WorldWideScience

Sample records for antimatter

  1. Puzzling antimatter

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    For many years, the absence of antimatter in the Universe has tantalised particle physicists and cosmologists: while the Big Bang should have created equal amounts of matter and antimatter, we do not observe any primordial antimatter today. Where has it gone? The LHC experiments have the potential to unveil natural processes that could hold the key to solving this paradox.   Every time that matter is created from pure energy, equal amounts of particles and antiparticles are generated. Conversely, when matter and antimatter meet, they annihilate and produce light. Antimatter is produced routinely when cosmic rays hit the Earth's atmosphere, and the annihilations of matter and antimatter are observed during physics experiments in particle accelerators. If the Universe contained antimatter regions, we would be able to observe intense fluxes of photons at the boundaries of the matter/antimatter regions. “Experiments measuring the diffuse gamma-ray background in the Universe would be able...

  2. Antimatter Experiments

    CERN Multimedia

    2004-01-01

    Antimatter should behave in identical fashion to matter if a form of spacetime symmetry called CPT invariance holds. Two experiments at CERN near Geneva are testing this hypothesis using antihydrogen atoms

  3. Antimatter Matters

    CERN Multimedia

    CERN

    2016-01-01

    This video is a teaser-introduction to the Antimatter Matters exhibtion at the Royal Society's Summer Science exhibition July 4-10 2016. The exhibition is jointly organised and hosted by UK members of the ALPHA and LHCb collaborations.

  4. Antimatter underestimated

    CERN Document Server

    Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

    1987-01-01

    We warn of the potential nuclear proliferation's consequences of military applications of nano- or microgram amounts of antimatter, such as triggering of high-yield thermonuclear explosions, laser pumping, compact sources of energy, directed-energy beams, and portable sources of muons.

  5. Antimatter brochure (English)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    Antimatter is the twin to matter, with an opposite electric charge. When they meet, they annihilate each other. In the first moments of the Universe there was a balance between antimatter and matter, but a second after the Big Bang, all the antimatter disappeared along with almost all of the matter, leaving a minute amount of matter that forms everything around us. Scientists are now trying to unravel the mystery of what happened to the antimatter.

  6. Antimatter brochure (French)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    Antimatter is the twin to matter, with an opposite electric charge. When they meet, they annihilate each other. In the first moments of the Universe there was a balance between antimatter and matter, but a second after the Big Bang, all the antimatter disappeared along with almost all of the matter, leaving a tiny amount of matter that forms everything around us. Scientists are now trying to unravel the mystery of what happened to the antimatter.

  7. Antimatter brochure (English version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    Antimatter is the twin to matter, with an opposite electric charge. When they meet, they annihilate each other. In the first moments of the Universe there was a balance between antimatter and matter, but a second after the Big Bang, all the antimatter disappeared along with almost all of the matter, leaving a minute amount of matter that forms everything around us. Scientists are now trying to unravel the mystery of what happened to the antimatter.

  8. Antimatter brochure (German version)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    Antimatter is the twin to matter, with an opposite electric charge. When they meet, they annihilate each other. In the first moments of the Universe there was a balance between antimatter and matter, but a second after the Big Bang, all the antimatter disappeared along with almost all of the matter, leaving a minute amount of matter that forms everything around us. Scientists are now trying to unravel the mystery of what happened to the antimatter.

  9. Searching for Primordial Antimatter

    Science.gov (United States)

    2008-10-01

    Scientists are on the hunt for evidence of antimatter - matter's arch nemesis - leftover from the very early Universe. New results using data from NASA's Chandra X-ray Observatory and Compton Gamma Ray Observatory suggest the search may have just become even more difficult. Antimatter is made up of elementary particles, each of which has the same mass as their corresponding matter counterparts --protons, neutrons and electrons -- but the opposite charges and magnetic properties. When matter and antimatter particles collide, they annihilate each other and produce energy according to Einstein's famous equation, E=mc2. According to the Big Bang model, the Universe was awash in particles of both matter and antimatter shortly after the Big Bang. Most of this material annihilated, but because there was slightly more matter than antimatter - less than one part per billion - only matter was left behind, at least in the local Universe. Trace amounts of antimatter are believed to be produced by powerful phenomena such as relativistic jets powered by black holes and pulsars, but no evidence has yet been found for antimatter remaining from the infant Universe. How could any primordial antimatter have survived? Just after the Big Bang there was believed to be an extraordinary period, called inflation, when the Universe expanded exponentially in just a fraction of a second. "If clumps of matter and antimatter existed next to each other before inflation, they may now be separated by more than the scale of the observable Universe, so we would never see them meet," said Gary Steigman of The Ohio State University, who conducted the study. "But, they might be separated on smaller scales, such as those of superclusters or clusters, which is a much more interesting possibility." X-rayChandra X-ray Image In that case, collisions between two galaxy clusters, the largest gravitationally-bound structures in the Universe, might show evidence for antimatter. X-ray emission shows how much hot

  10. Antimatter in the classroom

    CERN Document Server

    CERN Bulletin

    2010-01-01

    A brand new teaching resource has just been made available on the CERN Education website. The Antimatter Teaching Module contains eight lesson plans, together with background materials and extension topics, which are part of a wide educational project whose aim is to stimulate interest in science by introducing themes in modern physics to students aged 14-15 years, that is, earlier than is the practice in most national curricula. Terrence Baine (left) and Rolf Landua (right) with an antimatter trap from the film 'Angels & Demons'. In his capacity as CERN’s first Teacher in Residence, Terrence Baine’s primary project was to develop teaching modules to help high school teachers around the world incorporate modern particle physics into their curricula. “Back in October, it was decided that the first module should be on antimatter”, explains Terrence, who worked on it in collaboration with Rolf Landua, head of the Education Group and antimatter expert. “...

  11. Antimatter cancer treatment

    CERN Multimedia

    Van Noorden, Richard

    2006-01-01

    "The idea that antimatter beams could treat cancer might seem ridiculous. But researchers working at Cerns particle accelerator laboratory in Geneva don't think so. They have just reported a successful first experiment into the biological effects of antiprotons radiation on living cells."

  12. Matter-antimatter asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The Conference is devoted to a multidisciplinary study of matter-antimatter asymmetry and, in particular, from the point of view of particle physics, astrophysics and cosmology. A number of topics, such as the practical applications of antimatter in medical imaging, of particular interest to non-specialists, will also be briefly covered. More than thirty years after the discovery of CP violation in the kaon system, precision experiments with kaons at CERN and Fermilab have demonstrated the existence of direct CP violation, opening a window on a hitherto poorly explored part of particle physics. On the one hand, two experiments devoted mainly to CP violation in B mesons, BABAR and Belle, are beginning to test CP violation in the Standard Model in a decisive way. On the other hand, balloon experiments and the space-based AMS project are circumscribing precise limits on the cosmological abundance of antimatter. Finally, the fundamental problem of cosmological matter-antimatter asymmetry at a Grand Unification scale or at the Electroweak phase transition has been the object of intense theoretical activity in recent years. This document gathers most of the slides that have been presented in the plenary and parallel sessions.

  13. Antimatter gravity with muonium

    CERN Document Server

    Kaplan, Daniel M; Kirch, Klaus; Mancini, Derrick; Phillips, James D; Phillips, Thomas J; Reasenberg, Robert D; Roberts, Thomas J; Terry, Jeff

    2016-01-01

    The gravitational acceleration of antimatter, $\\bar{g}$, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Three avenues appear feasible for such a measurement: antihydrogen, positronium, and muonium. The muonium measurement requires a novel monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interferometer can be produced in silicon nitride or ultrananocrystalline diamond using state-of-the-art nanofabrication. The required precision alignment and calibration at the picometer level also appear to be feasible. With 100 nm grating pitch, a 10% measurement of $\\bar{g}$ can be made using some months of surface-muon beam time, and a 1% or better measurement with a correspondingly larger exposure. This could constitute the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the f...

  14. Antimatter performs optical gymnastics

    Energy Technology Data Exchange (ETDEWEB)

    Eades, John [University of Tokyo (Japan); CERN, Geneva (Switzerland)

    2005-03-01

    Lasers have been used for the first time to create antihydrogen, which could allow precise spectroscopic measurements of anti-atoms. The philosopher William James once said that 'if you wish to upset the law that all crows are black, you must not seek to show that none of them are - it is enough to produce a single white crow'. Likewise, if you wish to test the so-called CPT theorem, according to which a world constructed of antimatter behaves exactly the same as one constructed of matter, you do not need to create an entire 'antiworld'. It would be quite sufficient to show that the frequency of just one transition in a simple anti-atom differs from the value of the same transition in the corresponding ordinary atom. The question is, by how much? Any gross violations of the CPT theorem - which, more formally, states that a system remains unchanged under the combined operations of charge conjugation, parity reversal and time reversal - have already been ruled out experimentally. As a result, nobody expects any difference between matter and antimatter to be anything other than minute, if, indeed, there is a difference at all. The laser-spectroscopy tools that have made it possible to measure transition frequencies in ordinary hydrogen to extraordinarily high precision should also be applicable to antihydrogen. This makes hydrogen anti-atoms excellent candidates to test the CPT theorem. Now, researchers in the ATRAP collaboration at CERN have taken an important step along the obstacle-strewn path towards this goal by using lasers to control the production of antihydrogen atoms. (U.K.)

  15. Antimatter and Time-Symmetry

    CERN Document Server

    Pitts, T

    1998-01-01

    This theory makes time symmetric by Weyl's definition; it hypothesizes that space, time and mass-energy expand outward from the Big Bang along the time axis equally in the (+-) and (-) directions. In the Feynman-Stueckelberg Interpretation, antimatter is identical to matter but moves backward in time. This essay argues that this interpretation is physically real via an analysis of the time-symmetry of the Schrodinger equation. As time expands from zero, in both directions in time away from the origin, quantum uncertainty allows a brief, decreasing leakage of mass between (+-) and (-) universes. Matter leaking from (-) to (+-) time moves forward in time, producing a preponderance of matter in (+-) time. Antimatter leakage from (+-) time to (-) time in the same way produces an antimatter preponderance in the (-) time universe. The remaining opposite particles left behind after the leakage, (antimatter and matter respectively) proceeding outward in antitime and time respectively, after many annihilations also in...

  16. Antimatter-Gravity Couplings, and Lorentz Symmetry

    CERN Document Server

    Tasson, Jay D

    2015-01-01

    Implications of possible CPT and Lorentz violation for antimatter-gravity experiments as well as other antimatter tests are considered in the context of the general field-theory-based framework of the Standard-Model Extension (SME).

  17. Gravitational Repulsion and Dirac Antimatter

    Science.gov (United States)

    Kowitt, Mark E.

    1996-03-01

    Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related “antigravity” issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.

  18. Measuring Antimatter Gravity with Muonium

    CERN Document Server

    Kaplan, Daniel M; Phillips, Thomas J; Roberts, Thomas J; Gustafson, Richard

    2013-01-01

    We consider a measurement of the gravitational acceleration of antimatter, gbar, using muonium. A monoenergetic, low-velocity, horizontal muonium beam will be formed from a surface-muon beam using a novel technique and directed at an atom interferometer. The measurement requires a precision three-grating interferometer: the first grating pair creates an interference pattern which is analyzed by scanning the third grating vertically using piezo actuators. State-of-the-art nanofabrication can produce the needed membrane grating structure in silicon nitride or ultrananoscrystalline diamond. With 100 nm grating pitch, a 10% measurement of gbar can be made using some months of surface-muon beam time. This will be the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the first measurement of the gravitational acceleration of antimatter.

  19. Antimatter: (Latest citations from the INSPEC Database)

    Science.gov (United States)

    1997-04-01

    The bibliography contains citations concerning physical theory, testing, and practical applications of antimatter. Related nuclear phenomena, matter-antimatter interactions, relativity, antigravity, formation of the universe, and space-time configurations are described. The roles of cosmic rays, black holes, antiprotons, and positrons are discussed. Antimatter propulsion spacecraft are briefly cited. (Contains 50-250 citations and includes a subject term index and title list.)

  20. Golden Jubilee photos: Gathering Antimatter

    CERN Multimedia

    2004-01-01

    One day, antimatter might take people where no one has gone before, but it isn't science fiction. Protons are easily obtainable by stripping electrons from hydrogen atoms, but their antimatter counterparts, the antiprotons, have to be created artificially at accelerators. Roughly one antiproton can be produced from around a million protons bombarding a target at 26 GeV. In 1978, when CERN decided to take the unprecedented step of turning the SPS accelerator into a proton-antiproton collider, it had to deal with the scarcity, and had to concentrate the beam until it was intense enough for the experiment. Antiprotons are produced with a wide range of angles and energy, so before they can be used in an accelerator they have to be captured and 'cooled', reducing the beam dimensions by many orders of magnitude. This was the job of the Antiproton Accumulator (AA), completed in 1980 and shown here before it disappeared from view under concrete shielding. It followed the pioneering Initial Cooling Experiment (ICE) i...

  1. Measuring antimatter gravity with muonium

    Directory of Open Access Journals (Sweden)

    Kaplan Daniel M.

    2015-01-01

    Full Text Available The gravitational acceleration of antimatter, ḡ, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Only two avenues for such a measurement appear to be feasible: antihydrogen and muonium. The muonium measurement requires a novel, monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interferometer can be produced in silicon nitride or ultrananocrystalline diamond using state-of-the-art nanofabrication. The required precision alignment and calibration at the picometer level also appear to be feasible. With 100 nm grating pitch, a 10% measurement of ḡ can be made using some months of surface-muon beam time, and a 1% or better measurement with a correspondingly larger exposure. This could constitute the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the first measurement of the gravitational acceleration of antimatter.

  2. Measuring Antimatter Gravity with Muonium

    CERN Document Server

    Kaplan, Daniel M; Mancini, Derrick; Phillips, James D; Phillips, Thomas J; Roberts, Thomas J; Terry, Jeff

    2014-01-01

    The gravitational acceleration of antimatter, $\\bar{g}$, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Only two avenues for such a measurement appear to be feasible: antihydrogen and muonium. The muonium measurement requires a novel, monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interferometer can be produced in silicon nitride or ultrananocrystalline diamond using state-of-the-art nanofabrication. The required precision alignment and calibration at the picometer level also appear to be feasible. With 100 nm grating pitch, a 10% measurement of $\\bar{g}$ can be made using some months of surface-muon beam time, and a 1% or better measurement with a correspondingly larger exposure. This could constitute the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the first...

  3. More Sci- than Fi, Physicists Create Antimatter

    CERN Multimedia

    Overbye, Dennis

    2002-01-01

    Physicists working in Europe announced yesterday that they had passed through nature's looking glass and had created atoms made of antimatter, or antiatoms, opening up the possibility of experiments in a realm once reserved for science fiction writers (5 pages)

  4. Matter-antimatter puzzle: LHCb improves resolution

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    In 2010, Fermilab’s DØ experiment reported a one percent difference in the properties of matter and antimatter in decays of B mesons (that is, particles containing beauty quarks) to muons. Saturday, at the ICHEP Conference in Melbourne, the LHCb experiment at CERN presents new results, which do not confirm this anomaly and are consistent with the Standard Model predictions. The same experiment has also presented the first evidence of asymmetry arising in other decays of the same family of mesons. The image becomes clearer but the puzzle has not yet been solved.   Inside the LHCb detector. The matter-antimatter imbalance in the Universe is a very hot topic in physics. The conundrum arises from the fact that, although objects made of antimatter are not observed in the Universe, theory predicts that matter and antimatter be created equally in particle interactions and in the Big Bang. Only small deviations from this very symmetric behaviour are incorporated in the theory. E...

  5. Will NASA annihilate station antimatter experiment?

    CERN Multimedia

    Lawler, A

    2004-01-01

    "NASA is reconsidering its support for an innovative experiment designed to capture direct evidence of elusive antimatter. [...] A full review of the project, called the Alpha Magnetic Spectrometer (AMS), could begin this summer" (1 page)

  6. Observation of the antimatter helium-4 nucleus.

    Science.gov (United States)

    2011-05-19

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B Collider (RHIC; ref. 6) in 10(9) recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation.

  7. Antimatter, clockwork orange, laser divestment

    Science.gov (United States)

    Asmus, John F.

    2005-06-01

    In 1972 Ente Nazionale Idrocarburi sponsored a program to holographically record the images of Venetian sculptural treasures for archival purposes. At Laboratorio San Gregorio, where the initial holography took place, G. Musumeci and K. Hempel suggested an experiment to determine whether the concentrated beam from the ruby holographic laser could ablate black-patina crusts from decaying marble. Initial success of a laser-divestment test on a Palazzo Ducale capital launched a search for funding to enable a full-scale laser-conservation demonstration. Later, at a Caltech reunion one of the author's physics professors (Carl Anderson, the discoverer of mu mesons and the positron), noting the prominence of the Venice Film Festival suggested our approaching the motion picture industry. Many years earlier Anderson's Caltech classmate, Frank Capra, had supported the research that led to the discovery of cosmic-ray-generated antimatter on Pikes Peak. (After Caltech, Capra had become a director at Columbia Studios.) Anderson's chance comment led to an introduction to producer Jack Warner at a festival screening of his "A Clockwork Orange" in Asolo. He and his friends contributed US$5000 toward the laser conservation of a marble relief of "The Last Supper" in the Porta della Carta of Venice. This work was conducted in 1980 under the direction of Arch. G. Calcagno. In 1981 it was found that the granite veneer or the newly completed Warner Center Tower had been stained during transit from the quarry. The Venice laser successfully restored the veneer, thereby returning the Warner Brothers' favor.

  8. Studying antimatter with laser precision

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    The next generation of antihydrogen trapping devices, ALPHA-2, is moving into CERN’s Antiproton Decelerator (AD) hall. This brand-new experiment will allow the ALPHA collaboration to conduct studies of antimatter with greater precision. ALPHA spokesperson Jeffrey Hangst was recently awarded a grant by the Carlsberg Foundation, which will be used to purchase equipment for the new experiment.   A 3-D view of the new magnet (in blue) and cryostat. The red lines show the paths of laser beams. LHC-type current leads for the superconducting magnets are visible on the top-right of the image. The ALPHA collaboration has been working to trap and study antihydrogen since 2006. Using antiprotons provided by CERN’s Antiproton Decelerator (AD), ALPHA was the first experiment to trap antihydrogen and to hold it long enough to study its properties. “The new ALPHA-2 experiment will use integrated lasers to probe the trapped antihydrogen,” explains Jeffrey Hangst, ALP...

  9. Antimatter annihilation detection with AEgIS

    CERN Document Server

    Gligorova, Angela

    2015-01-01

    AE ̄ gIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an antimatter exper- iment based at CERN, whose primary goal is to carry out the first direct measurement of the Earth’s gravitational acceleration on antimatter. A precise measurement of antimatter gravity would be the first precision test of the Weak Equivalence Principle for antimatter. The principle of the experiment is based on the formation of antihydrogen through a charge exchange reaction between laser excited (Rydberg) positronium and ultra-cold antiprotons. The antihydrogen atoms will be accelerated by an inhomogeneous electric field (Stark acceleration) to form a pulsed cold beam. The free fall of the antihydrogen due to Earth’s gravity will be measured using a moiré de- flectometer and a hybrid position detector. This detector is foreseen to consist of an active silicon part, where the annihilation of antihydrogen takes place, followed by an emulsion part coupled to a fiber time-of-flight detector. This overview prese...

  10. Mirror Symmetry of Matter and Antimatter

    Science.gov (United States)

    Close, Robert

    2010-03-01

    Physical processes involving weak interactions have mirror images which can be mimicked in the natural universe only by exchanging matter and antimatter. This experimental observation is easily explained by the hypothesis that spatial inversion exchanges matter and antimatter. Yet according to conventional theory, the parity operator P does not exchange matter and antimatter but instead yields phenomena which have never been observed. We examine the conventional derivation of the Dirac parity operator and find that it is based on the speculative assumption that the unit imaginary is always a true scalar rather than a pseudoscalar. This assumption incorrectly requires that the matrix 0̂ preserve its sign under spatial inversion. This requirement results in a mixed-parity vector space defined relative to velocity, which is otherwise isomorphic to the spatial axes. We derive a new spatial inversion operator M (for mirroring) by requiring that for any set of orthogonal basis vectors, all three must have the same parity. A pseudoscalar unit imaginary is defined in terms of Dirac matrices. The M operator is a symmetry of the Dirac equation. It exchanges positive and negative energy eigenfunctions, consistent with all experimental evidence of mirror symmetry between matter and antimatter. This result provides a simple reason for the apparent absence in nature of mirror-like phenomena, such as right-handed neutrinos, which do not exchange matter and antimatter.

  11. The Mystery of the Missing Antimatter

    CERN Document Server

    Quinn, Helen R

    2008-01-01

    In the first fractions of a second after the Big Bang lingers a question at the heart of our very existence: why does the universe contain matter but almost no antimatter? The laws of physics tell us that equal amounts of matter and antimatter were produced in the early universe--but then, something odd happened. Matter won out over antimatter; had it not, the universe today would be dark and barren. But how and when did this occur? Helen Quinn and Yossi Nir guide readers into the very heart of this mystery--and along the way offer an exhilarating grand tour of cutting-edge physics. They explain both the history of antimatter and recent advances in particle physics and cosmology. And they discuss the enormous, high-precision experiments that particle physicists are undertaking to test the laws of physics at their most fundamental levels--and how their results reveal tantalizing new possibilities for solving this puzzle at the heart of the cosmos. The Mystery of the Missing Antimatter is at once a history of i...

  12. Gravitational mass of relativistic matter and antimatter

    Science.gov (United States)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65 International Linear Collider (ILC) and Compact Linear Collider (CLIC).

  13. Discovering Matter-Antimatter Asymmetries with GPUs

    CERN Document Server

    Reichert, Stefanie

    2015-01-01

    The search for matter-antimatter asymmetries requires highest precision analyses and thus very large datasets and intensive computing. This contribution discusses two complemen- tary approaches where GPU systems have been successfully exploited in this area. Both approaches make use of the CUDA Thrust library which can be used on supported GPUs. The first approach is a generic search for local asymmetries in phase-space distributions of matter and antimatter particle decays. This powerful analysis method has never been used to date due to its high demand in CPU time. The second approach uses the GooFit framework, which is a generic fitting framework that exploits massive parallelisation on GPUs

  14. Antimatter persuaded to react with matter

    CERN Multimedia

    Van Noorden, Richard

    2006-01-01

    "Matter and antimatter usually destroy each other in a flash of energy and a spray of exotic particles when they meet. Yet the two have been coaxed into a chemical reaction by the international research group Athena." (2/3 page)

  15. Measuring gravitational effects on antimatter in space

    CERN Document Server

    Piacentino, Giovanni Maria; Venanzoni, Graziano

    2016-01-01

    We propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP~violating decay $K_\\mathrm{L} \\to \\pi^{+} \\pi^{-}$ in space. We show that at the altitude of the International Space Station, gravitational effects may change the level of CP~violation such that a 5$\\sigma$ discrimination may be obtained by collecting the $K_\\mathrm{L}$ produced by the cosmic proton flux within a few years.

  16. Gravitational mass of relativistic matter and antimatter

    CERN Document Server

    Kalaydzhyan, Tigran

    2015-01-01

    The universality of free fall, the so-called weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial and gravitational masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no proof for the matter and antimatter at high energies. %coming from ground-based experiments. For the antimatter the situation is even less clear -- current direct observations of trapped antihydrogen suggest the limits -65 < m_g / m < 110 not ruling out antigravity, i.e. repulsion of the antimatter by Earth. Here we demonstrate a bound 1 - 4x10^{-7} < m_g/m < 1 + 2x10^{-7} on the gravitational mass of relativistic electrons and positrons in the potential of the Local Supercluster (LS) coming from the Large Electron-Positron Collider (LEP) and Tevatron accelerator experiments. By considering annual variations of the sol...

  17. Does antimatter emit a new light?

    Science.gov (United States)

    Santilli, Ruggero Maria

    1997-08-01

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of “the new physics of antimatter” are pointed out.

  18. Gravitational mass of relativistic matter and antimatter

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2015-12-01

    Full Text Available The universality of free fall, the weak equivalence principle (WEP, is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits −65antimatter by Earth. Here we demonstrate an indirect bound 0.96

  19. Antimatter Driven Sail for Deep Space Missions

    Science.gov (United States)

    Howe, Steven D.; Jackson, Gerald P.

    2005-02-01

    The concept of the Antimatter Driven Sail (ADS) has been examined in three major areas: Mission Architecture, Subsystem Technologies, and a Technology Roadmap. The Mission Architecture effort has focused on developing an integrated systems model to evaluate the performance of the entire spacecraft for a mission. The Subsystem Technologies investigation examined 1) the fundamental reactions between the antiprotons and the sail material and the subsequent momentum transfer, 2) a concept for storing antihydrogen at high densities, and 3) an entirely new concept for electrical power production. The new electrical-power concept may have applicability to nearer-term space missions as a power supply if the availability of antiprotons becomes common. In developing the Technology Roadmap, we examined the potential 1) for using recent developments in antiproton storage and antihydrogen formation to create a path to ultra-high density antihydrogen storage, and 2) for increasing production of antiprotons by modifying the existing Fermilab facility. Our system analysis indicates that a 10 kg instrument pay load could be sent to 250 AU in 10 years using 30 milligrams of antihydrogen. This amount of antimatter is clearly within the production potential of the US within the next 40 years using currently accepted accelerator technologies. Major aspects of the architecture remain to be investigated but the first-cut assessment of the mission profile, the subsystem technologies, and the technology development path have all been identified. The antimatter driven sail may in-fact allow humanity to consider sending probes to the stars.

  20. CPT symmetry and antimatter gravity in general relativity

    CERN Document Server

    Villata, M

    2011-01-01

    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.

  1. CPT symmetry and antimatter gravity in general relativity

    Science.gov (United States)

    Villata, M.

    2011-04-01

    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.

  2. Hangout With CERN: Antimatter (S01E05)

    CERN Multimedia

    Kahle, Kate

    2012-01-01

    In this hangout we delve into the world of antimatter. How is it different from matter? What antimatter research is going on at CERN? Why? What have we learned so far and what will this research lead to? ATLAS physicist Steven Goldfarb is joined by CERN theorist Alex Arbey, Seth Zenz from the CMS experiment, and Michael Doser, Makoto Fujiwara and Masaki Hori from the antimatter experiments at CERN.Recorded live on 29th November 2012.

  3. Black Holes and Gravitational Properties of Antimatter

    CERN Document Server

    Hajdukovic, D

    2006-01-01

    We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.

  4. The Matter-Antimatter Asymmetry of the Universe

    CERN Document Server

    Stecker, F W

    2002-01-01

    I will give here an overview of the present observational and theoretical situation regarding the question of the matter-antimatter asymmetry of the universe and the related question of the existence of antimatter on a cosmological scale. I will also give a simple discussion of the role of CP violation in this subject.

  5. Matter-Antimatter Asymmetry - Aspects at Low Energy

    CERN Document Server

    Willmann, Lorenz

    2015-01-01

    The apparent dominance of matter over antimatter in our universe is an obvious and puzzling fact which cannot be adequately explained in present physical frameworks that assume matter-antimatter symmetry at the big bang. However, our present knowledge of starting conditions and of known sources of CP violation are both insufficient to explain the observed asymmetry. Therefore ongoing research on matter-antimatter differences is strongly motivated as well as attempts to identify viable new mechanisms that could create the present asymmetry. Here we concentrate on possible precision experiments at low energies towards a resolution of this puzzle.

  6. Detection of low energy antimatter with emulsions

    CERN Document Server

    Aghion, S; Ariga, T; Bollani, M; Cas, E Dei; Ereditato, A; Evans, C; Ferragut, R; Giammarchi, M; Pistillo, C; Romé, M; Sala, S; Scampoli, P

    2016-01-01

    Emulsion detectors feature a very high position resolution and consequently represent an ideal device when particle detection is required at the micrometric scale. This is the case of quantum interferometry studies with antimatter, where micrometric fringes have to be measured. In this framework, we designed and realized a new emulsion based detector characterized by a gel enriched in terms of silver bromide crystal contents poured on a glass plate. We tested the sensitivity of such a detector to low energy positrons in the range 10-20 keV. The obtained results prove that nuclear emulsions are highly efficient at detecting positrons at these energies. This achievement paves the way to perform matter-wave interferometry with positrons using this technology.

  7. Is a symmetric matter-antimatter universe excluded?

    CERN Document Server

    Baur, Julien; Von Ballmoos, Peter

    2015-01-01

    We consider a non-standard cosmological model in which the universe contains as much matter as antimatter on large scales and presents a local baryon asymmetry. A key ingredient in our approach is that the baryon density distribution follows Gaussian fluctuations around a null value $\\eta = 0$. Spatial domains featuring a positive (resp. negative) baryonic density value constitute regions dominated by matter (resp. antimatter). At the domains' annihilation interface, the typical density is going smoothly to zero, rather than following an abrupt step as assumed in previous symetric matter-antimatter models. As a consequence, the Cosmic Diffuse Gamma Background produced by annihilation is drastically reduced, allowing to easily pass COMPTEL's measurements limits. Similarly the Compton $y$ distorsion and CMB 'ribbons' are lowered by an appreciable factor. Therefore this model essentially escape previous constrainst on symetric matter-antimatter models. However, we produce an estimation of the CMB temperature flu...

  8. Elusive antimatter formed in laboratory scientists testing nature's deepest secrets

    CERN Multimedia

    Boyd, R S

    2002-01-01

    A team of European physicists reported the creation in a Swiss laboratory of at least 50,000 atoms of antihydrogen, the first time a significant quantity of antimatter has been produced on earth (1 page).

  9. The matter-antimatter interpretation of Kerr spacetime

    CERN Document Server

    Villata, M

    2014-01-01

    Repulsive gravity is not very popular in physics. However, one comes across it in at least two main occurrences in general relativity: in the negative-$r$ region of Kerr spacetime, and as the result of the gravitational interaction between matter and antimatter, when the latter is assumed to be CPT-transformed matter. Here we show how these two independent developments of general relativity are perfectly consistent in predicting gravitational repulsion and how the above Kerr negative-$r$ region can be interpreted as the habitat of antimatter. As a consequence, matter particles traveling along vortical geodesics can pass through the throat of a rotating black hole and emerge as antimatter particles (and vice versa). An experimental definitive answer on the gravitational behavior of antimatter is awaited in the next few years.

  10. 2nd International Workshop on Antimatter and Gravity

    CERN Document Server

    Scampoli, P

    2013-01-01

    The purpose of this meeting is to review the experimental and theoretical aspects of the interaction of antimatter with gravity. Tests of the weak equivalence principle with e.g. positronium, muonium and antihydrogen with be discussed. Progress reports on the experiments at the CERN Antiproton Decelerator and on the available future facilities will be presented. A session on the relevance of antimatter with respect to Dark Energy and Dark Matter in the Universe (theory and experiments) is also foreseen.

  11. Gravity Effects on Antimatter in the Standard-Model Extension

    CERN Document Server

    Tasson, Jay D

    2015-01-01

    The gravitational Standard-Model Extension (SME) is the general field-theory based framework for the analysis of CPT and Lorentz violation. In this work we summarize the implications of Lorentz and CPT violation for antimatter gravity in the context of the SME. Implications of various attempts to place indirect limits on anomalous antimatter gravity are considered in the context of SME-based models.

  12. Fusion Reactions and Matter-Antimatter Annihilation for Space Propulsion

    Science.gov (United States)

    2005-07-13

    which are essentially impossible using chemical or even nuclear thermal rockets . One example is a solar impact mission, which requires the rocket to... thermal rockets . All of those missions could be performed by fusion or antimatter rockets with a mass ratio of 5:1 or less. Table I - Mass...roughly equivalent to that of the nuclear thermal rocket (Isp ~ 103 sec) due to temperature limitations of the solid. However, the antimatter energy

  13. Antimatter in the Direct-Action Theory of Fields

    Directory of Open Access Journals (Sweden)

    Ruth E. Kastner

    2016-01-01

    Full Text Available One of Feynman's greatest contributions to physics was the interpretation of negative energies as antimatter in quantum field theory. A key component of this interpretation is the Feynman propagator, which seeks to describe the behavior of antimatter at the virtual particle level. Ironically, it turns out that one can dispense with the Feynman propagator in a direct-action theory of fields, while still retaining the interpretation of negative energy solutions as antiparticles. Quanta 2016; 5: 12–18.

  14. Antimatter in the Direct-Action Theory of Fields

    CERN Document Server

    Kastner, R E

    2015-01-01

    One of Feynman's greatest contributions to physics was the interpretation of negative energies as antimatter in quantum field theory. A key component of this interpretation is the Feynman propagator, which seeks to describe the behavior of antimatter at the virtual particle level. Ironically, it turns out that one can dispense with the Feynman propagator in a direct-action theory of fields, while still retaining the interpretation of negative energy solutions as antiparticles.

  15. Gravitationally Coupled Dirac Equation for Antimatter

    CERN Document Server

    Jentschura, U D

    2013-01-01

    The coupling of antimatter to gravity is of general interest because of conceivable cosmological consequences ("surprises") related to dark energy and the cosmological constant. Here, we revisit the derivation of the gravitationally coupled Dirac equation and find that the prefactor of a result given previously in [D.R. Brill and J.A. Wheeler, Rev. Mod. Phys., vol. 29, p. 465 (1957)] for the affine connection matrix is in need of a correction. We also discuss the conversion the curved-space Dirac equation from East-Coast to West-Coast conventions, in order to bring the gravitationally coupled Dirac equation to a form where it can easily be unified with the electromagnetic coupling as it is commonly used in modern particle physics calculations. The Dirac equation describes anti-particles as negative-energy states. We find a symmetry of the gravitationally coupled Dirac equation, which connects particle and antiparticle solutions for a general space-time metric of the Schwarzschild type and implies that particl...

  16. Academic Training - Studying Anti-Matter

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 24, 25, 26 April from 11:00 to 12:00 - Main Auditorium, bldg. 500 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March Studying Anti-Matter R. LANDUA / DSU Antiparticles are a crucial ingredient of particle physics and cosmology. Almost 80 years after Dirac's bold prediction and the subsequent discovery of the positron in 1932, antiparticles are still in the spotlight of modern physics. This lecture for non-specialists will start with a theoretical and historical introduction. Why are antiparticles needed? When and how were they discovered? Why is the (CPT) symmetry between particles and antiparticles so fundamental? What is their role in cosmology? The second part will give an overview about the many aspects of antiparticles in experimental physics: their production, their use in colliders; as a probe inside atoms or nuclei; or as an object to study fundamental symmetries. In the third part, the lecture will focus on results and challenges of the '...

  17. The antimatter factory is ready for another successful year

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    CERN’s contribution to antimatter research is interspersed with important breakthroughs: from the creation of the very first anti-atoms in 1995 to the production of large quantities in 2002 and the invention in 2010 of the technique that freezes them down to allow precise studies of their properties. This week, antimatter experiments are on the starting blocks for a new run that promises to be just as exciting.   The Antiproton Decelerator (AD). CERN’s Antimatter Decelerator (AD) is a unique antimatter factory that produces low-energy anti-protons for creating anti-atoms. The AD delivers its precious ingredients to several experiments that use them to study antimatter properties from many different angles. The 2011 run is about to start, and the experiments are ready to enter a new data-taking period. Their scientific goals for this year include applying spectroscopy techniques for the first time to probe the inner workings of antihydrogen atoms; evaluating the biological effe...

  18. Why is the universe more partial to mater than antimatter?

    CERN Multimedia

    2006-01-01

    "B factory experiments at the Stanford Linear Accelerator (SLAC) in the USA and at the High Energy Accelerator Research Organization (KEK) in Japan have reached a new milestone in the quest to understand the matter-antimatter imbalance in our universe.

  19. The Role of Antimatter in Big-Bang Cosmology

    Science.gov (United States)

    Stecker, Floyd W.

    1974-01-01

    Discusses theories underlying man's conceptions of the universe, including Omnes' repulsive separation mechanism, the turbulence theory of galaxy formation, and the author's idea about gamma ray spectra in cosmological matter-antimatter annihilation. Indicates that the Apollo data provide encouraging evidence by fitting well with his theoretical…

  20. Turning the Star Trek Dream into Reality by Understanding Matter & Antimatter

    Science.gov (United States)

    Hansen, Norm

    2002-04-01

    People are going to learn all about matter and antimatter. Where matter and antimatter comes from. Where antimatter exists within our solar system. What the Periodic Table of Matter-AntiMatter Elements looks like. What each of the 109 antimatter element's nuclear, physical, and chemical characteristics are. How much energy is produced from matter and antimatter. And what needs to be done to turn the Star Trek Dream into Reality. The Milky Way Galaxy is composed of matter and antimatter. At the center of the galaxy, there are two black holes. One black hole is composed of matter; and the other is antimatter. The black holes are ejecting matter and antimatter into space forming a halo and spiral arms of matter & antimatter stars. The sun is one of the billions of stars that are composed of matter. There are a similar number of antimatter stars. Our Solar System contains the sun, earth, planets, and asteroids that are composed of matter, and comets that are composed of antimatter. When galactic antimatter enters our solar system, the antimatter is called comets. Astronomers have observed hundred of comets orbiting the sun and are finding new comets every year. During the last century, mass destruction has resulted when antimatter collided with Jupiter and Earth. How Humanity deals with the opportunities and dangers of antimatter will determine our destiny. Mankind has known about comets destructive power for thousands of years going back to the days of antiquity. Did comets have anything to do with the disappearance of Atlantis over twelve thousand years ago? We may never know; but is there a similar situation about to take place? Scientists have been studying antimatter by producing, storing, and colliding small quantities at national laboratories for several decades. Symmetry exists between matter and antimatter. Science and Technology provides unlimited opportunities to benefit humanity. Antimatter can be used, as a natural source of energy, to bring every country

  1. Interchange instability and transport in matter-antimatter plasmas

    CERN Document Server

    Kendl, Alexander; Wiesenberger, Matthias; Held, Markus

    2016-01-01

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density blob perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are in favour of sufficient magnetic confinement for planned electron-positron plasma experiments. The model is generalised to other matter-antimatter plasmas. Magnetised electron-positron-proton-antiproton plasmas are susceptible to interchange driven local matter-antimatter separation, which can be expected to impede (so far unrealised) sustained laboratory magnetic confinement.

  2. Through the Looking Glass: What's the Matter with Antimatter?

    Science.gov (United States)

    Kirkby, David

    2003-04-01

    In May 1999, a new generation of particle-physics experiments recorded the first collisions from some of the most intense particle beams ever created: BABAR at the Stanford Linear Accelerator Center and BELLE at KEK in Japan. The ultimate goal of these experiments is to shed new light on one of the least understood aspects of particle physics: Why does the universe contain more matter than antimatter today? We do this by testing our understanding (the Standard Model) of matter-antimatter asymmetries in the oscillations and decays of b quarks. The first results from the new experiments confirmed the Standard Model. This was a triumph for the theory, but deepens the puzzle since the Standard Model cannot explain the size of the observed asymmetry in the universe today. In this talk, I will review the latest results from the new experiments and highlight some interesting prospects for future progress.

  3. ELENA prepares a bright future for antimatter research

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    At its recent session in June, the CERN Council approved the construction of the Extra Low ENergy Antiproton ring (ELENA) – an upgrade of the existing Antiproton Decelerator. ELENA will allow the further deceleration of antiprotons, resulting in an increased number of particles trapped downstream in the experimental set-ups. This will give an important boost to antimatter research in the years to come.   Layout of the AD experimental hall: the Antiproton Decelerator ring (purple); the ALPHA, ASACUSA, and ATRAP experiments (green); the ACE experiment (not pictured); and the new ELENA ring (blue). The Antiproton Decelerator (AD) is CERN’s widely recognized facility for the study of antimatter properties. The recent successes of the AD experiments are just the latest in a long list of important scientific results that started with LEAR (Low Energy Antiproton Ring). The scientific demand for low-energy antiprotons at the AD continues to grow. There are now four experiments runnin...

  4. ALICE’s wonderland reveals the heaviest antimatter ever observed

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Producing and observing antiparticles is part of everyday life for many physics laboratories around the world, including CERN. However, recreating and observing the anti-nuclei of complex atoms is a much more difficult task. Analysing data collected in a run of just one month, ALICE has recently found evidence of the formation of four anti-nuclei of Helium 4, the heaviest antimatter ever created in a laboratory.   The STAR experiment at RHIC came first and published the result in March: they presented evidence of 18 anti-nuclei of Helium 4 collected over several years of data taking. “ALICE came second but it's amazing to see how fast the results came,” exclaims Paolo Giubellino, the experiment’s spokesperson. “We were able to confirm the observation of 4He anti-nuclei with data collected in November 2010.” Scientists agree on the fact that antimatter was created in the Big Bang together with matter. However, today we do not observe antimatter outsid...

  5. Matter-Antimatter Asymmetry in the Large Hadron Collider

    CERN Document Server

    Tawfik, A

    2010-01-01

    The matter-antimatter asymmetry is one of the greatest challenges in the modern physics. The universe including this paper and even the reader him(her)self seems to be built up of ordinary matter only. Theoretically, the well-known Sakharov's conditions remain the solid framework explaining the circumstances that matter became dominant against the antimatter while the universe cools down and/or expands. On the other hand, the standard model for elementary particles apparently prevents at least two conditions out of them. In this work, we introduce a systematic study of the antiparticle-to-particle ratios measured in various $NN$ and $AA$ collisions over the last three decades. It is obvious that the available experimental facilities turn to be able to perform nuclear collisions, in which the matter-antimatter asymmetry raises from $\\sim 0%$ at AGS to $\\sim 100%$ at LHC. Assuming that the final state of hadronization in the nuclear collisions takes place along the freezeout line, which is defined by a constant...

  6. The generation model of particle physics and the cosmological matter-antimatter asymmetry problem

    CERN Document Server

    Robson, B A

    2016-01-01

    The matter-antimatter asymmetry problem, corresponding to the virtual nonexistence of antimatter in the universe, is one of the greatest mysteries of cosmology. Within the framework of the Generation Model (GM) of particle physics, it is demonstrated that the matter-antimatter asymmetry problem may be understood in terms of the composite leptons and quarks of the GM. It is concluded that there is essentially no matter-antimatter asymmetry in the present universe and that the observed hydrogen-antihydrogen asymmetry may be understood in terms of statistical fluctuations associated with the complex many-body processes involved in the formation of either a hydrogen atom or an antihydrogen atom.

