WorldWideScience

Sample records for antimalarial combination formulations

  1. Antimalarial drug resistance and combination chemotherapy.

    OpenAIRE

    White, N.

    1999-01-01

    Antimarial drug resistance develops when spontaneously occurring parasite mutants with reduced susceptibility are selected, and are then transmitted. Drugs for which a single point mutation confers a marked reduction in susceptibility are particularly vulnerable. Low clearance and a shallow concentration-effect relationship increase the chance of selection. Use of combinations of antimalarials that do not share the same resistance mechanisms will reduce the chance of selection because the cha...

  2. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy

    Directory of Open Access Journals (Sweden)

    Ghosh A

    2014-11-01

    Full Text Available Aparajita Ghosh,1 Tanushree Banerjee,2 Suman Bhandary,1 Avadhesha Surolia31Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata, West Bengal, India; 2Department of Biotechnology, University of Pune, Pune, India; 3Molecular Biophysics Unit, Indian Institute of Science, Bangalore, IndiaAim: The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria. Materials and methods: Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo. Results: The nanopreparation was found to be non-toxic and had a particle size distribution of 20–50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration [IC50]: 0.5 µM was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 µM. Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only. Conclusion: Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria

  3. Formulation and Particle Size Reduction Improve Bioavailability of Poorly Water-Soluble Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Hongxing Wang

    2013-01-01

    Full Text Available Decoquinate (DQ is highly effective at killing malaria parasites in vitro; however, it is extremely insoluble in water. In this study, solid dispersion method was used for DQ formulation which created a suitable physical form of DQ in aqueous phase for particle manipulation. Among many polymers and surfactants tested, polyvinylpyrrolidone 10, a polymer, and L-α-phosphatidylcholine or polysorbate, two surfactants, were chosen as DQ formulation components. The formulation particles were reduced to a mean size between 200 to 400 nm, which was stable in aqueous medium for at least three weeks. Pharmacokinetic (PK studies showed that compared to DQ microparticle suspension, a nanoparticle formulation orally dosed to mice showed a 14.47-fold increase in area under the curve (AUC of DQ plasma concentration and a 4.53-fold increase in AUC of DQ liver distribution. WR 299666, a poorly water-soluble compound with antimalarial activity, was also tested and successfully made into nanoparticle formulation without undergoing solid dispersion procedure. We concluded that nanoparticles generated by using appropriate formulation components and sufficient particle size reduction significantly increased the bioavailability of DQ and could potentially turn this antimalarial agent to a therapeutic drug.

  4. Formulation and particle size reduction improve bioavailability of poorly water-soluble compounds with antimalarial activity.

    Science.gov (United States)

    Wang, Hongxing; Li, Qigui; Reyes, Sean; Zhang, Jing; Xie, Lisa; Melendez, Victor; Hickman, Mark; Kozar, Michael P

    2013-01-01

    Decoquinate (DQ) is highly effective at killing malaria parasites in vitro; however, it is extremely insoluble in water. In this study, solid dispersion method was used for DQ formulation which created a suitable physical form of DQ in aqueous phase for particle manipulation. Among many polymers and surfactants tested, polyvinylpyrrolidone 10, a polymer, and L- α -phosphatidylcholine or polysorbate, two surfactants, were chosen as DQ formulation components. The formulation particles were reduced to a mean size between 200 to 400 nm, which was stable in aqueous medium for at least three weeks. Pharmacokinetic (PK) studies showed that compared to DQ microparticle suspension, a nanoparticle formulation orally dosed to mice showed a 14.47-fold increase in area under the curve (AUC) of DQ plasma concentration and a 4.53-fold increase in AUC of DQ liver distribution. WR 299666, a poorly water-soluble compound with antimalarial activity, was also tested and successfully made into nanoparticle formulation without undergoing solid dispersion procedure. We concluded that nanoparticles generated by using appropriate formulation components and sufficient particle size reduction significantly increased the bioavailability of DQ and could potentially turn this antimalarial agent to a therapeutic drug.

  5. Quantifying the pharmacology of antimalarial drug combination therapy

    Science.gov (United States)

    Hastings, Ian M.; Hodel, Eva Maria; Kay, Katherine

    2016-01-01

    Most current antimalarial drugs are combinations of an artemisinin plus a ‘partner’ drug from another class, and are known as artemisinin-based combination therapies (ACTs). They are the frontline drugs in treating human malaria infections. They also have a public-health role as an essential component of recent, comprehensive scale-ups of malaria interventions and containment efforts conceived as part of longer term malaria elimination efforts. Recent reports that resistance has arisen to artemisinins has caused considerable concern. We investigate the likely impact of artemisinin resistance by quantifying the contribution artemisinins make to the overall therapeutic capacity of ACTs. We achieve this using a simple, easily understood, algebraic approach and by more sophisticated pharmacokinetic/pharmacodynamic analyses of drug action; the two approaches gave consistent results. Surprisingly, the artemisinin component typically makes a negligible contribution (≪0.0001%) to the therapeutic capacity of the most widely used ACTs and only starts to make a significant contribution to therapeutic outcome once resistance has started to evolve to the partner drugs. The main threat to antimalarial drug effectiveness and control comes from resistance evolving to the partner drugs. We therefore argue that public health policies be re-focussed to maximise the likely long-term effectiveness of the partner drugs. PMID:27604175

  6. Quantifying the pharmacology of antimalarial drug combination therapy

    Science.gov (United States)

    Hastings, Ian M.; Hodel, Eva Maria; Kay, Katherine

    2016-09-01

    Most current antimalarial drugs are combinations of an artemisinin plus a ‘partner’ drug from another class, and are known as artemisinin-based combination therapies (ACTs). They are the frontline drugs in treating human malaria infections. They also have a public-health role as an essential component of recent, comprehensive scale-ups of malaria interventions and containment efforts conceived as part of longer term malaria elimination efforts. Recent reports that resistance has arisen to artemisinins has caused considerable concern. We investigate the likely impact of artemisinin resistance by quantifying the contribution artemisinins make to the overall therapeutic capacity of ACTs. We achieve this using a simple, easily understood, algebraic approach and by more sophisticated pharmacokinetic/pharmacodynamic analyses of drug action; the two approaches gave consistent results. Surprisingly, the artemisinin component typically makes a negligible contribution (≪0.0001%) to the therapeutic capacity of the most widely used ACTs and only starts to make a significant contribution to therapeutic outcome once resistance has started to evolve to the partner drugs. The main threat to antimalarial drug effectiveness and control comes from resistance evolving to the partner drugs. We therefore argue that public health policies be re-focussed to maximise the likely long-term effectiveness of the partner drugs.

  7. Blood schizontocidal activity of methylene blue in combination with antimalarials against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Garavito G.

    2007-06-01

    Full Text Available Methylene blue (MB is the oldest synthetic antimalarial. It is not used anymore as antimalarial but should be reconsidered. For this purpose we have measured its impact on both chloroquine sensitive and resistant Plasmodium strains. We showed that around 5 nM of MB were able to inhibit 50% of the parasite growth in vitro and that late rings and early trophozoites were the most sensitive stages; while early rings, late trophozoites and schizonts were less sensitive. Drug interaction study following fractional inhibitory concentrations (FIC method showed antagonism with amodiaquine, atovaquone, doxycycline, pyrimethamine; additivity with artemether, chloroquine, mefloquine, primaquine and synergy with quinine. These results confirmed the interest of MB that could be integrated in a new low cost antimalarial combination therapy.

  8. Fixed dose combination of arterolane and piperaquine: a newer prospect in antimalarial therapy.

    Science.gov (United States)

    Patil, Cy; Katare, Ss; Baig, Ms; Doifode, Sm

    2014-07-01

    Malaria has been very prevalent vector-borne disease in India and until date bears enormous implications on health care services of the country. Over the period of time, the development of resistance to traditional antimalarials like chloroquine has been posed as major deterrent in efforts of malaria control. As the drug resistance is today universally prevalent, especially in Plasmodium falciparum species, major burden of malarial control resides with the new artemisinin drug class. However, arterolane is one of the first fully synthetic non-artemisinin antimalarial compound with rapid schizontocidal activity, hence offering an alternative to artemisinin drugs in malaria control. Piperaquine is a synthetic bisquinoline (4-amioquinoline Antimalarial) with slow and longer schizontocidal activity. Therefore their combination has been shown to provide rapid parasitemic clearance and quick relief of most malaria-related symptoms along with prevention of recrudescences. This combination was approved by Drugs Controller General of India in 2011 for treatment of uncomplicated P. falciparum malaria. The article is aimed at to review this newer prospect in antimalarial therapy for which comprehensive database search was done in Google, Google Scholar, PubMed using the terms "Malaria," "Arterolane," "OZ277," "Piperaquine," and "Artemisinin combination therapy." A total of 323 articles were screened and 28 articles were considered for this review along with the World Health Organization and National malarial program guidelines.

  9. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    Directory of Open Access Journals (Sweden)

    Swain Bijay K

    2009-02-01

    Full Text Available Abstract Background Herbal extracts of Andrographis paniculata (AP and Hedyotis corymbosa (HC are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20 and resistant (MRC-pf-303 strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using different concentrations of these plant extracts on synchronized P. falciparum cultures at the ring stage. The interactions between these two plant extracts and individually with curcumin were studied in vitro. The performance of these two herbal extracts in isolation and combination were further evaluated in vivo on Balb/c mice infected with Plasmodium berghei ANKA and their efficacy was compared with that of curcumin. The in vivo toxicity of the plant derived compounds as well as their parasite stage-specificity was studied. Results The 50% inhibitory concentration (IC50 of AP (7.2 μg/ml was found better than HC (10.8 μg/ml. Combination of these two herbal drugs showed substantial enhancement in their anti-malarial activity. Combinatorial effect of each of these with curcumin also revealed anti-malarial effect. Additive interaction between the plant extracts (AP + HC and their individual synergism with curcumin (AP+CUR, HC+CUR were evident from this study. Increased in vivo potency was also observed with the combination of plant extracts over the individual extracts and curcumin. Both the plant extracts were found to inhibit the ring stage of the parasite and did not show any in vivo toxicity, whether used in isolation or in combination. Conclusion Both these two plant extracts in combination with curcumin could be an effective, alternative source of herbal anti-malarial drugs.

  10. In vitro and in vivo anti-malarial activity of tigecycline, a glycylcycline antibiotic, in combination with chloroquine

    OpenAIRE

    Sahu, Rajnish; Walker, Larry A.; Tekwani, Babu L.

    2014-01-01

    Background Several antibiotics have shown promising anti-malarial effects and have been useful for malarial chemotherapy, particularly in combination with standard anti-malarial drugs. Tigecycline, a semi-synthetic derivative of minocycline with a unique and novel mechanism of action, is the first clinically available drug in a new class of glycylcycline antibiotics. Methods Tigecycline was tested in vitro against chloroquine (CQ)-sensitive (D6) and resistant strains (W2) of Plasmodium falcip...

  11. Antimalarial activity of Ageratum conyzoides in combination with chloroquine and artesunate

    Institute of Scientific and Technical Information of China (English)

    Ukwe Chinwe V; Ekwunife Obinna I; Epueke Ebele A; Ubaka Chukwuemeka M

    2010-01-01

    Objective: To determine the suppressive and curative activity of aqueous leaf extract of Ageratum conyzoides (A. conyzoides) in combination with chloroquine and artesunate, respectively against Plasmodium berghei infection in mice. Methods: Using malaria (Plasmodium berghei) infected albino mice of both sexes, aqueous extracts of A. conyzoides in combination with chloroquine and artesunate were tested for antimalarial activity, respectively. Four-day suppressive test and Rane's curative test were carried out. Results: Suppressive tests showed significant dose dependent reduction in parasitemia level produced by the extract-chloroquine and extract-artesunate combinations. Suppressive activities of both extract-drug combinations were greater than the individual drugs alone. Extract-chloroquine (100:5) produced the highest suppressive effect (98% suppression). Curative tests showed absolute survival in two extract-drug combinations. Two extract-drug combinations produced higher curative effects than the individual drugs alone. The highest dose combinations of extract-chloroquine (100:5) and extract-artesunate (100:5) produced absolute parasitemia clearance (cure) in the infected mice. Conclusions: The study indicated that aqueous extract of A. conyzoides had the ability to potentiate the antimalarial activity of chloroquine and artesunate against induced plasmodiasis in mice. It contributes a lot in the malaria endemic and poverty stricken tropics.

  12. The in vivo antimalarial activity of methylene blue combined with pyrimethamine, chloroquine and quinine

    Directory of Open Access Journals (Sweden)

    Giovanny Garavito

    2012-09-01

    Full Text Available The effectiveness of methylene blue (MB combined with pyrimethamine (PYR, chloroquine (CQ or quinine (Q was examined in a classical four-day suppressive test against a causative agent of rodent malaria, Plasmodium berghei. A marked potentiation was observed when MB was administered at a non-curative dose of 15 mg/kg/day in combination with PYR (0.19 mg/kg/day or Q (25 mg/kg/day. No synergy was found between MB (15 mg/Kg and CQ (0.75 mg/Kg. Our results suggest that the combination of MB with PYR or Q may improve the efficacy of these currently used antimalarial drugs.

  13. A Quantitative Documentation of the Composition of Two Powdered Herbal Formulations (Antimalarial and Haematinic Using Ethnomedicinal Information from Ogbomoso, Nigeria

    Directory of Open Access Journals (Sweden)

    Adepoju Tunde Joseph Ogunkunle

    2014-01-01

    Full Text Available The safety of many African traditional herbal remedies is doubtful due to lack of standardization. This study therefore attempted to standardize two polyherbal formulations from Ogbomoso, Oyo State, Nigeria, with respect to the relative proportions (weight-for-weight of their botanical constituents. Information supplied by 41 local herbal practitioners was statistically screened for consistency and then used to quantify the composition of antimalarial (Maloff-HB and haematinic (Haematol-B powdered herbal formulations with nine and ten herbs, respectively. Maloff-HB contained the stem bark of Enantia chlorantha Oliv. (30.0, Alstonia boonei De Wild (20.0, Mangifera indica L. (10.0, Okoubaka aubrevillei Phelleg & Nomand (8.0, Pterocarpus osun Craib (4.0, root bark of Calliandra haematocephala Hassk (10.0, Sarcocephalus latifolius (J. E. Smith E. A. Bruce (8.0, Parquetina nigrescens (Afz. Bullock (6.0, and the vines of Cassytha filiformis L. (4.0, while Haematol-B was composed of the leaf sheath of Sorghum bicolor Moench (30.0, fruit calyx of Hibiscus sabdariffa L. (20.0, stem bark of Theobroma cacao L. (10.0, Khaya senegalensis (Desr. A. Juss (5.5, Mangifera indica (5.5, root of Aristolochia ringens Vahl. (7.0, root bark of Sarcocephalus latifolius (5.5, Uvaria chamae P. Beauv. (5.5, Zanthoxylum zanthoxyloides (Lam. Zepern & Timler (5.5, and seed of Garcinia kola Heckel (5.5. In pursuance of their general acceptability, the two herbal formulations are recommended for their pharmaceutical, phytochemical, and microbial qualities.

  14. A quantitative documentation of the composition of two powdered herbal formulations (antimalarial and haematinic) using ethnomedicinal information from ogbomoso, Nigeria.

    Science.gov (United States)

    Ogunkunle, Adepoju Tunde Joseph; Oyelakin, Tosin Mathew; Enitan, Abosede Oluwaseyi; Oyewole, Funmilayo Elizabeth

    2014-01-01

    The safety of many African traditional herbal remedies is doubtful due to lack of standardization. This study therefore attempted to standardize two polyherbal formulations from Ogbomoso, Oyo State, Nigeria, with respect to the relative proportions (weight-for-weight) of their botanical constituents. Information supplied by 41 local herbal practitioners was statistically screened for consistency and then used to quantify the composition of antimalarial (Maloff-HB) and haematinic (Haematol-B) powdered herbal formulations with nine and ten herbs, respectively. Maloff-HB contained the stem bark of Enantia chlorantha Oliv. (30.0), Alstonia boonei De Wild (20.0), Mangifera indica L. (10.0), Okoubaka aubrevillei Phelleg & Nomand (8.0), Pterocarpus osun Craib (4.0), root bark of Calliandra haematocephala Hassk (10.0), Sarcocephalus latifolius (J. E. Smith) E. A. Bruce (8.0), Parquetina nigrescens (Afz.) Bullock (6.0), and the vines of Cassytha filiformis L. (4.0), while Haematol-B was composed of the leaf sheath of Sorghum bicolor Moench (30.0), fruit calyx of Hibiscus sabdariffa L. (20.0), stem bark of Theobroma cacao L. (10.0), Khaya senegalensis (Desr.) A. Juss (5.5), Mangifera indica (5.5), root of Aristolochia ringens Vahl. (7.0), root bark of Sarcocephalus latifolius (5.5), Uvaria chamae P. Beauv. (5.5), Zanthoxylum zanthoxyloides (Lam.) Zepern & Timler (5.5), and seed of Garcinia kola Heckel (5.5). In pursuance of their general acceptability, the two herbal formulations are recommended for their pharmaceutical, phytochemical, and microbial qualities. PMID:24701246

  15. Safety and tolerability of combination antimalarial therapies for uncomplicated falciparum malaria in Ugandan children

    Directory of Open Access Journals (Sweden)

    Kamya Moses R

    2008-06-01

    Full Text Available Abstract Background Combination antimalarial therapy is recommended for the treatment of uncomplicated falciparum malaria in Africa; however, some concerns about the safety and tolerability of new regimens remain. This study compared the safety and tolerability of three combination antimalarial regimens in a cohort of Ugandan children. Methods A longitudinal, single-blind, randomized clinical trial of children was conducted between November 2004 and May 2007 in Kampala, Uganda. Upon diagnosis of the first episode of uncomplicated malaria, participants were randomized to treatment with amodiaquine + sulphadoxine-pyrimethamine (AQ+SP, artesunate + amodiaquine (AS+AQ, or artemether-lumefantrine (AL. Once randomized, participants received the same regimen for all subsequent episodes of uncomplicated malaria. Participants were actively monitored for adverse events for the first 14 days after each treatment, and then passively followed until their next study medication treatment, or withdrawal from study. Outcome measures included the risk of adverse events at 14 and 42 days after treatment. Results Of 601 enrolled children, 382 were diagnosed with at least one episode of uncomplicated malaria and were treated with study medications. The median age at treatment was 6.3 years (range 1.1 – 12.3 years. At 14 days of follow-up, AQ+SP treatment was associated with a higher risk of anorexia, weakness, and subjective fever than treatment with AL, and a higher risk of weakness, and subjective fever than treatment with AS+AQ. Treatment with AL was associated with a higher risk of elevated temperature. Repeated episodes of neutropaenia associated with AS+AQ were detected in one participant. Considering only children less than five years, those who received AQ+SP were at higher risk of developing moderate or severe anorexia and weakness than those treated with AL (anorexia: RR 3.82, 95% CI 1.59 – 9.17; weakness: RR 5.40, 95% CI 1.86 – 15.7, or AS

  16. Development of hot melt co-formulated antimalarial solid dispersion system in fixed dose form (ARLUMELT): Evaluating amorphous state and in vivo performance.

    Science.gov (United States)

    Fule, Ritesh; Dhamecha, Dinesh; Maniruzzaman, Mohammed; Khale, Anubha; Amin, Purnima

    2015-12-30

    The aim of this study was to investigate the industrial feasibility of developing a co-formulated solid dispersion (SD) containing two antimalarial drugs artemether (ARTM) and lumefantrine (LUMF). Soluplus(®) (polyethyleneglycol-polyvinyl caprolactam-polyvinyl acetate grafted copolymer) was used as primary carrier matrices via hot-melt extrusion processing to improve solubility profile and the oral bioavailability of the combination. Based on the preliminary screening, the optimized quantities of PEG 400, Lutrol F127 and Lutrol F68 were incorporated as surfactant with soluplus in different ratios to improve extrudability, increase wettability and the melt viscosity of the HME process. Soluplus(®) was proved to successfully stabilize both the drugs inside its polymeric network during extrusion via forming a stable solid dispersion. Physicochemical properties of the APIs and the SDs characterized by thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), MDSC, FTIR spectroscopy and X-ray diffractometry (XRD) revealed the amorphous existence of the drug in all SDs developed. Molecular level morphology of solid dispersion characterized by using advanced physicochemical characterization techniques such as Raman spectroscopy, atomic force microscopy (AFM) and 2D NMR showed the transformation of the crystalline drugs to its stable amorphous state. All manufactured SDs retained their amorphicity even after a stability study conducted in accelerated condition over 6 months. The solubility and in vitro dissolution performance of both drugs in SD formulations was improved significantly when compared with pure drugs and marketed product while the in vivo studies revealed the same.The pharmacokinetic studies in rats revealed that the SD (AL1) shows a 44.12-65.24 folds increase in the AUC(0-72) and 42.87-172.61 folds increase in Cmax compared to that of pure drugs and a better bioavailability than that of commercial product. PMID:26471056

  17. Efficacy and tolerability of four antimalarial combinations in the treatment of uncomplicated Plasmodium falciparum malaria in Senegal

    Directory of Open Access Journals (Sweden)

    Faye Oumar

    2007-06-01

    Full Text Available Abstract Background In view of the high level of chloroquine resistance in many countries, WHO has recommended the use of combination therapy with artemisinin derivatives in the treatment of uncomplicated malaria due to Plasmodium falciparum. Four antimalarial drug combinations, artesunate plus amodiaquine (Arsucam®, artesunate plus mefloquine (Artequin®, artemether plus lumefantrine (Coartem®; four doses and six doses, and amodiaquine plus sulphadoxine-pyrimethamine, were studied in five health districts in Senegal. Methods This is a descriptive, analytical, open, randomized study to evaluate the efficacy and tolerability of these four antimalarial combinations in the treatment of uncomplicated falciparum malaria using the 2002 WHO protocol. Results All drug combinations demonstrated good efficacy. On day 28, all combinations resulted in an excellent clinical and parasitological response rate of 100% after correction for PCR results, except for the four-dose artemether-lumefantrine regimen (96.4%. Follow-up of approximately 10% of each treatment group on day 42 demonstrated an efficacy of 100%. The combinations were well tolerated clinically and biologically. No unexpected side-effect was observed and all side-effects disappeared at the end of treatment. No serious side-effect requiring premature termination of treatment was observed. Conclusion The four combinations are effective and well-tolerated.

  18. Pharmacokinetics of a Novel Sublingual Spray Formulation of the Antimalarial Drug Artemether in African Children with Malaria

    OpenAIRE

    Salman, Sam; Bendel, Daryl; Lee, Toong C.; Templeton, David; Davis, Timothy M. E.

    2015-01-01

    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in 91 young African children with severe malaria or who could not tolerate oral antimalarial therapy. Each received 3.0 mg/kg of body weight of artemether at 0, 8, 24, 36, 48, and 60 h or until the initiation of oral treatment. Few blood samples were drawn postdose. Plasma artemether and dihydroartemisinin (DHA) levels were measured using liquid chromatography-mass spectrometry, and the data were analyzed using establis...

  19. Pharmacokinetics of a Novel Sublingual Spray Formulation of the Antimalarial Drug Artemether in African Children with Malaria

    Science.gov (United States)

    Salman, Sam; Bendel, Daryl; Lee, Toong C.; Templeton, David

    2015-01-01

    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in 91 young African children with severe malaria or who could not tolerate oral antimalarial therapy. Each received 3.0 mg/kg of body weight of artemether at 0, 8, 24, 36, 48, and 60 h or until the initiation of oral treatment. Few blood samples were drawn postdose. Plasma artemether and dihydroartemisinin (DHA) levels were measured using liquid chromatography-mass spectrometry, and the data were analyzed using established population compartmental pharmacokinetic models. Parasite clearance was prompt (median parasite clearance time, 24 h), and there were no serious adverse events. Consistent with studies in healthy adults (S. Salman, D. Bendel, T. C. Lee, D. Templeton, and T. M. E. Davis, Antimicrob Agents Chemother 59:3197–3207, 2015, http://dx.doi.org/10.1128/AAC.05013-14), the absorption of sublingual artemether was biphasic, and multiple dosing was associated with the autoinduction of the metabolism of artemether to DHA (which itself has potent antimalarial activity). In contrast to studies using healthy volunteers, pharmacokinetic modeling indicated that the first absorption phase did not avoid first-pass metabolism, suggesting that the drug is transferred to the upper intestine through postdose fluid/food intake. Simulations using the present data and those from an earlier study in older Melanesian children with uncomplicated malaria treated with artemether-lumefantrine tablets suggested that the bioavailability of sublingual artemether was at least equivalent to that after conventional oral artemether-lumefantrine (median [interquartile range] areas under the concentration-time curve for artemether, 3,403 [2,471 to 4,771] versus 3,063 [2,358 to 4,514] μg · h/liter, respectively; and for DHA, 2,958 [2,146 to 4,278] versus 2,839 [1,812 to 3,488] μg · h/liter, respectively; P ≥ 0.42). These findings suggest that sublingual artemether could be used as prereferral treatment for sick

  20. Development of ELISA-based methods to measure the anti-malarial drug chloroquine in plasma and in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    Ronn Anita

    2011-08-01

    Full Text Available Abstract Background In Central and South America and Eastern and Southern Africa, Plasmodium vivax infections accounts for 71-81% and 5% of malaria cases, respectively. In these areas, chloroquine (CQ remains the treatment of choice for P. vivax malaria. In addition, CQ has recently proven to be an effective HIV-1 therapeutic agent. There is a dire need to continue monitoring quality of CQ as there is a major influx of substandard and fake formulations into malaria-endemic countries. The use of fake/substandard drugs will result in sub-therapeutic levels endangering the patient and possibly select for parasite resistance. The aim of this study was to develop an inexpensive, simple antibody-based ELISA to measure CQ concentrations in tablets and in plasma. Methods A monoclonal antibody (MAb that reacts with the N-side chain of the CQ molecule was prepared by use of a CQ analogue. A specific and reliable ELISA for detection of CQ was developed. The developed assay was validated by measuring CQ in tablets sold in Denmark, India and Sudan. Furthermore, kinetics of CQ concentrations in plasma of four volunteers, who ingested two tablets of Malarex® containing, 250 mg CQ base, were measured before drug intake, three hours later and thereafter at days 1, 3, 7, 14, 21 and 28. The same plasma samples were simultaneously measured by high performance liquid chromatography (HPLC. Results The ELISA proved an easy-to-handle and very sensitive tool for the detection of CQ with a lower limit of detection at 3.9 ng/ml. ELISA levels of CQ in plasma showed high agreement with the levels obtained by HPLC (r = 0.98. The specificity in the negative control group was 100%. Conclusion The developed ELISA can be used for quality screening of CQ in pharmaceutical formulations and for drug monitoring in malaria and in other infectious diseases, such as HIV, where CQ proved to be an effective therapeutic agent. The methodology has been exploited to develop monoclonal

  1. Treatment of Plasmodium chabaudi Parasites with Curcumin in Combination with Antimalarial Drugs: Drug Interactions and Implications on the Ubiquitin/Proteasome System

    OpenAIRE

    Zoraima Neto; Marta Machado; Ana Lindeza; Virgílio do Rosário; Gazarini, Marcos L.; Dinora Lopes

    2013-01-01

    Antimalarial drug resistance remains a major obstacle in malaria control. Evidence from Southeast Asia shows that resistance to artemisinin combination therapy (ACT) is inevitable. Ethnopharmacological studies have confirmed the efficacy of curcumin against Plasmodium spp. Drug interaction assays between curcumin/piperine/chloroquine and curcumin/piperine/artemisinin combinations and the potential of drug treatment to interfere with the ubiquitin proteasome system (UPS) were analyzed. In vivo...

  2. Development of ELISA-based methods to measure the anti-malarial drug chloroquine in plasma and in pharmaceutical formulations

    DEFF Research Database (Denmark)

    Khalil, Insaf F; Alifrangis, Michael; Recke, Camilla;

    2011-01-01

    therapeutic agent. There is a dire need to continue monitoring quality of CQ as there is a major influx of substandard and fake formulations into malaria-endemic countries. The use of fake/substandard drugs will result in sub-therapeutic levels endangering the patient and possibly select for parasite......In Central and South America and Eastern and Southern Africa, Plasmodium vivax infections accounts for 71-81% and 5% of malaria cases, respectively. In these areas, chloroquine (CQ) remains the treatment of choice for P. vivax malaria. In addition, CQ has recently proven to be an effective HIV-1...... resistance. The aim of this study was to develop an inexpensive, simple antibody-based ELISA to measure CQ concentrations in tablets and in plasma....

  3. Saleability of anti-malarials in private drug shops in Muheza, Tanzania: a baseline study in an era of assumed artemisinin combination therapy (ACT)

    OpenAIRE

    Ringsted Frank M; Massawe Isolide S; Lemnge Martha M; Bygbjerg Ib C

    2011-01-01

    Abstract Background Artemether-lumefantrine (ALu) replaced sulphadoxine-pymimethamine (SP) as the official first-line anti-malarial in Tanzania in November 2006. So far, artemisinin combination therapy (ACT) is contra-indicated during pregnancy by the national malaria treatment guidelines, and pregnant women depend on SP for Intermittent Preventive Treatment (IPTp) during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may u...

  4. A combination of the leaves and tuber of Icacina senegalensis A. Juss (Icacinaceae improves the antimalarial activity of the plant in mice

    Directory of Open Access Journals (Sweden)

    Esien David-Oku

    2015-10-01

    Full Text Available Objective: To investigate the possibility of increased antimalarial activity of Icacina senegalensis A. Juss (Icacinaceae upon a combination of its leaves and tubers against Plasmodium berghei malaria in mice. Methods: Chloroquine sensitive ANKA clones of Plasmodium berghei were used to develop experimental models based on intraperitoneal injection of 107 parasitized erythrocytes in phosphate buffer saline (pH 7.2 and subsequent development of parasitemia. The models were employed to investigate prophylactic and curative anti-malarial activities of tuber and tuberleaf methanol extracts of the plant at selected dosages (25, 50 and 100 mg/kg body weight. Chloroquine with a curative dosage of 10 mg/kg body weight was used as positive control in both studies. Results: Tuber and tuber-leaf extracts produced a dose-dependent chemosuppression of the parasites, with higher activity and mean survival time exhibited by the combined extract. Conclusions: Anti-plasmodia activity has been discovered in methanol extract of Icacina senegalensis tuber extract. The observed optimization of the antimalarial actions of the plant upon a combination of its leaf and tuber opens a new area of medicinal plant research.

  5. A combination of the leaves and tuber ofIcacina senegalensis A. Juss (Icacinaceae) improves the antimalarial activity of the plant in mice

    Institute of Scientific and Technical Information of China (English)

    Esien David-Oku; Juliet Ifeoma Obiajunwa-Otteh

    2015-01-01

    Objective:To investigate the possibility of increased antimalarial activity ofIcacina senegalensis A. Juss (Icacinaceae) upon a combination of its leaves and tubers against Plasmodium berghei malaria in mice. Methods: Chloroquine sensitiveANKA clones ofPlasmodium berghei were used to develop experimental models based on intraperitoneal injection of 107 parasitized erythrocytes in phosphate buffer saline (pH 7.2) and subsequent development of parasitemia. The models were employed to investigate prophylactic and curative anti-malarial activities of tuber and tuber-leaf methanol extracts of the plant at selected dosages (25, 50 and 100 mg/kg body weight). Chloroquine with a curative dosage of 10 mg/kg body weight was used as positive control in both studies. Results:Tuber and tuber-leaf extracts produced a dose-dependent chemosuppression of the parasites, with higher activity and mean survival time exhibited by the combined extract. Conclusions:Anti-plasmodia activity has been discovered in methanol extract ofIcacina senegalensis tuber extract. The observed optimization of the antimalarial actions of the plant upon a combination of its leaf and tuber opens a new area of medicinal plant research.

  6. Antagonistic antimalarial properties of pawpaw leaf aqueous extract in combination with artesunic acid in Plasmodium berghei-infected mice

    Directory of Open Access Journals (Sweden)

    L.O. Onaku, A.A. Attama, V.C. Okore, A.Y. Tijani, A.A. Ngene & C.O. Esimone

    2011-06-01

    Full Text Available Background & objectives: Artemisinins, the main stay in the treatment of malaria are used in combinationswith other antimalarials to forestall resistance, as artemisinin-combination therapies (ACTs. However, ACTsare expensive and some of the non-artemisinin components are not well-tolerated by patients. There areseveral folkloric and scientific proofs of the efficacy of herbal remedies for malaria. Mature leaves of Caricapapaya is widely used to treat malaria in several African countries. An ACT involving a medicinal herb extractor its active constituent(s will provide an indigenous alternative/herbal ACT.Methods: Mature fresh leaves of Carica papaya were grounded and macerated in cold distilled water for 24 hand the extract (PCE was stored in the refrigerator for seven days. Fresh extracts were made as needed. Theantiplasmodial activity of PCE and/or artesunic acid were determined by using the Peter’s 4-day suppressivetest in Plasmodium berghei-infected mice. The ED50 and ED90 were calculated from the dose-responserelationships.Results: The combination of 50 mg/kg of PCE and 15 mg/kg of artesunic acid produced a significant reductionof parasitemia (81.25%, compared to 50 mg/kg PCE alone (37.7%. The mean survival time of the combinationsof PCE and 15 mg/kg of artesunic acid, and PCE alone followed a dose-dependent manner. The ED50 of PCEshowed that it has a very good activity. The isobolar equivalent (IE calculated from the ED90 of PCE incombination with artesunic acid showed that the interaction was antagonistic.Interpretation & conclusion: Although pawpaw alone was found to have a very good activity, its combinationwith artesunic acid is antagonistic. Combinations of artemisinins and pawpaw show little promise forcombination therapy development.

  7. Antimalarial peroxides

    Directory of Open Access Journals (Sweden)

    DEJAN M. OPSENICA

    2009-11-01

    Full Text Available The problem of endemic malaria continues unabated globally. Malaria affects 40 % of the global population, causing an estimated annual mortality of 1.5–2.7 million people. The World Health Organization (WHO estimates that 90 % of these deaths occur in sub-Saharan Africa among infants under the age of five. While a vaccine against malaria continues to be elusive, chemotherapy remains the most viable alternative towards treatment of the disease. During last years, the situation has become urgent in many ways, but mainly because of the development of chloroquine-resistant (CQR strains of Plasmodium falciparum (Pf. The discovery that artemisinin (ART, 1, an active principle of Artemisia annua L., expresses a significant antimalarial activity, especially against CQR strains, opened new approaches for combating malaria. Since the early 1980s, hundreds of semisynthetic and synthetic peroxides have been developed and tested for their antimalarial activity, the results of which were extensively reviewed. In addition, in therapeutic practice, there is no reported case of drug resistance to these antimalarial peroxides. This review summarizes recent achievements in the area of peroxide drug development for malaria chemotherapy.

  8. Saleability of anti-malarials in private drug shops in Muheza, Tanzania: a baseline study in an era of assumed artemisinin combination therapy (ACT

    Directory of Open Access Journals (Sweden)

    Ringsted Frank M

    2011-08-01

    Full Text Available Abstract Background Artemether-lumefantrine (ALu replaced sulphadoxine-pymimethamine (SP as the official first-line anti-malarial in Tanzania in November 2006. So far, artemisinin combination therapy (ACT is contra-indicated during pregnancy by the national malaria treatment guidelines, and pregnant women depend on SP for Intermittent Preventive Treatment (IPTp during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may undermine its official use for IPTp through induction of resistance. The main study objective was to perform a baseline study of the private market for anti-malarials in Muheza town, an area with widespread anti-malarial drug resistance, prior to the implementation of a provider training and accreditation programme that will allow accredited drug shops to sell subsidized ALu. Methods All drug shops selling prescription-only anti-malarials, in Muheza town, Tanga Region voluntarily participated from July to December 2009. Qualitative in-depth interviews were conducted with owners or shopkeepers on saleability of anti-malarials, and structured questionnaires provided quantitative data on drugs sales volume. Results All surveyed drug shops illicitly sold SP and quinine (QN, and legally amodiaquine (AQ. Calculated monthly sale was 4,041 doses, in a town with a population of 15,000 people. Local brands of SP accounted for 74% of sales volume, compared to AQ (13%, QN (11% and ACT (2%. Conclusions In community practice, the saleability of ACT was negligible. SP was best-selling, and use was not reserved for IPTp, as stipulated in the national anti-malarial policy. It is a major reason for concern that such drug-pressure in the community equals de facto intermittent presumptive treatment. In an area where SP drug resistance remains high, unregulated SP dispensing to people other than pregnant women runs the risk of eventually jeopardizing the effectiveness of the IPTp

  9. Cost-effectiveness study of three antimalarial drug combinations in Tanzania.

    Directory of Open Access Journals (Sweden)

    Virginia Wiseman

    2006-10-01

    Full Text Available BACKGROUND: As a result of rising levels of drug resistance to conventional monotherapy, the World Health Organization (WHO and other international organisations have recommended that malaria endemic countries move to combination therapy, ideally with artemisinin-based combinations (ACTs. Cost is a major barrier to deployment. There is little evidence from field trials on the cost-effectiveness of these new combinations. METHODS AND FINDINGS: An economic evaluation of drug combinations was designed around a randomised effectiveness trial of combinations recommended by the WHO, used to treat Tanzanian children with non-severe slide-proven malaria. Drug combinations were: amodiaquine (AQ, AQ with sulfadoxine-pyrimethamine (AQ+SP, AQ with artesunate (AQ+AS, and artemether-lumefantrine (AL in a six-dose regimen. Effectiveness was measured in terms of resource savings and cases of malaria averted (based on parasitological failure rates at days 14 and 28. All costs to providers and to patients and their families were estimated and uncertain variables were subjected to univariate sensitivity analysis. Incremental analysis comparing each combination to monotherapy (AQ revealed that from a societal perspective AL was most cost-effective at day 14. At day 28 the difference between AL and AQ+AS was negligible; both resulted in a gross savings of approximately US1.70 dollars or a net saving of US22.40 dollars per case averted. Varying the accuracy of diagnosis and the subsistence wage rate used to value unpaid work had a significant effect on the number of cases averted and on programme costs, respectively, but this did not change the finding that AL and AQ+AS dominate monotherapy. CONCLUSIONS: In an area of high drug resistance, there is evidence that AL and AQ+AS are the most cost-effective drugs despite being the most expensive, because they are significantly more effective than other options and therefore reduce the need for further treatment. This is

  10. Estimating antimalarial drugs consumption in Africa before the switch to artemisinin-based combination therapies (ACTs

    Directory of Open Access Journals (Sweden)

    Vreeke Ed

    2007-07-01

    Full Text Available Abstract Background Having reliable forecasts is critical now for producers, malaria-endemic countries and agencies in order to adapt production and procurement of the artemisinin-based combination treatments (ACTs, the new first-line treatments of malaria. There is no ideal method to quantify drug requirements for malaria. Morbidity data give uncertain estimations. This study uses drug consumption to provide elements to help estimate quantities and financial requirements of ACTs. Methods The consumption of chloroquine, sulphadoxine/pyrimethamine and quinine both through the private and public sector was assessed in five sub-Saharan Africa countries with different epidemiological patterns (Senegal, Rwanda, Tanzania, Malawi, Zimbabwe. From these data the number of adult treatments per capita was calculated and the volumes and financial implications derived for the whole of Africa. Results Identifying and obtaining data from the private sector was difficult. The quality of information on drug supply and distribution in countries must be improved. The number of adult treatments per capita and per year in the five countries ranged from 0.18 to 0.50. Current adult treatment prices for ACTs range US$ 1–1.8. Taking the upper range for both volumes and costs, the highest number of adult treatments consumed for Africa was estimated at 314.5 million, corresponding to an overall maximum annual need for financing ACT procurement of US$ 566.1 million. In reality, both the number of cases treated and the cost of treatment are likely to be lower (projections for the lowest consumption estimate with the least expensive ACT would require US $ 113 million per annum. There were substantial variations in the market share between public and private sources among these countries (the public sector share ranging from 98% in Rwanda to 33% in Tanzania. Conclusion Additional studies are required to build a more robust methodology, and to assess current consumptions

  11. Treatment of Plasmodium chabaudi Parasites with Curcumin in Combination with Antimalarial Drugs: Drug Interactions and Implications on the Ubiquitin/Proteasome System

    Directory of Open Access Journals (Sweden)

    Zoraima Neto

    2013-01-01

    Full Text Available Antimalarial drug resistance remains a major obstacle in malaria control. Evidence from Southeast Asia shows that resistance to artemisinin combination therapy (ACT is inevitable. Ethnopharmacological studies have confirmed the efficacy of curcumin against Plasmodium spp. Drug interaction assays between curcumin/piperine/chloroquine and curcumin/piperine/artemisinin combinations and the potential of drug treatment to interfere with the ubiquitin proteasome system (UPS were analyzed. In vivo efficacy of curcumin was studied in BALB/c mice infected with Plasmodium chabaudi clones resistant to chloroquine and artemisinin, and drug interactions were analyzed by isobolograms. Subtherapeutic doses of curcumin, chloroquine, and artemisinin were administered to mice, and mRNA was collected following treatment for RT-PCR analysis of genes encoding deubiquitylating enzymes (DUBs. Curcumin was found be nontoxic in BALB/c mice. The combination of curcumin/chloroquine/piperine reduced parasitemia to 37% seven days after treatment versus the control group’s 65%, and an additive interaction was revealed. Curcumin/piperine/artemisinin combination did not show a favorable drug interaction in this murine model of malaria. Treatment of mice with subtherapeutic doses of the drugs resulted in a transient increase in genes encoding DUBs indicating UPS interference. If curcumin is to join the arsenal of available antimalarial drugs, future studies exploring suitable drug partners would be of interest.

  12. Artemisinin combination therapies price disparity between government and private health sectors and its implication on antimalarial drug consumption pattern in Morogoro Urban District, Tanzania

    Directory of Open Access Journals (Sweden)

    Malisa Allen

    2012-03-01

    Full Text Available Abstract Background Universal access to effective treatments is a goal of the Roll Back Malaria Partnership. However, despite official commitments and substantial increases in financing, this objective remains elusive, as development assistance continue to be routed largely through government channels, leaving the much needed highly effective treatments inaccessible or unaffordable to those seeking services in the private sector. Methods To quantify the effect of price disparity between the government and private health systems, this study have audited 92 government and private Drug Selling Units (DSUs in Morogoro urban district in Tanzania to determine the levels, trend and consumption pattern of antimalarial drugs in the two health systems. A combination of observation, interviews and questionnaire administered to the service providers of the randomly selected DSUs were used to collect data. Results ALU was the most selling antimalarial drug in the government health system at a subsidized price of 300 TShs (0.18 US$. By contrast, ALU that was available in the private sector (coartem was being sold at a price of about 10,000 TShs (5.9 US$, the price that was by far unaffordable, prompting people to resort to cheap but failed drugs. As a result, metakelfin (the phased out drug was the most selling drug in the private health system at a price ranging from 500 to 2,000 TShs (0.29–1.18 US$. Conclusions In order for the prompt diagnosis and treatment with effective drugs intervention to have big impact on malaria in mostly low socioeconomic malaria-endemic areas of Africa, inequities in affordability and access to effective treatment must be eliminated. For this to be ensued, subsidized drugs should be made available in both government and private health sectors to promote a universal access to effective safe and affordable life saving antimalarial drugs.

  13. Pharmacologic inhibition of CXCL10 in combination with anti-malarial therapy eliminates mortality associated with murine model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Nana O Wilson

    Full Text Available Despite appropriate anti-malarial treatment, cerebral malaria (CM-associated mortalities remain as high as 30%. Thus, adjunctive therapies are urgently needed to prevent or reduce such mortalities. Overproduction of CXCL10 in a subset of CM patients has been shown to be tightly associated with fatal human CM. Mice with deleted CXCL10 gene are partially protected against experimental cerebral malaria (ECM mortality indicating the importance of CXCL10 in the pathogenesis of CM. However, the direct effect of increased CXCL10 production on brain cells is unknown. We assessed apoptotic effects of CXCL10 on human brain microvascular endothelial cells (HBVECs and neuroglia cells in vitro. We tested the hypothesis that reducing overexpression of CXCL10 with a synthetic drug during CM pathogenesis will increase survival and reduce mortality. We utilized atorvastatin, a widely used synthetic blood cholesterol-lowering drug that specifically targets and reduces plasma CXCL10 levels in humans, to determine the effects of atorvastatin and artemether combination therapy on murine ECM outcome. We assessed effects of atorvastatin treatment on immune determinants of severity, survival, and parasitemia in ECM mice receiving a combination therapy from onset of ECM (day 6 through 9 post-infection and compared results with controls. The results indicate that CXCL10 induces apoptosis in HBVECs and neuroglia cells in a dose-dependent manner suggesting that increased levels of CXCL10 in CM patients may play a role in vasculopathy, neuropathogenesis, and brain injury during CM pathogenesis. Treatment of ECM in mice with atorvastatin significantly reduced systemic and brain inflammation by reducing the levels of the anti-angiogenic and apoptotic factor (CXCL10 and increasing angiogenic factor (VEGF production. Treatment with a combination of atorvastatin and artemether improved survival (100% when compared with artemether monotherapy (70%, p<0.05. Thus, adjunctively

  14. Expanding the Antimalarial Drug Arsenal—Now, But How?

    Directory of Open Access Journals (Sweden)

    Rajeev K. Mehlotra

    2011-04-01

    Full Text Available The number of available and effective antimalarial drugs is quickly dwindling. This is mainly because a number of drug resistance-associated mutations in malaria parasite genes, such as crt, mdr1, dhfr/dhps, and others, have led to widespread resistance to all known classes of antimalarial compounds. Unfortunately, malaria parasites have started to exhibit some level of resistance in Southeast Asia even to the most recently introduced class of drugs, artemisinins. While there is much need, the antimalarial drug development pipeline remains woefully thin, with little chemical diversity, and there is currently no alternative to the precious artemisinins. It is difficult to predict where the next generation of antimalarial drugs will come from; however, there are six major approaches: (i re-optimizing the use of existing antimalarials by either replacement/rotation or combination approach; (ii repurposing drugs that are currently used to treat other infections or diseases; (iii chemically modifying existing antimalarial compounds; (iv exploring natural sources; (v large-scale screening of diverse chemical libraries; and (vi through parasite genome-based (“targeted” discoveries. When any newly discovered effective antimalarial treatment is used by the populus, we must maintain constant vigilance for both parasite-specific and human-related factors that are likely to hamper its success. This article is neither comprehensive nor conclusive. Our purpose is to provide an overview of antimalarial drug resistance, associated parasite genetic factors (1. Introduction; 2. Emergence of artemisinin resistance in P. falciparum, and the antimalarial drug development pipeline (3. Overview of the global pipeline of antimalarial drugs, and highlight some examples of the aforementioned approaches to future antimalarial treatment. These approaches can be categorized into “short term” (4. Feasible options for now and “long term” (5. Next generation of

  15. Different methodological approaches to the assessment of in vivo efficacy of three artemisinin-based combination antimalarial treatments for the treatment of uncomplicated falciparum malaria in African children

    Directory of Open Access Journals (Sweden)

    Zongo Issaka

    2008-08-01

    Full Text Available Abstract Background Use of different methods for assessing the efficacy of artemisinin-based combination antimalarial treatments (ACTs will result in different estimates being reported, with implications for changes in treatment policy. Methods Data from different in vivo studies of ACT treatment of uncomplicated falciparum malaria were combined in a single database. Efficacy at day 28 corrected by PCR genotyping was estimated using four methods. In the first two methods, failure rates were calculated as proportions with either (1a reinfections excluded from the analysis (standard WHO per-protocol analysis or (1b reinfections considered as treatment successes. In the second two methods, failure rates were estimated using the Kaplan-Meier product limit formula using either (2a WHO (2001 definitions of failure, or (2b failure defined using parasitological criteria only. Results Data analysed represented 2926 patients from 17 studies in nine African countries. Three ACTs were studied: artesunate-amodiaquine (AS+AQ, N = 1702, artesunate-sulphadoxine-pyrimethamine (AS+SP, N = 706 and artemether-lumefantrine (AL, N = 518. Using method (1a, the day 28 failure rates ranged from 0% to 39.3% for AS+AQ treatment, from 1.0% to 33.3% for AS+SP treatment and from 0% to 3.3% for AL treatment. The median [range] difference in point estimates between method 1a (reference and the others were: (i method 1b = 1.3% [0 to24.8], (ii method 2a = 1.1% [0 to21.5], and (iii method 2b = 0% [-38 to19.3]. The standard per-protocol method (1a tended to overestimate the risk of failure when compared to alternative methods using the same endpoint definitions (methods 1b and 2a. It either overestimated or underestimated the risk when endpoints based on parasitological rather than clinical criteria were applied. The standard method was also associated with a 34% reduction in the number of patients evaluated compared to the number of patients enrolled. Only 2% of the sample size

  16. On peroxide antimalarials

    Directory of Open Access Journals (Sweden)

    IGOR OPSENICA

    2007-12-01

    Full Text Available Several dicyclohexylidene tetraoxanes were prepared in order to gain a further insight into structure–activity relationship of this kind of antimalarials. The tetraoxanes 2–5, obtained as a cis/trans mixture, showed pronounced antimalarial activity against Plasmodium falciparum chloroquine susceptible D6, chloroquine resistant W2 and multidrug-resistant TM91C235 (Thailand strains. They have better than or similar activity to the corresponding desmethyl dicyclohexylidene derivatives. Two chimeric endoperoxides with superior antimalarial activity to the natural product ascaridole were also synthesized.

