    Medline Plus

    Full Text Available ... Abuse Hurts Unborn Children Drug Abuse Hurts Your Health Drug Abuse Hurts Bodies Drug Abuse Hurts Brains Drug Abuse and Mental Health Problems Often Happen Together The Link Between Drug ...

  1. Uses of antimicrobial genes from microbial genome

    Science.gov (United States)

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  2. From antimicrobial to anticancer peptides. A review.

    Directory of Open Access Journals (Sweden)

    Diana eGaspar

    2013-10-01

    Full Text Available Antimicrobial peptides (AMPs are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective and more efficient drugs is evident. Even though ACPs are expected to be selective towards tumor cells without impairing the normal body physiological functions, the development of a selective ACP has been a challenge. It is not yet possible to predict antitumor activity based on ACPs structures. ACPs are unique molecules when compared to the actual chemotherapeutic arsenal available for cancer treatment and display a variety of modes of action which in some types of cancer seem to co-exist. Regardless the debate surrounding the definition of structure-activity relationships for ACPs, great effort has been invested in ACP design and the challenge of improving effective killing of tumor cells remains. As detailed studies on ACPs mechanisms of action are crucial for optimizing drug development, in this review we provide an overview of the literature concerning peptides’ structure, modes of action, selectivity and efficacy and also summarize some of the many ACPs studied and/or developed for targeting different solid and hematologic malignancies with special emphasis on the first group. Strategies described for drug development and for increasing peptide selectivity towards specific cells while reducing toxicity are also discussed.

  3. Synchronizing nonfouling and antimicrobial properties in a zwitterionic hydrogel.

    Science.gov (United States)

    Mi, Luo; Jiang, Shaoyi

    2012-12-01

    In this work, we report a new approach to integrate antimicrobial and nonfouling properties into a single platform without compromising each other. To achieve this, a zwitterionic hydrogel is conjugated with an antimicrobial agent as a leaving group in a way that maintains the zwitterionic form of the hydrogel before, during and after drug release, preventing bacteria surface adhesion and bulk proliferation simultaneously. The antibacterial salicylate anion contributes the negative charge to the initial zwitterionic state and is released through the ester linkage hydrolysis. The hydrogel then switches to its final zwitterionic state with the carboxylate as its new negatively charged group. We prove that this hydrogel can reach one-salicylate-per-monomer drug loading while still retaining the nonfouling property at protein and bacteria levels. It was also shown that its drug release profile was dictated by the hydrolysis rate of the monomer, making it possible to control and tailor the release rate of small hydrophilic drugs from the highly hydrated nonfouling polymer matrix.

  4. EMERGING ANTIMICROBIAL RESISTANCE IN HOSPITAL A THREAT TO PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Vichal Rastogi

    2013-01-01

    Full Text Available Background: Antimicrobial resistance(AMR threatens the health of many throughout the world, since both old and new infectious diseases remain a formidable public health threat. When pathogenic microorganisms can multiply beyond some critical mass in the face of invading antimicrobials, treatment outcome is compromised. This phenomenon is referred as antimicrobial resistance (AMR. Objective: This retrospective study was conducted to assess the overall antimicrobial resistance in bacterial isolates from tertiary care hospitals as majority of patients here receive empirical antibiotics therapy. Method: This retrospective study was carried out in teaching hospital, Greater Noida to determine prevalence of multidrug resistance in patients in relation to empirical antibiotic therapy in hospital. Various samples (pus,urine,blood were collected for bacterial culture and antibiotic sensitivity. Results: Total 500 bacterial strains isolated from ICU, surgery, obstetrics & gynaecology and orthopaedics and their sensitivity pattern was compared in this study. The highest number of resistant bacterias were of pseudomonas sp. i.e. 21(33.87% followed by 16(25.80% of staphylococcus aureus, 12(19.35% of Escherichia coli, Klebseilla sp & Proteus vulgaris were 05(8.06% each & Citrobacter sp. 03(4.83%. Total 62(12.4% bacterial isolates were found to be resistant to multiple drugs. The 31 (50% of these resistant bacteria were prevalent in ICU, 12(19.35% in Surgery, 11(17.74% in Gynaecology, 08(12.90% in Orthopaedics.. All the bacterial strains were resistant to common antibiotics like Penicillin, Amoxicillin, Doxycycline & Cotrimoxazole and some were even resistant to Imipenem. Conclusion: Therefore we have outlined the nature of the antimicrobial resistance problem as an important health issue for national and international community. It is advised to avoid use of empirical antibiotics therapy.

  5. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  6. Preparation and characterization of antimicrobial nano-hydroxyapatite composites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chu, Xiaobing [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Cai, Yurong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Tong, Peijian [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-01

    Deep infection of prosthesis is one of the most frequent complications after joint replacement. One of the most effective ways is to introduce directly some antibiotics in the local site of the surgery. In the present study, an antimicrobial composite has been fabricated using nano-hydroxyapatite particles as carriers for the antimicrobial drug of vancomycin hydrochloride (VAN) and the mixture of oxidation sodium alginate (OSA) and gelatin (GT) as a sticky matrix. Samples have been characterized using X-ray diffraction instrument (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectra, Brunauer–Emmett–Teller (BET) methods, the rotational rheometer and the texture analyzer. The release of VAN from nano-hydroxyapatite (nHAP) particles was detected by the ultraviolet–visible (UV–vis) spectrophotometer and then bactericidal property of the composite was evaluated using the Staphylococcus aureus (S. aureus) as a bacterial model. Experimental results showed that the composite possessed an adhesive property derived from the gel of OSA and GT, which implied that the composite could bond directly to the fracture surface of bones in surgery. Furthermore, VAN was loaded efficiently on the surface of nHAP particles and could be released slowly from these particles, which endowed the composite with an obvious and continuous antimicrobial performance. The sticky and antimicrobial composite may has a potential application in arthroplasty to overcome deep infection in a simple and direct manner. - Highlights: • A sticky and antimicrobial composite has been designed to overcome deep infection. • The composite was composed of antibiotic, antibiotic carrier and a viscous matrix. • The sticky matrix was obtained by blending of oxidation sodium alginate and gelatin. • Hydroxyapatite nanoparticle could be used as carrier to control release of antibiotic.

  7. Synthesis of New Macrocyclic Polyamides as Antimicrobial Agent Candidates

    Directory of Open Access Journals (Sweden)

    Osama I. Abd El-Salam

    2012-12-01

    Full Text Available A series of macrocyclic imides and Schiff-bases have been prepared via the cyclocondensation of pyridine-2,6-dicarbonyl dichloride (1 with L-ornithine methyl ester to give the corresponding macrocyclic bisester 2. Treatment of 2 with hydrazine hydrate gave macrocyclic bisacid hydrazide 3, which was used as starting material. Condensation of bishydrazide 3 with diacid anhydrides or aromatic aldehydes in refluxing acetic acid or ethanol gave the corresponding macrocyclic bisimides 4, 5a,b and macrocyclic bis- hydrazones 6a–j, respectively. The structure assignments of the new compounds were based on chemical and spectroscopic evidence. The antimicrobial screening showed that many of these newly synthesized compounds have good antimicrobial activities, comparable to ampicillin and ketaconazole used as reference drugs.

  8. PHYTOCHEMICAL ANALYSIS AND ANTIMICROBIAL ACTIVITY OF CASIA OCCIDENTALIS (L

    Directory of Open Access Journals (Sweden)

    Venkanna Lunavath

    2013-02-01

    Full Text Available The trend of using natural products has increased and the active plant extracts are frequently screened for new drug discoveries. The present study deals with the screening of Casia occidentalis leaves for their antimicrobial activity against various strains of bacteria. Plant Cassia occidentalis belongs to family Caesalpiniaceae, is a diffuse offensively odorous under shrub. Casia occidentalis were shade dried, powered and was extracted using solvents Methanol. The antimicrobial activity test performed by the disc diffusion method. Preliminary phytochemical analysis of the plant extracts fractions of HXF, CTF, CFF and AQF showed the presence of carbohydrates, amino acids, phytosterols, fixed oils and phenolic compounds. The AQF fraction of C. occidentalis showed high activity across pseudomonas aeuruginosa and staphylococcus aureus bacteria. The present study indicates the potential usefulness of Casia occidentalis leaves in the treatment of various diseases caused by micro-organisms.

  9. Synthesis and antimicrobial activity of some novel fused heterocyclic moieties

    Directory of Open Access Journals (Sweden)

    Nareshvarma Seelam

    2013-06-01

    Full Text Available Since the discovery of heterocyclic moieties the chemistry of 1,3,4-thiadiazole and their fused compounds continue to draw attention of organic chemists due to their various biological activities. Here a new class of 1, 3, 4-thiadiazoles which are incorporating with isoxazolo-thiazole moieties were synthesized by the reaction of chalcone derivatives of [ 1, 3, 4 ] thiadiazol-2-yl-thiazolidin-4-one with hydroxylamine hydrochloride. The chemical structures of these compounds were confirmed by IR, NMR ( 1H & 13C and mass spectral studies. The new synthesized compounds were evaluated for their antimicrobial activity. The final results revealed that some of the compounds were exhibited well antimicrobial activity compared to the standard drugs.

  10. Quantitative studies of antimicrobial peptide-lipid membrane interactions

    DEFF Research Database (Denmark)

    Kristensen, Kasper

    induced by mastoparan X, melittin and magainin 2 from POPC/POPG (3:1) large unilamellar lipid vesicles. The results show that on the single-vesicle level, all three peptides induce heterogenous leakage in the sense that they induce complete emptying of some vesicles and only partly emptying of other......The increasing occurrence of multi-drug-resistant bacteria poses a serious threat to modern society. Therefore, novel types of anti-infective therapeutics are highly warranted. Antimicrobial peptides are a class of naturally occurring host-defense molecules that potentially might be developed...... that it can be used to quantify antimicrobial peptide-induced leakage of fluorescent markers from large unilamellar lipid vesicles in solution. For that purpose, we derive the mathematical framework required to calculate leakage from the FCS data, and we identify a number of experimental pitfalls that might...

  11. Antimicrobial Activity of Ceftriaxone Compared with Cefotaxime in the Presence of Serum Albumin

    Directory of Open Access Journals (Sweden)

    Swapan K Nath

    1995-01-01

    Full Text Available The effect of serum albumin on the antimicrobial activity of ceftriaxone, cefotaxime, and a 1:1 ratio of cefotaxime and its desacetyl metabolite against nonpseudomonal Gram-negative bacilli was determined. Antimicrobial activity of drugs was evaluated by measuring minimum inhibitory (mic and bactericidal (mbc concentrations in broth with and without human serum albumin. The analysis of logarithmically transformed mean mics and mbcs showed that there was a highly significant interaction between drug and serum albumin (P<0.0001. The inhibitory and bactericidal activities were greatest for cefotaxime followed by cefotaxime/desacetylcefotaxime and ceftriaxone (P<0.01. Time-kill kinetics demonstrated that ceftriaxone was less bactericidal than cefotaxime in broth with albumin. On the basis of these results it was concluded that the in vitro antimicrobial activity of ceftriaxone compared with that of cefotaxime was significantly diminished in the presence of serum albumin.

  12. From Bench-Top to Bedside: A Prospective In Vitro Antibiotic Combination Testing (iACT) Service to Guide the Selection of Rationally Optimized Antimicrobial Combinations against Extensively Drug Resistant (XDR) Gram Negative Bacteria (GNB)

    Science.gov (United States)

    Lim, Tze-Peng; Teo, Jocelyn Qi-Min; Lee, Winnie; Kurup, Asok; Koh, Tse-Hsien; Tan, Thuan-Tong; Kwa, Andrea L.

    2016-01-01

    Introduction Combination therapy is increasingly utilized against extensively-drug resistant (XDR) Gram negative bacteria (GNB). However, choosing a combination can be problematic as effective combinations are often strain-specific. An in vitro antibiotic combination testing (iACT) service, aimed to guide the selection of individualized and rationally optimized combination regimens within 48 hours, was developed. We described the role and feasibility of the iACT service in guiding individualized antibiotic combination selection in patients with XDR-GNB infections. Methods A retrospective case review was performed in two Singapore hospitals from April 2009–June 2014. All patients with XDR-GNB and antibiotic regimen guided by iACT for clinical management were included. The feasibility and role of the prospective iACT service was evaluated. The following patient outcomes were described: (i) 30-day in-hospital all-cause and infection-related mortality, (ii) clinical response, and (iii) microbiological eradication in patients with bloodstream infections. Results From 2009–2014, the iACT service was requested by Infectious Disease physicians for 39 cases (20 P. aeruginosa, 13 A. baumannii and 6 K. pneumoniae). Bloodstream infection was the predominant infection (36%), followed by pneumonia (31%). All iACT recommendations were provided within 48h from request for the service. Prior to iACT-guided therapy, most cases were prescribed combination antibiotics empirically (90%). Changes in the empiric antibiotic regimens were recommended in 21 (54%) cases; in 14 (36%) cases, changes were recommended as the empiric regimens were found to be non-bactericidal in vitro. In 7 (18%) cases, the number of antibiotics used in combination empirically was reduced by the iACT service. Overall, low 30-day infection-related mortality (15%) and high clinical response (82%) were observed. Microbiological eradication was observed in 79% of all bloodstream infections. Conclusions The i

  13. Study of the nanomaterials and their antimicrobial activities

    Science.gov (United States)

    Ramadi, Muntaha

    In the last decade, the world faced huge problems associated with the spread of antimicrobial resistant infections that are essentially untreatable such as methicillin resistant Staphylococcus aureus (MRSA) infection. These infections have begun to occur in both hospital and community environments. Developing new antimicrobial surface coatings can hold a great promise to minimize and control various problems that associated with the spreading of infections and biofilms formation, these coatings can be used in medicine where medical devices associated with severe infections, in construction industry and the in food packaging industry. It has been established that single-walled CNTs exhibit a strong antimicrobial activity and can pierce bacterial cell walls. Recently, nanomaterial structures that made from pure carbon such as CNTs have been seen as promising candidates for many potential applications in Biotechnology and bioscience due to the combination of their extraordinary properties that arise from surface area, light weight, strength, flexibility, unique electrical conductivity and many more novel physical and chemical properties at nanoscale level. CNTs have been used widely in biomedical field including drug delivery, gene therapy and creating new biomedical devices with novel properties. Researchers have now made a first step to add carbon nanotubes to antimicrobial agents list. There are two types of CNTs have been used in biomedical research. The first one is a single-walled carbon nanotube (SWNT) and the second is a multi-walled carbon nanotube (MWNT). Recent in vitro studies suggest that carbon nanotubes have antimicrobial activity and coating CNTs with nickel nanoparticle could enhance the antimicrobial activity of cabon nanotubes. In order to test this hypothesis, nickel nanoparticles were deposited on carbon nanotubes (CNTs) by electrochemical deposition. The carbon nanotubes used in this study were XD-CNTs, SWNTs and Ni-coated CNTs. The structure and

  14. A STUDY OF PRESCRIPTION PATTERN OF ANTIMICROBIAL USAGE IN EAR, NOSE AND THROAT INFECTIONS OF A RURAL TEACHING HOSPITAL

    OpenAIRE

    Guru Prasad; Kulkarni; Rajasekhar; Rajesh; Raghavendra,; Vinodraj; Advaitha; Nikhilesh

    2014-01-01

    Infections of the ear, nose and throat (E.N.T) are common clinical problems occurring in the general population. Prescription pattern study of ENT infections was conducted in ENT OPD of a rural teaching hospital with the objective of evaluating prescribing pattern of drugs and to study the rationality of the antimicrobial therapy. The study showed that in the 768 prescriptions, the AMAs (Antimicrobial agents) were indicated therapeutically in 79.68%, prophylactically in 9.16% ...