  7. Neutrinos and the matter-antimatter asymmetry in the Universe

    CERN Document Server

    Felipe, R Gonzalez

    2011-01-01

    The discovery of neutrino oscillations provides a solid evidence for nonzero neutrino masses and leptonic mixing. The fact that neutrino masses are so tiny constitutes a puzzling problem in particle physics. From the theoretical viewpoint, the smallness of neutrino masses can be elegantly explained through the seesaw mechanism. Another challenging issue for particle physics and cosmology is the explanation of the matter-antimatter asymmetry observed in Nature. Among the viable mechanisms, leptogenesis is a simple and well-motivated framework. In this talk we briefly review these aspects, making emphasis on the possibility of linking neutrino physics to the cosmological baryon asymmetry originated from leptogenesis.

  8. Hangout with CERN and the Google Science Fair: Why does antimatter matter? (S03E01)

    CERN Multimedia

    Kahle, Kate

    2013-01-01

    What is antimatter? Why does antimatter matter? Series 3 of Hangout with CERN starts with a bang! A special hangout with CERN and the Google Science Fair that takes us into the weird and wonderful world of antimatter.CERN physicists Tara Shears and Niels Madsen speak to host Shree Bose, Google Science Fair 2011 grand prize winner and to Samantha Lee, Google Student Ambassador, about this mysterious part of our universe. What antimatter research is going on at CERN and what are the implications? CERN's Rolf Landua also shows us the Hollywood-side of antimatter!Google Science Fair is an online science competition open to students aged 13-18 from around the globe. Students can register at googlesciencefair.com, the closing date is 30 April 2013. Find out more about CERN's involvement in Google Science Fair at http://goo.gl/N9f3GRecorded live on 18th April 2013.

  9. A new “culprit” for matter-antimatter asymmetry

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    In our matter-dominated Universe, the observation of new processes showing matter-antimatter asymmetry allows scientists to test their theories and, possibly, to explore new territories. The LHCb collaboration has recently observed matter-antimatter asymmetries in the decays of the B0s meson, which thus becomes the fourth particle known to present such behaviour.   The VELO detector: a crucial element for particle identifiation in LHCb. Almost all physics processes known to scientists show perfect symmetry if a particle is interchanged with its antiparticle (C symmetry), and then if left and right are swapped (P symmetry). So it becomes very hard to explain why the Universe itself does not conform to this symmetry and, instead, shows a huge preference for matter. Processes that violate this symmetry are rare and of great interest to scientists. Violation of the CP symmetry in neutral kaons was first observed by Nobel Prize Laureates James Cronin and Val Fitch in the 1960s. About 40 years la...

  10. Isodual theory of antimatter applications to antigravity, grand unification and cosmology

    CERN Document Server

    Santilli, Ruggero Maria

    2006-01-01

    Antimatter, already conjectured by A. Schuster in 1898, was actually predicted by P.A.M. Dirac in the late 19-twenties in the negative-energy solutions of the Dirac equation. Its existence was subsequently confirmed via the Wilson chamber and became an established part of theoretical physics. Dirac soon discovered that particles with negative energy do not behave in a physically conventional manner, and he therefore developed his "hole theory". This restricted the study of antimatter to the sole level of second quantization. As a result antimatter created a scientific imbalance, because matter was treated at all levels of study, while antimatter was treated only at the level of second quantization. In search of a new mathematics for the resolution of this imbalance the author conceived what we know today as Santilli’s isodual mathematics, which permitted the construction of isodual classical mechanics, isodual quantization and isodual quantum mechanics. The scope of this monograph is to show that our classi...

  11. Star Trek meets the Big Bang curiosity is leading scientists on a mission to explain antimatter

    CERN Multimedia

    Cookson, C

    1998-01-01

    Next year, scientists at CERN will inaugurate the world's first 'antimatter factory'. The 'Antiproton Decelerator' will make more than 2000 atoms of anti-hydrogen an hour and contain them in a magnetic trap within a vacuum (1 page).

  12. New experiment to gain unparalleled insight into antimatter

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    At last week’s Research Board meeting, the Baryon Antibaryon Symmetry Experiment (BASE) was approved for installation at CERN. The experiment will be diving into the search for matter-antimatter asymmetry, as it aims to take ultra-high precision measurements of the antiproton magnetic moment.   CERN's AD Hall: the new home of the BASE double Penning trap set-up. The BASE collaboration will be setting up shop in the AD Hall this September with its first CERN-based experimental set-up. Using the novel double-Penning trap set-up developed at the University of Mainz, GSI Darmstadt and the Max Plank Institute for Nuclear Physics (Germany), the BASE team will be able to measure the antiproton magnetic moment with hitherto unreachable part-per-billion precision. “We constructed the first double-Penning trap at our companion facility in Germany, and made the first ever direct observations of single spin flips of a single proton,” explains Stefan Ulmer from RIKE...

  13. LS1 Report: antimatter research on the starting blocks

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The consolidation work at the Antiproton Decelerator (AD) has been very intensive and the operators now have a basically new machine to “drive”. Thanks to the accurate preparation work still ongoing, the machine will soon deliver its first beam of antiprotons to the experiments. The renewed efficiency of the whole complex will ensure the best performance of the whole of CERN’s antimatter research programme in the long term.   The test bench for the new Magnetic Horn stripline. On the left, high voltage cables are connected to the stripline, which then feeds a 6 kV 400 kA pulse to the Horn. The Horn itself (the cylindrical object on the right) can be seen mounted on its chariot. The consolidation programme at the AD planned during LS1 has involved some of the most vital parts of the decelerator such as the target area, the ring magnets, the stochastic cooling system, vacuum system, control system and various aspects of the instrumentation. In addit...

  14. Measurement of matter-antimatter differences in beauty baryon decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Déléage, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Albor, Victor; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Furfaro, Emiliano; Färber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, V.V.; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hatch, Mark; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, P H; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavorima; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Toriello, Francis; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Vernet, Maxime; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhang, Yu; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhu, Xianglei; Zhukov, Valery; Zucchelli, Stefano

    2017-01-01

    Differences in the behaviour of matter and antimatter have been observed in $K$ and $B$ meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as CP violation. Using data from the LHCb experiment at the Large Hadron Collider, a search is made for CP-violating asymmetries in the decay angle distributions of $\\Lambda_b^0$ baryons decaying to $p\\pi^-\\pi^+\\pi^-$ and $p \\pi^- K^+ K^-$ final states. These four-body hadronic decays are a promising place to search for sources of CP violation both within and beyond the Standard Model of particle physics. We find evidence for CP violation in $\\Lambda_b^0$ to $p\\pi^-\\pi^+\\pi^-$ decays with a statistical significance corresponding to 3.3 standard deviations including systematic uncertainties. This represents the first evidence for CP violation in the baryon sector.

  15. A trip to Rome—thanks to antimatter

    CERN Multimedia

    Alizée Dauvergne

    2010-01-01

    The Angels and Demons exhibition created by the PH Department’s Education Group came to an end last summer. The exhibition was accompanied by a competition, with a first prize of a flight to Rome. Now we know the winner’s name. An exhibit of the Angels&Demons - the science behind the story exhibition She is Sarah Manton, and she is from Scotland. In September Sarah will fly to Rome with her husband to retrace the Angels and Demons street itinerary. “We are looking forward to visiting the usual tourist sights, including all the places that feature in Angels and Demons such as the Pantheon,” she said in answer to a question from the exhibition organisers. The couple was touring CERN when, intrigued by the Globe and the name of the exhibition, they decided to do a visit and participate in the competition. Five correct answers on antimatter later—and several months on—Sarah got a pleasant surprise: “I decided to have a go at the quiz an...

  16. Probing antimatter gravity - The AEGIS experiment at CERN

    Science.gov (United States)

    Kellerbauer, A.; Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jordan, E.; Kimura, M.; Koettig, T.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Lehner, S.; Liberadzka, J.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nédélec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petráček, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienäcker, B.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Smestad, L.; Sorrentino, F.; Špaček, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Widmann, E.; Yzombard, P.; Zavatarelli, S.; Zmeskal, J.; Zurlo, N.

    2016-11-01

    The weak equivalence principle states that the motion of a body in a gravitational field is independent of its structure or composition. This postulate of general relativity has been tested to very high precision with ordinary matter, but no relevant experimental verification with antimatter has ever been carried out. The AEGIS experiment will measure the gravitational acceleration of antihydrogen to ultimately 1% precision. For this purpose, a pulsed horizontal antihydrogen beam with a velocity of several 100 m s-1 will be produced. Its vertical deflection due to gravity will be detected by a setup consisting of material gratings coupled with a position-sensitive detector, operating as a moiré deflectometer or an atom interferometer. The AEGIS experiment is installed at CERN's Antiproton Decelerator, currently the only facility in the world which produces copious amounts of low-energy antiprotons. The construction of the setup has been going on since 2010 and is nearing completion. A proof-of-principle experiment with antiprotons has demonstrated that the deflection of antiparticles by a few μm due to an external force can be detected. Technological and scientific development pertaining to specific challenges of the experiment, such as antihydrogen formation by positronium charge exchange or the position-sensitive detection of antihydrogen annihilations, is ongoing.

  17. a Classical Isodual Theory of Antimatter and its Prediction of Antigravity

    Science.gov (United States)

    Santilli, Ruggero Maria

    An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatment of matter and antimatter in due time, and as the classical foundations of an axiomatically consistent inclusion of gravitation in unified gauge theories recently appeared elsewhere, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with corresponding formulations at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also antiautomorphic (and more generally, antiisomorphic), yet it is applicable beginning at the classical level and then persists at the quantum level where it becomes equivalent to charge conjugation. We therefore present, apparently for the first time, the classical isodual theory of antimatter, we identify the physical foundations of the theory as being the novel isodual Galilean, special and general relativities, and we show the compatibility of the theory with all available classical experimental data on antimatter. We identify the classical foundations of the prediction of antigravity for antimatter in the field of matter (or vice-versa) without any claim on its validity, and defer its resolution to specifically identified experiments. We identify the novel, classical, isodual electromagnetic waves which are predicted to be emitted by antimatter, the so-called space-time machine based on a novel non-Newtonian geometric propulsion, and other implications of the theory. We also introduce, apparently for the first time, the isodual space and time inversions and show that they are nontrivially different than the conventional ones, thus

  18. Anti-cluster Decay and Anti-alpha Decay of Antimatter nuclei

    CERN Document Server

    Poenaru, D N; Greiner, W

    2015-01-01

    A broad extension of periodic system into the sector of antimatter could be possible sometimes in a remote future. We expect that anti-alpha spontaneous emission from an antimatter nucleus will have the same Q-value and half-life as alpha emission from the corresponding mirror nucleus. This is the consequence of the invariance of binding energy as well as of the surface and Coulomb energy when passing from matter to antimatter nuclei with the the same mass number and the same atomic number. The Q-values and half-lives of all measured up to now 27 cluster radioactivities are given together with Q-values and half-lives of the most important competitor --- $\\alpha$ decay. The lightest anti-alpha emitter, $^8\\bar{Be}$, will have a very short half-life of about $81.9\\cdot 10^{-18}$ s.

  19. A position sensitive silicon detector for AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Multimedia

    Gligorova, A

    2014-01-01

    The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is located at the Antiproton Decelerator (AD) at CERN and studies antimatter. The main goal of the AEḡIS experiment is to carry out the first measurement of the gravitational acceleration for antimatter in Earth’s gravitational field to a 1% relative precision. Such a measurement would test the Weak Equivalence Principle (WEP) of Einstein’s General Relativity. The gravitational acceleration for antihydrogen will be determined using a set of gravity measurement gratings (Moiré deflectometer) and a position sensitive detector. The vertical shift due to gravity of the falling antihydrogen atoms will be detected with a silicon strip detector, where the annihilation of antihydrogen will take place. This poster presents part of the development process of this detector.

  20. York University atomic scientist contributes to new breakthrough in the production of antimatter

    CERN Multimedia

    2002-01-01

    Physicists working in Europe, including Canada Research Chair in Atomic Physics at York University, Prof. Eric Hessels, have succeeded in capturing the first glimpse of the structure of antimatter. The ATRAP group of scientists at CERN have managed to examine the internal states of anti-hydrogen atoms (1/2 page).

  1. Euro-led research team creates first ever reaction between matter and antimatter

    CERN Multimedia

    2006-01-01

    "An EU-funded team of international researchers has produced the first ever reaction between matter and antimatter, creating protonium. Protonium is a unique type of atom that consists of a proton and an antiproton orbiting around each other." (1 page)

  2. Chemical reaction between matter and antimatter realized for the first time: it brings about the formation of protonium

    CERN Multimedia

    2006-01-01

    "Matter and antimatter particles run into each other and they annihilate into a small flash of energy: it happened at the first light of the Universe and it happens every day in the particles accelerators throughout the world." (1 page)

  3. Experimental constraints on anti-gravity and antimatter, in the context of dark energy

    CERN Document Server

    Ting, Yuan-Sen

    2013-01-01

    In a paper by Villata (2011), the possibility of a repulsive gravitational interaction between antimatter and ordinary matter was discussed. The author argued that this anti-gravity can be regarded as a prediction of general relativity, under the assumption of CPT symmetry. Stringent experimental constraints have been established against such a suggestion. The measurement of free-fall accelerations of various nuclei by the Eot-Wash group and searches for equivalence principle violation through the gravitational splitting in kaon physics consistently establish null results on any difference between the gravitational behaviour of antimatter and ordinary matter. The original arguments against antigravity were questioned by Nieto & Goldman (1991). In the light of new experiments as well as theoretical developments in the past 20 years, some of Nieto & Goldman's concerns have been addressed. While a precise measurement of the free-fall acceleration of antihydrogen will eventually lay this issue to rest, th...

  4. Can the new Neutrino Telescopes and LHC reveal the gravitational proprieties of antimatter?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2011-01-01

    What are the gravitational proprieties of antimatter is still not known. One possibility is the gravitational repulsion between matter and antimatter (in short we call it antigravity). We point out two possible signatures of the assumed existence of antigravity. First, the supermassive black hole in the center of our Galaxy (Southern Sky)and in the center of the Andromeda Galaxy (Northern Sky)may produce a flux of antineutrinos measurable with the new generation of the neutrino telescopes; like the IceCube Neutrino Detector under construction at the South Pole, and the future one cubic kilometer telescope in Mediterranean Sea. Second, if microscopic black holes are successfully produced at the Large Hadron Collider (LHC) at CERN, their thermal (Hawking's) radiation should be dominated by a non-thermal radiation caused by antigravity.

  5. Prospects for studies of the free fall and gravitational quantum states of antimatter

    CERN Document Server

    Dufour, Gabriel; Crivelli, Paolo; Debu, Pascal; Lambrecht, Astrid; Nesvizhevsky, Valery V; Reynaud, Serge; Voronin, Alexei Yu; Wall, Thomas E

    2014-01-01

    Different experiments are ongoing to measure the effect of gravity on cold neutral antimatter atoms such as positronium, muonium and antihydrogen. Among those, the project GBAR in CERN aims to measure precisely the gravitational fall of ultracold antihydrogen atoms. In the ultracold regime, the interaction of antihydrogen atoms with a surface is governed by the phenomenon of quantum reflection which results in bouncing of antihydrogen atoms on matter surfaces. This allows the application of a filtering scheme to increase the precision of the free fall measurement. In the ultimate limit of smallest vertical velocities, antihydrogen atoms are settled in gravitational quantum states in close analogy to ultracold neutrons (UCNs). Positronium is another neutral system involving antimatter for which free fall under gravity is currently being investigated at UCL. Building on the experimental techniques under development for the free fall measurement, gravitational quantum states could also be observed in positronium...

  6. Gravitationally neutral dark matter-dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    Science.gov (United States)

    Gribov, I. A.; Trigger, S. A.

    2016-11-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.

  7. Dark Antimatter as a Galactic Heater: X-rays from the Core of our Galaxy

    CERN Document Server

    Forbes, M M N; Forbes, Michael McNeil; Zhitnitsky, Ariel R.

    2006-01-01

    Several independent observations of the Galactic core suggest hitherto unexplained sources of energy. We show that dark matter in the form of dense antimatter droplets provides a natural site for electron and proton annihilation, providing 511 keV photons, gamma-rays, and energy that sustains thermal X-ray radiation. Such a picture not only identifies the dark matter in our universe, but allows X-ray observations to directly probe the matter distribution in our Galaxy.

  8. The Janus Cosmological Model (JCM) : An answer to the missing cosmological antimatter

    Science.gov (United States)

    D'Agostini, Gilles; Petit, Jean-Pierre

    2017-01-01

    Cosmological antimatter absence remains unexplained. Twin universes 1967 Sakarov's model suggests an answer: excess of matter and anti-quarks production in our universe is balanced by equivalent excess of antimatter and quark in twin universe. JCM provides geometrical framework, with a single manifold , two metrics solutions of two coupled field equations, to describe two populations of particles, one with positive energy-mass and the other with negative energy-mass : the `twin matter'. In a quantum point of view, it's a copy of the standard matter but with negative mass and energy. The matter-antimatter duality holds in both sectors. The standard and twin matters do not interact except through the gravitational coupling expressed in field equations. The twin matter is unobservable from matter-made apparatus. Field equations shows that matter and twin matter repel each other. Twin matter surrounding galaxies explains their confinement (dark matter role) and, in the dust universe era, mainly drives the process of expansion of the positive sector, responsible of the observed acceleration (dark energy role).

  9. Final Technical Report: "New Tools for Physics with Low-energy Antimatter"

    Energy Technology Data Exchange (ETDEWEB)

    Surko, Clifford M. [U. C. San Diego

    2013-10-02

    The objective of this research is to develop new tools to manipulate antimatter plasmas and to tailor them for specific scientific and technical uses. The work has two specific objectives. One is establishing the limits for positron accumulation and confinement in the form of single-component plasmas in Penning-Malmberg traps. This technique underpins a wealth of antimatter applications. A second objective is to develop an understanding of the limits for formation of cold, bright positron beams. The research done in this grant focused on particular facets of these goals. One focus was extracting tailored beams from a high-field Penning-Malmberg trap from the magnetic field to form new kinds of high-quality electrostatic beams. A second goal was to develop the technology for colder trap-based beams using a cryogenically cooled buffer gas. A third objective was to conduct the basic plasma research to develop a new high-capacity multicell trap (MCT) for research with antimatter. Progress is reported here in all three areas. While the goal of this research is to develop new tools for manipulating positrons (i.e., the antiparticles of electrons), much of the work was done with test electron plasmas for increased data rate. Some of the techniques developed in the course of this work are also relevant to the manipulation and use of antiprotons.

  10. Experimental considerations for testing antimatter antigravity using positronium 1S-2S spectroscopy

    Science.gov (United States)

    Crivelli, P.; Cooke, D. A.; Friedreich, S.

    2014-05-01

    In this contribution to the WAG 2013 workshop we report on the status of our measurement of the 1S-2S transition frequency of positronium. The aim of this experiment is to reach a precision of 0.5 ppb in order to cross check the QED calculations. After reviewing the current available sources of Ps, we consider laser cooling as a route to push the precision in the measurement down to 0.1 ppb. If such an uncertainty could be achieved, this would be sensitive to the gravitational redshift and therefore be able to assess the sign of gravity for antimatter.

  11. Coherent combs of anti-matter from nonlinear electron-positron pair creation

    CERN Document Server

    Krajewska, K

    2014-01-01

    Electron-positron pair creation in collisions of a modulated laser pulse with a high-energy photon (nonlinear Breit-Wheeler process) is studied by means of strong-field quantum electrodynamics. It is shown that the driving pulse modulations lead to appearance of comb structures in the energy spectra of produced positrons (electrons). It is demonstrated that these combs result from a coherent enhancement of probability amplitudes of pair creation from different modulations of the laser pulse. Thus, resembling the Young-double slit experiment for anti-matter (matter) waves.

  12. Development and data analysis of a position detector for AE$\\bar{g}$IS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Document Server

    Gligorova, Angela; Doser, Michael; Pacifico, Nicola

    2015-03-13

    AE$\\mathrm{\\bar{g}}$IS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an antimatter experiment based at CERN, the European Organization for Nuclear Research, whose goal is to carry out the first direct measurement of the Earth’s gravitational acceleration on antimatter. The outcome of such measurement would be the first precision test of the Weak Equivalence Principle in a completely new area. According to WEP, all bodies fall with the same acceleration regardless of their mass and composition. AE$\\mathrm{\\bar{g}}$IS will attempt to achieve its aim by measuring the gravitational acceleration ($\\bar{g}$) for antihydrogen with 1$\\%$ relative precision. The first step towards the final goal is the formation of a pulsed, cold antihydrogen beam, which will be performed by a charge exchange reaction between laser excited (Rydberg) positronium and cold (100 mK) antiprotons. The antihydrogen atoms will be accelerated by an inhomogeneous electric field (Stark acceleration) to form a beam whose fr...

  13. Mathematical Descriptions of Axially Varying Penning Traps for the Antimatter Experiment: gravity, Interferometry, and Spectroscopy

    CERN Document Server

    Stephanie, Brown

    2015-01-01

    Antimatter, though proposed in 1933, is still not well understood. AEgIS aims to study the interaction of antihydrogen with the earth's gravitational field. This information will add to our understanding of the matter-antimatter asymmetry present in our universe. This paper discusses a Penning-Malmberg with a magnetic mirror that will hold $C_{2}^{-}$ that will be used for sympathetic cooling of antiprotons before the antihydrogen is created. The trap, which is critical to the cooling process of the antihydrogen, can be characterized by the separatrix between trapped and untrapped particles. This paper applies analytical processes used to define the separatrix of pure electron plasmas to a molecular plasma. Our work is based on the desire conditions (density, particle number, field strength, trap size) of the high field region. The initial application of a semi-analytical method applied to our trap defines the trap potential difference at \\~ 0.6V. The separatrix is defined in both the high and low fiel...

  14. Can the New Neutrino Telescopes Reveal the Gravitational Properties of Antimatter?

    Directory of Open Access Journals (Sweden)

    Dragan Slavkov Hajdukovic

    2011-01-01

    Full Text Available We argue that the hypothesis of the gravitational repulsion between matter and antimatter can be tested at the Ice Cube, a neutrino telescope, recently constructed at the South Pole. If there is such a gravitational repulsion, the gravitational field, deep inside the horizon of a black hole, might create neutrino-antineutrino pairs from the quantum vacuum. While neutrinos must stay confined inside the horizon, the antineutrinos should be violently ejected. Hence, a black hole (made from matter should behave as a point-like source of antineutrinos. Our simplified calculations suggest that the antineutrinos emitted by supermassive black holes in the centre of the Milky Way and Andromeda Galaxy could be detected by the new generation of neutrino telescopes.

  15. Neutrinos in the Early Universe, Kalb-Ramond Torsion and Matter-Antimatter Asymmetry

    Directory of Open Access Journals (Sweden)

    Mavromatos Nick E.

    2014-04-01

    Full Text Available The generation of a matter-antimatter asymmetry in the universe may be induced by the propagation of fermions in non-trivial, spherically asymmetric (and hence Lorentz violating gravitational backgrounds. Such backgrounds may characterise the epoch of the early universe. The key point in these models is that the background induces di_erent dispersion relations, hence populations, between fermions and antifermions, and thus CPT Violation (CPTV appears in thermal equilibrium. Species populations may freeze out leading to leptogenesis and baryogenesis. We consider here a string-inspired scenario, in which the CPTV is associated with a cosmological background with torsion provided by the Kalb-Ramond (KR antisymemtric tensor field of the string gravitational multiplet. In a four-dimensional space time this field is dual to a pseudoscalar “axionlike” field. The mixing of the KR field with an ordinary axion field can lead to the generation of a Majorana neutrino mass.

  16. Matter-Antimatter Propulsion via QFT Effects from Parallel Electric and Magnetic Fields

    CERN Document Server

    Cleaver, Gerald B

    2016-01-01

    Matter/antimatter (MAM) pair production from the vacuum through intense electric fields has been investigated theoretically for nearly a century. This history is reviewed and proposals of MAM for intra-solar system and interstellar propulsion systems are examined. The quantum mechanical foundation of MAM production was developed by MAM production occurs when the electric field strength is above the critical value at which the fields become non-linear with self-interactions (known as the Schwinger limit).MAM production occurs when the electric field strength is above the critical value at which the fields become non-linear with self-interactions (known as the Schwinger limit). As the energy density of lasers approach the critical strength of 10^16 V/cm, the feasibility and functionality of electron-positron pair production has received growing interest. Current laser intensities are approaching within 1 order of magnitude of the Schwinger limit. Processes for lowering the critical energy density below the Schw...

  17. SN1991bg-like supernovae are a compelling source of most Galactic antimatter

    Science.gov (United States)

    Panther, Fiona H.; Crocker, Roland M.; Seitenzahl, Ivo R.; Ruiter, Ashley J.

    2017-01-01

    The Milky Way Galaxy glows with the soft gamma ray emission resulting from the annihilation of ~5 × 1043 electron-positron pairs every second. The origin of this vast quantity of antimatter and the peculiar morphology of the 511keV gamma ray line resulting from this annihilation have been the subject of debate for almost half a century. Most obvious positron sources are associated with star forming regions and cannot explain the rate of positron annihilation in the Galactic bulge, which last saw star formation some 10 Gyr ago, or else violate stringent constraints on the positron injection energy. Radioactive decay of elements formed in core collapse supernovae (CCSNe) and normal Type Ia supernovae (SNe Ia) could supply positrons matching the injection energy constraints but the distribution of such potential sources does not replicate the required morphology. We show that a single class of peculiar thermonuclear supernova - SN1991bg-like supernovae (SNe 91bg) - can supply the number and distribution of positrons we see annihilating in the Galaxy through the decay of 44Ti synthesised in these events. Such 44Ti production simultaneously addresses the observed abundance of 44Ca, the 44Ti decay product, in solar system material.

  18. SN1991bg-like supernovae are a compelling source of most Galactic antimatter

    CERN Document Server

    Panther, Fiona H

    2016-01-01

    The Milky Way Galaxy glows with the soft gamma ray emission resulting from the annihilation of $\\sim 5 \\times 10^{43}$ electron-positron pairs every second. The origin of this vast quantity of antimatter and the peculiar morphology of the 511keV gamma ray line resulting from this annihilation have been the subject of debate for almost half a century. Most obvious positron sources are associated with star forming regions and cannot explain the rate of positron annihilation in the Galactic bulge, which last saw star formation some $10\\,\\mathrm{Gyr}$ ago, or else violate stringent constraints on the positron injection energy. Radioactive decay of elements formed in core collapse supernovae (CCSNe) and normal Type Ia supernovae (SNe Ia) could supply positrons matching the injection energy constraints but the distribution of such potential sources does not replicate the required morphology. We show that a single class of peculiar thermonuclear supernova - SN1991bg-like supernovae (SNe 91bg) - can supply the number...

  19. A radial Time Projection Chamber for the ALPHA-g antimatter gravity measurement at CERN

    Science.gov (United States)

    Martin, Lars; Amaudruz, Pierre-André; Bishop, Daryl; Capra, Andrea; Fujiwara, Makoto; Henderson, Robert; Kurchaninov, Leonid; Menary, Scott; Olchanski, Konstantin

    2016-09-01

    Antimatter is believed to be affected by gravity in exactly the same way as ordinary matter for a variety of good reasons, however this has never been measured directly. The ALPHA-g project is a new antihydrogen trap based on the previous ALPHA design (Antihydrogen Laser Physics Apparatus, the first experiment to trap antihydrogen in 2010). As in previous ALPHA experiments the trapped antihydrogen is detected via its charged annihilation products after switching off the trap. In order to be sensitive to small gravitational effects the setup extends more than 2 m in the vertical direction, requiring the particle detection system to cover a large volume with good tracking accuracy. The design chosen to replace the previous experiments' Silicon detectors is a radial field time-projection-chamber (rTPC) filled with an Argon/CO2 mixture. Results of extensive Garfield simulations and prototype tests are presented and evaluated in terms of vertex resolution and its consequences for the gravity measurement. Additionally we give a progress report on the construction of the final detector, which is scheduled to be on-line in late 2017 for a first stage up/down measurement.

  20. Zooming in on light relic neutralinos by direct detection and measurements of galactic antimatter

    CERN Document Server

    Bottino, A; Fornengo, N; Scopel, S

    2007-01-01

    The DAMA Collaboration has recently analyzed its data of the extensive WIMP direct search (DAMA/NaI) which detected an annual modulation, by taking into account the channelling effect which occurs when an ion traverses a detector with a crystalline structure. Among possible implications, this Collaboration has considered the case of a coherent WIMP-nucleus interaction and then derived the form of the annual modulation region in the plane of the WIMP-nucleon cross section versus the WIMP mass, using a specific modelling for the channelling effect. In the present paper we first show that light neutralinos fit the annual modulation region also when channelling is taken into account. To discuss the connection with indirect signals consisting in galactic antimatter, in our analysis we pick up a specific galactic model, the cored isothermal-sphere. In this scheme we determine the sets of supersymmetric models selected by the annual modulation regions and then prove that these sets are compatible with the available ...

  1. 反物质的质量特性研究%Mass-character research of antimatter

    Institute of Scientific and Technical Information of China (English)

    杨介甫

    2009-01-01

    分析了历史上的负几率、负能量和负质量的疑难,讨论了物质世界与反物质世界对称性的本质和湮灭的机理;给出一系列反粒子的反质量"-m";提出质量荷载概念:揭露发生湮灭反应的内在原因、条件和反物质具有反质量"-m";并进一步提出实验建议去检验反质量"-m".%The puzzles of negative probability, negative energy and negative mass in history are analysed, the essence of the symmetry of material world and antiworld, and the mechanism of the mass annihilation in annihilation reaction are discussed; Gives out: antimass "-m" of a series of antiparticles; advance the idea of mass-charge;expose the inherent cause, the condition of occurring annihilation radiation and all antimatter possess antimass "-m"; and puts forward experimental propositions to test the antimass"-m".

  2. Measurement of matter-antimatter differences in beauty baryon decays at LHCb

    CERN Multimedia

    Merli, Andrea

    2017-01-01

    Differences in the behaviour of matter and antimatter have been observed in $K$ and $B$ meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as $C\\!P$ violation. Using data from the LHCb experiment at the Large Hadron Collider, a search is made for $C\\!P$-violating asymmetries in the decay angle distributions of $\\Lambda_b^0$ baryons decaying to $p\\pi^-\\pi^+\\pi^-$ and $p\\pi^-K^+K^-m$ final states. These four-body hadronic decays are a promising place to search for sources of $C\\!P$ violation both within and beyond the Standard Model of particle physics. We find evidence for $C\\!P$ violation in $\\Lambda_b^0$ to $p\\pi^-\\pi^+\\pi^-$ decays with a statistical significance corresponding to 3.3 standard deviations including systematic uncertainties. This represents the first evidence for $C\\!P$ violation in the baryon sector.

  3. Antimatter and Dark Matter Search in Space: BESS-Polar Results

    Science.gov (United States)

    Mitchell, John W.; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier anti-nuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of anti-deuterons and anti-helium, The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  4. Review on anti-hypernucleus and anti-matter measurement%奇异反超核和反物质

    Institute of Scientific and Technical Information of China (English)

    马余刚; 陈金辉

    2015-01-01

    文章简要回顾了反物质研究历史,重点阐述了过去几年反物质研究领域的新结果,包括美国布鲁克海汶国家实验室的相对论重离子对撞机(RHIC)上观测到的首个反物质超核信号和迄今为止最重的反物质原子核——反氦4.同时,还介绍了欧洲核子中心(CERN)反氢原子捕捉的新结果以及宇宙空间站上α磁谱仪(AMS)二期的新进展等,并讨论了这些进展对认识物质结构的启示.%We briefly review the history of research on antimatter, focusing on new results from the past few years, namely, the observation of the first antimatter hypernucleus and the heavi-est antimatter nucleus so far, anti-helium-4, in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. In addition, we present new results on antihydrogen atom capture from the European Organization for Nuclear Research (CERN), and describe the progress of the Alpha Mag-netic Spectrometer phase-II experiment on the space station. Finally, the implications of these de-velopments for understanding the structure of matter are discussed.

  5. CAPRICE98: A balloon borne magnetic spectrometer to study cosmic ray antimatter and composition at different atmospheric depths

    Energy Technology Data Exchange (ETDEWEB)

    Ambriola, M.L.; Barbiellini, G.; Bartalucci, S.; Basini, G.; Bellotti, R.; Bergstroem, D.; Bocciolini, M.; Boezio, M.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Castellano, M.; Ciacio, F.; Circella, M.; De Marzo, C.; De Pascale, M.P.; Finetti, N.; Francke, T.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J.W.; Morselli, A.; Ormes, J.F.; Papini, P.; Perego, A.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S.A.; Stochaj, S.J.; Streitmatter, R.E.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N

    1999-08-01

    CAPRICE98 is a superconducting magnetic spectrometer built by the WiZard collaboration. It was launched from Ft. Sumner, NM, USA on the 28th of May 1998. For the first time a gas RICH detector has been flown together with a silicon electromagnetic calorimeter. The instrument configuration included a time of flight detector and a drift chamber stack, which were placed in the region of a magnet field, for rigidity measurement. Science objectives for this experiment include the study of antimatter in cosmic rays and that of cosmic ray composition in the atmosphere with special focus on muons.

  6. The Discovery of Anti-Matter The Autobiography of Carl David Anderson, the Youngest Man to Win the Nobel Prize

    CERN Document Server

    1999-01-01

    In 1936, at age 31, Carl David Anderson became the second youngest Nobel laureate for his discovery of antimatter when he observed positrons in a cloud chamber.He is responsible for developing rocket power weapons that were used in World War II.He was born in New York City in 1905 and was educated in Los Angeles. He served for many years as a physics professor at California Institute of Technology. Prior to Oppenheimer, Anderson was offered the job of heading the Los Alamos atomic bomb program but could not assume the role because of family obligations.He was a pioneer in studying cosmic rays

  7. Cosmic ray antiproton measurements in the 4-19 GeV energy range using the NMSU/WiZard-matter antimatter superconducting spectrometer 2 (MASS2)

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Brunetti, M.T.; Codini, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Hof, M. [Siegen Univ. (Germany). Fachbereich Physik; Golden, R.L.; Stochaj, S.J. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.M. [Florence Univ. (Italy)]|[INFN, Florence (Italy)

    1995-09-01

    The p/p-ratio from 4 to 19 GeV has been measured using the NMSU/WiZard balloon borne matter antimatter superconducting spectrometer (MASS2) instrument. This is the first confirmation of the cosmic ray antiproton component made in this energy range since their discovery in 1979. The MASS2 instrument is an updated version of the instrument flown in 1979. The p/p- ratio is 1.52x10{sup -}4.

  8. Particle tracking at 4K: The Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment

    CERN Document Server

    Storey, J; Ahlén, O; Amsler, C; Ariga, A; Ariga, T; Belov, A.S; Bonomi, G; Bräunig, P; Bremer, J; Brusa, R.S; Burghart, G; Cabaret, L; Canali, C; Carante, M; Caravita, R; Castelli, F; Cerchiari, G; Cialdi, S; Comparat, D; Consolati, G; Dassa, L; Di Domizio, S; Di Noto, L; Doser, M; Dudarev, A; Ereditato, A; Ferragut, R; Fontana, A; Genova, P; Giammarchi, M; Gligorova, A; Gninenko, S.N; Haider, S; Hogan, S.D; Huse, T; Jordan, E; Jørgensen, L.V; Kaltenbacher, T; Kawada, J; Kellerbauer, A; Kimura, M; Knecht, A; Krasnický, D; Lagomarsino, V; Magnani, A; Mariazzi, S; Matveev, V.A; Merkt, F; Moia, F; Nebbia, G; Nédélec, P; Oberthaler, M.K; Pacifico, N; Petrácek, V; Pistillo, C; Prelz, F; Prevedelli, M; Regenfus, C; Riccardi, C; Røhne, O; Rotondi, A; Sandaker, H; Scampoli, P; Spacek, M; Subieta Vasquez, M.A; Testera, G; Trezzi, D; Vaccarone, R; Zavatarelli, S

    2013-01-01

    The AEgIS experiment is an international collaboration with the main goal of performing the fi rst direct measurement of the Earth ' s gravitational acceleration on antimatter. Critical to the success of AEgIS is the production of cold antihydrogen ( H) atoms. The FACT detector is used to measure the production and temperature of the H atoms and for establishing the formation of a H beam. The operating requirements for this detector are very challenging: it must be able to identify each of the thousand or so annihilations in the 1 ms period of pulsed H production, operate at 4 K inside a 1 T solenoidal fi eld and not produce more than 10 W of heat. The FACT detector consists of two concentric cylindrical layers of 400 scintillator fi bres with a 1 mm diameter and a 0.6 mm pitch. The scintillating fi bres are coupled to clear fi bres which transport the scintillation light to 800 silicon photomultipliers. Each silicon photomultiplier signal is connected to a linear ampli fi er and a fast discriminator, the out...

  9. Particle tracking at 4 K: The Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment

    Energy Technology Data Exchange (ETDEWEB)

    Storey, J., E-mail: james.storey@cern.ch [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, 3012 Bern (Switzerland); Canali, C. [University of Zurich, Physics Institute, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Aghion, S. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Milano, Via Celoria 16, 20133 Milano (Italy); Ahlén, O. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Amsler, C.; Ariga, A.; Ariga, T. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, 3012 Bern (Switzerland); Belov, A.S. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation); Bonomi, G. [University of Brescia, Department of Mechanical and Industrial Engineering, Via Branze 38, 25133 Brescia (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Bräunig, P. [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Bremer, J. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Brusa, R.S. [Dipartimento di Fisica, Università di Trento and INFN, Gruppo Collegato di Trento, Via Sommarive 14, 38050 Povo, Trento (Italy); Burghart, G. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Cabaret, L. [Laboratoire Aimé Cotton, CNRS, Université Paris Sud, ENS Cachan, Bâtiment 505, Campus d' Orsay, 91405 Orsay Cedex (France); Carante, M. [Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Caravita, R. [University of Milano, Department of Physics, Via Celoria 16, 20133 Milano (Italy); and others

    2013-12-21

    The AEgIS experiment is an international collaboration with the main goal of performing the first direct measurement of the Earth's gravitational acceleration on antimatter. Critical to the success of AEgIS is the production of cold antihydrogen (H{sup ¯}) atoms. The FACT detector is used to measure the production and temperature of the H{sup ¯} atoms and for establishing the formation of a H{sup ¯} beam. The operating requirements for this detector are very challenging: it must be able to identify each of the thousand or so annihilations in the 1 ms period of pulsed H{sup ¯} production, operate at 4 K inside a 1 T solenoidal field and not produce more than 10 W of heat. The FACT detector consists of two concentric cylindrical layers of 400 scintillator fibres with a 1 mm diameter and a 0.6 mm pitch. The scintillating fibres are coupled to clear fibres which transport the scintillation light to 800 silicon photomultipliers. Each silicon photomultiplier signal is connected to a linear amplifier and a fast discriminator, the outputs of which are sampled continuously by Field Programmable Gate Arrays (FPGAs). In the course of the developments for the FACT detector we have established the performance of scintillating fibres at 4 K by means of a cosmic-ray tracker operating in a liquid helium cryostat. The FACT detector was installed in the AEgIS apparatus in December 2012 and will be used to study the H{sup ¯} formation when the low energy antiproton physics programs resume at CERN in the Summer of 2014. This paper presents the design requirements and construction methods of the FACT detector and provides the first results of the detector commissioning.

  10. First antimatter chemistry

    CERN Multimedia

    2006-01-01

    "The Athena collaboration, an experimental group working at the CERN laboratory in Geneva, has measured chemical reactions involving antiprotonic hydrogen, a bound object consisting of a negatively charged antiproton paired with a positively charged proton." (1 page)

  11. Antimatter could fight cancer

    CERN Document Server

    2006-01-01

    A pioneering experiment at CERN with potential future applications in cancer therapy has produced its first results. Researchers found that antiprotons are four times more effective than protons for cell irradiation.

  12. ANTIMATTER - THE ULTIMATE MIRROR

    CERN Multimedia

    Gordon FRASER - ETT

    2000-01-01

    This new 200-page popular science book by CERN Courier Editor Gordon Fraser, published by Cambridge University Press, focuses on the 1995 synthesis of antihydrogen atoms at CERN and the implications of this physics. It is now available from the Reception Shop, Building 33, price SFr 30,and from the User Support Bookshop in Bldg 513 1-022, http://consult.cern.ch/service/bookshop/, for purchase via tid, edh or cash.

  13. Can the matter-antimatter asymmetry be easier to understand within the "spin-charge-family-theory", predicting twice four families and two times $SU(2)$ vector gauge and scalar fields?

    CERN Document Server

    Borstnik, N S Mankoc

    2010-01-01

    This contribution is an attempt to try to understand the matter-antimatter asymmetry in the universe within the {\\it spin-charge-family-theory} if assuming that transitions in non equilibrium processes among instanton vacua and complex phases in mixing matrices are the sources of the matter-antimatter asymmetry, as studied in the literature for several proposed theories. The {\\it spin-charge-family-theory} is, namely, very promising in showing the right way beyond the {\\it standard model}. It predicts families and their mass matrices, explaining the origin of the charges and of the gauge fields. It predicts that there are, after the universe passes through two $SU(2)\\times U(1)$ phase transitions, in which the symmetry breaks from $SO(1,3) \\times SU(2) \\times SU(2) \\times U(1) \\times SU(3)$ first to $SO(1,3) \\times SU(2) \\times U(1) \\times SU(3)$ and then to $SO(1,3) \\times U(1) \\times SU(3)$, twice decoupled four families. The upper four families gain masses in the first phase transition, while the second fo...