  17. FORMULATION AND EVALUATION OF ISONIAZID AND ETHAMBUTOL HYDROCHLORIDE COMBINATION TABLETS

    Directory of Open Access Journals (Sweden)

    Margret Chandira R

    2012-02-01

    Full Text Available Ethambutol hydrochloride and Isoniazid Drugs are used as Antituberculosis agents. It is mainly used in the initial Treatment of pulmonary tuberculosis. Here in present study compressed tablet of Ethambutol hydrochloride and Isoniazid prepared by using HPMC, HPC, and PVPK -30 as binders. Compressed tablets of Ethambutol hydrochloride and Isoniazid were prepared by wet granulation method. Among different trials of F1 to F9 with wet granulation, the trial F1 showed satisfactory in-vitro drug release profile as compared to that of innovator for formulation. The cumulative percentage of drug release of formulation F1 (Isoniazid And F1 (Ethambutol were 99.53 and 99.43 respectively. The result of stability studies of batch F1 indicate that it is stable at 40°C ± 2°C / 75% RH ± 5 % relative humidity as there was no significant differences observe for dissolution and assay after two months.

  18. Formulation andin-vitro preliminary screening of polyphyto antilithiatic combination

    Institute of Scientific and Technical Information of China (English)

    Abhishek Bharadwaj; Kumud Upadhayaya; N V Satheesh Madhav

    2013-01-01

    Objective:To study people suffered from urinary stone problem by calcium oxalate monohydrate (COM) and calcium oxalate dihydrate(COD) containing stones.Method:In the present study,CO crystals were grown by mixing and stirring two equal volumes of solutionsA andB.Two solutions of following composition were mixed:A:Na2C2O4(2 mmol) andB:CaCl2.2H2O(10 mmol).The crystals after incubation in tris buffer were then subjected to the aqueous extract of the polyherbal formulation and cystone was taken as standard.Result:After the treatment with the extract the crystals were microscopically examined and elemental analysis for calcium was carried out.The formulation proved out to be very effective against theCO crystals.Conclusions:The results have come out to be very motivating and further pharmacological study could be carried out on the samples to reveal an effective drug for the urolithiasis.Data reveals that phytotherapeutic agents could be useful as either an alternative or a complementary therapy in the management of urolithiasis.

  19. Incidence of malaria and efficacy of combination antimalarial therapies over 4 years in an urban cohort of Ugandan children.

    Directory of Open Access Journals (Sweden)

    Tamara D Clark

    Full Text Available BACKGROUND: Combination therapies are now recommended to treat uncomplicated malaria. We used a longitudinal design to assess the incidence of malaria and compare the efficacies of 3 combination regimens in Kampala, Uganda. METHODOLOGY/PRINCIPAL FINDINGS: Children aged 1-10 years were enrolled from randomly selected households in 2004-05 and 2007, and were followed at least monthly through 2008. Insecticide-treated bednets (ITNs were provided in 2006. Children were randomized upon their first episode, and then treated for all episodes of uncomplicated malaria with amodiaquine/sulfadoxine-pyrimethamine (AQ/SP, artesunate/amodiaquine (AS/AQ, or artemether/lumefantrine (AL. Risks of parasitological failure were determined for each episode of uncomplicated malaria and clinical parameters were followed. A total of 690 children experienced 1464 episodes of malaria. 96% of these episodes were uncomplicated malaria and treated with study drugs; 94% were due to Plasmodium falciparum. The rank order of treatment efficacy was AL > AS/AQ > AQ/SP. Failure rates increased over time for AQ/SP, but not the artemisinin-based regimens. Over the 4-year course of the study the prevalence of asymptomatic parasitemia decreased from 11.8% to 1.4%, the incidence of malaria decreased from 1.55 to 0.32 per person year, and the prevalence of anemia (hemoglobin <10 gm/dL decreased from 5.9% to 1.0%. No episodes of severe malaria (based on WHO criteria and no deaths were seen. CONCLUSIONS/SIGNIFICANCE: With ready access to combination therapies and distribution of ITNs, responses were excellent for artemisinin-containing regimens, severe malaria was not seen, and the incidence of malaria and prevalence of parasitemia and anemia decreased steadily over time. TRIAL REGISTRATION: isrctn.org ISRCTN37517549.

  20. Development of a new formulation combining calcipotriol and betamethasone dipropionate in an ointment vehicle

    DEFF Research Database (Denmark)

    Simonsen, Lene; Høy, Gert; Didriksen, Erik;

    2004-01-01

    Calcipotriol and betamethasone dipropionate are widely used effective treatments for psoriasis. Combined therapy is known to be superior to monotherapy, but current formulations do not permit simultaneous application as the drug substances will degrade when mixed. The purpose of the study...... was to develop a formulation which combines calcipotriol and betamethasone dipropionate in a single vehicle hereby achieving optimal delivery of both substances into the skin. As the two substances are incompatible in aqueous and alcoholic medias, different non-aqueous formulations were prepared. Skin permeation...

  1. Community coverage of an antimalarial combination of artesunate and amodiaquine in Makamba Province, Burundi, nine months after its introduction

    Directory of Open Access Journals (Sweden)

    Brasher Christopher

    2007-07-01

    Full Text Available Abstract Background In 2003, artesunate-amodiaquine (AS+AQ was introduced as the new first-line treatment for uncomplicated malaria in Burundi. After confirmed diagnosis, treatment was delivered at subsidized prices in public health centres. Nine months after its implementation a study was carried out to assess whether children below five years of age with uncomplicated malaria were actually receiving AS+AQ. Methods A community-based study was conducted in Makamba province. Randomly selected households containing one or more children under five with reported fever onset within fourteen days before the study date were eligible. Case-management information was collected based on caregiver recall. A case definition of symptomatic malaria from observations of children presenting a confirmed malaria episode on the day of the survey was developed. Based on this definition, those children who had probable malaria among those with fever onset in the 14 days prior to the study were identified retrospectively. Treatment coverage with AS+AQ was then estimated among these probable malaria cases. Results Out of 195 children with fever on the day of the study, 92 were confirmed as true malaria cases and 103 tested negative. The combination of 'loss of appetite', 'sweating', 'shivering' and 'intermittent fever' yielded the highest possible positive predictive value, and was chosen as the case definition of malaria. Out of 526 children who had had fever 14 days prior to the survey, 165 (31.4% were defined as probable malaria cases using this definition. Among them, 20 (14.1% had been treated with AS+AQ, 10 with quinine (5%, 68 (41% received non-malaria treatments, and 67 got traditional treatment or nothing (39.9%. Most people sought treatment from public health centres (23/99 followed by private clinics (15/99, 14.1%. The median price paid for AS+AQ was 0.5 US$. Conclusion AS+AQ was the most common treatment for patients with probable malaria at public health

  2. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    OpenAIRE

    Swain Bijay K; Dash Aditya P; Mishra Kirti; Dey Nrisingha

    2009-01-01

    Abstract Background Herbal extracts of Andrographis paniculata (AP) and Hedyotis corymbosa (HC) are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20) and resistant (MRC-pf-303) strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using diff...

  3. Benefits of Combinations of Vitamin A, C and E Derivatives in the Stability of Cosmetic Formulations

    Directory of Open Access Journals (Sweden)

    Patrícia Maria Berardo Gonçalves Maia Campos

    2012-02-01

    Full Text Available Chemically stable ester derivatives of vitamins A, C and E have become a focus of interest for their role in the satisfactory results in skin aging treatments. Accordingly, the aim of this study was to evaluate the physical and chemical stability of a cosmetic formulation containing 1% retinyl palmitate, ascorbyl tetraisopalmitate and tocopheryl acetate, alone or in combination. In the studies of physical stability, a Brookfield rheometer was used to determine rheological behavior of formulations containing the vitamins. Chemical stability was determined by HPLC on a Shimadzu system with UV detection. Results showed that formulations had pseudoplastic behavior and that vitamins did not alter their apparent viscosity and thixotropy. In the chemical stability studies, first-order reaction equations were used for determinations of the shelf-life of vitamins derivatives considering a remaining concentration of 85%. Combined vitamins in a single formulation had a slightly lower degradation rate as compared to different preparations containing only one of the vitamins. Considering that many cosmetic formulations contain vitamin combinations it is suggested that the present study may contribute to the development of more stable formulations containing liposoluble vitamins.

  4. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids

    Directory of Open Access Journals (Sweden)

    Birgit Viira

    2016-06-01

    Full Text Available Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  5. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids.

    Science.gov (United States)

    Viira, Birgit; Gendron, Thibault; Lanfranchi, Don Antoine; Cojean, Sandrine; Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Maes, Louis; Maran, Uko; Loiseau, Philippe M; Davioud-Charvet, Elisabeth

    2016-06-29

    Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  6. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    Science.gov (United States)

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes. PMID:17995773

  7. Formulation of a Combined Transportation and Inventory Optimization Model with Multiple Time Periods

    Directory of Open Access Journals (Sweden)

    G.Krishnakumari,

    2016-03-01

    Full Text Available Most distribution network design models existing in the literature have focused on minimizing the costs of inventory and transportation. During the analysis of supply chain of currency management problem it is observed that the transportation of currency from various sources to various destinations and the required inventory to be maintained to meet the emerging demands requires formulation of a combined problem. This framework aims to support the coordination of inventory and transportation activities to properly manage the inventory profiles and currency flows between source locations and distribution centers. This paper considers a multi-period inventory and transportation model for a single commodity. The key contribution of this paper is, a mathematical programming formulation of transportation cum inventory problem is proposed and an algorithm for this new formulation as a multi period decision process is intended. A numerical example of currency transportation cum inventory is presented to illustrate the proposed algorithm

  8. Benefits of Combinations of Vitamin A, C and E Derivatives in the Stability of Cosmetic Formulations

    OpenAIRE

    Patrícia Maria Berardo Gonçalves Maia Campos; Lorena Rigo Gaspar; Mirela Donato Gianeti; Flávio Bueno de Camargo Júnior

    2012-01-01

    Chemically stable ester derivatives of vitamins A, C and E have become a focus of interest for their role in the satisfactory results in skin aging treatments. Accordingly, the aim of this study was to evaluate the physical and chemical stability of a cosmetic formulation containing 1% retinyl palmitate, ascorbyl tetraisopalmitate and tocopheryl acetate, alone or in combination. In the studies of physical stability, a Brookfield rheometer was used to determine rheological behavior of formulat...

  9. Antimalarial activity of cedronin.

    Science.gov (United States)

    Moretti, C; Deharo, E; Sauvain, M; Jardel, C; David, P T; Gasquet, M

    1994-06-01

    Cedronin was isolated from Simaba cedron Planchon (Simaroubaceae), a species popularly believed in South America to have antimalarial properties. It was examined for in vitro and in vivo antimalarial activities and for cytotoxicity against KB cells. Experimental results showed that cedronin was active against chloroquine-sensitive and resistant strain, with an IC50 of 0.25 micrograms/ml (0.65 mumol/ml). It was also found to be active in vivo against Plasmodium vinkei with an IC50 of 1.8 mg/kg (4.7 nM/kg) in the classic 4-day test. Cedronin belongs to the small group of quassinoids with a C19 basic skeleton and shows a rather low cytotoxicity against KB cells (IC50 = 4 micrograms/ml, 10.4 microM) as compared with C20 biologically active quassinoids; however its toxic/therapeutic ratio (10/1.8) remains lower than chloroquine (10/0.5).

  10. Needle-free buccal anesthesia using iontophoresis and amino amide salts combined in a mucoadhesive formulation.

    Science.gov (United States)

    Cubayachi, Camila; Couto, Renê Oliveira do; de Gaitani, Cristiane Masetto; Pedrazzi, Vinícius; Freitas, Osvaldo de; Lopez, Renata Fonseca Vianna

    2015-12-01

    Iontophoresis is a strategy to increase the penetration of drugs through biological membranes; however, its use has been underexplored in mucosa. The aim of this work was to investigate the influence of iontophoresis in the mucosal penetration of prilocaine hydrochloride (PCL) and lidocaine hydrochloride (LCL), which are largely used in dentistry as local anesthetics, when combined in the same formulation. Semisolid hydrogels containing these drugs either alone or in combination were developed at two different pHs (7.0 and 5.8) and presented adequate mechanical and mucoadhesive properties for buccal administration. The distribution coefficients between the mucosa and the formulations (Dm/f) and the in vitro mucosa permeation and retention rates were evaluated for both PCL and LCL. At pH 7.0, the combination of the drugs decreased the Dm/f of PCL by approximately 3-fold but did not change the Dm/f of LCL; iontophoresis increased the permeation rate of PCL by 12-fold and did not significantly change LCL flux compared with the passive permeation rate of the combined drugs. Combining the drugs also resulted in an increase in both PCL (86-fold) and LCL (12-fold) accumulation in the mucosa after iontophoresis at pH 7.0 compared with iontophoresis of the isolated drugs. Therefore, applying iontophoresis to a semisolid formulation of this drug combination at pH 7.0 can serve as a needle-free strategy to speed the onset and prolong the duration of buccal anesthesia.

  11. Improved efficacy of cisplatin in combination with a nano-formulation of pentacyclic triterpenediol.

    Science.gov (United States)

    Alam, Noor; Qayum, Arem; Kumar, Ashok; Khare, Vaibhav; Sharma, Parduman Raj; Andotra, Samar Singh; Singh, Shashank K; Koul, Surinder; Gupta, Prem N

    2016-11-01

    Cisplatin is widely used for the treatment of various cancers including cervical, ovarian, lung and head and neck, however, its clinical success is limited owing to the dose-dependent adverse effects, mainly nephrotoxicity and neurotoxicity. In order to address this limitation, the present study was undertaken to investigate growth inhibitory effect of cisplatin in combination with a triterpenediol (3a, 24-dihydroxyurs-12-ene and 3a, 24-dihydroxyolean-12-ene, TPD) on human ovarian cancer cell line. Poly(dl-lactic-co-glycolic) acid nanoparticles loaded with TPD (TPD-PLGA-NPs) were successfully developed by emulsion solvent evaporation method. The TPD-PLGA-NPs were characterized for size distribution and zeta potential which was in order of 152.56±3.01nm and -17.36±0.37mV respectively. The morphological evaluation was carried out by transmission electron microscopy and the formulation was also characterized using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The drug loading of the optimized formulation was 51.03±1.52μg/mg and the formulation exhibited sustained drug release profile. The in vitro cellular uptake study of coumarin-6 loaded PLGA nanoparticles in OVCAR-5 cells demonstrated a time dependent increase in uptake efficiency. Further, growth inhibitory effect of cisplatin was investigated in combination with TPD-PLGA-NPs. The combination index (CI) was <1, indicating a synergistic interaction. Further, at 75% of cell growth inhibition (ED75) the dose of cisplatin was reduced to 3.8 folds using this combination. The results indicated the potential of cisplatin and TPD-PLGA-NPs combination in order to reduce to dose limiting toxicities of the former. PMID:27524002

  12. Fixed-dose combinations of drugs versus single-drug formulations for treating pulmonary tuberculosis

    Science.gov (United States)

    Gallardo, Carmen R; Rigau Comas, David; Valderrama Rodríguez, Angélica; Roqué i Figuls, Marta; Parker, Lucy Anne; Caylà, Joan; Bonfill Cosp, Xavier

    2016-01-01

    Background People who are newly diagnosed with pulmonary tuberculosis (TB) typically receive a standard first-line treatment regimen that consists of two months of isoniazid, rifampicin, pyrazinamide, and ethambutol followed by four months of isoniazid and rifampicin. Fixed-dose combinations (FDCs) of these drugs are widely recommended. Objectives To compare the efficacy, safety, and acceptability of anti-tuberculosis regimens given as fixed-dose combinations compared to single-drug formulations for treating people with newly diagnosed pulmonary tuberculosis. Search methods We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL, published in the Cochrane Library, Issue 11 2015); MEDLINE (1966 to 20 November 2015); EMBASE (1980 to 20 November 2015); LILACS (1982 to 20 November 2015); the metaRegister of Controlled Trials; and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), without language restrictions, up to 20 November 2015. Selection criteria Randomized controlled trials that compared the use of FDCs with single-drug formulations in adults (aged 15 years or more) newly diagnosed with pulmonary TB. Data collection and analysis Two review authors independently assessed studies for inclusion, and assessed the risk of bias and extracted data from the included trials. We used risk ratios (RRs) for dichotomous data and mean differences (MDs) for continuous data with 95% confidence intervals (CIs). We attempted to assess the effect of treatment for time-to-event measures with hazard ratios and their 95% CIs. We used the Cochrane 'Risk of bias' assessment tool to determine the risk of bias in included trials. We used the fixed-effect model when there was little heterogeneity and the random-effects model with moderate heterogeneity. We used an I² statistic value of 75% or greater to denote significant heterogeneity, in which case we did not perform a

  13. Factors related to compliance to anti-malarial drug combination: example of amodiaquine/sulphadoxine-pyrimethamine among children in rural Senegal

    Directory of Open Access Journals (Sweden)

    Sow Diarietou

    2009-06-01

    Full Text Available Abstract Background The introduction of new anti-malarial treatment that is effective, but more expensive, raises questions about whether the high level of effectiveness observed in clinical trials can be found in a context of family use. The objective of this study was to determine the factors related to adherence, when using the amodiaquine/sulphadoxine-pyrimethamine (AQ/SP association, a transitory strategy before ACT implementation in Senegal. Methods The study was conducted in five rural dispensaries. Children, between two and 10 years of age, who presented mild malaria were recruited at the time of the consultation and were prescribed AQ/SP. The child's primary caretaker was questioned at home on D3 about treatment compliance and factors that could have influenced his or her adherence to treatment. A logistic regression model was used for the analyses. Results The study sample included 289 children. The adherence rate was 64.7%. Two risks factors for non-adherence were identified: the children's age (8–10 years (ORa = 3.07 [1.49–6.29]; p = 0.004; and the profession of the head of household (retailer/employee versus farmer (ORa = 2.71 [1.34–5.48]; p = 0.006. Previously seeking care (ORa = 0.28 [0.105–0.736], p=0.001] satisfaction with received information (ORa = 0.45 [0.24–0.84]; p = 0.013, and the quality of history taking (ORa = 0.38 [0.21–0.69]; p = 0.001 were significantly associated with good compliance. Conclusion The results of the study show the importance of information and communication between caregivers and health center staff. The experience gained from this therapeutic transition emphasizes the importance of information given to the patients at the time of the consultation and drug delivery in order to improve drug use and thus prevent the emergence of rapid drug resistance.

  14. Chitosan-based nanocarriers for antimalarials

    Science.gov (United States)

    Dreve, Simina; Kacso, Iren; Popa, Adriana; Raita, Oana; Bende, A.; Borodi, Gh.; Bratu, I.

    2012-02-01

    The objective of this research was to synthesize and characterize chitosan-based liquid and solid materials with unique absorptive and mechanical properties as carriers for quinine - one of the most used antimalarial drug. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare solid release systems as sponges is presented. The preparation by double emulsification of CTS hydrogels carrying quinine as anti-malarial drug is reported. The concentration of quinine in the CTS hydrogel was 0.08 mmol. Chitosan - drug loaded hydrogel was used to generate solid sponges by freeze-drying at -610°C and 0.09 atm. Structural investigations of the solid formulations were done by Fourier-transformed infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), spectrofluorimetry, differential scanning calorimetry (DSC) and X-ray diffractometry. The results indicated that the drug molecule is forming temporary chelates in CTS hydrogels and sponges. Electron paramagnetic resonance (EPR) demonstrates the presence of free radicals in a wide range and the antioxidant activity for chitosan - drug supramolecular cross-linked assemblies.

  15. Cajachalcone: An Antimalarial Compound from Cajanus cajan Leaf Extract.

    Science.gov (United States)

    Ajaiyeoba, E O; Ogbole, O O; Abiodun, O O; Ashidi, J S; Houghton, P J; Wright, C W

    2013-01-01

    Cajanus cajan L, a member of the family Fabaceae, was identified from the Nigerian antimalarial ethnobotany as possessing antimalarial properties. The bioassay-guided fractionation of the crude methanol extract of C. cajan leaves was done in vitro using the multiresistant strain of Plasmodium falciparum (K1) in the parasite lactate dehydrogenase assay. Isolation of compound was achieved by a combination of chromatographic techniques, while the structure of the compound was elucidated by spectroscopy. This led to the identification of a cajachalcone, 2',6'-dihydroxy-4-methoxy chalcone, as the biologically active constituent from the ethyl acetate fraction. Cajachalcone had an IC50 value of 2.0  μ g/mL (7.4  μ M) and could be a lead for anti-malarial drug discovery. PMID:23970954

  16. Cajachalcone: An Antimalarial Compound from Cajanus cajan Leaf Extract

    Directory of Open Access Journals (Sweden)

    E. O. Ajaiyeoba

    2013-01-01

    Full Text Available Cajanus cajan L, a member of the family Fabaceae, was identified from the Nigerian antimalarial ethnobotany as possessing antimalarial properties. The bioassay-guided fractionation of the crude methanol extract of C. cajan leaves was done in vitro using the multiresistant strain of Plasmodium falciparum (K1 in the parasite lactate dehydrogenase assay. Isolation of compound was achieved by a combination of chromatographic techniques, while the structure of the compound was elucidated by spectroscopy. This led to the identification of a cajachalcone, 2′,6′-dihydroxy-4-methoxy chalcone, as the biologically active constituent from the ethyl acetate fraction. Cajachalcone had an IC50 value of 2.0 μg/mL (7.4 μM and could be a lead for anti-malarial drug discovery.

  17. The interaction of x-rays and antimalarials

    International Nuclear Information System (INIS)

    Full text: The radiation sensitivity of malaria parasites has three potential clinical applications, namely i) to prevent the transmission of malaria by blood transfusion, ii) as adjunctive therapy when a radioactive isotope is complexed to a conventional antimalarial drug, and iii) to attenuate the pathogenicity of specific parasite stages as part of the development of a vaccine. In the first two applications, detailed information relating to parasite radiosensitivity and the interaction of ionising radiation with antimalarials is of vital importance because dosimetry must allow for the exposure of normal cells. Malaria parasite cultures (Plasmodium falciparum) were exposed to a logarithmic series of concentrations of antimalarial agents and irradiated using a Siemens Stabilipan orthovoltage radiotherapy unit. The irradiation was performed at room temperature and ambient oxygen concentration. Control samples were also irradiated. The DNA synthesis in each culture was measured 48 hours post irradiation by using a 3H-hypoxanthine incorporation assay. The antimalarials studied are: artesunate, quinine, retinol and chloroquine. The radiosensitivity of Plasmodium falciparum is not dependent on the strain of parasite with the dose required to inhibit 50% of DNA synthesis (ID50) equal to 24.7 ± 3.0 Gy. This applies equally for the drug resistant and drug sensitive strains studied. Because the measured radiosensitivity is dependent on the sera oxygen concentration, the reported value for the ID50 may not apply in hypoxic situations. The interaction of ionising radiation with the antimalarials shows synergy with retinol and choloquine, additivity with quinine and slight antagonism with artesunate. Radionuclide therapy may emerge as a novel treatment for malaria. If this does occur, then, although all strains appear to be equally radiosensitive, care must be taken when combining ionising radiation with existing antimalarials for the treatment of malaria. Copyright (2001

  18. Comparison of the safety and efficacy of a fixed-dose combination regimen and separate formulations for pulmonary tuberculosis treatment

    Directory of Open Access Journals (Sweden)

    Jiun-Ting Wu

    2015-06-01

    Full Text Available OBJECTIVES: Fixed-dose combination formulations, which simplify the administration of drugs and prevent the development of drug resistance, have been recommended as a standard anti-tuberculosis treatment regimen. However, the composition and dosage recommendations for fixed-dose combination formulations differ from those for separate formulations. Thus, questions about the effectiveness and side effects of combination formulations remain. The aim of this study was to compare the safety and efficacy of these two types of anti-tuberculosis regimens for pulmonary tuberculosis treatment. METHOD: A prospective, randomized controlled study was conducted using the directly observed treatment short-course strategy. Patients were randomly allocated to one of two short-course regimens. One year after completing the treatment, these patients’ outcomes were analyzed. ClinicalTrials.gov: NCT00979290. RESULTS: A total of 161 patients were enrolled, 142 of whom were evaluable for safety assessment. The two regimens had a similar incidence of adverse effects. In the per-protocol population, serum bilirubin concentrations at the peak level, at week 4, and at week 8 were significantly higher for the fixed-dose combination formulation than for the separate formulations. All patients had negative sputum cultures at the end of the treatment, and no relapse occurred after one year of follow-up. CONCLUSIONS: In this randomized study, transient higher serum bilirubin levels were noted for the fixed-dose combination regimen compared with the separate formulations during treatment. However, no significant difference in safety or efficacy was found between the groups when the directly observed treatment short-course strategy was used.

  19. Dried whole plant Artemisia annua as an antimalarial therapy.

    Directory of Open Access Journals (Sweden)

    Mostafa A Elfawal

    2012-12-01

    Full Text Available Drugs are primary weapons for reducing malaria in human populations. However emergence of resistant parasites has repeatedly curtailed the lifespan of each drug that is developed and deployed. Currently the most effective anti-malarial is artemisinin, which is extracted from the leaves of Artemisia annua. Due to poor pharmacokinetic properties and prudent efforts to curtail resistance to monotherapies, artemisinin is prescribed only in combination with other anti-malarials composing an Artemisinin Combination Therapy (ACT. Low yield in the plant, and the added cost of secondary anti-malarials in the ACT, make artemisinin costly for the developing world. As an alternative, we compared the efficacy of oral delivery of the dried leaves of whole plant (WP A. annua to a comparable dose of pure artemisinin in a rodent malaria model (Plasmodium chabaudi. We found that a single dose of WP (containing 24 mg/kg artemisinin reduces parasitemia more effectively than a comparable dose of purified drug. This increased efficacy may result from a documented 40-fold increase in the bioavailability of artemisinin in the blood of mice fed the whole plant, in comparison to those administered synthetic drug. Synergistic benefits may derive from the presence of other anti-malarial compounds in A. annua. If shown to be clinically efficacious, well-tolerated, and compatible with the public health imperative of forestalling evolution of drug resistance, inexpensive, locally grown and processed A. annua might prove to be an effective addition to the global effort to reduce malaria morbidity and mortality.

  20. Efficacy Evaluation of a Multifunctional Cosmetic Formulation: The Benefits of a Combination of Active Antioxidant Substances

    OpenAIRE

    Mirela D. Gianeti; Patrícia M. B. G. Maia Campos

    2014-01-01

    This study presents the association of active antioxidants substances in a multifunctional cosmetic formulation with established efficacy against signs of aging. A multifunctional cosmetic formulation containing an association of UV filters and antioxidant substances (liposoluble vitamins A, C and E, Ginkgo biloba and Phorphyra umbilicalis extracts) was evaluated. This formulation was submitted to a clinical efficacy study using biophysics techniques and skin images analysis (digital photogr...

  1. Efficacy Evaluation of a Multifunctional Cosmetic Formulation: The Benefits of a Combination of Active Antioxidant Substances

    Directory of Open Access Journals (Sweden)

    Mirela D. Gianeti

    2014-11-01

    Full Text Available This study presents the association of active antioxidants substances in a multifunctional cosmetic formulation with established efficacy against signs of aging. A multifunctional cosmetic formulation containing an association of UV filters and antioxidant substances (liposoluble vitamins A, C and E, Ginkgo biloba and Phorphyra umbilicalis extracts was evaluated. This formulation was submitted to a clinical efficacy study using biophysics techniques and skin images analysis (digital photography imaging systems, 20 MHz ultrasound, and reflectance confocal microscopy. The volunteers applied the formulation containing the UV filters and antioxidant substances during the day and the formulation with antioxidant substances and without the UV filters at night, for 90 days. The formulation increased the hydration and protected the skin barrier function after a single application. At the long term assessment the formulation provided an improvement in skin barrier function and skin hydration to the deeper layers of the epidermis, leading to an improvement in skin appearance by reducing wrinkles and skin roughness. The multifunctional cosmetic formulation studied can be suggested to preventing signs of aging and improving skin conditions. In addition, this study presents the benefits of associating different active antioxidants substances in a single cosmetic formulation to prevent skin aging.

  2. Combinational enhancing effects of formulation and encapsulation on digestive stability and intestinal transport of green tea catechins.

    Science.gov (United States)

    Son, Yu-Ra; Chung, Jae-Hwan; Ko, Sanghoon; Shim, Soon-Mi

    2016-01-01

    The hypothesis was that green tea catechins (GTCs) formulated with vitamin C and xylitol followed by enteric coating with hydroxypropyl methyl cellulose phthalate (HPMCP) or encapsulated into γ-cyclodextrin (γ-CD) could enhance intestinal absorption of GTCs. Surface morphology and size obtained by SEM were different. Digestive stability of GTCs encapsulated into γ-CD or coated with HPMCP was enhanced up to 65.56% or 57.63%, respectively. When GTCs were formulated, the digestive stability was greater than the one not formulated. Formulated GTCs followed by encapsulation into γ-CD significantly increased intestinal transport. Absorption of GTCs was 2.8%, 9.64%, 11.97%, 8.41% and 14.36% for only GTCs, GTCs encapsulated into γ-CD, formulated GTCs encapsulated into γ-CD, GTCs coated with HPMCP and formulated GTCs coated with HPMCP, respectively. This study suggests that GTCs, formulated with vitamin C and xylitol followed by γ-CD encapsulation or HPMCP enteric coating, provide combinational effect to increase bioavailability of GTCs. PMID:26878684

  3. A rapid stability-indicating, fused-core HPLC method for simultaneous determination of β-artemether and lumefantrine in anti-malarial fixed dose combination products

    OpenAIRE

    Wega, Sultan Suleman; Vandercruyssen, Kirsten; Wynendaele, Evelien; D'Hondt, Matthias; Bracke, Nathalie; Duchateau, Luc; Burvenich, Christian; Peremans, Kathelijne; De Spiegeleer, Bart

    2013-01-01

    Background: Artemisinin-based fixed dose combination (FDC) products are recommended by World Health Organization (WHO) as a first-line treatment. However, the current artemisinin FDC products, such as beta-artemether and lumefantrine, are inherently unstable and require controlled distribution and storage conditions, which are not always available in resource-limited settings. Moreover, quality control is hampered by lack of suitable analytical methods. Thus, there is a need for a rapid and s...

  4. Metabolite identification of the antimalarial piperaquine in vivo using liquid chromatography-high-resolution mass spectrometry in combination with multiple data-mining tools in tandem.

    Science.gov (United States)

    Yang, Aijuan; Zang, Meitong; Liu, Huixiang; Fan, Peihong; Xing, Jie

    2016-08-01

    Artemisinin-based combination therapy is widely used for the treatment of uncomplicated Plasmodium falciparum malaria, and piperaquine (PQ) is one of important partner drugs. The pharmacokinetics of PQ is characterized by a low clearance and a large volume of distribution; however, metabolism of PQ has not been thoroughly investigated. In this work, the metabolite profiling of PQ in human and rat was studied using liquid chromatography tandem high-resolution LTQ-Orbitrap mass spectrometry (HRMS). The biological samples were pretreated by solid-phase extraction. Data processes were carried out using multiple data-mining techniques in tandem, i.e., isotope pattern filter followed by mass defect filter. A total of six metabolites (M1-M6) were identified for PQ in human (plasma and urine) and rat (plasma, urine and bile). Three reported metabolites were also found in this study, which included N-oxidation (M1, M2) and carboxylic products (M3). The subsequent N-oxidation of M3 resulted in a new metabolite M4 detected in urine and bile samples. A new metabolic pathway N-dealkylation was found for PQ in human and rat, leading to two new metabolites (M5 and M6). This study demonstrated that LC-HRMS(n) in combination with multiple data-mining techniques in tandem can be a valuable analytical strategy for rapid metabolite profiling of drugs. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26821381

  5. SIMULTANEOUS ESTIMATION OF DICLOFENAC SODIUM AND TOLPERISONE HYDROCHLORIDE IN COMBINED PHARMACEUTICAL FORMULATION

    Directory of Open Access Journals (Sweden)

    Bhavesh Gevriya* and R.C. Mashru

    2013-01-01

    Full Text Available Three simple, rapid, precise and accurate spectrophotometric methods have been developed for simultaneous analysis of Tolperisone Hydrochloride (TOL and Diclofenac Sodium (DIC in their combined dosage form. Method A, Simultaneous equation method (Vierodt’s method applies measurement of absorptivities at two wavelengths, 261.00 nm (λmax of Tolperisone Hydrochloride and 279.00 nm, (λmax of Diclofenac Sodium in zero order spectra. The concentrations can be calculated from the derived equations. Method B, Q-Absorbance equation method. It involves formation of Q-absorbance equation at 233.50 nm (isoabsorptive point and 261.00 nm (λmax of Tolperisone Hydrochloride in zero order spectra. Method C, Zero crossing first derivative spectrophotometry involves measurement of absorbance at 249.20 nm (for Tolperisone Hydrochloride and 227.40 nm (for Diclofenac Sodium in first derivative spectra. Developed methods were validated according to ICH guidelines. The calibration graph follows Beer’s law in the range of 6.0 to 18.0 μg/ml for Tolperisone Hydrochloride and 2.0 to 6.0 μg/ml for Diclofenac Sodium with R square value greater than 0.999. Accuracy of all methods was determined by recovery studies and showed % recovery between 98 to 102%. Intraday and interday precision was checked for all methods and mean %RSD was found to be less than 2 for all the methods. The methods were successfully applied for estimation of Tolperisone Hydrochloride and Diclofenac Sodium in marketed formulation.

  6. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize

    OpenAIRE

    Jerapan Krungkrai; Sudaratana Rochanakij Krungkrai

    2016-01-01

    Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu (Chinese name) and its derivatives are highly potent, rapidly acting antimalarial drugs. Art...

  7. Poor quality vital anti-malarials in Africa - an urgent neglected public health priority.

    OpenAIRE

    Newton Paul N; Green Michael D; Mildenhall Dallas C; Plançon Aline; Nettey Henry; Nyadong Leonard; Hostetler Dana M; Swamidoss Isabel; Harris Glenn A; Powell Kristen; Timmermans Ans E; Amin Abdinasir A; Opuni Stephen K; Barbereau Serge; Faurant Claude

    2011-01-01

    Abstract Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT) at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African coun...

  8. Review of pyronaridine anti-malarial properties and product characteristics

    Directory of Open Access Journals (Sweden)

    Croft Simon L

    2012-08-01

    Full Text Available Abstract Pyronaridine was synthesized in 1970 at the Institute of Chinese Parasitic Disease and has been used in China for over 30 years for the treatment of malaria. Pyronaridine has high potency against Plasmodium falciparum, including chloroquine-resistant strains. Studies in various animal models have shown pyronaridine to be effective against strains resistant to other anti-malarials, including chloroquine. Resistance to pyronaridine appears to emerge slowly and is further retarded when pyronaridine is used in combination with other anti-malarials, in particular, artesunate. Pyronaridine toxicity is generally less than that of chloroquine, though evidence of embryotoxicity in rodents suggests use with caution in pregnancy. Clinical pharmacokinetic data for pyronaridine indicates an elimination T1/2 of 13.2 and 9.6 days, respectively, in adults and children with acute uncomplicated falciparum and vivax malaria in artemisinin-combination therapy. Clinical data for mono or combined pyronaridine therapy show excellent anti-malarial effects against P. falciparum and studies of combination therapy also show promise against Plasmodium vivax. Pyronaridine has been developed as a fixed dose combination therapy, in a 3:1 ratio, with artesunate for the treatment of acute uncomplicated P. falciparum malaria and blood stage P. vivax malaria with the name of Pyramax® and has received Positive Opinion by European Medicines Agency under the Article 58 procedure.

  9. Active case detection, treatment of falciparum malaria with combined chloroquine and sulphadoxine/pyrimethamine and vivax malaria with chloroquine and molecular markers of anti-malarial resistance in the Republic of Vanuatu

    Directory of Open Access Journals (Sweden)

    Rogers William O

    2010-04-01

    Full Text Available Abstract Background Chloroquine-resistant Plasmodium falciparum was first described in the Republic of Vanuatu in the early 1980s. In 1991, the Vanuatu Ministry of Health instituted new treatment guidelines for uncomplicated P. falciparum infection consisting of chloroquine/sulphadoxine-pyrimethamine combination therapy. Chloroquine remains the recommended treatment for Plasmodium vivax. Methods In 2005, cross-sectional blood surveys at 45 sites on Malo Island were conducted and 4,060 adults and children screened for malaria. Of those screened, 203 volunteer study subjects without malaria at the time of screening were followed for 13 weeks to observe peak seasonal incidence of infection. Another 54 subjects with malaria were followed over a 28-day period to determine efficacy of anti-malarial therapy; chloroquine alone for P. vivax and chloroquine/sulphadoxine-pyrimethamine for P. falciparum infections. Results The overall prevalence of parasitaemia by mass blood screening was 6%, equally divided between P. falciparum and P. vivax. Twenty percent and 23% of participants with patent P. vivax and P. falciparum parasitaemia, respectively, were febrile at the time of screening. In the incidence study cohort, after 2,303 person-weeks of follow-up, the incidence density of malaria was 1.3 cases per person-year with P. vivax predominating. Among individuals participating in the clinical trial, the 28-day chloroquine P. vivax cure rate was 100%. The 28-day chloroquine/sulphadoxine-pyrimethamine P. falciparum cure rate was 97%. The single treatment failure, confirmed by merozoite surface protein-2 genotyping, was classified as a day 28 late parasitological treatment failure. All P. falciparum isolates carried the Thr-76 pfcrt mutant allele and the double Asn-108 + Arg-59 dhfr mutant alleles. Dhps mutant alleles were not detected in the study sample. Conclusion Peak seasonal malaria prevalence on Malo Island reached hypoendemic levels during the study

  10. Anti-Malarial Plants of Jonai, India: an Ethnobotanical Approach

    Directory of Open Access Journals (Sweden)

    Tonlong WANGPAN

    2016-03-01

    Full Text Available North-East India represents a unique ecosystem with treasured medicinal plant wealth closely related with Folk medicines. A large number of plants having medicinal properties and their folk uses have remained confined to the natives of this region. The tribal community of Jonai, Assam was explored to expose the indigenous herbal remedy for malaria. Sixteen antimalarial plants belonging to 13 families were reported. The analysis revealed highest fidelity level (FL value for Ajuga integrifolia (100% followed by Ricinus communis (94%, Alstonia scholaris (88%, Oroxylum indicum (86% and Achyranthes aspera (82%. The percentage of respondent’s knowledge (PRK about anti-malarial plants showed Alstonia scholaris as the most commonly known antimalarial species (53% within this region. Preference ranking (PR unveiled eight species to be very effective against malarial parasite, which includes Allium sativum, Artemisia indica, Azadirachta indica, Carica papaya, Clerodendrum glandulosum, Ocimum tenuiflorum, Oroxylum indicum, Piper longum and Piper nigrum. All medicine preparations are made using water as the medium and are orally administered in the form of crude extract, powder, juice and decoction. Overall analysis suggested Ajuga integrifolia, Achyranthes aspera, Alstonia scholaris, Artemisia indica, Oroxylum indicum and Ricinus communis to be used for the development of novel, economical, effective and ecofriendly herbal formulations for healthcare management.

  11. Potential antimalarials from African natural products: a review

    Directory of Open Access Journals (Sweden)

    Bashir Lawal

    2015-12-01

    Full Text Available Ethnopharmacological relevance: Malaria remains an overwhelming infectious disease with significant health challenges in African and other endemic countries globally. Resistance to antimalarial drugs has become one of the most momentous challenges to human health and thus has necessitated the hunt for new and effective drugs. Consequently, few decades have witnessed a surfeit of research geared to validate the effectiveness of commonly used traditionally medicines against malaria fever. The present review work focuses on documenting natural products from African whose activity has been reported in-vivo or invi-tro against malaria parasite. Methods: Literature was collected using electronic search of published articles (Google Scholar, PubMed, Medline, Sciencedirect, Science domain that report on antiplasmodial activity of natural products from differernts Africa region. Results: A Total of 652 plant taxa from 146 families, 134 isolated antimalarial compounds from 39 plants species, 2 herbal formulations and 4 insect/products were found to be reported in literature from 1996 to 2015. Plants species from family Asteraceae (11.04%, Fababceae (8.128%, Euphorbiaceae (5.52%, Rubiaceas (5.52% and Apocyanaceae (5.214%, have received more scientific validation than others. Conclusion: African natural products possess remarkable healing properties as revealed in the various citations as promising antimalarial agents. Some of these natural products from Africa demonstrate high, promising or low activities against plasmodium parasite. This study also shows that natural products from Africa have a huge amount of novel antimalarial compounds that could serve as a leads for the development of new and effective antiplasmodial drugs. However, in a view of bridging the gap in knowledge, clinical validation of these natural products is of paramount importance. [J Intercult Ethnopharmacol 2015; 4(4.000: 318-343

  12. Rational Design of Proteasome Inhibitors as Antimalarial Drugs.

    Science.gov (United States)

    Le Chapelain, Camille; Groll, Michael

    2016-05-23

    One life, two strategies: Crucial structural differences between the human and the Plasmodium falciparum proteasomes were recently identified. A combination of cryo-EM and functional characterization enabled the design of a selective antimalarial proteasome inhibitor that shows low toxicity in the host. When used with artemisinin, this ligand offers a new approach for the efficient treatment of malaria at all stages of the parasite lifecycle.

  13. Efficacy of antimalarial treatment in Guinea: in vivo study of two artemisinin combination therapies in Dabola and molecular markers of resistance to sulphadoxine-pyrimethamine in N'Zérékoré

    Directory of Open Access Journals (Sweden)

    Coulibaly Léonie

    2007-05-01

    Full Text Available Abstract Background In the last five years, countries have been faced with changing their malaria treatment policy to an artemisinin-based combination therapy (ACT, many with no national data on which to base their decision. This is particularly true for a number of West African countries, including Guinea, where these studies were performed. Two studies were conducted in 2004/2005 in programmes supported by Medecins Sans Frontieres, when chloroquine was still national policy, but artesunate (AS/sulphadoxine-pyrimethamine (SP had been used in refugee camps for two years. Methods In Dabola (central Guinea, 220 children aged 6–59 months with falciparum malaria were randomized to receive either AS/amodiaquine (AQ or AS/SP. In vivo efficacy was assessed following the 2003 World Health Organization guidelines. In a refugee camp in Laine (south of Guinea, where an in vivo study was not feasible due to the unstable context, a molecular genotyping study in 160 patients assessed the prevalence of mutations in the dihydrofolate reductase (dhfr (codons 108, 51, 59 and dihydropteroate synthase (dhps (codons 436, 437, 540 genes of Plasmodium falciparum, which have been associated with resistance to pyrimethamine and sulphadoxine, respectively. Results In Dabola, after 28 days of follow-up, Polymerase Chain Reaction (PCR-adjusted failure rates were 1.0% (95%CI 0–5.3 for AS/AQ and 1.0% (95%CI 0–5.5 for AS/SP. In the refugee camp in Laine, the molecular genotyping study found three dhfr mutations in 85.6% (95%CI 79.2–90.7 patients and quintuple dhfr/dhps mutations in 9.6% (95%CI 5.2–15.9. Conclusion Both AS/AQ and AS/SP are highly efficacious in Dabola, whereas there is molecular evidence of established SP resistance in Laine. This supports the choice of the national programme of Guinea to adopt AS/AQ as first line antimalarial treatment. The results highlight the difficulties faced by control programmes, which have gone through the upheaval of

  14. High prevalence of pfdhfr-pfdhps triple mutations associated with anti-malarial drugs resistance in Plasmodium falciparum isolates seven years after the adoption of sulfadoxine-pyrimethamine in combination with artesunate as first-line treatment in Iran.

    Science.gov (United States)

    Rouhani, Maryam; Zakeri, Sedigheh; Pirahmadi, Sakineh; Raeisi, Ahmad; Djadid, Navid Dinparast

    2015-04-01

    The spread of anti-malarial drug resistance will challenge any malaria control and elimination strategies, and routine monitoring of resistance-associated molecular markers of commonly used anti-malarial drugs is very important. Therefore, in the present investigation, the extent of mutations/haplotypes in dhfr and dhps genes of Plasmodium falciparum isolates (n=72) was analyzed seven years after the introduction of sulfadoxine-pyrimethamine (SP) plus artesunate (AS) as first-line anti-malarial treatment in Iran using PCR-RFLP methods. The results showed that the majority of the patients (97.2%) carried both 59R and 108N mutations in pure form with wild-type genotype at positions N51 and I164. Additionally, a significant increase (Pdrug for treatment of falciparum patients in these malaria-endemic areas of Iran. However, no quintuple mutations associated with treatment failure were detected. In conclusion, the present results along with in vivo assays suggest that seven years after the adoption of SP-AS as the first-line treatment in Iran, this drug remains efficacious for treatment of uncomplicated falciparum malaria, as a partner drug with AS in these malaria-endemic areas.

  15. Natural products as starting points for future anti-malarial therapies: going back to our roots?

    Directory of Open Access Journals (Sweden)

    Wells Timothy NC

    2011-03-01

    Full Text Available Abstract Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal

  16. Formulation and evaluation of starch acetate matrix tablets in combination with surfactants for controlled release”

    Directory of Open Access Journals (Sweden)

    Mahesh Kumar Vishwanadha

    2015-04-01

    Full Text Available In the present study, an attempt has been made to evaluate starch acetate in combination with surfactant for the controlled release profile of drug from matrix system. Ibuprofen was used as a model drug to evaluate its release characteristics from different matrices. Starch acetate was synthesized, characterized and then employed in the matrix tablets as a hydrophobic polymer in different ratios in combination with SLS. Formulated tablets were characterized for parameters like thickness, weight variation, drug content uniformity, hardness, friability and in-vitro release rate profile and the release data were analysed as per various kinetic models. From the data it was found that the release was following first order kinetics for all the formulationsexcept F8 release profile of which followed zero order and the mechanism of release was found to be Non-fickian diffusion for all the formulations.

  17. Antimalarial natural products: a review

    Directory of Open Access Journals (Sweden)

    Faraz Mojab

    2012-03-01

    Results and Conclusion: There is an urgent need for the development of new treatments for malaria. Many countries have a vast precedence in the use of medicinal plants and the required knowledge spans many centuries. Although malaria is controlled in Iran, some researchers tend to study malaria and related subjects. In vitro biological tests for the detection of antimalarial activities in plant extracts are currently available. It is vital that the efficacy and safety of traditional medicines be validated and their active constituents be identified in order to establish reliable quality control measures.

  18. Fake anti-malarials: start with the facts.

    Science.gov (United States)

    Kaur, Harparkash; Clarke, Siȃn; Lalani, Mirza; Phanouvong, Souly; Guérin, Philippe; McLoughlin, Andrew; Wilson, Benjamin K; Deats, Michael; Plançon, Aline; Hopkins, Heidi; Miranda, Debora; Schellenberg, David

    2016-02-13

    This meeting report presents the key findings and discussion points of a 1-day meeting entitled 'Fake anti-malarials: start with the facts' held on 28th May 2015, in Geneva, Switzerland, to disseminate the findings of the artemisinin combination therapy consortium's drug quality programme. The teams purchased over 10,000 samples, using representative sampling approaches, from six malaria endemic countries: Equatorial Guinea (Bioko Island), Cambodia, Ghana, Nigeria, Rwanda and Tanzania. Laboratory analyses of these samples showed that falsified anti-malarials (fact that the WHO has urged regulatory authorities in malaria-endemic countries to take measures to halt the production and marketing of these oral monotherapies since 2007. This report summarizes the presentations that reviewed the public health impact of falsified and substandard drugs, sampling strategies, techniques for drug quality analysis, approaches to strengthen health systems capacity for the surveillance of drug quality, and the ensuing discussion points from the dissemination meeting.

  19. The nature and combination of subunits used in epitope-based Schistosoma japonicum vaccine formulations affect their efficacy

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2010-11-01

    Full Text Available Abstract Background Schistosomiasis remains a major public health problem in endemic countries and is caused by infections with any one of three primary schistosome species. Although there are no vaccines available to date, this strategy appears feasible since natural immunity develops in individuals suffering from repeated infection during a lifetime. Since vaccinations resulting in both Th1- and Th2-type responses have been shown to contribute to protective immunity, a vaccine formulation with the capacity for stimulating multiple arms of the immune response will likely be the most effective. Previously we developed partially protective, single Th- and B cell-epitope-based peptide-DNA dual vaccines (PDDV (T3-PDDV and B3-PDDV, respectively capable of eliciting immune responses against the Schistosoma japonicum 22.6 kDa tegument antigen (Sj22.6 and a 62 kDa fragment of myosin (Sj62, respectively. Results In this study, we developed PDDV cocktails containing multiple epitopes of S. japonicum from Sj22.6, Sj62 and Sj97 antigens by predicting cytotoxic, helper, and B-cell epitopes, and evaluated vaccine potential in vivo. Results showed that mice immunized with a single-epitope PDDV elicited either Tc, Th, or B cell responses, respectively, and mice immunized with either the T3- or B3- single-epitope PDDV formulation were partially protected against infection. However, mice immunized with a multicomponent (3 PDDV components formulation elicited variable immune responses that were less immunoprotective than single-epitope PDDV formulations. Conclusions Our data show that combining these different antigens did not result in a more effective vaccine formulation when compared to each component administered individually, and further suggest that immune interference resulting from immunizations with antigenically distinct vaccine targets may be an important consideration in the development of multicomponent vaccine preparations.