  15. Sub-antimicrobial Doxycycline for Periodontitis Reduces Hemoglobin A1c in Subjects with Type 2 Diabetes: a Pilot Study

    OpenAIRE

    Engebretson, Steven P.; Hey-Hadavi, Judith

    2011-01-01

    In vitro and animal studies suggest a possible role for the tetracycline class of drugs in the inhibition of non-enzymatic protein glycation. We conducted a 3-month, randomized placebo-controlled pilot clinical trial of conventional sub-gingival debridement, (periodontal therapy) combined with either a three month regimen of sub-antimicrobial-dose doxycycline (SDD), a two week regimen of antimicrobial-dose doxycycline (ADD), or placebo in 45 patients with long-standing type 2 diabetes (mean d...

  16. Quantitative analysis of catechins in Saraca asoca and correlation with antimicrobial activity

    Institute of Scientific and Technical Information of China (English)

    Amey Shirolkar; Anjum Gahlaut; Anil K. Chhillar; Rajesh Dabur

    2013-01-01

    Herbal medicines are highly complex and have unknown mechanisms in diseases treatment. Saraca asoca (Roxb.), De. Wild has been recommended to treat gynecological disorders and used in several commercial polyherbal formulations. In present study, efforts have been made to explore antimicrobial activity and its co-relation with the distributions of catechins in the organs of S. asoca using targeted MS/MS. Eight extracts (cold and hot water) from four different organs of S. asoca and two drugs were prepared and antimicrobial activity was assessed by microbroth dilution assay. Quantitative and qualitative analysis of catechins in crude extracts was done by using targeted and auto-MS/MS and correlated with antimicrobial activity. (þ)-Catechin and (þ)-epicatechin and their biosynthesis related compound were found to be up-regulated in regenerated bark and leaves extracts. (?)-Epigallocatechin was found to be significantly higher in bark water extract as compared to others but showed low antimicrobial activity. Result showed down-regulation of (?)-epigallocatechin and up-regulation of (þ)-catechin and (þ)-epicatechin in the regenerated bark and leaves of S. asoca. It might be the contributing factor in the antimicrobial activity of regenerated bark and leaves of the plant. The concentration of (þ)-epicatechin in processed drugs (Ashokarishta) from Baidyanath was found to be seven times higher than that of Dabur Pvt. Ltd., but no antimicrobial activity was observed, indicating the variations among the plant based drugs. This will be helpful in rational use of S. asoca parts. Furthermore, the analytical method developed is sensitive, repeatable and reliable; therefore, it is suitable for quality control of herbal drugs.

  17. Use of antimicrobials by pregnant women in the public health care

    Directory of Open Access Journals (Sweden)

    Janaína Soder Fritzen

    2014-06-01

    Full Text Available Objective: To identify and classify, according to the risk, the antimicrobials prescribed to pregnant women assisted by the National Program of Prenatal and Postpartum Follow-up in a municipality of Rio Grande do Sul. Methods: Analytical and retrospective cross-sectional study conducted in 2011 based on the registers of 87 pregnant women assisted in 2010 using an instrument with questions about the dispensed drugs. The prescribed antimicrobials were identified and classified as topical and systemic use and according to the risk of using it during pregnancy. Data were analyzed using SPSS 15.0. Results: The pregnant women had a mean age of 28.01 years and attended 5.3 consultations. There was an average prescription of 6.52 drugs/pregnant woman. Of the 568 drugs prescribed, 85 (14.96% had an antimicrobial activity, 29 (34.1% were for topical use and 56 (65.9% for systemic use, and 46 (52.9% pregnant women received at least one antimicrobial. There were 13 different products with a prevalence of antifungals of gynecological / topical use, 16 (18.82%, 30 (35.3% were prescribed in the first trimester of pregnancy, 30 (35.3% in the second and 25 (29.4% in the third trimester. According to the classification of the risk to the fetus, nine (61.54% antimicrobials belonged to the B category and four (30.77% to the C category. Conclusion: It was verified the prescription of antimicrobials for systemic use and B category risk for pregnancy to 52.9% of pregnant women in prenatal follow-up in the place where the study took place. Miconazole and metronidazole vaginal cream, cephalexin 500 mg, azithromycin 500 mg and amoxicillin 500 mg were the most prescribed drugs.

  18. Drug Facts

    Medline Plus

    Full Text Available ... Health Drug Abuse Hurts Bodies Drug Abuse Hurts Brains Drug Abuse and Mental Health Problems Often Happen Together The Link Between Drug Abuse and HIV/AIDS Recovery & Treatment Drug Treatment Facts Does Drug Treatment Work? Types of Drug Treatment What Is a Relapse? ...

  19. Antimicrobial Polymers with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Humberto Palza

    2015-01-01

    Full Text Available Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms.

  20. Antimicrobial activity of Securidaca longipedunculata.

    Science.gov (United States)

    Ajali, U; Chukwurah, B K C

    2004-11-01

    The folk herbal uses of Securidaca longipedunculata in the treatment of diarrhea, boils, gonorrhea, and cough prompted phytochemical analyses and antimicrobial activity screening of extracts of the root. Some flavonoids isolated showed activity against many micro-organisms. These flavonoids were isolated using chromatographic methods. PMID:15636189

  1. Antimicrobial Activity of Resveratrol Analogues

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew. Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold. The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups and antimicrobial activity.

  2. Combating Antimicrobial Resistance in Foodborne Microorganisms.

    Science.gov (United States)

    Lai, Edward P C; Iqbal, Zafar; Avis, Tyler J

    2016-02-01

    This review addresses an important public health hazard affecting food safety. Antimicrobial agents are used in foods to reduce or eliminate microorganisms that cause disease. Many traditional organic compounds, novel synthetic organic agents, natural products, peptides, and proteins have been extensively studied for their effectiveness as antimicrobial agents against foodborne Campylobacter spp., Escherichia coli, Listeria spp. and Salmonella. However, antimicrobial resistance can develop in microorganisms, enhancing their ability to withstand the inhibiting or killing action of antimicrobial agents. Knowledge gaps still exist with regard to the actual chemical and microbiological mechanisms that must be identified to facilitate the search for new antimicrobial agents. Technical implementation of antimicrobial active packing films and coatings against target microorganisms must also be improved for extended product shelf life. Recent advances in antimicrobial susceptibility testing can provide researchers with new momentum to pursue their quest for a resistance panacea.

  3. Prevalence of antimicrobial resistance and integrons in Escherichia Coli from Punjab, Pakistan

    Directory of Open Access Journals (Sweden)

    Idrees Muhammad

    2011-06-01

    Full Text Available Antimicrobial resistance was studied in Escherichia coli strains isolated from urine samples of 457 patients suffering from urinary tract infection. High prevalence of class 1 integrons (43.56%, sulfamethoxazole resistance genes sul1 (45.54% and sul2 (51.48% along with occurrence of quinolone resistance genes was detected in multi drug resistance isolates.

  4. Anti-microbial and anti-biofilm compounds from Indonesian medicinal plants

    NARCIS (Netherlands)

    Pratiwi, Sylvia U.T.

    2015-01-01

    Microbial biofilms causing elevated resistance to both most anti-microbial drugs and the host defense systems, which often results in persistent and difficult-to-treat infections. The discovery of anti-infective agents which are active against planktonic and biofilm microorganisms are therefore urge

  5. Drug allergies

    Science.gov (United States)

    Allergic reaction - drug (medication); Drug hypersensitivity; Medication hypersensitivity ... A drug allergy involves an immune response in the body that produces an allergic reaction to a medicine. The ...

  6. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu, E-mail: vishnu_agarwal02@rediffmail.com [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  7. RETROSPECTIVE STUDY OF ANTIMICROBIAL RESIDUES AND RESISTANCE IN SWINE IN ABA ABIA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    P. NWIYI

    2014-05-01

    Full Text Available Antimicrobials are used by livestock farmers to prevent and control infection. Antimicrobials are also included at sub-therapeutic doses in animal feed as growth promoters and to improve feed efficiency in intensive farming. The aim of this study was to evaluate the antimicrobial residues and resistance that could arise due to antimicrobial use in swine. The study was carried out between September 10th and December 10th 2013 in some selected swine farms in Ogbor Hill water side in Aba, Abia state. The study involved visiting the various farms, evaluating the records of previous treatment. Also the state zonal veterinary clinics visited and record of farms was collected for analysis. From the result obtained, in raining season in a given year, the frequency of tetracycline usage recorded 83.3%, penicillin recorded 75.0%, while sulfonamide recorded 25.0%. Tylosin and ivermox were the least and recorded 8.4% usage each. The swine treatment was done by the farmers hence there was consistent over-dosage of antimicrobials to the pigs as the manufacture’s guide was not complied with. The report from the records showed that some of the pigs were slaughtered and sold in the market at any time without recourse to drug with-draw. This result could be one of the responsible reasons for antimicrobial residues and resistance in swine and indeed livestock.

  8. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus.

    Directory of Open Access Journals (Sweden)

    In-Woo Kim

    Full Text Available Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST, Gene Ontology (GO, and Kyoto Encyclopedia of Genes and Genomes (KEGG database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species.

  9. A Broad-Spectrum Antimicrobial Activity of Bacillus subtilis RLID 12.1

    Directory of Open Access Journals (Sweden)

    Ramya Ramachandran

    2014-01-01

    Full Text Available In the present study, an attempt was made to biochemically characterize the antimicrobial substance from the soil isolate designated as RLID 12.1 and explore its potential applications in biocontrol of drug-resistant pathogens. The antimicrobial potential of the wild-type isolate belonging to the genus Bacillus was determined by the cut-well agar assay. The production of antimicrobial compound was recorded maximum at late exponential growth phase. The ultrafiltered concentrate was insensitive to organic solvents, metal salts, surfactants, and proteolytic and nonproteolytic enzymes. The concentrate was highly heat stable and active over a wide range of pH values. Partial purification, zymogram analysis, and TLC were performed to determine the preliminary biochemical nature. The molecular weight of the antimicrobial peptide was determined to be less than 2.5 kDa in 15% SDS-PAGE and in zymogram analysis against Streptococcus pyogenes. The N-terminal amino acid sequence by Edman degradation was partially determined to be T-P-P-Q-S-X-L-X-X-G, which shows very insignificant identity to other antimicrobial peptides from bacteria. The minimum inhibitory concentrations of dialysed and partially purified ion exchange fractions were determined against some selected gram-positive and gram-negative bacteria and some pathogenic yeasts. The presence of three important antimicrobial peptide biosynthesis genes ituc, fend, and bmyb was determined by PCR.

  10. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus).

    Science.gov (United States)

    Kim, In-Woo; Lee, Joon Ha; Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species. PMID:27167617

  11. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus).

    Science.gov (United States)

    Kim, In-Woo; Lee, Joon Ha; Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species.

  12. Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases)

    DEFF Research Database (Denmark)

    Hillier, Andrew; Lloyd, David H.; Weese, J. Scott;

    2014-01-01

    BACKGROUND: Superficial bacterial folliculitis (SBF) is usually caused by Staphylococcus pseudintermedius and routinely treated with systemic antimicrobial agents. Infection is a consequence of reduced immunity associated with alterations of the skin barrier and underlying diseases that may...... of an internationally available resource guiding practitioners in the diagnosis, treatment and prevention of SBF. DEVELOPMENT OF THE GUIDELINES: The guidelines were developed by the Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases, with consultation and advice...... are used and antimicrobial susceptibility tests are mandatory. Tier three includes drugs reserved for highly resistant infections; their use is strongly discouraged and, when necessary, they should be used in consultation with specialists. CONCLUSIONS AND CLINICAL IMPORTANCE: Optimal management of SBF...

  13. Drug: D00033 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D00033 Drug Phenol (JP16/USP); Liquefied phenol (JP16); Phenol for disinfection (JP...16); Phenol, liquefied; Paoscle (TN); Phenol (TN); Liquefied phenol (TN); Phenol for disinfection (TN) C6H6O...:D00033] is contained in the Phenol for disinfection. Therapeutic category of drugs in Japan [BR:br08301] 2 ...hoidal preparations 2559 Others D00033 Phenol (JP16/USP); Liquefied phenol (JP16); Phenol for disinfection (...JP16) 26 Epidermides 261 Antimicrobial agents 2619 Others D00033 Phenol (JP16/USP); Liquefied phenol (JP16); Phenol for disinfection

  14. Study of antimicrobial effects of vancomycin loaded PLGA nanoparticles against enterococcus clinical isolates.

    Science.gov (United States)

    Lotfipour, F; Abdollahi, S; Jelvehgari, M; Valizadeh, H; Hassan, M; Milani, M

    2014-07-01

    Researchers have demonstrated that antimicrobial agents in nanoparticle (NP) forms have better activities. Vancomycin (VCM), as a glycopeptide antibiotic with antimicrobial activity against gram positive bacteria, is poorly absorbed from the intestinal tract. Enterococcus is a genus of bacteria that became resistant to a wide range of antibiotics in last decades, and cause severe infections in hospitalized patients. This paper describes preparation of VCM--loaded poly (lactic-co-glycolic acid) (PLGA) NPs and compares the antimicrobial effects with drug solution against clinical Enterococcus isolates. VCM-loaded PLGA NPs were fabricated by W1/O/W2 solvent evaporation method. The comparison of obtained Minimum Inhibitory Concentration (MIC) values showed a significant decrease in the antimicrobial effect of VCM -loaded NPs. Results also indicated that the potency of the NPs against VCM resistant isolates of Enterococcus was less than VCM susceptible isolates. The reduced antimicrobial effect of formulated NPs in invitro condition is perhaps related to the strong electrostatic linkage between hydrophilic drug (VCM) and hydrophobic polymer (PLGA) that lead to the slow release of the antibiotic from polymeric NPs.