  14. Search for Antimatter in Space

    CERN Multimedia

    2002-01-01

    PAMELA is a cosmic ray space experiment that will be installed on board of the Russian satellite Resurs-DK1 whose launch is scheduled at the end of 2002. The duration of the mission will be at least three years in a high latitude orbit at an altitude ranging between 350 and 600 Km. \\\\ The observational objectives of the PAMELA experiment are the measurement of the spectra of antiprotons, positrons, particles and nuclei in a wide range of energies, the search for antinuclei and the study of the cosmic ray fluxes during a portion of a solar cycle. The main scientific objectives can be schematically summarized as follows: \\\\ \\\\ a) measurement of the antiproton spectrum in the energy range 80 MeV-190 GeV;\\\\ b) measurement of the positron spectrum in the energy range 50 MeV-270 GeV;\\\\ c) search for antinuclei with a sensitivity of the order $10^{-8}$ in the $\\overline{He}/He$ ratio;\\\\ d) measurement of the nuclei spectra (from H to C) in the energy range 100 MeV/n - 200 GeV/n;\\\\ e) energy spectrum of the electroni...

  15. The GBAR antimatter gravity experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, P., E-mail: patrice.perez@cea.fr [Institut de Recherches sur les lois Fondamentales de l’Univers (France); Banerjee, D. [Institute for Particle Physics, ETH Zürich (Switzerland); Biraben, F. [UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Laboratoire Kastler Brossel, Collège de France (France); Brook-Roberge, D. [Institut de Recherches sur les lois Fondamentales de l’Univers (France); Charlton, M. [Swansea University, Department of Physics (United Kingdom); Cladé, P. [UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Laboratoire Kastler Brossel, Collège de France (France); Comini, P. [Institut de Recherches sur les lois Fondamentales de l’Univers (France); Crivelli, P. [Institute for Particle Physics, ETH Zürich (Switzerland); Dalkarov, O. [P. N. Lebedev Physical Institute (Russian Federation); Debu, P. [Institut de Recherches sur les lois Fondamentales de l’Univers (France); Douillet, A. [Université d’Evry Val d’Essonne, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Laboratoire Kastler Brossel, Collége de France (France); Dufour, G. [UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Laboratoire Kastler Brossel, Collège de France (France); and others

    2015-08-15

    The GBAR project (Gravitational Behaviour of Anti hydrogen at Rest) at CERN, aims to measure the free fall acceleration of ultracold neutral anti hydrogen atoms in the terrestrial gravitational field. The experiment consists preparing anti hydrogen ions (one antiproton and two positrons) and sympathetically cooling them with Be{sup +} ions to less than 10 μK. The ultracold ions will then be photo-ionized just above threshold, and the free fall time over a known distance measured. We will describe the project, the accuracy that can be reached by standard techniques, and discuss a possible improvement to reduce the vertical velocity spread.

  16. News Conference: Brecon hosts 10th teacher's conference Summer school: Science summer school heads to Crete Award: The Corti Science Prize Radioactivity: Scottish beach is no beta off Workshop: Heureka project promotes teaching Experiments: Spanish project proves that learning science can be exciting Lecture: IOP schools lecture journeys from x-rays to antimatter Correction to the news item 'Delegates experience universality' Forthcoming events

    Science.gov (United States)

    2012-01-01

    Conference: Brecon hosts 10th teacher's conference Summer school: Science summer school heads to Crete Award: The Corti Science Prize Radioactivity: Scottish beach is no beta off Workshop: Heureka project promotes teaching Experiments: Spanish project proves that learning science can be exciting Lecture: IOP schools lecture journeys from x-rays to antimatter Correction to the news item 'Delegates experience universality' Forthcoming events

  17. The Spin-Charge-Family theory offers the explanation for all the assumptions of the Standard model, for the Dark matter, for the Matter-antimatter asymmetry, making several predictions

    CERN Document Server

    Borštnik, Norma Susana Mankoč

    2016-01-01

    The spin-charge-family theory, which is a kind of the Kaluza-Klein theories but with fermions carrying two kinds of spins (no charges), offers the explanation for all the assumptions of the standard model, with the origin of families, the higgs and the Yukawa couplings included. It offers the explanation also for other phenomena, like the origin of the dark matter and of the matter/antimatter asymmetry in the universe. It predicts the existence of the fourth family to the observed three, as well as several scalar fields with the weak and the hyper charge of the standard model higgs ($\\pm \\frac{1}{2}, \\mp \\frac{1}{2}$, respectively), which determine the mass matrices of family members, offering an explanation, why the fourth family with the masses above $1$ TeV contributes weakly to the gluon-fusion production of the observed higgs and to its decay into two photons, and predicting that the two photons events, observed at the LHC at $\\approx 750$ GeV, might be an indication for the existence of one of several s...

  18. NASA declares no room for antimatter experiment

    CERN Multimedia

    Law??, Andrew

    2007-01-01

    "The Alpha Magnetic Spectrometer (AMS) is a model of international cooperation, led by a dynamic Nobel Prize winner, and promises to do impressive science in space. But it may never get a chance to do its thing." (1 page)

  19. Quantum Vacuum and a Matter - Antimatter Cosmology

    CERN Document Server

    Rothwarf, F; Rothwarf, Frederick; Roy, Sisir

    2007-01-01

    A model of the universe as proposed by Allen Rothwarf based upon a degenerate Fermion fluid composed of polarizable particle-antiparticle pairs leads to a big bang model of the universe where the velocity of light varies inversely with the square root of cosmological time, t. This model is here extended to predict a decelerating expansion of the universe and to derive the Tully-Fisher law describing the flat rotation curves of spiral galaxies. The estimated critical acceleration parameter, aoR, is compared to the experimental, critical modified Newtonian Dynamics (MOND) cosmological acceleration constant, obtained by fitting a large number of rotation curves. The present estimated value is much closer to the experimental value than that obtained with the other models. This model for aR(t) allows the derivation of the time dependent radius of the universe as a function of red shift Other cosmological parameters such as the velocity of light, Hubble's constant, the Tully-Fisher relation, and the index of refrac...

  20. Matter-antimatter: balancing the scales

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Using its innovative experimental set-up, the Japanese-European ASACUSA collaboration recently succeeded in measuring the mass of the antiprotons with an unprecedented accuracy. This has been made possible by applying extremely high-precision laser techniques.   ASACUSA physicist, Masaki Hori, adjusts the optical system of laser beams. The antiproton is not something you could weigh by putting it on a pair of scales. Besides, it is not its “weight” (i.e. the Earth’s gravitational force on it) that scientists aim to measure but rather its “mass”. In addition, the yardstick against which the antiproton mass was measured is not the familiar kilogram, but the electron’s mass. Technically speaking, this is no easy task, especially when an unprecedented precision is requested. In the ASACUSA experiment, two counter-propagating ultra-sharp laser beams simultaneously hit an antiprotonic helium atom, where an antiproton orbits around the nuc...

  1. Facts about real antimatter collide with fiction

    CERN Multimedia

    Siegfried, Tom

    2004-01-01

    When science collides with fiction, sometimes a best seller emerges from the debris. Take Dan Brown's Angels & Demons, for instance, a murder mystery based on science at CERN, the European nuclear research laboratory outside Geneva

  2. Understand antimatter better #13TeV

    CERN Multimedia

    2015-01-01

    Follow Italian @LHCbexperiment physicist Barbara Storaci from the University of Zürich, Switzerland, as she shares her thoughts about the new physics frontiers opening up now that the LHC has collisions at the higher energy of #13TeV. Each week a new video will be uploaded to https://www.youtube.com/playlist?list... allowing you to follow physicists from @ATLASexperiment @ALICEexperiment @CMSexperiment or @LHCbExperiment as they search the new frontiers in physics. Read more about these new frontiers in physics: http://cern.ch/go/x8VH

  3. En route to matter-antimatter pair plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stenson, Eve V.; Hergenhahn, Uwe; Paschkowski, Norbert; Saitoh, Haruhiko; Stanja, Juliane [Max Planck Institute for Plasma Physics, Greifswald and Garching (Germany); Niemann, Holger; Sunn Pedersen, Thomas [Max Planck Institute for Plasma Physics, Greifswald and Garching (Germany); Ernst Moritz Arndt University of Greifswald, Greifswald (Germany); Schweikhard, Lutz [Ernst Moritz Arndt University of Greifswald, Greifswald (Germany); Hugenschmidt, Christoph [Technische Universitaet Muenchen, Garching (Germany); Danielson, James R.; Surko, Clifford M. [University of California, San Diego, La Jolla (United States)

    2015-05-01

    The APEX and PAX projects have as their overarching goal the laboratory creation and confinement of the world's first positron-electron pair plasma. Plasmas of this type have been the subject of hundreds of theoretical investigations and are also believed to play a role in various astrophysical environments. In order to achieve this goal in an experimentally accessible volume (e.g., 10 liters), a record number (≥ 10{sup 10}) of cold (∝ 1 eV) positrons are to be accumulated and combined with a corresponding population of electrons. Notable requirements include a high-intensity positron beam (such as NEPOMUC), a suitable magnetic confinement device for the pair plasma (such as a levitated dipole), high-efficiency tools for bridging the two (i.e., means by which the positrons can be efficiently cooled, trapped, and injected across flux surfaces), and diagnostics not only for the pair plasma, but also for the positron beam and for intermediary non-neutral plasmas. This talk will summarize the project as a whole and recent work by the APEX/PAX team on its various elements.

  4. Antimatter Plasmas in a Multipole Trap for Antihydrogen

    CERN Document Server

    Andresen, G B; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2007-01-01

    We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.

  5. Physics of antimatter-matter reactions for interstellar propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D.L. Jr.

    1986-08-22

    At the stage of the antiproton-nucleon annihilation chain of events relevant to propulsion the annihilation produces energetic charged pions and gamma rays. If annihilation occurs in a complex nucleus, protons, neutrons, and other nuclear fragments are also produced. The charge, number, and energy of the annihilation products are such that annihilation rocket engine concepts involving relatively low specific impulse (I/sub sp/ approx. = 1000 to 2000 s) and very high I/sub sp/ (3 x 10/sup 7/ s) appear feasible and have efficiencies on the order of 50% for annihilation energy to propulsion energy conversion. At I/sub sp/'s of around 15,000 s, however, it may be that only the kinetic energy of the charged nuclear fragments can be utilized for propulsion in engines of ordinary size. An estimate of this kinetic energy was made from known pieces of experimental and theoretical information. Its value is about 10% of the annihilation energy. Control over the mean penetration depth of protons into matter prior to annihilation is necessary so that annihilation occurs in the proper region within the engine. Control is possible by varying the antiproton kinetic energy to obtain a suitable annihilation cross section. The annihilation cross section at low energies is on the order of or larger than atomic areas due to a rearrangement reaction, but it is very low at high energy where its value is closer to nuclear areas.

  6. Antiproton cell experiment: antimatter is a better killer

    CERN Multimedia

    2006-01-01

    "European Organization for Nuclear Research is reporting that results from a three year study of antiprotons for neoplasm irrdiation showed a better cellular killer with a smaller lethal dose." (1,5 page)

  7. Baryon symmetric big-bang cosmology. [matter-antimatter symmetry

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  8. High nuclear temperatures by antimatter-matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, W.R.; Strottman, D.

    1985-01-01

    It is suggested that the quark-gluon phase be created through the use of antiproton or antideuteron beams. The first advantage to this method, using higher energy antiprotons than 1.5 GeV/c, is that the higher momenta antiprotons penetrate more deeply so that mesons produced are more nearly contained within the nucleus. Another advantage is that the annihilation products are very forward-peaked and tend to form a beam of mesons so that the energy density does not disperse very rapidly. Calculations were performed using the intranuclear cascade to try to follow the process of annihilation in some detail. The intranuclear cascade type calculation method is compared to the hydrodynamic approach. 8 refs., 8 figs. (LEW)

  9. Lecture: Broken mirrors, lost antimatter, hidden matter-inquiries into the turbulent beginnings of the universe

    CERN Multimedia

    2012-01-01

    Tuesday 31 January 2012 at 20.00 Prof. Daniel Treille, CERN, Geneva Physics Auditorium, University of Geneva 24 quai Ernest-Ansermet, Geneva As the universe was expanding in the very first moments of its existence, it underwent a number of changes that determined the structure it has today. Our understanding of these first moments comes from our direct observation of the cosmos via various "messengers" from the past. It also comes from experiments carried out at large particle accelerators which can recreate on a small scale the physics processes taking place as the universe evolved. Going back in time, the facts have been reasonably well established up to about the first picosecond (a thousandth of a millionth of a second) of the universe, which is the point in time when we believe that elementary particles acquired their mass. The Large Hadron Collider (LHC) will help us to find out more about the exact nature of this transition. Beyond that, we have to fall back on extrapolat...

  10. A constraint on antigravity of antimatter from precision spectroscopy of simple atoms

    CERN Document Server

    Karshenboim, Savely G

    2008-01-01

    Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect to the center of our galaxy and precision spectroscopy data on hydrogen and positronium. The theoretical suggestions for the case of absence of the gravitational field are: equality of electron and positron mass and equality of proton and positron charge. We also assume that QED is correct at the level of accuracy where it is clearly confirmed experimentally.

  11. A constraint on antigravity of antimatter from precision spectroscopy of simple atoms

    Science.gov (United States)

    Karshenboim, S. G.

    2009-10-01

    Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect to the center of our galaxy and precision spectroscopy data on hydrogen and positronium. The theoretical suggestions for the case of absence of the gravitational field are: equality of electron and positron mass and equality of proton and positron charge. We also assume that QED is correct at the level of accuracy where it is clearly confirmed experimentally.

  12. The magnetic spectrometer PAMELA for the study of cosmic antimatter in space

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Hof, M. [Siegen univ. (Germany). Fachbereich Physik; Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Bellotti, R.; Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy)

    1995-09-01

    In the framework of the RIM (Russian Italian mission) program, PAMELA is the experiment devoted to the accurate measurement of the positron and antiproton spectra from the very low energy thresh-old of 100 MeV up to more than 50 GeV, and to hunt antinuclei with sensitivity better than 10{sup -7} in the helium/helium ratio. A permanent magnet equipped by microstrip silicon sensors, measures the particle momentum with MDR=400 GV/c on GF=25 cm{sup 2} sr. An accurate ToF system, a 19 X{sub o} deep imaging calorimeter, an aerogel Cherenkov counter and a TRD detector complement the spectrometer in order an efficient e{sup +-}/p{sup +-} separation and some light isotope identification capability. The PAMELA experiment will be carried out on a 700 km high polar orbit, on board of the Earth-observation meteor-3A satellite, to be launched at the end of 1988.

  13. Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)

    CERN Document Server

    Ambrosini, G; Baglin, C; Beck, H P; Borer, K; Bussière, A; Elsener, K; Gorodetzky, P; Guillaud, J P; Hess, P O; Kabana, S; Klingenberg, R; Lehmann, G; Lindén, T; Lohmann, K D; Mommsen, R K; Moser, U; Pretzl, Klaus P; Schacher, J; Spiwoks, R; Stoffel, F; Tuominiemi, Jorma; Weber, M; Gorodetzky, Ph.

    2000-01-01

    Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. Together with previous data taking at a rigidity of -20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3 without centrality requirements. We measured nuclei and antinuclei (p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei are mainly produced via the coalescence mechanism. However the centrality dependence of the antibaryon to baryon ratios show that antibaryons are diminished due to annihilation and breakup reactions in the hadron dense environment. The volume of the particle source extracted from coalescence models agrees with results from pion interferometry for an...

  14. Physicists get first glimpse of antimatter: Stuff of science fiction: Canadian among group making breakthrough

    CERN Multimedia

    Munro, M

    2002-01-01

    "A team of Canadian, U.S. and European physicists, working at the CERN physics facility in Geneva, is reporting in Physical Review Letters this week that it has created and probed atoms of antihydrogen" (1 page).

  15. Observation of matter-antimatter asymmetry in the neutral B meson system

    Science.gov (United States)

    Rahatlou, Shahram

    In this dissertation, a measurement of CP-violating effects in decays of neutral B meson is presented. The data sample for this measurement consists of about 88 million Upsilon(4S) → BB¯ decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy e +e- collider, located at the Stanford Linear Accelerator Center. One neutral B meson is fully reconstructed in the CP eigenstates J/psi K0S , psi(25) K0S , chic1 K0S , and etac K0S , or in the flavor eigenstates D(*)- pi+/rho+/ a+1 and J/psiK*0 ( K*0 → K+pi -). The other B meson is determined to be either a B0 or a B¯ 0, at the time of its decay, from the properties of its decay products. The proper time Deltat elapsed between the decay of the two mesons is determined by reconstructing their decay vertices, and by measuring the distance between them. The CP asymmetry amplitude sin2beta is determined by the distributions of Deltat in events with a reconstructed B meson in CP eigenstates. The detector resolution and the b-flavor-tagging parameters are constrained by the Deltat distributions of events with a fully reconstructed flavor eigenstate. From a simultaneous maximum-likelihood fit to the Deltat distributions of all selected events in CP and flavor eigenstates, the value of sin2beta is measured to be 0.755 +/- 0.074 (stat) +/- 0.030 (syst). This value is in agreement with the Standard Model prediction, and represents a successful test of the Kobayashi-Maskawa mechanism of CP violation.

  16. The ASACUSA Micromegas Tracker: A cylindrical, bulk Micromegas detector for antimatter research

    Energy Technology Data Exchange (ETDEWEB)

    Radics, B., E-mail: balint.radics@riken.jp; Nagata, Y.; Yamazaki, Y. [Atomic Physics Laboratory, RIKEN, Saitama 351-0198 (Japan); Ishikawa, S.; Kuroda, N.; Matsuda, Y. [Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902 (Japan); Anfreville, M.; Aune, S.; Boyer, M.; Chateau, F.; Combet, M.; Granelli, R.; Legou, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.; Vallage, B.; Vandenbroucke, M. [Irfu, CEA, Centre de Saclay, 91191 Gif sur Yvette (France)

    2015-08-15

    The ASACUSA Micromegas Tracker (AMT; ASACUSA: Atomic Spectroscopy and Collisions Using Slow Antiprotons) was designed to be able to reconstruct antiproton-nucleon annihilation vertices in three dimensions. The goal of this device is to study antihydrogen formation processes in the ASACUSA cusp trap, which was designed to synthesise a spin-polarised antihydrogen beam for precise tests of Charge, Parity, and Time (CPT) symmetry invariance. This paper discusses the structure and technical details of an AMT detector built into such an environment, its data acquisition system and the first performance with cosmic rays.

  17. More beauty quarks to understand antimatter better Follow LHCb physicist Patrick Koppenburg

    CERN Document Server

    2015-01-01

    Follow Swiss @LHCbExperiment physicist @PKoppenburg from Nikhef National institute for subatomic physics in the Netherlands, as he shares his thoughts about the new physics frontiers opening up when the LHC begins collisions at the higher energy of #13TeV. Each week a new video will be uploaded to https://www.youtube.com/playlist?list... allowing you to follow physicists from @ATLASexperiment @ALICEexperiment @CMSexperiment or @LHCbExperiment as the search the new frontiers in physics. Read more about these new frontiers in physics: http://cern.ch/go/x8VH

  18. The Probability for matter-Antimatter Segregation Following the Quark-Hadron Transition

    CERN Document Server

    Garfinkle, Moishe

    2010-01-01

    Cosmologists such Sakharov, Alfv\\'en, Klein, Weizs\\"acker, Gamow and Harrison all disregarded the distribution of baryons and antibaryons immediately prior to freeze-out in trying to elucidate the circumstances that explained hadron distribution in the early universe. They simply accepted a uniform distribution: each baryon paired with an antibaryon. Their acceptance of this assumption resulted in theoretical difficulties that could not be overcome. This essay discards this assumption of homogeneity or uniformity. Although this essay does deal with early-universe matters, it is not meant to indicate any involvement in energy distribution functions nor in any symmetry-asymmetry controversies. Cluster formation is strictly geometric. This essay has value as far as problems early cosmologists faced but also should complete the historic record.

  19. Design and Fabrication of Cryostat Interface and Electronics for High Performance Antimatter Trap (HI-PAT)

    Science.gov (United States)

    Smith, Gerald A.

    1999-01-01

    Included in Appendix I to this report is a complete set of design and assembly schematics for the high vacuum inner trap assembly, cryostat interfaces and electronic components for the MSFC HI-PAT. Also included in the final report are summaries of vacuum tests, and electronic tests performed upon completion of the assembly.

  20. Production and detection of heavy matter anti-matter from Higgs decays

    CERN Document Server

    Srivastava, Y N; Swain, J

    2011-01-01

    The one-loop Higgs coupling to two gluons has been invoked in the past to estimate that the fraction of the nucleon mass which is due to the Higgs is rather small but calculable (approximately 8 percent). To test the veracity of this hypothesis, we employ the same mechanism to compute the Higgs coupling to an arbitrary stable nucleus $A$ and its anti-nucleus $\\bar{A}$. We find that the physical decay rate of a Higgs into a spin zero $A\\bar{A}$ pair near the threshold corresponding to the Higgs mass is quite substantial, once we include the final state Coulomb corrections as well as possible form factor effects. If true, observation of even a few such decay events would be truly spectacular (with no competing background) since we are unaware of any other interaction which might lead to the production of a very heavy nucleus accompanied by its anti nucleus in nucleon-(anti-) nucleon scattering.

  1. Sub-luminous `1991bg-Like' Thermonuclear Supernovae Account for Most Diffuse Antimatter in the Milky Way

    CERN Document Server

    Crocker, Roland M; Seitenzahl, Ivo R; Panther, Fiona H; Baumgardt, Holger; Moller, Anais; Nataf, David M; Ferrario, Lilia; Eldridge, J J; White, Martin; Sim, Stuart; Tucker, Brad E; Aharonian, Felix

    2016-01-01

    Observations by the INTEGRAL satellite reveal that the Galaxy glows with the radiation from the annihilation of $(5.0_{-1.5}^{+1.0}) \\times 10^{43}$ electron-positron pairs every second. Constrained to be injected into the interstellar medium (ISM) at only mildly relativistic energies, it is highly plausible most positrons originate from the $\\beta^+$ decay of radionuclides synthesised in stars or supernovae. However, none of the initially most likely candidates -- massive stars, core-collapse (CC) supernovae (SNe) or ordinary thermonuclear supernovae (SNe Ia) -- have Galactic distributions that match the spatial distribution of positron injection across the Milky Way. Here we show that a class of transient positron source occurring in stars of age >5 Gyr can explain the global distribution of positron annihilation in the Galaxy. Such sources, occurring at a present Galactic rate $\\sim$ 0.002 year$^{-1}$ and typically synthesising $\\sim$ 0.03 solar masses of the $\\beta^+$-unstable radionuclide $^{44}$Ti, can ...

  2. What's the matter? The mirror world of antimatter isn't such a perfect reflection after all

    CERN Multimedia

    Samuel, E

    2001-01-01

    The latest result from BaBar is consistent with Charge Parity violation. The data now produces a value of 0.59 for sin2B with an uncertainty of 0.14. This is consistent with the CP prediction of 0.7 (1 page).

  3. Alpha Magnetic Spectrometer (AMS) for Extraterrestrial Study of Antimatter, Matter and Missing Matter on the International Space Station

    CERN Multimedia

    Valtonen, E; Lee, M W; Berdugo perez, J F; Borgia, B; Battarbee, M C; Valente, V; Bartoloni, A

    2002-01-01

    % RE1\\\\ \\\\ AMS is the first magnetic particle physics spectrometer to be installed on the International Space Station. With a superconducting magnetic spectrometer, AMS will provide accurate measurements of electrons, positrons, protons, antiprotons and various nuclei up to TeV region. NASA has scheduled to install this detector on the International Space Station in May 2003. The first flight of AMS was done with a permanent magnet and this prototype detector has provided accurate information on the limit of the existence of antihelium. It also showed that proton and electron -positron spectra exhibited a complicated behavior in the near earth orbit. The construction of AMS is being carried out in Switzerland, Germany, Italy, France, Finland, Spain, Portugal, Romania, Russia, Taiwan, China and the United States. NASA provides the use of the space shuttle and the space station, as well as mission management.

  4. Production of antimatter $^{5,6}$Li nuclei in central Au+Au collisions at $\\sqrt{s_{NN}} = 200$ GeV

    CERN Document Server

    Sun, Kai-Jia

    2015-01-01

    Combining the covariant coalescence model and a blast-wave-like analytical parametrization for (anti-)nucleon phase-space freezeout configuration, we explore light (anti-)nucleus production in central Au+Au collisions at $\\sqrt{s_{NN}} = 200$ GeV. Using the nucleon freezeout configuration (denoted by FO1) determined from the measured spectra of protons (p), deutrons (d) and $^{3}$He, we find the predicted yield of $^{4}$He is significantly smaller than the experimental data. We show this disagreement can be removed by using a nucleon freezeout configuration (denoted by FO2) in which the nucleons are assumed to freeze out earlier than those in FO1 to effectively consider the effect of large binding energy value of $^{4}$He. Assuming the binding energy effect also exists for the production of $^5\\text{Li}$, $^5\\overline{\\text{Li}}$, $^6\\text{Li}$ and $^6\\overline{\\text{Li}}$ due to their similar binding energy values as $^{4}$He, we find the yields of these heavier (anti-)nuclei can be enhanced by a factor of a...

  5. Démarrage de la nouvelle usine à antimatière du CERN

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    CERN?s unique new antimatter factory, the Antiproton Decelerator (AD2) has begun delivering antiprotons to experiments. These experiments will study antimatter in depth to determine if there is a difference between it and ordinary matter.

  6. Scientists seek to explain how Big Bang let us live

    CERN Multimedia

    Hawke, N

    2000-01-01

    Scientists at CERN have opened an antimatter factory, the Antiproton Decelerator. They hope to discover why, in the Big Bang, the amount of matter and antimatter produced was not equal, so allowing the universe to exist at all (1 page).

  7. Physics: Optical transition seen in antihydrogen

    Science.gov (United States)

    Ulmer, Stefan

    2017-01-01

    Precise measurements of antimatter systems might cast light on why the Universe is dominated by matter. The observation of a transition in an antihydrogen atom heralds the next wave of high-precision antimatter studies. See Letter p.506

  8. De aartsvijand van de materie

    CERN Multimedia

    De Decker, Kris

    2002-01-01

    An international team of scientists a few weeks ago in the European laboratory for Paqrticle Physics (CERN) in Geneva created antimatter into relative great quantity. The Antimatter plays an essential part in the theory of the big-bang

  9. L'antimatière questionne toujours le Big Bang

    CERN Multimedia

    Daninos, Franck

    2005-01-01

    A few moments after the Big Bang, matter and antimatter were created in the same quantities. But, the actual Universe is made only from matter. Will the problem of disappearance of the antimatter be solved? (4 pages)

  10. A new view of Baryon symmetric cosmology based on grand unified theories

    Science.gov (United States)

    Stecker, F. W.

    1981-01-01

    Within the framework of grand unified theories, it is shown how spontaneous CP violation leads to a domain structure in the universe with the domains evolving into separate regions of matter and antimatter excesses. Subsequent to exponential horizon growth, this can result in a universe of matter galaxies and antimatter galaxies. Various astrophysical data appear to favor this form of big bang cosmology. Future direct tests for cosmologically significant antimatter are discussed.

  11. ALPHA experiment : limit on the charge of antihydrogen atom

    CERN Multimedia

    2016-01-01

    Antimatter continues to intrigue physicists due to its apparent absence in the observable universe. Current theory requires that matter and antimatter should have appeared in equal quantities after the Big Bang, but the Stan- dard Model offers no quantitative explanation for the apparent disappearance of half of the universe. It has recently become possible to study trapped atoms1–4 of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter.

  12. Video News Release ALPHA experiment

    CERN Multimedia

    2016-01-01

    Antimatter continues to intrigue physicists due to its apparent absence in the observable universe. Current theory requires that matter and antimatter should have appeared in equal quantities after the Big Bang, but the Stan- dard Model offers no quantitative explanation for the apparent disappearance of half of the universe. It has recently become possible to study trapped atoms1–4 of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter.

  13. La antimateria es eficaz contra el cáncer

    CERN Multimedia

    2006-01-01

    Following a study made at CERN in Geneva, the antimatter appeared much more effective to fight the cancer. Nuclear medicine has been applying for half century therapies that destroys cancerigene cells thanks to proton irradiation. Now, it has been discovered that antimatter cells are four times more effective to destroy these cells. (2 pages)

  14. In viaggio con l'antimateria

    CERN Multimedia

    Parolini, Giuditta

    2007-01-01

    From mathematical intuition to fuel for interstellar travels. Antimatter has made much road in little less than a century. The ultimate stage, at least for the moment, is marked from the speculations of New Scientist on the spaceships fed to antimatter. (1/2 page)

  15. Tests of fundamental symmetries with trapped antihydrogen

    DEFF Research Database (Denmark)

    Rasmussen, Chris Ørum

    2016-01-01

    Antihydrogen is the simplest pure antimatter atomic system, and it allows for direct tests of CPT symmetry as well as the weak equivalence principle. Furthermore the study of antihydrogen may provide clues to the matter- antimatter asymmetry observed in the universe - one of the major unanswered ...

  16. Putting the brakes on antihydrogen

    CERN Multimedia

    2002-01-01

    "Researchers at the European Organization for Nuclear Research (CERN) in Geneva have now made the first slow-moving atoms of antimatter. By studying them, scientists may more closely compare matter and antimatter and possibly explain the latter's glaring absence" (1/2 page).

  17. NA48 experiment : view along the NA48 beamline with the detector in the distance.

    CERN Multimedia

    Hans Taureg

    1996-01-01

    Photo 02: Side view of the NA48 experiment showing the LKR calorimeter cryostat No one is sure why the Universe wound up the way it has: all matter and no antimatter. According to prevailing theories, the early universe had equal amounts of matter and antimatter. To see what might be missing from the theories, physicists search for the rare cases in which matter and antimatter behave differently. One such imbalance, called direct CP violation, showed up in the NA 31 experiment at CERN. The results from this experiment, first presented in 1993, showed that when K mesons and their antimatter cousins decay, they show a slight preference for matter over antimatter. Later experiments with neutral K mesons, including NA48 at CERN and KTeV at Fermilab in the United States, showed direct CP violation is real.

  18. Golden Jubilee Photos: A Universal Imbalance

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ View along the NA48 beamline with the detector in the distance. No one is sure why the Universe wound up the way it has: all matter and no antimatter. According to prevailing theories, the early universe had equal amounts of matter and antimatter. However, whenever such opposites meet, they annihilate and become a burst of energy. This would seem to leave the Universe with neither matter nor antimatter - and thus no stars, planets, or physicists. If nature shows a bias for matter over antimatter, this could explain why the Universe is all matter. To see what might be missing from the theories, physicists search for the rare cases in which matter and antimatter behave differently. One such imbalance, called direct CP violation, showed up in the NA 31 experiment at CERN. The results from this experiment, first presented in 1993, showed that when K mesons and their antimatter cousins decay, they show a slight preference for matter over antimatter. Later experiments with neutral K mes...

  19. Symmetric and antisymmetric forms of the Pauli master equation

    Science.gov (United States)

    Klimenko, A. Y.

    2016-07-01

    When applied to matter and antimatter states, the Pauli master equation (PME) may have two forms: time-symmetric, which is conventional, and time-antisymmetric, which is suggested in the present work. The symmetric and antisymmetric forms correspond to symmetric and antisymmetric extensions of thermodynamics from matter to antimatter — this is demonstrated by proving the corresponding H-theorem. The two forms are based on the thermodynamic similarity of matter and antimatter and differ only in the directions of thermodynamic time for matter and antimatter (the same in the time-symmetric case and the opposite in the time-antisymmetric case). We demonstrate that, while the symmetric form of PME predicts an equibalance between matter and antimatter, the antisymmetric form of PME favours full conversion of antimatter into matter. At this stage, it is impossible to make an experimentally justified choice in favour of the symmetric or antisymmetric versions of thermodynamics since we have no experience of thermodynamic properties of macroscopic objects made of antimatter, but experiments of this kind may become possible in the future.

  20. Testing existence of antigravity

    OpenAIRE

    2006-01-01

    After a brief review of arguments in favor of antigravity (as gravitational repulsion between matter and antimatter) we present a simple idea for an experimental test using antiprotons. Different experimental realizations of the same basic idea are considered

  1. LHCb brochure (English version)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    LHCb is one of the four big experiments for the LHC, the most powerful particle accelerator in the world. LHCb will study a phenomenon which could partly explain why the Universe is all matter and practically no antimatter.

  2. Des bâtisseurs d'univers créent au CERN de minuscules antimondes

    CERN Multimedia

    Augereau, Jean-François

    2003-01-01

    For a long time, users of particle accelerators have known how to produce the elementary bricks of antimatter: anti-electrons and antiprotons. But to build anti-atoms from such elements, is another thing! (2 pages)

  3. The AMS experiment

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The Alpha Magnetic Spectrometer (AMS) detector will be installed as a particle physics experiment on the International Space Station. It will look for antimatter pockets in space. AMS is a CERN recognised experiment.

  4. Neutrino, la particule qui façonne l'univers

    CERN Multimedia

    Orloff, Jean

    2006-01-01

    Neutrinos change spontaneously when they propagate: these "oscillations" and their corollary, the existence of a mass for the neutrinos, would be the mains causes of the prevalence of matter on antimatter. (14 pages)

  5. Through the looking glass

    CERN Multimedia

    Hellemans, A

    2000-01-01

    Over the next few months two international collaborations, ATHENA and ATRAP will use the AD to try to combine positrons and antiprotons to produce antimatter. A third team, ASACUSA, is aiming to create 'antiprotonic' atoms (4 pages).

  6. Physicists show what really matters

    CERN Multimedia

    MacIlwain, C

    2001-01-01

    Researchers at SLAC have successfully measured a parameter that may explain the preponderance of matter over antimatter in the Universe. The finding confirms the existence of the overall asymmetry, known as charge-parity violation (1/2 page).

  7. On a perdu la moitié du monde

    CERN Multimedia

    Vos, Anton

    2005-01-01

    Antimatter, mirror of the ordinary matter, would have been produced in the same quantity as the matter at the time of the big bang. But, scientists do not find it and wonder what became this half of the Universe

  8. Antihydrogen makes a fleeting debut

    CERN Multimedia

    Goss Levi, B

    1996-01-01

    The generation of antihydrogens by merging positrons and antiprotons at the CERN laboratory lasted only for 37 ns before they were destroyed by electrons in the detector. There was insufficient time for comparing the antimatter with hydrogen.

  9. Particle physics: The search for no neutrinos

    Science.gov (United States)

    Barbeau, Phillip S.

    2017-04-01

    Scientists have seen no sign of an elusive nuclear decay that could help to explain why the Universe is dominated by matter, rather than antimatter. An upgraded experiment continues the search with unprecedented sensitivity. See Letter p.47

  10. Il protonio nasce dall'antimateria Assomiglia sia ad un atomo di idrogeno che a uno di anti-idrogeno

    CERN Multimedia

    2006-01-01

    For the fist time in the history, a chemical reaction has been realized between matter and antimatter; from this reaction is born the "new born" protonio, made of one ion of hydrogen and one of anti-hydrogen

  11. L'antimatière, une clé pour comprendre l'Univers

    CERN Multimedia

    Vidal, Olivier

    2002-01-01

    A step has been reached in particle physics: 50000 atomes of antimatter have been produced by researchers of CERN. This was possible thanks to the great particle accelerator, on the border between France and Switzerland

  12. On the nature of dark energy: the lattice Universe

    CERN Document Server

    Villata, M

    2013-01-01

    There is something unknown in the cosmos. Something big. Which causes the acceleration of the Universe expansion, that is perhaps the most surprising and unexpected discovery of the last decades, and thus represents one of the most pressing mysteries of the Universe. The current standard $\\Lambda$CDM model uses two unknown entities to make everything fit: dark energy and dark matter, which together would constitute more than 95% of the energy density of the Universe. A bit like saying that we have understood almost nothing, but without openly admitting it. Here we start from the recent theoretical results that come from the extension of general relativity to antimatter, through CPT symmetry. This theory predicts a mutual gravitational repulsion between matter and antimatter. Our basic assumption is that the Universe contains equal amounts of matter and antimatter, with antimatter possibly located in cosmic voids, as discussed in previous works. From this scenario we develop a simple cosmological model, from w...

  13. Cold antihydrogen: a new frontier in fundamental physics

    CERN Document Server

    Madsen, N

    2010-01-01

    The year 2002 heralded a breakthrough in antimatter research when the first low energy antihydrogen atoms were produced. Antimatter has inspired both science and fiction writers for many years, but detailed studies have until now eluded science. Antimatter is notoriously difficult to study as it does not readily occur in nature, even though our current understanding of the laws of physics have us expecting that it should make up half of the universe. The pursuit of cold antihydrogen is driven by a desire to solve this profound mystery. This paper will motivate the current effort to make cold antihydrogen, explain how antihydrogen is currently made, and how and why we are attempting to trap it. It will also discuss what kind of measurements are planned to gain new insights into the unexplained asymmetry between matter and antimatter in the universe.

  14. Cold antihydrogen: a new frontier in fundamental physics.

    Science.gov (United States)

    Madsen, Niels

    2010-08-13

    The year 2002 heralded a breakthrough in antimatter research when the first low energy antihydrogen atoms were produced. Antimatter has inspired both science and fiction writers for many years, but detailed studies have until now eluded science. Antimatter is notoriously difficult to study as it does not readily occur in nature, even though our current understanding of the laws of physics have us expecting that it should make up half of the universe. The pursuit of cold antihydrogen is driven by a desire to solve this profound mystery. This paper will motivate the current effort to make cold antihydrogen, explain how antihydrogen is currently made, and how and why we are attempting to trap it. It will also discuss what kind of measurements are planned to gain new insights into the unexplained asymmetry between matter and antimatter in the universe.

  15. Leptogenesis from loop effects in curved spacetime

    CERN Document Server

    McDonald, Jamie I

    2015-01-01

    We describe a new mechanism -- radiatively-induced gravitational leptogenesis -- for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate differently in the presence of gravity, and prove this is forbidden in flat space by CPT and translation symmetry. This generates a curvature-dependent chemical potential for leptons, allowing a matter-antimatter asymmetry to be generated in thermal equilibrium in the early Universe. The time-dependent dynamics necessary for leptogenesis is provided by the interaction of the virtual self-energy cloud of the leptons with the expanding curved spacetime background, which violates the strong equivalence principle and allows a distinction between matter and antimatter. We show here how this mechanism is realised in a particular BSM theory, the see-saw model, where the quantum loops involve the heavy sterile neutrinos responsible for light neutrino masses. We demonstrat...

  16. Physicists produce first antiatom

    CERN Multimedia

    Watson, A

    1996-01-01

    Researchers at the European Center for Particle Physics (CERN) created 11 atoms of antihydrogen using the Low-Energy Antiproton Ring. Physicists forecast that the creation of the first antiatoms will aid in the understanding of antimatter.

  17. Antiprotonic helium

    CERN Multimedia

    Eades, John

    2005-01-01

    An exotic atom in w hich an electron and an antiproton orbit a helium nucleus could reveal if there are any differences between matter and antimatter. The author describes this unusual mirror on the antiworld (5 pages)

  18. ASACUSA Anti-protonic Helium_Final

    CERN Document Server

    CERN Audiovisual Production Service; CERN AD; Paola Catapano; Julien Ordan, Arzur Catel; Paola Catapano; ASACUSA COLLABORATION

    2016-01-01

    Latest precision measurement of the mass of the proton and the anti proton though the production of antiprotonic helium by the ASACUSA experiment at CERN's antimatter factory, with a beam from the Antiproton Decelerator

  19. CERN News - Aug 2010: AMS, from CERN to Space!

    CERN Multimedia

    CERN Video productions

    2010-01-01

    The Alpha Magnetic Spectrometer leaves CERN to embark on a USAF plane, on its journey to Cape Canaveral, and then Space. It will be installed on the International Space Station next year, where it will look for antimatter in Space.

  20. Thousands of cold anti-atoms produced at CERN

    CERN Multimedia

    2002-01-01

    The antimatter factory delivers its first major results. ATHENA has just produced thousands of anti-atoms. This is the result of techniques developed by ATRAP and ATHENA, the two collaborations aiming to study antihydrogen.

  1. La bomba A (antimateria) Viaggio ai confini della fisica

    CERN Multimedia

    Giorgetti, Giorgio

    2005-01-01

    In Dan Brown's last book, it threatened to destroy Vatican. The antimatter is not a literary invention, but one of the more burning topics of modern physics to such a degree that some scientists call it "antiuniverse" (5 pages)

  2. View of the CERN Antiproton Decelerator (AD) and portrait of Prof. Tommy Eriksson, in charge of the AD machine.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    The Antiproton Decelerator (AD) is a storage ring at the CERN laboratory in Geneva. It started operation in 2000. It decelerates antiprotons before sending them to several experiments studying antimatter : ALPHA, ASACUSA, ATRAP and ACE.

  3. Scars on the CBR?

    CERN Document Server

    Cohen, Andrew G

    1997-01-01

    We ask whether the universe can be a patchwork consisting of distinct regions of matter and antimatter. In previous work we demonstrated that post-recombination matter-antimatter contact near regional boundaries leads to an observable (but unobserved) gamma-ray flux for domain sizes of less than a few thousand Mpc, thereby excluding such domains. In this paper we consider the pre-recombination signal from domains of larger size.

  4. Antimateria, la otra realidad

    CERN Multimedia

    González, Gabriel

    2005-01-01

    If, according to the history of cosmos, there is the same quantity of matter and antimatter; if, for every particle there is an antiparticle, why do we live in an universe composed exclusively by matter? Where is gone the antimatter? Is it possible that parallel antiuniverses exist? Such questions are not a wild imagining. The answer worries the physicists of the whole world (3 ½ pages)

  5. Cooking Up Hot Quark Soup

    Science.gov (United States)

    Walsh, Karen McNulty

    2011-03-28

    Near-light-speed collisions of gold ions provide a recipe for in-depth explorations of matter and fundamental forces. The Relativistic Heavy Ion Collider (RHIC) has produced the most massive antimatter nucleus ever discovered—and the first containing an anti-strange quark. The presence of strange antimatter makes this antinucleus the first to be entered below the plane of the classic Periodic Table of Elements, marking a new frontier in physics.