  20. Quality of Artemisinin-Based Combination Formulations for Malaria Treatment: Prevalence and Risk Factors for Poor Quality Medicines in Public Facilities and Private Sector Drug Outlets in Enugu, Nigeria

    OpenAIRE

    Harparkash Kaur; Elizabeth Louise Allan; Ibrahim Mamadu; Zoe Hall; Ogochukwu Ibe; Mohamed El Sherbiny; Albert van Wyk; Shunmay Yeung; Isabel Swamidoss; Green, Michael D.; Prabha Dwivedi; Maria Julia Culzoni; Siân Clarke; David Schellenberg; Fernández, Facundo M.

    2015-01-01

    Background Artemisinin-based combination therapies are recommended by the World Health Organisation (WHO) as first-line treatment for Plasmodium falciparum malaria, yet medication must be of good quality for efficacious treatment. A recent meta-analysis reported 35% (796/2,296) of antimalarial drug samples from 21 Sub-Saharan African countries, purchased from outlets predominantly using convenience sampling, failed chemical content analysis. We used three sampling strategies to purchase artem...

  1. Efficacy of combined formulations of fungicides with different modes of action in controlling botrytis gray mold disease in chickpea.

    Science.gov (United States)

    Rashid, M H; Hossain, M Ashraf; Kashem, M A; Kumar, Shiv; Rafii, M Y; Latif, M A

    2014-01-01

    Botrytis gray mold (BGM) caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L.) and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur) in Bangladesh for three years (2008, 2009, and 2010). Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%)], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%), and Protaf 250EC, propiconazole (0.05%)], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%); Secure 600 WG, phenomadone + mancozeb (0.2%); and Companion, mancozeb 63% + carbendazim 12% (0.2%)]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1-9 scale) and the highest increase (38%) of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance.

  2. Efficacy of Combined Formulations of Fungicides with Different Modes of Action in Controlling Botrytis Gray Mold Disease in Chickpea

    Directory of Open Access Journals (Sweden)

    M. H. Rashid

    2014-01-01

    Full Text Available Botrytis gray mold (BGM caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L. and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur in Bangladesh for three years (2008, 2009, and 2010. Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%, and Protaf 250EC, propiconazole (0.05%], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%; Secure 600 WG, phenomadone + mancozeb (0.2%; and Companion, mancozeb 63% + carbendazim 12% (0.2%]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1–9 scale and the highest increase (38% of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance.

  3. A database of antimalarial drug resistance

    Directory of Open Access Journals (Sweden)

    Ringwald Pascal

    2006-06-01

    Full Text Available Abstract A large investment is required to develop, license and deploy a new antimalarial drug. Too often, that investment has been rapidly devalued by the selection of parasite populations resistant to the drug action. To understand the mechanisms of selection, detailed information on the patterns of drug use in a variety of environments, and the geographic and temporal patterns of resistance is needed. Currently, there is no publically-accessible central database that contains information on the levels of resistance to antimalaria drugs. This paper outlines the resources that are available and the steps that might be taken to create a dynamic, open access database that would include current and historical data on clinical efficacy, in vitro responses and molecular markers related to drug resistance in Plasmodium falciparum and Plasmodium vivax. The goal is to include historical and current data on resistance to commonly used drugs, like chloroquine and sulfadoxine-pyrimethamine, and on the many combinations that are now being tested in different settings. The database will be accessible to all on the Web. The information in such a database will inform optimal utilization of current drugs and sustain the longest possible therapeutic life of newly introduced drugs and combinations. The database will protect the valuable investment represented by the development and deployment of novel therapies for malaria.

  4. Fast Disintegrating Combination Tablet of Taste Masked Levocetrizine Dihydrochloride and Montelukast Sodium: Formulation Design, Development, and Characterization

    Directory of Open Access Journals (Sweden)

    M. M. Gupta

    2014-01-01

    Full Text Available The aim of this study was to prepare fast disintegrating combination tablet of taste masked Levocetrizine dihydrochloride and Montelukast sodium by using direct compression method. To prevent bitter taste and unacceptable odour of the Levocetrizine dihydrochloride drug, the drug was taste masked with ion exchange resins like Kyron-T-104 and Tulsion-412. Among the two resins, Kyron-T-104 was selected for further studies because of high drug loading capacity, low cost, and better drug release profile. An ion exchange resin complex was prepared by the batch technique and various parameters; namely, resin activation, drug: resin ratio, pH, temperature, and stirring time, and swelling time were optimized to successfully formulate the tasteless drug resin complex (DRC. The tablets were prepared using microcrystalline cellulose (MCC PH 102 as diluent along with crospovidone (CP, croscarmellose sodium (CCM, and sodium starch glycolate (SSG as a superdisintegrants. The tablets were evaluated for weight variation, hardness, friability, wetting time, water absorption ratio, disintegration time (DT, and dissolution study and it was concluded that the tablet formulation prepared with 2% SSG + CCS showed better disintegration time in comparison with other formulation and good drug release. The stability studies were carried out for the optimized batch for three months and it showed acceptable results.

  5. Pricing, distribution, and use of antimalarial drugs.

    OpenAIRE

    Foster, S. D.

    1991-01-01

    Prices of new antimalarial drugs are targeted at the "travellers' market" in developed countries, which makes them unaffordable in malaria-endemic countries where the per capita annual drug expenditures are US$ 5 or less. Antimalarials are distributed through a variety of channels in both public and private sectors, the official malaria control programmes accounting for 25-30% of chloroquine distribution. The unofficial drug sellers in markets, streets, and village shops account for as much a...

  6. Lessons from a case of oromandibular mucormycosis treated with surgery and a combination of amphotericin B lipid formulation plus caspofungin.

    Science.gov (United States)

    Ojeda-Uribe, Mario; Herbrecht, Raoul; Kiefer, Marie Hélène; Schultz, Philippe; Chain, Jorge; Chenard, Marie-Pierre; Servant, Jean Marie; Debry, Christian

    2010-01-01

    A rare case of oromandibular Rhizopus oryzae infection is described in a 55-year-old woman with acute myeloid leukaemia and decompensated diabetes mellitus. The infection developed during induction chemotherapy when the patient was neutropenic. She was treated with a combination of amphotericin B lipid formulation and caspofungin plus surgery. Debridement surgery included excision of the lower lip, chin, floor of the mouth, a portion of the tongue, as well as mandibular resection at the level of the horizontal branches. Eight weeks of combined antifungal therapy were followed by secondary prophylaxis with amphotericin B lipid formulation during consolidation chemotherapy after achieving complete response of both leukaemia and mucormycosis. Reconstructive surgery was carried out including insertion of a new biomaterial porous mandibular prosthesis, which showed excellent functionality after long-term follow-up, followed by several plastic surgery procedures once good tolerability and no adverse effects of the prosthesis were observed. This case shows that a well-coordinated multidisciplinary approach is critical to increase the chances of clinical success in this life-threatening infection. PMID:20689269

  7. Formulation and in vitro evaluation of nifedipine-controlled release tablet: Influence of combination of hydrophylic and hydrophobic matrix forms

    Directory of Open Access Journals (Sweden)

    Derakhshandeh Katayoun

    2010-01-01

    Full Text Available The aim of the present work was to develop controlled release matrix formulation of nifedipine and investigate the effects of both hydrophilic and hydrophobic polymers on in vitro drug release. Matrix tablets were prepared by wet granulation technique using different concentration of hydroxy propyl methyl cellulose (HPMC, ethyl cellulose (EC, compressible Eudragits (RSpo and RLpo and their combination in different ratios to examine their influence on tablet properties and drug release profile. Tablets were evaluated by measurement of hardness, friability, content uniformity, weight variation and drug release pattern. Release studies were carried out using USP type II apparatus in 900 ml of sodium phosphate buffer (pH 7.4 with 0.5% (w/v SDS. The amount of drug released was determined at 238 nm by UV-visible spectrophotometer.In vitro dissolution studies indicated that hydrophobic polymers significantly reduced the rate of drug release compared to hydrophilic ones in 12 hrs and combination of both polymers exhibited the best release profile to sustain the drug release for prolong period of time. As a result, the tablet containing HPMC:EC in ratio of 0.75:1 showed better controlled release pattern over a period of 12 hrs. In selected formulation, the calculated regression coefficients for release models fitted best to zero-order models.

  8. Monoclonal Antibodies That Recognize the Alkylation Signature of Antimalarial Ozonides OZ277 (Arterolane) and OZ439 (Artefenomel)

    OpenAIRE

    Jourdan, Joëlle; Matile, Hugues; Reift, Ellen; Biehlmaier, Oliver; Dong, Yuxiang; Wang, Xiaofang; Mäser, Pascal; Vennerstrom, Jonathan L.; Wittlin, Sergio

    2015-01-01

    The singular structure of artemisinin, with its embedded 1,2,4-trioxane heterocycle, has inspired the discovery of numerous semisynthetic artemisinin and structurally diverse synthetic peroxide antimalarials, including ozonides OZ277 (arterolane) and OZ439 (artefenomel). Despite the critical importance of artemisinin combination therapies (ACTs), the precise mode of action of peroxidic antimalarials is not fully understood. However, it has long been proposed that the peroxide bond in artemisi...

  9. Maximizing antimalarial efficacy and the importance of dosing strategies.

    Science.gov (United States)

    Beeson, James G; Boeuf, Philippe; Fowkes, Freya J I

    2015-05-09

    Artemisinin-based combination therapies (ACTs) are the cornerstone for the treatment of malaria. However, confirmed resistance to artemisinins in South-East Asia, and reports of reduced efficacy of ACTs raise major concerns for malaria treatment and control. Without new drugs to replace artemisinins, it is essential to define dosing strategies that maximize therapeutic efficacy, limit the spread of resistance, and preserve the clinical value of ACTs. It is important to determine the extent to which reduced efficacy of ACTs reflects true resistance versus sub-optimal dosing, and quantify other factors that determine treatment failure. Pooled analyses of individual patient data from multiple clinical trials, by investigators in the Worldwide Antimalarial Resistance Network, have shown high overall efficacy for three widely used ACTs, artemether-lumefantrine, artesunate-amodiaquine, and dihydroartemisinin-piperaquine. Analyses also highlight that suboptimal dosing leads to increased risk of treatment failure, especially among children. In the most recent study, an analysis of clinical trials of artesunate-amodiaquine, widely used among children in Africa, revealed a superior efficacy for fixed-dose combination tablets compared to loose non-fixed dose combinations. This highlights the benefits of fixed-dose combinations as a practical strategy for ensuring optimal antimalarial dosing and maximizing efficacy. Please see related article: http://www.biomedcentral.com/1741-7015/13/66.

  10. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium.

    Science.gov (United States)

    Belščak-Cvitanović, Ana; Komes, Draženka; Karlović, Sven; Djaković, Senka; Spoljarić, Igor; Mršić, Gordan; Ježek, Damir

    2015-01-15

    Alginate-based blends consisting of carrageenan, pectin, chitosan or psyllium husk powder were prepared for assessment of the best formulation aimed at encapsulation of caffeine. Alginate-pectin blend exhibited the lowest viscosity and provided the smallest beads. Alginate-psyllium husk blend was characterised with higher viscosity, yielding the largest bead size and the highest caffeine encapsulation efficiency (83.6%). The release kinetics of caffeine indicated that the porosity of alginate hydrogel was not reduced sufficiently to retard the diffusion of caffeine from the beads. Chitosan coated alginate beads provided the most retarded release of caffeine in water. Morphological characteristics of beads encapsulating caffeine were adversely affected by freeze drying. Bitterness intensity of caffeine-containing beads in water was the lowest for alginate-psyllium beads and chitosan coated alginate beads. Higher sodium alginate concentration (3%) for production of hydrogel beads in combination with psyllium or chitosan coating would present the most favourable carrier systems for immobilization of caffeine.

  11. Optimization of formulation of soy-cakes baked in infrared-microwave combination oven by response surface methodology.

    Science.gov (United States)

    Şakıyan, Özge

    2015-05-01

    The aim of present work is to optimize the formulation of a functional cake (soy-cake) to be baked in infrared-microwave combination oven. For this optimization process response surface methodology was utilized. It was also aimed to optimize the processing conditions of the combination baking. The independent variables were the baking time (8, 9, 10 min), the soy flour concentration (30, 40, 50 %) and the DATEM (diacetyltartaric acid esters of monoglycerides) concentration (0.4, 0.6 and 0.8 %). The quality parameters that were examined in the study were specific volume, weight loss, total color change and firmness of the cake samples. The results were analyzed by multiple regression; and the significant linear, quadratic, and interaction terms were used in the second order mathematical model. The optimum baking time, soy-flour concentration and DATEM concentration were found as 9.5 min, 30 and 0.72 %, respectively. The corresponding responses of the optimum points were almost comparable with those of conventionally baked soy-cakes. So it may be declared that it is possible to produce high quality soy cakes in a very short time by using infrared-microwave combination oven. PMID:25892790

  12. Antimalarial drug resistance in Bangladesh, 1996-2012.

    Science.gov (United States)

    Haque, Ubydul; Glass, Gregory E; Haque, Waziul; Islam, Nazrul; Roy, Shyamal; Karim, Jahirul; Noedl, Harald

    2013-12-01

    Malaria remains an important health problem in Bangladesh, with approximately 14 million people at risk. Antimalarial drug resistance is a major obstacle to the control of malaria in endemic countries. In 2012, Bangladesh reported an estimated 29 522 malaria episodes, of which 94% were reported as being caused by Plasmodium falciparum. In this study, we reviewed and summarized antimalarial drug resistance data from Bangladesh published until June 2013. We searched published sources for data referring to any type of P. falciparum drug resistance (in vivo, in vitro, or molecular) and found 169 articles published in peer-reviewed journals. Of these, 143 articles were excluded because they did not meet our inclusion criteria. After detailed review of the remaining 26 articles, 14 were selected for evaluation. Published studies indicate that P. falciparum shows varying levels of resistance to chloroquine, mefloquine and sulfadoxine-pyrimethamine. Combination therapy of chloroquine and primaquine has proven ineffective and combinations of sulfadoxine-pyrimethamine with either quinine or chloroquine have also shown poor efficacy. Recent studies indicate that artemisinin derivatives, such as artesunate, remain highly efficacious in treating P. falciparum malaria. Available data suggest that artemisinins, quinine, doxycyline, mefloquine-artesunate and azithromycin-artesunate combination therapy remain efficacious in the treatment of P. falciparum malaria in Bangladesh.

  13. The quality of antimalarials available in Yemen

    Directory of Open Access Journals (Sweden)

    Atta Hoda

    2005-06-01

    Full Text Available Abstract Background Malaria has always been a major public health problem in Yemen. Several studies in developing countries have demonstrated ineffective and poor quality drugs including antimalarials. Therefore, quality assessment of antimalarial drugs is of crucial importance. This study aimed to assess the quality of antimalarials (chloroquine and sulfadoxine/pyrimethamine available in Yemen and to determine whether the quality of these products was related to the level of the distribution chain at which the samples were collected or related to the manufacturers. Methods Four samples from each antimalarial product were collected from each of the various levels of the distribution chain. One sample was kept with the research team. Two were tested at Sana'a and Aden Drug Quality Control Laboratories. The fourth was sent to the Centre for Quality Assurance of Medicines in Potchefstroom, South Africa, for analysis. Quality indicators measured were the content of the active ingredient and dissolution rate (for tablets only in comparison to standard specifications for these products in the relevant pharmacopoeia. Results The results identified several problems of sub-standard products within the drug distribution chain. They included high and low failures in ingredient content for chloroquine tablets and chloroquine syrup. There was some dissolution failure for chloroquine tablets, and high sulfadoxine/pyrimethamine tablets dissolution failures. Failures with the dissolution of the pyrimethamine were found at most of the collection points. No clear relationship neither between the quality products and the level of the distribution chain, nor between locally manufactured and imported products was observed. Conclusion There are sub-standard antimalarial products circulating within the drug distribution chains in the country, which will have serious implications on the reduced therapeutic effectiveness and on the development of drug resistance. This

  14. Yeast cell wall and live yeast products and their combination in broiler diets formulated with weekly ingredient variations.

    Science.gov (United States)

    Fowler, J; Hashim, M; Haq, A; Bailey, C A

    2015-10-01

    A 6-week broiler study was conducted to evaluate whether subjecting the intestinal microflora of broilers to the effect of weekly variations in feed ingredients could be ameliorated by the inclusion of yeast-derived feed additives: a yeast cell wall extract (YCW), live yeast culture (LY) or their combination (YCW + LY). Recent changes in ingredient prices have motivated producers to formulate diets not necessarily based primarily on corn and soya bean meal. Intestinal microflora in birds can vary significantly based on the ingredient composition of their diet, and the make-up of the flora can influence overall bird performance. Within the three nutrient phases of this study, birds were fed either a traditional corn-soya ingredient profile or a variable-ingredient regimen, which had weekly changes in the ingredient composition. There were consistent ameliorative effects of the yeast treatments in both the corn-soya and the variable-ingredient groups throughout all 6 weeks, with the YCW + LY combination showing a reduced effect when compared to either product fed alone. The effectiveness of YCW and LY on ameliorating the effects of weekly ingredient variations appeared most effective during the starter and grower phases, but was less significant during the sixth week.

  15. Artemisinin: An Evolving Antimalarial-Part One

    Directory of Open Access Journals (Sweden)

    Nkereuwem Jonathan Edikpo

    2013-12-01

    Full Text Available This review was conceived with the aim of presenting a compact, yet engaging account of the evolution of artemisinin from its humble and ancient origins as an herbal remedy to a modern chemotherapeutic agent, highlighting its unique pharmacological and toxicological profile and the central position it occupies at present in the battle against malaria. Artemisinin is a sesquiterpene lactone end operoxide with a long and enchanting history. The Chinese had been using concoctions of Artemisia for the treatment of various febrile ailments for close to two millennia. The impetus for its extraction in 1972 from Artemisia annua came from the battlefields of the Vietnamese war of 1965 to 1973 and the political milieu of the Cultural Revolution that encouraged an inward-looking disposition. Owing to solubility problems with the parent compound, artemisinin other semi-synthetic derivatives are now available and include artesunate, artemether, dihydroartemisinin and arteether. Parasiticidal action resides in the endoperoxide moiety which is also primarily responsible for the toxicity of the artemisinin compounds. As a class, they are the most rapidly acting antimalarial chemotherapeutic agents ever in use, reducing initial parasite burden by a factor of 104 per cycle of schizogony. Despite this, high rate of recrudescence occur with monotherapies which necessitates their use in combination with longer acting agents- ACTs. The basis of this high recrudescence is not unrelated to short plasma half-lives, dormancy phenomenon and autoinduction of the metabolizing enzymes. Though safe in humans at recommended dosages, animal studies have continually revealed disturbing side effects most notably, neurotoxicity and, reproductive toxicity manifesting in the twin phenomenon of embryolethality and fetal dysmorphogenesis. In the light of the cautionary tale of thalidomide tragedy, it may not be wise to totally ignore these findings in experimental animals.

  16. Probing the antimalarial mechanism of artemisinin and OZ277 (arterolane) with nonperoxidic isosteres and nitroxyl radicals.

    Science.gov (United States)

    Fügi, Matthias A; Wittlin, Sergio; Dong, Yuxiang; Vennerstrom, Jonathan L

    2010-03-01

    Peroxidic antimalarials such as the semisynthetic artemisinins are critically important in the treatment of drug-resistant malaria. Nevertheless, their peroxide bond-dependent mode of action is still not well understood. Using combination experiments with cultured Plasmodium falciparum cells, we investigated the interactions of the nitroxide radical spin trap, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), and four of its analogs with artemisinin and the ozonide drug development candidate OZ277. The antagonism observed for combinations of artemisinin or OZ277 with the TEMPO analogs supports the hypothesis that the formation of carbon-centered radicals is critical for the activity of these two antimalarial peroxides. The TEMPO analogs showed a trend toward greater antagonism with artemisinin than they did with OZ277, an observation that can be explained by the greater tendency of artemisinin-derived carbon-centered radicals to undergo internal self-quenching reactions, resulting in a lower proportion of radicals available for subsequent chemical reactions such as the alkylation of heme and parasite proteins. In a further mechanistic experiment, we tested both artemisinin and OZ277 in combination with their nonperoxidic analogs. The latter had no effect on the antimalarial activities of the former. These data indicate that the antimalarial properties of peroxides do not derive from reversible interactions with parasite targets. PMID:20028825

  17. Fake anti-malarials: start with the facts.

    Science.gov (United States)

    Kaur, Harparkash; Clarke, Siȃn; Lalani, Mirza; Phanouvong, Souly; Guérin, Philippe; McLoughlin, Andrew; Wilson, Benjamin K; Deats, Michael; Plançon, Aline; Hopkins, Heidi; Miranda, Debora; Schellenberg, David

    2016-01-01

    This meeting report presents the key findings and discussion points of a 1-day meeting entitled 'Fake anti-malarials: start with the facts' held on 28th May 2015, in Geneva, Switzerland, to disseminate the findings of the artemisinin combination therapy consortium's drug quality programme. The teams purchased over 10,000 samples, using representative sampling approaches, from six malaria endemic countries: Equatorial Guinea (Bioko Island), Cambodia, Ghana, Nigeria, Rwanda and Tanzania. Laboratory analyses of these samples showed that falsified anti-malarials (<8 %) were found in just two of the countries, whilst substandard artemisinin-based combinations were present in all six countries and, artemisinin-based monotherapy tablets are still available in some places despite the fact that the WHO has urged regulatory authorities in malaria-endemic countries to take measures to halt the production and marketing of these oral monotherapies since 2007. This report summarizes the presentations that reviewed the public health impact of falsified and substandard drugs, sampling strategies, techniques for drug quality analysis, approaches to strengthen health systems capacity for the surveillance of drug quality, and the ensuing discussion points from the dissemination meeting. PMID:26873700

  18. Case management of malaria fever in Cambodia: results from national anti-malarial outlet and household surveys

    Directory of Open Access Journals (Sweden)

    Littrell Megan

    2011-10-01

    Full Text Available Abstract Background Continued progress towards global reduction in morbidity and mortality due to malaria requires scale-up of effective case management with artemisinin-combination therapy (ACT. The first case of artemisinin resistance in Plasmodium falciparum was documented in western Cambodia. Spread of artemisinin resistance would threaten recent gains in global malaria control. As such, the anti-malarial market and malaria case management practices in Cambodia have global significance. Methods Nationally-representative household and outlet surveys were conducted in 2009 among areas in Cambodia with malaria risk. An anti-malarial audit was conducted among all public and private outlets with the potential to sell anti-malarials. Indicators on availability, price and relative volumes sold/distributed were calculated across types of anti-malarials and outlets. The household survey collected information about management of recent "malaria fevers." Case management in the public versus private sector, and anti-malarial treatment based on malaria diagnostic testing were examined. Results Most public outlets (85% and nearly half of private pharmacies, clinics and drug stores stock ACT. Oral artemisinin monotherapy was found in pharmacies/clinics (9%, drug stores (14%, mobile providers (4% and grocery stores (2%. Among total anti-malarial volumes sold/distributed nationally, 6% are artemisinin monotherapies and 72% are ACT. Only 45% of people with recent "malaria fever" reportedly receive a diagnostic test, and the most common treatment acquired is a drug cocktail containing no identifiable anti-malarial. A self-reported positive diagnostic test, particularly when received in the public sector, improves likelihood of receiving anti-malarial treatment. Nonetheless, anti-malarial treatment of reportedly positive cases is low among people who seek treatment exclusively in the public (61% and private (42% sectors. Conclusions While data on the anti-malarial

  19. Monitoring antimalarial safety and tolerability in clinical trials: A case study from Uganda

    Directory of Open Access Journals (Sweden)

    Mpimbaza Arthur

    2008-06-01

    Full Text Available Abstract Background New antimalarial regimens, including artemisinin-based combination therapies (ACTs, have been adopted widely as first-line treatment for uncomplicated malaria. Although these drugs appear to be safe and well-tolerated, experience with their use in Africa is limited and continued assessment of safety is a priority. However, no standardized guidelines for evaluating drug safety and tolerability in malaria studies exist. A system for monitoring adverse events in antimalarial trials conducted in Uganda was developed. Here the reporting system is described, and difficulties faced in analysing and interpreting the safety results are illustrated, using data from the trials. Case description Between 2002 and 2007, eleven randomized, controlled clinical trials were conducted to compare the efficacy, safety, and tolerability of different antimalarial regimens for treatment of uncomplicated malaria in Uganda. The approach to adverse event monitoring was similar in all studies. A total of 5,614 treatments were evaluated in 4,876 patients. Differences in baseline characteristics and patterns of adverse event reporting were noted between the sites, which limited the ability to pool and analyse data. Clinical failure following antimalarial treatment confounded associations between treatment and adverse events that were also common symptoms of malaria, particularly in areas of lower transmission intensity. Discussion and evaluation Despite prospectively evaluating for adverse events, limitations in the monitoring system were identified. New standardized guidelines for monitoring safety and tolerability in antimalarial trials are needed, which should address how to detect events of greatest importance, including serious events, those with a causal relationship to the treatment, those which impact on adherence, and events not previously reported. Conclusion Although the World Health Organization has supported the development of

  20. Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2008-11-01

    Full Text Available Abstract Background Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT. The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. Methods A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. Results The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with

  1. Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity

    Directory of Open Access Journals (Sweden)

    Gupta A

    2014-12-01

    Full Text Available Ankush Gupta,1,* Sima Singh,1,* Niranjan G Kotla,1 Thomas J Webster2,3 1Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia *These authors contributed equally to this work Abstract: A skin disease, like acne, is very common and normally happens to everyone at least once in their lifetime. The structure of the stratum corneum is often compared with a brick wall, with corneocytes surrounded by the mortar of the intercellular lipid lamellae. One of the best options for successful drug delivery to the affected area of skin is the use of elastic vesicles (niosomes which can be transported through the skin through channel-like structures. In this study, a combination of tretinoin (keratolytic agent and benzoyl peroxide (BPO (a potent antibacterial was given by using niosomes as promising carriers for the effective treatment of acne by acting on a pathogenic site. In this section, niosomal gel formulation encapsulated drugs have been evaluated for in vitro, ex vivo, and in vivo, for their predetermined characteristics; and finally the stability of the niosome gel was tested at different temperature conditions for understanding of the storage conditions required for maintaining the quality of formulation attributes. The prepared niosome was found to be in the range of 531 nm with a zeta potential of -43 mV; the entrapment efficiencies of tretinoin (TRA and BPO niosomes were found to be 96.25%±0.56% and 98.75%±1.25%, respectively. The permeated amount of TRA and BPO from the niosomal gel after 24 hours was calculated as 6.25±0.14 µg/cm2 and 5.04±0.014 µg/cm2, respectively. A comparative drug retention study in Wistar rat skin using cream, an alcoholic solution, and a niosomal gel showed 11.54 µg, 2.68 µg, and 15.54 µg

  2. Substandard anti-malarial drugs in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Sie Ali

    2008-05-01

    Full Text Available Abstract Background There is concern about an increasing infiltration of markets by substandard and fake medications against life-threatening diseases in developing countries. This is particularly worrying with regard to the increasing resistance development of Plasmodium falciparum against affordable anti-malarial medications, which has led to a change to more expensive drugs in most endemic countries. Methods A representative sample of modern anti-malarial medications from licensed (public and private pharmacies, community health workers and illicit (market and street vendors, shops sources has been collected in the Nouna Health District in north-western Burkina Faso in 2006. All drugs were tested for their quality with the standard procedures of the German Pharma Health Fund-Minilab. Detected low standard drugs were re-tested with European Pharmacopoeia 2.9.1 standards for disintegration and ultraviolet-visible spectroscopy at the laboratory of the Heidelberg University for confirmation. Results Overall, 86 anti-malarial drug samples were collected, of which 77 samples have been included in the final analysis. The sample consisted of 39/77 (50% chloroquine, 10/77 (13% pyrimethamine-sulphadoxine, 9/77 (12% quinine, 6/77 (8% amodiaquine, 9/77 (12% artesunate, and 4/77 (5% artemether-lumefantrine. 32/77 (42% drug samples were found to be of poor quality, of which 28 samples failed the visual inspection, nine samples had substandard concentrations of the active ingredient, four samples showed poor disintegration, and one sample contained non of the stated active ingredient. The licensed and the illicit market contributed 5/47 (10.6% and 27/30 (90.0% samples of substandard drugs respectively. Conclusion These findings provide further evidence for the wide-spread existence of substandard anti-malarial medications in Africa and call for strengthening of the regulatory and quality control capacity of affected countries, particularly in view of the

  3. Efficacy of freshly prepared pesta granular formulations from the multi-combination of wild and mutant strain of Lasiodiplodia pseudotheobromae and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Adetunji Charles

    2013-12-01

    Full Text Available This study was carried out to determined the efficacy of freshly prepared pestal granules containing the wild and mutant strains of Pseudomonas aeruginosa and Lasiodiplodia pseudotheobromae in controlling weeds in a potted experiment. Six multi-combination formulations of the wild and mutant strains of Pseudomonas aeruginosa and Lasiodiplodia pseudotheobromae were combined with a semolina kaolin granular formulation which were represented as follows: BHI, BH2, BH3, BH4, BH5, and BH6. The effect of each formulated pesta granules were supplemented with an adjuvants (glycerol, glucose, sucrose, fructose, dextrose, lactose sugar, peptone and they were evaluated on Tridax procumbens and sorghum plant. The efficacy of the bioherbicides were in the following orders: BH4>BH2>BH6>BH3>BH1>BH5. BH4 showed the highest activity compared to other formulations by reducing Tridax procumbens to the lowest dry weights and showing the highest percentage disease severity on Tridax procumbens compared to other formulations. BH4 among other formulations also lead to increase in the amount of grain yield and 100-grain weight of sorghum plants compared to uninoculated plants. Therefore, the use of pesta granules containing wild and mutant strains of Pseudomonas aeruginosa and Lasiodiplodia pseudotheobromae exposed to U.V for 1 hour 30 minutes against weeds using Tridax procumbens as a study case could help in achieving a sustainable agriculture through the application of bioherbicide produced during this study.

  4. The ACTwatch project: methods to describe anti-malarial markets in seven countries

    Directory of Open Access Journals (Sweden)

    Chapman Steven

    2011-10-01

    Full Text Available Abstract Background Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT and malaria diagnostics including rapid diagnostic tests (RDTs. To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. Methods The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012. ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. Discussion The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the

  5. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium.

    Science.gov (United States)

    Belščak-Cvitanović, Ana; Komes, Draženka; Karlović, Sven; Djaković, Senka; Spoljarić, Igor; Mršić, Gordan; Ježek, Damir

    2015-01-15

    Alginate-based blends consisting of carrageenan, pectin, chitosan or psyllium husk powder were prepared for assessment of the best formulation aimed at encapsulation of caffeine. Alginate-pectin blend exhibited the lowest viscosity and provided the smallest beads. Alginate-psyllium husk blend was characterised with higher viscosity, yielding the largest bead size and the highest caffeine encapsulation efficiency (83.6%). The release kinetics of caffeine indicated that the porosity of alginate hydrogel was not reduced sufficiently to retard the diffusion of caffeine from the beads. Chitosan coated alginate beads provided the most retarded release of caffeine in water. Morphological characteristics of beads encapsulating caffeine were adversely affected by freeze drying. Bitterness intensity of caffeine-containing beads in water was the lowest for alginate-psyllium beads and chitosan coated alginate beads. Higher sodium alginate concentration (3%) for production of hydrogel beads in combination with psyllium or chitosan coating would present the most favourable carrier systems for immobilization of caffeine. PMID:25149001

  6. Antimalarial qinghaosu/artemisinin:The therapy worthy of a Nobel Prize

    Institute of Scientific and Technical Information of China (English)

    Jerapan Krungkrai

    2016-01-01

    Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu (Chinese name) and its derivatives are highly potent, rapidly acting antimalarial drugs. Artemisinin was discovered in 1971 by a Chinese medical scientist Youyou Tu, who was awarded the Nobel Prize in 2015 on her discovering the antimalarial properties of qinghaosu from the traditional Chinese qinghao plant. Nevertheless, artemisinin resistance in falciparum malaria patients has first emerged on the Thai-Cambodian border in 2009, which is now prevalent across mainland Southeast Asia from Vietnam to Myanmar. Here, we reviewed malaria disease severity, history of artemisinin discovery, chemical structure, mechanism of drug action, artemisinin-based combination therapies, emergence and spread of drug resistance, including the recent findings on mechanism of resistance in the falciparum malaria parasite. This poses a serious threat to global malaria control and prompts renewed efforts for the urgent development of new antimalarial drugs.

  7. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize

    Directory of Open Access Journals (Sweden)

    Jerapan Krungkrai

    2016-05-01

    Full Text Available Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu (Chinese name and its derivatives are highly potent, rapidly acting antimalarial drugs. Artemisinin was discovered in 1971 by a Chinese medical scientist Youyou Tu, who was awarded the Nobel Prize in 2015 on her discovering the antimalarial properties of qinghaosu from the traditional Chinese qinghao plant. Nevertheless, artemisinin resistance in falciparum malaria patients has first emerged on the Thai-Cambodian border in 2009, which is now prevalent across mainland Southeast Asia from Vietnam to Myanmar. Here, we reviewed malaria disease severity, history of artemisinin discovery, chemical structure, mechanism of drug action, artemisinin-based combination therapies, emergence and spread of drug resistance, including the recent findings on mechanism of resistance in the falciparum malaria parasite. This poses a serious threat to global malaria control and prompts renewed efforts for the urgent development of new antimalarial drugs.

  8. DEVELOPMENT AND VALIDATION OF SPECTROPHOTOMETRIC METHODS FOR SIMULTANEOUS ESTIMATION OF METOPROLOL SUCCINATE AND TELMISARTAN IN COMBINED PHARMACEUTICAL FORMULATION

    Directory of Open Access Journals (Sweden)

    Mayur Modi*, Rikin Shah and R.C. Mashru

    2012-05-01

    Full Text Available Four simple, rapid, precise, economical and accurate spectrophotometric methods have been developed for simultaneous analysis of Metoprolol succinate and Telmisartan in their combined dosage form. Method 1, First derivative simultaneous equation method (Vierodt’s method. It employs formation and solving of simultaneous equation using two wavelengths 230.2 nm (λmax of Metoprolol succinate and 237 nm (λmax of Telmisartan in first derivative spectra. Method 2, First derivative Q-Absorbance equation method. It involves, formation of Q-absorbance equation at 231.8 nm (isoabsorptive point and 237 nm (λmax of Telmisartan in first derivative spectra. Method 3, Absorbance correction method, involves measurement of absorbance at 296.6 nm for estimation of TEL and measurement of corrected absorbance at 223 nm for estimation of MET. Method 4, Combination of First derivative dual wavelength ,which uses the difference in absorbance at 282.4 nm and 284.6 nm for estimation of MET and zero crossing first derivative spectrophotometry involves measurement of amplitudes at 330 nm for estimation of TEL in first derivative spectra. Developed methods were validated according to ICH guidelines. The calibration graph follows Beer’s law in the range of 3-20 µg/ml for MET and 4-16 µg/ml for TEL with R square value greater than 0.999. Accuracy of all methods was determined by recovery studies and showed % recovery between 99 to 101%. Intraday and interday precision was checked for all methods and mean %RSD was found to be less than 2 for all the methods. The methods were successfully applied for estimation of MET and TEL in marketed formulation.

  9. Study of the effect of formulation variables on the characteristics of combination tablets containing enalapril maleate and indapamide as active substances using experimental design

    Directory of Open Access Journals (Sweden)

    Szabó Zoltán-István

    2016-06-01

    Full Text Available To evaluate the influence of different variables on tablet formulations containing enalapril maleate and indapamide as active substances, two separate experimental designs were employed: one for evaluating powder properties and the other for tablet characteristics. Because of the low active pharmaceutical ingredient content, it was hypothesized that both powder and tablet properties could be determined only by the characteristics of excipients. In order to test this assumption, both experimental designs were done with placebo mixtures. The optimized formulation was then evaluated both with and without APIs. Results indicated that filler and lubricant percentage, along with compression force, were the most important variables during the formulation study. The optimized formulation showed similar characteristics in both cases for all responses, except for angle of repose and friability where only minor differences were observed. The combination of the applied approaches (using placebo composition and fractional experimental design proved to be efficient, cost effective and time saving.

  10. Study of the effect of formulation variables on the characteristics of combination tablets containing enalapril maleate and indapamide as active substances using experimental design.

    Science.gov (United States)

    Szabó, Zoltán-István; Székely-Szentmiklósi, Blanka; Deák, Boglárka; Székely-Szentmiklósi, István; Kovács, Béla; Zöldi, Katalin; Sipos, Emese

    2016-06-01

    To evaluate the influence of different variables on tablet formulations containing enalapril maleate and indapamide as active substances, two separate experimental designs were employed: one for evaluating powder properties and the other for tablet characteristics. Because of the low active pharmaceutical ingredient content, it was hypothesized that both powder and tablet properties could be determined only by the characteristics of excipients. In order to test this assumption, both experimental designs were done with placebo mixtures. The optimized formulation was then evaluated both with and without APIs. Results indicated that filler and lubricant percentage, along with compression force, were the most important variables during the formulation study. The optimized formulation showed similar characteristics in both cases for all responses, except for angle of repose and friability where only minor differences were observed. The combination of the applied approaches (using placebo composition and fractional experimental design) proved to be efficient, cost effective and time saving. PMID:27279063

  11. The role of antimalarial treatment in the elimination of malaria.

    Science.gov (United States)

    Gosling, R D; Okell, L; Mosha, J; Chandramohan, D

    2011-11-01

    With declining transmission of malaria in several regions of the world and renewed interest in the elimination of malaria, strategies for malaria control using antimalarial drugs are being revisited. Drug-based strategies to reduce transmission of malaria need to target the asymptomatic carriers of infection. Drugs that are effective against gametocytes are few in number, but it may be possible to reduce gametocyte production by killing the asexual stages, for which more drugs are available. Drugs for use in large-scale programmes must be safe and tolerable. Strategies include improving access to treatment for malaria with an efficacious drug, intermittent-treatment programmes, and mass drug administration, with and without screening for malaria. Recent proposals have targeted high-risk groups for interventions. None of the strategies has been rigorously tested with appropriate control groups for comparison. Because of the lack of field evidence, modelling has been used. Models have shown, first, that for long-lasting effects, drug administration programmes should be linked with vector control, and second, that if elimination is the aim, programmes are likely to be more successful when applied to smaller populations of a few thousand or less. In order to sustain the gains following the scaling up of vector control and use of artemisinin combination therapies (ACTs), strategies that use antimalarials effectively need to be devised and evidence generated for the most cost-efficient way forward.

  12. Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity.

    Science.gov (United States)

    Gupta, Ankush; Singh, Sima; Kotla, Niranjan G; Webster, Thomas J

    2015-01-01

    A skin disease, like acne, is very common and normally happens to everyone at least once in their lifetime. The structure of the stratum corneum is often compared with a brick wall, with corneocytes surrounded by the mortar of the intercellular lipid lamellae. One of the best options for successful drug delivery to the affected area of skin is the use of elastic vesicles (niosomes) which can be transported through the skin through channel-like structures. In this study, a combination of tretinoin (keratolytic agent) and benzoyl peroxide (BPO) (a potent antibacterial) was given by using niosomes as promising carriers for the effective treatment of acne by acting on a pathogenic site. In this section, niosomal gel formulation encapsulated drugs have been evaluated for in vitro, ex vivo, and in vivo, for their predetermined characteristics; and finally the stability of the niosome gel was tested at different temperature conditions for understanding of the storage conditions required for maintaining the quality of formulation attributes. The prepared niosome was found to be in the range of 531 nm with a zeta potential of -43 mV; the entrapment efficiencies of tretinoin (TRA) and BPO niosomes were found to be 96.25%±0.56% and 98.75%±1.25%, respectively. The permeated amount of TRA and BPO from the niosomal gel after 24 hours was calculated as 6.25±0.14 μg/cm(2) and 5.04±0.014 μg/cm(2), respectively. A comparative drug retention study in Wistar rat skin using cream, an alcoholic solution, and a niosomal gel showed 11.54 μg, 2.68 μg, and 15.54 μg amounts of TRA and 68.85 μg, 59.98 μg, and 143.78 μg amounts of BPO were retained in the layers of skin, respectively. In vivo studies of the niosomal gel and antiacne cream of TRA and BPO showed that the niosomal gel was more efficacious than the antiacne cream because niosomal gels with a 4.16-fold lower dose of BPO provided the same therapeutic index at targeted sites in comparison to the antiacne cream.

  13. Use of formulated Trichoderma sp. Tri-1 in combination with reduced rates of chemical pesticide for control of Sclerotinia sclerotiorium on oilseed rape

    Science.gov (United States)

    Sustainable strategies for control of Sclerotinia sclerotiorum on oilseed rape are needed. Here we tested combinations of Trichoderma sp. Tri-1, formulated with oilseed rape seedcake and straw, with reduced application rates of the chemical pesticide Carbendazim for control of this pathogen on oils...

  14. Deployment of ACT antimalarials for treatment of malaria: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Leslie Toby

    2008-12-01

    Full Text Available Abstract Following a long period when the effectiveness of existing mono-therapies for antimalarials was steadily declining with no clear alternative, most malaria-endemic countries in Africa and Asia have adopted artemisinin combination therapy (ACT as antimalarial drug policy. Several ACT drugs exist and others are in the pipeline. If properly targeted, they have the potential to reduce mortality from malaria substantially. The major challenge now is to get the drugs to the right people. Current evidence suggests that most of those who need the drugs do not get them. Simultaneously, a high proportion of those who are given antimalarials do not in fact have malaria. Financial and other barriers mean that, in many settings, the majority of those with malaria, particularly the poorest, do not access formal healthcare, so the provision of free antimalarials via this route has only limited impact. The higher cost of ACT creates a market for fake drugs. Addressing these problems is now a priority. This review outlines current evidence, possible solutions and research priorities.

  15. Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Lee Sue J

    2009-11-01

    Full Text Available Abstract Background Preventing the emergence of anti-malarial drug resistance is critical for the success of current malaria elimination efforts. Prevention strategies have focused predominantly on qualitative factors, such as choice of drugs, use of combinations and deployment of multiple first-line treatments. The importance of anti-malarial treatment dosing has been underappreciated. Treatment recommendations are often for the lowest doses that produce "satisfactory" results. Methods The probability of de-novo resistant malaria parasites surviving and transmitting depends on the relationship between their degree of resistance and the blood concentration profiles of the anti-malarial drug to which they are exposed. The conditions required for the in-vivo selection of de-novo emergent resistant malaria parasites were examined and relative probabilities assessed. Results Recrudescence is essential for the transmission of de-novo resistance. For rapidly eliminated anti-malarials high-grade resistance can arise from a single drug exposure, but low-grade resistance can arise only from repeated inadequate treatments. Resistance to artemisinins is, therefore, unlikely to emerge with single drug exposures. Hyperparasitaemic patients are an important source of de-novo anti-malarial drug resistance. Their parasite populations are larger, their control of the infection insufficient, and their rates of recrudescence following anti-malarial treatment are high. As use of substandard drugs, poor adherence, unusual pharmacokinetics, and inadequate immune responses are host characteristics, likely to pertain to each recurrence of infection, a small subgroup of patients provides the particular circumstances conducive to de-novo resistance selection and transmission. Conclusion Current dosing recommendations provide a resistance selection opportunity in those patients with low drug levels and high parasite burdens (often children or pregnant women. Patients with

  16. [Historical overview of antimalarials used in Venezuela].

    Science.gov (United States)

    Zerpa de Artiles, N

    1993-06-01

    A historical review of antimalarials used in Venezuela is presented from the time when the bark of quina was used until the massive distribution of quinine and metoquine by the Dirección de Malariología y Saneamiento Ambiental. The utility of chloroquine and primaquine against sensible parasite isolates and of sulfadoxine-pyrimethamine and quinine, currently used against P. falciparum resistant strains, is thoroughly discussed. The author suggests use of artemisimine and its derivatives as a very promising antimalarial drug. She also stresses the possibility of the application of new antimalaria vaccine against P. falciparum blood states, presently assayed in the country as an additional tool in malaria control programs. PMID:11640680

  17. Pricing, distribution, and use of antimalarial drugs.

    Science.gov (United States)

    Foster, S D

    1991-01-01

    Prices of new antimalarial drugs are targeted at the "travellers' market" in developed countries, which makes them unaffordable in malaria-endemic countries where the per capita annual drug expenditures are US$ 5 or less. Antimalarials are distributed through a variety of channels in both public and private sectors, the official malaria control programmes accounting for 25-30% of chloroquine distribution. The unofficial drug sellers in markets, streets, and village shops account for as much as half of antimalarials distributed in many developing countries. Use of antimalarials through the health services is often poor; drug shortages are common and overprescription and overuse of injections are significant problems. Anxiety over drug costs may prevent patients from getting the necessary treatment for malaria, especially because of the seasonal appearance of this disease when people's cash reserves are very low. The high costs may lead them to unofficial sources, which will sell a single tablet instead of a complete course of treatment, and subsequently to increased, often irrational demand for more drugs and more injections. Increasingly people are resorting to self-medication for malaria, which may cause delays in seeking proper treatment in cases of failure, especially in areas where chloroquine resistance has increased rapidly. Self-medication is now widespread, and measures to restrict the illicit sale of drugs have been unsuccessful. The "unofficial" channels thus represent an unacknowledged extension of the health services in many countries; suggestions are advanced to encourage better self-medication by increasing the knowledge base among the population at large (mothers, schoolchildren, market sellers, and shopkeepers), with an emphasis on correct dosing and on the importance of seeking further treatment without delay, if necessary. PMID:1893512

  18. Antimalarial activity of some Colombian medicinal plants

    OpenAIRE

    Garavito, G. (G.); Rincon, J.; Arteaga, L.; Hata, Y; Bourdy, Geneviève; Gimenez, A.; Pinzon, R.; Deharo, Eric

    2006-01-01

    Antimalarial activity of 10 vegetal extracts (9 ethanolic extracts and 1 crude alkaloid extract), obtained from eight species traditionally used in Colombia to treat malaria symptoms, was evaluated in culture using Plasmodium falciparum chloroquine resistant (FcB2) strain and in vivo on rodent malaria Plasmodium berghei. The activity on ferriprotoporphyrin biomineralization inhibition test (FBIT) was also assessed. Against Plasmodium falciparum, eight extracts displayed good activity Abuta gr...

  19. Potential antimalarial activity of indole alkaloids

    OpenAIRE

    Frederich, Michel; Tits, Monique; Angenot, Luc

    2008-01-01

    New antimalarial treatments are now urgently required, following the emergence of resistance to the most used drugs. Natural products contribute greatly to the therapeutic arsenal in this area, including artemisinin and quinine (and atovaquone, semi-synthetic). Among the natural products, indole alkaloids represent an interesting class of compounds. Screening carried out to date has revealed several substances active in vitro under the micromolar range and with a good selectivity index. This ...

  20. Antimalarial plants of northeast India: An overview

    Directory of Open Access Journals (Sweden)

    Rama Shankar

    2012-01-01

    Full Text Available The need for an alternative drug for malaria initiated intensive efforts for developing new antimalarials from indigenous plants. The information from different tribal communities of northeast India along with research papers, including books, journals and documents of different universities and institutes of northeast India was collected for information on botanical therapies and plant species used for malaria. Sixty-eight plant species belonging to 33 families are used by the people of northeast India for the treatment of malaria. Six plant species, namely, Alstonia scholaris, Coptis teeta, Crotolaria occulta, Ocimum sanctum, Polygala persicariaefolia, Vitex peduncularis, have been reported by more than one worker from different parts of northeast India. The species reported to be used for the treatment of malaria were either found around the vicinity of their habitation or in the forest area of northeast India. The most frequently used plant parts were leaves (33%, roots (31%, and bark and whole plant (12%. The present study has compiled and enlisted the antimalarial plants of northeast India, which would help future workers to find out the suitable antimalarial plants by thorough study.

  1. Plasmodium falciparum susceptibility to anti-malarial drugs in Dakar, Senegal, in 2010: an ex vivo and drug resistance molecular markers study

    OpenAIRE

    Fall, Bécaye; Pascual, Aurélie; Sarr, Fatoumata; Wurtz, Nathalie; Richard, Vincent; Baret, Eric; Diémé, Yaya; Briolant, Sébastien; Bercion, Raymond; Wade, Boubacar; Tall, Adama; Pradines, Bruno

    2013-01-01

    BACKGROUND: In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria. Since the introduction of ACT, there have been very few reports on the level of resistance of P. falciparum to anti-malarial drugs. To determine whether parasite susceptibility has been affected by the new anti-malarial policies, an ex vivo susceptibility and drug resistance molecular marker study was conducted on...