  15. Drug-Resistant Tuberculosis: Challenges and Progress.

    Science.gov (United States)

    Kurz, Sebastian G; Furin, Jennifer J; Bark, Charles M

    2016-06-01

    Antimicrobial resistance is a natural evolutionary process, which in the case of Mycobacterium tuberculosis is based on spontaneous chromosomal mutations, meaning that well-designed combination drug regimens provided under supervised therapy will prevent the emergence of drug-resistant strains. Unfortunately, limited resources, poverty, and neglect have led to the emergence of drug-resistant tuberculosis throughout the world. The international community has responded with financial and scientific support, leading to new rapid diagnostics, new drugs and regimens in advanced clinical development, and an increasingly sophisticated understanding of resistance mechanisms and their application to all aspects of TB control and treatment. PMID:27208770

  16. Club Drugs

    Science.gov (United States)

    ... uses. Other uses of these drugs are abuse. Club drugs are also sometimes used as "date rape" drugs, to make someone unable to say no to or fight back against sexual assault. Abusing these drugs can ...

  17. Generic Drugs

    Science.gov (United States)

    ... name drug. A brand- name drug has a patent. When the patent runs out— usually after 10 to 14 years— ... if you do not have drug coverage. Condition Diabetes Heart failure High cholesterol Migraine Brand-name drug ...

  18. Drug Facts

    Science.gov (United States)

    ... text to you. This web site talks about drug abuse, addiction and treatment. Watch Videos Information About Drugs Alcohol ... of the drug. "Max" was addicted to prescription drugs. The addiction slowly took over his life. I need different ...

  19. Inhaled formulations and pulmonary drug delivery systems for respiratory infections.

    Science.gov (United States)

    Zhou, Qi Tony; Leung, Sharon Shui Yee; Tang, Patricia; Parumasivam, Thaigarajan; Loh, Zhi Hui; Chan, Hak-Kim

    2015-05-01

    Respiratory infections represent a major global health problem. They are often treated by parenteral administrations of antimicrobials. Unfortunately, systemic therapies of high-dose antimicrobials can lead to severe adverse effects and this calls for a need to develop inhaled formulations that enable targeted drug delivery to the airways with minimal systemic drug exposure. Recent technological advances facilitate the development of inhaled anti-microbial therapies. The newer mesh nebulisers have achieved minimal drug residue, higher aerosolisation efficiencies and rapid administration compared to traditional jet nebulisers. Novel particle engineering and intelligent device design also make dry powder inhalers appealing for the delivery of high-dose antibiotics. In view of the fact that no new antibiotic entities against multi-drug resistant bacteria have come close to commercialisation, advanced formulation strategies are in high demand for combating respiratory 'super bugs'.

  20. Antimicrobial activity of some isatin-3--thiosemicarbazone complexes

    OpenAIRE

    SANDRA S. KONSTANTINOVIC; Radovanovic, Blaga C.; Sovilj, Sofija P.; SVETLANA STANOJEVIC

    2008-01-01

    Isatin-3-thiosemicarbazone complexes with Co(II), Ni(II), Cu(II), Zn(II), Hg(II) and Pd(II) were synthesized and evaluated for their antimicrobial activity against 7 pathogenic bacteria and 4 fungi. The complexes have an enhanced activity compared to the ligand due to transition metal involved in coordination. The anti-amoebic activity in vitro was evaluated against the HM1:IMSS strain of Entamoeba histolytica and the results were compared with the standard drug, metronidazole. The preliminar...

  1. Antimicrobial potential of some plant extracts against Candida species.

    Science.gov (United States)

    Höfling, J F; Anibal, P C; Obando-Pereda, G A; Peixoto, I A T; Furletti, V F; Foglio, M A; Gonçalves, R B

    2010-11-01

    The increase in the resistance to antimicrobial drugs in use has attracted the attention of the scientific community, and medicinal plants have been extensively studied as alternative agents for the prevention of infections. The Candida genus yeast can become an opportunistic pathogen causing disease in immunosuppressive hosts. The purpose of this study was to evaluate dichloromethane and methanol extracts from Mentha piperita, Rosmarinus officinalis, Arrabidaea chica, Tabebuia avellanedae, Punica granatum and Syzygium cumini against Candida species through the analysis of Minimum Inhibitory Concentration (MIC). Results presented activity of these extracts against Candida species, especially the methanol extract. PMID:21180915

  2. Drug Facts

    Medline Plus

    Full Text Available ... Drug Abuse Hurts Other People Drug Abuse Hurts Families Drug Abuse Hurts Kids Drug Abuse Hurts Unborn Children ... a Relapse? Find Treatment/Rehab Resources Friends and Family Can Help Prevent Drug Abuse Help Children and Teens Stay Drug-Free ...

  3. Synergistic combination dry powders for inhaled antimicrobial therapy

    Science.gov (United States)

    Heng, Desmond; Lee, Sie Huey; Teo, Jeanette; Ng, Wai Kiong; Chan, Hak-Kim; Tan, Reginald B. H.

    2013-06-01

    Combination products play an important role in medicine as they offer improved clinical effectiveness, enhanced patient adherence, and reduced administrative costs. In combination antimicrobial therapy, the desired outcome is to extend the antimicrobial spectrum and to achieve a possible synergistic effect. However, adverse antagonistic species may sometimes emerge from such combinations, leading to treatment failure. Therefore, it is crucial to screen the drug candidates for compatibility and possible antagonistic interactions. This work aims to develop a novel synergistic dry powder inhaler (DPI) formulation for antimicrobial combination therapy via the pulmonary route. Binary and ternary combinations were prepared via spray drying on a BUCHI® Nano Spray Dryer B-90. All powders were within the respirable size range, and were consisted of spherical particles that were slightly corrugated. The powers yielded fine particle fractions (of the loaded dose) of over 40% when dispersed using an Aerolizer® DPI at 60 L/min. Time-kill studies carried out against common respiratory tract pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia and Acinetobacter baumannii at 1x the minimum inhibitory concentration (MIC) over 24 hours revealed no antagonistic behavior for both combinations. While the interactions were generally found to be indifferent, a favorable synergistic effect was detected in the binary combination when it was tested against Pseudomonas aeruginosa bacteria.

  4. In Vitro Antimicrobial and Antiproliferative Activity of Amphipterygium adstringens

    Directory of Open Access Journals (Sweden)

    A. Rodriguez-Garcia

    2015-01-01

    Full Text Available Amphipterygium adstringens is a plant widely used in Mexican traditional medicine for its known anti-inflammatory and antiulcer properties. In this work, we evaluated the in vitro antimicrobial and antiproliferative activities of the methanolic extract of A. adstringens against oral pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Candida albicans, and Candida dubliniensis, using microdilution (MIC and agar diffusion methods (MBC, and the antiproliferative activity evaluating total growth inhibition (TGI by staining the protein content with sulforhodamine B (SRB, using nine human cancer cell lines. Crude extract (CE of A. adstringens showed some degree of activity against one or more of the strains with a MIC from 0.125 mg/mL to 63 mg/mL and MBC from 1.6 to 6.3 mg/mL and cytotoxic activity, particularly against NCI-ADR/RES, an ovarian cell line expressing multiple resistance drugs phenotype. The CE is a complex mixture of possible multitarget metabolites that could be responsible for both antimicrobial and antiproliferative activities, and further investigation is required to elucidate the identity of active compounds. Nevertheless the CE itself is useful in the development of new antimicrobial treatment based on natural products to prevent oral diseases and as alternative natural source for cancer treatment and prevention.

  5. Antimicrobial and antihyperglycemic activities of Musa paradisiaca flowers

    Institute of Scientific and Technical Information of China (English)

    Sunil Jawla; Y Kumar; MSY Khan

    2012-01-01

    Objective: To screen the antimicrobial and antihyperglycemic activities of Musa paradisiaca (M. paradisiaca) flowers. Methods: The EtOH and EtOH: water (1:1) extracts of M. paradisiaca flowers were screened for antibacterial and antifungal activity against standard strains of Bacillussubtilis (K. pneumoniae), Proteus mirabilis (P. mirabilis), Pseudomonas aeruginosa (P. aeruginosa),Streptococcus pneumoniae (B. subtilis), Bacillus cereus (B. cereus), Escherichia coli (E. coli), Klebsiella pneumoniae typhimurium (S. typhimurium) and Candida albicans (C. albicans), Cryptococcus albidus (C.albidus (S. pneumoniae), Staphylococcus aureus (S. aureus), Salmonella ) against amikacin and clotrimazole respectively. Both the extracts were also administered to normal and alloxan induced diabetic rats. The blood glucose levels were measured daily after oral administration of extracts at doses of 100, 250 and 500 mg/(kg.d). Result: The EtOH and EtOH:water (1:1) extracts exhibited antimicrobial activity with minimum inhibitory concentrations ranging from 5.62-25.81 and 7.60-31.50 μg/mL respectively. Both the extracts reversed the permanent hyperglycemia within a week in alloxan induced diabetic rats. The EtOH extract (250 mg/kg) was found to be 7.69% more potent hypoglycemic effect than standard oral hypoglycemic drug, glibenclamide 0.2 mg/kg b.w., respectively. Conclusion: The alcoholic extracts of M. paradisiaca flowers showed potent antihyperglycemic and moderate antimicrobial activities.

  6. Diversity, evolution and medical applications of insect antimicrobial peptides.

    Science.gov (United States)

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged; Vilcinskas, Andreas

    2016-05-26

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides.The article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160593

  7. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Voicu, Georgeta; Dogaru, Ionuţ; Meliţă, Daniela; Meştercă, Raluca; Spirescu, Vera; Stan, Eliza; Tote, Eliza [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Mogoantă, Laurenţiu [University of Medicine and Pharmacy of Craiova, Research Center for Microscopic Morphology and Immunology (Romania); Mogoşanu, George Dan [University of Medicine and Pharmacy of Craiova, Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Truşcă, Roxana [Metav SA-CD S.A. (Romania); Vasile, Eugeniu [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Iordache, Florin [Institute of Cellular Biology and Pathology of Romanian Academy, “Nicolae Simionescu”, Department of Fetal and Adult Stem Cell Therapy (Romania); Chifiriuc, Mariana-Carmen [University of Bucharest, Microbiology Department, Faculty of Biology (Romania); Holban, Alina Maria [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania)

    2015-05-15

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET–TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications.

  8. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae

    Directory of Open Access Journals (Sweden)

    Liang Hanqiao

    2012-11-01

    Full Text Available Abstract Background Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Methods Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC and fermentation broth (FB were tested for antimicrobial activity using peptide deformylase (PDF inhibition fluorescence assays and MTT cell proliferation assays. Results A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC and 33.33% of the fermentation broths (FB displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. Conclusion The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  9. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    International Nuclear Information System (INIS)

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET–TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications

  10. Diversity, evolution and medical applications of insect antimicrobial peptides.

    Science.gov (United States)

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged; Vilcinskas, Andreas

    2016-05-26

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides.The article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.

  11. Antimicrobial peptides: key components of the innate immune system.

    Science.gov (United States)

    Pasupuleti, Mukesh; Schmidtchen, Artur; Malmsten, Martin

    2012-06-01

    Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.

  12. Cholic acid derivatives: novel antimicrobials.

    Science.gov (United States)

    Savage, P B; Li, C

    2000-02-01

    Mimics of squalamine and polymyxin B (PMB) have been prepared from cholic acid in hope of finding new antimicrobial agents. The squalamine mimics include the polyamine and sulphate functionalities found in the parent antibiotic, however, the positions relative to the steroid nucleus have been exchanged. The PMB mimics include the conservation of functionality among the polymyxin family of antibiotics, the primary amine groups and a hydrophobic chain. Although the squalamine and PMB mimics are morphologically dissimilar, they display similar activities. Both are simple to prepare and demonstrate broad spectrum antimicrobial activity against Gram-negative and Gram-positive organisms. Specific examples may be inactive alone, yet effectively permeabilise the outer membranes of Gram-negative bacteria rendering them sensitive to hydrophobic antibiotics. Problems associated with some of the squalamine and PMB mimics stem from their haemolytic activity and interactions with serum proteins, however, examples exist without these side effects which can sensitise Gram-negative bacteria to hydrophobic antibiotics. PMID:11060676

  13. Antimicrobial peptides in the brain.

    Science.gov (United States)

    Su, Yanhua; Zhang, Kai; Schluesener, Hermann J

    2010-10-01

    Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune system of many species. The brain is an immunologically privileged organ but can produce a robust immune response against pathogens and cell debris, promoting rapid and efficient clearance. AMPs may be critically involved in the innate immune system of the brain. Though the mechanisms of AMPs' action in the brain still need further elucidation, many studies have shown that AMPs are multifunctional molecules in the brain. In addition to antimicrobial action, they take part in congenital and adaptive immune reactions (immunoregulation), function as signaling molecules in tissue repair, inflammation and other important processes through different mechanisms, and they might, in addition, become diagnostic markers of brain disease.

  14. A European study on the relationship between antimicrobial use and antimicrobial resistance

    NARCIS (Netherlands)

    Bronzwaer, SLAM; Cars, O; Buchholz, U; Molstad, S; Goettsch, W; Veldhuijzen, IK; Kool, JL; Sprenger, MJW; Degener, JE

    2002-01-01

    In Europe, antimicrobial resistance has been monitored since 1998 by the European Antimicrobial Resistance Surveillance System (EARSS). We examined the relationship between penicillin nonsusceptibility of invasive isolates of Streptococcus pneumoniae and antibiotic sales. Information was collected o

  15. Antimicrobial activities of squalamine mimics.

    OpenAIRE

    Kikuchi, K.; Bernard, E M; Sadownik, A; Regen, S L; Armstrong, D

    1997-01-01

    We investigated the antimicrobial properties of compounds with structural features that were designed to mimic those of squalamine, an antibiotic isolated from the stomach of the dogfish shark. The mimics, like squalamine, are sterol-polyamine conjugates. Unlike squalamine, the mimics were simple to prepare, at high yield, from readily available starting materials. Several squalamine mimics showed activity against gram-negative rods, gram-positive cocci including methicillin-resistant Staphyl...