  6. Une Web-émission sur l'antimatière en direct du CERN

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    Dive into the anti-world from the Web ! On 18 and 21 November, you will be able to discover antimatter thanks to a Webcast live from CERN*. An hour long show for the general public broadcast through the Internet will show you how and why CERN's antimatter factory is producing anti-particles. Interviews, video clips and questions from the public are on the programme.

  7. Golden Jubilee Photos: How slow can they go?

    CERN Multimedia

    2004-01-01

    A technician installs a magnet in CERN's Antimatter Decelerator (AD) ring in 1998.Antimatter isn't normally just sitting around, waiting to be studied. As far as scientists know, hardly any antiparticles—the mirror-image versions of regular particles, with the same mass but opposite electric charge—exist in the Universe. This absence of antimatter is somehow mysterious and motivates physicists to look for tiny differences between particles and antiparticles. One way to do this is by studying antimatter very precisely. The simplest antimatter atom, antihydrogen, is made from an antiproton and a positron (an anti-electron). The first nine atoms of antihydrogen emerged from particle collisions at CERN in 1995, but they moved at nearly the speed of light. To produce slow-moving antihydrogen atoms, better suited for precision studies, scientists have gone against the prevailing methods at CERN. Instead of smashing together highly-accelerated particles, they built the Antimatter Decelerator (AD) to put th...

  8. Baryon symmetric big bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  9. A new insight into the negative-mass paradox of gravity and the accelerating universe

    CERN Document Server

    Ni, G J

    2003-01-01

    The discovery of acceleration of the universe expansion in recent astrophysics research prompts the author to propose that the Newton's gravitation law can be generalized to accommodate the antimatter: While the force between matters(antimatters) is attractive, the force between matter and antimatter is a repulsive one. A paradox of negative-mass in gravity versus a basic symmetry (m-->-m) based on quantum mechanics is discussed in sufficient detail so that the new postulate could be established quite naturally. Corresponding modification of the theory of general relativity is also suggested. If we believe in the symmetry of particle and antiparticle as well as the antigravity between them, it might be possible to consider a new scenario of the expansion of universe which might provide some new insight into the interpretation of cosmological phenomena including the accelerating universe observed.

  10. The AMS experiment: Results and perspectives

    Science.gov (United States)

    Bertucci, B.; AMS Collaboration

    2016-07-01

    The Alpha Magnetic Spectrometer (AMS) experiment operates since May 2011 on board of the International Space Station to search for primordial anti-matter, to study the light anti-matter components in the Cosmic Rays (CR) and to perform a precision study of the CR composition and energy spectrum. More than 60 billion events have been collected by the instrument up to now thanks to its large acceptance and the long exposure time. In this contribution we will discuss the most recent results, reviewing the instrument design and performances as well as the data analysis procedures enabling their achievement.

  11. "A passion for precision" : colloquium given by Theodor Hänsch, who shared the 2005 Nobel Prize in Physics for his contributions to the development of laser-based precision spectroscopy.

    CERN Multimedia

    2006-01-01

    Currently, Hänsch is also working with the ATRAP Collaboration at CERN, which is studying hydrogen and antihydrogen atoms. If it were possible to measure precisely up to 14 or 15 digits, then it might be possible to see whether matter and antimatter are the same or if they differ in some unexpected way. This could explain why there is more matter than antimatter in the universe. To explore these questions, researchers have to look where no-one has ever looked before, and for that reason, Hänsch has a passion for precision.

  12. Interview with LHCb Physicist Tara Shears on March 30th, 2010

    CERN Multimedia

    LHCb OUTREACH

    2010-01-01

    From the LHCb control center Tara describes the excitement on the day and answers questions about LHCb. What LHCb is studying, how one of the biggest mysteries of the universe is why anti-matter behaves differently than matter, the theory of "b physics," the big bang and what happened between matter and anti-matter in the early moments of our universe, definition of the beauty particle, why LHCb is studying it, what is the difference between LHCb detector and the larger detectors on the LHC.

  13. Antihydrogen Production in $ \\bar{p} $ Z - interaction

    CERN Multimedia

    2002-01-01

    % PS210 \\\\ \\\\ The production of the antihydrogen atom $ \\bar {H}^0 \\equiv \\bar{p}e $ as the simplest atomic bound state of antimatter has been studied. Nine $ \\bar {H}^0 $ have been observed.\\\\ \\\\ The production of $ \\bar {H}^0 $ is predominantly mediated by the two-photon mechanism in the antiproton-nucleus interaction. In principle $ \\bar {H}^0 $ is well suited for investigations of fundamental CPT violation studies under different forces, however, in the present experiment we concentrated on the production of this antimatter object, since so far it never had been observed.

  14. Cosmology

    CERN Document Server

    Rubakov, V A

    2014-01-01

    In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.

  15. Connecting QGP-Heavy Ion Physics to the Early Universe

    CERN Document Server

    Rafelski, Johann

    2013-01-01

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  16. Fermi and the Theory of Weak Interactions

    CERN Document Server

    Rajasekaran, G

    2014-01-01

    The history of weak interactions starting with Fermi's creation of the beta decay theory and culminating in its modern avatar in the form of the electroweak gauge theory is described. Discoveries of parity violation, matter-antimatter asymmetry, W and Z bosons and neutrino mass are highlighted.

  17. Search for Antihelium in the Cosmic Radiation

    DEFF Research Database (Denmark)

    Streitmatter, R.E.; Barbier, L.M.; Christian, E.R.;

    1996-01-01

    The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba Canada on July 16-17, 1992. Sixteen hours of data were taken. Measurements of multiple dE/dX, rigidity, and time of flight were used to search for antihelium in the cosmic radiation. A report on the r...

  18. Connecting QGP-Heavy Ion Physics to the Early Universe

    Science.gov (United States)

    Rafelski, Johann

    2013-10-01

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  19. Connecting QGP-Heavy Ion Physics to the Early Universe

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann

    2013-10-15

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  20. Live Webcast from CERN - Mission Impossible 3?

    CERN Multimedia

    2000-01-01

    It is a beautiful sunny autumn day, 21 November 2000. The place is CERN's Microcosm exhibition where around 50 pupils from the International School in Geneva and the Collège du Leman have gathered to dive into the mystery of antimatter production and take part in CERN's second Live Webcast of the series 'The Antimatter Factory'. The first was broadcast on 18 November. The webcast is played in the mood of Mission Impossible with music and teasers from this famous television and cinema series. The mission here is not to save the planet but to understand how and why antimatter is produced at CERN. In the Webcast studio, Paola Catapano, Rolf Landua and Mick Storr answer questions posed by students in Italy and Finland thanks to video-conferencing. Paola Catapano, Visit and Exhibitions group leader, dressed like a Bond girl Rolf Landua, spokesman of the ATHENA experiment and Mick Storr Head of Technical Training lead the show. The place starts buzzing and we peep into the antimatter factory (AD) and a...

  1. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Gerber, S; Tietje, I C; Allkofer, Y R; Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Testera, G; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Merkt, F; Turbabin, A; Castelli, F; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Fesel, J V; Nesteruk, K P; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  2. LHCb Brochure (english version)

    CERN Multimedia

    2004-01-01

    LHCb is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. LHCb will study a phenomenon which could partly explain why the Universe is all matter and practically no antimatter.

  3. LHCb brochure (English version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    LHCb is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. LHCb studies a phenomenon which could partly explain why the Universe is all matter and practically no antimatter.

  4. Low Energy Antiproton Ring experimental area

    CERN Multimedia

    1991-01-01

    The experimental area at the Low Energy Antiproton Ring (LEAR) is seen. This set up was used to slow down antiprotons which had been produced by colliding a proton beam with a solid target. The experiments in the hall then took antiprotons from LEAR to perform antimatter studies. One such experiment, PS210, produced the world's first antihydrogen atoms.

  5. The NA48 experiment

    CERN Multimedia

    1995-01-01

    The NA48 experiment is designed to study the Charge-Parity (CP) violation. CP violation is observed in certain very rare decays. Its study is important in understanding Nature's preference of matter over antimatter, which resulted in asymmetry soon after the Big Bang, creating a matter-dominated Universe.

  6. Physics Courses--Some Suggested Case Studies

    Science.gov (United States)

    Swetman, T. P.

    1972-01-01

    To communicate the relevance and excitement of science activity to students, the use of more imaginative, and even openly speculative, case studies in physics courses is suggested. Some useful examples are Magnetic Monopoles, Constants, Black Holes, Antimatter, Zero Mass Particles, Tachyons, and the Bootstrap Hypothesis. (DF)

  7. Measurement of 0.25-3.2 GeV antiprotons in the cosmic radiation

    DEFF Research Database (Denmark)

    Mitchell, J.W.; Barbier, L.M.; Christian, E.R.;

    1996-01-01

    The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba, Canada on 16-17 July 1992. Using velocity and magnetic rigidity to determine mass, we have directly measured the abundances of cosmic ray antiprotons and protons in the energy range from 0.25 to 3.2 ...

  8. George Smoot talks to the Bulletin

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Antimatter, dark matter, dark energy, the nature of space and time… The Nobel Laureate George Smoot answers Paola Catapano’s questions about his career and the many issues about the Universe that are still open.   You started your scientific career as a particle physicist, but soon you moved to astrophysics and in particular the Big Bang theory and cosmology. What motivated your interest in the Big Bang theory? After I graduated from MIT, I went to Berkeley to work with particle physicist Luis Alvarez. He knew I was interested in many areas and said, “tell me what you would like to do and we’ll try and work on that”. I saw astrophysics as a new field, with a lot of new and exciting opportunities. I started doing experiments looking for antimatter, which eventually led to the idea of ASTROMAG and later to AMS. Studying antimatter, we found that it was in less than one part in 10,000. I thought: “There’s no antimatter around us ...

  9. Technology FANTASY

    CERN Multimedia

    2008-01-01

    The secret weapon of Dan Brown's book may be lurking out there is space, says S Ananthanarayanan DAN Brown's Da Vinci Code created interest in the legends about the life of Christ. His earlier book, Angels and Demons, was set in the Vatican City and dealt with the crisis of a piece of antimatter falling into the wrong hands.

  10. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  11. As the antiworld turns probing the secrets of atoms, new experiments may sharpen lasers, aid doctors and - some say - fuel starships

    CERN Multimedia

    Hughes, J

    1999-01-01

    Experiments due to begin soon at CERN will produce large amounts of antihydrogen to compare matter and antimatter so physicists can gain a better understanding of the universe. Additionally, through the experiments they will generate new analytic instruments and technological innovations (4 pages).

  12. Exhibition "Angels & Demons" : the science behind the story

    CERN Multimedia

    CERN audiovisual service

    2009-01-01

    Angels & Demons – the science behind the story. A race against the clock to prevent antimatter stolen from CERN from blowing up the Vatican: following a tried and tested Hollywood formula, the 'ticking-bomb' thriller, Angles & Demons can hardly fail to entertain. But how does the science stand up to scrutiny?

  13. Asymmetric dark matter and the Sun

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir

    2010-01-01

    Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure...

  14. LHCb brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    LHCb is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. LHCb will study a phenomenon which could partly explain why the Universe is all matter and practically no antimatter.

  15. Looking back to understand the future Does CERN exist?"

    CERN Multimedia

    Gillies, James D

    2007-01-01

    "From the moment that Dan Brown wrote in his novel "Angels and Demons" of antimatter being stolen from CERN, the European Organization for Nuclear Research, was immediately cast into the focus of a broader public. James Gillies, Head of Communications at CERN, presents the institution." (2 pages - english and german)

  16. AD-7/GBAR status report for the 2017 CERN SPSC

    CERN Document Server

    Lunney, D

    2017-01-01

    The first components of the GBAR (Gravitational Behavior of Antimatter at Rest) experiment will arrive at CERN in early 2017 for installation on the ELENA extraction line LNE50 and inside the newly constructed bunker in the AD hall. We report the installation plan and progress of all GBAR components.

  17. Black Holes and the Large Hadron Collider

    Science.gov (United States)

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  18. They do it with lasers

    CERN Multimedia

    Wright, Alison

    2005-01-01

    The antihydrogen quest continues. C.H. Storry et al. present a laser-controlled process for creating these anti-atoms, each of which comprises an antiproton and a positron, and is hence the antimatter mirror or hydrogen (¼ page)

  19. The absolute flux of protons and helium at the top of the atmosphere using IMAX

    DEFF Research Database (Denmark)

    Menn, W.; Hof, M.; Reimer, O.

    2000-01-01

    The cosmic-ray proton and helium spectra from 0.2 GeV nucleon(-1) to about 200 GeV nucleon(-1) have been measured with the balloon-borne experiment Isotope Matter-Antimatter Experiment (IMAX) launched from Lynn Lake, Manitoba, Canada, in 1992. IMAX was designed to search for antiprotons and light...

  20. US physics begins to crumble under budget strain

    CERN Multimedia

    2008-01-01

    The reality of the US budget cuts to particle physics has hit home. The Stanford Linear Accelerator Center (SLAC) in California, US, has just announced a trio of painful consequences: the end of work on the International Linear Collider, the imminent closure of its BaBar antimatter experiment, and the layoff of 125 workers.

  1. BaBar Detector

    CERN Multimedia

    2006-01-01

    "B factory experiments at the Stanford Linear Accelerator (SLAC) in the USA and at the High Energy Accelerator Research Organization (KEK) in Japan have reached a new milestone in the quest to understand the matter-antimatter imbalance in our universe. These experiments are used by scientists from around the world, including the UK, to probe such fundamental questions."

  2. Life, the universe ... and nothing?; Science still can't explain what happened to half of everything

    CERN Multimedia

    Davidson, K

    2002-01-01

    New measurements at the Stanford Linear Accelerator Centre have refined measurements of sub-atomic particles that explain why there is a dominance of matter over antimatter in the Universe. The results partially confirm an announcement made last year that describes the imbalance in these physical opposites (1 page).

  3. Budget cuts force early closure of Stanford collider

    CERN Multimedia

    2008-01-01

    in Brief Stanford's B-meson work is coming to an early end.SLACIn early March, California's Stanford Linear Accelerator Center (SLAC) will shut down a collider that produces B mesons. The closure means that the lab's commitment to BaBar - an international collaboration studying the differences between matter and antimatter - will now end seven months early.

  4. Swiss Science Festival - Science et Cité Science - It's magic!

    CERN Multimedia

    2001-01-01

    CERN's new antimatter factory, the Antiproton Decelerator (AD), will allow precision studies of antihydrogen. From Saturday 5 May for a week in ten Swiss towns, the 'Science et Cité' Festival will be bringing science to the public. The festival aims to be a bridge between the concerns of the public at large and those of scientists, so naturally CERN is involved. The Laboratory is organising special visits on the theme of antimatter. Following a presentation by Rolf Landua, spokesman of the ATHENA collaboration, visitors will discover two machines indispensable for the study of antimatter - LEIR, which as LEAR was where the first atoms of antihydrogen were created, and the new antimatter factory, the Antiproton Decelerator, AD. As well as these visits, CERN guides will become show people on the stand 'Magicians? Physicists!' at the old SIP building, where the majority of the Geneva events will take place. Disguised as magicians, our guides will amaze and astound their audience with a series of rema...

  5. Leptogenesis from loop effects in curved spacetime

    Science.gov (United States)

    McDonald, Jamie I.; Shore, Graham M.

    2016-04-01

    We describe a new mechanism — radiatively-induced gravitational leptogenesis — for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate differently in the presence of gravity, and prove this is forbidden in flat space by CPT and translation symmetry. This generates a curvature-dependent chemical potential for leptons, allowing a matter-antimatter asymmetry to be generated in thermal equilibrium in the early Universe. The time-dependent dynamics necessary for leptogenesis is provided by the interaction of the virtual self-energy cloud of the leptons with the expanding curved spacetime background, which violates the strong equivalence principle and allows a distinction between matter and antimatter. We show here how this mechanism is realised in a particular BSM theory, the see-saw model, where the quantum loops involve the heavy sterile neutrinos responsible for light neutrino masses. We demonstrate by explicit computation of the relevant two-loop Feynman diagrams how the size of the radiative corrections relevant for leptogenesis becomes enhanced by increasing the mass hierarchy of the sterile neutrinos, and show how the induced lepton asymmetry may be sufficiently large to play an important rôle in determining the baryon-to-photon ratio of the Universe.

  6. Antihydrogen atoms may have been drifters

    CERN Multimedia

    Reich, Eugenie Samuel

    2003-01-01

    "It is a mystery of cosmic proportions: why is the universe filled with matter and not antimatter? Physicists hoping to find the answer have been left scratching their heads this week by an analysis which claims that some antihydrogen atoms created last year may not be normal antiatoms after all. Instead, they may sit on the blurry line between atoms and plasma" (1 page)

  7. LHCb brochure (French version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    LHCb is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. LHCb studies a phenomenon which could partly explain why the Universe is all matter and practically no antimatter.

  8. LHCb brochure (Italian version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    LHCb is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. LHCb studies a phenomenon which could partly explain why the Universe is all matter and practically no antimatter.

  9. ATLAS experiment : mapping the secrets of the universe

    CERN Multimedia

    ATLAS Outreach

    2010-01-01

    This 4 page color brochure describes ATLAS and the LHC, the ATLAS inner detector, calorimeters, muon spectrometer, magnet system, a short definition of the terms "particles," "dark matter," "mass," "antimatter." It also explains the ATLAS collaboration and provides the ATLAS website address with some images of the detector and the ATLAS collaboration at work.

  10. Broken symmetries at the origin of matter, at the origin of life and at the origin of culture

    NARCIS (Netherlands)

    van Klinken, J.

    1998-01-01

    In earliest cosmic history the university started with matter and not with antimatter. Shortly after the beginning the electroweak interaction prominent in nuclear beta decay - acted as a lefthander. Much later, in prebiotic evolution, optically left-handed amino acids determined the unique signatur

  11. LHCb brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    LHCb is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. LHCb will study a phenomenon which could partly explain why the Universe is all matter and practically no antimatter.

  12. Leptogenesis in model with Friedberg-Lee symmetry

    CERN Document Server

    Araki, Takeshi

    2009-01-01

    We study the matter-antimatter asymmetry through the leptogenesis mechanism in the model with the Friedberg-Lee (FL) symmetry. We relate the leptogenesis with the CP violating Dirac and Majorana phases in the Maki-Nakagawa-Sakata leptonic mixing matrix and illustrate the net baryon asymmetry of the universe in terms of these phases.

  13. Leptogenesis in a model with Friedberg-Lee symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Takeshi [Department of Physics, National Tsing Hua University, Hsinchu, 300, Taiwan (China)], E-mail: araki@phys.nthu.edu.tw; Geng, C.Q. [Department of Physics, National Tsing Hua University, Hsinchu, 300, Taiwan (China)], E-mail: geng@phys.nthu.edu.tw

    2009-10-05

    We study the matter-antimatter asymmetry through the leptogenesis mechanism in a specific model with the Friedberg-Lee (FL) symmetry. We relate the leptogenesis with the CP violating Dirac and Majorana phases in the Maki-Nakagawa-Sakata leptonic mixing matrix and illustrate the net baryon asymmetry of the universe in terms of these phases.

  14. Leptogenesis in a model with Friedberg-Lee symmetry

    Science.gov (United States)

    Araki, Takeshi; Geng, C. Q.

    2009-10-01

    We study the matter-antimatter asymmetry through the leptogenesis mechanism in a specific model with the Friedberg-Lee (FL) symmetry. We relate the leptogenesis with the CP violating Dirac and Majorana phases in the Maki-Nakagawa-Sakata leptonic mixing matrix and illustrate the net baryon asymmetry of the universe in terms of these phases.

  15. A triangle that matters

    CERN Multimedia

    Gershon, Tim

    2007-01-01

    "Physicists at "B-factories" in the US and Japan are closing in on an abstract diagram called the unitarity triangle in the quest to explain the difference between matter and antimatter. But such measurements could also point the way to the discovery of new fundamental particles." (5 pages)

  16. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    DEFF Research Database (Denmark)

    Amole, C.; Ashkezari, M.D.; Baquero-Ruiz, M.

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no...

  17. ALPHA spokesperson Jeffrey Hangst gives a tour of the new ALPHA-2

    CERN Multimedia

    CERN Video Productions

    2012-01-01

    While many experiments are methodically planning for intense works over the long shutdown, there is one experiment that is already working at full steam: ALPHA-2. Its final components arrived last month and will completely replace the previous ALPHA set-up. Unlike its predecessor, this next generation experiment has been specifically designed to measure the properties of antimatter.

  18. Owen Chamberlain, physicien américain

    CERN Multimedia

    Augereau, Jean-François

    2006-01-01

    The american physicist Owen Chamberlain, co-laureate in 1959 of the Nobel Prize for physics with the italian physicist Emilio Segrè, for the discovery of one for the bricks of the antimatter, is dead on Tuesday 28 February, in his home in Berkeley. He was 85 years old (1/2 page)

  19. Que reste-t-il à découvrir?

    CERN Multimedia

    Bonneau, Cécile; Grousson, Mathieu; Pajot, Philippe

    2007-01-01

    What is the nature of the black matter? And the one of the dark energy? and antimatter? Extraterrestrial life? All these questions, and some others, put today the physicians at the challenge. Because it's the last enigma of the Universe and the matter. But also because they threaten the mots fundamental certainties of the physics. Should we thus talk of crisis? (13 pages)

  20. Quirky quarks a cartoon guide to the fascinating realm of physics

    CERN Document Server

    Bahr, Benjamin; Piccolo, Rina

    2016-01-01

    Do you love quantum physics, cosmology, and the humor behind the popular television show The Big Bang Theory? Have you been on the lookout for a fun, non-technical explanation of the science behind things like time travel, wormholes, antimatter, and dark energy? You’ll find all of that, and more, inside this fact-filled, cartoon-packed book.

  1. Gravitational mass of positron from LEP synchrotron losses

    Science.gov (United States)

    Kalaydzhyan, Tigran

    2016-07-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.

  2. Gravitational mass of positron from LEP synchrotron losses

    Science.gov (United States)

    Kalaydzhyan, Tigran

    2016-01-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials. PMID:27461548

  3. Feynman Diagrams as Metaphors: Borrowing the Particle Physicist's Imagery for Science Communication Purposes

    Science.gov (United States)

    Pascolini, A.; Pietroni, M.

    2002-01-01

    We report on an educational project in particle physics based on Feynman diagrams. By dropping the mathematical aspect of the method and keeping just the iconic one, it is possible to convey many different concepts from the world of elementary particles, such as antimatter, conservation laws, particle creation and destruction, real and virtual…

  4. Muse at CERN

    CERN Multimedia

    CERN Bulletin

    2016-01-01

    On 19 July, the world-famous, English rock band, Muse, visited CERN before taking centre-stage at Nyon’s Paléo Festival. They toured some of CERN’s installations, including the Synchrocyclotron and the Microcosm exhibition, and also looked in on CMS and the Antimatter Factory.    

  5. Dialogo tra arte e tecnologia in una mostra al Vittoriano

    CERN Document Server

    Greco, Anna Maria

    2001-01-01

    The connection between art and science is the subject of a unique exhibition: art has tried to understand nature and to interpret the laws of physics; matter and antimatter, relativity and quanta, protons and neutrons became tools of a new creativity (1 page)

  6. Comment le CERN profite du star-system hollywoodien

    CERN Multimedia

    Comby, Geneviève

    2009-01-01

    The very serious european center for nuclear research did not hesitate to team up with the kings of the entertainement. Tom Hanks and Ron Howard in head, on the occasion of the release of the american spectacular "Angels and Demons" in which a bomb of antimatter stolen at CERN threatens the Vatican. (2 pages)

  7. Symmetries and fundamental interactions—selected topics

    NARCIS (Netherlands)

    Jungmann, Klaus P.

    2014-01-01

    Abstract High precision experiments at low energies on discrete and continuous symmetries offer the possibility to search for New Physics beyond the Standard Model. Examples are dedicated searches for violations of the C, P, CP and CPT as well as of Lorentz Invariance using matter and anti-matter. A

  8. The ATRAP experiment

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The Antihydrogen Trap (ATRAP) experiment was the first machine to accumulate cold antiprotons, produced in the AD, and combine them with positrons (antielectrons) to form antihydrogen. The study of antihydrogen in comparison with hydrogen will hopefully provide insight into the differences between matter and antimatter, especially in comparing their mass and spectra.

  9. The ATHENA experiment

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Antiprotons enter from the AD (left) and are captured in a trap inside the superconducting magnet (left). The positron accumulator (right) provides the positrons for producing antihydrogen. The study of antihydrogen in comparison with hydrogen will hopefully provide insight into the differences between matter and antimatter, especially in comparing their mass and spectra.

  10. The ATHENA experiment

    CERN Multimedia

    PATRICE LOIEZ

    2000-01-01

    Antiprotons enter from the AD (left) and are captured in a trap inside the superconducting magnet (left).The positron accumulator (right) provides the positrons for producing antihydrogen. The study of antihydrogen in comparison with hydrogen will hopefully provide insight into the differences between matter and antimatter, especially in comparing their mass and spectra.

  11. LHCb brochure (Catalan version)

    CERN Document Server

    Lefevre, C

    2008-01-01

    LHCb is one of the four big experiments for the LHC, the most powerful particle accelerator in the world, which will start up in 2008. LHCb will study a phenomenon which could partly explain why the Universe is all matter and practically no antimatter.

  12. ELENA’s International Collaboration is born

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    On 13 June, ten institutes signed a Memorandum of Understanding (MoU) for the construction of the Extra Low ENergy Antiproton ring (ELENA). Allowing the further deceleration of antiprotons from the Antimatter Decelerator, ELENA will significantly increase the number of particles trapped downstream in the experimental set-ups. This will give an important boost to antimatter research in the years to come.   Electrostatic triplet lenses - a device that will transport antiprotons from ELENA to the experiments. The electrostatic device was successfully tested with the ASACUSA experiment two weeks ago. ELENA - an upgrade of the existing Antiproton Decelerator (AD) - was approved by the CERN Council last year under the condition that external user institutions would contribute to its construction. On 13 June, the foundation stone of the new international collaboration was laid with the signature of the MoU. ELENA is a small magnetic decelerator ring 30 m in circumference that will fit inside the ...

  13. Experimental limit on the ratio of the gravitational mass to the inertial mass of antihydrogen

    Science.gov (United States)

    Fajans, Joel; Wurtele, Jonathan; Charman, Andrew; Zhmoginov, Andrey

    2012-10-01

    Physicists have long wondered if the gravitational interactions between matter and antimatter might be different from those between matter and itself. While there are many indirect indications that no such differences exist, i.e., that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. By searching for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap, we have determined that we can reject ratios of the gravitational mass to the inertial mass of antihydrogen greater than about 100 at a statistical significance level of 5%. A similar search places somewhat lower limits on a negative gravitational mass, i.e., on antigravity.

  14. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    Science.gov (United States)

    Alpha Collaboration; Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2013-04-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5% worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime.

  15. The Dirac-Milne cosmology

    Science.gov (United States)

    Benoit-Lévy, Aurélien; Chardin, Gabriel

    2014-05-01

    We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.

  16. "Dark energy" in the Local Void

    CERN Document Server

    Villata, M

    2012-01-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter ($\\sim5\\times10^{15}\\,M_\\odot$) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require vo...

  17. Motivations for antigravity in General Relativity

    Science.gov (United States)

    Chardin, G.

    1997-08-01

    We present arguments showing that it is natural to interpret the negative mass part of the Kerr solution as representing the geometry experienced by antimatter. The C, P and T discrete transformations are considered for this geometry. The C and T properties of the proposed identification are found to be in agreement with the usual representation of antimatter. In addition, we conjecture a property of perfect stigmatism through Kerr wormholes which allows General Relativity to mimic antigravity. Kerr wormholes would then act as “supermirrors” reversing the C, P and T images of an object seen through it. This interpretation is subject to several experimental tests and able to provide an explanation, without any free parameter, of the “CP” violation observed in the neutral kaon system.

  18. Modified Newtonian dynamics as a prediction of general relativity

    CERN Document Server

    Rahman, S

    2006-01-01

    We treat the physical vacuum as a featureless relativistic continuum in motion, and explore its consequences. Proceeding in a step-by-step manner, we are able to show that the equations of classical electrodynamics follow from the motion of a space-filling fluid of neutral spinors which we identify with neutrinos. The model predicts that antimatter has negative mass, and that neutrinos are matter-antimatter dipoles. Together these suffice to explain the presence of modified Newtonian dynamics as a gravitational polarisation effect. The existence of antigravity could resolve other major outstanding issues in cosmology, including the rate of expansion of the universe and its flatness, the origin of gamma ray bursts, and the smallness of the cosmological constant. If our model is correct then all of these observations are non-trivial predictions of Einstein's general theory of relativity.

  19. Sixfold improved single particle measurement of the magnetic moment of the antiproton

    CERN Document Server

    Nagahama, H; Sellner, S; Harrington, J; Higuchi, T; Borchert, M J; Tanaka, T; Besirli, M; Mooser, A; Schneider, G; Blaum, K; Matsuda, Y; Ospelkaus, C; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S

    2017-01-01

    Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.792847350(9), and therefore agrees with the fundamental charge, parity, time (CPT) invariance of the Standard Model of particle physics. Additionally, our result improves coefficients of the standard model extension which discusses the sensitivity of experiments with respect to CPT violation by up to a factor of 20.

  20. Measuring Theta_13 at Daya Bay

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Kwong [Univ. of Houston, TX (United States)

    2014-03-14

    We measured the neutrino mixing angle, theta13, presumably related to the preponderance of matter over antimatter in our universe with high precision. We determined theta13 by measuring the disappearance of neutrinos from a group of six nuclear reactors. The target, located inside a mountain at about 2 km from the reactors, is 80 tons of liquid scintillator doped with trace amount of Gadolinium to increase its neutron detection efficiency. The neutrino flux is measured by the inverse beta-decay reaction where the final-state particles are detected by the liquid scintillator. The measured value of theta13, based on data collected over 3 years, is large, around 8 degrees, rendering the measurement of the parameter related to matter-antimatter asymmetry in future long baseline neutrino experiments easier.

  1. LEP : four building blocks of matter ... times three Conference MT17

    CERN Multimedia

    2001-01-01

    The four building blocks of everyday matter form a family composed of the up-quark, the down-quark, the electron and the electron-neutrino. Similar particles, heavier but otherwise identical, are known to exist - grouped together in two further families. By measuring the number of neutrino types that exist, LEP has shown that there are no more fam-ilies of particles. Nature has chosen the number three. This is an intriguing result, and the reason why there are neither more nor fewer than three particle families is one of the greatest mysteries of modern physics. One important consequence is that we exist. Had there been any fewer than three families of matter particles, the phenomenon known as CP violation - which led to matter dominating anti-matter in the early Universe - would not have occurred. All the matter and antimatter created in the Big Bang would have annihilated.

  2. Motivations for anti-gravity in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Chardin, G. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee

    1996-05-01

    Arguments are presented showing that it is natural to interpret the negative mass part of the Kerr solution as representing the geometry experienced by antimatter. The C, P and T discrete transformations are considered for this geometry. The C and T properties of the proposed identification are found to be in agreement with the usual representation of antimatter. In addition, a property of perfect stigmatism through Kerr wormholes which allows general relativity to mimic anti-gravity is conjectured. Kerr wormholes would then act as `super-mirrors` reversing the C, P and T images of an object seen through it. This interpretation is subjected to several experimental tests and able to provide an explanation, without any free parameter, of the `CP`-violation observed in the neutral kaon system. (K.A.). 37 refs.

  3. Fundamental physics in particle traps

    CERN Document Server

    Vogel, Manuel

    2014-01-01

    This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  4. Progress Towards a Muonium Gravity Experiment

    CERN Document Server

    Kaplan, Daniel M; Mancini, Derrick C; Phillips, James D; Phillips, Thomas J; Reasenberg, Robert D; Roberts, Thomas J; Terry, Jeff

    2016-01-01

    The gravitational acceleration of antimatter, $\\bar g$, has yet to be directly measured but could change our understanding of gravity, the Universe, and the possibility of a fifth force. Three avenues are apparent for such a measurement: antihydrogen, positronium, and muonium, the last requiring a precision atom interferometer and benefiting from a novel muonium beam under development. The interferometer and its few-picometer alignment and calibration systems appear to be feasible. With 100 nm grating pitch, measurements of $\\bar g$ to 10%, 1%, or better can be envisioned. This could constitute the first gravitational measurement of leptonic matter, of second-generation matter and, possibly, the first measurement of the gravitational acceleration of antimatter.

  5. Advanced space propulsion study - antiproton and beamed-power propulsion. Final report, 1 May 1986-30 June 1987

    Energy Technology Data Exchange (ETDEWEB)

    Forward, R.L.

    1987-10-01

    The contract objective was to monitor the research at the forefront of physics and engineering to discover new spacecraft-propulsion concepts. The major topics covered were antiproton-annihilation propulsion, laser thermal propulsion, laser-pushed lightsails, tether transportation systems, solar sails, and metallic hydrogen. Five papers were prepared and are included as appendices. They covered 1) pellet, microwave, and laser-beamed power systems for interstellar transport; 2) a design for a near-relativistic laser-pushed lightsail using near-term laser technology; 3) a survey of laser thermal propulsion, tether transportation systems, antiproton annihilation propulsion, exotic applications of solar sails, and laser-pushed interstellar lightsails; 4) the status of antiproton annihilation propulsion as of 1986, and 5) the prospects for obtaining antimatter ions heavier than antiprotons. Two additional appendices contain the first seven issues of the Mirror Matter Newsletter concerning the science and technology of antimatter, and an annotated bibliography of antiproton science and technology.

  6. Asymmetric Talbot-Lau interferometry for inertial sensing

    Science.gov (United States)

    Sala, Simone; Giammarchi, Marco; Olivares, Stefano

    2016-09-01

    We study in detail a peculiar configuration of the Talbot-Lau matter wave interferometer, characterized by unequal distances between the two diffraction gratings and the observation plane. We refer to this apparatus as the "asymmetric Talbot-Lau setup." Particular attention is given to its capabilities as an inertial sensor for particle and atomic beams, also in comparison with the classical moiré deflectometer. The present paper is motivated by possible experimental applications in the context of antimatter wave interferometry, including the measurement of the gravitational acceleration of antimatter particles. Therefore we focus our analysis on the current state of the art. To support our findings, we have also performed numerical simulations of realistic particle beams with varying speed distributions.

  7. Theoretical motivation for gravitation experiments on ultra-low energy antiprotons and antihydrogen

    CERN Document Server

    Nieto, Michael Martin; Anderson, J D; Lau, E L; Pérez-Mercader, J; Nieto, Michael Martin; Goldman, T; Anderson, John D; Lau, Eunice L; Perez-Mercader, J

    1994-01-01

    We know that the generally accepted theories of gravity and quantum mechanics are fundamentally incompatible. Thus, when we try to combine these theories, we must beware of physical pitfalls. Modern theories of quantum gravity are trying to overcome these problems. Any ideas must confront the present agreement with general relativity, but yet be free to wonder about not understood phenomena, such as the dark matter problem and the anomalous spacecraft data which we announce here. This all has led some ``intrepid" theorists to consider a new gravitational regime, that of antimatter. Even more ``daring" experimentalists are attempting, or considering attempting, the measurement of the gravitational force on antimatter, including low-energy antiprotons and, perhaps most enticing, antihydrogen.

  8. Resonant quantum transitions in trapped antihydrogen atoms

    CERN Document Server

    Amole, C; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom’s stature lies in its simplicity and in the accuracy with which its spectrum can be measured1 and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and—by comparison with measurements on its antimatter counterpart, antihydrogen—the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state2, 3 of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave...

  9. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    CERN Document Server

    Charman, A E; Menary, S; Capra, A; Baquero-Ruiz, M; Fajans, J; Ashkezari, M D; Bertsche, W; Butler, E; Cesar, C L; Charlton, M; Eriksson, S; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Napoli, S C; Nolan, P; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Thompson, R I; Van der Werf, D P; Wurtele, J S; Zhmoginov, A I

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regim...

  10. The Point Mass Concept

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2011-04-01

    Full Text Available A point-mass concept has been elaborated from the equations of the gravitational field. One application of these deductions results in a black hole configuration of the Schwarzschild type, having no electric charge and no angular momentum. The critical mass of a gravitational collapse with respect to the nuclear binding energy is found to be in the range of 0.4 to 90 solar masses. A second application is connected with the spec- ulation about an extended symmetric law of gravitation, based on the options of positive and negative mass for a particle at given positive energy. This would make masses of equal polarity attract each other, while masses of opposite polarity repel each other. Matter and antimatter are further proposed to be associated with the states of positive and negative mass. Under fully symmetric conditions this could provide a mechanism for the separation of antimatter from matter at an early stage of the universe.

  11. Golden Jubilee photos: LEAR

    CERN Document Server

    2004-01-01

    Extraction lines that carried the antiprotons from LEAR to the experiments. Beam-splitters and a multitude of beam-lines allowed several users to be supplied simultaneously. Particle physicists don't always need ever more powerful accelerators to study interesting physics. LEAR, the Low Energy Antiproton Ring, was designed to help explore the properties of antimatter, with the annihilation of protons and antiprotons becoming the main theme. LEAR was commissioned in 1983 and contributed to more than 30 experiments with great success. LEAR took part in the discovery of a 'glueball', a particle composed entirely of gluons, the carriers of the strong nuclear force. LEAR also observed that neutral kaons and antikaons decay at a slightly different rate, offering physicists another insight into the mystery about why matter prevails over antimatter in the Universe. Uniquely, LEAR combined both the electron and stochastic beam cooling techniques, used to control and refine the beams. It also pioneered a technique usin...

  12. Baryogenesis from strong CP violation and the QCD axion.

    Science.gov (United States)

    Servant, Géraldine

    2014-10-24

    We show that strong CP violation from the QCD axion can be responsible for the matter antimatter asymmetry of the Universe in the context of cold electroweak baryogenesis if the electroweak phase transition is delayed below the GeV scale. This can occur naturally if the Higgs couples to a O(100)  GeV dilaton, as expected in some models where the Higgs is a pseudo-Nambu-Goldstone boson of a new strongly interacting sector at the TeV scale. The existence of such a second scalar resonance with a mass and properties similar to the Higgs boson will soon be tested at the LHC. In this context, the QCD axion would not only solve the strong CP problem, but also the matter antimatter asymmetry and dark matter.

  13. Gravitation, C, P and T symmetries and the Second Law

    CERN Document Server

    Chardin, G

    2008-01-01

    The intimate links between gravitation and the second law are summarized and two less known relations between gravity and thermodynamics are studied. Firstly, the information cost required to operate a Maxwell's demon on a curved spacetime is estimated using the Kolmogorov-Sinai entropy. More importantly, the charge and time (C and T) reversal properties of the Kerr-Newman solution in General relativity show that this solution, similarly to the Dirac equation, appears to represent both a particle and its antiparticle and suggests a definition of antimatter in general relativity. This definition leads to a parameter free explanation of the cosmological constant term observed in the supernovae data. The relation of this definition of antimatter with the coupled systems through opposite time arrows studied by Schulman is also emphasized.

  14. On the Cosmological Aspects of Observed High Energy Cosmic Phenomena

    CERN Document Server

    Vankov, A

    1999-01-01

    Super-high energy corpuscular and gamma rays as well as cosmic high--power density sources are hard to explain in a galaxy model framework. Attempts to include some of those phenomena in the Standard Cosmological Model also encounter serious difficulties. In the present paper an alternative cosmological concept is discussed. There are several features in it. First of all, the whole Universe (Grand Universe) is a multitude of typical universes, like ours, evenly made of either matter or antimatter, hence, there is no violation of the baryon symmetry on the largest scale. Second, high-energy phenomena are the result of matter-antimatter annihilation processes in a typical universe evolution. Finally, the Ground Universe is a self-creating due to a balance of annihilation and pair creation in the inter-universe infinite space. This concept and its consistence with the major observational data are discussed in detail.

  15. Unmatter Entities inside Nuclei, Predicted by the Brightsen Nucleon Cluster Model

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2006-01-01

    Full Text Available Applying the R. A. Brightsen Nucleon Cluster Model of the atomic nucleus we discuss how unmatter entities (the conjugations of matter and antimatter may be formed as clusters inside a nucleus. The model supports a hypothesis that antimatter nucleon clusters are present as a parton (sensu Feynman superposition within the spatial confinement of the proton (1H1, the neutron, and the deuteron (1H2. If model predictions can be confirmed both mathematically and experimentally, a new physics is suggested. A proposed experiment is connected to othopositronium annihilation anomalies, which, being related to one of known unmatter entity, orthopositronium (built on electron and positron, opens a way to expand the Standard Model.

  16. From calorimetry to medical imaging: a shining example of successful transfer!

    CERN Multimedia

    Caroline Duc

    2012-01-01

    A team at CERN has drawn inspiration from calorimetry methods developed for high-energy physics to create a new positron-emission tomography system for use in medical imaging, which they’ve dubbed AX-PET. With support from European and American laboratories*, the project is reaching fruition, as initial tests confirm its promise.   Snapshot of a “phantom”, a test object, surrounded by the AX-PET photon detectors. Positron-emission tomography (PET) is a medical imaging technique based on the matter-antimatter interaction that can provide a three-dimensional representation of the metabolic activity of an organ. To do so, radioactive marker molecules are first injected into the subject. As the marker decays, it emits positrons (antimatter particles), which are annihilated upon encountering electrons in the surrounding environment. The resulting flash, consisting of two photons, is detected by the PET machine. In conventional PET systems, it is impossible to improv...