  2. In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract

    Directory of Open Access Journals (Sweden)

    Ghimeray AK

    2015-07-01

    Full Text Available Amal Kumar Ghimeray,1 Un Sun Jung,1,2 Ha Youn Lee,1 Young Hoon Kim,1 Eun Kyung Ryu,1 Moon Sik Chang11R&D Center, Natural Solution Co., Ltd, Gojan-dong, Namdong-gu, Incheon, Republic of Korea; 2Department of Horticultural Biotechnology, Kyung Hee University, Yongin, Republic of KoreaBackground: In phytotherapy, the therapeutic potential is based on the combined action of different herbal drugs. Our objective was to evaluate the antioxidant, anti-collagenase (in vitro, and anti-wrinkle (in vivo effect of combined formulation containing Ginkgo biloba, Punica granatum, Ficus carica, and Morus alba fruits extract.Methods: Antioxidant evaluation was based on the scavenging activity of free radicals (1,1-diphenyl-2-picrylhydrazyl, H2O2, and O2- and the anti-collagenase activity was based on the reduction of collagenase enzyme in vitro. In an in vivo study, 21 female subjects were examined in a placebo-controlled trail. Facial wrinkle, especially the crow's feet region of eyes, was treated with topical formulated 2% cream for 56 days and compared with the placebo.Results: In the in vitro study, the combination of fruits extract showed a higher antioxidant activity which was comparable with the positive standard (ascorbic acid, butylated hydroxyanisole, and Trolox. The data also showed a dose-dependent inhibition of collagenase. In the in vivo study, treatment with 2% formulated cream for 56 days significantly reduced the percentage of wrinkle depth, length, and area with 11.5, 10.07, and 29.55, respectively.Conclusion: The combined formulation of fruit extracts showed excellent antioxidative and anti-collagenase activity as well as a significant effect on anti-wrinkle activity on human skin.Keywords: antioxidant, anti-collagenase, anti-wrinkle, fruits, topical formulation

  3. Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    Directory of Open Access Journals (Sweden)

    Newton Paul N

    2011-12-01

    Full Text Available Abstract Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis and botanical investigations were performed. Results Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA containing paracetamol (acetaminophen, counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. Conclusions Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems.

  4. Dispersible formulation of artemether/lumefantrine: specifically developed for infants and young children

    Directory of Open Access Journals (Sweden)

    Sagara Issaka

    2009-10-01

    Full Text Available Abstract Infants and children under five years of age are the most vulnerable to malaria with over 1,700 deaths per day from malaria in this group. However, until recently, there were no WHO-endorsed paediatric anti-malarial formulations available. Artemisinin-based combination therapy is the current standard of care for patients with uncomplicated falciparum malaria in Africa. Artemether/lumefantrine (AL meets WHO pre-qualification criteria for efficacy, safety and quality. Coartem®, a fixed dose combination of artemether and lumefantrine, has consistently achieved cure rates of >95% in clinical trials. However, AL tablets are inconvenient for caregivers to administer as they need to be crushed and mixed with water or food for infants and young children. Further, in common with other anti-malarials, they have a bitter taste, which may result in children spitting the medicine out and not receiving the full therapeutic dose. There was a clear unmet medical need for a formulation of AL specifically designed for children. Ahead of a call from WHO for child-friendly medicines, Novartis, working in partnership with Medicines for Malaria Venture (MMV, started the development of a new formulation of AL for infants and young children: Coartem® Dispersible. The excellent efficacy, safety and tolerability already demonstrated by AL tablets were confirmed with dispersible AL in a large trial comparing the crushed tablets with dispersible tablets in 899 African children with falciparum malaria. In the evaluable population, 28-day PCR-corrected cure rates of >96% were achieved. Further, its sweet taste means that it is palatable for children, and the dispersible formulation makes it easier for caregivers to administer than bitter crushed tablets. Easing administration may foster compliance, hence improving therapeutic outcomes in infants and young children and helping to preserve the efficacy of ACT.

  5. Complex polymorphisms in the Plasmodium falciparum multidrug resistance protein 2 gene and its contribution to antimalarial response.

    Science.gov (United States)

    Veiga, Maria Isabel; Osório, Nuno S; Ferreira, Pedro Eduardo; Franzén, Oscar; Dahlstrom, Sabina; Lum, J Koji; Nosten, Francois; Gil, José Pedro

    2014-12-01

    Plasmodium falciparum has the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including the Apicomplexa parasites. P. falciparum genome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters: Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studied Pfmrp2. The role of Pfmrp2 polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of the Pfmrp2 genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found that Pfmrp2 harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identified Pfmrp2 polymorphisms with altered in vitro susceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggested Pfmrp2 polymorphisms modulate the parasite's in vitro response to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association with in vivo parasite clearance. In conclusion, our study reveals that the Pfmrp2 gene is the most diverse ABC transporter known in P. falciparum with a potential role in antimalarial drug resistance. PMID:25267670

  6. Complex polymorphisms in the Plasmodium falciparum multidrug resistance protein 2 gene and its contribution to antimalarial response.

    Science.gov (United States)

    Veiga, Maria Isabel; Osório, Nuno S; Ferreira, Pedro Eduardo; Franzén, Oscar; Dahlstrom, Sabina; Lum, J Koji; Nosten, Francois; Gil, José Pedro

    2014-12-01

    Plasmodium falciparum has the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including the Apicomplexa parasites. P. falciparum genome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters: Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studied Pfmrp2. The role of Pfmrp2 polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of the Pfmrp2 genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found that Pfmrp2 harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identified Pfmrp2 polymorphisms with altered in vitro susceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggested Pfmrp2 polymorphisms modulate the parasite's in vitro response to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association with in vivo parasite clearance. In conclusion, our study reveals that the Pfmrp2 gene is the most diverse ABC transporter known in P. falciparum with a potential role in antimalarial drug resistance.

  7. Molecular surveillance of antimalarial drug resistance related genes in Plasmodium falciparum isolates from Eritrea.

    Science.gov (United States)

    Menegon, Michela; Nurahmed, Abduselam M; Talha, Albadawi A; Nour, Bakri Y M; Severini, Carlo

    2016-05-01

    The introduction of artemisinin-based combination therapy has led to extraordinary results in malaria control, however the recent emergence of partial resistance to artemisinin therapy in Southeast Asia jeopardizes these successes. This study aimed at investigating resistance to the antimalarial drugs by evaluating the polymorphisms in the PfK13, Pfcrt and Pfmdr1 genes in Plasmodium falciparum isolates obtained from patients in Eritrea.

  8. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  9. Artemisinins: pharmacological actions beyond anti-malarial.

    Science.gov (United States)

    Ho, Wanxing Eugene; Peh, Hong Yong; Chan, Tze Khee; Wong, W S Fred

    2014-04-01

    Artemisinins are a family of sesquiterpene trioxane lactone anti-malarial agents originally derived from Artemisia annua L. The anti-malarial action of artemisinins involves the formation of free radicals via cleavage of the endoperoxide bond in its structure, which mediate eradication of the Plasmodium species. With its established safety record in millions of malarial patients, artemisinins are also being investigated in diseases like infections, cancers and inflammation. Artemisinins have been reported to possess robust inhibitory effects against viruses (e.g. Human cytomegalovirus), protozoa (e.g. Toxoplasma gondii), helminths (e.g. Schistosoma species and Fasciola hepatica) and fungi (e.g. Cryptococcus neoformans). Artemisinins have demonstrated cytotoxic effects against a variety of cancer cells by inducing cell cycle arrest, promoting apoptosis, preventing angiogenesis, and abrogating cancer invasion and metastasis. Artemisinins have been evaluated in animal models of autoimmune diseases, allergic disorders and septic inflammation. The anti-inflammatory effects of artemisinins have been attributed to the inhibition of Toll-like receptors, Syk tyrosine kinase, phospholipase Cγ, PI3K/Akt, MAPK, STAT-1/3/5, NF-κB, Sp1 and Nrf2/ARE signaling pathways. This review provides a comprehensive update on non-malarial use of artemisinins, modes of action of artemisinins in different disease conditions, and drug development of artemisinins beyond anti-malarial. With the concerted efforts in the novel synthesis of artemisinin analogs and clinical pharmacology of artemisinins, it is likely that artemisinin drugs will become a major armamentarium combating a variety of human diseases beyond malaria. PMID:24316259

  10. Prospective strategies to delay the evolution of anti-malarial drug resistance: weighing the uncertainty

    Directory of Open Access Journals (Sweden)

    McKenzie F Ellis

    2010-07-01

    Full Text Available Abstract Background The evolution of drug resistance in malaria parasites highlights a need to identify and evaluate strategies that could extend the useful therapeutic life of anti-malarial drugs. Such strategies are deployed to best effect before resistance has emerged, under conditions of great uncertainty. Methods Here, the emergence and spread of resistance was modelled using a hybrid framework to evaluate prospective strategies, estimate the time to drug failure, and weigh uncertainty. The waiting time to appearance was estimated as the product of low mutation rates, drug pressure, and parasite population sizes during treatment. Stochastic persistence and the waiting time to establishment were simulated as an evolving branching process. The subsequent spread of resistance was simulated in simple epidemiological models. Results Using this framework, the waiting time to the failure of artemisinin combination therapy (ACT for malaria was estimated, and a policy of multiple first-line therapies (MFTs was evaluated. The models quantify the effects of reducing drug pressure in delaying appearance, reducing the chances of establishment, and slowing spread. By using two first-line therapies in a population, it is possible to reduce drug pressure while still treating the full complement of cases. Conclusions At a global scale, because of uncertainty about the time to the emergence of ACT resistance, there was a strong case for MFTs to guard against early failure. Our study recommends developing operationally feasible strategies for implementing MFTs, such as distributing different ACTs at the clinic and for home-based care, or formulating different ACTs for children and adults.

  11. Two novel spectrophotometric methods for determinat ion of ternary mixture used as antihypertensive therapy in combined tablet dosage formulation

    Directory of Open Access Journals (Sweden)

    Trupti Solanki

    2015-03-01

    Full Text Available Aim: To develop and validate two novel spectrophotometric methods for the simultaneous determination of ternary mixture of Olmesartan medoxomil, Amlodipine besylate and Hydrochlorothiazide. Methods: The proposed methods, successive ratio derivative method and double divisor method involved treatment of normal absorption spectra of ternary mixture in UV probe software for the simultaneous determination of Olmesartan medoxomil, Amlodipine besylate and Hydrochlorothiazide in bulk and tablet dosage formulation without prior separation. Results: All the drugs exhibited good linearity over the reported concentration range with acceptable correlation coefficient. The method was validated according to ICH guidelines for evaluation of accuracy, repeatability, reproducibility, sensitivity showing acceptable percent relative standard deviation of less than 2. Conclusion: The proposed methods demonstrated that these are simple, rapid, accurate and precise methods and can be used for routine analysis of bulk and tablet dosage formulation in quality control laboratories eliminating the need of prior separation of the pharmaceutical mixtures.

  12. Two novel spectrophotometric methods for determinat ion of ternary mixture used as antihypertensive therapy in combined tablet dosage formulation

    Directory of Open Access Journals (Sweden)

    Trupti Solanki

    2015-03-01

    Full Text Available Aim: To develop and validate two novel spectrophotometric methods for the simultaneous determination of ternary mixture of Olmesartan medoxomil, Amlodipine besylate and Hydrochlorothiazide. Methods: The proposed methods, successive ratio derivative method and double divisor method involved treatment of normal absorption spectra of ternary mixture in UV probe software for the simultaneous determination of Olmesartan medoxomil, Amlodipine besylate and Hydrochlorothiazide in bulk and tablet dosage formulation without prior separation. Results: All the drugs exhibited good linearity over the reported concentration range with acceptable correlation coefficient. The method was validated according to ICH guidelines for evaluation of accuracy, repeatability, reproducibility, sensitivity showing acceptable percent relative standard deviation of less than 2.Conclusion: The proposed methods demonstrated that these are simple, rapid, accurate and precise methods and can be used for routine analysis of bulk and tablet dosage formulation in quality control laboratories eliminating the need of prior separation of the pharmaceutical mixtures.

  13. Antimalarial Activity of Ultra-Short Peptides

    Directory of Open Access Journals (Sweden)

    María Yolanda Rios

    2009-12-01

    Full Text Available Ultra-short peptides 1-9 were designed and synthesized with phenylalanine, ornithine and proline amino acid residues and their effect on antimalarial activity was analyzed. On the basis of the IC50 data for these compounds, the effects of nature, polarity, and amino acid sequence on Plasmodium berghei schizont cultures were analyzed too. Tetrapeptides Phe-Orn-Phe-Orn (4 and Lys-Phe-Phe-Orn (5 showed a very important activity with IC50 values of 3.31 and 2.57 μM, respectively. These two tetrapeptides are candidates for subsequent in vivo assays and SARS investigations.

  14. A novel strategy for quantitative analysis of the formulated complex system using chromatographic fingerprints combined with some chemometric techniques.

    Science.gov (United States)

    Zhong, Xuan; Yan, Jun; Li, Yan-Chun; Kong, Bo; Lu, Hong-Bing; Liang, Yi-Zeng

    2014-11-28

    In this work, a novel strategy based on chromatographic fingerprints and some chemometric techniques is proposed for quantitative analysis of the formulated complex system. Here, the formulated complex system means a formulated type of complicated analytical system containing more than one kind of raw material under some concentration composition according to a certain formula. The strategy is elaborated by an example of quantitative determination of mixtures consist of three essential oils. Three key steps of the strategy are as follows: (1) remove baselines of the chromatograms; (2) align retention time; (3) conduct quantitative analysis using multivariate regression with entire chromatographic profiles. Through the determination of concentration compositions of nine mixtures arranged by uniform design, the feasibility of the proposed strategy is validated and the factors that influence the quantitative result are also discussed. This strategy is proved to be viable and the validation indicates that quantitative result obtained using this strategy mainly depends on the efficiency of the alignment method as well as chromatographic peak shape of the chromatograms. Previously, chromatographic fingerprints were only used for identification and/or recognition of some products. This work demonstrates that with the assistance of some effective chemometric techniques, chromatographic fingerprints are also potential and promising in solving quantitative problems of complex analytical systems.

  15. Malaria and antimalarial plants in Roraima, Brazil.

    Science.gov (United States)

    Milliken, W

    1997-01-01

    One of the numerous problems created by the gold rush which took place in northern Brazil (Roraima State) at the end of the 1980s was a severe epidemic of malaria amongst the indigenous peoples of the region. Worst hit were the Yanomami Indians, who had lived in almost total isolation prior to this event. The problem has been exacerbated by the development of chloroquine-resistant strains of Plasmodium falciparum. In an effort to identify viable alternatives to dependence on western medicine for malaria treatment, a survey was carried out on the local plant species (wild and cultivated) used for this purpose in Roraima. Fieldwork was carried out amongst seven indigenous peoples, as well as with the non-indigenous settlers. Over 90 species were collected, many of which have been cited as used for treatment of malaria and fevers elsewhere. Knowledge of antimalarial plants was found to vary greatly between the communities, and in some cases there was evidence of recent experimentation. Initial screening of plant extracts has shown a high incidence of significant antimalarial activity amongst the species collected. PMID:9204719

  16. Understanding private sector antimalarial distribution chains: a cross-sectional mixed methods study in six malaria-endemic countries.

    Directory of Open Access Journals (Sweden)

    Benjamin Palafox

    Full Text Available BACKGROUND: Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia. METHODS AND FINDINGS: We conducted nationally representative surveys of antimalarial wholesalers during 2009-2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4-6 steps between manufacturer and retailer; however, most likely pass through 2-3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are

  17. Understanding Private Sector Antimalarial Distribution Chains: A Cross-Sectional Mixed Methods Study in Six Malaria-Endemic Countries

    Science.gov (United States)

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Rueda, Sergio Torres; Kiefer, Sabine; O’Connell, Kathryn A.; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Chavasse, Desmond

    2014-01-01

    Background Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia). Methods and Findings We conducted nationally representative surveys of antimalarial wholesalers during 2009–2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4–6 steps between manufacturer and retailer; however, most likely pass through 2–3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine) dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs) were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important

  18. In-vitro antimalarial activity of azithromycin against chloroquine sensitive and chloroquine resistant Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Biswas S

    2001-10-01

    Full Text Available BAKGROUND: The spread of drug resistance in Plasmodium falciparum has made the situation essential to look into new effective therapeutic agents like antibiotics. Azithromycin is a potential, chemotherapeutic agent which possesses antimalarial activity and favourable pharmacokinetic properties. It is an azalide microbiocide derived semi-synthetically from macrolide erythromycin. Like other antibiotics, the azalide azithromycin has ability to inhibit protein synthesis on 70S ribosomes. SETTINGS: Experimental study. SUBJECTS AND METHODS: The parasiticidal profile was studied in five chloroquine sensitive and five chloroquine resistant P. falciparum isolates obtained from various places of India. The antimalarial activity was evaluated in P. falciparum schizont maturation by short term culture for 24 hours and by exposing the parasites to the drug for 96 hours. Parasites synchronized at ring stage were put for culture with various concentrations of azithromycin dihydrate (0.01-40 micro/ml. RESULTS: At highest concentration (40 micro/ml, parasite growth was inhibited totally in all 10 isolates. Antimalarial activity at 96 hours was greater than at 24 hours in both chloroquine sensitive and resistant parasites, which may indicate that the inhibition of parasite growth may occur at clinically achievable concentration of the drug when parasites were exposed for several asexual cycles. CONCLUSION: Azithromycin shows a potential for eventual use alone or in combination in the treatment of chloroquine sensitive and resistant P. falciparum malaria.

  19. The contribution of microscopy to targeting antimalarial treatment in a low transmission area of Tanzania

    Directory of Open Access Journals (Sweden)

    Mwerinde Ombeni

    2006-01-01

    Full Text Available Abstract Background There is a need for improved targeting of antimalarial treatment if artemisinin combination therapy is to be successfully introduced in Africa. This study aimed to explore why malaria slides are requested and how their results guide treatment decisions in an area of low transmission of P. falciparum. Methods Outpatients attending a district hospital in a highland area of Tanzania were studied over a 3-week period. Clinical and social data were collected from patients who had been prescribed an antimalarial or sent for a malaria slide. Hospital slides were re-read later by research methods. Results Of 1,273 consultations 132(10% were treated presumptively for malaria and 214(17% were sent for a malaria slide; only 13(6% of these were reported positive for P. falciparum but 96(48% of the 201 slide-negative cases were treated for malaria anyway. In a logistic regression model, adults (OR 3.86, P Conclusion Progress in targeting of antimalarials in low malaria transmission settings is likely to depend on consistent use of malaria microscopy and on the willingness of health workers to be guided by negative slide results. Further studies are needed to identify how this can be achieved.

  20. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs.

    Science.gov (United States)

    Abdul-Ghani, Rashad; Al-Maktari, Mohamed T; Al-Shibani, Latifa A; Allam, Amal F

    2014-09-01

    Effective chemotherapy is the mainstay of malaria control. However, resistance of falciparum malaria to antimalarial drugs compromised the efforts to eliminate the disease and led to the resurgence of malaria epidemics. Three main approaches are used to monitor antimalarial drug efficacy and drug resistance; namely, in vivo trials, in vitro/ex vivo assays and molecular markers of drug resistance. Each approach has its implications of use as well as its advantages and drawbacks. Therefore, there is a need to use an integrated approach that would give the utmost effect to detect resistance as early as its emergence and to track it once spread. Such integration becomes increasingly needed in the era of artemisinin-based combination therapy as a forward action to deter resistance. The existence of regional and global networks for the standardization of methodology, provision of high quality reagents for the assessment of antimalarial drug resistance and dissemination of open-access data would help in approaching an integrated resistance surveillance system on a global scale.

  1. Artemisinin anti-malarial drugs in China.

    Science.gov (United States)

    Guo, Zongru

    2016-03-01

    Discovered by Youyou Tu, one of the 2015 Nobel Prize winners in Physiology or Medicine, together with many other Chinese scientists, artemisinin, artemether and artesunate, as well as other artemisinins, have brought the global anti-malarial treatment to a new era, saving millions of lives all around the world for the past 40 years. The discoveries of artemisinins were carried out beginning from the 1970s, a special period in China, by hundreds of scientists all together under the "whole nation" system. This article focusing on medicinal chemistry research, briefly introduced the discovery and invention course of the scientists according to the published papers, and highlighted their academic contribution and achievements. PMID:27006895

  2. Synthesis and evaluation of antimalarial activity of curcumin derivatives

    International Nuclear Information System (INIS)

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC50 values ranging from 1.7 to 15.2 μg mL-1), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  3. Drug Discovery and Development of Antimalarial Agents: Recent Advances.

    Science.gov (United States)

    Thota, Sreekanth; Yerra, Rajeshwar

    2016-01-01

    Malaria, a deadly infectious parasitic disease, is a major issue of public health in the world today and already produces serious economic constraints in the endemic countries. Most of the malarial infections and deaths are due to Plasmodium falciparum and Plasmodium vivax species. The recent emergence of resistance necessitates the search for new antimalarial drugs, which overcome the resistance and act through new mechanisms. Although much effort has been directed towards the discovery of novel antimalarial drugs. 4-anilino quinolone triazines as potent antimalarial agents, their in silico modelling and bioevaluation as Plasmodium falciparum transketolase and β-hematin inhibitors has been reported. This review is primarily focused on the drug discovery of the recent advances in the development of antimalarial agents and their mechanism of action.

  4. Clinical utility and development of the fluticasone/formoterol combination formulation (Flutiform® for the treatment of asthma

    Directory of Open Access Journals (Sweden)

    Tan RA

    2014-09-01

    Full Text Available Ricardo Antonio Tan,1 Jonathan Corren2 1California Allergy and Asthma Medical Group, 2David Geffen School of Medicine at UCLA, Los Angeles, CA, USAAbstract: Pharmacologic treatment of asthma should be done with a stepwise approach recommended in treatment guidelines. If inhaled corticosteroids (ICSs alone are not adequate, ICSs in combination with long-acting β-agonists (LABAs are now established and widely used as the next step in effective controller therapy. Fixed-dose ICS/LABA combinations in a single device are the preferred form of delivery and improve compliance by enabling patients to get symptom relief from the LABA while receiving the anti-inflammatory benefits of ICSs. Fluticasone propionate/formoterol fumarate is one of the newest fixed-dose combinations. It has been in use in Europe in 2012, but is still under regulatory review in the US. Fluticasone is a synthetic ICS with potent anti-inflammatory effects, while formoterol is a selective β2-adrenergic receptor agonist with a rapid onset of bronchodilation within 5–10 minutes and a 12-hour duration of action. Fluticasone/formoterol has shown superior efficacy when compared to fluticasone or formoterol alone in multiple well-designed studies. The combination has shown comparable or “noninferior” benefits in lung function, clinical symptoms, and asthma control when compared with fluticasone and formoterol administered concurrently in separate inhalers. Fluticasone/formoterol provides similar efficacy with fluticasone/salmeterol, but with more rapid symptom relief. It has been compared directly with budesonide/formoterol with comparable results. Fluticasone/formoterol is well tolerated, with no unusual or increased safety concerns versus each individual component or other available ICS/LABA combinations. Fluticasone/formoterol is the latest entry into a relatively crowded market of branded fixed-dose preparations. Upcoming generic fixed-dose combinations and once-daily agents

  5. Antimalarial activity of plumbagin in vitro and in animal models

    OpenAIRE

    Sumsakul, Wiriyaporn; Plengsuriyakarn, Tullayakorn; Chaijaroenkul, Wanna; Viyanant, Vithoon; Karbwang, Juntra; Na-Bangchang, Kesara

    2014-01-01

    Background Plumbagin is the major active constituent in several plants including Plumbago indica Linn. (root). This compound has been shown to exhibit a wide spectrum of biological and pharmacological activities. The present study aimed to evaluate the in vitro and in vivo antimalarial activity of plumbagin including its acute and subacute toxicity in mice. Methods In vitro antimalarial activity of plumbagin against K1 and 3D7 Plasmodium falciparum clones were assessed using SYBR Green I base...

  6. Towards optimal design of anti-malarial pharmacokinetic studies.

    OpenAIRE

    White Nicholas J; Price Ric N; Jamsen Kris M; Simpson Julie A; Lindegardh Niklas; Tarning Joel; Duffull Stephen B

    2009-01-01

    Abstract Background Characterization of anti-malarial drug concentration profiles is necessary to optimize dosing, and thereby optimize cure rates and reduce both toxicity and the emergence of resistance. Population pharmacokinetic studies determine the drug concentration time profiles in the target patient populations, including children who have limited sampling options. Currently, population pharmacokinetic studies of anti-malarial drugs are designed based on logistical, financial and ethi...

  7. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    OpenAIRE

    Ramli, Norazsida; Ahamed, Pakeer Oothuman Syed; Elhady, Hassan Mohamed; Taher, Muhammad

    2014-01-01

    Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral t...

  8. Expanding the Antimalarial Drug Arsenal—Now, But How?

    OpenAIRE

    MEHLOTRA, RAJEEV K.; Grimberg, Brian T

    2011-01-01

    The number of available and effective antimalarial drugs is quickly dwindling. This is mainly because a number of drug resistance-associated mutations in malaria parasite genes, such as crt, mdr1, dhfr/dhps, and others, have led to widespread resistance to all known classes of antimalarial compounds. Unfortunately, malaria parasites have started to exhibit some level of resistance in Southeast Asia even to the most recently introduced class of drugs, artemisinins. While there is much need, th...

  9. In Vitro Antimalarial Activity of Novel Semisynthetic Nocathiacin I Antibiotics

    OpenAIRE

    Sharma, Indu; Sullivan, Margery; McCutchan, Thomas F.

    2015-01-01

    Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in...

  10. Quality of artemisinin-based combination formulations for malaria treatment: prevalence and risk factors for poor quality medicines in public facilities and private sector drug outlets in Enugu, Nigeria.

    Directory of Open Access Journals (Sweden)

    Harparkash Kaur

    Full Text Available Artemisinin-based combination therapies are recommended by the World Health Organisation (WHO as first-line treatment for Plasmodium falciparum malaria, yet medication must be of good quality for efficacious treatment. A recent meta-analysis reported 35% (796/2,296 of antimalarial drug samples from 21 Sub-Saharan African countries, purchased from outlets predominantly using convenience sampling, failed chemical content analysis. We used three sampling strategies to purchase artemisinin-containing antimalarials (ACAs in Enugu metropolis, Nigeria, and compared the resulting quality estimates.ACAs were purchased using three sampling approaches--convenience, mystery clients and overt, within a defined area and sampling frame in Enugu metropolis. The active pharmaceutical ingredients were assessed using high-performance liquid chromatography and confirmed by mass spectrometry at three independent laboratories. Results were expressed as percentage of APIs stated on the packaging and used to categorise each sample as acceptable quality, substandard, degraded, or falsified.Content analysis of 3024 samples purchased from 421 outlets using convenience (n=200, mystery (n=1,919 and overt (n=905 approaches, showed overall 90.8% ACAs to be of acceptable quality, 6.8% substandard, 1.3% degraded and 1.2% falsified. Convenience sampling yielded a significantly higher prevalence of poor quality ACAs, but was not evident by the mystery and overt sampling strategies both of which yielded results that were comparable between each other. Artesunate (n=135; 4 falsified and dihydroartemisinin (n=14 monotherapy tablets, not recommended by WHO, were also identified.Randomised sampling identified fewer falsified ACAs than previously reported by convenience approaches. Our findings emphasise the need for specific consideration to be given to sampling frame and sampling approach if representative information on drug quality is to be obtained.

  11. How do antimalarial drugs reach their intracellular targets?

    Directory of Open Access Journals (Sweden)

    Katherine eBasore

    2015-05-01

    Full Text Available Drugs represent the primary treatment available for human malaria, as caused by Plasmodium spp. Currently approved drugs and antimalarial drug leads generally work against parasite enzymes or activities within infected erythrocytes. To reach their specific targets, these chemicals must cross at least three membranes beginning with the host cell membrane. Uptake at each membrane may involve partitioning and diffusion through the lipid bilayer or facilitated transport through channels or carriers. Here, we review the features of available antimalarials and examine whether transporters may be required for their uptake. Our computational analysis suggests that most antimalarials have high intrinsic membrane permeability, obviating the need for uptake via transporters; a subset of compounds appear to require facilitated uptake. We also review parasite and host transporters that may contribute to drug uptake. Broad permeability channels at the erythrocyte and parasitophorous vacuolar membranes of infected cells relax permeability constraints on antimalarial drug design; however, this uptake mechanism is prone to acquired resistance as the parasite may alter channel activity to reduce drug uptake. A better understanding of how antimalarial drugs reach their intracellular targets is critical to prioritizing drug leads for antimalarial development and may reveal new targets for therapeutic intervention.

  12. Pharmacokinetic non-interaction analysis in a fixed-dose formulation in combination of atorvastatin and ezetimibe

    Directory of Open Access Journals (Sweden)

    Omar ePatiño-Rodríguez

    2014-11-01

    Full Text Available Recent clinical research has shown that atorvastatin in combination with cholesterol absorption inhibitor ezetimibe significantly reduces LDL-C level in patients with hypercholesterolemia, showing a superior lipid-lowering efficacy compared to statin alone. With no information currently available on the interaction between the two drugs, a pharmacokinetic study was conducted to investigate the influence of ezetimibe on atorvastatin and conversely when the two drugs were coadministered. The purpose of this study was to investigate the presence of differences in the pharmacokinetic profiles of capsules containing atorvastatin 80 mg, ezetimibe 10 mg or the combination of both 80/10 mg administered to healthy Mexican volunteers. This was a randomized, three-period, six-sequences crossover study. 36 eligible subjects aged between 20 to 50 years were included. Blood samples were collected up to 96 h after dosing, and pharmacokinetic parameters were obtained by non-compartmental analysis. Adverse events were evaluated based on subject interviews and physical examinations. Area under the concentration-time curve (AUC and maximum plasma drug concentration (Cmax were measured for each drug alone or together and tested for bioequivalence-based hypothesis. The estimation computed (90% confidence intervals for AUC and Cmax, were 96.04% (85.88%–107.42% and 97.04% (82.36%–114.35%, respectively for atorvastatin-ezetimibe combination versus atorvastatin alone, while 84.42% (77.19%–92.32% and 95.60% (82.43%–110.88%, respectively, for atorvastatin-ezetimibe combination versus ezetimibe alone were estimated. These results suggest that atorvastatin and ezetimibe have no relevant pharmacokinetic drug-drug interaction.

  13. Clinical utility and development of the fluticasone/formoterol combination formulation (Flutiform®) for the treatment of asthma

    OpenAIRE

    Tan RA; Corren J

    2014-01-01

    Ricardo Antonio Tan,1 Jonathan Corren2 1California Allergy and Asthma Medical Group, 2David Geffen School of Medicine at UCLA, Los Angeles, CA, USAAbstract: Pharmacologic treatment of asthma should be done with a stepwise approach recommended in treatment guidelines. If inhaled corticosteroids (ICSs) alone are not adequate, ICSs in combination with long-acting β-agonists (LABAs) are now established and widely used as the next step in effective controller therapy. Fixed-dose ICS/LABA comb...

  14. Clinical utility and development of the fluticasone/formoterol combination formulation (Flutiform®) for the treatment of asthma

    OpenAIRE

    Corren, Jonathan

    2014-01-01

    Ricardo Antonio Tan,1 Jonathan Corren2 1California Allergy and Asthma Medical Group, 2David Geffen School of Medicine at UCLA, Los Angeles, CA, USAAbstract: Pharmacologic treatment of asthma should be done with a stepwise approach recommended in treatment guidelines. If inhaled corticosteroids (ICSs) alone are not adequate, ICSs in combination with long-acting β-agonists (LABAs) are now established and widely used as the next step in effective controller therapy. Fixed-dose ICS/LABA ...

  15. Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system.

    Science.gov (United States)

    Chi-Zhang, Yundong; Yam, Kit L; Chikindas, Michael L

    2004-01-01

    In order to identify conditions for efficient food preservation by nisin, the sensitivity of Listeria monocytogenes to this preservative was studied under the following three model conditions: (1) the instantaneous addition of nisin into broth medium to simulate the formation of nisin in foods, (2) the slow delivery of nisin solution into broth medium using a pump to simulate the slow release of nisin from packaging materials to foods, (3) a combination of the two delivery methods. Based on the following results, we conclude that the antimicrobial effectiveness of nisin strongly depends on its mode of delivery. The instantaneous and slow methods for adding nisin inhibited L. monocytogenes, but over time of exposure, L. monocytogenes developed tolerance to nisin. Our data indicate that cells treated with instantaneously added nisin developed resistance to higher concentrations of nisin (200 IU/ml), compared to cells treated with slowly added nisin at the same total amount of the antimicrobial. Further studies indicated that nisin-tolerant cells recovered from treatments in which 200 IU/ml nisin was added instantaneously were likely to be mutants, which became resistant to the bacteriocin. In contrast, when 200 IU/ml of the antimicrobial was added slowly to the cells, only a temporary tolerance was developed; these cells became nisin-sensitive after passage through nisin-free medium. Due to the development of nisin-resistant cells, excessive amounts of nisin in the model system did not further inhibit L. monocytogenes. These results signify that excess nisin in foods does not necessarily improve the efficiency of controlling L. monocytogenes. Our data suggest that the combination of packaging material containing nisin used in conjunction with nisin-containing foods will provide the most effective means of preventing L. monocytogenes growth. PMID:14672827

  16. Medicines informal market in Congo, Burundi and Angola: counterfeit and sub-standard antimalarials

    Directory of Open Access Journals (Sweden)

    Bertocchi Paola

    2007-02-01

    Full Text Available Abstract Background The presence of counterfeits and sub-standards in African medicines market is a dramatic problem that causes many deaths each year. The increase of the phenomenon of pharmaceutical counterfeiting is due to the rise of the illegal market and to the impossibility to purchase branded high cost medicines. Methods In this paper the results of a quality control on antimalarial tablet samples purchased in the informal market in Congo, Burundi and Angola are reported. The quality control consisted in the assay of active substance by means of validated liquid chromatographic methods, uniformity of mass determination, disintegration and dissolution tests. Moreover, a general evaluation on label and packaging characteristics was performed. Results The results obtained on thirty antimalarial tablet samples containing chloroquine, quinine, mefloquine, sulphadoxine and pyrimethamine showed the presence of different kinds of problems: a general problem concerning the packaging (loose tablets, packaging without Producer name, Producer Country and sometimes without expiry date; low content of active substance (in one sample; different, non-declared, active substance (in one sample; sub-standard technological properties and very low dissolution profiles (in about 50% of samples. This last property could affect the bioavailability and bioequivalence in comparison with branded products and could be related to the use of different excipients in formulation or bad storage conditions. Conclusion This paper evidences that the most common quality problem in the analysed samples appears to be the low dissolution profile. Here it is remarked that the presence of the right active substance in the right quantity is not a sufficient condition for a good quality drug. Dissolution test is not less important in a quality control and often evidences in vitro possible differences in therapeutic efficacy among drugs with the same active content. Dissolution

  17. Development of a Suitable Dissolution Method for the Combined Tablet Formulation of Atorvastatin and Ezetimibe by RP-LC Method.

    Science.gov (United States)

    Ozkan Cansel, Kose; Ozgur, Esim; Sevinc, Kurbanoglu; Ayhan, Savaser; Ozkan, Sibel A; Yalcin, Ozkan

    2016-01-01

    Pharmaceutical preparations of ezetimibe and atorvastatin are generally used to regulate the lipid level in blood. It decreases the secondary events for patients with high cholesterol and clinical cardiovascular disease such as non-fatal or fatal heart attack. There is no any pharmacopoeia method available for the dissolution testing recommended by the FDA. Development of dissolution tests method is very critical parameter especially for the pharmaceutical preparations that contain Class II drugs (slightly soluble, good permeable). In the proposed method, the effects of pH and surfactant on the dissolution of poorly water soluble combined drug therapy with a different pKa values in an in vitro environment is investigated. The content of our study was designed to answer these open-ended questions. The optimized test conditions achieved under sink conditions with USP apparatus 2 at a paddle rotation speed of 75 rpm and 900 ml in 0.01 M Acetate buffer (pH= 6.8) containing 0.45% SDS as a dissolution medium. Quantification of dissolution samples were analyzed with a new fully validated RP-LC method with UV detection at 242 nm. PMID:26638976

  18. Atovaquone and ELQ-300 Combination Therapy as a Novel Dual-Site Cytochrome bc1 Inhibition Strategy for Malaria.

    Science.gov (United States)

    Stickles, Allison M; Smilkstein, Martin J; Morrisey, Joanne M; Li, Yuexin; Forquer, Isaac P; Kelly, Jane X; Pou, Sovitj; Winter, Rolf W; Nilsen, Aaron; Vaidya, Akhil B; Riscoe, Michael K

    2016-08-01

    Antimalarial combination therapies play a crucial role in preventing the emergence of drug-resistant Plasmodium parasites. Although artemisinin-based combination therapies (ACTs) comprise the majority of these formulations, inhibitors of the mitochondrial cytochrome bc1 complex (cyt bc1) are among the few compounds that are effective for both acute antimalarial treatment and prophylaxis. There are two known sites for inhibition within cyt bc1: atovaquone (ATV) blocks the quinol oxidase (Qo) site of cyt bc1, while some members of the endochin-like quinolone (ELQ) family, including preclinical candidate ELQ-300, inhibit the quinone reductase (Qi) site and retain full potency against ATV-resistant Plasmodium falciparum strains with Qo site mutations. Here, we provide the first in vivo comparison of ATV, ELQ-300, and combination therapy consisting of ATV plus ELQ-300 (ATV:ELQ-300), using P. yoelii murine models of malaria. In our monotherapy assessments, we found that ATV functioned as a single-dose curative compound in suppressive tests whereas ELQ-300 demonstrated a unique cumulative dosing effect that successfully blocked recrudescence even in a high-parasitemia acute infection model. ATV:ELQ-300 therapy was highly synergistic, and the combination was curative with a single combined dose of 1 mg/kg of body weight. Compared to the ATV:proguanil (Malarone) formulation, ATV:ELQ-300 was more efficacious in multiday, acute infection models and was equally effective at blocking the emergence of ATV-resistant parasites. Ultimately, our data suggest that dual-site inhibition of cyt bc1 is a valuable strategy for antimalarial combination therapy and that Qi site inhibitors such as ELQ-300 represent valuable partner drugs for the clinically successful Qo site inhibitor ATV. PMID:27270285

  19. Antimalarial activity of some Colombian medicinal plants.

    Science.gov (United States)

    Garavito, G; Rincón, J; Arteaga, L; Hata, Y; Bourdy, G; Gimenez, A; Pinzón, R; Deharo, E

    2006-10-11

    Antimalarial activity of 10 vegetal extracts (9 ethanolic extracts and 1 crude alkaloid extract), obtained from eight species traditionally used in Colombia to treat malaria symptoms, was evaluated in culture using Plasmodium falciparum chloroquine resistant (FcB2) strain and in vivo on rodent malaria Plasmodium berghei. The activity on ferriprotoporphyrin biomineralization inhibition test (FBIT) was also assessed. Against Plasmodium falciparum, eight extracts displayed good activity Abuta grandifolia (Mart.) Sandwith (Menispermaceae) leaves, Acacia farnesiana (L.) Willd. (Mimosaceae) leaves, Acnistus arborescens (L.) Schltdl. (Solanaceae) aerial part, Croton leptostachyus Kunth (Euphorbiaceae) aerial part, Piper cumanense Kunth (Piperaceae) fruits and leaves, Piper holtonii C. DC. (Piperaceae) aerial part and Xylopia aromatica (Lam.) Mart. (Annonaceae) bark with IC(50) values ranging from <1 to 2.1 microg/ml, while in the in vivo model only Abuta grandifolia alkaloid crude extract exhibits activity, inhibiting 66% of the parasite growth at 250 mg/kg/day. In the FBIT model, five extracts were active (Abuta grandifolia, Croton leptostachyus, Piper cumanense fruit and leaves and Xylopia aromatica). PMID:16713157

  20. Design and formulation of nanoemulsions using 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene in combination with linear perfluoro(polyethylene glycol dimethyl ether).

    Science.gov (United States)

    Mountain, Gregory A; Jelier, Benson J; Bagia, Christina; Friesen, Chadron M; Janjic, Jelena M

    2014-06-01

    This is the first report where PFPAE aromatic conjugates and perfluoro(polyethylene glycol dimethyl ether) are combined and formulated as nanoemulsions with droplet size below 100 nm. A perfluoropolyalkylether (PFPAE) aromatic conjugate, 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene, was used as fluorophilic-hydrophilic diblock (FLD) aimed at stabilizing perfluoro(polyethylene glycol dimethyl ether) nanoemulsions. Its effects on colloidal behaviors in triphasic (organic/fluorous/aqueous) nanoemulsions were studied. The addition of FLD construct to fluorous phase led to decrease in PFPAE nanoemulsion droplet size to as low as 85 nm. Prepared nanoemulsions showed high colloidal stability. Our results suggest that these materials represent viable novel approach to fluorous colloid systems design with potential for biomedical and synthetic applications. PMID:24976645

  1. Image processing and Ultra-Violet and Visible reflectance spectroscopy combined with chemometrics for discrimination as well as authentication powder and extract with anti- diabetic polyherbal formulation.

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar Maji

    2016-08-01

    Full Text Available The proposed anti-diabetic polyherbal formulation “Diabetogen” is composed of Indian Kino (Ht.wd., Indian Liac (Lf., Ram’s horn (Lf., Fenugreek (Sd., black berry (Sd. and heart-leavedv moonseed (St. is categorized antioxidant rich medicament and has been clinically used in the Indian subcontinent to various permutation and combination. To establish a real time identification system in favor of non –destructive ultra-violet visible (UV-VIS spectroscopy & preliminary image processing. The multivariate chemometrics technique principal component analysis (PCA, hierarchical cluster analysis (HCA use and allow an overall evaluation of the significant difference between groups and discriminate the polyherbal powder and extract. The authenticated individual herbal, polyherbal pulverized powder and the dry extracts were both shifted through eighty mesh. The samples were subjected to UV-Vis diffuse reflectance spectral detection at the interval of 1 nm. The macroscopic image powders of herbal plants planning for plant identification, was carried out by L*A*B color based image segmentation. Plant powders macroscopic image shown distinct L*A*B color based segmentation for identifying sample. Samples discriminated by first-order derivative preprocessed reflectance spectra on favor of various transitions marker bands. Discrimination of the two classes of remedy was also able in natural grouping by PCA and HCA technique. An analytical method which is rapid, simple and accurate for discriminating two forms of polyherbal formulation using (UV-VIS diffuse reflectance spectroscopy combined with well-known chemometrics method was developed along with powder image processing.

  2. Saleability of anti-malarials in private drug shops in Muheza, Tanzania

    DEFF Research Database (Denmark)

    Ringsted, Frank M; Massawe, Isolide S; Lemnge, Martha M;

    2011-01-01

    Background: Artemether-lumefantrine (ALu) replaced sulphadoxine-pymimethamine (SP) as the official first-line anti-malarial in Tanzania in November 2006. So far, artemisinin combination therapy (ACT) is contra-indicated during pregnancy by the national malaria treatment guidelines, and pregnant...... women depend on SP for Intermittent Preventive Treatment (IPTp) during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may undermine its official use for IPTp through induction of resistance. The main study objective was to perform...... of fever or malaria, and are important providers,...

  3. Synthesis of triazol derivatives of lupeol with potential antimalarial activity

    Directory of Open Access Journals (Sweden)

    Tatiane Freitas Borgati

    2012-06-01

    Full Text Available The goal of this project is synthesize and characterization of derivatives of lupeol and evaluated antimalarial activity. Historically, plants are important source of antimalarial medicines, highlighting quinine (1 (Figure 1, an important      alkaloid from the Cinchona calisaya bark. This compound was an important model for cloroquine  synthesis, a drug that was widely used in malaria treatment. In addition, one of the principal medicines used today is artemisinine, isolated from the Chinese plant Artemisia annua L (2 (Figure 1, and their semi synthetic derivatives (artesunate, artemeter, arteter. However, the malaria parasite has already shown resistance    to most of these current drugs and  the search for new candidates is essential. Lupeol (3 (Figura 1 is a compound that occurs in many plant species and discloses antimalarial, antiinflamatoryl and antitumoral activities. Considering its potential as a lead antimalarial molecule, we focused our work in the synthesis of new lupeol derivatives with increased antimalarial activity(scheme 1.

  4. Use and quality of antimalarial drugs in the private sector in Viet Nam.

    OpenAIRE

    Cong, L D; Yen, P. T.; Nhu, T. V.; Binh, L N

    1998-01-01

    This study examines the use and quality of antimalarial drugs in the growing private sector of Viet Nam. The practices of drug vendors (called alternative treatment providers (ATPs)) as well as their stocks and the quality of drugs sold by them, and the local production and distribution of antimalarials were investigated. Antimalarials were sold by the vast majority of ATPs, almost all the common antimalarials being available for sale. The practices and indications for sale, however, varied. ...

  5. Prices and mark-ups on antimalarials: evidence from nationally representative studies in six malaria-endemic countries

    OpenAIRE

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Torres Rueda, Sergio; Kiefer, Sabine; O’Connell, Kate; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton

    2015-01-01

    The private for-profit sector is an important source of treatment for malaria. However, private patients face high prices for the recommended treatment for uncomplicated malaria, artemisinin combination therapies (ACTs), which makes them more likely to receive cheaper, less effective non-artemisinin therapies (nATs). This study seeks to better understand consumer antimalarial prices by documenting and exploring the pricing behaviour of retailers and wholesalers. Using data collected in 2009–1...

  6. Role of PfATP6 and pfMRP1 in Plasmodium falciparum resistance to antimalarial drugs

    OpenAIRE

    Dahlström, Sabina

    2009-01-01

    Half of the world s population live at risk for malaria and nearly one million people die from the disease every year. The malaria burden is greatest in children and pregnant women in sub-Saharan Africa. As effective treatment is crucial for malaria control, the spread of antimalarial drug resistance has contributed significantly to malaria attributed morbidity and mortality. The current cornerstones in malaria treatment are artemisininbased combination therapy (ACT) for tre...

  7. Probing the Antimalarial Mechanism of Artemisinin and OZ277 (Arterolane) with Nonperoxidic Isosteres and Nitroxyl Radicals ▿

    OpenAIRE

    Fügi, Matthias A.; Wittlin, Sergio; Dong, Yuxiang; Vennerstrom, Jonathan L.

    2009-01-01

    Peroxidic antimalarials such as the semisynthetic artemisinins are critically important in the treatment of drug-resistant malaria. Nevertheless, their peroxide bond-dependent mode of action is still not well understood. Using combination experiments with cultured Plasmodium falciparum cells, we investigated the interactions of the nitroxide radical spin trap, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), and four of its analogs with artemisinin and the ozonide drug development candidate OZ27...

  8. Quinine conjugates and quinine analogues as potential antimalarial agents.

    Science.gov (United States)

    Jones, Rachel A; Panda, Siva S; Hall, C Dennis

    2015-06-01

    Malaria is a tropical disease, prevalent in Southeast Asia and Africa, resulting in over half a million deaths annually; efforts to develop new antimalarial agents are therefore particularly important. Quinine continues to play a role in the fight against malaria, but quinoline derivatives are more widely used. Drugs based on the quinoline scaffold include chloroquine and primaquine, which are able to act against the blood and liver stages of the parasite's life cycle. The purpose of this review is to discuss reported biologically active compounds based on either the quinine or quinoline scaffold that may have enhanced antimalarial activity. The review emphasises hybrid molecules, and covers advances made in the last five years. The review is divided into three sections: modifications to the quinine scaffold, modifications to aminoquinolines and finally metal-containing antimalarial compounds.

  9. Antimalarial Preclinical Drug Development: A Single Oral Dose of A 5-Carbon-linked Trioxane Dimer Plus Mefloquine Cures Malaria-Infected Mice.

    Science.gov (United States)

    Moon, Deuk Kyu; Singhal, Vandana; Kumar, Nirbhay; Shapiro, Theresa A; Posner, Gary H

    2009-01-01

    Three new 5-carbon-linked trioxane dimer carboxylate esters have been prepared from the natural trioxane, artemisinin in only 3-steps and 40-50% overall yields. Each one of these new chemical entities is at least as efficacious as the clinically used trioxane antimalarial drug artemether when combined with mefloquine hydrochloride in a low single oral dose cure. PMID:20686674

  10. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  11. Impact of extrafine formulations of inhaled corticosteroids/long-acting beta-2 agonist combinations on patient-related outcomes in asthma and COPD

    Directory of Open Access Journals (Sweden)

    Scichilone N

    2014-11-01

    Full Text Available Nicola Scichilone,1 Alida Benfante,1 Luca Morandi,2 Federico Bellini,2 Alberto Papi21Biomedical Department of Internal and Specialist Medicine, Section of Pulmonology, University of Palermo, Italy; 2Respiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, ItalyAbstract: Asthma and chronic obstructive pulmonary disease (COPD are among the most common chronic diseases worldwide, characterized by a condition of variable degree of airway obstruction and chronic airway inflammation. A large body of evidence has demonstrated the importance of small airways as a pharmacological target in these clinical conditions. Despite a deeper understanding of the pathophysiological mechanisms, the epidemiological observations show that a significant proportion of asthmatic and COPD patients have a suboptimal (or lack of control of their diseases. Different factors could influence the effectiveness of inhaled treatment in chronic respiratory diseases: patient-related (eg, aging; disease-related (eg, comorbid conditions; and drug-related/formulation-related factors. The presence of multiple illnesses is common in the elderly patient as a result of two processes: the association between age and incidence of degenerative diseases; and the development over time of complications of the existing diseases. In addition, specific comorbidities may contribute to impair the ability to use inhalers, such as devices for efficient drug delivery in the respiratory system. The inability to reach and treat the peripheral airways may contribute to the lack of efficacy of inhaled treatments. The recent development of inhaled extrafine formulations allows a more uniform distribution of the inhaled treatment throughout the respiratory tree to include the peripheral airways. The beclomethasone/formoterol extrafine formulation is available for the treatment of asthma and COPD. Different biomarkers of peripheral airways are improved by beclomethasone

  12. Antimalarial activity of extracts of Malaysian medicinal plants.

    Science.gov (United States)

    Najib Nik A Rahman, N; Furuta, T; Kojima, S; Takane, K; Ali Mohd, M

    1999-03-01

    In vitro and in vivo studies revealed that Malaysian medicinal plants, Piper sarmentosum, Andrographis paniculata and Tinospora crispa produced considerable antimalarial effects. Chloroform extract in vitro did show better effect than the methanol extract. The chloroform extract showed complete parasite growth inhibition as low as 0.05 mg/ml drug dose within 24 h incubation period (Andrographis paniculata) as compared to methanol extract of drug dose of 2.5 mg/ml but under incubation time of 48 h of the same plant spesies. In vivo activity of Andrographis paniculata also demonstrated higher antimalarial effect than other two plant species. PMID:10363840

  13. The antimalarial drug quinine interferes with serotonin biosynthesis and action

    DEFF Research Database (Denmark)

    Islahudin, Farida; Tindall, Sarah M.; Mellor, Ian R.;

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmit......The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor...