  16. Current and future challenges in the development of antimicrobial agents.

    Science.gov (United States)

    Rennie, Robert P

    2012-01-01

    Micro-organisms exist to survive. Even in the absence of antimicrobial agents, many have determinants of resistance that may be expressed phenotypically, should the need arise. With the advent of the antibiotic age, as more and more drugs were developed to treat serious infections, micro-organisms (particularly bacteria) rapidly developed resistance determinants to prevent their own demise.The most important determinants of resistance have been in the Gram-positive and Gram-negative bacteria. Among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP) have taxed researchers and pharmaceutical companies to develop new agents that are effective against these resistant strains. Among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBL) enzymes, carbapenemases (CREs) and the so-called amp-C enzymes that may be readily transferred between species of enterobacteriaceae and other facultative species have created multi-drug resistant organisms that are difficult to treat. Other resistance determinants have been seen in other clinically important bacterial species such as Neisseria gonorrhoeae, Clostridium difficile, Haemophilus influenzae and Mycobacterium tuberculosis. These issues have now spread to fungal agents of infection.A variety of modalities have been used to stem the tide of resistance. These include the development of niche compounds that target specific resistance determinants. Other approaches have been to find new targets for antimicrobial activity, use of combination agents that are effective against more than one target in the cell, or new delivery mechanism to maximize the concentration of antimicrobial agents at the site of infection without causing toxicity to the host. It is important that such new modalities have been proved effective for clinical therapy. Animal models and non-mammalian systems have been developed to

  17. Isolation of Pseudomonas aeruginosa strains from dental office environments and units in Barretos, state of São Paulo, Brazil, and analysis of their susceptibility to antimicrobial drugs Isolamento de cepas de Pseudomonas aeruginosa provenientes do meio ambiente e de equipos dentarios em clinicas dentarias em Barretos, São Paulo, Brasil; analises da susceptibilidade das cepas a drogas antimicrobianas

    Directory of Open Access Journals (Sweden)

    Ana Claudia de Oliveira

    2008-09-01

    Full Text Available A wide variety of opportunistic pathogens has been detected in the tubing supplying water to odontological equipment, in special in the biofilm lining of these tubes. Among these pathogens, Pseudomonas aeruginosa, one of the leading causes of nosocomial infections, is frequently found in water lines supplying dental units. In the present work, 160 samples of water, and 200 fomite samples from forty dental units were collected in the city of Barretos, State of São Paulo, Brazil and evaluated between January and July, 2005. Seventy-six P. aeruginosa strains, isolated from the dental environment (5 strains and water system (71 strains, were tested for susceptibility to six antimicrobial drugs most frequently used against P. aeruginosa infections. Susceptibility to ciprofloxacin, followed by meropenem was the predominant profile. The need for effective means of reducing the microbial burden within dental unit water lines is emphasized, and the risk of exposure and cross-infection in dental practice, in special when caused by opportunistic pathogens like P. aeruginosa, are highlighted.Uma ampla variedade de patógenos oportunistas tem sido detectadas nos tubos de alimentação de água dos equipos odontológicos, particularmente no biofilme formado na superfície do tubo. Entre os patógenos oportunistas encontrados nos tubos de água, Pseudomonas aeruginosa é reconhecida como uma das principais causadoras de infecções nosocomiais. Foram coletadas 160 amostras de água e 200 amostras de fomites em quarenta clinicas odontológicas na cidade de Barretos, São Paulo, Brasil, durante o período de Janeiro a Julho de 2005. Setenta e seis cepas de P. aeruginosa, isoladas a partir dos fomites (5 cepas e das amostras de água (71 cepas, foram analisadas quanto à susceptibilidade à seis drogas antimicrobianas freqüentemente utilizadas para o tratamento de infecções provocadas por P. aeruginosa. As principais suscetibilidades observadas foram para a

  18. Collagen-like antimicrobial peptides.

    Science.gov (United States)

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  19. Synthesis and biological evaluation of 5,7-dihydroxyflavanone derivatives as antimicrobial agents.

    Science.gov (United States)

    Zhang, Xing; Khalidi, Omar; Kim, So Young; Wang, Ruitong; Schultz, Victor; Cress, Brady F; Gross, Richard A; Koffas, Mattheos A G; Linhardt, Robert J

    2016-07-01

    A series of 5,7-dihydroxyflavanone derivatives were efficiently synthesized. Their antimicrobial efficacy on Gram-negative, Gram-positive bacteria and yeast were evaluated. Among these compounds, most of the halogenated derivatives exhibited the best antimicrobial activity against Gram-positive bacteria, the yeast Saccharomyces cerevisiae, and the Gram-negative bacterium Vibrio cholerae. The cytotoxicities of these compounds were low as evaluated on HepG2 cells using a cell viability assay. This study suggests that halogenated flavanones might represent promising pharmacological candidates for further drug development. PMID:27210435

  20. Synthesis of modified pyridine and bipyridine substituted coumarins as potent antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Lad Hemali B.

    2015-01-01

    Full Text Available In search for new antimicrobial agents a series of new modified pyridine and bipyridine substituted coumarins 5a-y was designed and synthesized by adopting molecular hybridization strategy. All the synthesized compounds were evaluated for their in vitro antimicrobial activity using broth dilution method against selected bacterial (Gram-positive and Gram-negative and fungal strains. Compounds 5a, 5f, 5g, 5n, 5r, 5t, 5w, 5x and 5y demonstrated promising antibacterial activity while other derivatives showed comparable activity to standard drugs used as reference.

  1. Drug repurposing: a new front in the war against Staphylococcus aureus.

    Science.gov (United States)

    Das, Swetarka; Dasgupta, Arunava; Chopra, Sidharth

    2016-08-01

    Staphylococcus aureus continues its domination of worldwide bacterial infection rates, thereby remaining a pathogen of significant public health interest. A major reason for its continued success is its ability to acquire and maintain diverse drug resistance mechanisms, leading to a paucity of antimicrobials active against it, concomitantly leading to a continuous search for new antimicrobial agents. However, with the withdrawal of the major pharmaceutical firms from the anti-infective area, drug repurposing has provided a potential boost to the drug pipeline. In this review, we provide an overview of the currently approved drugs with repurposing potential against Staphylococcus aureus, thus augmenting the classical drug discovery pathway. PMID:27494302

  2. Antimicrobial susceptibility among clinical Nocardia species identified by multilocus sequence analysis.

    Science.gov (United States)

    McTaggart, Lisa R; Doucet, Jennifer; Witkowska, Maria; Richardson, Susan E

    2015-01-01

    Antimicrobial susceptibility patterns of 112 clinical isolates, 28 type strains, and 9 reference strains of Nocardia were determined using the Sensititre Rapmyco microdilution panel (Thermo Fisher, Inc.). Isolates were identified by highly discriminatory multilocus sequence analysis and were chosen to represent the diversity of species recovered from clinical specimens in Ontario, Canada. Susceptibility to the most commonly used drug, trimethoprim-sulfamethoxazole, was observed in 97% of isolates. Linezolid and amikacin were also highly effective; 100% and 99% of all isolates demonstrated a susceptible phenotype. For the remaining antimicrobials, resistance was species specific with isolates of Nocardia otitidiscaviarum, N. brasiliensis, N. abscessus complex, N. nova complex, N. transvalensis complex, N. farcinica, and N. cyriacigeorgica displaying the traditional characteristic drug pattern types. In addition, the antimicrobial susceptibility profiles of a variety of rarely encountered species isolated from clinical specimens are reported for the first time and were categorized into four additional drug pattern types. Finally, MICs for the control strains N. nova ATCC BAA-2227, N. asteroides ATCC 19247(T), and N. farcinica ATCC 23826 were robustly determined to demonstrate method reproducibility and suitability of the commercial Sensititre Rapmyco panel for antimicrobial susceptibility testing of Nocardia spp. isolated from clinical specimens. The reported values will facilitate quality control and standardization among laboratories. PMID:25348540

  3. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil

    Directory of Open Access Journals (Sweden)

    Oliver T. Zishiri

    2016-03-01

    Full Text Available Salmonellosis is a significant public health concern around the world. The injudicious use of antimicrobial agents in poultry production for treatment, growth promotion and prophylaxis has resulted in the emergence of drug resistant strains of Salmonella. The current study was conducted to investigate the prevalence of virulence and antimicrobial resistance genes from Salmonella isolated from South African and Brazilian broiler chickens as well as human clinical isolates. Out of a total of 200 chicken samples that were collected from South Africa 102 (51% tested positive for Salmonella using the InvA gene. Of the overall 146 Salmonella positive samples that were screened for the iroB gene most of them were confirmed to be Salmonella enterica with the following prevalence rates: 85% of human clinical samples, 68.6% of South African chicken isolates and 70.8% of Brazilian chicken samples. All Salmonella isolates obtained were subjected to antimicrobial susceptibility testing with 10 antibiotics. Salmonella isolates from South African chickens exhibited resistance to almost all antimicrobial agents used, such as tetracycline (93%, trimethoprim-sulfamthoxazole (84%, trimethoprim (78.4%, kanamycin (74%, gentamicin (48%, ampicillin (47%, amoxicillin (31%, chloramphenicol (31%, erythromycin (18% and streptomycin (12%. All samples were further subjected to PCR in order to screen some common antimicrobial and virulence genes of interest namely spiC, pipD, misL, orfL, pse-1, tet A, tet B, ant (3"-la, sul 1 and sul. All Salmonella positive isolates exhibited resistance to at least one antimicrobial agent; however, antimicrobial resistance patterns demonstrated that multiple drug resistance was prevalent. The findings provide evidence that broiler chickens are colonised by pathogenic Salmonella harbouring antimicrobial resistance genes. Therefore, it is evident that there is a need for prudent use of antimicrobial agents in poultry production systems in

  4. Antimicrobial activity of Argemone ochroleuca Sweet (Chicalote)

    OpenAIRE

    Francisco Daniel REYES; Celia Jimena PEÑA; Canales, Margarita; Jiménez, Manuel; Samuel MERÁZ; Tzasna HERNANDEZ

    2011-01-01

    Argemone ochroleuca Sweet (Papaveraceae) is used to treat eye infection, respiratory and dermatological disorders in Tepotzotlán, State of México (México). The aim of this work was to investigate antimicrobial activity of hexane, ethyl acetate and methanol extracts from aerial parts of A. ochroleuca. The antimicrobial activity was evaluated against thirteen bacteria and nine fungal strains. Only methanol extract showed antimicrobial activity. S. aureus (MIC= 125 ¿g/mL) and C. neoformans (MIC=...

  5. Antimicrobial stewardship in small animal veterinary practice

    DEFF Research Database (Denmark)

    Guardabassi, Luca; Prescott, John F

    2015-01-01

    Despite the increasing recognition of the critical role for antimicrobial stewardship in preventing the spread of multidrug-resistant bacteria, examples of effective antimicrobial stewardship programs are rare in small animal veterinary practice. This article highlights the basic requirements...... for establishing stewardship programs at the clinic level. The authors provide suggestions and approaches to overcome constraints and to move from theoretic concepts toward implementation of effective antimicrobial stewardship programs in small animal clinics....

  6. Insect inducible antimicrobial peptides and their applications.

    Science.gov (United States)

    Ezzati-Tabrizi, Reyhaneh; Farrokhi, Naser; Talaei-Hassanloui, Reza; Alavi, Seyed Mehdi; Hosseininaveh, Vahid

    2013-12-01

    Antimicrobial peptides (AMPs) are found as important components of the innate immune system (host defense) of all invertebrates. These peptides can be constitutively expressed or induced in response to microbial infections. Indeed, they vary in their amino acid sequences, potency and antimicrobial activity spectra. The smaller AMPs act greatly by disrupting the structure or function of microbial cell membranes. Here, the insect innate immune system with emphasis on inducible antimicrobial peptide properties against microbial invaders has been discussed.

  7. Evaluation of antimicrobial efficacy of flavonoids of Withania somnifera L.

    Directory of Open Access Journals (Sweden)

    G Singh

    2011-01-01

    Full Text Available In the present study antimicrobial activity of Withania somnifera L. Dunal (Solanaceae has been evaluated against selected pathogens. Free and bound flavonoids of different parts (root, stem, leaf and fruit of W. somnifera have been studied for their antimicrobial activity using disc diffusion assay against three Gram negative bacteria (Escherichia coli MTCC 46, Proteus mirabilis MTCC 3310 and Pseudomonas aeruginosa MTCC 1934, one Gram positive bacteria (Staphylococcus aureus MTCC 3160 and three fungi (Candida albicans MTCC 183, Aspergillus flavus MTCC 277 and Aspergillus niger MTCC 282. Minimum inhibitory concentration (MIC of the extracts was evaluated through micro broth dilution method, while minimum bactericidal/fungicidal concentration was determined by sub culturing the relevant samples. C. albicans was found to be the most susceptible organism followed by S. aureus, P. mirabilis, E. coli and P. aeruginosa. Out of the tested organisms, A flavus and A. niger were observed to be resistant as none of the tested extracts showed activity against them. Total activity (TA of extracts (ml/g against each sensitive pathogens was also evaluated. Bound flavonoid extract of root showed best activity against C. albicans (IZ 30, MIC 0.039, MFC 0.039, respectively. However all the microorganisms were found to be sensitive against the extracts tested. Total activity of bound flavonoid extract of root was found to be same for E.coli, P. mirabilis, S. aureus and C. albicans (153.84 ml/g. Results of the present study reveal that extracts of W. somnifera showing great antimicrobial potential against test microorganisms may be exploited for future antimicrobial drugs.

  8. [Adequate antimicrobial drug use in a third level pediatric hospital].