  17. Leptogenesis via axion oscillations after inflation

    CERN Document Server

    Kusenko, Alexander; Yanagida, Tsutomu T

    2014-01-01

    The evolution of an axionic field after inflation offers an explanation for the matter-antimatter asymmetry of the universe. During inflation, light scalar fields, including axions expected to arise from string theory and in various field-theoretic models, develop large expectation values. These fields relax to the minima of their effective potentials during or after reheating. An oscillating axion coupled to the electroweak gauge fields generates an effective chemical potential for the fermion number, which, in the presence of lepton number-violating processes, generates a lepton asymmetry that is partly converted to a baryon asymmetry by sphalerons. The observed matter-antimatter asymmetry can be explained in a broad range of parameter values with the reheating temperatures being at least of order 10^12 GeV, and for all right-handed neutrino masses close to the scale of grand unification. Our mechanism is hence complementary to thermal leptogenesis with respect to the range of allowed parameter values.

  18. Beyond Einstein: A live webcast from around the Globe

    CERN Multimedia

    Communication Team

    2005-01-01

    The longest-ever organised webcast: once round the clock and all the way round the world! Twelve hours of online broadcast, a worldwide web of speakers from locations such as the Imperial College in London, Fermilab in Chicago and the Exploratorium in San Francisco. The result: a global discussion of the grand themes of Einstein's physics, such as relativity, gravitational waves, mass and gravity, antimatter and the origins of the Big Bang.

  19. Observation of the 1S–2S transition in trapped antihydrogen

    Science.gov (United States)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2016-12-01

    The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S–2S transition by Hänsch to a precision of a few parts in 1015. Recent technological advances have allowed us to focus on antihydrogen—the antimatter equivalent of hydrogen. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today’s Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S–2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 × 10‑10.

  20. TASI 2006 Lectures on Leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mu-Chun; /Fermilab /UC, Irvine

    2007-03-01

    The origin of the asymmetry between matter and anti-matter of the Universe has been one of the great challenges in particle physics and cosmology. Leptogenesis as a mechanism for generating the cosmological baryon asymmetry of the Universe has gained significant interests ever since the advent of the evidence of non-zero neutrino masses. In these lectures presented at TASI 2006, I review various realizations of leptogenesis and allude to recent developments in this subject.

  1. Theory of Neutrinos

    CERN Document Server

    Mohapatra, Rabindra N; Babu, K S; Barenboim, G; Chen, M C; Davidson, Sacha; De Gouvêa, A; De Holanda, P C; Dutta, B; Grossman, Y; Joshipura, A; Kersten, J; Keum, Yu Y; King, S F; Langacker, P; Lindner, Manfred; Loinaz, W; Masina, I; Mocioiu, I; Mohanty, S; Murayama, H; Pascoli, S; Petcov, S; Pilaftsis, Apostolos; Ramond, P; Ratz, M; Rodejohann, W; Schrock, R; Takeuchi, T; Underwood, T; Vissani, F; Wolfenstein, Lincoln; Chen, Mu-Chun

    2004-01-01

    After a brief overview of the present knowledge of neutrino masses and mixing, we summarize what can be learned about physics beyond the standard model from the various proposed neutrino experiments. We also comment on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe as well as what can be learned from some experiments outside the domain of neutrinos.

  2. American high school students visit CERN

    CERN Document Server

    Maximilien Brice

    2003-01-01

    Fifteen final-year students from Columbus High School, Mississippi, USA visited CERN recently with their physics teacher Ken Wester (left at rear). Mr Wester organized the trip after his participation in the 2002 edition of CERN's High School Teachers programme. The students visited the CMS construction site and the AD antimatter factory during their two-day visit. They are pictured here with Michel Della Negra, CMS spokesman (kneeling), in front of the model of the CMS detector in building 40.

  3. Particle decays hint at new matter

    CERN Multimedia

    2003-01-01

    "Unexpected observations at a Japanese particle accelerator may signal the presence of previously unknown subatomic matter. The conjecture, from the so-called Belle team at the High Energy Accelerator Research Organization (KEK) in Tsukuba, was inspired by the team's measurements of a specific type of decay of fundamental particles called bottom, or b, quarks and their antimatter counter- parts, anti-b quarks" (1/2 page).

  4. WILL I AM visits CERN

    CERN Multimedia

    Noemi Caraban

    2013-01-01

    Will.i.am visited CERN in December 2013, fulfilling a wish he made in a video-link appearance at TEDxCERN earlier that year http://tedxcern.web.cern.ch/video/choral-performance-reach-stars-william. During his visit, he was shown the Antimatter Decelerator, the underground ATLAS experiment cavern and the CERN Control Centre. He also took the opportunity to promote CERN’s beam line for schools competition.

  5. CP Violation in B Meson Decays: Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Lanceri, Livio; /Trieste U. /INFN, Trieste

    2005-08-30

    CP violation is intimately connected with the puzzle of matter-antimatter asymmetry and baryogenesis. In the Standard Model of particle physics, the observed CP violation phenomena are accounted for by the Cabibbo-Kobayashi-Maskawa mechanism involving a phase in the quark mixing matrix. This paper is devoted to a review of the experimental status of CP violation in the decays of B mesons.

  6. AFOSR/AFRPL Rocket Propulsion Research Meeting Held at Lancaster, California on 12-15 March 1984. Abstracts and Agenda

    Science.gov (United States)

    1984-02-01

    radiation thermal distribution and its Interaction with the convective flow above the fuel surface is studied using a Reticon diode array camera...mission analyses are explorin, tho dual mode premise of the megawatt nuclear power supply onboard for the main mission being available for propulsion...and a thousand times more energetic than nuclear fuel. A spacecraft which uses antimatter as its source of propulsion energy could "drive" at high

  7. Theoretical motivations for precision measurements of oscillation parameters

    CERN Document Server

    Pascoli, Silvia

    2016-01-01

    We discuss two theoretical motivations of precision measurements of oscillation parameters. One is the guidance for flavour model building with flavour symmetries, and the other is the connection with the origin of matter-antimatter asymmetry. We also present our recent progress in these aspects, a new approach of flavour model building based on cross coupling in the flavon potential and a novel mechanism of leptogenesis via phase transition.

  8. AMS experiment takes off for Kennedy Space Center August 2010

    CERN Multimedia

    CERN Video Productions

    2010-01-01

    Geneva, 18 August 2010. The Alpha Magnetic Spectrometer (AMS), an experiment that will search for antimatter and dark matter in space, leaves CERN next Tuesday on the next leg of its journey to the International Space Station. The AMS detector is being transported from CERN to Geneva International Airport in preparation for its planned departure from Switzerland on 26 August, when it will be flown to the Kennedy Space Center in Florida on board a US Air Force Galaxy transport aircraft.

  9. Announcing the First Results from Daya Bay Discovery of a New Kind of Neutrino Transformation- Discovery of a New Kind of Neutrino Transformation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    On March 8, 2012, the Daya Bay Reactor Neutrino Experiment, a multinational collaboration operating in the south of China, reported the first results of its search for lhe last, most elusive piece of a long-standing puzzle: how is it that neutrinos can appear to vanish as they travel? The surprising answer opens a gateway to a new understanding of fundamental physics and may eventually solve the riddle of why there is far more ordinary matter than antimatter in the universe today.

  10. The ATLAS experiment (in Japanese)

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  11. Indirect Dark Matter searches in the light of the recent AMS-02 observations

    CERN Document Server

    Salati, Pierre

    2016-01-01

    If the astronomical dark matter is made of weakly interacting, massive and stable species, it should annihilate on itself into particles. This process should produce rare antimatter cosmic rays and lead to distortions in their energy distributions. The AMS-02 spectrometer has been measuring them with unprecedented accuracy. It is timely to investigate if anomalies have been found in the positron and antiproton spectra and if so, if they indirectly point toward the presence of DM particles annihilating inside the Milky Way.

  12. ATHENA: an actual antihydrogen annihilation

    CERN Multimedia

    2002-01-01

    This is an image of an actual matter-antimatter annihilation due to an atom of antihydrogen in the ATHENA experiment, located on the Antiproton Decelerator (AD) at CERN since 2001. The antiproton produces four charged pions (yellow) whose positions are given by silicon microstrips (pink) before depositing energy in CsI crystals (yellow cubes). The positron also annihilates to produce back-to-back gamma rays (red).

  13. Bulletin No. 16-17/2010

    CERN Multimedia

    Lefevre, C

    2010-01-01

    Titles: HEP gets INSPIREd Hats off to the particle suppliers LHC status report When particles hit the headlines Renewing our green spaces Puzzling antimatter A trendy approach to education! The person behind much of your reading matter The beauty of the physical world Win a lift to the future! A salutary exercise Film showing - Higgs: into the heart of imagination A young Russian choir at CERN Library news François Louis (1928-2010)

  14. Twenty-First Century Space Propulsion Study

    Science.gov (United States)

    1990-10-01

    dependence of coherent radiation from crystals", Physical Review Letters 58, 1176-1179 (23 March 1987). 11 Y. Aharonov , F.T. Avignone, III, A. Casher , and...B-i C THE WEBER EFFECT ....................................... C-i D 2020 A.D. TECHNOLOGIES FOR AFAL...most energetic fuel known. The most effective particle of antimatter for propulsion is the antiproton rather than the antielectron. To make a compact

  15. 240 elephants in a tunnel; 240 Elefanten in einer Roehre

    Energy Technology Data Exchange (ETDEWEB)

    Roethlein, B.

    2007-07-01

    The end of 2007 will see particle physicists setting protons on a collision course through the Large Hadron Collider with more energy than ever before. Their intention is to track down the Higgs boson and solve the problem of why the universe contains almost no antimatter. Physicists from the MAX PLANCK INSTITUTE FOR PHYSICS and the MAX PLANCK INSTITUTE FOR NUCLEAR PHYSICS are playing a crucial role in the experiments and their preparation. (orig.)

  16. Minimal flavour violation in the quark and lepton sector and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, S.L.

    2008-01-07

    We address to explain the matter-antimatter asymmetry of the universe in a framework that generalizes the quark minimal flavour violation hypothesis to the lepton sector. We study the impact of CP violation present at low and high energies and investigate the existence of correlations among leptogenesis and lepton flavour violation. Further we present an approach alternative to minimal flavour violation where the suppression of flavour changing transitions involving quarks and leptons is governed by hierarchical fermion wave functions. (orig.)

  17. Neutrinos in particle physics, astronomy, and cosmology

    CERN Document Server

    Xing, Zhi-Zhong

    2011-01-01

    ""Neutrinos in Particle Physics, Astronomy and Cosmology"" provides a comprehensive and up-to-date introduction to neutrino physics, neutrino astronomy and neutrino cosmology. The intrinsic properties and fundamental interactions of neutrinos are described, as is the phenomenology of lepton flavor mixing, seesaw mechanisms and neutrino oscillations. The cosmic neutrino background, stellar neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos, together with the cosmological matter-antimatter asymmetry and other roles of massive neutrinos in cosmology, are discussed in detail. Thi

  18. The War Next Time: Countering Rogue States and Terrorists Armed with Chemical and Biological Weapons. Second Edition

    Science.gov (United States)

    2004-04-01

    anthrax, Plague, cholera, E. coli, staph, necrotizing fasciitis , ricin, botulinum, gas gangrene, anti-matter bacteria, and the Ebola, Marburg, and Rift...the Soviet-developed flesh-eating bacteria, necrotizing fasciitis , as well as the antidote. In 1994, the South Africans surprised the Americans by...Security Council (NSC) 50 National Security Strategy (NSS) 68, 75,83 Nazism 19, 24 262 necrotizing fasciitis 34 Neethling, General Lothar 48 New

  19. The AMS detector heads for the International Space Station

    CERN Multimedia

    CERN Video Productions

    2011-01-01

    The AMS particle detector will take off on 29 April 2011 at 21.47 CEST onboard the very last mission of the space Shuttle Endeavour. AMS, the Alpha Magnetic Spectrometer, will then be installed on the International Space Station from where it will explore the Universe for a period of over 10 years. AMS will address some of the most exciting mysteries of modern physics, looking for antimatter and dark matter in space, phenomena that have remained elusive up to now.

  20. Recent results from the AMS-02 experiment

    Directory of Open Access Journals (Sweden)

    Vecchi Manuela

    2015-01-01

    Full Text Available The AMS-02 detector is a large acceptance magnetic spectrometer operating onboard the International Space Station since May 2011. The main goals of the detector are the search for antimatter and dark matter in space, as well as the measurement of cosmic ray composition and flux. Precise measurements of cosmic ray positrons and electrons are presented in this document, based on 41×109 events collected during the first 30 months of operations.

  1. Strange science takes time

    CERN Multimedia

    2008-01-01

    The late astronomer Carl Sagan popularized the saying that "extraordinary claims require extraordinary evidence," in reference to reports of alien visitations. Generating low-cost commercial fusion power, isolating antimatter and tracing reverse-time causality aren't as far out there as UFOs, but a similar rule might well apply: Extraordinary science requires extraordinary effort. With that in mind, here's a progress report on three extraordinary science projects that have popped up in the news...

  2. Effect of CP violation in bilinear R-parity violation on baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cheriguene, Asma; Langenfeld, Ulrich; Porod, Werner [Universitaet Wuerzburg (Germany); Liebler, Stefan [Universitaet Wuppertal (Germany)

    2013-07-01

    Supersymmetric models where R-parity is broken via lepton number violation provides an intrinsically supersymmetric explanation for the observed neutrino. The complex phases of the corresponding parameters are constrained by the observed matter anti-matter asymmetry of the universe. Taking bilinear R-parity violation as framework in combination with the assumption of a large lepton asymmetry generated via the Affleck-Dine mechanism at the end of inflation we investigate these constraints in the parameter range compatible with neutrino data.

  3. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

    Science.gov (United States)

    Seife, C

    2000-07-14

    Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics.

  4. The ATLAS Experiment Movie

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  5. ELENA

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2016-01-01

    ELENA is a compact ring for cooling and further deceleration of 5.3 MeV antiprotons delivered by the CERN Antiproton Decelerator. The AD physics program is focused on trapping antiprotons in Penning traps where antihydrogen is formed after recombination with positrons. The ultimate physics goal is to perform spectroscopy on antihydrogen atoms at rest and to investigate the effect of the gravitational force on matter and antimatter.

  6. ELENA Project - Experiment soon complete

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    ELENA is a compact ring for cooling and further deceleration of 5.3 MeV antiprotons delivered by the CERN Antiproton Decelerator. The AD physics program is focused on trapping antiprotons in Penning traps where antihydrogen is formed after recombination with positrons. The ultimate physics goal is to perform spectroscopy on antihydrogen atoms at rest and to investigate the effect of the gravitational force on matter and antimatter.

  7. Gamma-ray Background Spectrum and Annihilation Rate in the Baryon-symmetric Big-bang Cosmology

    Science.gov (United States)

    Puget, J. L.

    1973-01-01

    An attempt was made to acquire experimental information on the problem of baryon symmetry on a large cosmological scale by observing the annihilation products. Data cover absorption cross sections and background radiation due to other sources for the two main products of annihilation, gamma rays and neutrinos. Test results show that the best direct experimental test for the presence of large scale antimatter lies in the gamma ray background spectrum between 1 and 70 MeV.

  8. Precise measurement of cosmic ray fluxes with the AMS-02 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vecchi, Manuela, E-mail: manuela.vecchi@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970, São Carlos, SP (Brazil)

    2015-12-17

    The AMS-02 detector is a large acceptance magnetic spectrometer operating onboard the International Space Station since May 2011. The main goals of the detector are the search for antimatter and dark matter in space, as well as the measurement of cosmic ray composition and flux. In this document we present precise measurements of cosmic ray positrons, electrons and protons, collected during the first 30 months of operations.

  9. Emulsion detectors for the antihydrogen detection in AEgIS

    Energy Technology Data Exchange (ETDEWEB)

    Pistillo, C., E-mail: ciro.pistillo@cern.ch [University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (Switzerland); Aghion, S. [Politecnico of Milano (Italy); Amsler, C.; Ariga, A.; Ariga, T. [University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (Switzerland); Belov, A. [Institute for Nuclear Research of the Russian Academy of Science (Russian Federation); Bonomi, G. [University of Brescia, Department of Mechanical and Industrial Engineering (Italy); Bräunig, P. [Heidelberg University, Kirchhoff-Institute for Physics (Germany); Bremer, J. [CERN, Physics Department (Switzerland); Brusa, R. S. [University of Trento, Department of Physics (Italy); Cabaret, L. [University of Paris-Sud, Laboratory Aim Cotton, CNRS (France); Caccia, M. [INFN Milano (Italy); Caravita, R. [University of Genova, Department of Physics (Italy); Castelli, F. [INFN Milano (Italy); Cerchiari, G. [Max Planck Institute for Nuclear Physics (Germany); Chlouba, K. [Czech Technical University (Czech Republic); Cialdi, S. [INFN Milano (Italy); Comparat, D. [University of Paris-Sud, Laboratory Aim Cotton, CNRS (France); Consolati, G. [Politecnico of Milano (Italy); Demetrio, A. [Heidelberg University, Kirchhoff-Institute for Physics (Germany); and others

    2015-08-15

    The AEgIS experiment at CERN aims to perform the first direct measurement of gravitational interaction between matter and antimatter by measuring the deviation of a cold antihydrogen beam in the Earth gravitational field. The design of the experiment has been recently updated to include emulsion films as position sensitive detector. The submicrometric position accuracy of emulsions leads indeed to a significant improvement of the experimental sensitivity. We present results of preliminary tests and discuss perspectives for the final measurement.

  10. The AEgIS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Testera, G., E-mail: testera@ge.infn.it [Istituto Nazionale Fisica Nucleare (Italy); Aghion, S. [Politecnico of Milano (Italy); Amsler, C.; Ariga, A.; Ariga, T. [University of Bern, Laboratory for High Energy Physics, Albert Einstein Center for Fundamental Physics (Switzerland); Belov, A. [Institute for Nuclear Research of the Russian Academy of Science (Russian Federation); Bonomi, G. [University of Brescia, Department of Mechanical and Industrial Engineering (Italy); Braunig, P. [Heidelberg University, Kirchhoff-Institute for Physics (Germany); Bremer, J. [CERN, Physics Department (Switzerland); Brusa, R. [University of Trento, Department of Physics (Italy); Cabaret, L. [University of Paris-Sud, ENS Cachan, Laboratory Aimé Cotton, CNRS (France); Caccia, M. [INFN Milano (Italy); Caravita, R. [University of Genova, Department of Physics (Italy); Castelli, F. [INFN Milano (Italy); Cerchiari, G. [Max Planck Institute for Nuclear Physics (Germany); Chlouba, K. [Czech Technical University, Prague (Czech Republic); Cialdi, S. [INFN Milano (Italy); Comparat, D. [University of Paris-Sud, ENS Cachan, Laboratory Aimé Cotton, CNRS (France); Consolati, G. [Politecnico of Milano (Italy); Curreli, S. [Istituto Nazionale Fisica Nucleare (Italy); Collaboration: (AEgIS Collaboration); and others

    2015-08-15

    The AEgIS experiment is presently almost completely installed at CERN. It is currently taking data with antiprotons, electrons and positrons. The apparatus is designed to form a cold, pulsed beam of antihydrogen to measure the Earth’s gravitational acceleration g on antimatter and to perform spectroscopy measurements. This paper describes the main features of the apparatus and shows a selected review of some achieved results.

  11. El experimento ATLAS

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  12. L'esperimento ATLAS

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  13. The ATLAS experiment (in Czech)

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  14. The ATLAS experiment (in Chinese)

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  15. Hypothetical Dark Matter/axion Rockets:. Dark Matter in Terms of Space Physics Propulsion

    Science.gov (United States)

    Beckwith, A.

    2010-12-01

    Current proposed photon rocket designs include the Nuclear Photonic Rocket and the Antimatter Photonic Rocket (proposed by Eugen Sanger in the 1950s, as reported by Ref. 1). This paper examines the feasibility of improving the thrust of photon-driven ramjet propulsion by using DM rocket propulsion. The open question is: would a heavy WIMP, if converted to photons, upgrade the power (thrust) of a photon rocket drive, to make interstellar travel a feasible proposition?

  16. Van de Graaff based positron source production

    Science.gov (United States)

    Lund, Kasey Roy

    The anti-matter counterpart to the electron, the positron, can be used for a myriad of different scientific research projects to include materials research, energy storage, and deep space flight propulsion. Currently there is a demand for large numbers of positrons to aid in these mentioned research projects. There are different methods of producing and harvesting positrons but all require radioactive sources or large facilities. Positron beams produced by relatively small accelerators are attractive because they are easily shut down, and small accelerators are readily available. A 4MV Van de Graaff accelerator was used to induce the nuclear reaction 12C(d,n)13N in order to produce an intense beam of positrons. 13N is an isotope of nitrogen that decays with a 10 minute half life into 13C, a positron, and an electron neutrino. This radioactive gas is frozen onto a cryogenic freezer where it is then channeled to form an antimatter beam. The beam is then guided using axial magnetic fields into a superconducting magnet with a field strength up to 7 Tesla where it will be stored in a newly designed Micro-Penning-Malmberg trap. Several source geometries have been experimented on and found that a maximum antimatter beam with a positron flux of greater than 0.55x10 6 e+s-1 was achieved. This beam was produced using a solid rare gas moderator composed of krypton. Due to geometric restrictions on this set up, only 0.1-1.0% of the antimatter was being frozen to the desired locations. Simulations and preliminary experiments suggest that a new geometry, currently under testing, will produce a beam of 107 e+s-1 or more.

  17. On an Alternative Cosmology

    CERN Document Server

    Vankov, A

    1998-01-01

    The suggested alternative cosmology is based on the idea of barion symmetric universe, in which our home universe is a representative of multitude of typical matter and antimatter universes. This alternative concept gives a physically reasonable explanation of all major problems of the Standard Cosmological Model. Classification Code MSC: Cosmology 524.8 Key words: standard cosmological model, alternative cosmology, barionic symmetry, typical universe, quasars, cosmic rays.

  18. A subtle sign of supersymmetry?

    CERN Multimedia

    Cho, A

    2001-01-01

    In experiments conducted by HEAT in 94/95 in the upper atomosphere, more positrons were detected than expected. Last year a revamped detector confirmed the excess. Physicists Gordon Kane and Lian-Tao think this could be evidence of supersymmetry. They postulate the extra positrons come from rare collisions between the lightest particle predicted by supersymmetry and its antimatter partner (1/2 page).

  19. "Dark energy" in the Local Void

    Science.gov (United States)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  20. LHCb is trying to crack the Standard Model

    CERN Multimedia

    2011-01-01

    LHCb will reveal new results tomorrow that will shed more light on the possible CP-violation measurement reported recently by the Tevatron experiments, different from Standard Model predictions. Quantum Diaries blogger for CERN, Pauline Gagnon, explains how.   LHCb, one of the Large Hadron Collider (LHC) experiments, was designed specifically to study charge-parity or CP violation. In simple words, its goal is to explain why more matter than antimatter was produced when the Universe slowly cooled down after the Big Bang, leading to a world predominantly composed of matter. This is quite puzzling since in laboratory experiments we do not measure a preference for the creation of matter over antimatter. Hence the CP-conservation law in physics that states that Nature should not have a preference for matter over antimatter. So why did the Universe evolve this way? One of the best ways to study this phenomenon is with b quarks. Since they are heavy, they can decay (i.e break down into smaller parts) ...

  1. Getting to grips with antihydrogen

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    In June 2011, the ALPHA Collaboration announced that they had successfully managed to trap and hold atoms of antimatter for 1000 seconds. Last week they announced that their success in changing the internal state of antihydrogen and made the first ever measurement of its spectrum. The Collaboration is now installing an all-new experimental set-up – ALPHA-2 – and shows no signs of slowing down its investigations into the anti-world.   The ALPHA experiment hall. Newspapers and magazines around the world described the recent ALPHA announcement as the first step towards explaining why antimatter and matter did not cancel each other out in the first instances of creation, that is, why our universe of matter exists. Understanding the behaviour of matter and antimatter can help scientists solve this conundrum. With this in mind, the ALPHA collaboration has begun the study of the antihydrogen spectrum. So far, the Collaboration has been focused on proving that they can alter the ...

  2. Discovery Mondays: The very early Universe

    CERN Multimedia

    2003-01-01

    Copyright NASARetracing the very early Universe to understand why there is "something rather than nothing" is one of the challenges facing astrophysics today. It is also the theme of the third Discovery Monday, to be held in the Microcosm on 7 July, where you will be welcomed by a number of scientists. A professional astronomer will allow you to look through his telescope and explain how it works. A cosmologist will talk to you about the very early Universe and a CERN physicist will show you how it's possible to trap antimatter. The mirror of matter, antimatter should have existed in the same quantities as matter in the very early stages of the Universe but today it seems to have virtually disappeared. Perhaps the research being done at CERN will one day explain how an infinitesimal predominance of matter over antimatter resulted in such a richly structured Universe. Come along to the Microcosm on Monday, 7 July between 7.30 p.m. and 9.00 p.m. Entrance is free http://www.cern.ch/microcosm N.B.: The Discove...

  3. Observation of the 1S–2S transition in trapped antihydrogen

    CERN Document Server

    Ahmadi, M.; Baker, C.J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C.L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Gutierrez, A.; Hangst, J. S.; Hardy, W.N.; Hayden, M.E.; Isaac, C.A.; Ishida, A.; Johnson, M.A.; Jones, S.A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J.T.K.; Menary, S.; Michan, J.M.; Momose, T.; Munich, J.J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C.Ø.; Robicheaux, F.; Sacramento, R.L.; Sameed, M.; Sarid, E.; Silveira, D.M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T.D.; Thompson, J.E.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.

    2016-01-01

    The spectrum of the hydrogen atom has played a central part in fundamental physics in the past 200 years. Historical examples of its significance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman et al., the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S–2S transition by Hänsch1 to a precision of a few parts in 1015. Recently, we have achieved the technological advances to allow us to focus on antihydrogen—the antimatter equivalent of hydrogen2,3,4. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today’s Universe is observed to consist almost entirely of ordinary matter. This motivates physicists to carefully study antimatter, to see if there is a small ...

  4. Cooling of electrically insulated high voltage electrodes down to 30 mK Kühlung von elektrisch isolierten Hochspannungselektroden bis 30 mK

    CERN Document Server

    Eisel, Thomas; Bremer, J

    2011-01-01

    The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator. Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the ther...

  5. Intensity-Frontier Antiproton Physics with The Antiproton Annihilation Spectrometer (TAPAS) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, Giorgio; /Fermilab; Asner, David M.; /PNL, Richland; Baldini, Wander; /INFN, Ferrara; Bartoszek, Larry; Broemmelsiek, Daniel R.; Brown, Charles N.; /Fermilab; Chakravorty, Alak; /St. Xavier U., Chicago; Colas, Paul; /Saclay; Derwent, Paul; /Fermilab; Drutskoy, Alexey; /Moscow, ITEP; Fortner, Michael; /Northern Illinois U. /Saclay /Indian Inst. Tech., Hyderabad

    2011-11-01

    The Fermilab Antiproton Source is the world's most intense source of antimatter. With the Tevatron program now behind us, this unique facility can help make the case for Fermilab's continued accelerator operations. The Antiproton Source can be used for unique, dedicated antimatter studies, including medium-energy {bar p}-annihilation experiments. We propose to assemble a powerful, yet cost-effective, solenoidal magnetic spectrometer for antiproton-annihilation events, and to use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, precisely measure the properties of several charmonium and nearby states, and make the first measurements of the Drell-Yan continuum in medium-energy antiproton annihilation. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The observation of charm or hyperon CP violation would be evidence for physics beyond the Standard Model, with possible implications for the origin of the baryon asymmetry of the universe - the question of what happened to all the antimatter that must have been produced in the Big Bang. The experiment will be carried out by an international collaboration and will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle physics program at Fermilab and in the U.S. It will thus help us to continue attracting creative and capable young people into science and technology, and introducing them to the important technologies of accelerators, detectors, and data acquisition and analysis - key roles in society that accelerator-based particle physics has historically played.

  6. An improved limit on the charge of antihydrogen from stochastic acceleration

    Science.gov (United States)

    Ahmadi, M.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Charman, A. E.; Eriksson, S.; Evans, L. T.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; So, C.; Tharp, T. D.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.

    2016-01-01

    Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms- of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10-21e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.

  7. LHCb experiment magnets

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The leading members of the LHCb magnet project, from left to right: Pierre-Ange Giudici, who organized and supervised the industrial production of the coils; Marcello Losasso, who performed the 3D calculations to optimise the magnetic field; Olivier Jamet, responsible for the 3D design; Jean Renaud, in charge of the magnet assembly, and Wilfried Flegel, project leader. The LHCb detector will investigate matter-antimatter differences in B mesons at the LHC. The coils of the detector's huge dipole magnet are seen here in April 2004.

  8. GBAR

    CERN Multimedia

    Hervieux, P; Manfredi, G; Banerjee, D; Rousse, J A; Vallage, B; Froelich, P S; Lunney, D; Jonsell, S B; Kim, S K; Crivelli, P; Khabarova, K; Mansoulie, B; Regenfus, C

    The GBAR project aims to perform the first test of the Equivalence Principle with antimatter by measuring the free fall of ultra-cold antihydrogen atoms. The objective is to measure the gravitational acceleration to better than a percent in a first stage, with a long term perspective to reach a much higher precision using gravitational quantum states of antihydrogen. The production of ~20 µK atoms proceeds via sympathetic cooling of H${+} ions by Be${+} ions. H${+} ions are produced via a two-step process, involving the interaction of bursts of 10${7} slow antiprotons from the AD-ELENA at CERN with a dense positronium cloud.

  9. Professor Stewart's hoard of mathematical treasures

    CERN Document Server

    Stewart, Ian

    2010-01-01

    Ian Stewart, author of the bestselling Professor Stewart's Cabinet of Mathematical Curiosities, presents a new and magical mix of games, puzzles, paradoxes, brainteasers, and riddles. He mingles these with forays into ancient and modern mathematical thought, appallingly hilarious mathematical jokes, and enquiries into the great mathematical challenges of the present and past. Amongst a host of arcane and astonishing facts about every kind of number from irrational or imaginary to complex or cuneiform, we find out: how to organise chaos; how matter balances anti-matter; how to turn a sphere i

  10. Towards Antihydrogen Trapping and Spectroscopy at ALPHA

    CERN Document Server

    Butler, Eoin; Ashkezari, Mohammad D; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Bray, Crystal C; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayano, Ruyugo S; Hayden, Michael E; Humphries, Andrew J; Hydomako, Richard; Jonsell, Svante; Kurchaninov, Leonid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wilding, Dean; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    Spectroscopy of antihydrogen has the potential to yield high-precision tests of the CPT theorem and shed light on the matter-antimatter imbalance in the Universe. The ALPHA antihydrogen trap at CERN's Antiproton Decelerator aims to prepare a sample of antihydrogen atoms confined in an octupole-based Ioffe trap and to measure the frequency of several atomic transitions. We describe our techniques to directly measure the antiproton temperature and a new technique to cool them to below 10 K. We also show how our unique position-sensitive annihilation detector provides us with a highly sensitive method of identifying antiproton annihilations and effectively rejecting the cosmic-ray background.

  11. Comment to a paper [arXiv:1103.4937] of M. Villata on antigravity

    CERN Document Server

    Cabbolet, Marcoen J T F

    2011-01-01

    In a recent paper of M. Villata [arXiv:1103.4937], it is claimed that "antigravity appears as a prediction of general relativity when CPT is applied." However, the present paper argues that Villata puts the cart before the horse qua methodology, and that the resulting theory cannot be reconciled with the ontological presuppositions of general relativity. The conclusion is that Villata's suggestion for the physics that might underlie a gravitational repulsion of matter and antimatter is not acceptable in its current state of development.

  12. Comment to a paper of M. Villata on antigravity

    Science.gov (United States)

    Cabbolet, Marcoen J. T. F.

    2012-01-01

    In a recent paper of M. Villata, it is claimed that "antigravity appears as a prediction of general relativity when CPT is applied." However, the present paper argues that Villata puts the cart before the horse qua methodology, and that the resulting theory cannot be reconciled with the ontological presuppositions of general relativity. The conclusion is that Villata's suggestion for the physics that might underlie a gravitational repulsion of matter and antimatter is not acceptable as a fundamental theory in its current state of development.

  13. BASES OF CREATIVE PARTICLES OF HIGGS THEORY (CPH THEORY)

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2010-01-01

    One way to explain the Zero Point Energy (ZPE) is by means of the uncertainty principle of quantum physics, In CPH Theory the ZPE explained by using a novel description of the gravitons. This is based on the behavior of photons in a gravitational field, leading to a new definition of the graviton...... from the structure of photon to nuclear. These color charges and magnetic color form the energy. Energy converts to matter and anti-matter such as charged particles. Charged particles use gravitons and generate electromagnetic field. This way of looking at the problem show how two opposite charged...

  14. High-energy antiprotons from old supernova remnants

    CERN Document Server

    Blasi, Pasquale

    2009-01-01

    A recently proposed model (arXiv:0903.2794) explains the rise in energy of the positron fraction measured by the PAMELA satellite in terms of hadronic production of positrons in aged supernova remnants, and acceleration therein. Here we present a preliminary calculation of the anti-proton flux produced by the same mechanism. While the model is consistent with present data, a rise of the antiproton to proton ratio is predicted at high energy, which strikingly distinguishes this scenario from other astrophysical explanations of the positron fraction (like pulsars). We briefly discuss important implications for Dark Matter searches via antimatter.

  15. Quantum interference in a thermal bath

    Energy Technology Data Exchange (ETDEWEB)

    Anisimov, Alexey [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Buchmueller, Wilfried; Mendizabal, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Drewes, Marco [Inst. de Theorie des Phenomenes Physiques EPFL, Lausanne (Switzerland)

    2010-01-15

    Thermal leptogenesis explains the observed matter-antimatter asymmetry of the universe in terms of neutrino masses, consistent with neutrino oscillation experiments. We present a full quantum mechanical calculation of the generated lepton asymmetry based on Kadanoff-Baym equations. Origin of the asymmetry is the departure of the statistical propagator of the heavy Majorana neutrino from the equilibrium propagator, together with CP violating couplings. The lepton asymmetry is calculated directly in terms of Green's functions without referring to 'number densities'. A detailed comparison with Boltzmann equations shows that conventional leptogenesis calculations have an uncertainty of at least one order of magnitude. (orig.)

  16. Neutrino Physics in the Seesaw Model

    CERN Document Server

    Broncano, A; Jenkins, E

    2003-01-01

    The seesaw model of heavy and light Majorana neutrinos and its low-energy effective theory are studied, when the number of heavy neutrinos is equal to or less than the number of light lepton generations. We establish a general relationship between the high-energy parameters and the low-energy observables involving only the light fields. It is shown how low-energy measurements of the properties of light neutrinos suffice a priori to determine all couplings of the unobserved heavy neutrinos. CP violation is present in low-energy processes if seesaw-model leptogenesis creates the matter-antimatter asymmetry of the universe.

  17. Neutrino physics in the seesaw model

    Energy Technology Data Exchange (ETDEWEB)

    Broncano, A. E-mail: alicia.broncano@uam.es; Gavela, M.B. E-mail: gavela@delta.ft.uam.es; Jenkins, E. E-mail: ejenkins@ucsd.edu

    2003-11-10

    The seesaw model of heavy and light Majorana neutrinos and its low-energy effective theory are studied, when the number of heavy neutrinos is equal to or less than the number of light lepton generations. We establish a general relationship between the high-energy parameters and the low-energy observables involving only the light fields. It is shown how low-energy measurements of the properties of light neutrinos suffice a priori to determine all couplings of the unobserved heavy neutrinos. CP violation is present in low-energy processes if seesaw-model leptogenesis creates the matter-antimatter asymmetry of the universe.

  18. Fermi comes to CERN

    CERN Multimedia

    NASA

    2009-01-01

    1. This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. (Credit: NASA/DOE/Fermi LAT Collaboration) 2. The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)

  19. CAPRICE98: a balloon-borne magnetic spectrometer equipped with a gas RICH and a silicon calorimeter to study cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergstroem, D.; Bidoli, V.; Boezio, M.; Bonvicini, V. E-mail: bonvicini@trieste.infn.it; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; Marzo, C. De; Pascale, M.P. De; Finetti, N.; Francke, T.; Grinstein, S.; Hof, M.; Khalchukov, F.; Kremer, J.; Menn, W.; Mitchell, J.W.; Morselli, A.; Ormes, J.F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Simon, M.; Schiavon, P.; Sparvoli, R.; Spillantini, P.; Stochaj, S.J.; Streitmatter, R.E.; Stephens, S.A.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N

    2001-04-01

    CAPRICE98 is a superconducting magnetic spectrometer, equipped with a gas RICH and a silicon calorimeter, launched from Ft. Sumner (USA), on the 28th of May 1998, by the WiZard collaboration. For the first time a gas RICH detector flew together with a silicon electromagnetic calorimeter, allowing mass resolved antiprotons, with E>18 GeV, to be detected. The detector configuration was completed by a time of flight for particle identification, and a set of three drift chambers for rigidity measurement. The science objectives are the study of antimatter in cosmic rays and the cosmic ray composition in the atmosphere with special focus on muons.

  20. Baryon fraction in the universe, antiproton lifetime, and the diffuse radiation

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S.A. [Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005 (India); Finetti, N. [Particle Astrophysics Laboratory, New Mexico State University, Las Cruces, New Mexico 88003 (United States)

    1995-07-01

    We have calculated the diffuse spectrum in the energy region between 0.1 keV and 500 MeV, which arises from the decay of antiprotons in the baryon Symmetric Universe. Comparing this with the observation, we derived a life time of {gt}2.3{times}10 {sup 24} sec for the antiproton, which is 17 orders better than the one determined from laboratory experiments. We predict a cut-off in the diffuse radiation beyond 460 MeV, and if seen, would provide evidence for the existence of antimatter domains in the universe. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  1. Observations of cosmic ray positrons during the 1993 flight of the NMSU/WiZard-TS93 balloon borne apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Bellotti, R.; Cafagna, F.; Circella, M.; De Cataldo, G.; De Marzo, C.N. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Brunetti, M.T.; Codini, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Aversa, F. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    As a part of a series of experiments to search for antimatter in the primary cosmic ray, the NMSU balloon borne apparatus was configured for a flight dedicated to the search of positrons. Two completely new instruments were added to the magnetic spectrometer: a transition radiation detector (TRD) and a silicon-tungsten tracking calorimeter. The function of these two instruments complemented one another and the combined action provided a proton rejection factor better than 5x10{sup 5}. The paper shows the results from the analysis on the complete set of data. All the presented spectra are at the level of the spectrometer.

  2. In-beam measurement of the hydrogen hypernine splitting - towards antihydrogen spectroscopy

    CERN Document Server

    Diermaier, M.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M.C.; Zmeskal, J.; Widmann, E.

    2016-01-01

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison to hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of $\

  3. Asymmetric Dark Matter and CP Violating Scatterings in a UV Complete Model

    CERN Document Server

    Baldes, Iason; Millar, Alexander J; Volkas, Raymond R

    2015-01-01

    We explore possible asymmetric dark matter models using CP violating scatterings to generate an asymmetry. In particular, we introduce a new model, based on DM fields coupling to the SM Higgs and lepton doublets, $\\overline{L}H$, and explore its UV completions. We study the CP violation and asymmetry formation of this model, to demonstrate that it is capable of producing the correct abundance of dark matter and the observed matter-antimatter asymmetry. Crucial to achieving this is the introduction of interactions which violate CP with a $T^{2}$ dependence.

  4. The muon EDM in the g-2 experiment at Fermilab

    Directory of Open Access Journals (Sweden)

    Chislett Rebecca

    2016-01-01

    Full Text Available The observation of a muon electric dipole moment would provide an additional source of CP violation which is required to explain the matter anti-matter asymmetry in the universe. The current experimental limit, |dμ| < 1.9 × 10−19e·cm, was set by the BNL E821 experiment. This paper discusses how the new experiment at Fermilab, E989 [3], aims to decrease this by two orders of magnitude down to 10−21e·cm.

  5. High-energy antiprotons from old supernova remnants.

    Science.gov (United States)

    Blasi, Pasquale; Serpico, Pasquale D

    2009-08-21

    A recently proposed model explains the rise in energy of the positron fraction measured by the PAMELA satellite in terms of hadronic production of positrons in aged supernova remnants, and acceleration therein. Here we present a preliminary calculation of the antiproton flux produced by the same mechanism. While the model is consistent with present data, a rise of the antiproton to proton ratio is predicted at high energy, which strikingly distinguishes this scenario from other astrophysical explanations of the positron fraction (such as pulsars). We briefly discuss important implications for dark matter searches via antimatter.

  6. Baryogenesis via Elementary Goldstone Higgs Relaxation

    CERN Document Server

    Gertov, Helene; Pearce, Lauren; Yang, Louis

    2016-01-01

    We extend the relaxation mechanism to the Elementary Goldstone Higgs frame- work. Besides studying the allowed parameter space of the theory we add the minimal ingredients needed for the framework to be phenomenologically viable. The very nature of the extended Higgs sector allows to consider very flat scalar potential directions along which the relaxation mechanism can be implemented. This fact translates into wider regions of applicability of the relaxation mechanism when compared to the Standard Model Higgs case. Our results show that, if the electroweak scale is not fundamental but radiatively generated, it is possible to generate the observed matter-antimatter asymmetry via the relaxation mechanism.

  7. R-matrix theory of atomic collisions. Application to atomic, molecular and optical processes

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Philip G. [Queen' s Univ., Belfast (United Kingdom). School of Mathematics and Physics

    2011-07-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technological importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices. (orig.)

  8. R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes

    CERN Document Server

    Burke, Philip George

    2011-01-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.

  9. Observation of relativistic antihydrogen atoms

    Science.gov (United States)

    Blanford, Glenn Delfosse, Jr.

    1997-09-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e+e/sp- pair creation near a nucleus with the e+ being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  10. Non-degenerate Low Energy Leptogenesis

    CERN Document Server

    Geng, Chao-Qiang

    2009-01-01

    We study a simple extension of the standard model to tackle the neutrino masses, matter-antimatter asymmetry and dark matter (DM) in the universe, and the lithium problems. In our model, the baryon asymmetry is achieved by the low energy leptogenesis mechanism without requiring any degeneracy of masses, DM is provided by the neutral component of the inert scalar doublet, and the lithium problems are solved by using its negatively charged component. The new particles proposed in the model are within the reach at the future colliders. We also show that our model satisfies the electroweak precision tests.