  14. In vitro Potentiation of Antimalarial Activities by Daphnetin Derivatives Against Plasmodium falciparum

    Institute of Scientific and Technical Information of China (English)

    FANG HUANG; LIN-HUA TANG; LIN-QIAN YU; YI-CHANG NI; QIN-MEI WANG; FA-JUN NAN

    2006-01-01

    Objective To screen the antimalarial compounds of daphnetin derivatives against Plasmodium falciparum in vitro. Method Plasmodium faciparum (FCC1) was cultured in vitro by a modified method of Trager and Jensen. Antimalarial compounds were screened by microscopy-based assay and microfluorimetric method. Results DA79 and DA78 showed potent antimalarial activity against Plasmodium falciparum cultured in vitro. Conclusion Though the relationship between the structures of daphnetin derivatives and their antimalarial activities has not been clarified yet, this study may provide a new direction for discovery of more potential antimalarial compounds.

  15. Molecular Farming in Artemisia annua, a Promising Approach to Improve Anti-malarial Drug Production.

    Science.gov (United States)

    Pulice, Giuseppe; Pelaz, Soraya; Matías-Hernández, Luis

    2016-01-01

    Malaria is a parasite infection affecting millions of people worldwide. Even though progress has been made in prevention and treatment of the disease; an estimated 214 million cases of malaria occurred in 2015, resulting in 438,000 estimated deaths; most of them occurring in Africa among children under the age of five. This article aims to review the epidemiology, future risk factors and current treatments of malaria, with particular focus on the promising potential of molecular farming that uses metabolic engineering in plants as an effective anti-malarial solution. Malaria represents an example of how a health problem may, on one hand, influence the proper development of a country, due to its burden of the disease. On the other hand, it constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is proposed here as a sustainable, promising, alternative for the production, not only of natural herbal repellents for malaria prevention but also for the production of sustainable anti-malarial drugs, like artemisinin (AN), used for primary parasite infection treatments. AN, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua. However, the low concentration of AN in the plant makes this molecule relatively expensive and difficult to produce in order to meet the current worldwide demand of Artemisinin Combination Therapies (ACTs), especially for economically disadvantaged people in developing countries. The biosynthetic pathway of AN, a process that takes place only in glandular secretory trichomes of A. annua, is relatively well elucidated. Significant efforts have been made using plant genetic engineering to increase production of this compound. These include diverse genetic manipulation approaches, such as studies on diverse transcription factors which have been shown to regulate the AN genetic pathway and other biological processes. Results look promising; however, further

  16. Andrographolide: A Novel Antimalarial Diterpene Lactone Compound from Andrographis paniculata and Its Interaction with Curcumin and Artesunate

    Science.gov (United States)

    Mishra, Kirti; Dash, Aditya P.; Dey, Nrisingha

    2011-01-01

    Andrographolide (AND), the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plant Andrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages of Plasmodium falciparum in vitro and Plasmodium berghei ANKA in vivo. IC50s for artesunate (AS), andrographolide (AND), and curcumin (CUR) were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND) was found synergistic with curcumin (CUR) and addictively interactive with artesunate (AS). In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%), compared to the control (81%), but also by extending the life span by 2-3 folds. Being nontoxic to the in vivo system this agent can be used as template molecule for designing new derivatives with improved antimalarial properties. PMID:21760808

  17. Andrographolide: A Novel Antimalarial Diterpene Lactone Compound from Andrographis paniculata and Its Interaction with Curcumin and Artesunate

    Directory of Open Access Journals (Sweden)

    Kirti Mishra

    2011-01-01

    Full Text Available Andrographolide (AND, the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plant Andrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages of Plasmodium falciparum in vitro and Plasmodium berghei ANKA in vivo. IC50s for artesunate (AS, andrographolide (AND, and curcumin (CUR were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND was found synergistic with curcumin (CUR and addictively interactive with artesunate (AS. In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%, compared to the control (81%, but also by extending the life span by 2-3 folds. Being nontoxic to the in vivo system this agent can be used as template molecule for designing new derivatives with improved antimalarial properties.

  18. Stress degradation studies and development of stability-indicating TLC-densitometry method for determination of prednisolone acetate and chloramphenicol in their individual and combined pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    Musharraf Syed

    2012-01-01

    Full Text Available Abstract A rapid and reproducible stability indicating TLC method was developed for the determination of prednisolone acetate and chloramphenicol in presence of their degraded products. Uniform degradation conditions were maintained by refluxing sixteen reaction mixtures for two hours at 80°C using parallel synthesizer including acidic, alkaline and neutral hydrolysis, oxidation and wet heating degradation. Oxidation at room temperature, photochemical and dry heating degradation studies were also carried out. Separation was done on TLC glass plates, pre-coated with silica gel 60F-254 using chloroform: methanol (14:1 v/v. Spots at Rf 0.21 ± 0.02 and Rf 0.41 ± 0.03 were recognized as chloramphenicol and prednisolone acetate, respectively. Quantitative analysis was done through densitometric measurements at multiwavelength (243 nm, λmax of prednisolone acetate and 278 nm, λmax of chloramphenicol, simultaneously. The developed method was optimized and validated as per ICH guidelines. Method was found linear over the concentration range of 200-6000 ng/spot with the correlation coefficient (r2 ± S.D. of 0.9976 ± 3.5 and 0.9920 ± 2.5 for prednisolone acetate and chloramphenicol, respectively. The developed TLC method can be applied for routine analysis of prednisolone acetate and chloramphenicol in presence of their degraded products in their individual and combined pharmaceutical formulations.

  19. Synchronized separation of seven medications representing most commonly prescribed antihypertensive classes by using reversed-phase liquid chromatography: Application for analysis in their combined formulations.

    Science.gov (United States)

    Ebeid, Walid M; Elkady, Ehab F; El-Zaher, Asmaa A; El-Bagary, Ramzia I; Patonay, Gabor

    2014-04-01

    A reversed-phase high-performance liquid chromatography method was developed for the simultaneous determination of the diuretic, hydrochlorothiazide, along with six drugs representing the most commonly prescribed antihypertensive pharmacological classes such as atenolol, a selective β1 blocker, amlodipine besylate, a calcium channel blocker, moexipril hydrochloride, an angiotensin-converting-enzyme inhibitor, valsartan and candesartan cilexetil, which are angiotensin II receptor blockers, and aliskiren hemifumarate, a renin inhibitor, using irbesartan as an internal standard. The chromatographic separation was achieved using acetonitrile/sodium phosphate dibasic buffer (0.02 M, pH 5.5) at a flow rate of 1 mL/min in gradient elution mode at ambient temperature on a stationary phase composed of an Eclipse XDB-C18 (4.6 × 150 mm, 5 μm) column. UV detection was carried out at 220 nm. The method was validated according to ICH guidelines. Linearity, accuracy, and precision were satisfactory over the concentration ranges of 2-40 μg/mL for hydrochlorothiazide and candesartan cilexetil, 20-120, 10-160, 5-40, 20-250, and 5-50 μg/mL for atenolol, valsartan, moexipril hydrochloride, aliskiren hemifumarate, and amlodipine besylate, respectively. The method was successfully applied for the determination of each of the studied drugs in their combined formulations with hydrochlorothiazide. The developed method is suitable for the quality control and routine analysis of the cited drugs in their pharmaceutical dosage forms. PMID:24482404

  20. In vitro antimalarial activity of novel semisynthetic nocathiacin I antibiotics.

    Science.gov (United States)

    Sharma, Indu; Sullivan, Margery; McCutchan, Thomas F

    2015-01-01

    Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in vitro growth inhibition assay was done using three laboratory strains of P. falciparum displaying various levels of chloroquine (CQ) susceptibility. Our results indicate that BMS461996 has potent antimalarial activity and inhibits parasite growth with mean 50% inhibitory concentrations (IC50s) of 51.55 nM for P. falciparum 3D7 (CQ susceptible), 85.67 nM for P. falciparum Dd2 (accelerated resistance to multiple drugs [ARMD]), and 99.44 nM for P. falciparum K1 (resistant to CQ, pyrimethamine, and sulfadoxine). Similar results at approximately 7-fold higher IC50s were obtained with BMS411886 than with BMS461996. We also tested the effect of BMS491996 on gametocytes; our results show that at a 20-fold excess of the mean IC50, gametocytes were deformed with a pyknotic nucleus and growth of stage I to IV gametocytes was arrested. This preliminary study shows a significant potential for nocathiacin analogues to be developed as antimalarial drug candidates and to warrant further investigation. PMID:25779576

  1. Anti-malarial market and policy surveys in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Sevcsik Ann-Marie

    2010-04-01

    Full Text Available Abstract At a recent meeting (Sept 18, 2009 in which reasons for the limited access to artemisinin-based combination therapy (ACT in sub-Saharan Africa were discussed, policy and market surveys on anti-malarial drug availability and accessibility in Burundi and Sierra Leone were presented in a highly interactive brainstorming session among key stakeholders across private, public, and not-for-profit sectors. The surveys, the conduct of which directly involved the national malaria control programme managers of the two countries, provides the groundwork for evidence-based policy implementation. The results of the surveys could be extrapolated to other countries with similar socio-demographic and malaria profiles. The meeting resulted in recommendations on key actions to be taken at the global, national, and community level for better ACT accessibility. At the global level, both public and private sectors have actions to take to strengthen policies that lead to the replacement of loose blister packs with fixed-dose ACT products, develop strategies to ban inappropriate anti-malarials and regulate those bans, and facilitate technology and knowledge transfer to scale up production of fixed-dose ACT products, which should be readily available and affordable to those patients who are in the greatest need of these medicines. At the national level, policies that regulate the anti-malarial medicines market should be enacted and enforced. The public sector, including funding donors, should participate in ensuring that the private sector is engaged in the ACT implementation process. Research similar to the surveys discussed is important for other countries to develop and evaluate the right incentives at a local level. At the community level, community outreach and education about appropriate preventive and treatment measures must continue and be strengthened, with service delivery systems developed within both public and private sectors, among other measures

  2. Molecular Farming in Artemisia annua, a sustainable approach to improve anti-malarial drug production

    Directory of Open Access Journals (Sweden)

    Giuseppe ePulice

    2016-03-01

    Full Text Available Malaria is a parasite infection affecting millions of people worldwide. Even though progresses in prevention and treatment have been developed, 198 million cases of malaria occurred in 2013, resulting in 584000 estimated deaths. 90% of all malaria deaths occurred in Africa, mostly among children under the age of five. This article aims to review malaria’s history, epidemiology and current treatments, with a particular focus on the potential of molecular farming that use metabolic engineering in plants as effective anti-malarial solution. Malaria indeed represents an example of how a health problem on one hand, may eventually influence the proper development of a country due to the burden of the disease, and on the other hand, constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is here proposed as a sustainable alternative for the production not only of natural herbal repellents used for malaria prevention but also for the production of sustainable anti-malarial drugs like artemisinin used for primary parasite infection treatments.Artemisinin, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua plant. However, the low concentration of artemisinin in plant makes this molecule relatively expensive and difficult to meet the worldwide demand of Artemisinin Combination Therapies, especially for economically disadvantaged people in developing countries. The biosynthetic pathway of artemisinin, a process that only takes place in glandular secretory trichomes of A. annua, is relatively well elucidated, and significant efforts using plant genetic engineering have been made to increase the production of this compound. These include studies on diverse transcription factors, which all have been shown to regulate artemisinin genetic pathway and other biological processes. Therefore, genetic manipulation of these genes may be used as a cost-effective potential

  3. Quality of anti-malarials collected in the private and informal sectors in Guyana and Suriname

    Directory of Open Access Journals (Sweden)

    Evans Lawrence

    2012-06-01

    Full Text Available Abstract Background Despite a significant reduction in the number of malaria cases in Guyana and Suriname, this disease remains a major problem in the interior of both countries, especially in areas with gold mining and logging operations, where malaria is endemic. National malaria control programmes in these countries provide treatment to patients with medicines that are procured and distributed through regulated processes in the public sector. However, availability to medicines in licensed facilities (private sector and unlicensed facilities (informal sector is common, posing the risk of access to and use of non-recommended treatments and/or poor quality products. Methods To assess the quality of circulating anti-malarial medicines, samples were purchased in the private and informal sectors of Guyana and Suriname in 2009. The sampling sites were selected based on epidemiological data and/or distance from health facilities. Samples were analysed for identity, content, dissolution or disintegration, impurities, and uniformity of dosage units or weight variation according to manufacturer, pharmacopeial, or other validated method. Results Quality issues were observed in 45 of 77 (58% anti-malarial medicines sampled in Guyana of which 30 failed visual & physical inspection and 18 failed quality control tests. The proportion of monotherapy and ACT medicines failing quality control tests was 43% (13/30 and 11% (5/47 respectively. A higher proportion of medicines sampled from the private sector 34% (11/32 failed quality control tests versus 16% (7/45 in the informal sector. In Suriname, 58 medicines were sampled, of which 50 (86% were Artecom®, the fixed-dose combination of piperaquine-dihydroartemisinin-trimethoprim co-blistered with a primaquine phosphate tablet. All Artecom samples were found to lack a label claim for primaquine, thus failing visual and physical inspection. Conclusions The findings of the studies in both countries point to

  4. Virtual Screening and Docking Studies of Synthesized Chalcones: Potent Anti-Malarial Drug

    Directory of Open Access Journals (Sweden)

    Prashant Singh

    2016-03-01

    Full Text Available A novel series of Chalcones were synthesized targets asexual blood stages of Plasmodium falciparum has been analyzed by utilizing a combination of molecular modeling techniques. Statistically significant structure-based quantitative structure activity relationships models were generated and validated through acceptable predictive ability to support internal and external set of compounds. Screening of most valuable drug among of pre-synthesized drug on the basis of binding efficiency to target receptor was carried out by docking view. Prior this pre-computed Mean IC50 and MIC value were also taken in consideration. The most effective compound on the basis all consideration was found. Previous studies have suggested that Ca2+-ATPase (PfATP6 of P. falciparum is the target of many anti-malarial drugs. However, the mechanism of inhibition of Ca2+- ATPase (PfATP6 is not known. Here we address this issue using bioinformatics tools. We generated a molecular model of Ca2+-ATPase (PfATP6 of P. falciparum and performed molecular docking of all chalcones. Molecular docking programme Glide iGEMDock was used to determine binding feasibility of 52 analogues of chalcones. The comparison of docking parameters showed, more than 5 analogues are better ligands of PfATP6. The binding of chalocones to PFATP6 is mediated by both hydrogen bonding, hydrophobic and polar interactions. Our results suggest that chalcones analogues are promising lead compounds for the development of anti-malarial drugs

  5. Gas chromatographic method for the determination of lumefantrine in antimalarial finished pharmaceutical products

    Directory of Open Access Journals (Sweden)

    Sultan Suleman

    2015-09-01

    Full Text Available A simple method has been developed and validated for quantitative determination of lumefantrine in antimalarial finished pharmaceutical products using gas chromatography coupled to flame ionization detector. Lumefantrine was silylated with N,O–bis(trimethyl-silyltrifluoro-acetamide at 70°C for 30 minutes, and chromatographic separation was conducted on a fused silica capillary (HP-5, 30 m length × 0.32 mm i.d., 0.25 μm film thickness column. Evaluation of the method within analytical quality-by-design principles, including a central composite face-centered design for the sample derivatization process and Plackett–Burman robustness verification of the chromatographic conditions, indicated that the method has acceptable specificity toward excipients and degradants, accuracy [mean recovery = 99.5%, relative standard deviation (RSD = 1.0%], linearity (=0.9986, precision (intraday = 96.1% of the label claim, RSD = 0.9%; interday = 96.3% label claim, RSD = 0.9%, and high sensitivity with detection limits of 0.01 μg/mL. The developed method was successfully applied to analyze the lumefantrine content of marketed fixed-dose combination antimalarial finished pharmaceutical products.

  6. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action.

    Science.gov (United States)

    Boss, Christoph; Aissaoui, Hamed; Amaral, Nathalie; Bauer, Aude; Bazire, Stephanie; Binkert, Christoph; Brun, Reto; Bürki, Cédric; Ciana, Claire-Lise; Corminboeuf, Olivier; Delahaye, Stephane; Dollinger, Claire; Fischli, Christoph; Fischli, Walter; Flock, Alexandre; Frantz, Marie-Céline; Girault, Malory; Grisostomi, Corinna; Friedli, Astrid; Heidmann, Bibia; Hinder, Claire; Jacob, Gael; Le Bihan, Amelie; Malrieu, Sophie; Mamzed, Saskia; Merot, Aurelien; Meyer, Solange; Peixoto, Sabrina; Petit, Nolwenn; Siegrist, Romain; Trollux, Julien; Weller, Thomas; Wittlin, Sergio

    2016-09-20

    More than 40 % of the world's population is at risk of being infected with malaria. Most malaria cases occur in the countries of sub-Saharan Africa, Central and South America, and Asia. Resistance to standard therapy, including artemisinin combinations, is increasing. There is an urgent need for novel antimalarials with new mechanisms of action. In a phenotypic screen, we identified a series of phenylalanine-based compounds that exhibit antimalarial activity via a new and yet unknown mechanism of action. Our optimization efforts culminated in the selection of ACT-451840 [(S,E)-N-(4-(4-acetylpiperazin-1-yl)benzyl)-3-(4-(tert-butyl)phenyl)-N-(1-(4-(4-cyanobenzyl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl)acrylamide] for clinical development. Herein we describe our optimization efforts from the screening hit to the potential drug candidate with respect to antiparasitic activity, drug metabolism and pharmacokinetics (DMPK) properties, and in vivo pharmacological efficacy.

  7. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Science.gov (United States)

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  8. Combining Two-Dimensional Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopy, Imaging Desorption Electrospray Ionization Mass Spectrometry, and Direct Analysis in Real-Time Mass Spectrometry for the Integral Investigation of Counterfeit Pharmaceuticals

    Science.gov (United States)

    Nyadong, Leonard; Harris, Glenn A.; Balayssac, Stéphane; Galhena, Asiri S.; Malet-Martino, Myriam; Martino, Robert; Parry, R. Mitchell; Wang, May Dongmei; Fernández, Facundo M.; Gilard, Véronique

    2016-01-01

    During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered 1H nuclear magnetic resonance spectroscopy (2D DOSY 1H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY 1H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug “chemotyping”. In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY 1H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials. PMID:19453162

  9. Albumin-bound nanoparticles of practically water-insoluble antimalarial lead greatly enhance its efficacy.

    Science.gov (United States)

    Ibrahim, Nehal; Ibrahim, Hany; Dormoi, Jerome; Briolant, Sébastien; Pradines, Bruno; Moreno, Alicia; Mazier, Dominique; Legrand, Philippe; Nepveu, Françoise

    2014-04-10

    We recently showed that the indolone-N-oxides can be promising candidates for the treatment of chloroquine-resistant malaria. However, the in vivo assays have been hampered by the very poor aqueous solubility of these compounds resulting in poor and variable activity. Here, we describe the preparation, characterization and in vivo evaluation of biodegradable albumin-bound indolone-N-oxide nanoparticles. Nanoparticles were prepared by precipitation followed by high-pressure homogenization and characterized by photon correlation spectroscopy, transmission electron microscopy, differential scanning calorimetry and X-ray powder diffraction. The process was optimized to yield nanoparticles of controllable diameter with narrow size distribution suitable for intravenous administration, which guarantees direct drug contact with parasitized erythrocytes. Stable nanoparticles showed greatly enhanced dissolution rate (complete drug release within 30 min compared to 1.5% of pure drug) preserving the rapid antimalarial activity. The formulation achieved complete cure of Plasmodium berghei-infected mice at 25mg/kg with parasitemia inhibition (99.1%) comparable to that of artesunate and chloroquine and was remarkably more effective in prolonging survival time and inhibiting recrudescence. In 'humanized' mice infected with Plasmodium falciparum, the same dose proved to be highly effective: with parasitemia reduced by 97.5% and the mean survival time prolonged. This formulation can help advance the preclinical trials of indolone-N-oxides. Albumin-bound nanoparticles represent a new strategic approach to use this most abundant plasma protein to target malaria-infected erythrocytes.

  10. Hit-to-Lead Studies for the Antimalarial Tetrahydroisoquinolone Carboxanilides.

    Science.gov (United States)

    Floyd, David M; Stein, Philip; Wang, Zheng; Liu, Jian; Castro, Steve; Clark, Julie A; Connelly, Michele; Zhu, Fangyi; Holbrook, Gloria; Matheny, Amy; Sigal, Martina S; Min, Jaeki; Dhinakaran, Rajkumar; Krishnan, Senthil; Bashyum, Sridevi; Knapp, Spencer; Guy, R Kiplin

    2016-09-01

    Phenotypic whole-cell screening in erythrocytic cocultures of Plasmodium falciparum identified a series of dihydroisoquinolones that possessed potent antimalarial activity against multiple resistant strains of P. falciparum in vitro and show no cytotoxicity to mammalian cells. Systematic structure-activity studies revealed relationships between potency and modifications at N-2, C-3, and C-4. Careful structure-property relationship studies, coupled with studies of metabolism, addressed the poor aqueous solubility and metabolic vulnerability, as well as potential toxicological effects, inherent in the more potent primary screening hits such as 10b. Analogues 13h and 13i, with structural modifications at each site, were shown to possess excellent antimalarial activity in vivo. The (+)-(3S,4S) enantiomer of 13i and similar analogues were identified as the more potent. On the basis of these studies, we have selected (+)-13i for further study as a preclinical candidate. PMID:27505686

  11. Synthesis and Antimalarial Activity of Novel Dihydro-Artemisinin Derivatives

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2011-05-01

    Full Text Available The Plasmodium falciparum cysteine protease falcipain-2, one of the most promising targets for antimalarial drug design, plays a key role in parasite survival as a major peptide hydrolase within the hemoglobin degradation pathway. In this work, a series of novel dihydroartemisinin derivatives based on (thiosemicarbazone scaffold were designed and synthesized as potential falcipain-2 inhibitors. The in vitro biological assay indicated that most of the target compounds showed excellent inhibition activity against P. falciparum falcipain-2, with IC50 values in the 0.29–10.63 μM range. Molecular docking studies were performed to investigate the binding affinities and interaction modes for the inhibitors. The preliminary SARs were summarized and could serve as a foundation for further investigation in the development of antimalarial drugs.

  12. Cell wall perturbation sensitizes fungi to the antimalarial drug chloroquine

    OpenAIRE

    Islahudin, Farida; Khozoie, Combiz; Bates, Steven; Ting, Kang-Nee; Pleass, Richard J.; Avery, Simon V.

    2013-01-01

    Chloroquine (CQ) has been a mainstay of antimalarial drug treatment for several decades. Additional therapeutic actions of CQ have been described, including some reports of fungal inhibition. Here we investigated the action of CQ in fungi, including the yeast model Saccharomyces cerevisiae. A genomewide yeast deletion strain collection was screened against CQ, revealing that bck1Δ and slt2Δ mutants of the cell wall integrity pathway are CQ hypersensitive. This phenotype was rescued with sorbi...

  13. Mechanistic Study of the Spiroindolones: A New Class of Antimalarials

    Directory of Open Access Journals (Sweden)

    Thomas H. Keller

    2012-08-01

    Full Text Available During the synthesis of the new antimalarial drug candidate NITD609, a high degree of diastereoselectivity was observed in the Pictet-Spengler reaction. By isolating both the 4E and 4Z imine intermediates, a systematic mechanistic study of the reaction under both kinetic and thermodynamic conditions was conducted. This study provides insight into the source of the diastereoselectivity for this important class of compounds.

  14. Drug resistance genomics of the antimalarial drug artemisinin

    OpenAIRE

    Elizabeth A Winzeler; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast...

  15. Intermittent Preventive Antimalarial Treatment for Children with Anaemia.

    OpenAIRE

    Athuman, Mwaka; Kabanywanyi, Abdunoor M; Rohwer, Anke C

    2015-01-01

    Background Anaemia is a global public health problem. Children under five years of age living in developing countries (mostly Africa and South-East Asia) are highly affected. Although the causes for anaemia are multifactorial, malaria has been linked to anaemia in children living in malaria-endemic areas. Administering intermittent preventive antimalarial treatment (IPT) to children might reduce anaemia, since it could protect children from new Plasmodium parasite infection (the parasites tha...

  16. Antimalarial diterpene alkaloids from the seeds of Caesalpinia minax.

    Science.gov (United States)

    Ma, Guoxu; Sun, Zhaocui; Sun, Zhonghao; Yuan, Jingquan; Wei, Hua; Yang, Junshan; Wu, Haifeng; Xu, Xudong

    2014-06-01

    Two new diterpene alkaloids, caesalminines A (1) and B (2), possessing a tetracyclic cassane-type furanoditerpenoid skeleton with γ-lactam ring, were isolated from the seeds of Caesalpinia minax. Their structures were determined by different spectroscopic methods and ECD calculation. The plausible biosynthetic pathway of caesalminines A and B was proposed. The anti-malarial activity of compounds 1 and 2 is presented with IC50 values of 0.42 and 0.79 μM, respectively.

  17. Antimicrobial peptides: a new class of antimalarial drugs?

    Directory of Open Access Journals (Sweden)

    Nuno eVale

    2014-12-01

    Full Text Available A range of antimicrobial peptides (AMP exhibit activity on malaria parasites, Plasmodium spp, in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs.

  18. Antimalarial effect of agmatine on Plasmodium berghei K173 strain

    Institute of Scientific and Technical Information of China (English)

    SURui-Bin; WEIXiao-Li; LIUYin; LIJin

    2003-01-01

    AIM: To study the antimalarial effect of agmatine (Agm) on chloroquine-susceptible Plasmodium berghei K173strain (S strain) and the P berghei K173 resistant strain (R strain). METHODS: The antimalarial effects of Agm onP berghei K173 S strain and R strain were evaluated by Peters 4-d suppression test in mice. RESULTS: Agm(12.5-200 mg/kg,ig,daily) decreased the parasitemia for both P berghei K173 S strain (IC50=139 mg/kg) and Rstrain (IC50=126mg/kg) in mice. Subcutaneous injection (sc) of Agm (5-40mg/kg,tid) showed relatively strongerantimalarial effect than intragastric gavage (IC50=30 mg/kg) in P berghei K 173 S strain. Spermidine antagonized theantimalarial effect of Agm for P berghei K173 S strain and R strain. Agm did not reverse the chloroquine resistanceof P berghei K173 S strain, dl-α-Difluoromethylornithine (DFMO, sc) decreased the parasitemia of P BergheiK173 S strain and this effect was antagonized by spermidine. CONCLUSION: Agm has an antimalarial effect andthe mechanism is related to its inhibition of polyamine synthesis.

  19. Antimalarials and the fight against malaria in Brazil

    Directory of Open Access Journals (Sweden)

    Luiz MA Carmargo

    2009-04-01

    Full Text Available Luiz MA Carmargo1, Saulo de Oliveira2, Sergio Basano3, Célia RS Garcia21ICBV-USP, Monte Negro, Rondônia, Brasil; 2Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, SP, Brazil; 3CEMETRON, Porto Velho, Guaporé, BrazilAbstract: Malaria, known as the “fevers,” has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named “Jesuits’ powder.” Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira–Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients.Keywords: Plasmodium falciparum, malaria, antimalarials, calcium

  20. In vitro susceptibility of Plasmodium vivax to antimalarials in Colombia.

    Science.gov (United States)

    Fernández, Diana; Segura, César; Arboleda, Margarita; Garavito, Giovanny; Blair, Silvia; Pabón, Adriana

    2014-11-01

    The in vitro susceptibilities of 30 isolates of Plasmodium vivax to a number of antimalarials (chloroquine [CQ], mefloquine, amodiaquine, quinine, and artesunate [AS]) were evaluated. The isolates came from the region of Urabá in Colombia, in which malaria is endemic, and were evaluated by the schizont maturation test. The 50% inhibitory concentration (IC50) was 0.6 nM (95% confidence interval [CI], 0.3 to 1.0 nM) for artesunate, 8.5 nM (95% CI, 5.6 to 13.0 nM) for amodiaquine, 23.3 nM (95% CI, 12.4 to 44.1 nM) for chloroquine, 55.6 nM (95% CI, 36.8 to 84.1 nM) for mefloquine, and 115.3 nM (95% CI, 57.7 to 230.5 nM) for quinine. The isolates were classified according to whether the initial parasites were mature or immature trophozoites (Tfz). It was found that the IC50s for chloroquine and artesunate were significantly different in the two aforementioned groups (P Colombia, P. vivax continues to be susceptible to antimalarials. This is the first report, to our knowledge, showing in vitro susceptibilities of P. vivax isolates to antimalarials in Colombia.

  1. Pharmacokinetics of a Novel Sublingual Spray Formulation of the Antimalarial Drug Artemether in Healthy Adults

    Science.gov (United States)

    Salman, Sam; Bendel, Daryl; Lee, Toong C.; Templeton, David

    2015-01-01

    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in two open-label studies. In study 1, 16 healthy males were randomized to each of four single-dose treatments administered in random order: (i) 15.0 mg of sublingual artemether (5 × 3.0 actuations), (ii) 30.0 mg of sublingual artemether (10 × 3.0 mg), (iii) 30.0 mg of sublingual artemether (5 × 6.0 mg), and (iv) 30.0 mg of artemether in tablet form. In study 2, 16 healthy males were randomized to eight 30.0-mg doses of sublingual artemether given over 5 days as either 10 3.0-mg or 5 6.0-mg actuations. Frequent blood samples were drawn postdose. Plasma artemether and dihydroartemisinin levels were measured using liquid chromatography-mass spectrometry. Population compartmental pharmacokinetic models were developed. In study 1, sublingual artemether absorption was biphasic, with both rate constants being greater than that of the artemether tablets (1.46 and 1.66 versus 0.43/h, respectively). Relative to the tablets, sublingual artemether had greater bioavailability (≥1.24), with the greatest relative bioavailability occurring in the 30.0-mg dose groups (≥1.58). In study 2, there was evidence that the first absorption phase accounted for between 32% and 69% of the total dose and avoided first-pass (FP) metabolism, with an increase in FP metabolism occurring in later versus earlier doses but with no difference in bioavailability between the dose actuations. Sublingual artemether is more rapidly and completely absorbed than are equivalent doses of artemether tablets in healthy adults. Its disposition appears to be complex, with two absorption phases, the first representing pregastrointestinal absorption, as well as dose-dependent bioavailability and autoinduction of metabolism with multiple dosing. PMID:25801553

  2. Pharmacokinetics of a Novel Sublingual Spray Formulation of the Antimalarial Drug Artemether in Healthy Adults

    OpenAIRE

    Salman, Sam; Bendel, Daryl; Lee, Toong C.; Templeton, David; Davis, Timothy M. E.

    2015-01-01

    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in two open-label studies. In study 1, 16 healthy males were randomized to each of four single-dose treatments administered in random order: (i) 15.0 mg of sublingual artemether (5 × 3.0 actuations), (ii) 30.0 mg of sublingual artemether (10 × 3.0 mg), (iii) 30.0 mg of sublingual artemether (5 × 6.0 mg), and (iv) 30.0 mg of artemether in tablet form. In study 2, 16 healthy males were randomized to eight 30.0-mg doses of...

  3. Antimalarial activity and toxicity of Garcinia mangostana Linn.

    Institute of Scientific and Technical Information of China (English)

    Ratchanu; Bunyong; Wanna; Chaijaroenkul; Tullayakorn; Plengsuriyakarn; Kesara; Na-Bangchang

    2014-01-01

    Objective:To investigate the antimalarial activity and toxicity of the crude ethanolic extract of its pericarp both in vitro and in vim.Methods:The antimalarial activity of Gareinja mangostana(G.mangostana)Linn.extract against 3D7 and Kl Plasmodium falciparum(P.falciparum)clone were assessed using SYBR green I-based assay.A 4-day suppressive test of Plasmodium berghei{P.berghei)infected mouse was performed to investigate in vivo antimalarial activity.Results:The in vitro antimalarial activity was seleclive(SI>5?and classified as weak and good lo moderate activity against both 3D7 and K1 P.falciparum,clones with median IC50(range)values of 11.12(10.94-11.29)and 7.54(6.80-7.68)μg/mL,respectively.The extract was considered nontoxic to mice.The maximum tolerated doses for acute and subacute toxicity in mice were 5 000and 2 000 mg/kg,respectively.Median(range)parasite density on day 4 of the negative control group(25%Tween-80),mice treated with 250,500,1000,and 2 000 mg/kg body weight of the extract,and 10 mg/kg body weight of chloroquine for 14 d were 12.8(12.2-13.7),11.4(9.49-13.8),11.6(9.9-12.5),11.7(10.6-12.8),10.9(9.4-11.6)and 0(0-0)%respectively.Parasite density on day 4in the control group treated with Tween-80 was higher than the groups treated with chloroquine and all dose levels of the extract.Conclusions:G.mangostana linn,showed weak antimalarial activity of the extract both in vitro and in vivo could be due to limitation of absorption of the active compounds.

  4. Got ACTs? Availability, price, market share and provider knowledge of anti-malarial medicines in public and private sector outlets in six malaria-endemic countries

    Directory of Open Access Journals (Sweden)

    O'Connell Kathryn A

    2011-10-01

    Full Text Available Abstract Background Artemisinin-based combination therapy (ACT is the first-line malaria treatment throughout most of the malaria-endemic world. Data on ACT availability, price and market share are needed to provide a firm evidence base from which to assess the current situation concerning quality-assured ACT supply. This paper presents supply side data from ACTwatch outlet surveys in Benin, the Democratic Republic of Congo (DRC, Madagascar, Nigeria, Uganda and Zambia. Methods Between March 2009 and June 2010, nationally representative surveys of outlets providing anti-malarials to consumers were conducted. A census of all outlets with the potential to provide anti-malarials was conducted in clusters sampled randomly. Results 28,263 outlets were censused, 51,158 anti-malarials were audited, and 9,118 providers interviewed. The proportion of public health facilities with at least one first-line quality-assured ACT in stock ranged between 43% and 85%. Among private sector outlets stocking at least one anti-malarial, non-artemisinin therapies, such as chloroquine and sulphadoxine-pyrimethamine, were widely available (> 95% of outlets as compared to first-line quality-assured ACT ( Conclusions These standardized, nationally representative results demonstrate the typically low availability, low market share and high prices of ACT, in the private sector where most anti-malarials are accessed, with some exceptions. The results confirm that there is substantial room to improve availability and affordability of ACT treatment in the surveyed countries. The data will also be useful for monitoring the impact of interventions such as the Affordable Medicines Facility for malaria.

  5. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation.

    Science.gov (United States)

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10(-6) cm/sec, followed by amodiaquine around 20 x 10(-6) cm/sec; both mefloquine and artesunate were around 10 x 10(-6) cm/sec. Methylene blue was between 2 and 6 x 10(-6) cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  6. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation.

    Directory of Open Access Journals (Sweden)

    S M D K Ganga Senarathna

    Full Text Available The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10(-6 cm/sec, followed by amodiaquine around 20 x 10(-6 cm/sec; both mefloquine and artesunate were around 10 x 10(-6 cm/sec. Methylene blue was between 2 and 6 x 10(-6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine.

  7. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation

    Science.gov (United States)

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  8. Efficacy and safety of a nano-emulsion gel formulation of adapalene 0.1% and clindamycin 1% combination in acne vulgaris: A randomized, open label, active-controlled, multicentric, phase IV clinical trial

    Directory of Open Access Journals (Sweden)

    Siva Prasad

    2012-01-01

    Full Text Available Background: Acne vulgaris is a very common skin disease with a significant detrimental effect on the quality of life of the patients. Aims: To assess the comparative efficacy and safety of a nano-emulsion gel formulation of adapalene and clindamycin combination with its conventional formulation in the treatment of acne vulgaris of the face. It was a prospective, randomized, open label, active-controlled, multicentric, clinical trial. Methods: Eligible patients suffering from acne vulgaris of the face were randomized to receive once-daily treatment with a nano-emulsion gel or conventional gel formulation of adapalene 0.1% and clindamycin (as phosphate 1% combination for 12 weeks. Total, inflammatory and noninflammatory lesion counts, with grading of acne severity were carried out on a monthly basis. Safety assessments were done to determine the comparative local and systemic tolerability. Two-tailed significance testing was carried out with appropriate statistical tests, and P-values < 0.05 were considered as significant. Results: 209/212 patients enrolled in the study were eligible for efficacy and safety assessments in both nano-emulsion gel (118/119 patients and conventional gel (91/93 patients groups. Significantly better reductions in total (79.7% vs. 62.7%, inflammatory (88.7% vs. 71.4% and noninflammatory (74.9% vs. 58.4% lesions were reported with the nano-emulsion gel as compared to the conventional gel (P < 0.001 for all. Mean acne severity score also reduced significantly more with the nano-emulsion formulation (1.9 ± 0.9 vs. 1.4 ± 1.0; P < 0.001 than the comparator. Significantly lower incidence and lesser intensity of adverse events like local irritation (4.2% vs. 19.8%; P < 0.05 and erythema (0.8% vs. 9.9%; P < 0.05 were recorded with the nano-emulsion gel. Conclusions: The nano-emulsion gel formulation of adapalene and clindamycin combination appears to be more efficacious and better tolerated than the conventional formulation

  9. Analytical sample preparation strategies for the determination of antimalarial drugs in human whole blood, plasma and urine

    DEFF Research Database (Denmark)

    Casas, Monica Escolà; Hansen, Martin; Krogh, Kristine A;

    2014-01-01

    Antimalarial drugs commonly referred to as antimalarials, include a variety of compounds with different physicochemical properties. There is a lack of information on antimalarial distribution in the body over time after administration, e.g. the drug concentrations in whole blood, plasma, and urine...... summarized. Finally, the main problems that the researchers have dealt with are highlighted. This information will aid analytical chemists in the development of novel methods for determining existing antimalarials and upcoming new drugs....

  10. Malaria: Antimalarial resistance and policy ramificationsand challenges

    Directory of Open Access Journals (Sweden)

    Kshirsagar N

    2006-01-01

    Full Text Available ′The National health Policy 2002" of India and the "Roll Back Malaria" policy makers have set up an ambitious goal of reducing malaria mortality and morbidity by 25% by 2007, and by 50% by 2010. To achieve these goals, problems should be identified, available evidence analyzed and policy should be changed early. Infection with drug resistant malarial parasites has a tremendous impact on health (prolonged recurrent illness, increased hospital admissions and death, health system (higher cost of treatment and socioeconomics of the region. In view of the evidence of the economic burden of malaria, it has been suggested that second line treatment could be considered at 10% failure instead of 25%. Effective schizonticidal drugs will not only reduce morbidity and mortality but will also reduce transmission. Studies have shown that prevalence of viable (as tested by exflagellation test gametocytes is considerably more after the Chloroquine or Chloroquine + Sulphadoxine-Pyrimethamine treatment compared to Quinine. Unfortunately, the only gametocytocidal drug for Plasmodium falciparum, primaquine, is also loosing its efficacy. 45 mg Primaquine reduces gametocyte prevalence by 50% while a new drug, 75 mg bulaquine or 60 mg primaquine reduces it by 90%. Plasmodium vivax forms 60-70% of malaria cases in India. Relapses which occur in 10-20% of cases adds to the burden. Efficacy, as confirmed by Polymerase Chain Reaction-Single Strand Conformational Polymorphism (PCRSSCP to differentiate relapse and re-infection, of standard dose of primaquine (15 mg/day for 5 days, even 15 mg/day for 14 days for vivax malaria is reducing. Fourteen day treatment is also impractical as compliance is poor. Newer drugs, newer drug delivery systems are thus needed. Slow release formulations with blood levels maintained for one week may be useful. Rationale of giving primaquine in higher doses and different timing need to be considered. The genome of Plasmodium falciparum and

  11. The challenge to avoid anti-malarial medicine stock-outs in an era of funding partners: the case of Tanzania

    OpenAIRE

    Mikkelsen-Lopez, Inez; Shango, Winna; Barrington, Jim; Ziegler, Rene; Smith, Tom; de Savigny, Don

    2014-01-01

    Background Between 2007 and 2013, the Tanzanian public sector received 93.1 million doses of first-line anti-malarial artemisinin-based combination therapy (ACT) in the form of artemether-lumefantrine entirely supplied by funding partners. The introduction of a health facility ACT stock monitoring system using SMS technology by the National Malaria Control Programme in mid 2011 revealed a high frequency of stock-outs of ACT in primary care public health facilities. The objective of this study...

  12. Adherence of community caretakers of children to pre-packaged antimalarial medicines (HOMAPAK) among internally displaced people in Gulu district, Uganda.

    OpenAIRE

    Opwonya John; Ojok Naptalis; Kolaczinski Jan H; Meek Sylvia; Collins Andrew

    2006-01-01

    Abstract Background In 2002, home-based management of fever (HBMF) was introduced in Uganda, to improve access to prompt, effective antimalarial treatment of all fevers in children under 5 years. Implementation is through community drug distributors (CDDs) who distribute pre-packaged chloroquine plus sulfadoxine-pyrimethamine (HOMAPAK®) free of charge to caretakers of febrile children. Adherence of caretakers to this regimen has not been studied. Methods A questionnaire-based survey combined ...

  13. First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials

    OpenAIRE

    Moehrle, Joerg J; Duparc, Stephan; Siethoff, Christoph; van Giersbergen, Paul L M; Craft, J Carl; Arbe-Barnes, Sarah; Charman, Susan A; Gutierrez, Maria; Wittlin, Sergio; Vennerstrom, Jonathan L.

    2012-01-01

    Aims To assess the safety and pharmacokinetics of a new synthetic ozonide antimalarial, OZ439, in a first-in-man, double-blind study in healthy volunteers. Methods OZ439 was administered as single oral daily doses of a capsule formulation (50–1200 mg) or an oral dispersion (400–1600 mg, fed and fasted states) and for up to 3 days as an oral dispersion (200–800 mg day−1). Plasma concentrations of OZ439 and its metabolites were measured by LC-MS. Results The pharmacokinetic (PK) profile of OZ43...

  14. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    Science.gov (United States)

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.

  15. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Norazsida Ramli

    2014-01-01

    Full Text Available Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral toxicity dose at 5000 mg/kg was conducted to evaluate the safety of this extract. Twenty mice were divided into control and experimental group. All the mice were observed for signs of toxicity, mortality, weight changes and histopathological changes. Antimalarial activity of different extract doses of 50, 200, 400 and 1000 mg/kg were tested in vivo against Plasmodium berghei infections in mice (five mice for each group during early, established and residual infections. Results: The acute oral toxicity test revealed that no mortality or evidence of adverse effects was seen in the treated mice. The extract significantly reduced the parasitemia by the 50 (P = 0.000, 200 (P = 0.000 and 400 mg/kg doses (P = 0.000 in the in vivo prophylactic assay. The percentage chemo-suppression was calculated as 83.33% for 50 mg/kg dose, 75.62% for 200 mg/kg dose and 90.74% for 400 mg/kg dose. Body weight of all treated groups; T1, T2, T3 and T4 also showed enhancement after 7 days posttreatment. Statistically no reduction of parasitemia calculated for curative and suppressive test. Conclusion: Thus, this extract may give a promising agent to be used as a prophylactic agent of P. berghei infection.

  16. Antiretroviral Choice for HIV Impacts Antimalarial Exposure and Treatment Outcomes in Ugandan Children

    Science.gov (United States)

    Parikh, Sunil; Kajubi, Richard; Huang, Liusheng; Ssebuliba, Joshua; Kiconco, Sylvia; Gao, Qin; Li, Fangyong; Were, Moses; Kakuru, Abel; Achan, Jane; Mwebaza, Norah; Aweeka, Francesca T.

    2016-01-01

    Background. The optimal treatment of malaria in human immunodeficiency virus (HIV)–infected children requires consideration of critical drug–drug interactions in coinfected children, as these may significantly impact drug exposure and clinical outcomes. Methods. We conducted an intensive and sparse pharmacokinetic/pharmacodynamic study in Uganda of the most widely adopted artemisinin-based combination therapy, artemether-lumefantrine. HIV-infected children on 3 different first-line antiretroviral therapy (ART) regimens were compared to HIV-uninfected children not on ART, all of whom required treatment for Plasmodium falciparum malaria. Pharmacokinetic sampling for artemether, dihydroartemisinin, and lumefantrine exposure was conducted through day 21, and associations between drug exposure and outcomes through day 42 were investigated. Results. One hundred forty-five and 225 children were included in the intensive and sparse pharmacokinetic analyses, respectively. Compared with no ART, efavirenz (EFV) reduced exposure to all antimalarial components by 2.1- to 3.4-fold; lopinavir/ritonavir (LPV/r) increased lumefantrine exposure by 2.1-fold; and nevirapine reduced artemether exposure only. Day 7 concentrations of lumefantrine were 10-fold lower in children on EFV vs LPV/r-based ART, changes that were associated with an approximate 4-fold higher odds of recurrent malaria by day 28 in those on EFV vs LPV/r-based ART. Conclusions. The choice of ART in children living in a malaria-endemic region has highly significant impacts on the pharmacokinetics and pharmacodynamics of artemether-lumefantrine treatment. EFV-based ART reduces all antimalarial components and is associated with the highest risk of recurrent malaria following treatment. For those on EFV, close clinical follow-up for recurrent malaria following artemether-lumefantrine treatment, along with the study of modified dosing regimens that provide higher exposure, is warranted. PMID:27143666

  17. Mono- and bis-thiazolium salts have potent antimalarial activity.

    Science.gov (United States)

    Hamzé, Abdallah; Rubi, Eric; Arnal, Pascal; Boisbrun, Michel; Carcel, Carole; Salom-Roig, Xavier; Maynadier, Marjorie; Wein, Sharon; Vial, Henri; Calas, Michèle

    2005-05-19

    Three new series comprising 24 novel cationic choline analogues and consisting of mono- or bis (N or C-5-duplicated) thiazolium salts have been synthesized. Bis-thiazolium salts showed potent antimalarial activity (much superior to monothiazoliums). Among them, bis-thiazolium salts 12 and 13 exhibited IC(50) values of 2.25 nM and 0.65 nM, respectively, against P. falciparum in vitro. These compounds also demonstrated good in vivo activity (ED(50)

  18. Home treatment of febrile children with antimalarial drugs in Togo.

    OpenAIRE

    Deming, M. S.; Gayibor, A.; Murphy, K; Jones, T. S.; Karsa, T.

    1989-01-01

    In Togo, the principal strategy for preventing death from malaria in children is prompt treatment of fever with antimalarial drugs. A household survey was conducted in a rural area of south-central Togo in which information was collected from mothers on the treatment received by 507 children under 5 years of age who, according to their mothers, had recently had fever. Altogether, 20% of the children (95% confidence interval (Cl): 15-25%) were seen at a health centre during their illness, whil...

  19. Proteomics analysis of antimalarial targets of Garcinia mangostana Linn.

    OpenAIRE

    Wanna Chaijaroenkul; Artitiya Thiengsusuk; Kanchana Rungsihirunrat; Stephen Andrew Ward; Kesara Na-Bangchang

    2014-01-01

    Objective: To investigate possible protein targets for antimalarial activity of Garcinia mangostana Linn. (G. mangostana) (pericarp) in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry (LC/MS/MS). Methods: 3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G. mangostana Linn. (pericarp) at the concentrations of 12μg/mL (IC50 level: concentration that inhibits parasite growth by 50%) and 30 μg/mL (IC90 level...

  20. Targeting Plasmodium falciparum Hsp90: Towards Reversing Antimalarial Resistance

    Directory of Open Access Journals (Sweden)

    Dea Shahinas

    2013-02-01

    Full Text Available Malaria continues to exact a great human toll in tropical settings. Antimalarial resistance is rife and the parasite inexorably develops mechanisms to outwit our best drugs, including the now first-line choice, artesunate. Novel strategies to circumvent resistance are needed. Here we detail drug development focusing on heat shock protein 90 and its central role as a chaperone. A growing body of evidence supports the role for Hsp90 inhibitors as adjunctive drugs able to restore susceptibility to traditionally efficacious compounds like chloroquine.