    Science.gov (United States)

    Duarte-Raya, Fidencia; Rodríguez-Lechuga, Manuel; De Anda-Gómez, Manuel Alberto; Granados-Ramírez, Martha Patricia; Vargas-Rodríguez, Alexia Gisselle

    2015-01-01

    Introducción: el uso inadecuado de antimicrobianos contribuye al desarrollo de la resistencia bacteriana, reduce la efectividad de los tratamientos establecidos e incrementa los gastos y la mortalidad por enfermedades infecciosas. El objetivo de este artículo es evaluar si el uso de antimicrobianos en pacientes pediátricos hospitalizados se realiza de forma adecuada. Métodos: estudio epidemiológico observacional, transversal en la UMAE No. 48 de León, Guanajuato. Muestra no probabilística, con un 60 % de tratamientos adecuados esperados, desviación estándar 4. Se utilizó la técnica estadística de análisis de distribución de frecuencias por calificación final de tratamiento administrado: profiláctico, terapéutico, restringido, justificado y adecuado. Se realiza chi cuadrada para comparación de porcentajes. Resultados: se evalúan 283 prescripciones antimicrobianas en 217 pacientes, hombres (53 %) y mujeres (47 %). De los cuales fueron tratamientos adecuados: general 51.2 %, justificado 66 %, terapéutico 53.4 %, restringido 40.8 % y profiláctico 48 %. Comparación de porcentajes con chi cuadrada, asociación estadística significativa de tratamiento adecuado en neonatos (chi cuadrada 8.287; p 0.004) y tratamiento inadecuado en prematuros (chi cuadrada 4.853; p 0.028) con p < 0.05. Los antibióticos más usados fueron: penicilinas 43.7 % y aminoglucósidos 37.1 %. Conclusión: solo la mitad de los tratamientos antimicrobianos se prescriben de forma adecuada.

  9. Antimicrobial (Drug) Resistance: Methicillin-Resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    ... Marketing Share this: Main Content Area Methicillin-Resistant Staphylococcus aureus (MRSA) During the past four decades, methicillin-resistant Staphylococcus aureus , or MRSA, has evolved from a controllable ...

  10. Molecular cloning, expression and in vitro analysis of soluble cationic synthetic antimicrobial peptide from salt-inducible Escherichia coli GJ1158

    Directory of Open Access Journals (Sweden)

    Jawahar Babu Peravali

    2013-01-01

    Full Text Available Antimicrobial peptides are the upcoming therapeutic molecules as alternative drugs to the existing antibiotics owing to their potent action against pathogenic microorganisms. In this study, to obtain an antimicrobial peptide with a broad range of activity, the synthetic cationic antimicrobial peptide was designed by using in silico tools viz., antimicrobial peptide database, protparam, hierarchical neural network. Later, the peptide was translated back into a core nucleotide sequence and the gene for the peptide was constructed by overlapping PCR. The amplified gene was cloned into pRSET–A vector and transformed into salt inducible expression host E. coli GJ1158. The expression results show high yields of soluble recombinant fusion peptide (0.52 g/L from salt-inducible E. coli. The recombinant peptide was purified by the IMAC purification system and cleaved by enterokinase. The digested product was further purified and 0.12 g/L of biologically active recombinant cationic antimicrobial peptide was obtained. In vitro analysis of the purified peptide demonstrated high antimicrobial activity against both Gram positive and Gram negative bacteria devoid of hemolytic activity. Therefore, this synthetic cationic antimicrobial peptide could serves as an promising agent over chemical antibiotics. In this study, a synthetic cationic antimicrobial peptide was designed, cloned and expressed from salt-inducible E. coli GJ1158 using cost effective media in the large scale production of antimicrobial peptide and its biological activity was analysed against different Gram positive and negative organisms.

  11. Antimicrobial Resistance: Is the World UNprepared?

    Science.gov (United States)

    2016-09-01

    Long Blurb: On September 21st 2016 the United Nations General Assembly convenes in New York, United States to tackle a looming and seemingly inevitable global challenge with the potential to threaten the health and wellbeing of all people: antimicrobial resistance. In an Editorial, the PLOS Medicine Editors reflect on the challenge of coordinating the response to antimicrobial resistance in order to ensure the viability of current antimicrobials and the development of new therapies against resistant pathogens. Short Blurb: In this month's Editorial, the PLOS Medicine Editors reflect on the upcoming United Nations General Assembly meeting which convenes to discuss the global challenge of antimicrobial resistance. PMID:27618631

  12. Molecular Targets of β-Lactam-Based Antimicrobials: Beyond the Usual Suspects

    Directory of Open Access Journals (Sweden)

    Monika I. Konaklieva

    2014-04-01

    Full Text Available The common practice in antibacterial drug development has been to rapidly make an attempt to find ever-more stable and broad-spectrum variants for a particular antibiotic, once a drug resistance for that antibiotic is detected. We are now facing bacterial resistance toward our clinically relevant antibiotics of such a magnitude that the conversation for antimicrobial drug development ought to include effective new antibiotics with alternative mechanisms of action. The electrophilic β-lactam ring is amenable for the inhibition of different enzyme classes by a suitable decoration of the core scaffold. Monocyclic β-lactams lacking an ionizable group at the lactam nitrogen exhibit target preferences toward bacterial enzymes important for resistance and virulence. The present review intends to draw attention to the versatility of the β-lactams as antimicrobials with “unusual” molecular targets.

  13. VETSTAT - the Danish system for surveillance of the veterinary use of drugs for production animals

    DEFF Research Database (Denmark)

    Stege, H.; Bager, Flemming; Jacobsen, Erik;

    2003-01-01

    of drugs for use in animal production is reported on a monthly basis. Pharmacies provided 95% of the total weight antimicrobial compounds used in Denmark in 2001. More than 80% of the antimicrobial compounds reported by pharmacies were sold on prescription to end-users (owners) and included information...... on animal species, age-group and diagnostic grouping; >90% of the total amount of antimicrobials sold on prescription was used for pigs. In 2001, sales of 96,500 kg of antimicrobials were reported....

  14. SPICES AS ANTIMICROBIAL AGENTS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Saha Rajsekhar

    2012-02-01

    Full Text Available The sources of drug are classified as plant, animal, minerals sources. The products from plants are used in many ways by human in there day today life. The best and the most important use are as food, and as spices. It does not matter which ever the civilization, what ever be the race and color of humans the main food comes from the plant. The spices are the vegetative substances used for to flavor the food. They are also used as preservative and are useful for the humans in many other ways. A spice could be dried seed, fruit, root, bark, or vegetative substance used in nutritionally insignificant quantities as a food additive for flavor, color, or as a preservative that kills harmful bacteria or prevents their growth. It may be used to flavor a dish or to hide other flavors. In the kitchen, spices are distinguished from herbs, which are leafy, green plant parts used for flavoring or as garnish. The above article is an effort to bring out the importance of some daily used spices as antimicrobial agents.

  15. Antimicrobial susceptibility pattern of urinary tract pathogens

    Directory of Open Access Journals (Sweden)

    Khameneh Zakieh

    2009-01-01

    Full Text Available Microbial drug resistance is a major problem in the treatment of infectious diseases worldwide. The purpose of this survey is to determine the prevalence of the type of bacterial agents that cause urinary infection and to assess the antimicrobial sensitivity pattern in the Urmia Medical University, Iran. In the period between 2005 and 2006, urine cultures collected were analyzed. Positive culture was defined as growth of a single bacterial species with colony count of > 100,000 CFU/mL. Stratification was done according to age-group and gender. Statistical tests used included chi-square to evaluate differences between susceptibility rates. A total of 803 urine culture positive patients were studied of whom 81.6% were females and 18.4% were males. The common micro-organisms isolated were E. coli (78.58%, Klebsiella (5.48%, Proteus and Staphylococcus. About 89% of the E. coli isolated showed sensitivity to cephtizoxin, 83.9% to gentamycin and 83.2% to ciprofloxacin; the highest resistance was shown to ampicillin and co-trimoxazole. Surveys of this nature will give a clear idea about the bacteriologic profile in a given institution as well their antibiotic sensitivity profile. This will act as a guide to commencing empirical antibiotic treatment in patients with urinary infections until such time culture reports are available.

  16. Mineral oxide transformation of antimicrobial contaminants

    Science.gov (United States)

    Guo, B.; Kendall, T. A.

    2008-12-01

    The quality of our water supply is dependent on the organic-mineral interface. Organics contain reactive groups that dissolve minerals, and release surface associated contaminants into aquifers and reservoirs. Conversely, minerals may transform organic pollutants, including antimicrobial drugs that are potentially deleterious to aquatic ecosystems or human health. Under aqueous conditions typical of soils and natural waters, the antibiotic agent sulfamethoxazole (SMX) is transformed in the presence of pyrolusite, presumably on the MnO2 surface. At least 50 percent loss of SMX was observed after 269 h, in both acidic and basic solutions (pH 3-9). Nearly 100 percent loss is recorded at pH 3 and 66 percent loss was recorded at circumneutral pH. Initial mass spectrometry of the reaction products suggests an oxidative pathway where hydroxylation and oxidation occurs at the aniline moiety and isoxazolamine ring of SMX. Concomitant increases in aqueous manganese concentrations suggest reductive transformation of the mineral surface. Ongoing electric force spectroscopy and force microscopy experiments probe potential mineral surface alteration associated with the SMX-MnO2 reaction. Coupling bulk aqueous observations and mass spectrometry with molecular-scale force microscopy should further elucidate sulfonamide reactivity as influenced by mineral surface chemistry and topography. Moreover, the observed transformation suggests manganese oxides likely play an important role in the fate of SMX in the environment.

  17. Antimicrobial susceptibility patterns of Streptococcus pneumoniae over 6 years at Gondar University Hospital, Northwest Ethiopia

    Institute of Scientific and Technical Information of China (English)

    Belay Anagaw; Chandrashekhar Unakal; Mucheye Gezachew; Fantahun Biadgelgene; Berhanu Anagaw; Tariku Geleshe; Birke Taddese; Birhanu Getie; Mengistu Endris; Andargachew Mulu

    2013-01-01

    Objective:To assess the magnitude and antimicrobial susceptibility patterns of Streptococcus pneumoniae isolates from various clinical specimens. Methods:A record based on retrospective study was conducted at Gondar University Teaching Hospital from September 2007 to January 2012. All patients who visited Gondar University Hospital and provided clinical specimens (body fluids, discharge, swab and blood) for routine bacteriological culturing and antimicrobial susceptibility testing were taken for analysis. Clinical specimens were processed for bacterial culture according to the standard procedures. Antimicrobial susceptibility test for isolated organisms was done using agar disk diffusion method. The data were entered and analyzed using SPSS software version 16 package. Results: One hundred and fifty three Streptococcus pneumoniae were isolated from patients who visited Gondar University Teaching Hospital bacteriology laboratory for culture. Majority of the pneumococcal isolates were from inpatients [111(72.5%)], and 74(48.4%) were from body fluids. Out of the total isolates, 93(61%) were found to be resistant to at least one antibiotic used for susceptibility testing. Forty eight (43.2%) of the isolates were multi-drug resistant (resistant to two or more drugs). The resistance rate noted for both ciprofloxacin 17(11.1%) and ceftriaxone 15(9.8%) were alarming. Conclusions: High proportions of the isolates tend to be increasingly resistant to the commonly prescribed drugs. The recommended drug of choice like ciprofloxacin and ceftriaxone were found to be less susceptible in the study area. Based on the findings, we therefore recommend that antimicrobial agents should be inspected for acceptable activity before they are prescribed and administered empirically. Further study with a better design and survey of antimicrobial susceptibility at large scale shoule be performed to draw advanced information.

  18. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota

    Directory of Open Access Journals (Sweden)

    Leon eCantas

    2013-05-01

    Full Text Available The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antibacterial resistance, factors that favor its spread, strategies and limitations for its control and the need for continuous training of all stake-holders i.e. medical, veterinary, public health and other relevant professionals as well as human consumers of antibiotic drugs, in the appropriate use of antimicrobials.

  19. Screening of Amazonian plants from the Adolpho Ducke forest reserve, Manaus, state of Amazonas, Brazil, for antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Basílio Carneiro

    2008-02-01

    Full Text Available Tropical forests are species-rich reserves for the discovery and development of antimicrobial drugs. The aim of this work is to investigate the in vitro antimicrobial potential of Amazon plants found within the National Institute on Amazon Research's Adolpho Ducke forest reserve, located in Manaus, state of Amazonas, Brazil. 75 methanol, chloroform and water extracts representing 12 plant species were tested for antimicrobial activity towards strains of Mycobacterium smegmatis, Escherichia coli, Streptococcus sanguis, Streptococcus oralis, Staphylococcus aureus and Candida albicans using the gel-diffusion method. Active extracts were further evaluated to establish minimum inhibitory concentrations (MIC and antimicrobial profiles using bioautography on normal-phase thin-layer chromatography plates. Diclinanona calycina presented extracts with good antimicrobial activity and S. oralis and M. smegmatis were the most sensitive bacteria. D. calycina and Lacmellea gracilis presented extracts with the lowest MIC (48.8 µg/ml. D. calycina methanol and chloroform leaf extracts presented the best overall antimicrobial activity. All test organisms were sensitive to D. calycina branch chloroform extract in the bioautography assay. This is the first evaluation of the biological activity of these plant species and significant in vitro antimicrobial activity was detected in extracts and components from two species, D. calycina and L. gracilis.

  20. Physical and chemical properties of novel stabilized neutral potential water and its antimicrobial effect on common multi-drug resistant pathogens isolated from wards%新型稳定中性电位水的理化性质及对院内感染常见多重耐药菌的灭活作用

    Institute of Scientific and Technical Information of China (English)

    王文奎; 李作臻; 张锋; 倪语星; 韩立中

    2011-01-01

    目的 评估一种新型稳定中性电位水的理化性质,观察其对烧伤科院内感染常见多重耐药病原菌的灭活作用.方法 选择新鲜配制(配制1个月)和保存8个月的新型稳定中性电位水作为待测样液,以有效氯含量、氧化还原电位(ORP)值和pH值等指标评估理化性质,观察长时间保存对其理化性质的影响;采用活菌培养计数的方法观察烧伤科院内感染常见的多重耐药病原菌(耐甲氧西林金黄色葡萄球菌、铜绿假单胞菌和鲍曼不动杆菌流行克隆株)在添加新型稳定中性电位水的培养皿上的菌落生长情况,以无菌生理盐水代替中性电位水作为阳性对照进行平行试验.结果 新鲜配制和保存8个月的新型稳定中性电位水待测样液的pH值为6.0~7.0,有效氯含量为50~100 mg/L,ORP值>800 mV,理化性质无明显变化.活菌培养计数结果显示:添加新鲜配制和保存8个月的新型稳定中性电位水的培养皿上均未见菌落生长.结论 新型稳定中性电位水的刺激性小,理化性质稳定,灭菌效果理想,可作为烧伤科环境及与患者密切接触物品的消毒剂.%Objective To evaluate the physical and chemical properties of a novel stabilized neutral potential water, and observe its antimicrobial effect on common multi-drug resistant pathogens isolated from burn wards. Methods Novel neutral potential water samples freshly prepared ( prepared within 1 month) and preserved for 8 months were selected, parameters of effective chlorine content, oxidation-reduction potential (ORP) value and pH value were employed to evaluate the physical and chemical properties, and investigate the effects of long-term preservation on the physical and chemical properties. Colony growth of common multi-drug resistant pathogens (methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii) isolated from burn wards in culture media with novel stabilized neutral

  1. Prescription Drugs

    Science.gov (United States)

    ... Us Search Search close Teens Teachers Parents Drugs & Health Blog NDAFW Enter Search Term(s): Teens / Drug Facts / Prescription Drugs Prescription Drugs Print What Is Prescription Drug Abuse? Also known as: Opioids: Hillbilly heroin, oxy, OC, oxycotton, percs, happy pills, vikes Depressants: ...