  11. Status and perspectives of indirect and direct dark matter searches

    CERN Document Server

    Fornengo, N

    2006-01-01

    In this review article the current status of particle dark matter is addressed. We discuss the main theoretical extensions of the standard model which allow to explain dark matter in terms of a (yet undiscovered) elementary particle. We then discuss the theoretical predictions for the searches of particle dark matter: direct detection in low background underground experiments and indirect detection of neutrinos, gamma-rays and antimatter with terrestrial and space-borne detectors. Attention will be placed also on the discussion of the uncertainties, mainly of astrophysical origin, which affect the theoretical predictions. The constraints placed by these searches on the extensions of the standard models will be briefly addressed.

  12. Quantum Reflection of Antihydrogen in the GBAR Experiment

    CERN Document Server

    Dufour, Gabriel; Lambrecht, Astrid; Nesvizhevsky, Valery; Reynaud, Serge; Voronin, Alexei

    2013-01-01

    In the GBAR experiment, cold antihydrogen atoms will be left to fall on an annihilation plate with the aim of measuring the gravitational acceleration of antimatter. Here, we study the quantum reflection of these antiatoms due to the Casimir-Polder potential above the plate. We give realistic estimates of the potential and quantum reflection amplitudes, taking into account the specificities of antihydrogen and the optical properties of the plate. We find that quantum reflection is enhanced for weaker potentials, for example above thin slabs, graphene and nanoporous media.

  13. Alpha Magnetic Spectrometer (AMS02) experiment on the International Space Station (ISS)

    Institute of Scientific and Technical Information of China (English)

    Behcet ALPAT

    2003-01-01

    The Alpha Magnetic Spectrometer experiment is realized in two phases. A precursor flight (STS-91)with a reduced experimental configuration (AMS01) has successfully flown on space shuttle Discovery in June 1998.The final version (AMS02) will be installed on the International Space Station (ISS) as an independent module inearly 2006 for an operational period of three years. The main scientific objectives of AMS02 include the searches forthe antimatter and dark matter in cosmic rays. In this work we will discuss the experimental details as well as the im-proved physics capabilities of AMS02 on ISS.

  14. Design of a Radial TPC for Antihydrogen Gravity Measurement with ALPHA-g

    CERN Document Server

    Capra, Andrea; Bishop, Daryl; Fujiwara, Makoto C; Freeman, Skyler; Gill, David; Grant, Matthew; Henderson, Robert; Kurchaninov, Leonid; Lu, Philip; Menary, Scott; Olchanski, Konstantin; Retiere, Fabrice

    2016-01-01

    The gravitational interaction of antimatter and matter has never been directly probed. ALPHA-g is a novel experiment that aims to perform the first measurement of the antihydrogen gravitational mass. A fundamental requirement for this new apparatus is a position sensitive particle detector around the antihydrogen trap which provides information about antihydrogen annihilation location. The proposed detector is a radial Time Projection Chamber, or \\textit{rTPC}, whose concept is being developed at TRIUMF. A simulation of the detector and the development of the reconstruction software, used to determine the antihydrogen annihilation point, is presented alongside with the expected performance of the rTPC.

  15. Spacetime torsion as a possible remedy to major problems in gravity and cosmology

    CERN Document Server

    Poplawski, Nikodem J

    2011-01-01

    We show that the Einstein-Cartan-Sciama-Kibble theory of gravity with torsion not only extends general relativity to account for the intrinsic spin of matter, but it may also eliminate major problems in gravitational physics and answer major questions in cosmology. These problems and questions include: the origin of the Universe, the existence of singularities in black holes, the nature of inflation and dark energy, the origin of the matter-antimatter asymmetry in the Universe, and the nature of dark matter.

  16. The Alpha Magnetic Spectrometer (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buenerd, M.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y.H.; Chen, H.F.; Chen, H.S.; Chen, Z.G.; Chernoplekov, N.A.; Chiueh, T.H.; Chuang, Y.L.; Cindolo, F.; Commichau, V.; Contin, A. E-mail: contin@bo.infn.it; Crespo, P.; Cristinziani, M.; Cunha, J.P. da; Dai, T.S.; Deus, J.D.; Dinu, N.; Djambazov, L.; DAntone, I.; Dong, Z.R.; Emonet, P.; Engelberg, J.; Eppling, F.J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P.H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W.Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M.A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S.C.; Levi, G.; Levtchenko, P.; Liu, C.L.; Liu, H.T.; Lopes, I.; Lu, G.; Lu, Y.S.; Luebelsmeyer, K.; Luckey, D.; Lustermann, W.; Mana, C.; Margotti, A.; Mayet, F.; McNeil, R.R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, I.H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postolache, V.; Produit, N.; Rancoita, P.G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J.P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.S.; Shoutko, V.

    2002-02-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m{sup 2}) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  17. The Alpha Magnetic Spectrometer (AMS)

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Crespo, P; Cristinziani, M; Cunha, J P D; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; Dantone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu, H T; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourao, A; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Vandenhirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Gunten, H V; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan, L G; Yang, C G; Yang, M; Ye, S W; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m sup 2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  18. 50 quantum physics ideas you really need to know

    CERN Document Server

    Baker, Joanne

    2013-01-01

    Following on from the highly successful 50 Physics Ideas You Really Need to Know, author Joanne Baker consolidates the foundation concepts of physics and moves on to present clear explanations of the most cutting-edge area of science: quantum physics. With 50 concise chapters covering complex theories and their advanced applications - from string theory to black holes, and quarks to quantum computing - alongside informative two-colour illustrations, this book presents key ideas in straightforward, bite-sized chunks. Ideal for the layperson, this book will challenge the way you understand the world. The ideas explored include: Theory of relativity; Schrodinger's cat; Nuclear forces: fission and fusion; Antimatter; Superconductivity.

  19. A computer-generated image of the LHCb detector

    CERN Multimedia

    Richard Jacobsson

    2004-01-01

    Unlike most of the detectors on the LHC, which use barrel detectors, the LHCb detector will use walls of sub-detectors to study the particles produced in the 14 TeV proton-proton collisions. This arrangement is used as the bottom and anti-bottom quark pairs produced in the collision, whose decays will be studied, travel close to the path of the colliding beams. LHCb will investigate Naure's preference for matter over antimatter through a process known as CP violation.

  20. A Second Higgs Doublet in the Early Universe: Baryogenesis and Gravitational Waves

    CERN Document Server

    Dorsch, G C; Konstandin, T; No, J M

    2016-01-01

    We show that simple Two Higgs Doublet models still provide a viable explanation for the matter-antimatter asymmetry of the Universe via electroweak baryogenesis, even after taking into account the recent order-of-magnitude improvement on the electron-EDM experimental bound by the ACME Collaboration. Moreover we show that, in the region of parameter space where baryogenesis is possible, the gravitational wave spectrum generated at the end of the electroweak phase transition is within the sensitivity reach of the future space-based interferometer LISA.

  1. Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J.; Kamyshkov, Y.A. [ed.

    1996-11-01

    These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.

  2. GEANT4 simulation of the ACE beam line : Measurement of the energy distribution of degraded Antiproton beam and the ToF signal of generated pions.

    CERN Document Server

    BRAHIMI, Nihel

    2014-01-01

    The present document describes my 8 weeks work project as a summer student at the AEgIS experiment under the supervision of Michael Doser and what i have learned during this period . It can be devided into three main tasks which are: Theoretical preparations concerning low energy antiproton physics. Learning the basic principles of GEANT4 simu- lation toolkit. Using GEANT4 platform to follow up the work of two technical students (Logan and Conrad) in designing an experiment (ACE beam line ) which aims at improving the methods of detect- ing matter-antimatter annihilations vertices at low energies in terms of resolution and accuracy using hybrid detectors .

  3. Galaxy formation from annihilation-generated supersonic turbulence in the baryon-symmetric big-bang cosmology and the gamma ray background spectrum

    Science.gov (United States)

    Stecker, F. W.; Puget, J. L.

    1972-01-01

    Following the big-bang baryon symmetric cosmology of Omnes, the redshift was calculated to be on the order of 500-600. It is show that, at these redshifts, annihilation pressure at the boundaries between regions of matter and antimatter drives large scale supersonic turbulence which can trigger galaxy formation. This picture is consistent with the gamma-ray background observations discussed previously. Gravitational binding of galaxies then occurs at a redshift of about 70, at which time vortical turbulent velocities of about 3 x 10 to the 7th power cm/s lead to angular momenta for galaxies comparable with measured values.

  4. Beasts in Lambda-CDM Zoo

    CERN Document Server

    Dolgov, A D

    2016-01-01

    Recent astronomical discoveries of supermassive black holes (quasars), gamma-bursters, supernovae, and dust at high redshifts, z = (5 --10), are reviewed. Such a dense population of the early universe is at odds with the conventional mechanisms of its possible origin. Similar data from the contemporary universe, which are also in conflict with natural expectations, are considered too. Two possible mechanisms are suggested, at least one of which can potentially solve all these problems. As a by-product of the last model, an abundant cosmological antimatter may be created.

  5. Neutralino Clumps and Cosmic Rays

    CERN Document Server

    Salati, P

    2007-01-01

    The halo of the Miky Way might contain numerous and dense substructures inside which the putative weakly interacting massive particles (suggested as the main constituent of the astronomical dark matter) would produce a stronger annihilation signal than in the smooth regions. The closer the nearest clump, the larger the positron and antiproton cosmic ray fluxes at the Earth. But the actual distribution of these substructures is not known. The predictions on the antimatter yields at the Earth are therefore affected by a kind of cosmic variance whose analysis is the subject of this contribution. The statistical tools to achieve that goal are presented and Monte Carlo simulations are compared to analytic results.

  6. Soon at a theater near you...

    CERN Multimedia

    Connie Potter

    While at CERN recently gathering images and input for his new movie based on Dan Brown's best-seller "Angels and Demons", director Ron Howard and his technical designer managed to fit in a visit to the ATLAS cavern accompanied by Rolf "Antimatter" Landua from CERN and members of the CERN Press Office. Both were very impressed with the ATLAS installations, with Ron Howard's parting words being...."Tom's going to love this"! So, all you cavern-dwellers... keep your eyes open... for 'Tom'! Ron Howard, director of the "Da Vinci Code" movie, checked out the scene in the ATLAS cavern, preparing for his new project, "Angels and Demons".

  7. CERN Open Days 2013, Point 8 - LHCb: LHCb Experiment

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: Fourteen billion years ago, the Universe began with a "Big Bang" in which energy coalesced to form equal quantities of matter and antimatter.  LHCb is an experiment set up to explore what happened after the Big Bang that allowed matter to survive and build the Universe we inhabit today.  During the visit the LHCb detector located 100 metres below ground will be shown together with the nearby section of the LHC. On surface no restricted access  An LHC dipole magnet and a module used to accelerate protons will be show at the surface.

  8. Consequences of f(R)-theories of gravity on gravitational leptogenesis

    CERN Document Server

    Lambiase, G; Pizza, L

    2012-01-01

    f(R)-theories of gravity are reviewed in the framework of the matter-antimatter asymmetry in the Universe. The asymmetry is generated by the gravitational coupling of heavy (Majorana) neutrinos with the Ricci scalar curvature. In order that the mechanism works, a time varying non-zero Ricci curvature is necessary. The latter is provided by f(R) cosmology, whose Lagrangian density is of the form {\\cal L}(R)\\sim f(R). In particular we study the cases f(R)\\sim R+\\alpha R^n and f(R)\\sim R^{1+\\epsilon}.

  9. Baryo-Leptogenesis induced by modified gravities in the primordial Universe

    CERN Document Server

    Pizza, Liberato

    2015-01-01

    The long-standing problem of the asymmetry between matter and antimatter in the Universe is, in this paper, analysed in the context of the modified theories of gravity. In particular we study two models of $f(R)$ theories of gravitation that, with the opportune choice of the free parameters, introduce little perturbation to the scale factor of the Universe in the radiation dominated (RD) phase predicted by general relativity (GR), i.e., $a(t)\\sim t^{1/2}$. This little perturbation generates a Ricci scalar different by zero, i.e., $R\

  10. Virtual Visit to the ATLAS Control Room by leading universities of Russian Federation

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    Science Festival in Russian Federation is a programme of events which take place at the leading scientific centres and museums in Russia. At the Science Festival scientists, engineers and students show to visitors the advances of modern science and technology in all scopes of life. Today the leading universities of Russia will feature a multipoint video conference with the LHC control room at CERN. This will give visitors of the Science Festival the opportunity to ask questions to the physicists involved about the Large Hadron Collider experiments, Higgs particles and antimatter. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Russia-2012.html

  11. Measurement of electric dipole moments at storage rings

    Science.gov (United States)

    Jörg Pretz JEDI Collaboration

    2015-11-01

    The electric dipole moment (EDM) is a fundamental property of a particle, like mass, charge and magnetic moment. What makes this property in particular interesting is the fact that a fundamental particle can only acquire an EDM via {P} and {T} violating processes. EDM measurements contribute to the understanding of the matter over anti-matter dominance in the universe, a question closely related to the violation of fundamental symmetries. Up to now measurements of EDMs have concentrated on neutral particles. Charged particle EDMs can be measured at storage ring. Plans at Forschungszentrum Jülich and results of first test measurements at the COoler SYnchrotron COSY will be presented.

  12. Recent Results and Progress on Leptonic and Storage Ring EDM Searches

    Science.gov (United States)

    Kawall, David

    2016-02-01

    The Standard Model is incomplete and unable to explain the matter-antimatter asymmetry in the universe. Many extensions of the Standard Model predict new particles and interactions with additional CP-violating phases that can explain this imbalance. Electric dipole moments (EDMs) of fundamental particles, which are generated by CP-violating interactions, can be enhanced by many orders of magnitude by contributions from this new physics to a magnitude within reach of current and planned experiments. New approaches to EDM searches using storage rings, and their sensitivity to new physics are presented.

  13. Looking for charming asymmetries

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    New results presented by the LHCb collaboration on the decay of particles containing a “charm” quark delve deeper into the mystery of matter-antimatter asymmetry.   A view of the LHCb experimental cavern. (Photo: Maximilien Brice/CERN) One of the biggest challenges in physics is to understand why everything we see in our universe seems to be formed only of matter, whereas the Big Bang should have created equal amounts of matter and antimatter. CERN’s LHCb experiment is one of the best hopes for physicists looking to solve this longstanding mystery. At the VIII International Workshop on Charm Physics, which took place in Bologna earlier this month, the LHCb Collaboration presented the most precise measurement to date of a phenomenon called Charge-Parity (CP) violation among particles that contain a charm quark. CP symmetry states that laws of physics are the same if a particle is interchanged with its anti-particle (the “C” part) and if its spatia...

  14. Optimisation of a quantum pair space thruster

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-06-01

    Full Text Available The paper addresses the problem of propulsion for long term space missions. Traditionally a space propulsion unit has a propellant mass which is ejected trough a nozzle to generate thrust; this is also the case with inert gases energized by an on-board power unit. Unconventional methods for propulsion include high energy LASERs that rely on the momentum of photons to generate thrust. Anti-matter has also been proposed for energy storage. Although the momentum of ejected gas is significantly higher, the LASER propulsion offers the perspective of unlimited operational time – provided there is a power source. The paper will propose the use of the quantum pair formation for generating a working mass, this is different than conventional anti-matter thrusters since the material particles generated are used as propellant not as energy storage.Two methods will be compared: LASER and positron-electron, quantum pair formation. The latter will be shown to offer better momentum above certain energy levels.For the demonstrations an analytical solution is obtained and provided in the form of various coefficients. The implications are, for now, theoretical however the practicality of an optimized thruster using such particles is not to be neglected for long term space missions.

  15. NA48 unravels one of nature's most subtle secrets

    CERN Document Server

    2001-01-01

    NA48 has just announced its final results confirming direct CP-violation with great precision. This phenomenon helps us to understand the imbalance between matter and antimatter in the Universe. At a seminar at CERN on 10 May Guillaume Unal of the Laboratory's NA48 collaboration announced NA48's final result on one of nature's best-kept secrets. Direct CP-violation, as it is called, is a subtle effect that betrays nature's preference for matter over antimatter, the reason why we are here. In 1993, an earlier CERN experiment, NA31, and the E731 experiment at Fermi National Accelerator Laboratory (Fermilab) in the USA published the first precise results on direct CP-violation. The CERN result suggested that direct CP-violation was a real effect. The Fermilab result, while not excluding the effect, was also compatible with no direct CP-violation. More precise measurements were clearly needed, and ambitious new experiments at the two laboratories - NA48 and KTeV - soon rose to the challenge. Both have now measure...

  16. ACADEMIC TRAINING

    CERN Multimedia

    Françoise Benz

    2002-01-01

    24, 25, 26 April LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Anti-Matter by R. LANDUA /CERN-EP Antiparticles are a crucial ingredient of particle physics and cosmology. More than 70 years after Dirac's bold prediction and the subsequent discovery of the positron in 1932, antiparticles are still in the spotlight of modern physics. This lecture for non-specialists will start with a theoretical and historical introduction. Why are antiparticles needed? Why is the (CPT) symmetry between particles and antiparticles so fundamental? What is their role in cosmology? The second part will give an overview about the many aspects of antiparticles in experimental physics: as a tool in accelerators; as a probe inside atoms or nuclei; or as an object to study fundamental symmetries. In the third part, the lecture will focus on the experimental 'antimatter' programme at the Antiproton Decelerator (AD), with special emphysis on antihydrogen production and spectroscopy. The lecture will conclude with an outl...

  17. Baryon Number Violating Scalar Diquarks at the LHC

    CERN Document Server

    Baldes, Iason; Volkas, Raymond R

    2011-01-01

    Baryon number violating (BNV) processes are heavily constrained by experiments searching for nucleon decay and neutron-antineutron oscillations. If the baryon number violation occurs via the third generation quarks, however, we may be able to avoid the nucleon stability constraints, thus making such BNV interactions accessible at the LHC. In this paper we study a specific class of BNV extensions of the standard model (SM) involving diquark and leptoquark scalars. After an introduction to these models we study one promising extension in detail, being interested in particles with mass of O(TeV). We calculate limits on the masses and couplings from neutron-antineutron oscillations and dineutron decay for couplings to first and third generation quarks. We explore the possible consequences of such a model on the matter-antimatter asymmetry. We shall see that for models which break the global baryon minus lepton number symmetry, (B-L), the most stringent constraints come from the need to preserve a matter-antimatte...

  18. SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500

    CERN Multimedia

    2004-01-01

    DATE TIME LECTURER TITLE Monday 9 August 09:15 - 10:00 T. Nakada (CERN) CP Violation: Asymmetry Between Particle and Antiparticle (2/4) 10:15 - 11:00 J.-J. Gomez-Cadenas (IFIC) Neutrino Physics (3/4) 11:15 - 12:00 J. Lesgourgues (CERN) Introduction to Cosmology (1/4) Tuesday 10 August 09:15 - 10:00 T. Nakada (CERN) CP Violation: Asymmetry Between Particle and Antiparticle(3/4) 10:15 - 11:00 J.-J. Gomez-Cadenas (IFIC) Neutrino Physics (4/4) 11:15 - 12:00 J.-J. Gomez-Cadenas (IFIC) T. Nakada (CERN) Discussion Session Wed. 11 August 09:15 - 10:00 T. Nakada (CERN) CP Violation: Asymmetry Between Particle and Antiparticle(4/4) 10:15 - 11:00 J. Lesgourgues (CERN) Introduction to Cosmology (2/4) 11:15 - 12:00 R. Landua (CERN) Antimatter in the Laboratory (1/2) 14:00 - 15:00 P. Le Brun (CERN) Superconductivity and cryogenics in particle accelerators Thursday 12 August 09:15 - 10:00 J. Lesgourgues (CERN) Introduction to Cosmology (3/4) 10:15 - 11:00 R. Landua (CERN) Antimatter in th...

  19. Study of b-hadron decays into two hadrons and a photon at LHCb and first observation of b-baryon radiative decays

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00357276; Calvo, Miriam

    The Standard Model (SM) of particle physics, a set of theories that were developed during the 20th century, aims to explain three of the four fundamental forces of nature: electromagnetism, strong and weak interactions. From a theoretical point of view, the SM was finished during the 1970s, but it was not until 2012 when its last piece, the Higgs boson, was experimentally confirmed. Despite having been proved to be a very successful theory with many experimental observations, the SM fails to explain crucial phenomena that would make it a complete theory. Its main shortcomings are the inclusion of gravity as described by general relativity, the existence and properties of dark matter and dark energy and neutrino oscillations. It also fails to explain the different abundances of matter and antimatter that are observed in the Universe. In particular, $CP$ violation is related to the last of these problems as it is a necessary condition to the asymmetrical matter-antimatter abundances to appear from a symmetrical...

  20. Study of CP violation in neutral B(s) meson going to J/psi phi decays at D0

    Science.gov (United States)

    Strom, Derek A.

    In a universe dominated by matter, the source of CP violation may explain one of the greatest mysteries in particle physics: what happened to the antimatter? The Standard Model successfully describes CP violation in the B+ and B0d systems, yet insufficiently accounts for the observed matter-antimatter asymmetry. The Standard Model predicts a small value of CP violation in the B0s meson system, which has only recently been experimentally tested. A measurement of large, anomalous CP violation in the B0s system would be a clear indication of new physics sources beyond the Standard Model. This dissertation describes a study of CP violation in approximately 2000 B0s → J/psiφ decays reconstructed in a 2.8 fb--1 data sample collected by the DO Run II detector at Fermi National Accelerator Laboratory in Batavia, Illinois. This data was provided by pp¯ collisions at s = 1.96 TeV delivered by the Tevatron accelerator between April 2002 and August 2007. Flavor-tagged B0s → J/psi(mu+mu-- )φ(K+K --) decays and an angular analysis are used to study the time evolution of the final state angular distributions. From this analysis, we measure the width difference between the heavy and light mass eigenstates, BLs and BHs , to be DeltaGammas = 0.19 +/- 0.07 and the CP-violating phase φs = -0.57+.24-.30 .

  1. Role of electroweak radiation in predictions for dark matter indirect detection

    Energy Technology Data Exchange (ETDEWEB)

    Ali Cavasonza, Leila; Pellen, Mathieu; Kraemer, Michael [RWTH Aachen, Aachen (Germany)

    2015-07-01

    A very exciting challenge in particle and astroparticle physics is the exploration of the nature of dark matter. The evidences of the existence of dark matter are also the strongest phenomenological indications for physics beyond the Standard Model. A huge experimental effort is currently made at colliders and via astrophysical experiments to shed light on the nature of dark matter: dark matter may be produced at colliders or detected through direct and indirect detection experiments. The interplay and complementarity between these different approaches offers extraordinary opportunities to improve our understanding of the nature of dark matter or to set constraints on dark matter models. In indirect detection one searches for dark matter annihilation products, that produce secondary antimatter particles like positrons and antiprotons. Such antimatter particles propagate through the Galaxy and can be detected at Earth by astrophysical experiments. Particularly interesting is the importance of electroweak corrections to the predictions for the expected fluxes at Earth. The inclusion of EW radiation from the primary dark matter annihilation products can significantly affect the spectra of the secondary SM particles. The EW radiation can be described using fragmentation functions, as done for instance in QCD. We study the quality of this approximation in a simplified SUSY model and in a UED model.

  2. Events at the Globe of Science and Innovation

    CERN Multimedia

    2006-01-01

    CERN is organising a series of lectures based on the exhibition «A des années-lumière» Thursday 16 November, 8.00 p.m. (in French): Antimatter in the Milky Way Jacques Paul, scientific advisor to the European Space Agency's INTEGRAL mission Every second, more than ten billion tonnes of antimatter destroys itself in our galaxy, the Milky Way. This surprising phenomenon was observed by telescopes on board the INTEGRAL satellite, the European Space Agency's latest giant space observatory. During his lecture the speaker will illustrate the strong link between astronomy and particle physics using the concepts of astroparticles, electron-positron annihilation, the galaxy bulge and dark matter. Tuesday 21 November, 8.00 p.m. (in French): The shape of space, from black holes to the crumpled universe Jean-Pierre Luminet, Research Director at the CNRS Black holes, the shape of the universe, the structure of space-time... Describing the shape of space has always involved a myriad of geometric models, each one wi...

  3. Antiproton-to-proton ratios for ALICE heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A., E-mail: atawfik@cern.ch [Egyptian Center for Theoretical Physics (ECTP), MTI University, Cairo (Egypt)

    2011-06-01

    Assuming that the final state of hadronization takes place along the freezeout line, which is defined by a constant entropy density, the antiproton-to-proton ratios produced in heavy-ion collisions are studied in framework of the hadron resonance gas (HRG) model. A phase transition from quark-gluon plasma to hadrons, a hadronization, has been conjectured in order to allow modifications in the phase-space volume and thus in the single-particle distribution function. Implementing both modifications in the grand-canonical partition function and taking into account the experimental acceptance in the heavy-ion collisions, the antiproton-to-proton ratios over center-of-mass energies {radical}(s) ranging from AGS to RHIC are very well reproduced by the HRG model. Comparing with the same particle ratios in pp collisions results in a gradually narrowing discrepancy with increasing {radical}(s). At LHC energy, the ALICE antiproton-to-proton ratios in the pp collisions turn to be very well described by the HRG model as well. It is likely that the ALICE AA-program will produce the same antiproton-to-proton ratios as the pp-one. Furthermore, the ratio gets very close to unity indicating that the matter-antimatter asymmetry nearly vanishes. The chemical potential calculated at this energy strengthens the assumption of almost fully matter-antimatter symmetry up to the LHC energy.

  4. AEgIS installation completed

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Gravity. Despite first being described over three centuries ago, it remains one of the least understood of the fundamental forces explored by physicists. At CERN’s recently completed AEgIS experiment, a team has set out to examine the effect of gravity on an as-yet-uncharted realm: antimatter.   The complete AEgIS set-up. Located in the AD hall, the AEgIS experiment plans to  make the first direct measurement of Earth’s gravitation effect on antimatter. By sending a beam of antihydrogen atoms through very thin gratings, the experiment will be able to measure how far the antihydrogen atoms fall and in how much time – giving the AEgIS team a measurement of the gravitational coupling. “By the end of 2012, we had finished by putting all the elements of the experiment together,” explains Michael Doser, AEgIS Spokesperson. “Now we have to show that they can all work together and, unfortunately, we will have no antiproton beams fo...

  5. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 DATE TIME LECTURER TITLE Monday 11 July 09:15 - 10:00 L. Di Lella (CERN) Introduction to Particle Physics (4/4) 10:15 - 11:00 P. Chomaz (GANIL / CERN) Introduction to Nuclear Physics (3/3) 11:15 - 12:00 G. ROLANDI (CERN) How an experiment is designed (2/2) 12:00 Discussion Session Tuesday 12 July  09:15 - 11:00 O. BrÜning (CERN) Accelerators (1-2/5) 11:15 - 12:00 O. ULLALAND (CERN) Detectors (1/5) 12:00 Discussion Session Wednesday 13 July 09:15 - 10:00 O. BrÜning (CERN) Accelerators (3/5) 10:15 - 11:00 R. LANDUA (CERN) Antimatter in the Lab (1/2) 11:15 - 12:00 O. ULLALAND (CERN) Detectors (2/5) 12:00 Discussion Session Thursday 14 July 09:15 - 10:00 O. ULLALAND (CERN) Detectors (3/5) 10:15 - 11:00 G. ROLANDI (CERN) Antimatter in the Lab (2/2) 11:15 - 12:00 O. BrÜning (CERN) Accelerators (4/5) 12:00 Discussion Session Friday 1...

  6. One Antimatter— Two Possible Thermodynamics

    Directory of Open Access Journals (Sweden)

    Alexander Y. Klimenko

    2014-02-01

    Full Text Available Conventional thermodynamics, which is formulated for our world populated by radiation and matter, can be extended to describe physical properties of antimatter in two mutually exclusive ways: CP-invariant or CPT-invariant. Here we refer to invariance of physical laws under charge (C, parity (P and time reversal (T transformations. While in quantum field theory CPT invariance is a theorem confirmed by experiments, the symmetry principles applied to macroscopic phenomena or to the whole of the Universe represent only hypotheses. Since both versions of thermodynamics are different only in their treatment of antimatter, but are the same in describing our world dominated by matter, making a clear experimentally justified choice between CP invariance and CPT invariance in context of thermodynamics is not possible at present. This work investigates the comparative properties of the CP- and CPT-invariant extensions of thermodynamics (focusing on the latter, which is less conventional than the former and examines conditions under which these extensions can be experimentally tested.

  7. Symmetries and fundamental interactions—selected topics

    Science.gov (United States)

    Jungmann, Klaus P.

    2014-06-01

    High precision experiments at low energies on discrete and continuous symmetries offer the possibility to search for New Physics beyond the Standard Model. Examples are dedicated searches for violations of the C, P, CP and CPT as well as of Lorentz Invariance using matter and anti-matter. Atomic parity violation was not only essential in the past to verify the Standard Model, still today it has a potential to find Z' bosons, leptoquarks or dark matter. Electric Dipole Moments (EDMs) may provide clues to explain the matter-antimatter asymmetry in the universe. There is at present a some 4 standard deviations discrepancy between theory and experiment for the muon magnetic anomaly. At the same time while providing important information on physics beyond the Standard Model, new technology such as precise clocks is developed along with the experiments motivated by fundamental physics questions. This article summarizes an overview talk that was concerned primarily with a selection of topics from a very rich field, in particular such that were not covered otherwise at this conference.

  8. Advanced Accelerator Concepts Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di erences we might observe would revolutionize fundamental physics. This is the

  9. Big Bang of Massenergy and Negative Big Bang of Spacetime

    Science.gov (United States)

    Cao, Dayong

    2017-01-01

    There is a balance between Big Bang of Massenergy and Negative Big Bang of Spacetime in the universe. Also some scientists considered there is an anti-Big Bang who could produce the antimatter. And the paper supposes there is a structure balance between Einstein field equation and negative Einstein field equation, a balance between massenergy structure and spacetime structure, a balance between an energy of nucleus of the stellar matter and a dark energy of nucleus of the dark matter-dark energy, and a balance between the particle and the wave-a balance system between massenergy (particle) and spacetime (wave). It should explain of the problems of the Big Bang. http://meetings.aps.org/Meeting/APR16/Session/M13.8

  10. Measurements of Discrete Symmetries in the Neutral Kaon System with the CPLEAR (PS195) Experiment

    CERN Document Server

    Ruf, Thomas

    2015-01-01

    The antiproton storage ring LEAR offered unique opportunities to study the symmetries which exist between matter and antimatter. At variance with other approaches at this facility, CPLEAR was an experiment devoted to the study of T, CPT and CP symmetries in the neutral kaon system. It measured with high precision the time evolution of initially strangeness-tagged $K^0$ and $\\bar{K}^0$ states to determine the size of violations with respect to these symmetries in the context of a systematic study. In parallel, limits concerning quantum-mechanical predictions (EPR paradox, coherence of the wave function) or the equivalence principle of general relativity have been obtained. This article will first discuss briefly the unique low energy antiproton storage ring LEAR followed by a description of the CPLEAR experiment, including the basic formalism necessary to understand the time evolution of a neutral kaon state and the main results related to measurements of discrete symmetries in the neutral kaon system. An exce...

  11. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    CERN Multimedia

    2008-01-01

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

  12. Confinement of antihydrogen for 1000 seconds

    CERN Document Server

    Andresen, G B; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jonsell, S; Kemp, S; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2011-01-01

    Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critical question for future studies is: how long can anti-atoms be trapped? Here we report the observation of anti-atom confinement for 1000 s, extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of CPT symmetry and ...

  13. Trapped antihydrogen

    CERN Document Server

    Andresen, G B; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2010-01-01

    Antimatter was first predicted in 1931, by Dirac. Work with highenergy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature’s fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 1014 for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational be...

  14. Zero-point energy of vacuum fluctuation as a candidate for dark energy versus a new conjecture of antigravity based on the modified Einstein field equation in general relativity

    CERN Document Server

    Ni, G

    2005-01-01

    In order to clarify why the zero-point energy associated with the vacuum fluctuations cannot be a candidate for the dark energy in the universe, a comparison with the Casimir effect is analyzed in some detail. A principle of epistemology is stressed that it is meaningless to talk about an absolute (isolated) thing. A relative thing can only be observed when it is changing with respect to other things. Then a new conjecture of antigravity --the repulsive force between matter and antimatter derived from the modified Einstein field equation in general relativity-- is proposed. this is due to the particle-antiparticle symmetry based on a new understanding about the essence of special relativity. Its possible consequences in the theory of cosmology are discussed briefly, including a new explanation for the accelerating universe and gamma-ray-bursts.

  15. Concerning production and decay of mini black holes

    CERN Document Server

    Hajdukovic, D

    2007-01-01

    In the next few years, theories predicting possibility to create mini black holes will be tested at CERN. Either experimental verification or rejection of these theories is of great scientific importance. There is a large consensus that, if successfully created, these short living mini black holes will decay through thermal (Hawking's) radiation. In the present comment we point out, that under assumption of the gravitational repulsion between matter and antimatter (in short we call it antigravity), thermal radiation may be dominated by a non-thermal radiation (being the consequence of pair creation from the vacuum, by gravitational field, which in the case of antigravity, pushes particles and antiparticles in opposite directions). Thus, the eventual creation of mini black holes may turn to be an unexpected opportunity to test the existence of antigravity.

  16. Development of nuclear emulsions with 1 $\\mu$m spatial resolution for the AEgIS experiment

    CERN Document Server

    Kimura, M; Ahlén, O; Amsler, C; Ariga, A; Ariga, T; Belov, A.S; Bonomi, G; Bräunig, P; Bremer, J; Brusa, R.S; Burghart, G; Cabaret, L; Canali, C; Caravita, R; Castelli, F; Cerchiari, G; Cialdi, S; Comparat, D; Consolati, G; Di Domizio, S; Di Noto, L; Doser, M; Dudarev, A; Ereditato, A; Ferragut, R; Fontana, A; Genova, P; Giammarchi, M; Gligorova, A; Gninenko, S.N; Haider, S; Hogan, S.D; Huse, T; Jordan, E; Jørgensen, L.V; Kaltenbacher, T; Kawada, J; Kellerbauer, A; Knecht, A; Krasnický, D; Lagomarsino, V; Mariazzi, S; Matveev, V.A; Merkt, F; Moia, F; Nebbia, G; Nédélec, P; Oberthaler, M.K; Pacifico, N; Petrácek, V; Pistillo, C; Prelz, F; Prevedelli, M; Regenfus, C; Riccardi, C; Røhne, O; Rotondi, A; Sandaker, H; Scampoli, P; Spacek, M; Storey, J; Subieta Vasquez, M.A; Testera, G; Trezzi, D; Vaccarone, R; Zavatarelli, S

    2013-01-01

    The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. We will measure the Earth ' s gravitational acceleration g with antihydrogen atoms being launched in a horizontal vacuum tube and traversing a moiré de fl ectometer. We intend to use a position sensitive device made of nuclear emulsions (combined with a time-of- fl ight detector such as silicon μ strips) to measure precisely their annihilation points at the end of the tube. The goal is to determine g with a 1% relative accuracy. In 2012 we tested emulsion fi lms in vacuum and at room temperature with low energy antiprotons from the CERN antiproton decelerator. First results on the expected performance for AEgIS are presented

  17. Essence of Special Relativity, Reduced Dirac Equation and Antigravity

    CERN Document Server

    Ni, Guang-jiong; Lou, Senyue; Xu, Jianjun

    2010-01-01

    The essence of special relativity is hiding in the equal existence of particle and antiparticle, which can be expressed by two discrete symmetries within one inertial frame --- the invariance under the (newly defined) space-time inversion (${\\bf x}\\to -{\\bf x},t\\to -t$), or equivalently, the invariance under a mass inversion ($m\\to -m$). The problems discussed are: the evolution of the $CPT$ invariance into a basic postulate, an unique solution to the original puzzle in Einstein-Podolsky-Rosen paradox, the reduced Dirac equation for hydrogenlike atoms, and the negative mass paradox leading to the prediction of antigravity between matter and antimatter. {\\bf Keywords}: Special relativity, Reduced Dirac Equation, Antiparticle, Antigravity

  18. Positronium, antihydrogen, light, and the equivalence principle

    Science.gov (United States)

    Karshenboim, Savely G.

    2016-07-01

    While discussing a certain generic difference in effects of gravity on particles and antiparticles, various neutral particles (i.e. the particles which are identical with their antiparticles) could be a perfect probe. One such neutral particles is the positronium atom, which has been available for precision experiments for a few decades. The other important neutral particle is the photon. Behavior of light in the presence of a gravitational field has been the key both to build and develop the theory of general relativity and to verify it experimentally. The very idea of antigravity for antimatter strongly contradicts both the principles of general relativity and its experimentally verified consequences. Consideration of existing experimental results on photons and positrons makes antigravity impossible and leads to a conclusion that the deviation of the ratio of acceleration of the free fall of particles and antiparticles cannot exceed the level of 1× {10}-5.

  19. Potentialities of Revised Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2013-10-01

    Full Text Available The potentialities of a revised quantum electrodynamic theory (RQED earlier established by the author are reconsidered, also in respect to other fundamental theories such as those by Dirac and Higgs. The RQED theory is characterized by intrinsic linear symmetry breaking due to a nonzero divergence of the electric field strength in the vacuum state, as supported by the Zero Point Energy and the experimentally confirmed Casimir force. It includes the results of electron spin and antimatter by Dirac, as well as the rest mass of elementary particles predicted by Higgs in terms of spontaneous nonlinear symmetry breaking. It will here be put into doubt whether the approach by Higgs is the only theory which becomes necessary for explaining the particle rest masses. In addition, RQED theory leads to new results beyond those being available from the theories by Dirac, Higgs and the Standard Model, such as in applications to leptons and the photon.

  20. Surprising quantum bounces

    CERN Document Server

    Nesvizhevsky, Valery

    2015-01-01

    This unique book demonstrates the undivided unity and infinite diversity of quantum mechanics using a single phenomenon: quantum bounces of ultra-cold particles. Various examples of such "quantum bounces" are: gravitational quantum states of ultra-cold neutrons (the first observed quantum states of matter in a gravitational field), the neutron whispering gallery (an observed matter-wave analog of the whispering gallery effect well known in acoustics and for electromagnetic waves), and gravitational and whispering gallery states for anti-matter atoms that remain to be observed. These quantum states are an invaluable tool in the search for additional fundamental short-range forces, for exploring the gravitational interaction and quantum effects of gravity, for probing physics beyond the standard model, and for furthering studies into the foundations of quantum mechanics, quantum optics, and surface science.

  1. ATRAP on the road to cold antihydrogen

    CERN Multimedia

    2001-01-01

    The ATRAP collaboration has succeeded in slowing down antiprotons with positrons, the two ingredients of antihydrogen atoms. This is an important step towards capturing and studying antihydrogen. Members of the ATRAP Collaboration with the apparatus that first demonstrated positron cooling. It was in extremis. Last December, during the six short hours of beam remaining to them, ATRAP researchers achieved their initial goal. For the first time, positrons were used to cool antiprotons. To what end, you may ask? The answer is much simpler than the process: physicists think that this is the most effective means of observing antihydrogen. Recall that an antihydrogen atom is composed of an antiproton and a positron. The first atoms of antihydrogen were produced five years ago at LEAR. But their small number and the brevity of their existence made it impossible to study them in depth. However, to understand the subtle nuances between matter and antimatter, which would explain the imbalance in nature between the tw...

  2. Virtual Visit to the ATLAS Control Room by Institute of Nuclear Physics, Cracow, Poland

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    The 12 Festival of Science "Theory-knowledge-experience...". Fest will be located on the traditional Main Square, which is visited by thousands of citizens and tourists. Institute of Nuclear Physics as usual participates in this annual event. Our visitors will learn the secrets of the CERN experiments on the Large Hadron Collider - ATLAS, LHCb, ALICE, CMS, find out more about the Higgs particles, antimatter quark-gluon plasma (beeing guided by our scientists and PhD students). One of the attractions will be ATLAS Control Room Virtual Visit. Visiting people will have an opportunity to see how ATLAS is controlled and operated to collect its exciting data and ask questions to scientists and engineers involved in LHC program at CERN. Institute of Nuclear Physics has prepared also several interactive demonstrations of Atomic Force Microscopy, Magnetic Resonance, Hadron Therapy and Crystal Physics. The Institute of Nuclear Physics of the Polish Academy of Sciences carries out basic and applied research in physics, ...

  3. An ATLAS Virtual Visit connects physicists at the Town Square of Cracow and physicists of the LHC Experiment in the ATLAS control room; special participation of CERN's General Director, Rolf Heuer and the Director for Research and Scientific Computing, Sergio Bertolucci.

    CERN Multimedia

    2012-01-01

    he 12 Festival of Science "Theory-knowledge-experience...". Fest will be located on the traditional Main Square, which is visited by thousands of citizens and tourists. The Institute of Nuclear Physics as usual participates in this annual event. Our visitors will learn the secrets of the CERN experiments on the Large Hadron Collider - ATLAS, LHCb, ALICE, CMS, find out more about the Higgs particles, antimatter quark-gluon plasma (beeing guided by our scientists and PhD students). One of the attractions will be ATLAS Control Room Virtual Visit. Visiting people will have an opportunity to see how ATLAS is controlled and operated to collect its exciting data and ask questions to scientists and engineers involved in LHC program at CERN. Institute of Nuclear Physics has prepared also several interactive demonstrations of Atomic Force Microscopy, Magnetic Resonance, Hadron Therapy and Crystal Physics.