  1. The use of paediatric artemisinin combinations in sub-Saharan Africa: a snapshot questionnaire survey of health care personnel

    Directory of Open Access Journals (Sweden)

    Agnandji Selidji T

    2011-12-01

    Full Text Available Abstract Background Paediatric drug formulations for artemisinin combination therapy (P-ACT have been developed over the past few years and have been shown to improve the therapeutic management of young children with uncomplicated falciparum malaria. This process was however not equally paralleled by a timely adoption of P-ACT in national and international treatment recommendations. National malaria programmes in sub-Saharan Africa have not yet widely embraced this new therapeutic tool. To which extent P-ACT is used in the field in sub-Saharan Africa is not known to date. Methods This snapshot questionnaire survey aimed to provide an overview on the current routine practices for the availability and use of P-ACT as anti-malarial treatment for young children in sub-Saharan Africa. Health care personnel in seven countries in West-, Central, and East-Africa were invited to answer a structured questionnaire assessing use and availability of P-ACT. Results A total of 71 respondents including doctors, nurses and pharmacy personnel responsible for the anti-malarial treatment of young children were interviewed. P-ACT was used by 83% (95% confidence interval: 73-90%; n = 59 as first-line treatment for young children. Use of 15 different P-ACT products was reported among which only two have received WHO prequalification status and approval by a stringent registration authority. Use of a specific P-ACT product was not linked to consumer prices or availability of supporting clinical trial data, but may depend more on the marketing capacity of the manufacturer. Major differences in frequency and dosing of anti-malarial regimens with identical anti-malarial compounds and the marketing of loose combinations were recorded. Conclusion Paediatric ACT is widely used for the treatment of uncomplicated malaria in young children. However, the majority of P-ACT formulations in use do not meet highest international quality standards evoking concerns for patients

  2. Vaccine Adjuvants in Fish Vaccines Make a Difference: Comparing Three Adjuvants (Montanide ISA763A Oil, CpG/Poly I:C Combo and VHSV Glycoprotein) Alone or in Combination Formulated with an Inactivated Whole Salmonid Alphavirus Antigen.

    Science.gov (United States)

    Thim, Hanna L; Villoing, Stéphane; McLoughlin, Marian; Christie, Karen Elina; Grove, Søren; Frost, Petter; Jørgensen, Jorunn B

    2014-01-01

    Most commercial vaccines offered to the aquaculture industry include inactivated antigens (Ag) formulated in oil adjuvants. Safety concerns are related to the use of oil adjuvants in multivalent vaccines for fish, since adverse side effects (e.g., adhesions) can appear. Therefore, there is a request for vaccine formulations for which protection will be maintained or improved, while the risk of side effects is reduced. Here, by using an inactivated salmonid alphavirus (SAV) as the test Ag, the combined use of two Toll-like receptor (TLR) ligand adjuvants, CpG oligonucleotides (ODNs) and poly I:C, as well as a genetic adjuvant consisting of a DNA plasmid vector expressing the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) was explored. VHSV-G DNA vaccine was intramuscularly injected in combination with intraperitoneal injection of either SAV Ag alone or combined with the oil adjuvant, Montanide ISA763, or the CpG/polyI:C combo. Adjuvant formulations were evaluated for their ability to boost immune responses and induce protection against SAV in Atlantic salmon, following cohabitation challenge. It was observed that CpG/polyI:C-based formulations generated the highest neutralizing antibody titres (nAbs) before challenge, which endured post challenge. nAb responses for VHSV G-DNA- and oil-adjuvanted formulations were marginal compared to the CpG/poly I:C treatment. Interestingly, heat-inactivated sera showed reduced nAb titres compared to their non-heated counterparts, which suggests a role of complement-mediated neutralization against SAV. Consistently elevated levels of innate antiviral immune genes in the CpG/polyI:C injected groups suggested a role of IFN-mediated responses. Co-delivery of the VHSV-G DNA construct with either CpG/polyI:C or oil-adjuvanted SAV vaccine generated higher CD4 responses in head kidney at 48 h compared to injection of this vector or SAV Ag alone. The results demonstrate that a combination of pattern recognizing receptor (PRR

  3. Vaccine Adjuvants in Fish Vaccines Make a Difference: Comparing Three Adjuvants (Montanide ISA763A Oil, CpG/Poly I:C Combo and VHSV Glycoprotein Alone or in Combination Formulated with an Inactivated Whole Salmonid Alphavirus Antigen

    Directory of Open Access Journals (Sweden)

    Hanna L. Thim

    2014-03-01

    Full Text Available Most commercial vaccines offered to the aquaculture industry include inactivated antigens (Ag formulated in oil adjuvants. Safety concerns are related to the use of oil adjuvants in multivalent vaccines for fish, since adverse side effects (e.g., adhesions can appear. Therefore, there is a request for vaccine formulations for which protection will be maintained or improved, while the risk of side effects is reduced. Here, by using an inactivated salmonid alphavirus (SAV as the test Ag, the combined use of two Toll-like receptor (TLR ligand adjuvants, CpG oligonucleotides (ODNs and poly I:C, as well as a genetic adjuvant consisting of a DNA plasmid vector expressing the viral haemorrhagic septicaemia virus (VHSV glycoprotein (G was explored. VHSV-G DNA vaccine was intramuscularly injected in combination with intraperitoneal injection of either SAV Ag alone or combined with the oil adjuvant, Montanide ISA763, or the CpG/polyI:C combo. Adjuvant formulations were evaluated for their ability to boost immune responses and induce protection against SAV in Atlantic salmon, following cohabitation challenge. It was observed that CpG/polyI:C-based formulations generated the highest neutralizing antibody titres (nAbs before challenge, which endured post challenge. nAb responses for VHSV G-DNA- and oil-adjuvanted formulations were marginal compared to the CpG/poly I:C treatment. Interestingly, heat-inactivated sera showed reduced nAb titres compared to their non-heated counterparts, which suggests a role of complement-mediated neutralization against SAV. Consistently elevated levels of innate antiviral immune genes in the CpG/polyI:C injected groups suggested a role of IFN-mediated responses. Co-delivery of the VHSV-G DNA construct with either CpG/polyI:C or oil-adjuvanted SAV vaccine generated higher CD4 responses in head kidney at 48 h compared to injection of this vector or SAV Ag alone. The results demonstrate that a combination of pattern recognizing

  4. Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose–Efficacy Modeling

    Science.gov (United States)

    Le Bihan, Amélie; Angulo-Barturen, Iñigo; Binkert, Christoph; Boss, Christoph; Brun, Reto; Brunner, Ralf; Buchmann, Stephan; Dechering, Koen J.; Delves, Michael; Ewerling, Sonja; Ferrer, Santiago; Fischli, Christoph; Gamo–Benito, Francisco Javier; Heidmann, Bibia; Jiménez-Díaz, María Belén; Leroy, Didier; Martínez, Maria Santos; Meyer, Solange; Moehrle, Joerg J.; Noviyanti, Rintis; Sanz, Laura María; Sauerwein, Robert W.; Scheurer, Christian; Schleiferboeck, Sarah; Sinden, Robert; Snyder, Christopher; Straimer, Judith; Wirjanata, Grennady; Marfurt, Jutta; Weller, Thomas; Clozel, Martine; Wittlin, Sergio

    2016-01-01

    Background Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. Method and Findings The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3–4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11–16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23–39). The compound’s preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as

  5. Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery.

    Science.gov (United States)

    Manca, Maria Letizia; Matricardi, Pietro; Cencetti, Claudia; Peris, Josè Esteban; Melis, Virginia; Carbone, Claudia; Escribano, Elvira; Zaru, Marco; Fadda, Anna Maria; Manconi, Maria

    2016-05-30

    Allantoin is traditionally employed in the treatment of skin ulcers and hypertrophic scars. In the present work, to improve its local deposition in the skin and deeper tissues, allantoin was incorporated in conventional liposomes and in new argan oil enriched liposomes. In both cases, obtained vesicles were unilamellar, as confirmed by cryo-TEM observation, but the addition of argan oil allowed a slight increase of the mean diameter (∼130nm versus ∼85nm). The formulations, especially those containing argan oil, favoured the allantoin accumulation in the skin, in particular in the dermis (∼8.7μg/cm(2)), and its permeation through the skin (∼33μg/cm(2)). The performances of vesicles as skin delivery systems were compared with those obtained by water dispersion of allantoin and the commercial gel, Sameplast(®). Moreover, in this work, for the first time, the elastic and viscous moduli of the skin were measured, underlining the different hydrating/moisturizing effects of the formulations. The application of ARG liposomes seems to provide a softening and relaxing effect on the skin, thus facilitating the drug accumulation and passage into and trough it.

  6. Proteomics analysis of antimalarial targets of Garcinia mangostana Linn.

    Institute of Scientific and Technical Information of China (English)

    Wanna; Chaijaroenkul; Artitiya; Thiengsusuk; Kanchana; Rungsihirunrat; Stephen; Andrew; Ward; Kesara; Na-Bangchang

    2014-01-01

    Objective:To investigate possible protein targets for antimalarial activity of Garcina mangostana Linn.(G.mangostana)(pericarp)in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry(LC/MS/MS).Methods:3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G.mangostana Linn.(pericarp)at the concentrations of 12μg/mL(1C50level:concentration that inhibits parasite growth by 50%)and 30μg/mL(1C90level:concentration that inhibits parasite growth by 90%)for 12 h.Parasite proteins were separated by 2-dimensional electrophoresis and identified by LC/MS/MS.Results:At the IC50concentration,about 82%of the expressed parasite proteins were matched with the control(non-exposed),while at the IC90concentration,only 15%matched proteins were found.The selected protein spots from parasite exposed to the plant extract at the concentration of 12μg/mL were identified as eneymes that play role in glycolysis pathway,i.e.,phosphoglyeerate mutase putative,L-lactate dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase,and fruetose-bisphosphate aldolase/phosphoglyeerate kinase.The proteosome was found in parasite exposed to 30μg/mL of the extract.Conclusions:Results suggest that proteins involved in the glycolysis pathway may be the targets for antimalarial activity of G.mangostana Linn.(pericarp).

  7. Antimalarials and the fight against malaria in Brazil.

    Science.gov (United States)

    Carmargo, Luiz Ma; de Oliveira, Saulo; Basano, Sergio; Garcia, Célia Rs

    2009-08-01

    Malaria, known as the "fevers," has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea) from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named "Jesuits' powder." Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira-Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients. PMID:19753125

  8. Proteomics analysis of antimalarial targets of Garcinia mangostana Linn.

    Institute of Scientific and Technical Information of China (English)

    Wanna Chaijaroenkul; Artitiya Thiengsusuk; Kanchana Rungsihirunrat; Stephen Andrew Ward; Kesara Na-Bangchang

    2014-01-01

    Objective: To investigate possible protein targets for antimalarial activity of Garcinia mangostana Linn. (G. mangostana) (pericarp) in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry (LC/MS/MS). Methods: 3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G.mangostana Linn. (pericarp) at the concentrations of 12µg/mL (IC50 level: concentration that inhibits parasite growth by 50%) and 30 µg/mL (IC90 level: concentration that inhibits parasite growth by 90%) for 12 h. Parasite proteins were separated by 2-dimensional electrophoresis and identified by LC/MS/MS.Results:At the IC50 concentration, about 82% of the expressed parasite proteins were matched with the control (non-exposed), while at the IC90 concentration, only 15% matched proteins were found. The selected protein spots from parasite exposed to the plant extract at the concentration of 12 µg/mL were identified as enzymes that play role in glycolysis pathway, i.e., phosphoglycerate mutase putative, L-lactate dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase, and fructose-bisphosphate aldolase/phosphoglycerate kinase. The proteosome was found in parasite exposed to 30 µg/mL of the extract.Conclusions:Results suggest that proteins involved in the glycolysis pathway may be the targets for antimalarial activity of G. mangostana Linn. (pericarp).

  9. In vitro evaluation of marketed antimalarial chloroquine phosphate tablets

    Directory of Open Access Journals (Sweden)

    Amit K. Patel, Bhupendra G. Prajapati, Rubina S. Moria & Chhaganbhai N. Patel

    2005-12-01

    Full Text Available Background & objectives: The aim of the present study is to investigate the physicochemicalequivalence of seven brands of tablets containing chloroquine phosphate, an antimalarial purchasedfrom different retail pharmacy outlets.Methods: The quality and physicochemical equivalence of seven different brands of chloroquinephosphate tablets were assessed. The assessment included the evaluation of uniformity of weight,friability, crushing strength, disintegration and dissolution tests as well as chemical assay of thetablets.Results: All the seven brands of the tablets passed the British Pharmacopoeia (BP standards foruniformity of weight, disintegration and crushing strength. One of seven brands failed the friabilitytest. One of the brands did not comply with the standard assay of content of active ingredients.Dissolution test passes the pharmacopoeial standards for chloroquine phosphate tablets. There wereno significant differences in the amounts of chloroquine phosphate released from the different brands.Interpretation & conclusion: Out of the seven brands of anti-malarial chloroquine phosphate tabletsonly one brand fails to meet BP quality specifications which shows constant market monitoring ofnew products to ascertain their equivalency to pharmacopoeial standards.

  10. Pharmacokinetics of a prototype formulation of sublingual testosterone and a buspirone tablet, versus an advanced combination tablet of testosterone and buspirone in healthy premenopausal women

    NARCIS (Netherlands)

    van Rooij, Kim; de Leede, Leo; Frijlink, Henderik W; Bloemers, Jos; Poels, Saskia; Koppeschaar, Hans; Olivier, Berend; Tuiten, Adriaan

    2014-01-01

    The study aimed to compare the kinetics of two novel combination drug products for Female Sexual Interest/Arousal Disorder (FSIAD). Thirteen women received testosterone via the sublingual route followed 2.5 hours later by a buspirone tablet, versus a single combination tablet swallowed at once. The

  11. In vitro interaction of artemisinin derivatives or the fully synthetic peroxidic anti-malarial OZ277 with thapsigargin in Plasmodium falciparum strains

    Directory of Open Access Journals (Sweden)

    Abiodun Oyindamola O

    2013-01-01

    Full Text Available Abstract Background Semi-synthetic artemisinin derivatives are powerful peroxidic drugs in artemisinin-based combination therapy (ACT recommended as first-line treatment of Plasmodium falciparum malaria in disease-endemic countries. Studies by Eckstein-Ludwig and co-workers showed both thapsigargin and artemisinin specifically inhibit the sarcoplasmic reticulum Ca2+−ATPase of Plasmodium falciparum (PfATP6. In the present study the type of interaction between thapsigargin and artemisinin derivatives as well as the ozonide OZ277 (RBx11160 or arterolane was evaluated in parasite cultures. The latter compound is an adamantane-based peroxide and the first fully synthetic clinical candidate recently registered in India by Ranbaxy Laboratories Ltd. for anti-malarial combination therapy. Methods Drug interaction studies were performed using a previously described fixed ratio method and anti-malarial activity measured using the [3H] hypoxanthine incorporation assay. Results The sum 50% and 90% fractional inhibitory concentration (∑FIC50, 90 of the interaction of thapsigargin with OZ277, artemether or artesunate, against NF54 and K1 strains of P. falciparum ranged from 0.9 to 1.4. Conclusion The interaction of thapsigargin with OZ277, artesunate or artemether was additive, data consistent with previous observations indicating that activity of anti-malarial peroxides does not derive from reversible interactions with parasite targets.

  12. A retrospective analysis of the change in anti-malarial treatment policy: Peru

    Directory of Open Access Journals (Sweden)

    Vincent-Mark Arlene

    2009-04-01

    Full Text Available Abstract Background National malaria control programmes must deal with the complex process of changing national malaria treatment guidelines, often without guidance on the process of change. Selecting a replacement drug is only one issue in this process. There is a paucity of literature describing successful malaria treatment policy changes to help guide control programs through this process. Objectives To understand the wider context in which national malaria treatment guidelines were formulated in a specific country (Peru. Methods Using qualitative methods (individual and focus group interviews, stakeholder analysis and a review of documents, a retrospective analysis of the process of change in Peru's anti-malarial treatment policy from the early 1990's to 2003 was completed. Results The decision to change Peru's policies resulted from increasing levels of anti-malarial drug resistance, as well as complaints from providers that the drugs were no longer working. The context of the change occurred in a time in which Peru was changing national governments, which created extreme challenges in moving the change process forward. Peru utilized a number of key strategies successfully to ensure that policy change would occur. This included a having the process directed by a group who shared a common interest in malaria and who had long-established social and professional networks among themselves, b engaging in collaborative teamwork among nationals and between nationals and international collaborators, c respect for and inclusion of district-level staff in all phases of the process, d reliance on high levels of technical and scientific knowledge, e use of standardized protocols to collect data, and f transparency. Conclusion Although not perfectly or fully implemented by 2003, the change in malaria treatment policy in Peru occurred very quickly, as compared to other countries. They identified a problem, collected the data necessary to justify the

  13. Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation

    Directory of Open Access Journals (Sweden)

    Kaludov Nikola

    2011-09-01

    Full Text Available Abstract Background Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds. Methods A set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and de novo molecular design. Results Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified in silico and tested in vitro; eight of them showed anti-malarial activity (IC50 ≤ 10 μM, with six being very effective (IC50 ≤ 1 μM, and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a

  14. Artemisinin-Naphthoquine Combination (ARCO®: An Overview of the Progress

    Directory of Open Access Journals (Sweden)

    Qingyun Huang

    2010-12-01

    Full Text Available With the rapidly spreading resistance of Plasmodium falciparum to available non-artemisinin antimalarial drugs, new and novel pharmaceuticals are needed. ARCO® is a new generation ACT, one of several artemisinin-based combinations developed in China to counter antimalarial drug resistance. ARCO® is a derivative of two independently developed antimalarials, artemisinin and naphthoquine phosphate, which were combined to form the artemisinin-naphthoquine combination. Both artemisinin and naphthoquine drugs have proven to be efficacious, safe and well tolerated as monotherapies. The artemisinin-naphthoquine combination offers a novel advantage over existing ACTs: it can be administered as a single oral dose (or a 1-day treatment. Several therapeutic studies conducted recently indicate that a single oral dose administration of artemisinin-naphthoquine combination is equally effective and safe as the 3-day treatment with artemether-lumefantrine combination and other existing ACTs. This would make ARCO® the next generation ACT for the treatment of uncomplicated falciparum malaria.

  15. Prices and mark-ups on antimalarials: evidence from nationally representative studies in six malaria-endemic countries.

    Science.gov (United States)

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Torres Rueda, Sergio; Kiefer, Sabine; O'Connell, Kate; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Poyer, Stephen; Chavasse, Desmond

    2016-03-01

    The private for-profit sector is an important source of treatment for malaria. However, private patients face high prices for the recommended treatment for uncomplicated malaria, artemisinin combination therapies (ACTs), which makes them more likely to receive cheaper, less effective non-artemisinin therapies (nATs). This study seeks to better understand consumer antimalarial prices by documenting and exploring the pricing behaviour of retailers and wholesalers. Using data collected in 2009-10, we present survey estimates of antimalarial retail prices, and wholesale- and retail-level price mark-ups from six countries (Benin, Cambodia, the Democratic Republic of Congo, Nigeria, Uganda and Zambia), along with qualitative findings on factors affecting pricing decisions. Retail prices were lowest for nATs, followed by ACTs and artemisinin monotherapies (AMTs). Retailers applied the highest percentage mark-ups on nATs (range: 40% in Nigeria to 100% in Cambodia and Zambia), whereas mark-ups on ACTs (range: 22% in Nigeria to 71% in Zambia) and AMTs (range: 22% in Nigeria to 50% in Uganda) were similar in magnitude, but lower than those applied to nATs. Wholesale mark-ups were generally lower than those at retail level, and were similar across antimalarial categories in most countries. When setting prices wholesalers and retailers commonly considered supplier prices, prevailing market prices, product availability, product characteristics and the costs related to transporting goods, staff salaries and maintaining a property. Price discounts were regularly used to encourage sales and were sometimes used by wholesalers to reward long-term customers. Pricing constraints existed only in Benin where wholesaler and retailer mark-ups are regulated; however, unlicensed drug vendors based in open-air markets did not adhere to the pricing regime. These findings indicate that mark-ups on antimalarials are reasonable. Therefore, improving ACT affordability would be most readily

  16. Antimalarial Activity of KAF156 in Falciparum and Vivax Malaria.

    Science.gov (United States)

    White, Nicholas J; Duong, Tran T; Uthaisin, Chirapong; Nosten, François; Phyo, Aung P; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon; Jittamala, Podjanee; Chuthasmit, Kittiphum; Cheung, Ming S; Feng, Yiyan; Li, Ruobing; Magnusson, Baldur; Sultan, Marc; Wieser, Daniela; Xun, Xiaolei; Zhao, Rong; Diagana, Thierry T; Pertel, Peter; Leong, F Joel

    2016-09-22

    Background KAF156 belongs to a new class of antimalarial agents (imidazolopiperazines), with activity against asexual and sexual blood stages and the preerythrocytic liver stages of malarial parasites. Methods We conducted a phase 2, open-label, two-part study at five centers in Thailand and Vietnam to assess the antimalarial efficacy, safety, and pharmacokinetic profile of KAF156 in adults with acute Plasmodium vivax or P. falciparum malaria. Assessment of parasite clearance rates in cohorts of patients with vivax or falciparum malaria who were treated with multiple doses (400 mg once daily for 3 days) was followed by assessment of the cure rate at 28 days in a separate cohort of patients with falciparum malaria who received a single dose (800 mg). Results Median parasite clearance times were 45 hours (interquartile range, 42 to 48) in 10 patients with falciparum malaria and 24 hours (interquartile range, 20 to 30) in 10 patients with vivax malaria after treatment with the multiple-dose regimen and 49 hours (interquartile range, 42 to 54) in 21 patients with falciparum malaria after treatment with the single dose. Among the 21 patients who received the single dose and were followed for 28 days, 1 had reinfection and 7 had recrudescent infections (cure rate, 67%; 95% credible interval, 46 to 84). The mean (±SD) KAF156 terminal elimination half-life was 44.1±8.9 hours. There were no serious adverse events in this small study. The most common adverse events included sinus bradycardia, thrombocytopenia, hypokalemia, anemia, and hyperbilirubinemia. Vomiting of grade 2 or higher occurred in 2 patients, 1 of whom discontinued treatment because of repeated vomiting after receiving the single 800-mg dose. More adverse events were reported in the single-dose cohort, which had longer follow-up, than in the multiple-dose cohorts. Conclusions KAF156 showed antimalarial activity without evident safety concerns in a small number of adults with uncomplicated P. vivax or P

  17. The performance of a target-controlled infusion of propofol in combination with remifentanil : A clinical investigation with two propofol formulations

    NARCIS (Netherlands)

    Wietasch, JKG; Scholz, M; Zinserling, J; Kiefer, N; Frenkel, C; Knufermann, P; Brauer, U; Hoeft, A

    2006-01-01

    Target-controlled infusion (TCI) incorporates the pharmacokinetic variables of an IV drug to facilitate safe and reliable administration. In this clinical study we investigated the performance of propofol TCI in combination with remifentanil. Fifty-four adult patients scheduled for general surgery l

  18. Analysis of the electrochemical reactivity of natural hemozoin and {beta}-hemozoin in the presence of antimalarial drugs

    Energy Technology Data Exchange (ETDEWEB)

    Esteban Reyes-Cruz, Victor, E-mail: reyescruz16@yahoo.com [Area Academica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo (Mexico); Urbano Reyes, Gustavo, E-mail: gurbano2003@yahoo.com.mx [Area Academica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo (Mexico); Veloz Rodriguez, Maria Aurora, E-mail: maveloz70@yahoo.com.mx [Area Academica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo (Mexico); Imbert Palafox, Jose Luis, E-mail: imbertox@hotmail.com [Area Academica de Medicina, Instituto de Ciencias de la Salud, Universidad Autonoma del Estado de Hidalgo (Mexico)

    2011-11-30

    We report an evaluation of the reactivity of hemozoin (HZ) and {beta}-hemozoin ({beta}-HZ) obtained from the Triatoma Meccus longipennis, alone and in combination with quinine and amodiaquine. Using cyclic voltammetry and carbon paste electrodes, the redox processes that these compounds undergo were analysed. The results indicated that the atom Fe presence, the substance concentration, the drugs existence and the nature of the electrolytic medium are important in the redox processes. The strongest reactivity was for {beta}-HZ from Triatoma, which suggests that cellular molecules are embedded in an oxidising environment due to the presence of {beta}-HZ and indicates that like HZ, {beta}-HZ could be associate with phospholipid bilayers and interfere with their physical and chemical integrity, contributing to membrane breakdown and hyper-oxidation of molecules. It was further observed that when measuring the reactivity of HZ and {beta}-HZ with quinine and amodiaquine, a more oxidative stress was generated between the second one and the {beta}-HZ, which could explain the effectiveness of amodiaquine as a better antimalarial drug. Finally, it was concluded that electrochemical evaluation may be a convenient tool in determining the efficiency of antimalarial drugs and the identification of their redox processes.

  19. Using Food Grade Lye “omushelekha” in the Formulation of Health Products from Commonly Consumed African Indigenous Vegetables and Vegetable Combinations

    Directory of Open Access Journals (Sweden)

    Florence O Habwe

    2011-05-01

    Full Text Available Background: Lye, sodium hydroxide and potassium hydroxide has been used over the years in food preparation including the preparation of vegetables and dried meat products, washing or chemical peeling of fruits and vegetables, cocoa processing, caramel production, poultry scalding and cooking among others. Lye is believed to improve the organoleptic properties and also enhances the nutritional value to the products.Objective: To assess the effect of food grade lye on the levels of copper and iron in the raw, boiled and boiled-fried single vegetables and vegetable combinations treated with and without food grade lye.Methods: Single vegetables, Crotalaria occroleuca, Solanum scabrum, Vigna unguiculata and Amaranthus blitum and their combinations were cooled and kept in the fridge at 4oCs. Elemental analysis was done for the raw, boiled and boiled-fried samples using Atomic Absorption Spectrophotometry (AAS under standard conditions using wavelengths of 248.3nm for iron and 324.2nm for copper. Paired t-test was used to compare the iron and copper levels of the boiled and boiled-fried vegetables while the independent t-test was done to assess the levels of iron and copper in the raw, boiled and boiled fried samples.Results: Boiled-fried samples recorded higher content of iron and copper than the boiled ones. A combination of Amaranthus blitum-Crotolaria occloreuca boiled without lye boiled-fried with lye, and boiled-fried without lye had the highest copper contents of 1.66mg/100gram, 4.56mg/100gram, and 4.56mg/100gram respectively, compared to Amaranthus blitum aloneFunctional Foods in Heals and Disease 2011; 5:189-197(3.48mg/100gram and Crotolaria occloreuca (0.42mg/100gram. A combination of Amaranthus blitum-Crotolaria occloreuca boiled in non-lye water, and those boiled-fried with and without lye had the highest extractable iron of 557mg/100g, 859.2mg/100g, and 859.2mg/100g respectively. Iron content was high in the Solanum scabrum (281.1mg/100g

  20. Immunoprotective activity of a Salmonid Alphavirus Vaccine: comparison of the immune responses induced by inactivated whole virus antigen formulations based on CpG class B oligonucleotides and poly I:C alone or combined with an oil adjuvant.

    Science.gov (United States)

    Thim, Hanna L; Iliev, Dimitar B; Christie, Karen E; Villoing, Stéphane; McLoughlin, Marian F; Strandskog, Guro; Jørgensen, Jorunn B

    2012-07-01

    CpG oligonucleotides and polyinosinic:polycytidylic acid (poly I:C) are toll-like receptor (TLR) agonists that mimic the immunostimulatory properties of bacterial DNA and double-stranded viral RNA respectively, and which have exhibited potential to serve as vaccine adjuvants in previous experiments. Here, a combination of CpGs and poly I:C together with water- or oil-formulated Salmonid Alphavirus (SAV) antigen preparations has been used for a vaccine in Atlantic salmon and tested for protection in SAV challenge trial. The results demonstrate that vaccination with a high dose of the SAV antigen induced protection against challenge with SAV which correlated with production of neutralizing antibodies (NAbs). As the high antigen dose alone induced full protection, no beneficial effect from the addition of CpG and poly I:C could be observed. Nevertheless, these TLR ligands significantly enhanced the levels of NAbs in serum of vaccinated fish. Interestingly, gene expression analysis demonstrated that while addition of oil suppressed the CpG/poly I:C-induced expression of IFN-γ, the upregulation of IFNa1 was substantially enhanced. A low dose of the SAV antigen combined with oil did not induce any detectable levels of NAbs either with or without TLR ligands present, however the addition of CpG and poly I:C to the low SAV antigen dose formulation significantly enhanced the protection against SAV suggesting that CpG/poly I:C may have enhanced a cytotoxic response - a process which is dependent on the up-regulation of type I IFN. These results highlight the immunostimulatory properties of the tested TLR ligands and will serve as a ground for further, more detailed studies aimed to investigate their capacity to serve as adjuvants in vaccine formulations for Atlantic salmon. PMID:22634299

  1. Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials.

    Science.gov (United States)

    Norcross, Neil R; Baragaña, Beatriz; Wilson, Caroline; Hallyburton, Irene; Osuna-Cabello, Maria; Norval, Suzanne; Riley, Jennifer; Stojanovski, Laste; Simeons, Frederick R C; Porzelle, Achim; Grimaldi, Raffaella; Wittlin, Sergio; Duffy, Sandra; Avery, Vicky M; Meister, Stephan; Sanz, Laura; Jiménez-Díaz, Belén; Angulo-Barturen, Iñigo; Ferrer, Santiago; Martínez, María Santos; Gamo, Francisco Javier; Frearson, Julie A; Gray, David W; Fairlamb, Alan H; Winzeler, Elizabeth A; Waterson, David; Campbell, Simon F; Willis, Paul; Read, Kevin D; Gilbert, Ian H

    2016-07-14

    In this paper we describe the optimization of a phenotypic hit against Plasmodium falciparum, based on a trisubstituted pyrimidine scaffold. This led to compounds with good pharmacokinetics and oral activity in a P. berghei mouse model of malaria. The most promising compound (13) showed a reduction in parasitemia of 96% when dosed at 30 mg/kg orally once a day for 4 days in the P. berghei mouse model of malaria. It also demonstrated a rapid rate of clearance of the erythrocytic stage of P. falciparum in the SCID mouse model with an ED90 of 11.7 mg/kg when dosed orally. Unfortunately, the compound is a potent inhibitor of cytochrome P450 enzymes, probably due to a 4-pyridyl substituent. Nevertheless, this is a lead molecule with a potentially useful antimalarial profile, which could either be further optimized or be used for target hunting. PMID:27314305

  2. The antimalarial drug quinine interferes with serotonin biosynthesis and action.

    Science.gov (United States)

    Islahudin, Farida; Tindall, Sarah M; Mellor, Ian R; Swift, Karen; Christensen, Hans E M; Fone, Kevin C F; Pleass, Richard J; Ting, Kang-Nee; Avery, Simon V

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmitter serotonin (5-HT), here we test the hypothesis that quinine disrupts serotonin function. Quinine inhibited serotonin-induced proliferation of yeast as well as human (SHSY5Y) cells. One possible cause of this effect is through inhibition of 5-HT receptor activation by quinine, as we observed here. Furthermore, cells exhibited marked decreases in serotonin production during incubation with quinine. By assaying activity and kinetics of the rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase (TPH2), we showed that quinine competitively inhibits TPH2 in the presence of the substrate tryptophan. The study shows that quinine disrupts both serotonin biosynthesis and function, giving important new insight to the action of quinine on mammalian cells.

  3. Drug resistance genomics of the antimalarial drug artemisinin.

    Science.gov (United States)

    Winzeler, Elizabeth A; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast Asia are showing that artemisinin-based treatments are beginning to lose their effectiveness, adding renewed urgency to the search for the genetic determinants of parasite resistance to this important drug class. We review the genetic and genomic approaches that have led to an improved understanding of artemisinin resistance, including the identification of resistance-conferring mutations in the P. falciparum kelch13 gene. PMID:25470531

  4. Screening Mangrove Endophytic Fungi for Antimalarial Natural Products

    Directory of Open Access Journals (Sweden)

    Laurent Calcul

    2013-12-01

    Full Text Available We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14–16, 18 were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14, which was found to display the most favorable bioactivity profile.

  5. Immunochemical Analysis of the Antimalarial Drugs Artemisinin and Artesunate

    Directory of Open Access Journals (Sweden)

    Hiroyuki Tanaka

    2012-11-01

    Full Text Available We prepared a monoclonal antibody (mAb 1C1 showing specificity for artemisinin (AM and artesunate (AS, and we developed an indirect competitive enzyme-linked immunosorbent assay (icELISA using this novel mAb. Moreover, we prepared a recombinant antibody derived from mAb 1C1 in order to overcome insufficient mAb production by hybridoma culture. A recombinant antigen-binding fragment (Fab was easily constructed using antibody manipulation technologies and was produced by microorganisms in high yield. We herein review immunochemical approaches for analysis of the antimalarial drugs AM and AS that were able to yield analysis results for multiple samples in a short period of time using simple and reliable protocols.

  6. Triterpenes from Minquartia guianensis (Olacaceae) and in vitro antimalarial activity

    Energy Technology Data Exchange (ETDEWEB)

    Cursino, Lorena Mayara de Carvalho; Nunez, Cecilia Veronica [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Lab. de Bioprospeccao e Biotecnologia; Paula, Renata Cristina de; Nascimento, Maria Fernanda Alves do [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Produtos Farmaceuticos; Santos, Pierre Alexandre dos, E-mail: cecilia@inpa.gov.br [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Fac. de Ciencias Farmaceuticas

    2012-07-01

    Minquartia guianensis, popularly known as acariquara, was phytochemically investigated. The following triterpenes were isolated from the dichloromethane extract of leaves: lupen-3-one (1), taraxer-3-one (2) and oleanolic acid (3). The dichloromethane extract of branches yielded the triterpene 3{beta}-methoxy-lup-20(29)-ene (4). The chemical structures were characterized by NMR data. Plant extracts, substance 3, squalene (5) and taraxerol (6), (5 and 6 previously isolated), were evaluated by in vitro assay against chloroquine resistant Plasmodium falciparum. The dichloromethane extract of leaves and the three triterpenes assayed have shown partial activity. Thus, these results demonstrated that new potential antimalarial natural products can be found even in partially active extracts. (author)

  7. In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity.

    Science.gov (United States)

    Lucchi, Naomi W; Komino, Franklin; Okoth, Sheila Akinyi; Goldman, Ira; Onyona, Philip; Wiegand, Ryan E; Juma, Elizabeth; Shi, Ya Ping; Barnwell, John W; Udhayakumar, Venkatachalam; Kariuki, Simon

    2015-12-01

    Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya.

  8. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  9. Anti-malarial drug safety information obtained through routine monitoring in a rural district of South-Western Senegal

    Directory of Open Access Journals (Sweden)

    Brasseur Philippe

    2012-12-01

    Full Text Available Abstract Background Knowing the safety profile of anti-malarial treatments in routine use is essential; millions of patients receive now artemisinin combination therapy (ACT annually, but the return on information through current systems is as yet inadequate. Cohort event monitoring (CEM is a WHO (World Health Organization-recommended practice; testing its performance and feasibility in routine practice in malaria-endemic is important. Methods A nine-year CEM-based study of the safety of artesunate-amodiaquine (ASAQ at five peripheral health facilities in a rural district of South-western Senegal. Staff (nurses, health workers were trained to collect actively and systematically information on the patient, treatment and events on a purposely designed questionnaire. The occurrence and severity of events was collected before, during and after treatment up to 28 days in order to generate information on all adverse events (AEs as well as treatment-emerging signs/symptoms (TESS. Laboratory tests (haematology, liver and renal was planned for at least 10% of cases. Results During 2001–2009, 3,708 parasitologically-confirmed malaria cases (mean age = 16.0 ± 12.7 years were enrolled (26% and 52% of all and parasitologically-confirmed ASAQ treatments, respectively. Treatment was supervised in 96% of cases. Products changed over time: 49% were a loose combination of individually-packaged products (available 2001–03, 42% co-blistered products (2004–09 and 9% a fixed-dose co-formulation (2006–09; dosing was age-based for 42%, weight-based for 58%. AS and AQ were correctly dosed in 97% and 82% of cases with the loose and 93% and 86% with the fixed combination, but only 50% and 42% with the co-blistered product. Thirty-three per cent (33% of patients had at least one sign/symptom pre-treatment, 12% had at least one AE and 9% a TESS (total events 3,914, 1,144 and 693, respectively. AEs overestimated TESS by 1.2-2 fold (average 1.7. Changes in

  10. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil

    Science.gov (United States)

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given...

  11. Quality of anti-malarial drugs provided by public and private healthcare providers in south-east Nigeria

    Directory of Open Access Journals (Sweden)

    Uzochukwu Benjamin

    2009-02-01

    Full Text Available Abstract Background There is little existing knowledge about actual quality of drugs provided by different providers in Nigeria and in many sub-Saharan African countries. Such information is important for improving malaria treatment that will help in the development and implementation of actions designed to improve the quality of treatment. The objective of the study was to determine the quality of drugs used for the treatment of malaria in a broad spectrum of public and private healthcare providers. Methods The study was undertaken in six towns (three urban and three rural in Anambra state, south-east Nigeria. Anti-malarials (225 samples, which included artesunate, dihydroartemisinin, sulphadoxine-pyrimethamine (SP, quinine, and chloroquine, were either purchased or collected from randomly selected providers. The quality of these drugs was assessed by laboratory analysis of the dissolution profile using published pharmacopoeial monograms and measuring the amount of active ingredient using high performance liquid chromatography (HPLC. Findings It was found that 60 (37% of the anti-malarials tested did not meet the United States Pharmacopoeia (USP specifications for the amount of active ingredients, with the suspect drugs either lacking the active ingredients or containing suboptimal quantities of the active ingredients. Quinine (46% and SP formulations (39% were among drugs that did not satisfy the tolerance limits published in USP monograms. A total of 78% of the suspect drugs were from private facilities, mostly low-level providers, such as patent medicine dealers (vendors. Conclusion This study found that there was a high prevalence of poor quality drugs. The findings provide areas for public intervention to improve the quality of malaria treatment services. There should be enforced checks and regulation of drug supply management as well as stiffer penalties for people stocking substandard and counterfeit drugs.

  12. Self-Medication with Antibiotics and Antimalarials in the Community of Silte Zone, South Ethiopia

    OpenAIRE

    Nasir Tajure Wabe; Dargicho Ahmed; Mulugeta Tarekegn Angamo

    2012-01-01

    AIM: Self-medication with antibiotics and antimalarials occurs among the population in Ethiopian. We studied to estimate the prevalence of self-medication with antibiotics and antimalarials in Ethiopia and evaluate factors associated with self-medications. METHODS: A cross-sectional study was conducted on 405 households, selected from Silte Zone in South Ethiopia, using a random sampling technique by employing a pretested questionnaire. Data were analyzed using SPSS for windows version 16.0. ...

  13. Effect of antimalarial drugs on stimulation and interleukin 2 production of human lymphocytes

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Svenson, M; Theander, T G;

    1987-01-01

    Effect of pyrimethamine, an antimalarial antifolate, and of mefloquine, chloroquine, and quinine, which belong to the quinoline group of antimalarials, on proliferation and interleukin 2 (IL-2) production of human lymphocytes was studied in vitro. Pyrimethamine at concentrations above therapeutic...... levels suppressed the lymphocytes' proliferation, but not their IL-2 production. All three quinolines suppressed the proliferation of lymphocytes, but not equally, with mefloquine having the strongest effect. Quinine suppressed the growth at therapeutic concentrations. The IL-2 production was suppressed...

  14. In vitro antimalarial activity of different extracts of Eremostachys macrophylla Montbr. & Auch.

    OpenAIRE

    Solmaz Asnaashari; Fariba Heshmati Afshar; Atefeh Ebrahimi; Sedigheh Bamdad Moghaddam; Abbas Delazar

    2015-01-01

    Introduction: The risk of drug resistance and the use of medicinal plants in malaria prevention and treatment have led to the search for new antimalarial compounds with natural origin. Methods: In the current study, six extracts with different polarity from aerial parts and rhizomes of Eremostachys macrophylla Montbr. & Auch., were screened for their antimalarial properties by cell-free beta-hematin formation assay. Results: Dichloromethane (DCM) extracts of both parts of plant showed s...

  15. Post-marketing surveillance of anti-malarial medicines used in Malawi

    OpenAIRE

    Chikowe, Ibrahim; Osei-Safo, Dorcas; Harrison, Jerry JEK; Konadu, Daniel Y; Addae-Mensah, Ivan

    2015-01-01

    Background The growing concern over the extent of anti-malarial medicine resistance in sub-Saharan Africa, driven largely by administration of sub-therapeutic doses derived from falsified and substandard medicines necessitates regular monitoring of the quality of these medicines to avert any potential public health disaster. This study aimed at determining the active pharmaceutical ingredient (API) content of anti-malarial medicines available in Malawi with respect to the manufacturers’ label...

  16. Rational Design of Antimalarial Drugs Using Molecular Modeling and Statistical Analysis.

    Science.gov (United States)

    Santos, Cleydson Breno Rodrigues dos; Lobato, Cleison Carvalho; Braga, Francinaldo Sarges; Costa, Josivan da Silva; Favacho, Hugo Alexandre Silva; Carvalho, Jose Carlos Tavares; Macedo, Williams Jorge da Cruz; Brasil, Davi Do Socorro Barros; Silva, Carlos Henrique Tomich de Paula da; Silva Hage-Melim, Lorane Izabel da

    2015-01-01

    Artemisinin is an antimalarial compound isolated from Artemisia annua L. that is effective against Plasmodium falciparum. This paper proposes the development of new antimalarial derivatives of artemisinin from a SAR study and statistical analysis by multiple linear regression (MLR). The HF/6-31G** method was used to determine the molecular properties of artemisinin and 10 derivatives with antimalarial action. MEP maps and molecular docking were used to study the interface between ligand and receptor (heme). The Pearson correlation was used to choose the most important properties interrelated to the antimalarial activity: Hydration Energy (HE), Energy of the Complex (Ecplex), bond length (FeO1), and maximum index of R/Electronegativity of Sanderson (RTe+). After the Pearson correlation, 72 MLR models were built between antimalarial activity and molecular properties; the statistical quality of the models was evaluated by means of correlation coefficient (r), squared correlation coefficient (r(2)), explained variance (adjusted R(2)), standard error of estimate (SEE), and variance ratio (F), and only four models showed predictive ability. The selected models were used to predict the antimalarial activity of ten new artemisinin derivatives (test set) with unknown activity, and only eight of these compounds were predicted to be more potent than artemisinin, and were therefore subjected to theoretical studies of pharmacokinetic and toxicological properties. The test set showed satisfactory results for six new artemisinin compounds which is a promising factor for future synthesis and biological assays. PMID:26017698

  17. Study of the antimalarial properties of hydroxyethylamine derivatives using green fluorescent protein transformed Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Mariana Conceição Souza

    2015-06-01

    Full Text Available A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP-expressing Plasmodium berghei strain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3 inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.

  18. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  19. Does anti-malarial drug knowledge predict anti-malarial dispensing practice in drug outlets? A survey of medicine retailers in western Kenya

    Directory of Open Access Journals (Sweden)

    Rusk Andria

    2012-08-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality in Kenya, where it is the fifth leading cause of death in both children and adults. Effectively managing malaria is dependent upon appropriate treatment. In Kenya, between 17 to 83 percent of febrile individuals first seek treatment for febrile illness over the counter from medicine retailers. Understanding medicine retailer knowledge and behaviour in treating suspected malaria and dispensing anti-malarials is crucial. Methods To investigate medicine retailer knowledge about anti-malarials and their dispensing practices, a survey was conducted of all retail drug outlets that sell anti-malarial medications and serve residents of the Webuye Health and Demographic Surveillance Site in the Bungoma East District of western Kenya. Results Most of the medicine retailers surveyed (65% were able to identify artemether-lumefantrine (AL as the Kenyan Ministry of Health recommended first-line anti-malarial therapy for uncomplicated malaria. Retailers who correctly identified this treatment were also more likely to recommend AL to adult and paediatric customers. However, the proportion of medicine retailers who recommend the correct treatment is disappointingly low. Only 48% would recommend AL to adults, and 37% would recommend it to children. It was discovered that customer demand has an influence on retailer behaviour. Retailer training and education were found to be correlated with anti-malarial drug knowledge, which in turn is correlated with dispensing practices. Medicine retailer behaviour, including patient referral practice and dispensing practices, are also correlated with knowledge of the first-line anti-malarial medication. The Kenya Ministry of Health guidelines were found to influence retailer drug stocking and dispensing behaviours. Conclusion Most medicine retailers could identify the recommended first-line treatment for uncomplicated malaria, but the percentage that could

  20. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    Directory of Open Access Journals (Sweden)

    Chance Michael L

    2011-08-01

    Full Text Available Abstract Background This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP. Methods Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr-C59R and dihydropteroate synthase (dhps-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Results Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9. The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. Conclusion This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum

  1. Chemical interactions study of antiretroviral drugs efavirenz and lamivudine concerning the development of stable fixed-dose combination formulations for AIDS treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Elionai C. de L.; Mussel, Wagner N.; Resende, Jarbas M.; Yoshida, Maria I., E-mail: mirene@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Instituto de Ciencias Exatas. Departamento de Quimica; Fialho, Silvia L.; Barbosa, Jamile; Fialho, Silvia L. [Fundacao Ezequiel Dias, Belo Horizonte, MG (Brazil)

    2013-04-15

    Lamivudine and efavirenz are among the most worldwide used drugs for acquired immune deficiency syndrome (AIDS) treatment. Solid state nuclear magnetic resonance (ssNMR), Fourier-transformed infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermo-optical analysis (TOA) were used to study possible interactions between these drugs, aiming the development of a fixed-dose drug combination. DSC and TOA have evidenced significant shifts on the melting points of both drugs in the mixture, which may be due to interaction between them. Although DSC and TOA results indicated incompatibility between the drugs, FTIR spectra were mostly unmodified due to overlapping peaks. The ssNMR analyses showed significant changes in chemical shifts values of the mixture when compared with spectra of pure drugs, especially in the signals relating to the deficient electron carbon atoms of both drugs. These results confirm the interactions suggested by DSC and TOA, which is probably due to acid-base interactions between electronegative and deficient electron atoms of both lamivudine and efavirenz. (author)

  2. Thin layer chromatography-densitometric determination of some non-sedating antihistamines in combination with pseudoephedrine or acetaminophen in synthetic mixtures and in pharmaceutical formulations.

    Science.gov (United States)

    El-Kommos, Michael E; El-Gizawy, Samia M; Atia, Noha N; Hosny, Noha M

    2014-03-01

    The combination of certain non-sedating antihistamines (NSA) such as fexofenadine (FXD), ketotifen (KET) and loratadine (LOR) with pseudoephedrine (PSE) or acetaminophen (ACE) is widely used in the treatment of allergic rhinitis, conjunctivitis and chronic urticaria. A rapid, simple, selective and precise densitometric method was developed and validated for simultaneous estimation of six synthetic binary mixtures and their pharmaceutical dosage forms. The method employed thin layer chromatography aluminum plates precoated with silica gel G 60 F254 as the stationary phase. The mobile phases chosen for development gave compact bands for the mixtures FXD-PSE (I), KET-PSE (II), LOR-PSE (III), FXD-ACE (IV), KET-ACE (V) and LOR-ACE (VI) [Retardation factor (Rf ) values were (0.20, 0.32), (0.69, 0.34), (0.79, 0.13), (0.36, 0.70), (0.51, 0.30) and (0.76, 0.26), respectively]. Spectrodensitometric scanning integration was performed at 217, 218, 218, 233, 272 and 251 nm for the mixtures I-VI, respectively. The linear regression data for the calibration plots showed an excellent linear relationship. The method was validated for precision, accuracy, robustness and recovery. Limits of detection and quantitation were calculated. Statistical analysis proved that the method is reproducible and selective for the simultaneous estimation of these binary mixtures.

  3. Structure-activity relationship of anti-malarial spongean peroxides having a 3-methoxy-1,2-dioxane structure.

    Science.gov (United States)

    Kawanishi, Motoyuki; Kotoku, Naoyuki; Itagaki, Sawako; Horii, Toshihiro; Kobayashi, Motomasa

    2004-10-15

    In order to study the structure-activity relationship of anti-malarial spongean peroxides, several analogues concerning with the 6-methoxyacetyl moiety and the 3-pentyl residue in methyl 2-(3-methoxy-3-pentyl-1,2-dioxan-6-yl)acetate were synthesized and evaluated for anti-malarial activity. The tert-butyl ester analogue 14 showed stability in mouse serum and a high selectivity index against the malaria parasite, Plasmodium falciparum, and the citronellyl analogue 31 exhibited the strongest in vitro anti-malarial activity among them, and the imidazole analogue 25 showed desirable in vivo anti-malarial activity against P. berghei infected mice. PMID:15388157

  4. Straightforward conversion of decoquinate into inexpensive tractable new derivatives with significant antimalarial activities.