  2. 白血病化疗后粒细胞缺乏伴真菌感染患者抗菌药物的应用研究%Study on use of antimicrobial drugs by leukemia patients complicated with agranulocytosis and fungal infections after chemotherapy

    Institute of Scientific and Technical Information of China (English)

    古力巴旦木·艾则孜; 袁海龙; 曹海洲; 陈刚; 曲建华

    2016-01-01

    accurate result of etiological culture was obtained .The patients with suspected fungal infections were firstly treated with fluconazole for 5-12 days and then given hierarchical use of antifungal drugs .The use of antimicrobial drugs and improvement of clinical symptoms were investigated ,the statistical analysis of data was performed with the use of SPSS20 .0 software .RESULTS The Candida albicans was dominant among the fungi isolated from the 120 leukemia agranulocytosis patients complicated with fungal infections ,accounting for 60 .8% .The antifungal drug therapy was effective in 112 cases ,with the effective rate of 93 .3% .The body temperature dropped after the treatment for 24-48 hours ,and the clinical symptoms were improved;the white blood cell counts of the patients with neutrophils counts less than 0 .5 × 109/L rose to more than 1 .0 × 109/L after they were treated with granulo-cyte colony stimulating factors for 3-5 days ,and the neutrophils counts rose to more than 0 .5 × 109/L .Totally 8 patients died of septic shock ,with the mortality rate of 6 .7% ,and 16 cases had adverse reactions ,with the inci-dence rate of 13 .3% .CONCLUSION As for the treatment of the leukemia patients complicated with agranulocytosis and fungal infections after chemotherapy ,it is necessary to reasonably use antibiotics on the basis of the re-sults of identification of pathogens and drug susceptibility testing and conduct the preventive antifungal therapy for the patients with fungal infections .

  3. New criteria for selecting the proper antimicrobial chemotherapy for severe sepsis and septic shock.

    Science.gov (United States)

    Periti, P; Mazzei, T

    1999-07-01

    The mortality rate resulting from severe bacterial sepsis, particularly that associated with shock, still approaches 50% in spite of appropriate antimicrobial therapy and optimum supportive care. Bacterial endotoxins that are part of the cell wall are one of the cofactors in the pathogenesis of sepsis and septic shock and are often induced by antimicrobial chemotherapy even if it is administered rationally. Not all antimicrobial agents are equally capable of inducing septic shock; this is dependant on their mechanism of action rather than on the causative pathogen species. The quantity of endotoxin released depends on the drug dose and whether filaments or spheroplast formation predominates. Some antibiotics such as carbapenems, ceftriaxone, cefepime, glycopeptides, aminoglycosides and quinolones do not have the propensity to provoke septic shock because their rapid bactericidal activity induces mainly spheroplast or fragile spheroplast-like bacterial forms.

  4. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    Science.gov (United States)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  5. PHYTOCHEMICAL SCREENING AND ANTIMICROBIAL ACTIVITY ON THE FRUITS OF HUGONIA MYSTAX L. (LINACEAE

    Directory of Open Access Journals (Sweden)

    A. Vimalavady et al.

    2012-04-01

    Full Text Available An ethnomedicinal plant, Hugonia mystax L., was examined for preliminary phytochemical screening and antimicrobial activity. Preliminary phytochemical screening showed the presence of various classes of secondary metabolites such as flavonoids, phenols, saponins, steroids, tannins and terpenoids. Antimicrobial activity of petroleum ether, chloroform, ethanolic and aqueous fruits extracts showed significant activity against the human pathogens such as Streptococcus pneumoniae causing brain abscesses, pneumonia and septic arthritis; Proteus vulgaris, Pseudomonas aeruginosa causing urinary tract infections and septicaemia; Salmonella typhi causing typhoid fever, Vibrio species causing diarrheal infections and the fungus Candida albicans causes urinary tract infections. The antimicrobial activity of the petroleum ether, chloroform, ethanolic and aqueous fruits extracts showed concentration-dependent activity against all the tested bacteria at various concentrations. Thus the present findings revealed the medicinal potential of H. mystax to develop a drug against various human ailments.

  6. Effect of BMAP-28 antimicrobial peptides on Leishmania major promastigote and amastigote growth

    DEFF Research Database (Denmark)

    Lynn, Miriam A.; Kindrachuk, Jason; Marr, Alexandra K.;

    2011-01-01

    Background: Protozoan parasites, such as Leishmania, still pose an enormous public health problem in many countries throughout the world. Current measures are outdated and have some associated drug resistance, prompting the search into novel therapies. Several innovative approaches are under...... of the cathelicidin family of HDPs have demonstrated significant antimicrobial activities against various parasites including Leishmania. The cathelicidin bovine myeloid antimicrobial peptide 28 (BMAP-28) has broad antimicrobial activities and confers protection in animal models of bacterial infection or sepsis. We...... tested the effectiveness of the use of BMAP-28 and two of its isomers the D-amino acid form (D-BMAP-28) and the retro-inverso form (RI-BMAP-28), as anti-leishmanial agents against the promastigote and amastigote intracellular Leishmania major lifecycle stages. Methodology/Principal Findings: An MTS...

  7. MOLECULAR PROFILING AND ANTIMICROBIAL ACTIVITY OF BACTERIOCIN FROM BACILLUS SUBTILIS

    Directory of Open Access Journals (Sweden)

    Berlina Dhas S

    2012-12-01

    Full Text Available Development of multi drug resistant organism has been high due to improper use of antibiotics. That made the necessity to develop new drug molecules. In this study an effort was made to find a new alternative. A wild type microorganism was isolated from soil and was identified as Bacillus and confirmed as Bacillus subtilis species by 16S r RNA sequencing. The strain was identified to have the ability to produce bacteriocin by stab overlay assay. Bacteriocin was produced in nutrient broth and that was extracted by organic solvent extraction using chloroform and further purification was carried out by HPLC and the molecular weight of the bacteriocin was analysed by SDSPAGE. Antimicrobial activity was analysed on four strains Pseudomonas sp, Staphylococcus sp, Klebsiella sp and Proteus sp. and was found to be sensitive towards the analyzed strains.

  8. Antimicrobial Chitosan based formulations with impact on different biomedical applications.

    Science.gov (United States)

    Radulescu, Marius; Ficai, Denisa; Oprea, Ovidiu; Ficai, Anton; Andronescu, Ecaterina; Holban, Alina M

    2015-01-01

    Owing to its physico-chemical characteristics, the biodegradable and biocompatible polymer derived from crustacean shells, Chitosan is one of the preferred candidates for green biomedical applications and also for several industries. Its solubility in acid solutions and ability to form complexes with anionic macromolecules to yield nanoparticles, microparticles and hydrogels, as well as the ability of chitosan based nanocomposites to remain stable at physiological pH recommend this polymer for the development of efficient drug delivery systems. This paper reviews the main utilities of chitosan as a drug delivery component and describes the most recent technologies which utilize this polymer for developing nanostructured systems with antimicrobial effect, offering a perspective of using these findings in new, ecological biomedical applications.

  9. Antimicrobial stewardship: Improving antibiotic prescribing practice in a respiratory ward.

    Science.gov (United States)

    Yeo, Jing Ming

    2016-01-01

    International efforts have mandated guidelines on antibiotic use and prescribing, therefore the focus is now on encouraging positive behavioral changes in antibiotic prescribing practice. Documentation of indication and intended duration of antibiotic use in drug charts is an evidence-based method of reducing inappropriate antibiotic prescribing. It is also a standard detailed in our local antimicrobial guidelines. We collected baseline data on compliance with documentation of indication and duration in drug charts in a respiratory ward which revealed compliance rates of 24% and 39% respectively. We introduced interventions to improve accessibility to the guideline and to increase awareness by distributing antibiotic guardian pocket cards with a three-point checklist and strategically-placed mini-posters. We also aim to increase team motivation by obtaining their feedback in multidisciplinary team meetings and by introducing certificates for their involvement in the quality improvement process. The results of the second cycle post-intervention showed an increase in compliance rates for documentation of indication and duration of 97% and 69% respectively. After a further awareness and discussion session at the multidisciplinary team meeting with the local antimicrobial management team audit nurses, a third cycle showed compliance rates of 94% and 71% for indication and duration respectively. This project has highlighted the importance of improving accessibility and of encouraging interventions that would bring about a change in personal value and subsequently in behavior and individual practice. PMID:26893898

  10. Antimicrobial stewardship: Improving antibiotic prescribing practice in a respiratory ward.

    Science.gov (United States)

    Yeo, Jing Ming

    2016-01-01

    International efforts have mandated guidelines on antibiotic use and prescribing, therefore the focus is now on encouraging positive behavioral changes in antibiotic prescribing practice. Documentation of indication and intended duration of antibiotic use in drug charts is an evidence-based method of reducing inappropriate antibiotic prescribing. It is also a standard detailed in our local antimicrobial guidelines. We collected baseline data on compliance with documentation of indication and duration in drug charts in a respiratory ward which revealed compliance rates of 24% and 39% respectively. We introduced interventions to improve accessibility to the guideline and to increase awareness by distributing antibiotic guardian pocket cards with a three-point checklist and strategically-placed mini-posters. We also aim to increase team motivation by obtaining their feedback in multidisciplinary team meetings and by introducing certificates for their involvement in the quality improvement process. The results of the second cycle post-intervention showed an increase in compliance rates for documentation of indication and duration of 97% and 69% respectively. After a further awareness and discussion session at the multidisciplinary team meeting with the local antimicrobial management team audit nurses, a third cycle showed compliance rates of 94% and 71% for indication and duration respectively. This project has highlighted the importance of improving accessibility and of encouraging interventions that would bring about a change in personal value and subsequently in behavior and individual practice.

  11. Drug Resistance

    Science.gov (United States)

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  12. Club Drugs

    Science.gov (United States)

    ... Science Adolescent Brain Comorbidity College-Age & Young Adults Criminal Justice Drugged Driving Drug Testing Drugs and the ... Learn more Statistics and Trends Swipe left or right to scroll. Monitoring the Future Study: Trends in ...

  13. Drug Facts

    Medline Plus

    Full Text Available ... Weed, Pot) Facts Meth (Crank, Ice) Facts Pain Medicine (Oxy, Vike) Facts Other Drugs of Abuse What ... About Drugs Alcohol Cocaine Heroin Marijuana Meth Pain Medicines Tobacco Other Drugs You can call 1-800- ...

  14. Drug Reactions

    Science.gov (United States)

    ... problem is interactions, which may occur between Two drugs, such as aspirin and blood thinners Drugs and food, such as statins and grapefruit Drugs and supplements, such as ginkgo and blood thinners ...

  15. Drug utilization pattern in OPD of government dental college and hospital, Aurangabad

    Directory of Open Access Journals (Sweden)

    M. D. Kulkarni

    2013-02-01

    Full Text Available Background: To study drug prescription pattern in dental OPD of Government Dental College and Hospital. Methods: 100 prescriptions were screened & analyzed as per the study parameters from OPD of Government Dental College & Hospital, Aurangabad. Groups of drugs commonly prescribed, like antibiotic, analgesics & others prescription were recorded. Results: Most common groups of drugs prescribed by dental surgeons were NSAIDs, antimicrobials, antiseptics and multivitamins. NSAIDs- 86%; Antimicrobials- 85%; Antiseptics- 8.6%; Multivitamins- 12.3%. The average number of drugs prescribed per patient was 3 and the average number of antimicrobial prescribed per patient was 1. Conclusions: For rational prescribing of drugs there is a need of mass-awareness amongst dental surgeons about the good prescribing by following 6 steps of WHO program on rational use of drugs. [Int J Basic Clin Pharmacol 2013; 2(1.000: 69-70

  16. Patterns Of Antimicrobial Use For Respiratory Tract Infections In Elderly Patients

    International Nuclear Information System (INIS)

    Background: Elderly patients are prone to respiratory tract infections (RTIs) both; acute bronchitis and pneumonia. A large proportion of the antibiotics prescribed are unlikely to provide clinical benefit to patients. There is an increased need to decrease excess antibiotic use in elderly to minimize antibiotic resistance. Objective: To describe patterns of antimicrobial use for respiratory tract infections (RTIs) among elderly Patients and methods: A cross sectional study was conducted on one hundred elderly patients, aged > 60 years, both males and females to describe patterns of antimicrobial use for respiratory tract infections (RTIs) among elderly patients. RTIs, categorized as acute bronchitis, and pneumonia, were studied for appropriateness of antimicrobial use, type of antibiotics used, and factors associated with their use. We rated antibiotic use as appropriate (when an effective drug was used), inappropriate (when a more effective drug was indicated), or unjustified (when use of any antimicrobial was not indicated). Results: Of 100 patients with RTI, overall treatment was appropriate in 79% of episodes, inappropriate in 9%, and unjustified in 12%. For acute bronchitis, treatment was appropriate in 85% and unjustified in 15% of cases. For pneumonia, treatment was appropriate in 55% of episodes. Among the most commonly used antimicrobials, B.Lactam + macrolides their use were unjustified in 41% of cases. There were statistical significant differences in the patterns of antibiotic use when stratified by age, gender, and co- morbid conditions including chronic obstructive pulmonary disease. Conclusion: Antimicrobials are unjustifiably used for 12% of RTIs and 15% of cases of acute bronchitis, thus suggesting a need for programs to improve antibiotic prescribing at hospitals.