  4. Systematic uncertainties in long-baseline neutrino-oscillation experiments

    CERN Document Server

    Ankowski, Artur M

    2016-01-01

    Thanks to global efforts over the past two decades, the phenomenon of neutrino oscillations is now well established. In ongoing experiments, the parameters driving the oscillations are being determined with rapidly increasing precision. Yet there still are open issues that have implications going well beyond neutrino physics. The next two decades are expected to bring definite answers to the neutrino-mass hierarchy and violation of charge-particle (CP) symmetry in neutrino oscillations. The question of the mass hierarchy---whether the neutrino masses follow the pattern of the charged-lepton masses---is relevant for cosmology, astrophysics and unification theories. On the other hand, CP violating oscillations have the potential to give an important, or event dominant, contribution to the matter-antimatter asymmetry in the Universe. For the success of future neutrino-oscillation studies it is, however, necessary to ensure a significant reduction of uncertainties, particularly those related to neutrino-energy re...

  5. PAMELA's Measurements of Magnetospheric Effects on High Energy Solar Particles

    CERN Document Server

    Adriani, O; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bravar, U; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Christian, E C; De Donato, C; de Nolfo, G A; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Lee, M; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Ryan, J M; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stochaj, S; Stozhkov, Y I; Thakur, N; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N

    2015-01-01

    The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections (CMEs), is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle to the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument, enables unique observations of SEPs including composition and the angular distribution of the particles about the magnetic field, i.e. pitch angle distribution, over a broad energy range (>80 MeV) -- bridging a critical gap between space-based measurements and ground-based. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two dist...

  6. QCD background estimation for Supersymmetry searches with jets and missing transverse momentum with the ATLAS experiment at the Large Hadron Collider

    CERN Document Server

    Stoerig, Kathrin

    Some of the most interesting questions mankind might ask are closely related to the field of astro- and particle physics: What are the fundamental building blocks of our universe and how do they interact? Will there eventually be a theory that can describe everything? During the last decades, particle collision experiments unraveled various aspects of these mysteries - and a very successful theory emerged: the Standard Model (SM) of particle physics: As of today’s knowledge, matter consists of fermions, the quarks and the leptons. Among these, four fundamental interactions are known: the strong, the weak, the electromagnetic and the gravitational force. These interactions are mediated by bosons (force carriers). While the SM describes the first three interactions with high precision, various fundamental questions remain unanswered - such as the structure in the SM itself, the origin of dark matter/energy and the matter-/antimatter asymmetry. One aesthetically appealing solution is Supersymmetry (SUSY), whic...

  7. Antihydrogen physics: gravitation and spectroscopy in AEgIS

    CERN Document Server

    Ferragut, R; Stroke, H H; Dassa, L; Rohne, O; Hogan, S D; Cialdi, S; Al-Qaradawi, I Y; Formaro, L; Sandaker, H; Testera, G; Stepanov, S V; Folegati, P; Morhard, C; Warring, U; Prelz, F; Belov, A S; Bonomi, G; Consolati, G; Ferrari, G; Lagomarsino, V; Krasnicky, D; Drobychev, G; Giammarchi, M G; Heyne, R; Zenoni, A; Castelli, F; Mariazzi, S; Cabaret, L; Fischer, A; Boscolo, I; Sillou, D; Villa, F; Perini, D; Djourelov, N; Zavatarelli, S; Oberthaler, M K; Manuzio, G; Carraro, C; Matveev, V A; Jorgensen, L V; Nedelec, P; Prevedelli, M; Comparat, D; Dupasquier, A; Turbabin, A V; Zvezhinskij, D S; Fontana, A; Kellerbauer, A; Canali, C; Dudarev, A; Petracek, V; Riccardi, C; Nebbia, G; Gninenko, S N; Brusa, R S; Rotondi, A; Sacerdoti, M; Calloni, A; Doser, M; Byakov, V M; Quasso, F; Trezzi, D

    2011-01-01

    AEgIS (Antimatter experiment: gravity, interferometry, spectroscopy) is an experiment approved by CERN with the goal of studying antihydrogen physics. In AEgIS, antihydrogen will be produced by charge exchange reactions of cold antiprotons with positronium atoms excited in a Rydberg state (n > 20). In the first phase of the experiment, controlled acceleration by an electric field gradient (Stark effect) and subsequent measurement of free fall in a Moire deflectometer will allow a test of the weak equivalence principle. In a second phase, the antihydrogen will be slowed, confined, and laser-cooled to perform CPT studies and detailed spectroscopy. In the present work, after a general description of the experiment, the present status of advancement will be reviewed, with special attention to the production and excitation of positronium atoms.

  8. Thousands of kilometres to visit CERN

    CERN Multimedia

    2003-01-01

    Students from the Columbus high school in the state of Mississippi with their physics teacher Ken Wester (left at rear) and Michel Della Negra, CMS spokesman (in front).An American school at CERN ? Unusual, to say the least... Yet 15 students from the class of Ken Wester, physics teacher in the Columbus High School, Mississippi, didn't hesitate to travel thousands of kilometres to come to CERN. Ken Wester participated last year in CERN's High School Teacher programme. Enthralled by his visit, he has organised the trip for his final year students to visit CERN. The 18-year-olds arrived on the 10th March and spent two days at the laboratory, visiting the CMS construction site and the AD antimatter factory, before leaving on a tour of Switzerland and Germany.

  9. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    Science.gov (United States)

    Dufour, G.; Debu, P.; Lambrecht, A.; Nesvizhevsky, V. V.; Reynaud, S.; Voronin, A. Yu.

    2014-01-01

    GBAR is a project aiming at measuring the free-fall acceleration of gravity for antimatter, namely antihydrogen atoms (). The precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution. We propose to use a new method for shaping the distribution of the vertical velocities of , which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk. We estimate statistical and systematic uncertainties, and we show that the accuracy for measuring the free fall acceleration of could be pushed below under realistic experimental conditions.

  10. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    CERN Document Server

    Dufour, Gabriel; Lambrecht, Astrid; Nesvizhevsky, Valery; Reynaud, Serge; Voronin, Alexei

    2013-01-01

    GBAR is a project aiming at measuring the free fall acceleration of gravity for antimatter, namely antihydrogen atoms ($\\overline{\\mathrm{H}}$). Precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution. We propose to use a new method for shaping the distribution of vertical velocities of $\\overline{\\mathrm{H}}$, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing $\\overline{\\mathrm{H}}$ with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk. We estimate statistical and systematic uncertainties, and show that the accuracy for measuring the free fall acceleration $\\overline{g}$ of $\\overline{\\mathrm{H}}$ could be pushed below $10^{-3}$ under realistic experimental conditions.

  11. Dark Matter search with the AMS-02 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cardano, Francesco Maria [University of Perugia, Via Pascoli n. 1, Perugia (Italy)], E-mail: cardano@fisica.unipg.it

    2008-04-01

    Late astrophysical and cosmological measurements have shown how {approx}83% of matter of the Universe is dark and non-baryonic. Supersymmetric extensions of the Standard Model can provide a good candidate as main component of Dark Matter in the neutralino {chi}. In this framework, the magnetic spectrometer AMS-02 has been conceived for the precision measurement on board of the ISS of composition and energy spectrum of cosmic rays over a wide energy range, providing the potential to detect contribution to charged particle fluxes from neutralino annihilation. Due to the general faintness of expected Dark Matter contributions to cosmic ray spectra, interesting research channels are those for which the standard astrophysical background is expected to be low, like antimatter ones. Results of various MC analysis of AMS potential in the measurement of positron, antiproton and antideuteron fluxes are presented.

  12. Nonthermal CP Violation in Soft Leptogenesis

    CERN Document Server

    Adhikari, Rathin; Fong, Chee Sheng; Rangarajan, Raghavan

    2015-01-01

    Soft leptogenesis is a mechanism which generates the matter-antimatter asymmetry of the Universe via the out-of-equilibrium decays of heavy sneutrinos in which soft supersymmetry breaking terms play two important roles: they provide the required CP violation and give rise to the mass splitting between otherwise degenerate sneutrino mass eigenstates within a single generation. This mechanism is interesting because it can be successful at lower temperature regime $T \\lesssim 10^9$ GeV in which the conflict with the overproduction of gravitinos can possibly be avoided. In earlier works the leading CP violation is found to be nonzero only if finite temperature effects are included. By considering generic soft trilinear couplings, we find two interesting consequences: 1) the leading CP violation can be nonzero even at zero temperature realizing nonthermal CP violation and 2) the CP violation is sufficient even far away from the resonant regime allowing soft supersymmetry breaking parameters to assume natural value...

  13. Ageing of the LHCb outer tracker & $b$-hadron production and decay at $\\sqrt{s}$=7 TeV

    CERN Document Server

    Koopman, Rose; Tuning, N

    The Standard Model (SM) of particle physics describes all known elementary particles and their interactions. Despite its tremendous success, some problems remain not understood. The abundance of matter over anti-matter is still an open question. Also the nature of so- called dark matter, invisible matter that can only be detected through its gravitational force, is yet to be discovered. New Physics (NP) models have been proposed to answer these (and more) open questions. These models are usually extensions of the already existing SM that assume the existence of yet unknown particles and forces. The ATLAS and CMS experiments at the Large Hadron Collider (LHC) are designed to directly search for such new particles predicted by NP models. The LHCb experiment, however, is designed to measure observables for which there are SM predictions. New particles can modify these observables. Therefore, precision measurements can reveal hints of NP. The experimental apparatus forms an integral part in the search for NP. I c...

  14. Some Unsolved Problems, Questions, and Applications of the Brightsen Nucleon Cluster Model

    Science.gov (United States)

    Smarandache, Florentin

    2010-10-01

    Brightsen Model is opposite to the Standard Model, and it was build on John Weeler's Resonating Group Structure Model and on Linus Pauling's Close-Packed Spheron Model. Among Brightsen Model's predictions and applications we cite the fact that it derives the average number of prompt neutrons per fission event, it provides a theoretical way for understanding the low temperature / low energy reactions and for approaching the artificially induced fission, it predicts that forces within nucleon clusters are stronger than forces between such clusters within isotopes; it predicts the unmatter entities inside nuclei that result from stable and neutral union of matter and antimatter, and so on. But these predictions have to be tested in the future at the new CERN laboratory.

  15. Touch BASE

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In a recent Nature article (see here), the BASE collaboration reported the most precise comparison of the charge-to-mass ratio of the proton to its antimatter equivalent, the antiproton. This result is just the beginning and many more challenges lie ahead.   CERN's AD Hall, where the BASE experiment is set-up. The Baryon Antibaryon Symmetry Experiment (BASE) was approved in June 2013 and was ready to take data in August 2014. During these 14 months, the BASE collaboration worked hard to set up its four cryogenic Penning traps, which are the heart of the whole experiment. As their name indicates, these magnetic devices are used to trap antiparticles – antiprotons coming from the Antiproton Decelerator – and particles of matter – negative hydrogen ions produced in the system by interaction with a degrader that slows the antiprotons down, allowing scientists to perform their measurements. “We had very little time to set up the wh...

  16. PRECISE COSMIC RAYS MEASUREMENTS WITH PAMELA

    Directory of Open Access Journals (Sweden)

    A. Bruno

    2013-12-01

    Full Text Available The PAMELA experiment was launched on board the Resurs-DK1 satellite on June 15th 2006. The apparatus was designed to conduct precision studies of charged cosmic radiation over a wide energy range, from tens of MeV up to several hundred GeV, with unprecedented statistics. In five years of continuous data taking in space, PAMELA accurately measured the energy spectra of cosmic ray antiprotons and positrons, as well as protons, electrons and light nuclei, sometimes providing data in unexplored energetic regions. These important results have shed new light in several astrophysical fields like: an indirect search for Dark Matter, a search for cosmological antimatter (anti-Helium, and the validation of acceleration, transport and secondary production models of cosmic rays in the Galaxy. Some of the most important items of Solar and Magnetospheric physics were also investigated. Here we present the most recent results obtained by the PAMELA experiment.

  17. CP violation and electroweak baryogenesis in the Standard Model

    Directory of Open Access Journals (Sweden)

    Brauner Tomáš

    2014-04-01

    Full Text Available One of the major unresolved problems in current physics is understanding the origin of the observed asymmetry between matter and antimatter in the Universe. It has become a common lore to claim that the Standard Model of particle physics cannot produce sufficient asymmetry to explain the observation. Our results suggest that this conclusion can be alleviated in the so-called cold electroweak baryogenesis scenario. On the Standard Model side, we continue the program initiated by Smit eight years ago; one derives the effective CP-violating action for the Standard Model bosons and uses the resulting effective theory in numerical simulations. We address a disagreement between two previous computations performed effectively at zero temperature, and demonstrate that it is very important to include temperature effects properly. Our conclusion is that the cold electroweak baryogenesis scenario within the Standard Model is tightly constrained, yet producing enough baryon asymmetry using just known physics still seems possible.

  18. Double-electron capture by highly-ionized atoms isolated at very low energy

    Science.gov (United States)

    Fogwell Hoogerheide, Shannon; Dreiling, Joan M.; Sahiner, Arda; Tan, Joseph N.

    2016-05-01

    Charge exchange with background gases, also known as electron capture processes, is important in the study of comets, controlled fusion energy, anti-matter atoms, and proposed one-electron ions in Rydberg states. However, there are few experiments in the very low energy regime that could be useful for further theoretical development. At NIST, highly-charged ions extracted from an electron-beam ion trap can be isolated with energy state. Analysis using a system of rate equations yields information about the ion cloud expansion and single-electron capture rates. A substantial amount of double-electron capture is also observed. We present the relative rates and discuss the error budget. SFH and JMD were funded by National Research Council Research Associateship Awards during some of this work.

  19. CERN Shop - Christmas Sale 15-17.12.2003

    CERN Multimedia

    2003-01-01

    Looking for Christmas present ideas? Come to the Reception Shop Special Stand: in Meyrin, Main Building, ground floor, from Monday 15 to Wednesday 17 December from 10:30 to 16:00 hrs. CERN Sweat-shirts (M, L, XL) 30.- CERN T-shirt, (M, L, XL) 20.- CERN silk tie (2 colours) 35.- Fancy silk tie (blue, bordeau) 20.- Silk scarf (light blue, red, yellow) 35.- Swiss army knife with CERN logo 25.- Swiss Duo Pack with CERN logo 30.- CERN/Atlas watch 40.- CERN baseball cap 15.- CERN briefcase 15,- Mouse mat 10,- CERN Calendar 5,- Books: - "Antimatter" (English) 35.- - "How the web was born" (English, Italian) 30,- - "The Search for Infinity" (French, Italian, English, German) 40.- - "World of Particles/le monde de particules" 6,- - "Facts and Mysteries" (English) 28,- - "Nucleus" (English) 50,- If you miss this special occasion, the articles are also available at the Reception Shop in Buildin...

  20. Physics at CPLEAR

    Energy Technology Data Exchange (ETDEWEB)

    Angelopoulos, A.; Apostolakis, A.; Aslanides, E.; Backenstoss, G.; Bargassa, P.; Bee, C.P.; Behnke, O.; Benelli, A.; Bertin, V.; Blanc, F.; Bloch, P.; Carlson, P.; Carroll, M.; Cawley, E.; Chertok, M.B.; Danielsson, M.; Dejardin, M.; Derre, J.; Ealet, A.; Eleftheriadis, C.; Ferreira-Marques, R.; Fetscher, W.; Fidecaro, M.; Filipcic, A.; Francis, D.; Fry, J.; Gabathuler, E.; Gamet, R.; Gerber, H.-J.; Go, A.; Haselden, A.; Hayman, P.J.; Henry-Couannier, F.; Hollander, R.W.; Jon-And, K.; Kettle, P.-R.; Kokkas, P.; Kreuger, R.; Le Gac, R.; Leimgruber, F.; Mandic, I.; Manthos, N.; Marel, G.; Mikuz, M.; Miller, J.; Montanet, F.; Muller, A.; Nakada, T.; Pagels, B.; Papadopoulos, I.; Pavlopoulos, P.; Policarpo, A.; Polivka, G.; Rickenbach, R.; Roberts, B.L.; Ruf, T.; Sakeliou, L.; Schaefer, M.; Schaller, L.A.; Schietinger, T.; Schopper, A.; Tauscher, L.; Thibault, C.; Touchard, F.; Touramanis, C.; Eijk, C.W.E. van; Vlachos, S.; Weber, P.; Wigger, O.; Wolter, M.; Yeche, C.; Zavrtanik, D.; Zimmerman, D

    2003-01-01

    LEAR offered unique opportunities to study the symmetries which exist between matter and antimatter. At variance with other approaches at this facility, CPLEAR was an experiment devoted to the study of CP, T and CPT symmetries in the neutral-kaon system. A variety of measurements allowed us to determine with high precision the parameters which describe the time evolution of the neutral kaons and their antiparticles, including decay amplitudes, and the related symmetry properties. Limits concerning quantum-mechanical predictions (EPR, coherence of the wave function) or the equivalence principle of general relativity have been obtained. An account of the main features of the experiment and its performances is given here, together with the results achieved.

  1. Measurement of the cosmic ray muon spectrum and charge ratio in the atmosphere from ground level to balloon altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Bellotti, R.; Cafagna, F.; Circella, M.; De Cataldo, G.; De Marzo, C.N. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Brunetti, M.T.; Codini, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy)

    1995-09-01

    A measurement of the cosmic ray muon flux in the atmosphere has been carried out from the data collected by the MASS2 (Matter Antimatter Spectrometer System) apparatus during the ascent of the 1991 flight. The experiment was performed on September 23, 1991 from Fort Sumner, New Mexico (USA) at a geomagnetic cutoff of about 4.5 GV/c. The negative muon spectrum has been determined in different depth ranges in the momentum interval 0.33-40 GeV/c with higher statistics and better background rejection than reported before. Taking advantage of the high geomagnetic cutoff and of the high performances of the instrument, the positive muon spectrum has also been determined and the altitude dependence of the muon charge ratio has been investigated in the 0.33-1.5 GeV/c momentum range.

  2. The mystery of the seven spheres how homo sapiens will conquer space

    CERN Document Server

    Bignami, Giovanni F

    2015-01-01

    In this book, Giovanni Bignami, the outstanding Italian scientist and astronomer, takes the reader on a journey through the “seven spheres”, from our own planet to neighboring stars. The author offers a gripping account of the evolution of Homo Sapiens to the stage where our species is developing capabilities, in the form of new energy propulsion systems, that will enable us to conquer space. The reader will learn how we first expanded our activities to reach beyond our planet, to the Moon, and how nuclear energy, nuclear fusion, and matter–antimatter annihilation will enable us to extend our exploration. After Mars and Jupiter we shall finally reach the nearest stars, which we now know are surrounded by numerous planets, some of which are bound to be habitable. The book includes enticing descriptions of such newly discovered planets and also brings alive key historical characters in our story, such as Jules Verne and Werner von Braun.

  3. Polarimetry concepts for the EDM precursor experiment at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Maanen, Paul [III. Physikalisches Institut B, RWTH Aachen (Germany); Collaboration: JEDI-Collaboration

    2015-07-01

    The CP violation in the Standard Model is not sufficient to explain the dominance of matter over antimatter in the universe. New CP violating sources could manifest as permanent electric dipole moments (EDM). So far, no direct measurement of a charged particle's EDM has been achieved. The goal of the JEDI (Juelich Electric Dipole moment Investigations) collaboration is to measure the EDM of light nuclei (p,d,{sup 3}He). In the chosen method, an EDM manifests as a small buildup of the vertical polarization of a stored hadron beam. Because the effect is very small, great care has to be taken designing the polarimeter. This talk gives an overview of the planned detector concept and discusses first results of simulations and experiments.

  4. Virtual Visit to the ATLAS Control Room by Natural History Museum, London

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    Nature Live is a programme of daily events which take place at the Natural History Museum, London. Nature Live brings together scientists and visitors to explore, discover and discuss the natural world and our place within it. In each event visitors get the chance to meet our scientists, see the specimens they study and ask lots of questions. Today Nature Live will feature a live link to the LHC control room at CERN. This will give visitors the amazing opportunity to ask questions to the physicists involved about the Large Hadron Collider experiments, Higgs particles and antimatter. As well as to discover how scientists at the Museum and at CERN are all looking back through deep time to answer those big questions on the origins of life, the universe and everything. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/London_NatureLive-2012.html

  5. The Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Ting, Samuel

    2013-01-01

    The Alpha Magnetic Spectrometer is a precision, large acceptance particle physics detector which was deployed on the International Space Station (ISS) in May 2011. It will be on the ISS for the entire lifetime of the Space Station of about 20 years. To date, the detector has collected over 24 billion cosmic ray events. Among the physics objectives of AMS are the search for an understanding of Dark Matter, Antimatter and the origin of cosmic rays as well as the exploration of new physics phenomena. This report presents an overview of the operations and performance of the AMS experiment on the ISS as well as the progress of the analysis of the data collected over one year of operations in space

  6. Global gradients for cosmic-ray protons in the heliosphere during the solar minimum of cycle 23/24

    CERN Document Server

    Vos, E E

    2016-01-01

    Global gradients for cosmic-ray (CR) protons in the heliosphere are computed with a comprehensive modulation model for the recent prolonged solar minimum of Cycle 23/24. Fortunately, the PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) and Ulysses/KET (Kiel Electron Telescope) instruments simultaneously observed proton intensities for the period between July 2006 and June 2009. Radial and latitudinal gradients are calculated from measurements, with the latter possible because Ulysses changed its position significantly in the heliocentric meridional plane during this period. The modulation model is set up for the conditions that prevailed during this unusual solar minimum period to gain insight into the role role that particle drifts played in establishing the observed gradients for this period. Four year-end PAMELA proton spectra were reproduced with the model, from 2006 to 2009, followed by corresponding radial profiles that were computed along the Voyager-1 trajectory, and co...

  7. Underground operation of the ICARUS T600 LAr-TPC: first results

    CERN Document Server

    Rubbia, C.; Aprili, P.; Baibussinov, B.; Ceolin, M. Baldo; Barze, L.; Benetti, P.; Calligarich, E.; Canci, N.; Carbonara, F.; Cavanna, F.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Berzolari, A. Gigli; Gninenko, S.; Golan, T.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Karbowniczek, P.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Lantz, M.; Mania, S.; Mannocchi, G.; Mauri, F.; Menegolli, A.; Meng, G.; Montanari, C.; Muraro, S.; Otwinowski, S.; Palamara, O.; Palczewski, T.J.; Periale, L.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Prata, M.; Przewlocki, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Sala, P.; Scantamburlo, E.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Sobczyk, J.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Terrani, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wachala, T.; Wang, H.; Yang, X.; Zalewska, A.; Zaremba, K.; Zmuda, J.

    2011-01-01

    Open questions are still present in fundamental Physics and Cosmology, like the nature of Dark Matter, the matter-antimatter asymmetry and the validity of the particle interaction Standard Model. Addressing these questions requires a new generation of massive particle detectors exploring the subatomic and astrophysical worlds. ICARUS T600 is the first large mass (760 ton) example of a novel detector generation able to combine the imaging capabilities of the old famous "bubble chamber" with an excellent energy measurement in huge electronic detectors. ICARUS T600 now operates at the Gran Sasso underground laboratory, studying cosmic rays, neutrino oscillation and proton decay. Physical potentialities of this novel telescope are presented through few examples of neutrino interactions reconstructed with unprecedented details. Detector design and early operation are also reported.

  8. Centrality dependence of ?, baryon and antibaryon production in Pb + Pb collisions at 158 A GeV

    Science.gov (United States)

    Kabana, Sonia; NA52 Collaboration; Ambrosini, G.; Arsenescu, R.; Baglin, C.; Beringer, J.; Borer, K.; Bussière, A.; Dittus, F.; Elsener, K.; Gorodetzky, Ph; Guillaud, J. P.; Hess, P.; Kabana, S.; Klingenberg, R.; Lindén, T.; Lohmann, K. D.; Mommsen, R.; Moser, U.; Pretzl, K.; Schacher, J.; Stoffel, F.; Tuominiemi, J.; Weber, M.

    1999-02-01

    We present new results of the CERN experiment NA52 on the centrality dependence of img23.gif, img24.gif, p, d, p and d production yields near zero transverse momentum and at several rapidities, from 64 img25.gif to 4 img25.gif of the total Pb + Pb cross section. Baryon yields increase nearly linearly and img24.gif yields faster than linearly with the number of participating nucleons img28.gif. The antibaryon yields increase less than linearly with img28.gif, indicating absorption. The centrality and rapidity dependence of the img30.gif ratio indicates Coulomb interaction of the pions with the projectile spectator protons. Within the framework of a coalescence model the radius of the particle source has been estimated from the ratios img31.gif and d /¯ img32.gif. The source radii are similar for matter and antimatter and are found to increase with img33.gif.

  9. B is for Beauty

    CERN Multimedia

    Labreporter; Alom Shaha

    2008-01-01

    With Dr. Tara Shiers, Royal Society University Research Fellow, University of Liverpool, Prof. Themis Bowcock, Head of the LHCb Group, University of Liverpool, and Mike Wormald, Research Technician, University of Liverpool. Tara and the LHCb-Liverpool Group are responsible for providing the modules for the “vertex locator” or VELO. This is a silicon based detector that will let the scientists precisely track the movement of the b-quarks for the duration of their brief lives; within trillionths of a second the b-quarks will decay into other particles. The detectors being built at Liverpool will allow scientists to reconstruct the position of the b-quarks in 3D and pinpoint crucial differences between matter and antimatter. This, they hope, will reveal unknown truths about the nature of the universe.

  10. Generation of high-energy electron-positron beams in the collision of a laser-accelerated electron beam and a multi-petawatt laser

    CERN Document Server

    Lobet, Mathieu; d'Humières, Emmanuel; Gremillet, Laurent

    2015-01-01

    Generation of antimatter via the multiphoton Breit-Wheeler process in an all-optical scheme will be made possible on forthcoming high-power laser facilities through the collision of wakefield-accelerated GeV electrons with a counter-propagating laser pulse with $10^{22}$-$10^{23}$ $\\mathrm{Wcm}^{-2}$ peak intensity. By means of integrated 3D particle-in-cell simulations, we show that the production of positron beams with 0.1-1 nC total charge, 100-400 MeV mean energy and 0.01-0.1 rad divergence is within the reach of soon-to-be-available laser systems. The variations of the positron beam's properties with respect to the laser parameters are also examined.

  11. Steps towards the design of a cryogenic manipulator for an ultra-thin membrane in a 1T magnetic field

    CERN Document Server

    Vasev, Andrej

    2015-01-01

    The main purpose of my CERN's project is design, analysis and research on all conditions under which one cryogenic mechanism would produce extremely low temperatures needed for cooling down a silicon target in a closed magnetic system. Main source of the research is the AEgIS (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) experiment of CERN, which aims to carry out the first direct measurement of a gravitational effect on an antimatter system. To reach this goal, a silicon target is bombarded by positrons in order to create positronium which is used to form antihydrogen atoms on which the experiment is going to be done. That would not be possible without the presence of a respective cooling system that secures constant extremely low temperatures in the silicon area. In the further development of the cryogenic system’s functionality, a special attention is given to its construction, used materials and interaction between each other.

  12. I molti volti della comunicazione scientifica

    CERN Document Server

    Bressan, Beatrice Alessandra

    1998-01-01

    The thesis, I molti volti della Comunicazione Scientifica (The many aspects of Science Communication), discussed in February 1998, investigates the impact of science on Italian and foreign daily press. This impact was assessed through the comparison between press releases by two Institutions (CERN and the TERA Foundation) and articles published in the press on the TERA project of Ugo Amaldi, and two CERN projects the Energy Amplifier of Carlo Rubbia and the antimatter experiment. The articles were chosen in the most important world daily newspapers and science magazines: Le Monde, L’Evenement, The Times, The Financial Time, The Independent, Washington Post, Il Corriere della Sera, La Repubblica, La Stampa, Il Sole 24 Ore, La Tribune de Geneve, El Pais, The Honolulu Advertiser, Airone, Le Scienze (the Italian edition of Scientific American), etc. The first chapter of the thesis includes interviews with Nobel Laureates Carlo Rubbia, Renato Dulbecco and Rita Levi Montalcini. Interviews made with some science j...

  13. Case study of a magnetic system for low-energy machines

    CERN Document Server

    Schoerling, Daniel

    2016-01-01

    The extra low-energy antiproton ring (ELENA) is a CERN particle decelerator with the purpose to deliver antiprotons at lowest energies aiming to enhance the study of antimatter. The hexagonal shaped ring with a circumference of about 30 m will decelerate antiprotons from momenta of 100 to 13.7 MeV/c. In this paper, the design approach for a magnet system for such a machine is presented. Due to the extra-low beam rigidity, the design of the magnet system is especially challenging because even small fields, arising for example from residual magnetization and hysteresis, have a major impact on beam dynamics. In total, seven prototype magnets of three different magnet types have been built and tested. This paper outlines challenges, describes solutions for the design of the magnet system and discusses the results of the prototypes.

  14. Flavor Cosmology: Dynamical Yukawas in the Froggatt-Nielsen Mechanism

    CERN Document Server

    Baldes, Iason; Servant, Geraldine

    2016-01-01

    Can the cosmological dynamics responsible for settling down the present values of the Cabibbo-Kobayashi-Maskawa matrix be related to electroweak symmetry breaking? If the Standard Model Yukawa couplings varied in the early universe and started with order one values before electroweak symmetry breaking, the CP violation associated with the CKM matrix could be the origin of the matter-antimatter asymmetry. The large effective Yukawa couplings which lead to the enhanced CP violation can also help in achieving a strong first-order electroweak phase transition. We study in detail the feasibility of this idea by implementing dynamical Yukawa couplings in the context of the Froggatt--Nielsen mechanism. We discuss two main realizations of such a mechanism, related phenomenology, cosmological and collider bounds, and provide an estimate of the baryonic yield. A generic prediction is that this scenario always features a new scalar field below the electroweak scale.

  15. Cosmological Probes for Supersymmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2015-05-01

    Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  16. Investigation of Nuclear Partonic Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Henry J. [Univ. of California, Berkeley, CA (United States); Engelage, J. M.

    2016-08-30

    Our research program had two primary goals during the period of this grant, to search for new and rare particles produced in high-energy nuclear collisions and to understand the internal structure of nuclear matter. We have developed electronics to pursue these goals at the Relativistic Heavy Ion Collider (RHIC) in the Solenoidal Tracker at RHIC (STAR) experiment and the AnDY experiment. Our results include discovery of the anti-hyper-triton, anti- 3Λ-barH, which opened a new branch on the chart of the nuclides, and the anti-alpha, anti- 4He, the heaviest form of anti-matter yet seen, as well as uncovering hints of gluon saturation in cold nuclear matter and observation of jets in polarized proton-proton collisions that will be used to probe orbital motion inside protons.

  17. Virtual Visit to the ATLAS Control Room by the University of Bern

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    Fresher's day for potential future bachelor students Infotage für Studieninteressierte Bachelor Once a year the University of Bern organizes two information days for young potential future bachelor students. Young aspiring candidates interested in a career in physics will be shown the forefront of physics research, where a trip around the university physics laboratories, and a direct video link to the ATLAS Control room at CERN's Large Hadron Collider is part of the program. A physicist from Bern will present directly from the ATLAS control room for a direct and personal view into the physics at the LHC, the Higgs particle, the generation of mass, antimatter, the origin of the universe and the involvement of the Bern high-energy physics team in the ATLAS experiment. This also allows for fruitful discussions about their own perspectives of perhaps becoming a CERN physicist one day. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Bern-2012.html

  18. Leptogenesis and gravity: Baryon asymmetry without decays

    Science.gov (United States)

    McDonald, J. I.; Shore, G. M.

    2017-03-01

    A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.

  19. Why three generations?

    Directory of Open Access Journals (Sweden)

    Masahiro Ibe

    2016-07-01

    Full Text Available We discuss an anthropic explanation of why there exist three generations of fermions. If one assumes that the right-handed neutrino sector is responsible for both the matter–antimatter asymmetry and the dark matter, then anthropic selection favors three or more families of fermions. For successful leptogenesis, at least two right-handed neutrinos are needed, while the third right-handed neutrino is invoked to play the role of dark matter. The number of the right-handed neutrinos is tied to the number of generations by the anomaly constraints of the U(1B−L gauge symmetry. Combining anthropic arguments with observational constraints, we obtain predictions for the X-ray observations, as well as for neutrinoless double-beta decay.

  20. Final Technical Report: Investigation of Nuclear Partonic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Henry J. [Univ. of California, Berkeley, CA (United States)

    2016-08-30

    Our research program had two primary goals during the period of this grant, to search for new and rare particles produced in high-energy nuclear collisions and to understand the internal structure of nuclear matter. We have developed electronics to pursue these goals at the Relativistic Heavy Ion Collider (RHIC) in the Solenoidal Tracker at RHIC (STAR) experiment and the AnDY experiment. Our results include discovery of the anti-hyper-triton, anti- 3Λ-barH, which opened a new branch on the chart of the nuclides, and the anti-alpha, anti- 4He, the heaviest form of anti-matter yet seen, as well as uncovering hints of gluon saturation in cold nuclear matter and observation of jets in polarized proton-proton collisions that will be used to probe orbital motion inside protons.

  1. Study of Anti-Hydrogen and Plasma Physics 4.Observation of Antiproton Beams and Nonneutral Plasmas

    CERN Document Server

    Hori, Masaki; Fujiwara, Makoto; Kuroda, Naofumi

    2004-01-01

    Diagnostics of antiproton beams and nonneutral plasmas are described in this chapter. Parallel plate secondary electron emission detectors are used to non-destructively observe the beam position and intensity without loss. Plastic scintillation tracking detectors are useful in determining the position of annihilations of antiprotons in the trap. Three-dimensional imaging of antiprotons in a Penning trap is discussed. The unique capability of antimatter particle imaging has allowed the observation of the spatial distribution of particle loss in a trap. Radial loss is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. By observing electrostatic eigen-modes of nonneutral plasmas trapped in the Multi-ring electrode trap, the non-destructive measurement of plasma parameters is performed.

  2. Conceptual designs for antiproton space propulsion systems

    Energy Technology Data Exchange (ETDEWEB)

    Cassenti, B.N.

    1989-01-01

    Five conceptual designs for antimatter space propulsion systems were compared in terms of their performance characteristics. The systems examined included solid-core liquid-propellant rockets; magnetically confined gaseous-core rockets using liquid or solid propellants; plasma-core rockets; pion rockets, which are driven directly by the mass annihilation products; and ram-augmented rockets, in which antiproton annihilation is used to heat hydrogen collected in interstellar space. It was found that, in general, as the specific impulse of the propulsion system increases, the thrust decreases. The comparison between designs showed that only fusion rockets have the capability to compete in performance with mass annihilation rockets. For very-high-speed interstellar missions, pion rockets, which can have a specific impulse of 20 million sec (although with a thrust-to-engine mass ratios of only 0.01 G) will offer best performance. 36 refs.

  3. Atoms for space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

  4. Neutrino Masses, Leptogenesis and Decaying Dark Matter

    CERN Document Server

    Chen, Chuan-Hung; Zhuridov, Dmitry V

    2009-01-01

    We study a simple extension of the standard model to simultaneously explain neutrino masses, dark matter and the matter-antimatter asymmetry of the Universe. In our model, the baryon asymmetry is achieved by the leptogenesis mechanism, while the decaying dark matter with the lifetime of O(10^26 s) provides a natural solution to the electron and positron excesses in Fermi and PAMELA satellite experiments. In particular, we emphasize that our model is sensitive to the structure at the endpoint around 1 TeV of the Fermi data. In addition, some of new particles proposed in the model are within the reach at the near future colliders, such as the Large Hadron Collider.

  5. Neutrino masses, leptogenesis and decaying dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuan-Hung [Department of Physics, National Cheng-Kung University, Tainan 701, Taiwan (China); Geng, Chao-Qiang; Zhuridov, Dmitry V., E-mail: physchen@mail.ncku.edu.tw, E-mail: geng@phys.nthu.edu.tw, E-mail: zhuridov@phys.nthu.edu.tw [Department of Physics, National Tsing-Hua University, Hsinchu 300, Taiwan (China)

    2009-10-01

    We study a simple extension of the standard model to simultaneously explain neutrino masses, dark matter and the matter-antimatter asymmetry of the Universe. In our model, the baryon asymmetry is achieved by the leptogenesis mechanism, while the decaying dark matter with the lifetime of O(10{sup 26} s) provides a natural solution to the electron and positron excesses in Fermi and PAMELA satellite experiments. In particular, we emphasize that our model is sensitive to the structure at the endpoint around 1 TeV of the Fermi data. In addition, some of new particles proposed in the model are within the reach at the near future colliders, such as the Large Hadron Collider.

  6. Nuclear Energy for Space Exploration

    Science.gov (United States)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  7. Feynman-Weinberg Quantum Gravity and the Extended Standard Model as a Theory of Everything

    CERN Document Server

    Tipler, Frank J

    2005-01-01

    I argue that the (extended) Standard Model (SM) of particle physics and the renormalizable Feynman-Weinberg theory of quantum gravity comprise a theory of everything. I show that imposing the appropriate cosmological boundary conditions make the theory finite. The infinities that are normally renormalized away and the series divergence infinities are both eliminated by the same mechanism. Furthermore, this theory can resolve the horizon, flatness, and isotropy problems of cosmology. Joint mathematical consistency naturally yields a scale-free, Gaussian, adiabatic perturbation spectrum, and more matter than antimatter. I show that mathematical consistency of the theory requires the universe to begin at an initial singularity with a pure $SU(2)_L$ gauge field. I show that quantum mechanics requires this field to have a Planckian spectrum whatever its temperature. If this field has managed to survive thermalization to the present day, then it would be the CMBR. If so, then we would have a natural explanation for...

  8. Annual review 2000-2001; Rapport d'activite 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report reviews the activities of the LAPP (particle physics laboratory of Annecy-le-Vieux) for the years 2000-2001. The central themes of research are: 1) the standard model and its extension, 2) the study of CP violation (contribution to the experiments BABAR and LHCb), 3) the search for the Higgs'boson (contribution to the experiments ALEPH, L3, ATLAS and CMS), 4) physics of neutrinos (contribution to the experiments NOMAD and OPERA), 5) the study of anti-matter and cosmic radiation (contribution to the experiment AMS and to the project EUSO embarked on the international spatial station), and 6) the search for gravitational waves (contribution to the experiment VIRGO)

  9. Spotlight on CERN : Professor Michel Spiro

    CERN Multimedia

    CERN video productions

    2011-01-01

    20 Member states throughout Europe. A geographical expansion underway. A worldwide, international collaboration and a scientific challenge on a scale second to none. In view of this complexity, how is CERN managed? This is the remit of the CERN council, which notably defines the strategic programmes, annual objectives, approves the annual budget and nominates the directorate. I am pleased to welcome Professor Michel Spiro, scientific director of the CNRS in France and CERN Council presdient since 2010. On today’s agenda: Expansion, innovation and communication. Hello and welcome Professor.. François et Stéphan are of course with me today to discuss such matters as antimatter, press and we will also be talking water and towers… I will say no more. It’s good to see you both ! And welcome to you all for this latest edition of Spotlight on CERN.

  10. Primordial black holes, cosmic rays and instrumental developments for the Cerenkov imager of the AMS space experiment; Trous noirs primordiaux, rayonnement cosmique et developpements instrumentaux pour l'imageur Tcherenkov de l'experience spatiale AMS

    Energy Technology Data Exchange (ETDEWEB)

    Boudoul, G

    2003-09-01

    The AMS experiment will be implemented on the International Space Station in 2006 for 3 years. It will study cosmic rays and should open a new window to look for dark matter and antimatter in the Universe. This work is, first, devoted to the experimental study of the Cherenkov (RICH) detector of AMS which will determine with a good accuracy the velocity and electric charge of the incoming particles. The chosen photodetectors, the electronic tests, the general schematics, the prototypes operating (including beam tests at CERN) are described into the details. The second part is made of theoretical investigations of some cosmic ray physics problems and to a possible exotic source: evaporating primordial black holes. The astrophysical, cosmological and gravitational (including speculative string gravity approaches) consequences of their possible existence are reviewed in details. (author)

  11. APPA at FAIR: From fundamental to applied research

    Science.gov (United States)

    Stöhlker, Th.; Bagnoud, V.; Blaum, K.; Blazevic, A.; Bräuning-Demian, A.; Durante, M.; Herfurth, F.; Lestinsky, M.; Litvinov, Y.; Neff, S.; Pleskac, R.; Schuch, R.; Schippers, S.; Severin, D.; Tauschwitz, A.; Trautmann, C.; Varentsov, D.; Widmann, E.

    2015-12-01

    FAIR with its intense beams of ions and antiprotons provides outstanding and worldwide unique experimental conditions for extreme matter research in atomic and plasma physics and for application oriented research in biophysics, medical physics and materials science. The associated research programs comprise interaction of matter with highest electromagnetic fields, properties of plasmas and of solid matter under extreme pressure, density, and temperature conditions, simulation of galactic cosmic radiation, research in nanoscience and charged particle radiotherapy. A broad variety of APPA-dedicated facilities including experimental stations, storage rings, and traps, equipped with most sophisticated instrumentation will allow the APPA community to tackle new challenges. The worldwide most intense source of slow antiprotons will expand the scope of APPA related research to the exciting field of antimatter.

  12. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  13. Testing Gravity on Accelerators

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    Weak equivalence principle (WEP) is one of the cornerstones of the modern theories of gravity, stating that the trajectory of a freely falling test body is independent of its internal structure and composition. Even though WEP is known to be valid for the normal matter with a high precision, it has never been experimentally confirmed for relativistic matter and antimatter. We make an attempt to constrain possible deviations from WEP utilizing the modern accelerator technologies. We analyze the (absence of) vacuum Cherenkov radiation, photon decay, anomalous synchrotron losses and the Compton spectra to put limits on the isotropic Lorentz violation and further convert them to the constraints on the difference between the gravitational and inertial masses of the relativistic electrons/positrons. Our main result is the 0.1% limit on the mentioned difference.

  14. NA48 prototype calorimeter

    CERN Document Server

    1990-01-01

    This is a calorimeter, a detector which measures the energy of particles. When in use, it is filled with liquid krypton at -152°C. Electrons and photons passing through interact with the krypton, creating a shower of charged particles which are collected on the copper ribbons. The ribbons are aligned to an accuracy of a tenth of a millimetre. The folding at each end allows them to be kept absolutely flat. Each shower of particles also creates a signal in scintillating material embedded in the support disks. These flashes of light are transmitted to electronics by the optical fibres along the side of the detector. They give the time at which the interaction occurred. The photo shows the calorimeter at NA48, a CERN experiment which is trying to understand the lack of anti-matter in the Universe today.