    Science.gov (United States)

    Beteck, Richard M; Coertzen, Dina; Smit, Frans J; Birkholtz, Lyn-Marie; Haynes, Richard K; N'Da, David D

    2016-07-01

    As part of a programme aimed at identifying rational new triple drug combinations for treatment of malaria, tuberculosis and toxoplasmosis, we have selected quinolones as one component, given that selected examples exhibit exceptionally good activities against the causative pathogens of the foregoing diseases. The quinolone decoquinate (DQ), an old and inexpensive coccidiostat, displays anti-malarial activity in vitro against Plasmodium falciparum (Pf). However, because of its exceedingly poor solubility in water or organic solvents, development of DQ as a drug is problematical. We have therefore converted DQ in straightforward fashion into tractable new derivatives that display good activities in vitro against chloroquine-sensitive NF54 and multidrug-resistant K1 and W2 Pf, and relatively low toxicities against human fibroblast cells. The most active compound, the N-acetyl derivative 30, is 5-fold more active than DQ against NF54 and K1 and equipotent with DQ against W2. It possesses an activity profile against all strains comparable with that of the artemisinin derivative artesunate. Overall, this compound and the other accessible and active derivatives serve as an attractive template for development of new and economic lead quinolones. PMID:27210430

  5. Accessibility, availability and affordability of anti-malarials in a rural district in Kenya after implementation of a national subsidy scheme

    Directory of Open Access Journals (Sweden)

    Simiyu Chrispinus

    2011-10-01

    Full Text Available Abstract Background Poor access to prompt and effective treatment for malaria contributes to high mortality and severe morbidity. In Kenya, it is estimated that only 12% of children receive anti-malarials for their fever within 24 hours. The first point of care for many fevers is a local medicine retailer, such as a pharmacy or chemist. The role of the medicine retailer as an important distribution point for malaria medicines has been recognized and several different strategies have been used to improve the services that these retailers provide. Despite these efforts, many mothers still purchase ineffective drugs because they are less expensive than effective artemisinin combination therapy (ACT. One strategy that is being piloted in several countries is an international subsidy targeted at anti-malarials supplied through the retail sector. The goal of this strategy is to make ACT as affordable as ineffective alternatives. The programme, called the Affordable Medicines Facility - malaria was rolled out in Kenya in August 2010. Methods In December 2010, the affordability and accessibility of malaria medicines in a rural district in Kenya were evaluated using a complete census of all public and private facilities, chemists, pharmacists, and other malaria medicine retailers within the Webuye Demographic Surveillance Area. Availability, types, and prices of anti-malarials were assessed. There are 13 public or mission facilities and 97 medicine retailers (registered and unregistered. Results The average distance from a home to the nearest public health facility is 2 km, but the average distance to the nearest medicine retailer is half that. Quinine is the most frequently stocked anti-malarial (61% of retailers. More medicine retailers stocked sulphadoxine-pyramethamine (SP; 57% than ACT (44%. Eleven percent of retailers stocked AMFm subsidized artemether-lumefantrine (AL. No retailers had chloroquine in stock and only five were selling artemisinin

  6. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    Science.gov (United States)

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic. PMID:26170661

  7. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    Science.gov (United States)

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic.

  8. Responding to the challenge of antimalarial drug resistance by routine monitoring to update national malaria treatment policies

    DEFF Research Database (Denmark)

    Vestergaard, Lasse S; Ringwald, Pascal

    2007-01-01

    of rational and updated malaria treatment policies, but defining and updating such policies requires a sufficient volume of high-quality drug-resistance data collected at national and regional levels. Three main tools are used for drug resistance monitoring, including therapeutic efficacy tests, in vitro......Reduced sensitivity of Plasmodium falciparum to formerly recommended cheap and well-known antimalarial drugs places an increasing burden on malaria control programs and national health systems in endemic countries. The high costs of the new artemisinin-based combination treatments underline the use...... tests, and analyses of molecular markers. Data obtained with the therapeutic efficacy test conducted according to the standard protocol of the World Health Organization are most useful for updating national treatment policies, while the in vitro test and molecular markers can provide important...

  9. Perspective for the production of antimalarial drugs in Brazil.

    Science.gov (United States)

    Gilbert, B

    1992-01-01

    There appears to be no chemical manufacture of antimalarial drugs in Brazil. Technology at the laboratory process level has been developed for chloroquine, mefloquine, pyrimethamine and cycloguanil, but not perfected nor scaled-up, largely for economic reasons and market uncertainty. Development of primaquine has been contracted but it will run into the same difficulty. Manufacturing capacity for sulfadoxine was registered in the SDI by Roche. A project to produce artemisinine and its derivatives is under way at UNICAMP-CPQBA but is hampered by low content in the plant. Proguanil could be produced easily, but apparently no attempt has been made to do so. Quinine is imported on a large scale mostly for soft-drink production. Since malarial treatment falls largely within the responsibility of the Government health authorities, manufacture of drugs in Brazil will depend on an assured medium-term purchase order made to a potential local manufacturer, since competition in the world market is scarcely viable at the present moment.

  10. Study of antimalarial activity of chemical constituents from Diospyros quaesita.

    Science.gov (United States)

    Ma, Cui-Ying; Musoke, Sebisubi Fred; Tan, Ghee Teng; Sydara, Kongmany; Bouamanivong, Somsanith; Southavong, Bounhoong; Soejarto, D Doel; Fong, Harry H S; Zhang, Hong-Jie

    2008-11-01

    Bioassay-directed fractionation led to the isolation of seven compounds from a sample of the dried leaves, twigs, and branches of Diospyros quaesita Thw. (Ebenaceae). One of the isolates, betulinic acid 3-caffeate (1), showed in vitro antimalarial activity against Plasmodium falciparum clones D(6) (chloroquine-sensitive) and W(2) (chloroquine-resistant) with IC(50) values of 1.40 and 0.98 microM, respectively. Evaluation of compound 1 in the human oral epidermoid (KB) cancer cell line revealed cytotoxicity at ED(50) of 4.0 microM. In an attempt to reduce the cytotoxicity of 1, the acetylated derivative 1a and betulinic acid (1b) were prepared. Of the seven isolates, diospyrosin (2) was determined to be a new neolignan. In addition to 1, other known compounds isolated in this study were pinoresinol, lariciresinol, N-benzoyl-L-phenylalaninol, scopoletin, and poriferast-5-en-3beta,7alpha-diol. The structure of 2 was elucidated based on spectroscopic data analysis including 1D- and 2D-NMR, and HR-ESI-MS. PMID:19035573

  11. Targeting histone deacetylase inhibitors for anti-malarial therapy.

    Science.gov (United States)

    Andrews, Katherine T; Tran, Thanh N; Wheatley, Nicole C; Fairlie, David P

    2009-01-01

    It is now clear that histone acetylation plays key roles in regulating gene transcription in both eukaryotes and prokaryotes, the acetylated form inducing gene expression while deacetylation silences genes. Recent studies have identified roles for histone acetyltransferases (HATs) and/or histone deacetylases (HDACs) in a number of parasites including Entamoeba histolytica, Toxoplasma gondii, Schistosoma mansoni, Cryptosporidium sp., Leishmania donovani, Neospora caninum, and Plasmodium falciparum. Here we survey fairly limited efforts to date in profiling antimalarial activities of HDAC inhibitors, showing that such compounds are potent inhibitors of the growth of P. falciparum in vitro and in vivo. Most of the compounds evaluated so far have borne a zinc-binding hydroxamate group that tends to be metabolized in vivo, and thus new zinc-binding groups need to be incorporated into second generation inhibitors in order to mask the catalytic zinc in the active site of HDACs. Also the development of compounds that are selective for parasitic HDACs over mammalian HDACs is still in relative infancy and it will take some time to derive antiparasitic HDAC inhibitor compounds with minimal toxicity for the host and acceptable pharmacokinetic and pharmacodynamic profiles for human treatment. Nevertheless, results to date suggest that HDAC inhibitor development represents a promising new approach to the potential treatment of parasitic infections, including those induced by malaria protozoa, and may offer new therapeutic targets within increasingly drug-resistant malarial parasites. PMID:19355992

  12. Drug resistant falciparum malaria and the use of artesunate-based combinations : focus on clinical trials sponsored by TDR

    Directory of Open Access Journals (Sweden)

    Walter R.J. Taylor, Jean Rigal & Piero L. Olliaro

    2003-09-01

    Full Text Available Antimalarial drug resistance has now become a serious global challenge and is the principal reasonfor the decline in antimalarial drug efficacy. Malaria endemic countries need inexpensive and efficaciousdrugs. Preserving the life spans of antimalarial drugs is a key part of the strategy for rollingback malaria. Artemisinin-based combinations offer a new and potentially highly effective way tocounter drug resistance. Clinical trials conducted in African children have attested to the good tolerabilityof oral artesunate when combined with standard antimalarial drugs. The cure rates of thedifferent combinations were generally dependent on the degree of resistance to the companiondrug. They were high for amodiaquine-artesunate, variable for sulfadoxine/pyrimethamine-artesunate,and poor for chloroquine-artesunate.

  13. Asthma control in patients receiving inhaled corticosteroid and long-acting beta2-agonist fixed combinations. A real-life study comparing dry powder inhalers and a pressurized metered dose inhaler extrafine formulation

    Directory of Open Access Journals (Sweden)

    Nicolini Gabriele

    2011-07-01

    Full Text Available Abstract Background Although patients have more problems using metered dose inhalers, clinical comparisons suggest they provide similar control to dry powder inhalers. Using real-life situations this study was designed to evaluate asthma control in outpatients with moderate to severe persistent asthma and to compare efficacy of fixed combinations of inhaled corticosteroids (ICS and long acting beta-agonists (LABA. Methods This real-life study had a cross-sectional design. Patients using fixed combinations of ICS and LABA had their asthma control and spirometry assessed during regular visits. Results 111 patients were analyzed: 53 (47.7% received maintenance therapy of extrafine beclomethasone-formoterol (BDP/F pressurized metered dose inhaler (pMDI, 25 (22.5% fluticasone-salmeterol (FP/S dry powder inhaler (DPI, and 33 (29.7% budesonide-formoterol (BUD/F DPI. Severity of asthma at time of diagnosis, assessed by the treating physician, was comparable among groups. Asthma control was achieved by 45.9% of patients; 38.7% were partially controlled and 15.3% were uncontrolled. In the extrafine BDF/F group, asthma control total score, daytime symptom score and rescue medication use score were significantly better than those using fixed DPI combinations (5.8 ± 6.2 vs. 8.5 ± 6.8; 1.4 ± 1.8 vs. 2.3 ± 2.1; 1.8 ± 2.2 vs. 2.6 ± 2.2; p = 0.0160; p = 0.012 and p = 0.025, respectively and the mean daily ICS dose were significantly lower. Conclusions pMDI extrafine BDP/F combination demonstrated better asthma control compared to DPIs formulated with larger particles. This could be due to the improved lung deposition of the dose or less reliance on the optimal inhalation technique or both.

  14. Targeting protein kinases in the malaria parasite: update of an antimalarial drug target.

    Science.gov (United States)

    Zhang, Veronica M; Chavchich, Marina; Waters, Norman C

    2012-01-01

    Millions of deaths each year are attributed to malaria worldwide. Transmitted through the bite of an Anopheles mosquito, infection and subsequent death from the Plasmodium species, most notably P. falciparum, can readily spread through a susceptible population. A malaria vaccine does not exist and resistance to virtually every antimalarial drug predicts that mortality and morbidity associated with this disease will increase. With only a few antimalarial drugs currently in the pipeline, new therapeutic options and novel chemotypes are desperately needed. Hit-to-Lead diversity may successfully provide novel inhibitory scaffolds when essential enzymes are targeted, for example, the plasmodial protein kinases. Throughout the entire life cycle of the malaria parasite, protein kinases are essential for growth and development. Ongoing efforts continue to characterize these kinases, while simultaneously pursuing them as antimalarial drug targets. A collection of structural data, inhibitory profiles and target validation has set the foundation and support for targeting the malarial kinome. Pursuing protein kinases as cancer drug targets has generated a wealth of information on the inhibitory strategies that can be useful for antimalarial drug discovery. In this review, progress on selected protein kinases is described. As the search for novel antimalarials continues, an understanding of the phosphor-regulatory pathways will not only validate protein kinase targets, but also will identify novel chemotypes to thwart malaria drug resistance. PMID:22242850

  15. Public Awareness and Identification of Counterfeit Drugs in Tanzania: A View on Antimalarial Drugs

    Directory of Open Access Journals (Sweden)

    Linus Mhando

    2016-01-01

    Full Text Available Background. The illicit trade in counterfeit antimalarial drugs is a major setback to the fight against malaria. Information on public awareness and ability to identify counterfeit drugs is scanty. Aim. Therefore, the present study aimed at assessing public awareness and the ability to identify counterfeit antimalarial drugs based on simple observations such as appearance of the drugs, packaging, labelling, and leaflets. Methodology. A cross-sectional study was conducted using interviewer administered structured questionnaire and a checklist. Respondents were required to spot the difference between genuine and counterfeit antimalarial drugs given to them. Data was analysed using SPSS version 20. Results. The majority of respondents, 163 (55.6%, were able to distinguish between genuine and counterfeit antimalarial drugs. Respondents with knowledge on health effects of counterfeit drugs were more likely to identify genuine and counterfeit drugs than their counterparts (P=0.003; OR = 2.95; 95% CI: 1.47–5.65. The majority of respondents, 190 (64.8%, perceived the presence of counterfeit drugs to be a big problem to the community. Conclusions. A substantial proportion of respondents were able to distinguish between genuine and counterfeit antimalarial drugs. Public empowerment in identifying counterfeit drugs by simple observations is a major step towards discouraging the market of counterfeit drugs.

  16. Ex vivo susceptibility of Plasmodium falciparum isolates from Dakar, Senegal, to seven standard anti-malarial drugs

    Directory of Open Access Journals (Sweden)

    Pradines Bruno

    2011-10-01

    Full Text Available Abstract Background As a result of widespread chloroquine and sulphadoxine-pyrimethamine resistance, artemisinin-based combination therapy (ACT (which includes artemether-lumefantrine and artesunate-amodiaquine has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Since then, there have been very few reports on the ex vivo susceptibility of Plasmodium falciparum to anti-malarial drugs. To examine whether parasite susceptibility has been affected by the widespread use of ACT, the ex vivo susceptibility of local isolates was assessed at the military hospital of Dakar. Methods The ex vivo susceptibility of 93 P. falciparum isolates from Dakar was successfully determined using the Plasmodium lactate dehydrogenase (pLDH ELISA for the following drugs: chloroquine (CQ, quinine (QN, mefloquine (MQ, monodesethylamodiaquine (MDAQ, lumefantrine (LMF, dihydroartemisinin (DHA and doxycycline (DOX. Results After transformation of the isolate IC50 in ratio of IC50 according to the susceptibility of the 3D7 reference strain (isolate IC50/3D7 IC50, the prevalence of the in vitro resistant isolates with reduced susceptibility was 50% for MQ, 22% for CQ, 12% for DOX, 6% for both QN and MDAQ and 1% for the drugs LMF and DHA. The highest significant positive correlations were shown between responses to CQ and MDAQ (r = 0.569; P r = 0.511; P r = 0.428; P = 0.0001, LMF and MQ (r = 0.413; P = 0.0002, QN and DHA (r = 0.402; P = 0.0003 and QN and MQ (r = 0.421; P = 0.0001. Conclusions The introduction of ACT in 2002 has not induced a decrease in P. falciparum susceptibility to the drugs DHA, MDAQ and LMF, which are common ACT components. However, the prevalence of P. falciparum isolates with reduced susceptibility has increased for both MQ and DOX. Taken together, these data suggest that intensive surveillance of the P. falciparum in vitro susceptibility to anti-malarial drugs in Senegal is required.

  17. Monitoring the efficacy of antimalarial medicines in India via sentinel sites: Outcomes and risk factors for treatment failure

    Directory of Open Access Journals (Sweden)

    Neelima Mishra

    2016-01-01

    Interpretation & conclusion: Till 2012, India′s national antimalarial drug resistance monitoring system proved highly efficacious and safe towards first-line antimalarials used in the country, except in Northeastern region where a decline in efficacy of AS+SP has been observed. This led to change in first-line treatment for P. falciparum to artemether-lumefantrine in Northeastern region.

  18. IT Supporting Strategy Formulation

    NARCIS (Netherlands)

    Achterbergh, J.M.I.M.

    2005-01-01

    This overview approaches information and communication technology (ICT) for competitive intelligence from the perspective of strategy formulation. It provides an ICT architecture for supporting the knowledge processes producing relevant knowledge for strategy formulation. To determine what this arch

  19. IT Supporting Strategy Formulation

    OpenAIRE

    Achterbergh, J.M.I.M.

    2005-01-01

    This overview approaches information and communication technology (ICT) for competitive intelligence from the perspective of strategy formulation. It provides an ICT architecture for supporting the knowledge processes producing relevant knowledge for strategy formulation. To determine what this architecture looks like, we first examine the process of strategy formulation and determine the knowledge required in the process of strategy formulation. To this purpose, we use Beer’s viable system m...

  20. Collaborative health and enforcement operations on the quality of antimalarials and antibiotics in southeast Asia.

    Science.gov (United States)

    Yong, Yuk Lin; Plançon, Aline; Lau, Yen Hui; Hostetler, Dana M; Fernández, Facundo M; Green, Michael D; Sounvoravong, Sourisak; Nara, Suon; Boravann, Mam; Dumrong, Thitikornkovit; Bangsawan, Nurjaya; Low, Min Yong; Lim, Chin-Chin; Ai, Ruth Lee Choo; Newton, Paul N

    2015-06-01

    Counterfeit (or falsified) and substandard medicines pose a major public health risk. We describe the findings of Operation Storm I and II conducted in 2008-2009 to combat counterfeit medicines through partnership between national customs, Drug Regulatory Agencies (DRAs), and police in Cambodia, Indonesia, Laos, Myanmar, Singapore, Thailand, and Vietnam. Samples were obtained from seizures and market surveillance by national DRAs. Laboratory analysis using spectroscopic and chromatographic techniques and examination of packaging were performed. Ninety-three suspect antibiotics and 95 antimalarial samples were collected. Of the 93 antibiotics, 29 (31%) had % active pharmaceutical ingredient content (%API) 115% (including one counterfeit). Of the 95 antimalarials, 30 (32%) had %API 115% API (including one counterfeit). A significant minority of samples, antimalarials (13%) and antibiotics (15%), were collected in plastic bags with minimal or no labeling. Of 20 ampicillin samples, 13 (65%) contained medicines. PMID:25897069

  1. Influence of smoking on disease severity and antimalarial therapy in cutaneous lupus erythematosus

    DEFF Research Database (Denmark)

    Kuhn, A; Sigges, J; Biazar, C;

    2014-01-01

    BACKGROUND: In recent years it has been controversially discussed in the literature if smoking is associated with the activity of cutaneous lupus erythematosus (CLE) and the efficacy of antimalarial agents. OBJECTIVES: To investigate the influence of smoking on disease severity and antimalarial...... treatment in patients with CLE using the Core Set Questionnaire of the European Society of Cutaneous Lupus Erythematosus (EUSCLE). METHODS: A total of 1002 patients (768 female, 234 male) with different CLE subtypes were included in this cross-sectional study, which was performed in 14 different countries....... Smoking behaviour was assessed by the EUSCLE Core Set Questionnaire in 838 patients and statistically analysed using an SPSS database. The results were correlated with the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI) and the efficacy of antimalarial treatment. RESULTS: A high...

  2. Screening for antimalarial and acetylcholinesterase inhibitory activities of some Iranian seaweeds.

    Science.gov (United States)

    Ghannadi, A; Plubrukarn, A; Zandi, K; Sartavi, K; Yegdaneh, A

    2013-04-01

    Alcoholic extracts of 8 different types of seaweeds from Iran's Persian Gulf were tested for their antimalarial and acetylcholinesterase enzyme (AChE) inhibitory activities for the first time. A modified Ellman and Ingkaninan method was used for measuring AChE inhibitory activity in which galanthamine was used as the reference. The antimalarial assay was performed using microculture radioisotope technique. Mefloquine and dihydroartemisinin were uased as the standards. The extract of Sargassum boveanum (Sargasseae family) showed the highest AChE inhibitory activity (IC50 equals to 1 mg ml(-1)) while Cystoseira indica (Cystoseiraceae family) exhibited the least activity (IC50 of 11 mg ml(-1)). The species from Rhodophyta (Gracilaria corticata and Gracilaria salicornia) also showed moderate activities (IC509.5, 8.7 mg ml(-1), respectively). All extracts were inactive in antimalarial assay. PMID:24019820

  3. The impact of text message reminders on adherence to antimalarial treatment in northern Ghana: a randomized trial.

    Directory of Open Access Journals (Sweden)

    Julia R G Raifman

    Full Text Available BACKGROUND: Low rates of adherence to artemisinin-based combination therapy (ACT regimens increase the risk of treatment failure and may lead to drug resistance, threatening the sustainability of current anti-malarial efforts. We assessed the impact of text message reminders on adherence to ACT regimens. METHODS: Health workers at hospitals, clinics, pharmacies, and other stationary ACT distributors in Tamale, Ghana provided flyers advertising free mobile health information to individuals receiving malaria treatment. The messaging system automatically randomized self-enrolled individuals to the control group or the treatment group with equal probability; those in the treatment group were further randomly assigned to receive a simple text message reminder or the simple reminder plus an additional statement about adherence in 12-hour intervals. The main outcome was self-reported adherence based on follow-up interviews occurring three days after treatment initiation. We estimated the impact of the messages on treatment completion using logistic regression. RESULTS: 1140 individuals enrolled in both the study and the text reminder system. Among individuals in the control group, 61.5% took the full course of treatment. The simple text message reminders increased the odds of adherence (adjusted OR 1.45, 95% CI [1.03 to 2.04], p-value 0.028. Receiving an additional message did not result in a significant change in adherence (adjusted OR 0.77, 95% CI [0.50 to 1.20], p-value 0.252. CONCLUSION: The results of this study suggest that a simple text message reminder can increase adherence to antimalarial treatment and that additional information included in messages does not have a significant impact on completion of ACT treatment. Further research is needed to develop the most effective text message content and frequency. TRIAL REGISTRATION: ClinicalTrials.gov NCT01722734.

  4. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa

    Directory of Open Access Journals (Sweden)

    Eberlin Marcos N

    2011-05-01

    Full Text Available Abstract Background To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Methods Crude extract (CE was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7 and -resistant (S20 strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. Results At non-toxic concentrations, the 100% ethanolic (F4 and 50% methanolic (F5 fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. Conclusions The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4.

  5. A new in vivo screening paradigm to accelerate antimalarial drug discovery.

    Directory of Open Access Journals (Sweden)

    María Belén Jiménez-Díaz

    Full Text Available The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR, which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0 of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1 or induce parasite clearance (PRR >1 with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a

  6. Investigation of Traditional Palestinian Medicinal Plant Inula viscosa as Potential Anti-malarial Agent

    Directory of Open Access Journals (Sweden)

    M. Akkawi

    2014-10-01

    Full Text Available Malaria is a life threatening parasitic disease which is prevalent mainly in developing countries; it is the main cause of global mortality and morbidity. Development and search of novel and effective anti-malarial agents to overcome chloroquine resistance have become a very important issue. Most anti-malarial drugs target the erythrocytic stage of malaria infection, where hemozoin synthesis takes place and is considered a crucial process for the parasite survival. Throughout last decades, natural products have been a significant source of chemotherapeutics especially against malaria. Inula viscosa, Inula viscosa , is a shrub that grows around the Mediterranean basin and considered as an important Palestinian traditional medicinal herb. In this research it was found that the Palestinian flora Inula viscosa alcoholic extract has a significant and promising anti-malarial effect in both in vitro and in vivo systems. The crude alcoholic extract of Inula viscosa has the capability to impede the formation of &beta-hematin in vitro; with an efficiency of about 93% when compared to the standard chloroquine which gave 94% at comparable concentrations. in vivo studies showed that this crude extract inhibited the growth of Plasmodium parasites in the red blood cells at a rate of about 96.6%, with an EC50 value of 0.55 ng/mL. Several secondary plant metabolites may be responsible for this anti-malarial activity; the effect also may be most probably due to the presence of high concentrations of nerolidol which has often been found at high concentrationsin this plant. Nerolidol shows a stronger inhibition of hypoxanthine incorporation than quinine. Its anti-malarial effect is potentiated by other essential oils. Nerolidol is also found in several Artemisia species and in Cymbopogon citratus (lemongrass and Virola surinamensis, all plants known for their anti-malarial properties.

  7. Effects of a nutraceutical formulation based on the combination of antioxidants and ω-3 essential fatty acids in the expression of inflammation and immune response mediators in tears from patients with dry eye disorders

    Directory of Open Access Journals (Sweden)

    Pinazo-Durán MD

    2013-02-01

    Full Text Available Maria D Pinazo-Durán,1,* Carmen Galbis-Estrada,1,* Sheila Pons-Vázquez,1 Jorge Cantú-Dibildox,2 Carla Marco-Ramírez,1 Javier Benítez-del-Castillo21Ophthalmic Research Unit Santiago Grisolia, Department of Surgery/Ophthalmology, Faculty of Medicine, University of Valencia, Valencia, Spain; 2Department of Ophthalmology, Hospital of Jerez, Jerez de la Frontera, Spain*These authors contributed equally to this workBackground: Women, and those older than 65 years of age, are particularly susceptible to dry eye disorders (DEDs. Inflammation is clearly involved in the pathogenesis of DEDs, and there is mounting evidence on the antioxidant and antiinflammatory properties of essential polyunsaturated fatty acids (EPUFAs.Objective: To analyze whether a combined formulation of antioxidants and long-chain EPUFAs may improve the evolution of DEDs.Methods: We used a prospective study to address the relationship between risk factors, clinical outcomes, and expression levels of inflammation and immune response (IIR mediators in human reflex tear samples. Participants included: (1 patients diagnosed with nonsevere DEDs (DED group [DEDG]; and (2 healthy controls (control group [CG]. Participants were randomly assigned to homogeneous subgroups according to daily oral intake (+S or not (−NS of antioxidants and long-chain EPUFAs for 3 months. After an interview and a systematized ophthalmic examination, reflex tears were collected simultaneously from both eyes; samples were later subjected to a multiplexed particle-based flow cytometry assay. A specific set of IIR mediators was analyzed. All data were statistically processed through the SPSS 15.0 software program.Results: Significantly higher expressions of interleukin (IL-1β, IL6, and IL10 and significantly lower vascular endothelial growth factor expressions were found in the DEDG as compared to the CG. In the DEDG, significant negative correlations were detected between the Schirmer test and IL-1β, IL6

  8. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands

    OpenAIRE

    Timothy J. Hubin; Amoyaw, Prince N. -A.; Roewe, Kimberly D.; Simpson, Natalie C.; Maples, Randall D.; Carder Freeman, TaRynn N.; Amy N. Cain; Le, Justin G.; Stephen J Archibald; Khan, Shabana I.; Tekwani, Babu L.; Khan, M. O. Faruk

    2014-01-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal comple...

  9. Evaluation of the effect of pyrimethamine, an anti-malarial drug, on HIV-1 replication

    OpenAIRE

    Oguariri, Raphael M.; Joseph W Adelsberger; Michael W Baseler; Imamichi, Tomozumi

    2010-01-01

    Co-infection of human immunodeficiency virus (HIV) with malaria is one of the pandemic problems in Africa and parts of Asia. Here we investigated the impact of PYR and two other clinical anti-malarial drugs (chloroquine [CQ] or artemisinin [ART]) on HIV-1 replication. Peripheral blood mononuclear cells (PBMCs) or MT-2 cells were infected with HIVNL4.3 strain and treated with different concentrations of the anti-malarial drugs. HIV-1 replication was measured using p24 ELISA. We show that 10 μM...

  10. Access to artesunate-amodiaquine, quinine and other anti-malarials: policy and markets in Burundi

    Directory of Open Access Journals (Sweden)

    Dismas Baza

    2011-02-01

    Full Text Available Abstract Background Malaria is the leading cause of morbidity and mortality in post-conflict Burundi. To counter the increasing challenge of anti-malarial drug resistance and improve highly effective treatment Burundi adopted artesunate-amodiaquine (AS-AQ as first-line treatment for uncomplicated Plasmodium falciparum malaria and oral quinine as second-line treatment in its national treatment policy in 2003. Uptake of this policy in the public, private and non-governmental (NGO retail market sectors of Burundi is relatively unknown. This study was conducted to evaluate access to national policy recommended anti-malarials. Methods Adapting a standardized methodology developed by Health Action International/World Health Organization (HAI/WHO, a cross-sectional survey of 70 (24 public, 36 private, and 10 NGO medicine outlets was conducted in three regions of Burundi, representing different levels of transmission of malaria. The availability on day of the survey, the median prices, and affordability (in terms of number of days' wages to purchase treatment of AS-AQ, quinine and other anti-malarials were calculated. Results Anti-malarials were stocked in all outlets surveyed. AS-AQ was available in 87.5%, 33.3%, and 90% of public, private, and NGO retail outlets, respectively. Quinine was the most common anti-malarial found in all outlet types. Non-policy recommended anti-malarials were mainly found in the private outlets (38.9% compared to public (4.2% and NGO (0% outlets. The median price of a course of AS-AQ was US$0.16 (200 Burundi Francs, FBu for the public and NGO markets, and 3.5-fold higher in the private sector (US$0.56 or 700 FBu. Quinine tablets were similarly priced in the public (US$1.53 or 1,892.50 FBu, private and NGO sectors (both US$1.61 or 2,000 FBu. Non-policy anti-malarials were priced 50-fold higher than the price of AS-AQ in the public sector. A course of AS-AQ was affordable at 0.4 of a day's wage in the public and NGO sectors

  11. Retinal toxicity induced by antimalarial drugs: literature review and case report.

    Science.gov (United States)

    Garza-Leon, Manuel; Flores-Alvarado, Diana Elsa; Muñoz-Bravo, Juan Manuel

    2016-01-01

    Antimalarial drugs are widely used in several countries for control of rheumatologic diseases such as systemic lupus erythematosus and rheumatoid arthritis. They are still used in Mexico because of their low cost and few secondary effects, most of which are mild and reversible. Even so, at an ophthalmological level, they could produce irreversible visual damage, which is why it is important to have ophthalmological evaluation and proper follow up. We present a clinical case as an example of characteristic ophthalmological findings as well as risk factors for retinal toxicity. We then discuss guidelines for diagnosis and follow up of patients who use antimalarial drugs for the treatment of rheumatologic illnesses. PMID:27391903

  12. [Combination Chemotherapy Using Sorafenib and Hepatic Arterial Infusion with a Fine-Powder Formulation of Cisplatin for Advanced Hepatocellular Carcinoma with Portal Vein Tumor Thrombosis--A Case Report].

    Science.gov (United States)

    Tsukamoto, Tadashi; Kanazawa, Akishige; Shimizu, Sadatoshi; Murata, Akihiro; Sakae, Masayuki; Kurihara, Shigeaki; Tashima, Tetsuzo; Deguchi, Sota; Nakai, Takashi; Kawasaki, Yasuko; Kioka, Kiyohide

    2015-11-01

    Sorafenib has been a standard therapy for advanced hepatocellular carcinoma (HCC) with portal vein thrombosis. Hepatic arterial infusion chemotherapy (HAIC) is still preferably performed in Japan because of its relatively good tumor-shrinking effect. We report a case of advanced multiple HCC with portal thrombus that responded to combination chemotherapy with sorafenib and repeat hepatic arterial infusion with a fine-powder formulation of cisplatin (IA-call®). A 57-year-old man presented for the treatment of HCC with alcoholic cirrhosis. Multiple HCC were found to be rapidly progressing with portal thrombosis. HAIC with IA-call® was performed, but the tumors progressed. TAE was performed 3 times thereafter and the main tumor shrunk to some extent. A month after the last TAE, the HCC was found to progress again, and oral sorafenib was administered. A reservoir and catheter were placed and HAIC with low-dose 5-fluorouracil and cisplatin was performed for 3 cycles following 1 HAIC cycle with epirubicin and mitomycin C, which was not effective. For 10 months after initial therapy, HAIC using IA-call® has been performed once for 6 weeks. After performing HAIC with IA-call® 5 times, the serum levels of HCC tumor markers AFP and PIVKA-Ⅱdecreased, and the tumors continued to shrink and were not stained on enhanced CT scan. The patient has been alive for 23 months after the initial therapy and has maintained stable disease. PMID:26805203

  13. Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs

    OpenAIRE

    Egieyeh, Samuel Ayodele; Syce, James; Malan, Sarel F.; Christoffels, Alan

    2016-01-01

    Background A large number of natural products have shown in vitro antiplasmodial activities. Early identification and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinetics and likelihood for development into drugs is advantageous. Chemo-informatic profiling of these natural products were conducted and compared to currently registered anti-malarial drugs (CRAD). Methods Natural products with in vitro antiplasmodial activities (NAA) we...

  14. Mind the gaps - the epidemiology of poor-quality anti-malarials in the malarious world - analysis of the WorldWide Antimalarial Resistance Network database

    OpenAIRE

    Tabernero, Patricia; Facundo M Fernández; Green, Michael; Guerin, Philippe J; Newton, Paul N.

    2014-01-01

    Background Poor quality medicines threaten the lives of millions of patients and are alarmingly common in many parts of the world. Nevertheless, the global extent of the problem remains unknown. Accurate estimates of the epidemiology of poor quality medicines are sparse and are influenced by sampling methodology and diverse chemical analysis techniques. In order to understand the existing data, the Antimalarial Quality Scientific Group at WWARN built a comprehensive, open-access, global datab...

  15. Treatment of malaria from monotherapy to artemisinin-based combination therapy by health professionals in rural health facilities in southern Cameroon

    Directory of Open Access Journals (Sweden)

    Bley Daniel

    2009-07-01

    Full Text Available Abstract Background One year after the adoption of artesunate-amodiaquine (AS/AQ as first-line therapy for the treatment of uncomplicated malaria, this study was designed to assess the treatment practices regarding anti-malarial drugs at health facilities in four rural areas in southern Cameroon. Methods Between April and August 2005, information was collected by interviewing fifty-two health professionals from twelve rural health facilities, using a structured questionnaire. Results In 2005, only three anti-malarial drugs were used in rural health facilities, including: amodiaquine, quinine and sulphadoxine-pyrimethamine. Only 2.0% of the health professionals prescribed the recommended AS/AQ combination. After reading the treatment guidelines, 75.0% were in favour of the treatment protocol with the following limitations: lack of paediatric formulations, high cost and large number of tablets per day. Up to 21.0% of professionals did not prescribe AS/AQ because of the level of adverse events attributed to the use of amodiaquine as monotherapy. Conclusion The present study indicates that AS/AQ was not available in the public health facilities at the time of the study, and health practitioners were not informed about the new treatment guidelines. Results of qualitative analysis suggest that prescribers should be involved as soon as possible in projects related to the optimization of treatment guidelines and comply with new drugs. Adapted formulations should be made available at the international level and implemented locally before new drugs and treatments are proposed through a national control programme. This baseline information will be useful to monitor progresses in the implementation of artemisinin-based combination therapy in Cameroon.

  16. Riccati transfer matrix method combined with Newmark acceleration formulation integration for analysing sliding bearings and rotor system%滑动轴承-转子系统 Riccati-Newmark 加速度传递矩阵法

    Institute of Scientific and Technical Information of China (English)

    毛文贵; 韩旭; 刘桂萍

    2015-01-01

    In order to eliminate the numerical instability of transfer matrix method and to build a transfer matrix of nonlinear elements(bearings),the Riccati transfer matrix method was extended to the transient analysis of nonlinear rotor-bearing systems.In the method,the transfer matrix was obtained with the aid of the Newmark acceleration formulation,the deflections and velocities at the stations containing nonlinear element (bearings)were predicted by Taylor series,and then the deflections,velocities and accelerations at all stations were solved by using the Riccati transfer matrix method combined with the Newmark acceleration formulation integration according to the boundary conditions.An example of single disc rotor system was presented and the results were compared with those by a transient analysis considering linear perturbation and linear oil film force to verify the effectiveness of the proposed method.%为克服传递矩阵法数值不稳定及非线性瞬态响应分析中滑动轴承矩阵建立困难问题,提出 Riccati-New-mark 加速度传递矩阵法。借助 Newmark 加速度法建立传递矩阵,采用 Taylor 级数预估滑动轴承轴心下一时刻位移、速度建立滑动轴承矩阵;据边界条件用 Riccati 传递矩阵法求滑动轴承-转子系统非线性瞬态响应,提高数值稳定性。以单圆盘转子系统为例,与传统轴颈下一时刻位移、速度近似线性扰动处理的瞬态响应对比分析,验证此方法的有效性;讨论不同转速下线性、非线性油膜力的瞬态轨迹。

  17. In vivo antimalarial activities of russelia equisetiformis in plasmodium berghei infected mice

    Directory of Open Access Journals (Sweden)

    O Ojurongbe

    2015-01-01

    Full Text Available The rising problem of resistance to most commonly used antimalarials remains a major challenge in the control of malaria suggesting the need for new antimalarial agents. This work explores the antiplasmodial potential of ethanol extract of Russelia equisetiformis in chloroquine Plasmodium berghei infected mice. Swiss albino mice were intraperitoneally infected with chloroquine-resistant P. berghei (ANKA. Experimental mice were treated for four days consecutively with graded doses of plant extracts and standard antimalarial drugs (artesunate and chloroquine at a dose of 10 mg/kg body weight used as control. The extract showed a dose-dependent activity in the chemosuppression of P. berghei parasites by 31.6, 44.7, 48.4 and 86.5% at doses of 100, 200, 400 and 800 mg/kg, while chloroquine (10 mg/kg and artesunate produced 59.4 and 68.4%, respectively. The extract showed a significant decrease in parasitaemia (P<0.05. The level of parasitemia and decrease in weight in all the treated groups was significantly lower (P<0.05 compared with the infected but untreated mice. The plant extract was devoid of toxicity at the highest dose tested (5000 mg/kg. The study concluded that the ethanol extract of R. equisetiformis possesses antimalarial effect, which supports the folk medicine claim of its use in the treatment of malaria.

  18. Tritium labelling and characterization of the antimalarial drug (+/-)-chloroquine by several methods

    Energy Technology Data Exchange (ETDEWEB)

    Egan, J.A.Judith A.; Laseter, Anne G.; Filer, C.N.Crist N. E-mail: crist.filer@perkinelmer.com

    2002-09-01

    To study its mechanism of antimalarial action, a tritium labelled analogue of (+/-)-chloroquine was required at high specific activity. Two synthetic methods were successfully employed. [3-{sup 3}H] (+/-)-Chloroquine 2 was prepared by the catalytic tritium dehalogenation of an iodo precursor and [N-ethyl-{sup 3}H] (+/-)-chloroquine 4 was synthesized by the alkylation of (+/-)-desethylchloroquine with [{sup 3}H] ethyl iodide.

  19. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    NARCIS (Netherlands)

    Baragana, B.; Hallyburton, I.; Lee, M.C.; Norcross, N.R.; Grimaldi, R.; Otto, T.D.; Proto, W.R.; Blagborough, A.M.; Meister, S.; Wirjanata, G.; Ruecker, A.; Upton, L.M.; Abraham, T.S.; Almeida, M.J.; Pradhan, A.; Porzelle, A.; Martinez, M.S.; Bolscher, J.M.; Woodland, A.; Norval, S.; Zuccotto, F.; Thomas, J.; Simeons, F.; Stojanovski, L.; Osuna-Cabello, M.; Brock, P.M.; Churcher, T.S.; Sala, K.A.; Zakutansky, S.E.; Jimenez-Diaz, M.B.; Sanz, L.M.; Riley, J.; Basak, R.; Campbell, M.; Avery, V.M.; Sauerwein, R.W.; Dechering, K.J.; Noviyanti, R.; Campo, B.; Frearson, J.A.; Angulo-Barturen, I.; Ferrer-Bazaga, S.; Gamo, F.J.; Wyatt, P.G.; Leroy, D.; Siegl, P.; Delves, M.J.; Kyle, D.E.; Wittlin, S.; Marfurt, J.; Price, R.N.; Sinden, R.E.; Winzeler, E.A.; Charman, S.A.; Bebrevska, L.; Gray, D.W.; Campbell, S.; Fairlamb, A.H.; Willis, P.A.; Rayner, J.C.; Fidock, D.A.; Read, K.D.; Gilbert, I.H.

    2015-01-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activ

  20. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death.

    Science.gov (United States)

    Salas, E; Roy, S; Marsh, T; Rubin, B; Debnath, J

    2016-06-01

    Despite immense interest in using antimalarials as autophagy inhibitors to treat cancer, it remains unclear whether these agents act predominantly via autophagy inhibition or whether other pathways direct their anti-cancer properties. By comparing the treatment effects of the antimalarials chloroquine (CQ) and quinacrine (Q) on KRAS mutant lung cancer cells, we demonstrate that inhibition of the oxidative arm of the pentose phosphate pathway (oxPPP) is required for antimalarial induced apoptosis. Despite inhibiting autophagy, neither CQ treatment nor RNAi against autophagy regulators (ATGs) promote cell death. In contrast, Q triggers high levels of apoptosis, both in vitro and in vivo, and this phenotype requires both autophagy inhibition and p53-dependent inhibition of the oxPPP. Simultaneous genetic targeting of the oxPPP and autophagy is sufficient to trigger apoptosis in lung cancer cells, including cells lacking p53. Thus, in addition to reduced autophagy, oxPPP inhibition serves as an important determinant of antimalarial cytotoxicity in cancer cells.

  1. Detecting the antimalarial artemisinin in plant extracts using near-infrared spectroscopy

    Science.gov (United States)

    The antimalarial artemisinin is produced by Artemisia annua L and can be used to kill the protozoan parasite Plasmodium, which is spread by mosquitoes. Artemisinin is extracted from these plants through tea preparation. The artemisinin content of the tea varies depending on how much artemisinin was ...

  2. Amazonian Plant Natural Products: Perspectives for Discovery of New Antimalarial Drug Leads

    Directory of Open Access Journals (Sweden)

    Lucio H. Freitas-Junior

    2013-08-01

    Full Text Available Plasmodium falciparum and P. vivax malaria parasites are now resistant, or showing signs of resistance, to most drugs used in therapy. Novel chemical entities that exhibit new mechanisms of antiplasmodial action are needed. New antimalarials that block transmission of Plasmodium spp. from humans to Anopheles mosquito vectors are key to malaria eradication efforts. Although P. vivax causes a considerable number of malaria cases, its importance has for long been neglected. Vivax malaria can cause severe manifestations and death; hence there is a need for P. vivax-directed research. Plants used in traditional medicine, namely Artemisia annua and Cinchona spp. are the sources of the antimalarial natural products artemisinin and quinine, respectively. Based on these compounds, semi-synthetic artemisinin-derivatives and synthetic quinoline antimalarials have been developed and are the most important drugs in the current therapeutic arsenal for combating malaria. In the Amazon region, where P. vivax predominates, there is a local tradition of using plant-derived preparations to treat malaria. Here, we review the current P. falciparum and P. vivax drug-sensitivity assays, focusing on challenges and perspectives of drug discovery for P. vivax, including tests against hypnozoites. We also present the latest findings of our group and others on the antiplasmodial and antimalarial chemical components from Amazonian plants that may be potential drug leads against malaria.

  3. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity

    OpenAIRE

    Rijpma, S.R.; Heuvel, J. J.; van de Velden, M.; Sauerwein, R. W.; Russel, F. G.; Koenderink, J.B.

    2014-01-01

    BACKGROUND: Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involved in drug deposition, as they are located at membranes of many uptake and excretory organs and at protective barriers, where they export endogenous and xenobiotic compounds, including pharmaceutica...

  4. A SAR and QSAR Study of New Artemisinin Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Cleydson Breno R. Santos

    2013-12-01

    Full Text Available The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs and molecular docking were used to investigate the interaction between ligands and the receptor (heme. Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE, the charge on the O11 oxygen atom (QO11, the torsion angle O1-O2-Fe-N2 (D2 and the maximum rate of R/Sanderson Electronegativity (RTe+. These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  5. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    Directory of Open Access Journals (Sweden)

    Shen S

    2015-06-01

    Full Text Available Shuo Shen, Shu-Zhi Liu, Yu-Shi Zhang, Mao-Bo Du, Ai-Hua Liang, Li-Hua Song, Zu-Guang Ye Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China Abstract: Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem–ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data

  6. Formulation of Nematodes.

    Science.gov (United States)

    Peters, Arne

    2016-01-01

    The enduring stages of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis are infective juveniles, which require a high humidity and sufficient ventilation for survival. Formulations must account for these requirements. Nematodes may be formulated inside the insects in which they reproduced or they need to be cleaned and mixed with a suitable binder to maintain humidity but allowing for gas exchange. Another method for formulation is the encapsulation in beads of Ca-alginate. Generic procedures for these formulation techniques are described. PMID:27565496

  7. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica.

    Science.gov (United States)

    Chinchilla, Misael; Valerio, Idalia; Sánchez, Ronald; Mora, Víctor; Bagnarello, Vanessa; Martínez, Laura; Gonzalez, Antonieta; Vanegas, Juan Carlos; Apestegui, Alvaro

    2012-06-01

    Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biol6gica Alberto Manuel Brenes (REBAMB), were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae); Xanthosoma undipes (Araceae); Iriartea deltoidea (Arecaceae); Neurolaena lobata (Asteraceae); Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae); Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae); Hampea appendiculata (Malvaceae); Ruagea glabra, Guarea glabra (Meliaceae); Psidium guajava (Myrtaceae); Bocconia frutescens (Papaveraceae); Piper friedrichsthalii (Piperaceae); Clematis dioica (Ranunculaceae); Prunus annularis (Rosaceae); Siparuna thecaphora (Siparunaceae); Solanum arboreum, Witheringia solanacea (Solanaceae); Ticodendrum incognitum (Ticodendraceae); Heliocarpus appendiculatus (Tiliaceae) and Myriocarpa longipes (Urticaceae). We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9 microg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  8. Substandard artemisinin-based antimalarial medicines in licensed retail pharmaceutical outlets in Ghana

    Directory of Open Access Journals (Sweden)

    M. El-Duah & K. Ofori-Kwakye

    2012-09-01

    Full Text Available Background & objectives: The artemisinin-based antimalarial medicines are first line medicines in the treatmentof severe and uncomplicated falciparum malaria. Numerous brands of these medicines manufactured in variouscountries are available in the Ghanaian market. The study was aimed at evaluating the authenticity and qualityof selected brands of artemisinin-based antimalarial medicines marketed in Ghana.Methods: In all, 14 artemisinin-based antimalarial medicines were purchased from pharmacies (P and licensedchemical shops (LCSs in the Kumasi metropolis, Ghana. Simple field tests based on colorimetry and thin layerchromatography were employed in determining the authenticity of the samples. Important quality assessmenttests, namely uniformity of mass, crushing strength, disintegration time, and the percentage content of activepharmaceutical ingredients (APIs were determined.Results: All the brands tested contained the stipulated APIs. Artesunate tablet AT2 failed the uniformity of masstest while artesunate tablets AT3 & AT4 as well as amodiaquine tablets AM4 & AM6 failed the crushing strengthtest. All the six artemether-lumefantrine tablet brands passed the uniformity of mass, crushing strength anddisintegration tests. Only artemether-lumefantrine tablet brand AL1 contained the correct amount of the drugs.The other 13 artemisinin products contained either a lower (underdose or higher (overdose amount of thespecified drug. Artesunate monotherapy tablets were readily available in pharmacies and licensed chemicalshops.Interpretation & conclusion: All the artemisinin-based medicines tested (except AL1 were of substandardquality. The results demonstrate the need for continuous monitoring and evaluation of the quality of artemisininbased antimalarials in the Ghanaian market. Also, the practice of artemisinin antimalarial monotherapy is prevalentin Ghana. Determined efforts should, therefore, be made to eradicate the practice to prevent the development

  9. Enhanced Antimalarial Activity by a Novel Artemether-Lumefantrine Lipid Emulsion for Parenteral Administration

    OpenAIRE

    Ma, Yufan; Lu, Tingli; Zhao, Wen; Wang, Ying(School of Physics, Shandong University, Jinan, 250100, PR China); Chen, Ting; Mei, Qibing; Chen, Tao

    2014-01-01

    Artemether and lumefantrine (also known as benflumetol) are difficult to formulate for parenteral administration because of their low aqueous solubility. Cremophor EL as an emulsion excipient has been shown to cause serious side effects. This study reports a method of preparation and the therapeutic efficacies of novel lipid emulsion (LE) delivery systems with artemether, lumefantrine, or artemether in combination with lumefantrine, for parenteral administration. Their physical and chemical s...

  10. Formulations in first encounters

    NARCIS (Netherlands)

    A. Hak (Tony); F. de Boer (Fijgje)

    1994-01-01

    markdownabstractThe paper describes and compares the use and function of the formulation--decision pair in three types of diagnostic interviewing. The investigatory type of interviewing, which typically occurs in the medical interview, is characterized by the absence of formulations. In the explora

  11. Simultaneously Exploiting Two Formulations: an Exact Benders Decomposition Approach

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Gamst, Mette; Spoorendonk, Simon

    linear programs and propose an approach based on Benders decomposition to exploit the advantages of two different formulations when solving a problem. We propose to apply Benders decomposition to a combined formulation,comprised of two separate formulations, augmented with linking constraints to ensure...

  12. High School Students Are a Target Group for Fight against Self-Medication with Antimalarial Drugs: A Pilot Study in University of Kinshasa, Democratic Republic of Congo.