  17. Antimicrobial edible films and coatings.

    Science.gov (United States)

    Cagri, Arzu; Ustunol, Zeynep; Ryser, Elliot T

    2004-04-01

    Increasing consumer demand for microbiologically safer foods, greater convenience, smaller packages, and longer product shelf life is forcing the industry to develop new food-processing, cooking, handling, and packaging strategies. Nonfluid ready-to-eat foods are frequently exposed to postprocess surface contamination, leading to a reduction in shelf life. The food industry has at its disposal a wide range of nonedible polypropylene- and polyethylene-based packaging materials and various biodegradable protein- and polysaccharide-based edible films that can potentially serve as packaging materials. Research on the use of edible films as packaging materials continues because of the potential for these films to enhance food quality, food safety, and product shelf life. Besides acting as a barrier against mass diffusion (moisture, gases, and volatiles), edible films can serve as carriers for a wide range of food additives, including flavoring agents, antioxidants, vitamins, and colorants. When antimicrobial agents such as benzoic acid, sorbic acid, propionic acid, lactic acid, nisin, and lysozyme have been incorporated into edible films, such films retarded surface growth of bacteria, yeasts, and molds on a wide range of products, including meats and cheeses. Various antimicrobial edible films have been developed to minimize growth of spoilage and pathogenic microorganisms, including Listeria monocytogenes, which may contaminate the surface of cooked ready-to-eat foods after processing. Here, we review the various types of protein-based (wheat gluten, collagen, corn zein, soy, casein, and whey protein), polysaccharide-based (cellulose, chitosan, alginate, starch, pectin, and dextrin), and lipid-based (waxes, acylglycerols, and fatty acids) edible films and a wide range of antimicrobial agents that have been or could potentially be incorporated into such films during manufacture to enhance the safety and shelf life of ready-to-eat foods. PMID:15083740

  18. Antimicrobial edible films and coatings.

    Science.gov (United States)

    Cagri, Arzu; Ustunol, Zeynep; Ryser, Elliot T

    2004-04-01

    Increasing consumer demand for microbiologically safer foods, greater convenience, smaller packages, and longer product shelf life is forcing the industry to develop new food-processing, cooking, handling, and packaging strategies. Nonfluid ready-to-eat foods are frequently exposed to postprocess surface contamination, leading to a reduction in shelf life. The food industry has at its disposal a wide range of nonedible polypropylene- and polyethylene-based packaging materials and various biodegradable protein- and polysaccharide-based edible films that can potentially serve as packaging materials. Research on the use of edible films as packaging materials continues because of the potential for these films to enhance food quality, food safety, and product shelf life. Besides acting as a barrier against mass diffusion (moisture, gases, and volatiles), edible films can serve as carriers for a wide range of food additives, including flavoring agents, antioxidants, vitamins, and colorants. When antimicrobial agents such as benzoic acid, sorbic acid, propionic acid, lactic acid, nisin, and lysozyme have been incorporated into edible films, such films retarded surface growth of bacteria, yeasts, and molds on a wide range of products, including meats and cheeses. Various antimicrobial edible films have been developed to minimize growth of spoilage and pathogenic microorganisms, including Listeria monocytogenes, which may contaminate the surface of cooked ready-to-eat foods after processing. Here, we review the various types of protein-based (wheat gluten, collagen, corn zein, soy, casein, and whey protein), polysaccharide-based (cellulose, chitosan, alginate, starch, pectin, and dextrin), and lipid-based (waxes, acylglycerols, and fatty acids) edible films and a wide range of antimicrobial agents that have been or could potentially be incorporated into such films during manufacture to enhance the safety and shelf life of ready-to-eat foods.

  19. Antimicrobial resistance predicts death in Tanzanian children with bloodstream infections: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Msangi Viola

    2007-05-01

    Full Text Available Abstract Background Bloodstream infection is a common cause of hospitalization, morbidity and death in children. The impact of antimicrobial resistance and HIV infection on outcome is not firmly established. Methods We assessed the incidence of bloodstream infection and risk factors for fatal outcome in a prospective cohort study of 1828 consecutive admissions of children aged zero to seven years with signs of systemic infection. Blood was obtained for culture, malaria microscopy, HIV antibody test and, when necessary, HIV PCR. We recorded data on clinical features, underlying diseases, antimicrobial drug use and patients' outcome. Results The incidence of laboratory-confirmed bloodstream infection was 13.9% (255/1828 of admissions, despite two thirds of the study population having received antimicrobial therapy prior to blood culture. The most frequent isolates were klebsiella, salmonellae, Escherichia coli, enterococci and Staphylococcus aureus. Furthermore, 21.6% had malaria and 16.8% HIV infection. One third (34.9% of the children with laboratory-confirmed bloodstream infection died. The mortality rate from Gram-negative bloodstream infection (43.5% was more than double that of malaria (20.2% and Gram-positive bloodstream infection (16.7%. Significant risk factors for death by logistic regression modeling were inappropriate treatment due to antimicrobial resistance, HIV infection, other underlying infectious diseases, malnutrition and bloodstream infection caused by Enterobacteriaceae, other Gram-negatives and candida. Conclusion Bloodstream infection was less common than malaria, but caused more deaths. The frequent use of antimicrobials prior to blood culture may have hampered the detection of organisms susceptible to commonly used antimicrobials, including pneumococci, and thus the study probably underestimates the incidence of bloodstream infection. The finding that antimicrobial resistance, HIV-infection and malnutrition predict fatal

  20. Prevalence and Antimicrobial Resistance in Escherichia coli from Food Animals in Lagos, Nigeria.

    Science.gov (United States)

    Adenipekun, Eyitayo O; Jackson, Charlene R; Oluwadun, Afolabi; Iwalokun, Bamidele A; Frye, Jonathan G; Barrett, John B; Hiott, Lari M; Woodley, Tiffanie A

    2015-06-01

    Foodborne bacteria are often associated with human infections; these infections can become more complicated to treat if the bacteria are also resistant to antimicrobials. In this study, prevalence, antimicrobial resistance, and genetic relatedness of Escherichia coli among food producing animals from Lagos, Nigeria, was investigated. From December 2012 to June 2013, E. coli were isolated from fecal samples of healthy cattle, chicken, and swine. Antimicrobial susceptibility testing against 22 antimicrobials was performed using broth microdilution with the Sensititre™ system. Clonal types were determined by pulsed-field gel electrophoresis (PFGE). From the analysis, 211/238 (88.7%), 170/210 (81%), and 136/152 (89.5%) samples from cattle, chicken, and swine, respectively, were positive for E. coli. A subset of those isolates (n=211) selected based on β-lactamase production was chosen for further study. Overall, E. coli exhibited the highest resistance to tetracycline (124/211; 58.8%), trimethoprim/sulfamethoxazole (84/211; 39.8%), and ampicillin (72/211; 34.1%). Approximately 40% of the isolates were pan-susceptible, and none of the isolates were resistant to amikacin, cefepime, ceftazidime, ertapenem, meropenem, or tigecycline. Among the resistant isolates, 28 different resistance patterns were observed; 26 of those were characterized as multi-drug resistant (MDR; resistance to ≥2 antimicrobials). One isolate was resistant to 13 different antimicrobials representing five different antimicrobial classes. Using PFGE, MDR E. coli were genetically diverse and overall did not group based on source; identical PFGE patterns were detected among isolates from different sources. These results suggest that isolates cannot be attributed to specific sources, and some may be present across all of the sources. Results from this study indicate that food-producing animals in Nigeria are a reservoir of MDR E. coli that may be transferred to humans via the food chain. PMID

  1. ANTIMICROBIAL RESISTANT PATTERN OF FECAL ESCHERICHIA COLI IN SELECTED BROILER FARMS OF EASTERN HARARGE ZONE, ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Tesfaheywet Zeryehun

    2013-12-01

    Full Text Available A study was conducted to determine the pattern of antimicrobial resistance in Escherichia coli isolated from Cloacal swab of broiler chickens in selected farms of Eastern Harrarge zone of Ethiopia. Isolation and identification of Escherichia coli were done by using enrichment media, selective media, and biochemical tests. 65 selected isolates were subjected to 9 antimicrobial agents to determine their resistance by the disk diffusion method. Accordingly, the resistance of E.coli was tetracycline (90%, streptomycin (78%, ampicillin (60%, amoxicillin (56%, erythromycin (45%, ciprofloxacin (38%, and chloramphenicol (15%. None of the isolates showed resistance to gentamicin. Sensitivity was observed in case of 80%, 77%, 44%, 32%, 26%, 20%, 20%, 15%, and 10% of the isolates for chloramphenicol, gentamicin, ciprofloxacin, amoxicillin, ampicillin, streptomycin, erythromycin, and tetracycline, respectively. Intermediate resistance/susceptibility was recorded for 5-35% of the isolates. 92.3% of the isolates tested showed multidrug resistance for 2 or more antimicrobials and the highest levels (18.5% of multidrug-resistant E. coli were observed for 3 antimicrobials accounting 7.7% for tetracycline-ampicillin-streptomycin and 10.8% for tetracycline-ampicillin-amoxicillin. This study showed resistance against the antibiotics that are commonly used in poultry. Furthermore, it was concluded that gentamicin, chloramphenicole and ciproflaxin will be the first drugs of choice to resist infections caused by E. coli in chicken in Ethiopia. These findings confirm significant increase in the incidence of antimicrobial resistance in the E. coli isolates which is most probably due to increased use of antibiotics as feed additives for growth promotion and prevention of diseases and use of inappropriate antibiotics for treatment of diseases. Hence, excess or abusive use of antimicrobials should be guarded through judicious application of antimicrobials

  2. Synthesis and antimicrobial activity of squalamine analogue.

    Science.gov (United States)

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  3. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  4. Sixty years of antimicrobial use in animals

    DEFF Research Database (Denmark)

    Guardabassi, Luca

    2013-01-01

    This, the last in our series of feature articles celebrating 125 years of Veterinary Record, aims to provide an overview of antimicrobial use in animals. Starting with a journey through the history of antimicrobial use in animals, Luca Guardabassi gives his opinion on the current zoonotic risks...

  5. [Antimicrobial sensitive of Morganella morganii].

    Science.gov (United States)

    Zalas-Wiecek, Patrycja; Michalska, Anna; Sielska, Barbara; Gospodarek, Eugenia

    2011-01-01

    The aim of this study was the evaluation of the antimicrobial sensitive of Morganella morganii rods isolated from clinical samples. This study included 50 of M. morganii strains isolated in the Clinical Microbiology Department of dr. A. Jurasz University Hospital in 2008-2009. All of strains were sensitive to carbapenems (imipenem, meropenem, ertapenem, doripenem) and piperacillin/tazobactam and most of them to beta-lactam antibiotics, aminoglycosides and fluorochinolons. Resistance to tetracyclines demonstrated 38,0% strains and to doxycycline - 40,0%. One out of 6 strains isolated from urine samples were sensitive to nitrofurantoin. Extended Spectrum Beta-Lactamases were produced by 5 (10,0%) strains.

  6. Antimicrobial Resistance in the Environment.

    Science.gov (United States)

    Williams, Maggie R; Stedtfeld, Robert D; Guo, Xueping; Hashsham, Syed A

    2016-10-01

    This review summarizes important publications from 2015 pertaining to the occurrence of antimicrobial resistance (AMR) in the environment. Emphasis is placed on sources of antibiotic resistance in the aquatic environment including wastewater treatment plants, hospitals, and agriculture, treatment and mitigation techniques, and surveillance and analysis methodologies for characterizing abundance data. As such, this review is organized into the following sections: i) occurrence of AMR in the environment, including surface waters, aquaculture, and wastewater ii) treatment technologies, and iii) technologies for rapid surveillance of AMR, iv) transmission between matrices, v) databases and analysis methods, and vi) gaps in AMR understanding. PMID:27620115

  7. Antimicrobial activity of methanolic extracts of indigenous traditional Indian folk Medicinal Plant, Gnaphalium polycaulon

    Directory of Open Access Journals (Sweden)

    Shanmugapriya Kaminidevi

    2015-01-01

    Full Text Available Background and Aim: Gnaphalium polycaulon (L. Pers. (Asteraceae plant, locally known as Nerabu chedi, collected from Nilgiri District, Tamil Nadu was subjected to antimicrobial screening and minimum inhibitory concentration of methanolic extracts of leaf, stem, and flower. Methodology: The selected plant used in traditional Indian medicine was examined for antimicrobial activity and minimum inhibitory concentration against human pathogenic bacteria and fungus using the agar well diffusion method. The antilog of the corresponding value of concentration was taken as the minimum inhibitory concentration value. Statistical Analysis: All the values of the results of the assay were expressed as means of triplicates, mean ΁ standard deviation. Results: The antimicrobial activity of methanolic leaf extracts of G. polycaulon showed a high level of antimicrobial activity against the studied bacterial and fungal pathogens. Conclusion: Based on the results obtained, the medicinal value of this plant could be attributed to the presence of secondary metabolites in the traditional herbal medicines. Therefore, this antimicrobial activity shows a source for traditional use of the plant as a local health remedy to the indigenous communities of Tamil Nadu. Further studies on knowledge of the medicinal plant used medicinally by indigenous people could lead to further research and new drug discovery for the treatment of different diseases.

  8. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    Science.gov (United States)

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria. PMID:27617798

  9. Antimicrobial resistance programs in canada 1995-2010: a critical evaluation

    Directory of Open Access Journals (Sweden)

    Conly John M

    2012-02-01

    Full Text Available Abstract Background In Canada, systematic efforts for controlling antibiotic resistance began in 1997 following a national Consensus Conference. The Canadian strategy produced 27 recommendations, one of which was the formation of the Canadian Committee on Antibiotic Resistance (CCAR. In addition several other organizations began working on a national or provincial basis over the ensuing years on one or more of the 3 identified core areas of the strategy. Critical evaluation of the major programs within Canada which focused on antimicrobial resistance and the identified core components has not been previously conducted. Findings Data was collected from multiple sources to determine the components of four major AMR programs that were considered national based on their scope or in the delivery of their mandates. Assessment of program components was adapted from the report from the International Forum on Antibiotic Resistance colloquium. Most of the programs used similar tools but only the Do Bugs Need Drugs Program (DBND had components directed towards day cares and schools. Surveillance programs for antimicrobial resistant pathogens have limitations and/or significant sources of bias. Overall, there has been a 25.3% decrease in oral antimicrobial prescriptions in Canada since 1995, mainly due to decreases in β lactams, sulphonamides and tetracyclines in temporal association with multiple programs with the most comprehensive and sustained national programs being CCAR and DBND. Conclusions Although there has been a substantial decrease in oral antimicrobial prescriptions in Canada since 1995, there remains a lack of leadership and co-ordination of antimicrobial resistance activities.