  15. Cosmological Probes for Supersymmetry

    CERN Document Server

    Khlopov, Maxim

    2015-01-01

    The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs) are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY) models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  16. Right-handed neutrino dark matter under the B - L gauge interaction

    Science.gov (United States)

    Kaneta, Kunio; Kang, Zhaofeng; Lee, Hye-Sung

    2017-02-01

    We study the right-handed neutrino (RHN) dark matter candidate in the minimal U(1) B-L gauge extension of the standard model. The U(1) B-L gauge symmetry offers three RHNs which can address the origin of the neutrino mass, the relic dark matter, and the matter-antimatter asymmetry of the universe. The lightest among the three is taken as the dark matter candidate, which is under the B - L gauge interaction. We investigate various scenarios for this dark matter candidate with the correct relic density by means of the freeze-out or freeze-in mechanism. A viable RHN dark matter mass lies in a wide range including keV to TeV scale. We emphasize the sub-electroweak scale light B - L gauge boson case, and identify the parameter region motivated from the dark matter physics, which can be tested with the planned experiments including the CERN SHiP experiment.

  17. Cosmology and particle physics

    Science.gov (United States)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  18. Beyond the standard model of particle physics.

    Science.gov (United States)

    Virdee, T S

    2016-08-28

    The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'.

  19. Particle identification below threshold with AMS-02 RICH detector

    CERN Document Server

    Li, Ziyuan; Giovacchini, Francesca; Hoffman, Julia; Haino, Sadakazu

    2016-01-01

    The Alpha Magnetic Spectrometer (AMS-02) was installed on the International Space Station (ISS) and it has been collecting data successfully since May 2011. The main goals of AMS-02 are the search for cosmic anti-matter, dark matter and the precise measurement of the relative abundance of elements and isotopes in galactic cosmic rays. In order to identify particle properties, AMS-02 includes several specialized sub-detectors. Among them, the AMS-02 Ring Imaging Cherenkov detector (RICH) is designed to provide a very precise measurement of the velocity and electric charge of particles. A method to reject the dominant electron background in antiproton identification using the AMS-02 RICH detector as a veto will be described. By using the collected cosmic-rays data, electron contamination can be well suppressed within 3% with $\\beta \\approx 1$, while keeping 76% efficiency for antiprotons below the threshold.

  20. Status and perspectives for $\\bar PANDA$ at FAIR

    CERN Document Server

    Prencipe, Elisabetta

    2014-01-01

    The Facility for Antiproton and Ion Research (FAIR) is an international accelerator facility which will use antiprotons and ions to perform research in the fields of nuclear, hadron and particle physics, atomic and anti-matter physics, high density plasma physics and applications in condensed matter physics, biology and the bio-medical sciences. It is located at Darmstadt (Germany) and it is under construction. Among all projects in development at FAIR in this moment, this report focuses on the $\\bar PANDA$ experiment (antiProton ANnihilation at DArmstadt). Some topics from the Charm and Charmonium physics program of the $\\bar PANDA$ experiment will be highlighted, where $\\bar PANDA$ is expected to provide first measurements and original contributions, such as the measurement of the width of very narrow states and the measurements of high spin particles, nowaday undetected. The technique to measure the width of these very narrow states will be presented, and a general overview of the machine is provided.

  1. Peccei-Quinn symmetry for Dirac seesaw and leptogenesis

    CERN Document Server

    Gu, Pei-Hong

    2016-01-01

    We extend the DFSZ invisible axion model to simultaneously explain small Dirac neutrino masses and cosmic matter-antimatter asymmetry. After the Peccei-Quinn and electroweak symmetry breaking, the effective Yukawa couplings of the Dirac neutrinos to the standard model Higgs scalar can be highly suppressed by the ratio of the vacuum expectation value of an iso-triplet Higgs scalar over the masses of some heavy gauge-singlet fermions, iso-doublet Higgs scalars or iso-triplet fermions. The iso-triplet fields can carry a zero or nonzero hypercharge. Through the decays of the heavy gauge-singlet fermions, iso-doublet scalars or iso-triplet fermions, we can obtain a lepton asymmetry in the left-handed leptons and an opposite lepton asymmetry in the right-handed neutrinos. Since the right-handed neutrinos do not participate in the sphaleron processes, the left-handed lepton asymmetry can be partially converted to a baryon asymmetry.

  2. Leptogenesis from Left-Handed Neutrino Production during Axion Inflation.

    Science.gov (United States)

    Adshead, Peter; Sfakianakis, Evangelos I

    2016-03-04

    We propose that the observed matter-antimatter asymmetry can be naturally produced as a by-product of axion-driven slow-roll inflation by coupling the axion to standard model neutrinos. We assume that grand unified theory scale right-handed neutrinos are responsible for the masses of the standard model neutrinos and that the Higgs field is light during inflation and develops a Hubble-scale root-mean-square value. In this setup, the rolling axion generates a helicity asymmetry in standard model neutrinos. Following inflation, this helicity asymmetry becomes equal to a net lepton number as the Higgs condensate decays and is partially reprocessed by the SU(2)_{L} sphaleron into a net baryon number.

  3. The Dynamical Nonlocality of Neutral Kaons and the Kaonic Quantum Eraser

    CERN Document Server

    Hiesmayr, Beatrix C

    2010-01-01

    Testing quantum foundations for systems in high energy physics gets currently more and more attention e.g. witnessed for entangled neutral K-mesons by the approved programme of the KLOE collaboration at the accelerator facility DAPHNE (Frascati, Italy). We focus on this quantum system in high energy physics and discuss two topics, Bell inequalities and the kaonic quantum eraser, and show how the neutral kaon system differs from systems of ordinary matter and light. In detail, we show a relation of the imbalance of matter and antimatter to the violation of a Bell inequality and discuss another Bell inequality which is maximally violated for a non-maximally entangled state though neutral kaons can be considered as two state systems. We compare in general this system in high energy physics with bipartite qudits. Last but not least we review the quantum marking and eraser procedure and explain why neutral kaons offer more eraser possibilities than usual quantum systems.

  4. The Standard-Model Extension and Gravitational Tests

    CERN Document Server

    Tasson, Jay D

    2016-01-01

    The Standard-Model Extension (SME) provides a comprehensive effective field-theory framework for the study of CPT and Lorentz symmetry. This work reviews the structure and philosophy of the SME and provides some intuitive examples of symmetry violation. The results of recent gravitational tests performed within the SME are summarized including analysis of results from the Laser Interferometer Gravitational-Wave Observatory (LIGO), sensitivities achieved in short-range gravity experiments, constraints from cosmic-ray data, and results achieved by studying planetary ephemerids. Some proposals and ongoing efforts will also be considered including gravimeter tests, tests of the Weak Equivalence Principle, and antimatter experiments. Our review of the above topics is augmented by several original extensions of the relevant work. We present new examples of symmetry violation in the SME and use the cosmic-ray analysis to place first-ever constraints on 81 additional operators.

  5. Characterization of a solid deuterium converter for ultra-cold neutrons (UCN) in the framework of the Mini-D{sub 2} project at the FRM-II reactor in Munich

    Energy Technology Data Exchange (ETDEWEB)

    Tortorella, D.

    2007-02-07

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particles physic. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates in experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the axial-vector coupling constant (g{sub A}), the neutron lifetime ({tau}{sub n}) or in search of quantum effect of gravity. In this work are presented several contributions in the framework of the Mini-D2 project, an innovative strong UCN source under construction at the FRM-II reactor in Munich. An important component of this facility, the solid deuterium UCN converter, is one subject of the thesis. (orig.)

  6. Simulations towards optimization of a neutron/anti-neutron oscillation experiment at the European Spallation Source

    Science.gov (United States)

    Frost, Matthew; Kamyshkov, Yuri; Castellanos, Luis; Klinkby, Esben; US NNbar Collaboration

    2015-04-01

    The observation of Neutron/Anti-neutron oscillation would prove the existence of Baryon Number Violation (BNV), and thus an explanation for the dominance of matter over anti-matter in the universe. The latest experiments have shown the oscillation time to be greater than 8.6 x 107 seconds, whereas current theoretical predictions suggest times on the order of 108 to 109 seconds. A neutron oscillation experiment proposed at the European Spallation Source (ESS) would provide sensitivity of more than 1000 times previous experiments performed, thus providing a result well-suited to confirm or deny current theory. A conceptual design of the proposed experiment will be presented, as well as the optimization of key experiment components using Monte-Carlo simulation methods, including the McStas neutron ray-trace simulation package. This work is supported by the Organized Research Units Program funded by The University of Tennessee, Knoxville Office of Research and Engagement.

  7. The quest to find an electric dipole moment of the neutron

    CERN Document Server

    Schmidt-Wellenburg, P

    2016-01-01

    Until now no electric dipole moment of the neutron (nEDM) has been observed. Why it is so vanishingly small, escaping detection for the last 65 years, is not easy to explain. In general it is considered as one of the most sensitive probes for the violation of the combined symmetry of charge and parity (CP). A discovery could shed light on the poorly understood matter/antimatter asymmetry of the Universe. The neutron EDM might one day help to distinguish different sources of CP-violation in combination with measurements of paramagnetic molecules, diamagnetic atoms and other nuclei. This review presents an overview of the most important concepts in searches for an nEDM as well as a brief overview of the worldwide efforts.

  8. Baryogenesis, dark matter and the maximal temperature of the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Wilfried

    2012-12-15

    Mechanisms for the generation of the matter-antimatter asymmetry and dark matter strongly depend on the reheating temperature T{sub R}, the maximal temperature reached in the early universe. Forthcoming results from the LHC, low energy experiments, astrophysical observations and the Planck satellite will significantly constrain baryogenesis and the nature of dark matter, and thereby provide valuable information about the very early hot universe. At present, a wide range of reheating temperatures is still consistent with observations. We illustrate possible origins of matter and dark matter with four examples: moduli decay, electroweak baryogenesis, leptogenesis in the {nu}MSM and thermal leptogenesis. Finally, we discuss the connection between baryogenesis, dark matter and inflation in the context of supersymmetric spontaneous B-L breaking.

  9. CLIC CTF3 for open days

    CERN Multimedia

    CLIC

    2013-01-01

    CLIC – the Compact Linear Collider – is a study for a future accelerator that reaches unprecedented energies for electrons and their antimatter twins, positrons. It uses a novel two-beam acceleration scheme in which the electrons and positrons are propelled to high energy by an additional high current electron beam, the so-called Drive Beam. In order to generate this high current Drive Beam, a long train of electron bunches is accelerated, parts of the train delayed in a Delay Loop and Combiner Rings, and interleaved by transversely deflecting radio-frequency cavities. The CLIC Test Facility CTF3, which is shown in the movie, examines the new technologies envisioned by the CLIC design, in particular the Drive Beam generation and the two-beam acceleration. It is a scaled-down version of the CLIC facility, and it has demonstrated the feasibility of the novel scheme.

  10. CLIC CTF3 for open days

    CERN Multimedia

    2013-01-01

    (subt french) CLIC – the Compact Linear Collider – is a study for a future accelerator that reaches unprecedented energies for electrons and their antimatter twins, positrons. It uses a novel two-beam acceleration scheme in which the electrons and positrons are propelled to high energy by an additional high current electron beam, the so-called Drive Beam. In order to generate this high current Drive Beam, a long train of electron bunches is accelerated, parts of the train delayed in a Delay Loop and Combiner Rings, and interleaved by transversely deflecting radio-frequency cavities. The CLIC Test Facility CTF3, which is shown in the movie, examines the new technologies envisioned by the CLIC design, in particular the Drive Beam generation and the two-beam acceleration. It is a scaled-down version of the CLIC facility, and it has demonstrated the feasibility of the novel scheme.

  11. Baryogenesis, Dark Matter and the Maximal Temperature of the Early Universe

    CERN Document Server

    Buchmuller, Wilfried

    2012-01-01

    Mechanisms for the generation of the matter-antimatter asymmetry and dark matter strongly depend on the reheating temperature T_R, the maximal temperature reached in the early universe. Forthcoming results from the LHC, low energy experiments, astrophysical observations and the Planck satellite will significantly constrain baryogenesis and the nature of dark matter, and thereby provide valuable information about the very early hot universe. At present, a wide range of reheating temperatures is still consistent with observations. We illustrate possible origins of matter and dark matter with four examples: moduli decay, electroweak baryogenesis, leptogenesis in the nuMSM and thermal leptogenesis. Finally, we discuss the connection between baryogenesis, dark matter and inflation in the context of supersymmetric spontaneous B-L breaking.

  12. Modeling dark matter subhalos in a constrained galaxy: Global mass and boosted annihilation profiles

    CERN Document Server

    Stref, Martin

    2016-01-01

    The interaction properties of cold dark matter (CDM) particle candidates, such as those of weakly interacting massive particles (WIMPs), generically lead to the structuring of dark matter on scales much smaller than typical galaxies, potentially down to $\\sim 10^{-10}M_\\odot$. This clustering translates into a very large population of subhalos in galaxies and affects the predictions for direct and indirect dark matter searches (gamma rays and antimatter cosmic rays). In this paper, we elaborate on previous analytic works to model the Galactic subhalo population, while consistently with current observational dynamical constraints on the Milky Way. In particular, we propose a self-consistent method to account for tidal effects induced by both dark matter and baryons. Our model does not strongly rely on cosmological simulations as they can hardly be fully matched to the real Milky Way, but for setting the initial subhalo mass fraction. Still, it allows to recover the main qualitative features of simulated system...

  13. Indirect Searches for Decaying Dark Matter

    CERN Document Server

    Ibarra, Alejandro; Weniger, Christoph

    2013-01-01

    Numerous observations point towards the existence of an unknown elementary particle with no electromagnetic interactions, a large population of which was presumably produced in the early stages of the history of the Universe. This so-called dark matter has survived until the present day, accounting for the 26% of the present energy budget of the Universe. It remains an open question whether the particles comprising the dark matter are absolutely stable or whether they have a finite but very long lifetime, which is a possibility since there is no known general principle guaranteeing perfect stability. In this article we review the observational limits on the lifetime of dark matter particles with mass in the GeV-TeV range using observations of the cosmic fluxes of antimatter, gamma-rays and neutrinos. We also examine some theoretically motivated scenarios that provide decaying dark matter candidates.

  14. Status of the Linac based positron source at Saclay

    CERN Document Server

    Rey, J -M; Debu, P; Dzitko, H; Hardy, P; Liszkay, L; Lotrus, P; Muranaka, T; Noel, C; Perez, P; Pierret, O; Ruiz, N; Sacquin, Y

    2013-01-01

    Low energy positron beams are of major interest for fundamental science and materials science. IRFU has developed and built a slow positron source based on a compact, low energy (4.3 MeV) electron linac. The linac-based source will provide positrons for a magnetic storage trap and represents the first step of the GBAR experiment (Gravitational Behavior of Antimatter in Rest) recently approved by CERN for an installation in the Antiproton Decelerator hall. The installation built in Saclay will be described with its main characteristics. The ultimate target of the GBAR experiment will be briefly presented as well as the foreseen development of an industrial positron source dedicated for materials science laboratories.

  15. Data-flow performance optimisation of the ATLAS data acquisition system

    CERN Document Server

    Colombo, Tommaso; Vandelli, Wainer

    Colliding particles at higher and higher energies has proven to be a fruitful avenue to expand our knowledge of nature. Results from high-energy physics experiments have led to the formulation of the Standard Model, which has been strikingly successful in describing the currently known fundamental particles and the interactions between them. Nevertheless, the Standard Model is necessarily an incomplete theory as it does neither account for gravity, nor provide an explanation to cosmological problems like the apparent existence of dark matter and the observed matter-antimatter asymmetry. New phenomena, not contained in the Standard Model, could be discovered by pushing the energy boundary further. Current high-energy physics experiments aim to observe these new phenomena and explore the electroweak symmetry breaking mechanism predicted by the Standard Model. These will necessarily be concealed within a huge background of already well known processes. Therefore, not only the energy, but also the collision rate ...

  16. Prospects for Antiproton Experiments at Fermilab

    CERN Document Server

    Kaplan, Daniel M

    2011-01-01

    Fermilab operates the world's most intense antiproton source. Newly proposed experiments can use those antiprotons either parasitically during Tevatron Collider running or after the end of the Tevatron Collider program. For example, the annihilation of 5 to 8 GeV antiprotons is expected to yield world-leading sensitivities to hyperon rare decays and CP violation. It could also provide the world's most intense source of tagged D^0 mesons, and thus the best near-term opportunity to study charm mixing and, via CP violation, to search for new physics. Other measurements that could be made include properties of the X(3872) and the charmonium system. An experiment using a Penning trap and an atom interferometer could make the world's most precise measurement of the gravitational force on antimatter. These and other potential measurements using antiprotons offer a great opportunity for a broad and exciting physics program at Fermilab in the post-Tevatron era.

  17. PAMELA's measurements of geomagnetic cutoff variations during the 14 December 2006 storm

    CERN Document Server

    Adriani, O; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carlson, P; Casolino, M; Castellini, G; De Donato, C; de Nolfo, G A; De Santis, C; De Simone, N; Di Felice, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mikhailov, M Mergé V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N

    2016-01-01

    Data from the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) satellite experiment were used to measure the geomagnetic cutoff for high-energy (>80 MeV) protons during the 14 December 2006 geomagnetic storm. The variations of the cutoff latitude as a function of rigidity were studied on relatively short timescales, corresponding to spacecraft orbital periods (94 min). Estimated cutoff values were compared with those obtained by means of a trajectory tracing approach based on a dynamical empirical modeling of the Earth's magnetosphere. We found significant variations in the cutoff latitude, with a maximum suppression of about 7 deg at lowest rigidities during the main phase of the storm. The observed reduction in the geomagnetic shielding and its temporal evolution were related to the changes in the magnetospheric configuration, investigating the role of interplanetary magnetic field, solar wind and geomagnetic parameters. PAMELA's results represent the first direct measurement...

  18. Towards laser spectroscopy of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Walz, J [CERN-EP/APE, CH-1211 Geneve (Switzerland); Fendel, P [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany); Herrmann, M [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany); Koenig, M [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany); Pahl, A [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany); Pittner, H [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany); Schatz, B [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany); Haensch, T W [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany)

    2003-02-14

    Cold antihydrogen atoms in a magnetic trap will open up a fascinating field of very precise CPT tests by ultrahigh-resolution laser spectroscopy. Equally exciting is the prospect for experiments on the gravitational acceleration of antimatter. For both types of experiment it is of great importance to have antihydrogen as cold as possible. Laser cooling of antihydrogen can be done on the strong 1S-2P transition at Lyman-{alpha} (121.56 nm). The highest cooling efficiency, lowest temperature, and best magnetic sublevel selectivity is expected for continuous coherent radiation. We present an account of the first source for continuous coherent radiation at Lyman-{alpha} and discuss possible applications in experiments with antihydrogen.

  19. Cloistered Baryogenesis

    CERN Document Server

    Sierra, D Aristizabal; Nardi, Enrico; Peinado, Eduardo

    2013-01-01

    The cosmological matter-antimatter asymmetry can arise from the baryon number conserving CP asymmetry in two body decays of heavy particles, when the two final states carry equal and opposite baryon number, and one couples directly or indirectly to electroweak sphalerons so that its baryon asymmetry gets partly reprocessed into a lepton asymmetry, while the other remains chemically decoupled from the thermal bath with its baryon content frozen. After sphaleron switchoff the decay of the decoupled particles inject in the thermal plasma an unbalanced baryon asymmetry, giving rise to baryogenesis. We highlight the features of this mechanism in a type-I seesaw model extended by adding a new colored scalar coupled to the heavy Majorana neutrinos. If the colored scalar has an O(TeV) mass, it would leave at the LHC a characteristic signature throughout all layers of the detectors.

  20. Fabrication of High Aspect Ratio Micro-Penning-Malmberg Gold Plated Silicon Trap Arrays

    CERN Document Server

    Narimannezhad, Alireza; Weber, Marc H; Lynn, Kelvin G

    2013-01-01

    Acquiring a portable high density charged particles trap might consist of an array of micro-Penning-Malmberg traps (microtraps) with substantially lower end barriers potential than conventional Penning-Malmberg traps [1]. We report on the progress of the fabrication of these microtraps designed for antimatter storage such as positrons. The fabrication of large length to radius aspect ratio (1000:1) microtrap arrays involved advanced techniques including photolithography, deep reactive ion etching (DRIE) of silicon wafers to achieve through-vias, gold sputtering of the wafers on the surfaces and inside the vias, and thermal compression bonding of the wafers. This paper describes the encountered issues during fabrication and addresses geometry errors and asymmetries. In order to minimize the patch effects on the lifetime of the trapped positrons, the bonded stacks were gold electroplated to achieve a uniform gold surface. We show by simulation and analytical calculation that how positrons confinement time depen...

  1. Gravity how the weakest force in the universe shaped our lives

    CERN Document Server

    Clegg, Brian

    2012-01-01

    Gravity is one of the most accepted laws of science. Drop an object and it falls to earth because of the attraction between the earth and the object. What alerts the earth and the object to act? Is there a sort of communication between them? Theoretical physicists have struggled to explain gravitational attraction over distance since Einstein posed his theories of special and general relativity. Quantum theory, string theory, M theory, and other theoretical inquiries have failed to solve the riddle. In his history of gravity from the Big Bang to the present, popular science author Clegg recounts international efforts to understand what is thought to be the weakest yet most essential force holding the universe together. Black holes, warps in space and time, and antimatter are featured in this wide-ranging account, which will be of interest to science students and readers of science fiction.

  2. Big Bang Day: 5 Particles - 3. The Anti-particle

    CERN Document Server

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  3. Project X

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Steve [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Alber, Russ [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Asner, David [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bhat, Pushpa [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Champion, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chase, Brian E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Derwent, Paul [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, Keith [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Henderson, Stuart D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, David E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kaducak, Marc [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kephart, Robert D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kerby, Jim [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Klebaner, Arkadiy [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kourbanis, Ioanis [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kronfeld, Andreas [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lebedev, Valeri A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leveling, Anthony F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Li, Derun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mishra, Shekar [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nagaitsev, Sergei [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ostroumov, Peter N. [Argonne National Lab. (ANL), Argonne, IL (United States); Pasquinelli, Ralph J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Patrick, Jim [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Plunkett, Robert K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, Lionel R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Reid, John S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Scarpine, Vic E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Shemyakin, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Solyak, Nikolay A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Steimel, Jim [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Tschirhart, Bob [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Webber, Bob [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wendt, Manfred [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yakovlev, Vyacheslav P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-06-23

    Particle physics has made enormous progress in understanding the nature of matter and forces at a fundamental level and has unlocked many mysteries of our world. The development of the Standard Model of particle physics has been a magnificent achievement of the field. Many deep and important questions have been answered and yet many mysteries remain. The discovery of neutrino oscillations, discrepancies in some precision measurements of Standard-Model processes, observation of matter-antimatter asymmetry, the evidence for the existence of dark matter and dark energy, all point to new physics beyond the Standard Model. The pivotal developments of our field, including the latest discovery of the Higgs Boson, have progressed within three interlocking frontiers of research – the Energy, Intensity and Cosmic frontiers – where discoveries and insights in one frontier powerfully advance the other frontiers as well.

  4. Direct Measurements of Cosmic Rays (up to ~TeV and beyond)

    Science.gov (United States)

    Coutu, Stéphane; Cabezas, Denis; Salinas, C. J. Solano; Xoxocotzi, Reyna

    2009-04-01

    The objective of this paper is to provide a brief overview of selected experimental measurements in the field of cosmic rays. Galactic cosmic rays are composed of primary and secondary particles. Primary cosmic rays are thought to be energized by supernova shocks within our Galaxy. The cosmic rays that eventually arrive at the Earth are mainly protons and atomic nuclei, but also contain electrons. Secondary cosmic rays are produced in collisions of primary particles with the diffuse interstellar gas and are scarce but carry important information on the Galactic propagation of the primary particles. The secondary component includes a small fraction of antimatter particles, antiprotons and positrons; these may also come from unusual sources and could possibly provide a window into new physics. For example, in the Galactic halo there could take place annihilations of heavy supersymmetric dark matter particles, which could lead to positrons or antiprotons.

  5. ASACUSA hits antiproton jackpot

    CERN Multimedia

    2001-01-01

    The Japanese-European ASACUSA collaboration, which takes its name from the oldest district of Tokyo, approaches the antimatter enigma in a different way from the other two AD experiments, by inserting antiprotons into ordinary atoms. Last month the collaboration succeeded in trapping about a million antiprotons. The ASACUSA antiproton trap (lower cylinder), surmounted by its liquid helium reservoir. Looking on are Ken Yoshiki-Franzen, Zhigang Wang, Takahito Tasaki, Suzanne Reed, John Eades, Masaki Hori, Yasunori Yamazaki, Naofumi Kuroda, Jun Sakaguchi, Berti Juhasz, Eberhard Widmann and Ryu Hayano. A key element of the ASACUSA apparatus is its decelerating Radiofrequency Quadrupole magnet, RFQD. After tests with protons in Aarhus, this was installed in ASACUSA's antiproton beam last October (Bulletin 41/2000, 9 October 2000). Constructed by Werner Pirkl's group in PS Division, the RFQD works by applying an electric field to the AD antiproton pulse the opposite direction to its motion. As the antiprotons slo...

  6. Simulations of Pion Production in the DAE\\delta ALUS Target

    CERN Document Server

    Bungau, Adriana; Shaevitz, Mike; Conrad, Janet; Spitz, Joshua; Smidt, Tess

    2012-01-01

    DAE\\delta ALUS, the Decay At-rest Experiment for \\delta_{CP} at a Laboratory for Underground Science will look for evidence of CP-violation in the neutrino sector, an ingredient in theories that seek to explain the matter/antimatter asymmetry in our universe. It will make a precision measurement of the oscillations of muon antineutrinos to electron antineutrinos using multiple neutrino sources created by low-cost compact cyclotrons. The experiment utilizes decay-at-rest neutrino beams produced by 800 MeV protons impinging a beam target of graphite and copper. Two well established Monte Carlo codes, MARS and GEANT4, have been used to optimise the design and the performance of the target. A study of the results obtained with these two codes is presented in this paper.

  7. Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations

    CERN Document Server

    Blanchet, Steve; Di Bari, Pasquale; Marzola, Luca

    2011-01-01

    Leptogenesis with heavy neutrino flavours is discussed within a density matrix formalism. We write the density matrix equation that describes the generation of the matter-antimatter asymmetry, for an arbitrary choice of the right-handed (RH) neutrino masses. For hierarchical RH neutrino masses lying in the fully flavoured regimes, the density matrix equation reduces to multiple-stage Boltzmann equations. In this case we recover and extend results previously derived within a quantum state collapse description. We confirm the generic existence of phantom terms, which are not washed out at production and contribute to the flavoured asymmetries proportionally to the initial RH neutrino abundances. Even in the N_1-dominated scenario they can give rise to lepton flavour asymmetries much larger than the baryon asymmetry with potential applications. We also confirm that there is a (orthogonal) component in the asymmetry produced by the heavier RH neutrinos which completely escapes the washout from the lighter RH neut...

  8. First experimental detection of antiproton in-flight annihilation on nuclei at 130 keV

    CERN Document Server

    Aghai-Khozani, H; Corradini, M; Hayano, R; Hori, M; Kobayashi, T; Leali, M; Lodi-Rizzini, E; Mascagna, V; Prest, M; Soter, A; Todoroki, K; Vallazza, E; Venturelli, L; Zurlo, N

    2012-01-01

    The existing data of antinucleon-nucleon and antinucleon-nuclei annihilation cross-sections are confined to energies above about 1MeV. Experimental limitations have prevented till now the lower energies data to be achieved in spite of the interest they represent for theoretical models. One of the unresolved question concerns the antiproton annihilation cross-section measured at LEAR on light nuclei in the MeV region, which show a saturation with the mass number of the target nucleus against any naive expectation. With regard to fundamental cosmology, the knowledge of the annihilation cross-sections at energies below 1MeV can contribute to understand the matter-antimatter asymmetry in the Universe. We present here the experimental demonstration of the feasibility of the measurement of antiproton-nuclei annihilation cross-sections in the 100 keV region.

  9. Minimal Standard Model self-energies at finite temperature in the presence of weak magnetic fields: towards a full symmetry restoration study

    CERN Document Server

    Tejeda-Yeomans, Maria E; Sanchez, Angel; Piccinelli, Gabriella; Ayala, Alejandro

    2008-01-01

    The study of the universe's primordial plasma at high temperature plays an important role when tackling different questions in cosmology, such as the origin of the matter-antimatter asymmetry. In the Minimal Standard Model (MSM) neither the amount of CP violation nor the strength of the phase transition are enough to produce and preserve baryon number during the Electroweak Phase Transition (EWPT), which are two of the three ingredients needed to develop baryon asymmetry. In this talk we present the first part of the analysis done within a scenario where it is viable to have improvements to the aforementioned situation: we work with the degrees of freedom in the broken symmetry phase of the MSM and analyze the development of the EWPT in the presence of a weak magnetic field. More specifically, we calculate the particle self-energies that include the effects of the weak magnetic field, needed for the MSM effective potential up to ring diagrams.

  10. Interview with Andrei Golutvin, LHCb Spokesperson

    CERN Multimedia

    CERN Video Productions

    2009-01-01

    Questions : 1. How does it feel to be the Spokesperson of a large worldwide collaboration as LHCb at the very moment when the LHC is going to produce the first data? 2. Is your detector ready for the data taking? 3. Did you take advantage of the long shut down? 4. What was the LHCb detector designed for and why is it different from the other ones? 5. What can you expect to find at 3.5 TeV and later at 7 per beam? 6. Is Andrei Sakarov's theory on matter and antimatter asymetry a guiding line for you? 7. What is going to happen in the LHCb control room on collision day?

  11. Handbook of cosmic hazards and planetary defense

    CERN Document Server

    Allahdadi, Firooz

    2015-01-01

    Covers in a comprehensive fashion all aspects of cosmic hazards and possible strategies for contending with these threats through a comprehensive planetary defense strategy. This handbook brings together in a single reference work a rich blend of information about the various types of cosmic threats that are posed to human civilization by asteroids, comets, bolides, meteors, solar flares and coronal mass ejections, cosmic radiation and other types of threats that are only recently beginning to be understood and studied, such as investigation of the “cracks” in the protective shield provided by the Van Allen belts and the geomagnetosphere, of matter-antimatter collisions, orbital debris and radiological or biological contamination. Some areas that are addressed involve areas about which there is a good deal of information that has been collected for many decades by multiple space missions run by many different space agencies, observatories and scientific researchers. Other areas involving research and ...

  12. CERN SHOP - CHRISTMAS SALE - 11-12.12.2002

    CERN Multimedia

    Visits & Exhibition Service

    2002-01-01

    Looking for Christmas present ideas? Come to the Reception Shop Special Stand in Meyrin, Main Building, ground floor, from Wednesday 11 to Thursday 12 December from 10.30 to 16.00. CERN Sweat-shirts(M, L, XL) 30.- CERN T-shirt,(M, L, XL) 20.- New CERN silk tie (2 colours) 35.- Blue silk tie 15.- Fancy silk tie (blue, bordeau) 20.- Silk scarf (light blue, red, yellow) 35.- Swiss army knife with CERN logo 25.- Swiss Duo Pack with CERN logo 30.- CERN watch 20.- CERN baseball cap 15.- CERN briefcase 15.- Book 'Antimatter' (English) 35.- Book 'Particle Odyssey' (English) 60.- Book 'How the web was born' (English, Italian) 30.- The Search for Infinity (French, Italian, English, German)  40.- If you miss this special occasion, the articles are also available at the Reception Shop in Building 33 from Monday to Saturday between 08.30 and 17.00 hrs. Visits & Exhibition Service/ETT-VE

  13. CERN Shop Christmas Sale

    CERN Multimedia

    Visits & Exhibition Service/ETT-VE

    2001-01-01

    11-13.12.2001 Looking for Christmas present ideas? Come to the Reception Shop Special Stand in Meyrin, Main Building, ground floor, from Tuesday 11 to Thursday 13 December from 10.30 to 16.00. CERN Calendar 10.- CERN Sweat-shirts(M, L, XL) 30.- CERN T-shirt (M, L, XL) 20.- New CERN silk tie (2 colours) 35.- Fancy silk tie (blue, bordeau) 25.- Silk scarf (light blue, red, yellow) 35.- Swiss army knife with CERN logo 25.- CERN watch 25.- CERN baseball cap 15.- CERN briefcase 15.- Book 'Antimatter' (English) 35.- Book 'How the web was born' (English) 25.- The Search for Infinity (French, Italian, English, German) 40.-   If you miss this special occasion, the articles are also available at the Reception Shop in Building 33 from Monday to Saturday between 08.30 and 17.30 hrs.

  14. Testable Baryogenesis in Seesaw Models

    CERN Document Server

    Hernández, P; López-Pavón, J; Racker, J; Salvado, J

    2016-01-01

    We revisit the production of baryon asymmetries in the minimal type I seesaw model with heavy Majorana singlets in the GeV range. In particular we include for the first time "washout" effects from scattering processes with gauge bosons and higgs decays and inverse decays, besides the dominant top scatterings. We show that in the minimal model with two singlets, and for an inverted light neutrino ordering, future measurements from SHiP and neutrinoless double beta decay could in principle provide sufficient information to predict the matter-antimatter asymmetry in the universe up to a sign. We also show that SHiP measurements could provide very valuable information on the PMNS CP phases.

  15. Cloistered baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, D. Aristizabal [IFPA, Dep. AGO, Universite de Liege, Bat B5, Sart Tilman, Liege 1, B-4000 (Belgium); Fong, Chee Sheng; Nardi, Enrico; Peinado, Eduardo, E-mail: daristizabal@ulg.ac.be, E-mail: Chee.Sheng.Fong@lnf.infn.it, E-mail: Enrico.Nardi@lnf.infn.it, E-mail: epeinado@lnf.infn.it [INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, Frascati, I-00044 (Italy)

    2014-02-01

    The cosmological matter-antimatter asymmetry can arise from the baryon number conserving CP asymmetry in two body decays of heavy particles, when the two final states carry equal and opposite baryon number, and one couples directly or indirectly to electroweak sphalerons so that its baryon asymmetry gets partly reprocessed into a lepton asymmetry, while the other remains chemically decoupled from the thermal bath with its baryon content frozen. After sphaleron switchoff the decay of the decoupled particles inject in the thermal plasma an unbalanced baryon asymmetry, giving rise to baryogenesis. We highlight the features of this mechanism in a type-I seesaw model extended by adding a new colored scalar coupled to the heavy Majorana neutrinos. If the colored scalar has an O(TeV) mass, it would leave at the LHC a characteristic signature throughout all layers of the detectors.

  16. Measurement of CP-Violating Asymmetries In Neutral B Meson Decays Into Three Kaons

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Joshua M. [Stanford Univ., CA (United States)

    2008-12-01

    The Standard Model (SM) of particle physics successfully describes all of the observed interactions of the fundamental particles (with the exception of non-zero neutrino mass). Despite this enormous success, the SM is widely viewed as an incomplete theory. For example, the size of the asymmetry between matter and antimatter is not nearly large enough to account for the abundance of matter observed throughout the universe. It is thus believed that as-yet-unknown physical phenomena must exist that introduce new asymmetries between matter and antimatter. In this thesis, by studying decays that happen only rarely in the SM, we make measurements of asymmetries between matter and antimatter that are potentially sensitive to the existence of processes beyond the SM. At the PEP-II asymmetric-energy B Factory at SLAC, electrons and positrons are collided at the Υ(4S) resonance to create pairs of B mesons. The BABAR detector is used to measure the subsequent decay products. Using 383 million Υ(4S) → B$\\bar{B}$ decays, we study the decay B0 → K+K-K0. In the SM, this decay is dominated by loop amplitudes. Asymmetries between matter and antimatter (CP asymmetries) are extracted by measuring the time-dependence of the complex amplitudes describing the B0 and $\\bar{B}$0 decays as functions of their kinematics. The interference between decays with and without the mixing of neutral B mesons allows for the measurement of the angle βeff, which is a measure of CP violation. We also measure the direct CP asymmetry ACP. Data samples reconstructed from three K0 modes (KS0 → π+π-, KS0 → π0π0, and KL0) are fit simultaneously. They find ACP = -0.015 ± 0.077 ± 0.053 and βeff = 0.352 ± 0.076 ± 0.026 rad, corresponding to a CP violation

  17. On Emergent Physics, "Unparticles" and Exotic "Unmatter" States

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2008-10-01

    Full Text Available Emergent physics refers to the formation and evolution of collective patterns in systems that are nonlinear and out-of-equilibrium. This type of large-scale behavior often develops as a result of simple interactions at the component level and involves a dynamic interplay between order and randomness. On account of its universality, there are credible hints that emergence may play a leading role in the Tera-ElectronVolt (TeV sector of particle physics. Following this path, we examine the possibility of hypothetical high-energy states that have fractional number of quanta per state and consist of arbitrary mixtures of particles and antiparticles. These states are similar to "un-particles", massless fields of non-integral scaling dimensions that were recently conjectured to emerge in the TeV sector of particle physics. They are also linked to "unmatter", exotic clusters of matter and antimatter introduced few years ago in the context of Neutrosophy.

  18. Development of nuclear emulsions with 1μm spatial resolution for the AEgIS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, M. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, 3012 Bern (Switzerland); Aghion, S. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Milano, Via Celoria 16, 20133 Milano (Italy); Ahlén, O. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Amsler, C., E-mail: claude.amsler@cern.ch [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, 3012 Bern (Switzerland); Ariga, A.; Ariga, T. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, 3012 Bern (Switzerland); Belov, A.S. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation); Bonomi, G. [University of Brescia, Department of Mechanical and Industrial Engineering, Via Branze 38, 25133 Brescia (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Bräunig, P. [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Bremer, J. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Brusa, R.S. [Dipartimento di Fisica, Università di Trento and INFN, Gruppo Collegato di Trento, Via Sommarive 14, 38050 Povo, Trento (Italy); Burghart, G. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Cabaret, L. [Laboratoire Aimé Cotton, CNRS, Université Paris Sud, ENS Cachan, Bâtiment 505, Campus d' Orsay, 91405 Orsay Cedex (France); Canali, C. [University of Zurich, Physics Institute, Winterthurerstrasse 190, 8057 Zurich (Switzerland); and others

    2013-12-21

    The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. We will measure the Earth's gravitational acceleration g{sup ¯} with antihydrogen atoms being launched in a horizontal vacuum tube and traversing a moiré deflectometer. We intend to use a position sensitive device made of nuclear emulsions (combined with a time-of-flight detector such as silicon μ-strips) to measure precisely their annihilation points at the end of the tube. The goal is to determine g{sup ¯} with a 1% relative accuracy. In 2012 we tested emulsion films in vacuum and at room temperature with low energy antiprotons from the CERN antiproton decelerator. First results on the expected performance for AEgIS are presented.

  19. Investigation of silicon sensors for their use as antiproton annihilation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pacifico, N., E-mail: nicola.pacifico@cern.ch [University of Bergen, Institute of Physics and Technology, Allégaten 55, 5007 Bergen (Norway); Aghion, S. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Milano, Via Celoria 16, 20133 Milano (Italy); Ahlén, O. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Belov, A.S. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation); Bonomi, G. [University of Brescia, Department of Mechanical and Industrial Engineering, Via Branze 38, 25133 Brescia (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Bräunig, P. [Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Bremer, J. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Brusa, R.S. [Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento (Italy); INFN-TIFPA, via Sommarive 14, 38123 Povo, Trento (Italy); Burghart, G. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Cabaret, L. [Laboratoire Aimé Cotton, CNRS, Université Paris Sud, ENS Cachan, Bâtiment 505, Campus d' Orsay, 91405 Orsay Cedex (France); Caccia, M. [University of Insubria, Dipartimento di Scienza ed Alta Tecnologia, via Valleggio 11, Como (Italy); Canali, C. [University of Zurich, Physics Institute, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Caravita, R. [Istituto Nazionale di Fisica Nucleare, Sez. di Genova, Via Dodecaneso 33, 16146 Genova (Italy); University of Genoa, Department of Physics, Via Dodecaneso 33, 16146 Genova (Italy); Castelli, F. [University of Milano, Department of Physics, Via Celoria 16, 20133 Milano (Italy); and others

    2014-11-21

    We present here a new application of silicon sensors aimed at the direct detection of antinucleons annihilations taking place inside the sensor's volume. Such detectors are interesting particularly for the measurement of antimatter properties and will be used as part of the gravity measurement module in the AEg{sup ¯}IS experiment at the CERN Antiproton Decelerator. One of the goals of the AEg{sup ¯}IS experiment is to measure the gravitational acceleration of antihydrogen with 1% precision. Three different silicon sensor geometries have been tested with an antiproton beam to investigate their properties as annihilation detection devices: strip planar, 3D pixels and monolithic pixel planar. In all cases we were successfully detecting annihilations taking place in the sensor and we were able to make a first characterization of the clusters and tracks.

  20. Positronium in the AEgIS experiment: study on its emission from nanochanneled samples and design of a new apparatus for Rydberg excitations

    CERN Document Server

    Di Noto, Lea

    This experimental thesis has been done in the framework of AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy), an experiment installed at CERN, whose primary goal is the measurement of the Earth's gravitational acceleration on anti-hydrogen. The antiatoms will be produced by the charge exchange reaction, where a cloud of Ps in Rydberg states interacts with cooled trapped antiprotons. Since the charge exchange cross section depends on Ps velocity and quantum number, the velocity distribution of Ps emitted by a positron-positronium converter as well as its excitation in Rydberg states have to be studied and optimized. In this thesis Ps cooling and emission into vacuum from nanochannelled silicon targets was studied by performing Time of Flight measurements with a dedicated apparatus conceived to receive the slow positron beam as produced at the Trento laboratory or at the NEPOMUC facility at Munich. Measurements were done by varying the positron implantation energy, the sample temperature and ...