  10. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    International Nuclear Information System (INIS)

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08–5.30 mg cadmium, 1.1–32.0 mg chrome, 22.4–3387.6 mg copper, <2.0–26.7 mg lead, <0.01–0.11 mg mercury, 3.1–97.3 mg nickel and 93.0–8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against β-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against β-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  11. Antimicrobial activities of ozenoxacin against isolates of propionibacteria and staphylococci from Japanese patients with acne vulgaris.

    Science.gov (United States)

    Nakajima, Akiko; Ikeda, Fumiaki; Kanayama, Shoji; Okamoto, Kazuaki; Matsumoto, Tatsumi; Ishii, Ritsuko; Fujikawa, Akira; Takei, Katsuaki; Kawashima, Makoto

    2016-08-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, was assessed for in vitro antimicrobial activity against clinical isolates of propionibacteria and staphylococci according to the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. The isolates used in this study were collected from Japanese patients with acne vulgaris during a period from 2012 to 2013. The MIC90s of ozenoxacin against Propionibacterium acnes (n=266), Propionibacterium granulosum (n=10), Staphylococcus aureus (n=23), Staphylococcus epidermidis (n=229) and other coagulase-negative staphylococci (n=82) were ≤0.06, ≤0.06, ≤0.06, 0.125 and ≤0.06 µg ml-1, respectively. The antimicrobial activity of ozenoxacin against the clinical isolates of propionibacteria and staphylococci was greater than that of five reference antimicrobial agents which have been used for the treatment of acne vulgaris. The MICs of ozenoxacin were correlated with those of nadifloxacin in P. acnes and S. epidermidis isolates. However, the MICs of ozenoxacin were 0.25-0.5 µg ml-1 and 0.5-8 µg ml-1 against nadifloxacin-resistant P. acnes (MIC: ≥8 µg ml-1; n=8) and S. epidermidis (MIC: ≥64 µg ml-1; n=10), respectively. These results indicated the potent antimicrobial activity against P. acnes and S. epidermidis isolates resistant to nadifloxacin. Topical ozenoxacin could represent an alternative therapeutic drug for acne vulgaris based on its potent antimicrobial activity against the isolates of propionibacteria and staphylococci from acne patients. PMID:27305898

  12. Antimicrobial susceptibility of Mycoplasma bovis isolates from veal calves and dairy cattle in the Netherlands.

    Science.gov (United States)

    Heuvelink, Annet; Reugebrink, Constance; Mars, Jet

    2016-06-30

    Control of Mycoplasma bovis infections depends on good husbandry practices and antibiotic treatment. To allow more prudent use of antimicrobial drugs, there is a need for information on the susceptibility profile of this pathogen. The objective of the present study was to analyse the in vitro antimicrobial susceptibility of clinical M. bovis isolates in the Netherlands. The collection comprised 95 bovine isolates, originating from lungs (n=56), mastitis milk (n=27), and synovial fluid (n=12), collected between 2008 and 2014. Minimal inhibitory concentrations (MICs) were assessed by broth microdilution, both by using in-house prepared MIC plates and by using commercially available MIC plates. For each antimicrobial agent, the range of MIC results, the MIC50, and MIC90 values were calculated. M. bovis strains recently isolated in the Netherlands appeared to be characterized by relatively high MIC values for antimicrobial agents that, until now, have been recommended by the Dutch Association of Veterinarians for treating pneumonia caused by Mycoplasma species. Fluoroquinolones appeared to be the most efficacious in inhibiting M. bovis growth, followed by tulathromycin and oxytetracycline. The highest MIC values were obtained for erythromycin, tilmicosin, and tylosin. Future studies should be done on determining M. bovis specific clinical breakpoints, standardization of methods to determine MIC values as well as molecular studies on detection of antimicrobial resistance mechanisms of M. bovis isolates to develop PCR assays for determining resistance. PMID:27259820

  13. Antimicrobial activities of ozenoxacin against isolates of propionibacteria and staphylococci from Japanese patients with acne vulgaris.

    Science.gov (United States)

    Nakajima, Akiko; Ikeda, Fumiaki; Kanayama, Shoji; Okamoto, Kazuaki; Matsumoto, Tatsumi; Ishii, Ritsuko; Fujikawa, Akira; Takei, Katsuaki; Kawashima, Makoto

    2016-08-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, was assessed for in vitro antimicrobial activity against clinical isolates of propionibacteria and staphylococci according to the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. The isolates used in this study were collected from Japanese patients with acne vulgaris during a period from 2012 to 2013. The MIC90s of ozenoxacin against Propionibacterium acnes (n=266), Propionibacterium granulosum (n=10), Staphylococcus aureus (n=23), Staphylococcus epidermidis (n=229) and other coagulase-negative staphylococci (n=82) were ≤0.06, ≤0.06, ≤0.06, 0.125 and ≤0.06 µg ml-1, respectively. The antimicrobial activity of ozenoxacin against the clinical isolates of propionibacteria and staphylococci was greater than that of five reference antimicrobial agents which have been used for the treatment of acne vulgaris. The MICs of ozenoxacin were correlated with those of nadifloxacin in P. acnes and S. epidermidis isolates. However, the MICs of ozenoxacin were 0.25-0.5 µg ml-1 and 0.5-8 µg ml-1 against nadifloxacin-resistant P. acnes (MIC: ≥8 µg ml-1; n=8) and S. epidermidis (MIC: ≥64 µg ml-1; n=10), respectively. These results indicated the potent antimicrobial activity against P. acnes and S. epidermidis isolates resistant to nadifloxacin. Topical ozenoxacin could represent an alternative therapeutic drug for acne vulgaris based on its potent antimicrobial activity against the isolates of propionibacteria and staphylococci from acne patients.

  14. Native Brazilian plants against nosocomial infections: a critical review on their potential and the antimicrobial methodology.

    Science.gov (United States)

    H Moreno, Paulo Roberto; da Costa-Issa, Fabiana Inácio; Rajca-Ferreira, Agnieszka K; Pereira, Marcos A A; Kaneko, Telma M

    2013-01-01

    The growing incidences of drug-resistant pathogens have increased the attention on several medicinal plants and their metabolites for antimicrobial properties. These pathogens are the main cause of nosocomial infections which led to an increasing mortality among hospitalized patients. Taking into consideration those factors, this paper reviews the state-of-the-art of the research on antibacterial agents from native Brazilian plant species related to nosocomial infections as well as the current methods used in the investigations of the antimicrobial activity and points out the differences in techniques employed by the authors. The antimicrobial assays most frequently used were broth microdilution, agar diffusion, agar dilution and bioautography. The broth microdilution method should be the method of choice for testing new antimicrobial agents from plant extracts or isolated compounds due to its advantages. At the moment, only a small part of the rich Brazilian flora has been investigated for antimicrobial activity, mostly with unfractionated extracts presenting a weak or moderate antibacterial activity. The combination of crude extract with conventional antibiotics represents a largely unexploited new form of chemotherapy with novel and multiple mechanisms of action that can overcome microbial resistance that needs to be further investigated. The antibacterial activity of essential oil vapours might also be an interesting alternative treatment of hospital environment due to their ability in preventing biofilm formation. However, in both alternatives more studies should be done on their mode of action and toxicological effects in order to optimize their use. PMID:24200361

  15. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mueller, Christa [Institute for Agroecology, Organic Farming and Soil Protection, Bavarian State Research Center for Agriculture (LfL), Lange Point 12, 85354 Freising (Germany); Harms, Katrin S. [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mikolajewski, Sabine [Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 4, 85354 Freising (Germany); Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany)

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  16. Methods of Antimicrobial Coating of Diverse Materials

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of coating diverse substrate materials with antimicrobial agents have been developed. Originally intended to reduce health risks to astronauts posed by pathogenic microorganisms that can grow on surfaces in spacecraft, these methods could also be used on Earth for example, to ensure sterility of surgical inserts and other medical equipment. The methods involve, generally, chemical preparation of substrate surfaces to enable attachment of antimicrobial molecules to the substrate surfaces via covalent bonds. Substrate materials that have been treated successfully include aluminum, glass, a corrosion-resistant nickel alloy, stainless steel, titanium, and poly(tetrafluoroethylene). Antimicrobial agents that have been successfully immobilized include antibiotics, enzymes, bacteriocins, bactericides, and fungicides. A variety of linkage chem istries were employed. Activity of antimicrobial coatings against gram-positive bacteria, gram-negative bacteria, and fungi was demonstrated. Results of investigations indicate that the most suitable combination of antimicrobial agent, substrate, and coating method depends upon the intended application.

  17. Antimicrobial peptides important in innate immunity.

    Science.gov (United States)

    Cederlund, Andreas; Gudmundsson, Gudmundur H; Agerberth, Birgitta

    2011-10-01

    Antimicrobial peptides are present in all walks of life, from plants to animals, and they are considered to be endogenous antibiotics. In general, antimicrobial peptides are determinants of the composition of the microbiota and they function to fend off microbes and prevent infections. Antimicrobial peptides eliminate micro-organisms through disruption of their cell membranes. Their importance in human immunity, and in health as well as disease, has only recently been appreciated. The present review provides an introduction to the field of antimicrobial peptides in general and discusses two of the major classes of mammalian antimicrobial peptides: the defensins and the cathelicidins. The review focuses on their structures, their main modes of action and their regulation.

  18. Implementation of an antimicrobial stewardship program on the medical-surgical service of a 100-bed community hospital

    Directory of Open Access Journals (Sweden)

    Storey Donald F

    2012-10-01

    Full Text Available Abstract Background Antimicrobial stewardship has been promoted as a key strategy for coping with the problems of antimicrobial resistance and Clostridium difficile. Despite the current call for stewardship in community hospitals, including smaller community hospitals, practical examples of stewardship programs are scarce in the reported literature. The purpose of the current report is to describe the implementation of an antimicrobial stewardship program on the medical-surgical service of a 100-bed community hospital employing a core strategy of post-prescriptive audit with intervention and feedback. Methods For one hour twice weekly, an infectious diseases physician and a clinical pharmacist audited medical records of inpatients receiving systemic antimicrobial therapy and made non-binding, written recommendations that were subsequently scored for implementation. Defined daily doses (DDDs; World Health Organization Center for Drug Statistics Methodology and acquisition costs per admission and per patient-day were calculated monthly for all administered antimicrobial agents. Results The antimicrobial stewardship team (AST made one or more recommendations for 313 of 367 audits during a 16-month intervention period (September 2009 – December 2010. Physicians implemented recommendation(s from each of 234 (75% audits, including from 85 of 115 for which discontinuation of all antimicrobial therapy was recommended. In comparison to an 8-month baseline period (January 2009 – August 2009, there was a 22% decrease in defined daily doses per 100 admissions (P = .006 and a 16% reduction per 1000 patient-days (P = .013. There was a 32% reduction in antimicrobial acquisition cost per admission (P = .013 and a 25% acquisition cost reduction per patient-day (P = .022. Conclusions An effective antimicrobial stewardship program was implemented with limited resources on the medical-surgical service of a 100-bed community hospital.

  19. Optimizing antimicrobial therapy in critically ill patients

    Directory of Open Access Journals (Sweden)

    Vitrat V

    2014-10-01

    Full Text Available Virginie Vitrat,1 Serge Hautefeuille,2 Cécile Janssen,1 David Bougon,2 Michel Sirodot,2 Leonardo Pagani1,3 1Antimicrobial Stewardship Program, Infectious Diseases Unit, 2Intensive Care Unit, Annecy-Genevois Hospital Center (CHANGE, Annecy, France; 3Infectious Diseases Unit, Bolzano Central Hospital, Bolzano, Italy Abstract: Critically ill patients with infection in the intensive care unit (ICU would certainly benefit from timely bacterial identification and effective antimicrobial treatment. Diagnostic techniques have clearly improved in the last years and allow earlier identification of bacterial strains in some cases, but these techniques are still quite expensive and not readily available in all institutions. Moreover, the ever increasing rates of resistance to antimicrobials, especially in Gram-negative pathogens, are threatening the outcome for such patients because of the lack of effective medical treatment; ICU physicians are therefore resorting to combination therapies to overcome resistance, with the direct consequence of promoting further resistance. A more appropriate use of available antimicrobials in the ICU should be pursued, and adjustments in doses and dosing through pharmacokinetics and pharmacodynamics have recently shown promising results in improving outcomes and reducing antimicrobial resistance. The aim of multidisciplinary antimicrobial stewardship programs is to improve antimicrobial prescription, and in this review we analyze the available experiences of such programs carried out in ICUs, with emphasis on results, challenges, and pitfalls. Any effective intervention aimed at improving antibiotic usage in ICUs must be brought about at the present time; otherwise, we will face the challenge of intractable infections in critically ill patients in the near future. Keywords: ICU, antimicrobial therapies, antimicrobial stewardship, pharmacokinetics, pharmacodynamics, antimicrobial resistance, early diagnosis

  20. Retinoid plus antimicrobial combination treatments for acne

    Directory of Open Access Journals (Sweden)

    Feneran A

    2011-07-01

    Full Text Available Ashley N Feneran1, William S Kaufman2, Tushar S Dabade1, Steven R Feldman1,3,41Department of Dermatology, Center for Dermatology Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA; 2Medical College of Virginia, Richmond, VA, USA; 3Department of Pathology, Center for Dermatology Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA; 4Department of Public Health Sciences, Center for Dermatology Research, Wake Forest University School of Medicine, Winston-Salem, NC, USABackground: Acne vulgaris is a chronic disease with several pathogenic factors. Multiple medications are typically used that can lead to nonadherence and treatment failure. Combination medications target multiple pathways of acne formation and may offer therapeutic benefit.Purpose: To explore the efficacy and tolerability of combination retinoid plus antimicrobial treatments in acne vulgaris.Methods: A PubMed and Google search was conducted for combination therapies of clindamycin and tretinoin, with secondary analysis of related citations and references. Similar searches were completed for the combination medications of benzoyl peroxide plus clindamycin or erythromycin, and for the combination therapy of adapalene and benzoyl peroxide.Results: Combination clindamycin phosphate and tretinoin gel was found to be more efficacious than monotherapy of either drug or its vehicle for acne, including inflammatory acne, and has a greater onset of action than either drug alone. Clindamycin phosphate and tretinoin gel was well-tolerated, and adherence to its use exceeded that of using both medications in separate formulations. Benzoyl peroxide-containing combination medications with clindamycin or erythromycin were both more effective in the treatment of acne than either drug alone. Both medications were well-tolerated, with dry skin being the most common adverse effect.Conclusions: Combination medications have superior efficacy and adherence, and