    Science.gov (United States)

    Kabongo Kamitalu, Ramsès; Aloni, Michel Ntetani

    2016-01-01

    Aim. To assess the self-medication against malaria infection in population of Congolese students in Kinshasa, Democratic Republic of Congo (DRC). Methods. A cross-sectional study was carried out in University of Kinshasa, Kinshasa, Democratic Republic of Congo. Medical records of all students with malaria admitted to Centre de Santé Universitaire of University of Kinshasa from January 1, 2008, to April 30, 2008, were reviewed retrospectively. Results. The median age of the patients was 25.4 years (range: from 18 to 36 years). The majority of them were male (67.9%). Artemisinin-based combination treatments (ACTs) was the most used self-prescribed antimalarial drugs. However, self-medication was associated with the ingestion of quinine in 19.9% of cases. No case of ingestion of artesunate/artemether in monotherapy was found. All the medicines taken were registered in DRC. In this series, self-prescribed antimalarial was very irrational in terms of dose and duration of treatment. Conclusion. This paper highlights self-medication by a group who should be aware of malaria treatment protocols. The level of self-prescribing quinine is relatively high among students and is disturbing for a molecule reserved for severe disease in Congolese health care policy in management of malaria. PMID:27340411

  13. Anti-malarial effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one and green tea extract on erythrocyte-stage Plasmodium berghei in mice

    Institute of Scientific and Technical Information of China (English)

    Phitsinee Thipubon; Wachiraporn Tipsuwan; Chairat Uthaipibull; Sineenart Santitherakul; Somdet Srichiratanakool

    2015-01-01

    Objective:To examine the efficacy of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) iron chelator and green tea extract (GTE) as anti-malarial activity in Plasmodium berghei (P. berghei ) infected mice. Methods:The CM1 (0–100 mg/kg/day) and GTE (0–100 mg (-)-epigallocatechin 3-gallate equivalent/kg/day) were orally administered to P. berghei infected mice for consecutive 4 days. Parasitized red blood cells (PRBC) were enumerated by using Giemsa staining microscopic method. Results: CM1 lowered percentage of PRBC in dose-dependent manner with an ED50 value of 56.91 mg/kg, when compared with pyrimethamine (PYR) (ED50=0.76 mg/kg). GTE treatment did not show any inhibition of the malaria parasite growth. In combined treatment, CM1 along with 0.6 mg/kg PYR significantly inhibited the growth of P. berghei in mice while GTE did not enhance the PYR anti-malarial activity. Conclusions: CM1 would be effective per se and synergize with PYR in inhibiting growth of murine malaria parasites, possibly by limiting iron supply from plasma transferrin and host PRBC cytoplasm, and chelating catalytic iron constitutive in parasites’ mitochondrial cytochromes and cytoplasmic ribonucleotide reductase. CM1 would be a promising adjuvant to enhance PYR anti-malarial activity and minimize the drug resistance.

  14. Anti-malarial effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one and green tea extract on erythrocyte-stage Plasmodium berghei in mice

    Institute of Scientific and Technical Information of China (English)

    Phitsinee; Thipubon; Wachiraporn; Tipsuwan; Chairat; Uthaipibull; Sineenart; Santitherakul; Somdet; Srichiratanakool

    2015-01-01

    Objective: To examine the efficacy of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one(CM1) iron chelator and green tea extract(GTE) as anti-malarial activity in Plasmodium berghei(P. berghei) infected mice.Methods: The CM1(0–100 mg/kg/day) and GTE(0–100 mg(-)-epigallocatechin 3-gallate equivalent/kg/day) were orally administered to P. berghei infected mice for consecutive 4 days. Parasitized red blood cells(PRBC) were enumerated by using Giemsa staining microscopic method.Results: CM1 lowered percentage of PRBC in dose-dependent manner with an ED50 value of 56.91 mg/kg, when compared with pyrimethamine(PYR)(ED50= 0.76 mg/kg).GTE treatment did not show any inhibition of the malaria parasite growth. In combined treatment, CM1 along with 0.6 mg/kg PYR significantly inhibited the growth of P. berghei in mice while GTE did not enhance the PYR anti-malarial activity.Conclusions: CM1 would be effective per se and synergize with PYR in inhibiting growth of murine malaria parasites, possibly by limiting iron supply from plasma transferrin and host PRBC cytoplasm, and chelating catalytic iron cstitutive in parasites’ mitochondrial cytochromes and cytoplasmic ribonucleotide reductase. CM1 would be a promising adjuvant to enhance PYR anti-malarial activity and minimize the drug resistance.

  15. A study of toxicity and differential gene expression in murine liver following exposure to anti-malarial drugs: amodiaquine and sulphadoxine-pyrimethamine

    Directory of Open Access Journals (Sweden)

    Rath Srikanta

    2011-05-01

    Full Text Available Abstract Background Amodiaquine (AQ along with sulphadoxine-pyrimethamine (SP offers effective and cheaper treatment against chloroquine-resistant falciparum malaria in many parts of sub-Saharan Africa. Considering the previous history of hepatitis, agranulocytosis and neutrocytopenia associated with AQ monotherapy, it becomes imperative to study the toxicity of co-administration of AQ and SP. In this study, toxicity and resulting global differential gene expression was analyzed following exposure to these drugs in experimental Swiss mice. Methods The conventional markers of toxicity in serum, oxidative stress parameters in tissue homogenates, histology of liver and alterations in global transcriptomic expression were evaluated to study the toxic effects of AQ and SP in isolation and in combination. Results The combination therapy of AQ and SP results in more pronounced hepatotoxicity as revealed by elevated level of serum ALT, AST with respect to their individual drug exposure regimen. Furthermore, alterations in the activity of major antioxidant enzymes (glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, indicating the development of oxidative stress, was more significant in AQ+SP combination therapy. cDNA microarray results too showed considerably more perturbed gene expression following combination therapy of AQ and SP as compared to their individual drug treatment. Moreover, a set of genes were identified whose expression pattern can be further investigated for identifying a good biomarker for potential anti-malarial hepatotoxicity. Conclusion These observations clearly indicate AQ+SP combination therapy is hepatotoxic in experimental Swiss mice. Microarray results provide a considerable number of potential biomarkers of anti-malarial drug toxicity. These findings hence will be useful for future drug toxicity studies, albeit implications of this study in clinical conditions need to be monitored with cautions.

  16. Subsidizing artemisinin-based combination therapies: a preliminary investigation of the Affordable Medicines Facility – malaria

    Directory of Open Access Journals (Sweden)

    Bate R

    2012-07-01

    Full Text Available Roger Bate,1,2 Kimberly Hess,2 Richard Tren,2 Lorraine Mooney,3 Franklin Cudjoe,4 Thompson Ayodele,5 Amir Attaran61American Enterprise Institute, Washington, DC, USA; 2Africa Fighting Malaria, Washington, DC, USA; 3Africa Fighting Malaria, Cambridge, United Kingdom; 4IMANI Center for Policy and Education, Accra, Ghana; 5Initiative for Public Policy Analysis, Lagos, Nigeria; 6University of Ottawa, Ottawa, ON, CanadaBackground: The Affordable Medicines Facility – malaria (AMFm is a subsidy mechanism to lower the price of, and hence increase access to, the best antimalarial medicines, artemisinin-based combination therapies (ACTs. While the AMFm stipulates that only quality-approved products are eligible for subsidy, it is not known whether those products, when actually supplied, are of good quality and comport with established pharmacopeial guidance on formulation and content of active ingredients. This study aimed to assess price and quality of AMFm ACTs, to compare AMFm ACTs with non-AMFm ACTs and artemisinin monotherapies, and to assess whether AMFm ACTs have been pilfered and diverted to a nearby country.Methods: In all, 140 artemisinin-based antimalarial drugs were acquired from 37 pharmacies in Lagos, Nigeria, and Accra, Ghana. An additional ten samples of AMFm ACTs were collected from Lomé, Togo (not participating in the AMFm. Samples were analyzed using high-performance liquid chromatography.Results: The AMFm ACTs were lower in price than many of the other drugs collected, but by less than anticipated or stipulated by the participating governments of Nigeria and Ghana. The quality of the AMFm ACTs was not universally good: overall, 7.7% had too little active pharmaceutical ingredient (API and none had too much – these results are not likely to be as a result of random chance. AMFm ACTs were also found to have been diverted, both to pharmacies in Lagos not participating in the AMFm and to a foreign city (Lomé where the AMFm is not

  17. Synthesis and evaluation of antimalarial activity of curcumin derivatives; Sintese e avaliacao da atividade antimalarica de compostos derivados da curcumina

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Patricia Ramos; Miguel, Fabio Balbino; Almeida, Mauro Vieira de; Couri, Mara Rubia Costa [Universidade Federal de Juiz de Fora (UFSJ), MG (Brazil). Instituto de Ciencias Exatas. Departamento de Quimica; Oliveira, Michael Eder de; Ferreira, Vanessa Viana; Guimaraes, Daniel Silqueira Martins; Lima, Aline Brito de; Barbosa, Camila de Souza; Oliveira, Mariana Amorim de; Almeida, Mauro Vieira de; Viana, Gustavo Henrique Ribeiro; Varotti, Fernando de Pilla, E-mail: varotti@ufsj.edu.br [Universidade Federal de Sao Joao Del Rei (UFSJ), MG (Brazil). Centro de Ciencias da Saude; and others

    2014-05-15

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC{sub 50} values ranging from 1.7 to 15.2 μg mL{sup -1}), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  18. Audits of radiopharmaceutical formulations

    International Nuclear Information System (INIS)

    A procedure for auditing radiopharmaceutical formulations is described. To meet FDA guidelines regarding the quality of radiopharmaceuticals, institutional radioactive drug research committees perform audits when such drugs are formulated away from an institutional pharmacy. All principal investigators who formulate drugs outside institutional pharmacies must pass these audits before they can obtain a radiopharmaceutical investigation permit. The audit team meets with the individual who performs the formulation at the site of drug preparation to verify that drug formulations meet identity, strength, quality, and purity standards; are uniform and reproducible; and are sterile and pyrogen free. This team must contain an expert knowledgeable in the preparation of radioactive drugs; a radiopharmacist is the most qualified person for this role. Problems that have been identified by audits include lack of sterility and apyrogenicity testing, formulations that are open to the laboratory environment, failure to use pharmaceutical-grade chemicals, inadequate quality control methods or records, inadequate training of the person preparing the drug, and improper unit dose preparation. Investigational radiopharmaceutical formulations, including nonradiolabeled drugs, must be audited before they are administered to humans. A properly trained pharmacist should be a member of the audit team

  19. Audits of radiopharmaceutical formulations.

    Science.gov (United States)

    Castronovo, F P

    1992-03-01

    A procedure for auditing radiopharmaceutical formulations is described. To meet FDA guidelines regarding the quality of radiopharmaceuticals, institutional radioactive drug research committees perform audits when such drugs are formulated away from an institutional pharmacy. All principal investigators who formulate drugs outside institutional pharmacies must pass these audits before they can obtain a radiopharmaceutical investigation permit. The audit team meets with the individual who performs the formulation at the site of drug preparation to verify that drug formulations meet identity, strength, quality, and purity standards; are uniform and reproducible; and are sterile and pyrogen free. This team must contain an expert knowledgeable in the preparation of radioactive drugs; a radiopharmacist is the most qualified person for this role. Problems that have been identified by audits include lack of sterility and apyrogenicity testing, formulations that are open to the laboratory environment, failure to use pharmaceutical-grade chemicals, inadequate quality control methods or records, inadequate training of the person preparing the drug, and improper unit dose preparation. Investigational radiopharmaceutical formulations, including nonradiolabeled drugs, must be audited before they are administered to humans. A properly trained pharmacist should be a member of the audit team. PMID:1598931

  20. Evaluation of antimalarial activity of leaves of Acokanthera schimperi and Croton macrostachyus against Plasmodium berghei in Swiss albino mice

    OpenAIRE

    Mohammed, Tigist; Erko, Berhanu; Giday, Mirutse

    2014-01-01

    Background Malaria is one of the most important tropical diseases and the greatest cause of hospitalization and death. Recurring problems of drug resistance are reinforcing the need for finding new antimalarial drugs. In this respect, natural plant products are the main sources of biologically active compounds and have potential for the development of novel antimalarial drugs. A study was conducted to evaluate extracts of the leaves of Croton macrostachyus and Acokanthera schimperi for their ...

  1. Development of a Specific Monoclonal Antibody-Based ELISA to Measure the Artemether Content of Antimalarial Drugs

    OpenAIRE

    Suqin Guo; Yongliang Cui; Lishan He; Liang Zhang; Zhen Cao; Wei Zhang; Rui Zhang; Guiyu Tan; Baomin Wang; Liwang Cui

    2013-01-01

    Artemether is one of the artemisinin derivatives that are active ingredients in antimalarial drugs. Counterfeit and substandard antimalarial drugs have become a serious problem, which demands reliable analytical tools and implementation of strict regulation of drug quality. Structural similarity among artemisinin analogs is a challenge to develop immunoassays that are specific to artemisinin derivatives. To produce specific antibodies to artemether, we used microbial fermentation of artemethe...

  2. Digluconate and Isopropyl Alcohol Biocide Formulation

    Directory of Open Access Journals (Sweden)

    Barbara Conway

    2012-10-01

    Full Text Available Effective surface disinfection is a fundamental infection control strategy within healthcare. This study assessed the antimicrobial efficacy of novel biocide formulations comprising 5% and 2% eucalyptus oil (EO combined with 2% chlorhexidine digluconate (CHG and 70% isopropyl alcohol (IPA contained within a wipe. The efficacy of this novel antimicrobial formulation to remove and eliminate methicillin-resistant Staphylococcus aureus (MRSA, Escherichia coli and Candida albicans from steel surfaces was investigated. Adpression studies of pre-contaminated wipes were also utilised to assess their potential to induce cross-contamination between hard surfaces. Furthermore, the bactericidal nature of the EO-formulation was established in addition to time-kill. The EO-containing formulations demonstrated bactericidal antimicrobial efficacy against all microorganisms and did not induce surface cross-contamination. There was no significant difference (p < 0.05 between the 5% and 2% EO formulations in their ability to remove microorganisms from steel surfaces, however both significantly (p < 0.05 removed more than the control formulations. Microbial biofilms were eliminated within 10 min (p < 0.05 when exposed to the EO formulations. Our novel EO-formulation demonstrated rapid antimicrobial efficacy for potential disinfection and elimination of microbial biofilms from hard surfaces and may therefore be a useful adjunct to current infection control strategies currently employed within healthcare facilities.

  3. Efficacy of a preservative-free formulation of fixed-combination bimatoprost and timolol (Ganfort PF in treatment-naïve patients vs previously treated patients

    Directory of Open Access Journals (Sweden)

    Cordeiro MF

    2015-08-01

    Full Text Available M Francesca Cordeiro,1 Ivan Goldberg,2 Rhett Schiffman,3 Paula Bernstein,3 Marina Bejanian31Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK; 2Discipline of Ophthalmology, University of Sydney, Sydney, NSW, Australia; 3Allergan, Inc., Irvine, CA, USAPurpose: To evaluate, using subgroup analysis, the effect of treatment status on the intraocular pressure (IOP-lowering efficacy of a preservative-free formulation of fixed-combination bimatoprost 0.03%/timolol 0.5% (FCBT PF.Methods: A primary, multicenter, randomized, double-masked, 12-week study compared the efficacy and safety of FCBT PF with preserved FCBT (Ganfort® in 561 patients diagnosed with glaucoma or ocular hypertension. For this analysis, eligible patients were treatment-naïve or had inadequate IOP lowering and underwent a washout of previous treatment. IOP (8 am, 10 am, and 4 pm was measured at baseline and weeks 2, 6, and 12. Subgroup analysis of the FCBT PF arm assessed changes in average eye IOP from baseline in treatment-naïve vs previously treated patients. To evaluate the effect of treatment status at baseline (treatment-naïve vs previously treated on IOP reduction in the FCBT PF treatment group, an analysis of covariance model was used with treatment status and investigator as fixed effects, and baseline average eye IOP, age, glaucoma diagnosis, and baseline average eye corneal thickness as covariates. P-values and the 95% confidence intervals were determined using the model.Results: In the FCBT PF arm, IOP mean changes from baseline ranged from -8.7 mmHg to -9.8 mmHg in treatment-naïve patients (N=50, compared with -7.3 mmHg to -8.5 mmHg in previously treated patients (N=228. Baseline IOP, age, glaucoma diagnosis, and corneal thickness significantly affected IOP reduction in the FCBT PF group. Adjusting for these covariates, FCBT PF had a greater IOP-lowering effect (0.8–1.7 mmHg in treatment-naïve patients than previously treated patients

  4. Stage-specific activity of potential antimalarial compounds measured in vitro by flow cytometry in comparison to optical microscopy and hypoxanthine uptake

    Directory of Open Access Journals (Sweden)

    Carmen E Contreras

    2004-03-01

    Full Text Available The evaluation of new antimalarial agents using older methods of monitoring sensitivity to antimalarial drugs are laborious and poorly suited to discriminate stage-specific activity. We used flow cytometry to study the effect of established antimalarial compounds, cysteine protease inhibitors, and a quinolone against asexual stages of Plasmodium falciparum. Cultured P. falciparum parasites were treated for 48 h with different drug concentrations and the parasitemia was determined by flow cytometry methods after DNA staining with propidium iodide. P. falciparum erythrocytic life cycle stages were readily distinguished by flow cytometry. Activities of established and new antimalarial compounds measured by flow cytometry were equivalent to results obtained with microscopy and metabolite uptake assays. The antimalarial activity of all compounds was higher against P. falciparum trophozoite stages. Advantages of flow cytometry analysis over traditional assays included higher throughput for data collection, insight into the stage-specificity of antimalarial activity avoiding use of radioactive isotopes.

  5. Screening of the antimalarial activity of plants of the Cucurbitaceae family

    Directory of Open Access Journals (Sweden)

    Cláudia Zuany Amorim

    1991-01-01

    Full Text Available Crude ethanolic extracts (CEEs from two species of Cucurbitaceae, Cucurbita maxima and Momordica charantia (commonly called "abóbora moranga" and melão de São Caetano", respectively were assayed for antimalarial activity by the 4-d suppressive test. The CEE of dry C. maxima seeds showed strong antimalarial activity following oral administration (259 and 500 mg/kg, reducing by 50% the levels of parasistemia in Plasmodium berghey-infected mice. Treatment of normal animals with 500 mg/Kg of the extract three days before intravenous injection of P. berghei caused a significant 30% reduction in parasitemic levels. No effect was observed when the animals were treated with the CEE only on the day of inoculation. Oral administration of the CEE of dry M. charantia leaves adminstered orally was ineffective up to 500 mg/Kg in lowering the parasitemic levels of malarious mice.

  6. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants

    Directory of Open Access Journals (Sweden)

    Valter F de Andrade-Neto

    2007-06-01

    Full Text Available In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae, the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae, respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae, all presented significant in vitro inhibition (more active than quinine and chloroquine of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  7. Detection of In Vitro Antimalarial Activity of Some Myanmar Medicinal Plants

    International Nuclear Information System (INIS)

    In order to find out the novel effective antimalarials. six medicinal plants, namely Erythrina stricta Roxb. (Kathit), Luffa acutangula Roxb. (Thabut - Kja), Cordia rothii Roem. and Schult. (Thanet), Tribulus terrestris Linn. (Sule). Zizphus oenoplia Mill. (Paung - pe) and Mimusops elengi Roxb. (Khaye) were selected and tested for their antimalarial activity by using in vitro microdilution technique. According to the in vitro test results, Erythrina stricta Roxb. (Kathit) was found to possess significant suppressive effect on Plasmodium falciparum. With the serially diluted extract dosage concentrations ranging from 1.250 ng/ml to 40,000 ng/ml, the schizont suppressive percentage of Eryhrina stricta Roxb. (Kathi) was observed to be 19.57%, 35.44%, 55.18%, 96.04%,100% and 100% respectively

  8. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model*

    OpenAIRE

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara

    2010-01-01

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low ...

  9. ANTIMALARIAL DRUGS IN THERAPY OF SYSTEMIC LUPUS ERYTHEMATOSUS: PAST, PRESENT, FUTURE

    Directory of Open Access Journals (Sweden)

    Tatyana Andreyevna Lisitsyna

    2010-01-01

    Full Text Available The data available in the literature on experience in using antimalarial drugs in the treatment of systemic lupus erythematosus are summarized. A major emphasis is placed on therapy with hydroxychlorochine (plaquenil versus chlorine. Possible mechanisms of action of the drug and its effect on the course of the disease itself and concomitant abnormalities are described. Data on the toxicity of the drug and its safe use in pregnancy and lactation are also discussed

  10. Surveillance of antimalarial drug resistance in China in the 1980s–1990s

    OpenAIRE

    Liu, De-Quan

    2014-01-01

    Since the successful preparation of the microplates and the medium for field application, the resistance degree and its geographical distribution of chloroquine-resistant Plasmodium falciparum, the fluctuation of the resistance degree of P. falciparum to chloroquine, and the sensitivity of the parasite to commonly used antimalarial drugs were investigated between 1980 and 2003 by the in vitro microtest and the in vivo four-week test recommended by the World Health Organization (WHO). The resu...

  11. Preliminary assessment of medicinal plants used as antimalarials in the southeastern Venezuelan Amazon

    Directory of Open Access Journals (Sweden)

    Caraballo Alejandro

    2004-01-01

    Full Text Available Eighteen species of medicinal plants used in the treatment of malaria in Bolívar State, Venezuela were recorded and they belonged to Compositae, Meliaceae, Anacardiaceae, Bixaceae, Boraginaceae, Caricaceae, Cucurbitaceae, Euphorbiaceae, Leguminosae, Myrtaceae, Phytolaccaceae, Plantaginaceae, Scrophulariaceae, Solanaceae and Verbenaceae families. Antimalarial plant activities have been linked to a range of compounds including anthroquinones, berberine, flavonoids, limonoids, naphthquinones, sesquiterpenes, quassinoids, indol and quinoline alkaloids.

  12. Antimalarial and cytotoxic properties of Chukrasia tabularis A. Juss and Turraea vogelii Hook F. Ex. Benth.

    Science.gov (United States)

    Ogbole, Omonike O; Saka, Yusuf A; Fasinu, Pius S; Fadare, Adenike A; Ajaiyeoba, Edith O

    2016-04-01

    Malaria, caused by plasmodium parasite, is at the moment the highest cause of morbidity and mortality in the tropics. Recently, there is increasing efforts to develop more potent antimalarials from plant sources that will have little or no adverse effects. This study is aimed at investigating the in vivo mice antimalarial and in vitro antiplasmodial effects of two Meliaceae plants commonly used in Nigerian ethnomedicine as part of recipe for treating malaria infection: Chukrasia tabularis and Turraea vogelii. Hot water decoction and methanol extract of both plants were evaluated for their antimalarial activity in vivo using the mice model assay and in vitro using the parasite lactate dehydrogenase (pLDH) assay. The extracts were also assessed for toxicity with brine shrimp lethality assay and in mammalian cell lines using the neural red assay. The in vivo mice model antimalarial study showed that the methanol extract of the stem bark of C. tabularis exhibited the highest % chemosuppression (83.65 ± 0.66) at the highest dosage administered (800 mg/kg) when compared with chloroquine diphosphate, the standard reference drug which had a % suppression of 90.36 ± 0.04 (p < 0.05). The in vitro antiplasmodial study indicated that the aqueous extract of the stem bark of C. tabularis displayed good activity against Plasmodium falciparum chloroquine-sensitive (D6) strain (IC50 of 10.739 μg/mL) and chloroquine-resistant (W2) strain. Chloroquine and artemisinin had <0.163 and <0.0264, respectively. PMID:26911147

  13. A genome wide association study of Plasmodium falciparum susceptibility to 22 antimalarial drugs in Kenya.

    Directory of Open Access Journals (Sweden)

    Jason P Wendler

    Full Text Available BACKGROUND: Drug resistance remains a chief concern for malaria control. In order to determine the genetic markers of drug resistant parasites, we tested the genome-wide associations (GWA of sequence-based genotypes from 35 Kenyan P. falciparum parasites with the activities of 22 antimalarial drugs. METHODS AND PRINCIPAL FINDINGS: Parasites isolated from children with acute febrile malaria were adapted to culture, and sensitivity was determined by in vitro growth in the presence of anti-malarial drugs. Parasites were genotyped using whole genome sequencing techniques. Associations between 6250 single nucleotide polymorphisms (SNPs and resistance to individual anti-malarial agents were determined, with false discovery rate adjustment for multiple hypothesis testing. We identified expected associations in the pfcrt region with chloroquine (CQ activity, and other novel loci associated with amodiaquine, quinazoline, and quinine activities. Signals for CQ and primaquine (PQ overlap in and around pfcrt, and interestingly the phenotypes are inversely related for these two drugs. We catalog the variation in dhfr, dhps, mdr1, nhe, and crt, including novel SNPs, and confirm the presence of a dhfr-164L quadruple mutant in coastal Kenya. Mutations implicated in sulfadoxine-pyrimethamine resistance are at or near fixation in this sample set. CONCLUSIONS/SIGNIFICANCE: Sequence-based GWA studies are powerful tools for phenotypic association tests. Using this approach on falciparum parasites from coastal Kenya we identified known and previously unreported genes associated with phenotypic resistance to anti-malarial drugs, and observe in high-resolution haplotype visualizations a possible signature of an inverse selective relationship between CQ and PQ.

  14. Medicines informal market in Congo, Burundi and Angola: counterfeit and sub-standard antimalarials

    OpenAIRE

    Bertocchi Paola; Antoniella Eleonora; Cocchieri Emilia; Di Maggio Anna; Gaudiano Maria; Alimonti Stefano; Valvo Luisa

    2007-01-01

    Abstract Background The presence of counterfeits and sub-standards in African medicines market is a dramatic problem that causes many deaths each year. The increase of the phenomenon of pharmaceutical counterfeiting is due to the rise of the illegal market and to the impossibility to purchase branded high cost medicines. Methods In this paper the results of a quality control on antimalarial tablet samples purchased in the informal market in Congo, Burundi and Angola are reported. The quality ...

  15. Antimalarial Chemotherapy: Natural Product Inspired Development of Preclinical and Clinical Candidates with Diverse Mechanisms of Action.

    Science.gov (United States)

    Fernández-Álvaro, Elena; Hong, W David; Nixon, Gemma L; O'Neill, Paul M; Calderón, Félix

    2016-06-23

    Natural products have played a pivotal role in malaria chemotherapy progressing from quinine and artemisinin to ozonide-based compounds. Many of these natural products have served as template for the design and development of antimalarial drugs currently in the clinic or in the development phase. In this review, we will detail those privileged scaffolds that have guided medicinal chemistry efforts yielding molecules that have reached the clinic. PMID:26791529

  16. Synthesis and in vitro antimalarial activity of novel chalcone derivatives / Frans Johannes Smit

    OpenAIRE

    Smit, Frans Johannes

    2014-01-01

    Malaria is endemic in 106 countries worldwide. This disease is caused by a parasite from the genus Plasmodium. Of the five species that infect humans, Plasmodium falciparum is the most virulent, with over three billion people at risk and around 660 000 deaths reported in 2011. Of these deaths, 91% were in the African region, while 86% were children under the age of five. In light of the widespread development of resistance by malaria parasites against the classic antimalarial drugs, such as c...

  17. Amazonian plant natural products:perspectives for discovery of new antimalarial drug leads

    OpenAIRE

    Lucio H Freitas-Junior; Pedro Cravo; Marcus Vinícius Guimarães Lacerda; André Machado Siqueira; Carolina Borsoi Moraes; Gina Frausin; Luiz Francisco Rocha e Silva; Stefanie Costa Pinto Lopes; Renata Braga Souza Lima; Fabio Trindade Maranhão Costa; Adrian Martin Pohlit

    2013-01-01

    Plasmodium falciparum and P. vivax malaria parasites are now resistant, or showing signs of resistance, to most drugs used in therapy. Novel chemical entities that exhibit new mechanisms of antiplasmodial action are needed. New antimalarials that block transmission of Plasmodium spp. from humans to Anopheles mosquito vectors are key to malaria eradication efforts. Although P. vivax causes a considerable number of malaria cases, its importance has for long been neglected. Vivax malaria can cau...

  18. ANTIMALARIAL DRUGS IN THERAPY OF SYSTEMIC LUPUS ERYTHEMATOSUS: PAST, PRESENT, FUTURE

    OpenAIRE

    Tatyana Andreyevna Lisitsyna; N. M. Kosheleva

    2010-01-01

    The data available in the literature on experience in using antimalarial drugs in the treatment of systemic lupus erythematosus are summarized. A major emphasis is placed on therapy with hydroxychlorochine (plaquenil) versus chlorine. Possible mechanisms of action of the drug and its effect on the course of the disease itself and concomitant abnormalities are described. Data on the toxicity of the drug and its safe use in pregnancy and lactation are also discussed

  19. Effect of membrane filtration of antimalarial drug solutions on in vitro activity against Plasmodium falciparum*

    OpenAIRE

    Baird, J K; Lambros, C.

    1984-01-01

    Antimalarial activities of chloroquine, mefloquine, amodiaquine, and quinine in vitro against Plasmodium falciparum were diminished as a consequence of membrane filtration. Filtered drug solutions gave ID50 values up to 25-fold greater than those of non-filtered (ethanol-sterilized) drug solutions. Loss of activity by filtration was overcome by increasing the drug concentration prior to filtration. Water solutions filtered through Millex-GS filter units consistently showed an absorbance maxim...

  20. Altered plasmodial surface anion channel activity and in vitro resistance to permeating antimalarial compounds

    OpenAIRE

    Lisk, Godfrey; Pain, Margaret; Sellers, Morgan; Gurnev, Philip A.; Pillai, Ajay D.; Bezrukov, Sergey M.; Desai, Sanjay A.

    2010-01-01

    Erythrocytes infected with malaria parasites have increased permeability to various solutes. These changes may be mediated by an unusual small conductance ion channel known as the plasmodial surface anion channel (PSAC). While channel activity benefits the parasite by permitting nutrient acquisition, it can also be detrimental because water-soluble antimalarials may more readily access their parasite targets via this channel. Recently, two such toxins, blasticidin S and leupeptin, were used t...

  1. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    OpenAIRE

    Asrar Alam

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes...

  2. Hallazgos complementarios sobre la actividad antimalarica del azul de metileno = Complementary findings on the antimalarial activity and toxicity of methylene blue

    OpenAIRE

    G. Garavito; Bertani, S; Deharo, Eric

    2008-01-01

    Methylene blue was reported as the first synthetic antimalarial by Ehrlich in 1881. It is currently no longer used for that purpose but it should be reconsidered since new economic alternatives are urgently needed in the arsenal of antimalarial drugs. The antimalarial activity of methylene blue is investigated here in vivo against rodent malaria parasites. 15 mg/kg daily dose of methylene blue inhibits 50% of the erythrocytic parasite growth of Plasmodium berghei and R yoelii nigeriensis, whi...

  3. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin

    International Nuclear Information System (INIS)

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate–gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate–gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01–0.08 μg mL−1) with sensitivity of 0.26 μA μg mL−1. The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035 μg mL−1 and 0.0036 μg mL−1 in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. - Highlights: • Extraction of PHA from indigenously isolated Pseudomonas aeruginosa BPC2 • Developed PHA/AuNPs/HRP/ITO based biosensor without the use of chemical cross linker • Detection of antimalarial drug artemisinin using the nanocomposite based biosensor

  4. Metabolic Dysregulation Induced in Plasmodium falciparum by Dihydroartemisinin and Other Front-Line Antimalarial Drugs.

    Science.gov (United States)

    Cobbold, Simon A; Chua, Hwa H; Nijagal, Brunda; Creek, Darren J; Ralph, Stuart A; McConville, Malcolm J

    2016-01-15

    Detailed information on the mode of action of antimalarial drugs can be used to improve existing drugs, identify new drug targets, and understand the basis of drug resistance. In this study we describe the use of a time-resolved, mass spectrometry (MS)-based metabolite profiling approach to map the metabolic perturbations induced by a panel of clinical antimalarial drugs and inhibitors on Plasmodium falciparum asexual blood stages. Drug-induced changes in metabolite levels in P. falciparum-infected erythrocytes were monitored over time using gas chromatography-MS and liquid chromatography-MS and changes in specific metabolic fluxes confirmed by nonstationary [(13)C]-glucose labeling. Dihydroartemisinin (DHA) was found to disrupt hemoglobin catabolism within 1 hour of exposure, resulting in a transient decrease in hemoglobin-derived peptides. Unexpectedly, it also disrupted pyrimidine biosynthesis, resulting in increased [(13)C]-glucose flux toward malate production, potentially explaining the susceptibility of P. falciparum to DHA during early blood-stage development. Unique metabolic signatures were also found for atovaquone, chloroquine, proguanil, cycloguanil and methylene blue. We also show that this approach can be used to identify the mode of action of novel antimalarials, such as the compound Torin 2, which inhibits hemoglobin catabolism. PMID:26150544

  5. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum.

    Science.gov (United States)

    Vaidya, Akhil B; Morrisey, Joanne M; Zhang, Zhongsheng; Das, Sudipta; Daly, Thomas M; Otto, Thomas D; Spillman, Natalie J; Wyvratt, Matthew; Siegl, Peter; Marfurt, Jutta; Wirjanata, Grennady; Sebayang, Boni F; Price, Ric N; Chatterjee, Arnab; Nagle, Advait; Stasiak, Marcin; Charman, Susan A; Angulo-Barturen, Iñigo; Ferrer, Santiago; Belén Jiménez-Díaz, María; Martínez, María Santos; Gamo, Francisco Javier; Avery, Vicky M; Ruecker, Andrea; Delves, Michael; Kirk, Kiaran; Berriman, Matthew; Kortagere, Sandhya; Burrows, Jeremy; Fan, Erkang; Bergman, Lawrence W

    2014-01-01

    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na(+) regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na(+) homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na(+) homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes. PMID:25422853

  6. Natural and Semi synthetic Antimalarial Compounds: Emphasis on the Terpene Class.

    Science.gov (United States)

    Silva, G N S; Rezende, L C D; Emery, F S; Gosmann, G; Gnoatto, S C B

    2015-01-01

    Malaria is one of the most important tropical diseases since more than 40% of the world population is at risk. This disease is endemic to more than 100 nations and remains one of the main leading causes of death in children less than five years of age worldwide. Natural product-derived compounds have played a major role in drug discovery, often as prototypes to obtain more active semi synthetic derivatives. Antimalarial pharmacotherapy is a significant example of plant-derived medicines, such as quinine and artemisinin. This review highlights studies on terpenes and their semi synthetic derivatives from natural sources with antimalarial activity reported in the literature during eleven years (2002-2013). A total of 114 compounds are found among terpenes and their semi synthetic derivatives. Cytotoxicity of the compounds is also found in this review. Furthermore, the physicochemical properties of the terpenes addressed are discussed based on seven well established descriptors, which provide a useful source for the elaboration of a terpene library of antimalarial compounds. PMID:25553426

  7. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Phukon, Pinkee [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Radhapyari, Keisham [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India); Konwar, Bolin Kumar [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Nagaland University (Central), Lumami, Zunheboto, Nagaland 798627 (India); Khan, Raju, E-mail: khan.raju@gmail.com [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India)

    2014-04-01

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate–gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate–gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01–0.08 μg mL{sup −1}) with sensitivity of 0.26 μA μg mL{sup −1}. The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035 μg mL{sup −1} and 0.0036 μg mL{sup −1} in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. - Highlights: • Extraction of PHA from indigenously isolated Pseudomonas aeruginosa BPC2 • Developed PHA/AuNPs/HRP/ITO based biosensor without the use of chemical cross linker • Detection of antimalarial drug artemisinin using the nanocomposite based biosensor.

  8. The anti-malarial chloroquine overcomes Primary resistance and restores sensitivity to Trastuzumab in HER2-positive breast cancer

    Science.gov (United States)

    Cufí, Sílvia; Vazquez-Martin, Alejandro; Oliveras-Ferraros, Cristina; Corominas-Faja, Bruna; Cuyàs, Elisabet; López-Bonet, Eugeni; Martin-Castillo, Begoña; Joven, Jorge; Menendez, Javier A.

    2013-01-01

    Autophagy may control the de novo refractoriness of HER2 gene-amplified breast carcinomas to the monoclonal antibody trastuzumab (Herceptin). Tumor cells originally obtained from a patient who rapidly progressed on trastuzumab ab initio display increased cellular levels of the LC3-II protein—a finding that correlates with increased numbers of autophagosomes—and decreased levels of the autophagy receptor p62/SQSTM1, a protein selectively degraded by autophagy. Trastuzumab-refractory cells are in a state of “autophagy addiction” because genetic ablation of autophagy-specific genes (ATG8, ATG5, ATG12) notably reduces intrinsic refractoriness to trastuzumab. When the anti-malarial lysosomotropic drug chloroquine impedes autophagic resolution of the accumulation of autophagolysosomes formed in the presence of trastuzumab, cells commit to die by apoptosis. Accordingly, combination treatment with trastuzumab and chloroquine radically suppresses tumor growth by > 90% in a tumor xenograft completely refractory to trastuzumab. Adding chloroquine to trastuzumab-based regimens may therefore improve outcomes among women with autophagy-addicted HER2-positive breast cancer. PMID:23965851

  9. A generalized anisotropic deformation formulation for geomaterials

    Science.gov (United States)

    Lei, Z.; Rougier, Esteban; Knight, E. E.; Munjiza, A.; Viswanathan, H.

    2016-04-01

    In this paper, the combined finite-discrete element method (FDEM) has been applied to analyze the deformation of anisotropic geomaterials. In the most general case geomaterials are both non-homogeneous and non-isotropic. With the aim of addressing anisotropic material problems, improved 2D FDEM formulations have been developed. These formulations feature the unified hypo-hyper elastic approach combined with a multiplicative decomposition-based selective integration for volumetric and shear deformation modes. This approach is significantly different from the co-rotational formulations typically encountered in finite element codes. Unlike the co-rotational formulation, the multiplicative decomposition-based formulation naturally decomposes deformation into translation, rotation, plastic stretches, elastic stretches, volumetric stretches, shear stretches, etc. This approach can be implemented for a whole family of finite elements from solids to shells and membranes. This novel 2D FDEM based material formulation was designed in such a way that the anisotropic properties of the solid can be specified in a cell by cell basis, therefore enabling the user to seed these anisotropic properties following any type of spatial variation, for example, following a curvilinear path. In addition, due to the selective integration, there are no problems with volumetric or shear locking with any type of finite element employed.

  10. Assessment of strategy formulation

    DEFF Research Database (Denmark)

    Acur, Nuran; Englyst, Linda

    2006-01-01

    Purpose – Today, industrial firms need to cope with competitive challenges related to innovation, dynamic responses, knowledge sharing, etc. by means of effective and dynamic strategy formulation. In light of these challenges, the purpose of the paper is to present and evaluate an assessment tool...... for strategy formulation processes that ensures high quality in process and outcome. Design/methodology/approach – A literature review was conducted to identify success criteria for strategy formulation processes. Then, a simple questionnaire and assessment tool was developed and used to test the validity...... of the success criteria through face-to-face interviews with 46 managers, workshops involving 40 managers, and two in-depth case studies. The success criteria have been slightly modified due to the empirical results, to yield the assessment tool. Findings – The resulting assessment tool integrates three generic...

  11. Formulation of Automotive Lubricants

    Science.gov (United States)

    Atkinson, D.; Brown, A. J.; Jilbert, D.; Lamb, G.

    The formulation of lubricants for current light- and heavy-duty vehicles (passenger cars and trucks) and also motorcycles/small engines is described in terms of engine types and meeting European, US and Japanese emission control requirements. Trends in the formulation of lubricants are discussed and the importance of high and low 'SAPS' for future developments emphasised. Specification and evaluation of lubricant performance for light-vehicle gasoline and diesel, and also heavy-duty diesel engines are described. Emphasis is given to diesel engine cleanliness by soot and deposit control and the effect of emission controls on lubricant formulation. The lubricant requirements for motorcycle and small engines, primarily two-stroke cycle, and their specifications are described.

  12. Parenteral formulation of zopiclone

    Directory of Open Access Journals (Sweden)

    Swamy P

    2008-01-01

    Full Text Available The present study was undertaken with an intention to develop a stable and effective parenteral formulation, containing the drug zopiclone. Since zopiclone is a water insoluble drug, various methods such as co-solvency, pH control and hydrotrophy have been tried in order to enhance its solubility. When all these methods could not give adequate solubility enhancement of the drug, a hydrochloride salt was prepared, and it was found to be thermostable. Various batches of zopiclone hydrochloride injection formulation were prepared in order to assess the influence of light, atmospheric oxygen and antioxidant on the stability of the drug and the formulations were also subjected to accelerated stability testing in order to predict approximate shelf-life of the product.

  13. A review of age-old antimalarial drug to combat malaria:efficacy upgradation by nanotechnology based drug delivery

    Institute of Scientific and Technical Information of China (English)

    Satyajit; Tripathy; Somenath; Roy

    2014-01-01

    Malaria is uncontrolled burden in the world till now.Despite of different efforts to develop antimalarial drug for decades,any anti-malarial drug can able to eradicate completely till now.Many anti-malarial substances are practically ineffectual because of their physicochemical limitations,cytotoxicity,chemical instability and degradation,and limited activities against intracellular parasites.Taking into consideration,the amount of research is going to conduct in the field of nanoparticle based drug delivery systems,lead to new ways of improving the treatment of infectious diseases.The study has focused on the progress and advancement of research on nanotechnology based drug delivery to eradicate the malaria.We like to focus the efficacy of nanotechnology based drug application for the opening out of novel chemotherapeutics in laboratory research,which may show the way to better use with age-old antimalarial drug and may draw the attention of pharmaceutical industries for the improvement and designing of effective anti-malarial drugs in future.

  14. Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains.

    Science.gov (United States)

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A; Wicht, Kathryn J; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G; Egan, Timothy J; Malhotra, Pawan; Sutherland, Colin J; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas; Ding, Xavier C

    2015-02-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs.

  15. Deciphering the Late Biosynthetic Steps of Antimalarial Compound FR-900098

    OpenAIRE

    Johannes, Tyler W.; DeSieno, Matthew A.; Griffin, Benjamin M.; Thomas, Paul M.; Kelleher, Neil L.; Metcalf, William W.; Zhao, Huimin

    2010-01-01

    FR-900098 is a potent chemotherapeutic agent for the treatment of malaria. Here we report the heterologous production of this compound in E. coli by re-constructing the entire biosynthetic pathway using a three plasmid system. Based on this system, whole cell feeding assays in combination with in vitro enzymatic activity assays reveal an unprecedented functional role of nucleotide conjugation and lead to the complete elucidation of the previously unassigned late biosynthetic steps. These stud...

  16. Closing the access barrier for effective anti-malarials in the private sector in rural Uganda: consortium for ACT private sector subsidy (CAPSS pilot study

    Directory of Open Access Journals (Sweden)

    Talisuna Ambrose O

    2012-10-01

    Full Text Available Abstract Background Artemisinin-based combination therapy (ACT, the treatment of choice for uncomplicated falciparum malaria, is unaffordable and generally inaccessible in the private sector, the first port of call for most malaria treatment across rural Africa. Between August 2007 and May 2010, the Uganda Ministry of Health and the Medicines for Malaria Venture conducted the Consortium for ACT Private Sector Subsidy (CAPSS pilot study to test whether access to ACT in the private sector could be improved through the provision of a high level supply chain subsidy. Methods Four intervention districts were purposefully selected to receive branded subsidized medicines - “ACT with a leaf”, while the fifth district acted as the control. Baseline and evaluation outlet exit surveys and retail audits were conducted at licensed and unlicensed drug outlets in the intervention and control districts. A survey-adjusted, multivariate logistic regression model was used to analyse the intervention’s impact on: ACT uptake and price; purchase of ACT within 24 hours of symptom onset; ACT availability and displacement of sub-optimal anti-malarial. Results At baseline, ACT accounted for less than 1% of anti-malarials purchased from licensed drug shops for children less than five years old. However, at evaluation, “ACT with a leaf” accounted for 69% of anti-malarial purchased in the interventions districts. Purchase of ACT within 24 hours of symptom onset for children under five years rose from 0.8% at baseline to 26.2% (95% CI: 23.2-29.2% at evaluation in the intervention districts. In the control district, it rose modestly from 1.8% to 5.6% (95% CI: 4.0-7.3%. The odds of purchasing ACT within 24 hours in the intervention districts compared to the control was 0.46 (95% CI: 0.08-2.68, p=0.4 at baseline and significant increased to 6.11 (95% CI: 4.32-8.62, p Conclusions These data demonstrate that a supply-side subsidy and an intensive communications campaign

  17. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon; Røpke, Stefan

    optimality cannot be guaranteed by branching on aggregated variables. We present a generic exact solution method to remedy the drawbacks of aggregation. It combines the original and aggregated formulations and applies Benders' decomposition. We apply the method to the Split Delivery Vehicle Routing Problem....

  18. FORMULATION AND EVALUATION OF AMISULPRIDE ORODISPERSIBLE TABLET

    Directory of Open Access Journals (Sweden)

    Dr. Hitesh P. Dalvadi

    2016-03-01

    Full Text Available Orodispersible dosage forms have lured the market for a certain section of the patient population which includes dysphagia, bed ridden, psychic, and geriatric patients. Moreover Orodispersible tablets shows increased bioavailability as compared to conventional dosage forms. Amisulpride is a psychotropic agent belonging to the chemical class of benzamide derivatives. At low doses, it enhances dopaminergic neurotransmission by preferentially blocking presynaptic dopamine D2/D3 auto receptors. The tablets were prepared by using direct compression method, and drug solubility is enhanced by solid dispersion. Formulation were prepared by using different superdisintegrant, combination of different superdisintegrant and effect of hydrophilic lubricant was studied and evaluated pre and post compression parameters. Tablets were evaluated for content uniformity, Disintegration time, wetting time, hardness, friability and In-vitro dissolution studies. More than 90% of drug was released from almost all the formulations within 10 min. Formulation C4 containing Sodium starch glycolate (4.5%, Crospovidone (2.5% and crosscarmellose sodium (3.5%, was having disintegration time 24 seconds, wetting time 18 seconds, hardness 3.4Kg/cm2 and in vitro drug release of 99.96% in pH 6.8. Based on this data C4 was found to be the best formulation. Further formulations were subjected to accelerated stability studies. Tablets showed no appreciable changes with respect to disintegration and dissolution profiles. Results of this study indicate among the superdisintegrants tried, combination of superdisintegrant gave the best result.

  19. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome.

    Science.gov (United States)

    Ancolio, C; Azas, N; Mahiou, V; Ollivier, E; Di Giorgio, C; Keita, A; Timon-David, P; Balansard, G

    2002-11-01

    Methanol and chloroform extracts were prepared from various parts of four plants collected in Mali: Guiera senegalensis (Gmel.) Combretaceae, Feretia apodanthera (Del.) Rubiaceae, Combretum micranthum (Don.) Combretaceae, Securidaca longepedunculata (Fres.) Polygalaceae and two plants -collected in Sao Tome: Pycnanthus angolensis (Welw.) Myristicaceae and Morinda citrifolia (Benth.) Rubiaceae were assessed for their in vitro antimalarial activity and their cytotoxic effects on human monocytes (THP1 cells) by flow cytometry. The methanol extract of leaves of Feretia apodanthera and the chloroform extract of roots of Guiera senegalensis exhibited a pronounced antimalarial activity. Two alkaloids isolated from the active extract of Guiera senegalensis, harman and tetrahydroharman, showed antimalarial activity (IC(50) lower than 4 microg/mL) and displayed low toxicity against THP1. Moreover, the decrease of THP1 cells in S phase of the cell cycle, after treatment with harman and tetrahydroharman, was probably due to an inhibition of total protein synthesis. PMID:12410545

  20. In vitro and in vivo characterization of the antimalarial lead compound SSJ-183 in Plasmodium models

    Directory of Open Access Journals (Sweden)

    Schleiferböck S

    2013-11-01

    Full Text Available Sarah Schleiferböck,1,2 Christian Scheurer,1,2 Masataka Ihara,3,4 Isamu Itoh,3,4 Ian Bathurst,5,† Jeremy N Burrows,5 Pascal Fantauzzi,5 Julie Lotharius,5 Susan A Charman,6 Julia Morizzi,6 David M Shackleford,6 Karen L White,6 Reto Brun,1,2 Sergio Wittlin1,21Swiss Tropical and Public Health Institute, Basel, 2University of Basel, Basel, Switzerland; 3Drug Discovery Science Research Center, Hoshi University, Shinagawa, Tokyo, Japan; 4Synstar Japan Co, Ltd, Odawara, Japan; 5Medicines for Malaria Venture, Geneva, Switzerland; 6Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia †Ian Bathurst passed away on 26 June 2011Abstract: The objective of this work was to characterize the in vitro (Plasmodium falciparum and in vivo (Plasmodium berghei activity profile of the recently discovered lead compound SSJ-183. The molecule showed in vitro a fast and strong inhibitory effect on growth of all P. falciparum blood stages, with a tendency to a more pronounced stage-specific action on ring forms at low concentrations. Furthermore, the compound appeared to be equally efficacious on drug-resistant and drug-sensitive parasite strains. In vivo, SSJ-183 showed a rapid onset of action, comparable to that seen for the antimalarial drug artesunate. SSJ-183 exhibited a half-life of about 10 hours and no significant differences in absorption or exposure between noninfected and infected mice. SSJ-183 appears to be a promising new lead compound with an attractive antimalarial profile.Keywords: antimalarial studies, cross-resistance, stage-specificity, Plasmodium falciparum

  1. A new antimalarial agent; effect of extracts of Artemisia diffusa against Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Abdolhossein Rustaiyan

    2009-01-01

    Full Text Available Malaria is one of the most serious health problems in many parts of the world, particularly in Africa and Latin America with a high mortality rate. The situation is further complicated by the spread of drug-resistant parasites in many parts where plasmodium falciparum is endemic. A few alternative drugs are under development, necessitating urgent efforts to identify new classes of antimalarial agents. There is therefore a need to find new, effective and affordable remedies for malaria, including those derived from plants. The clinical utility of the Chinese discovery of artemisinin from the herb Artemisia annua has stimulated much interest in traditional plants as potential sources of new antimalarial drugs. In this study, the antimalarial activity of Artemisia diffusa extracts and the fraction which contains sesquiterpene lactones including Tehranolide, on Plasmodium berghei in vivo on the mice model of malaria was investigated. We did our best to carry out the biological tests as well as the phytochemical investigations from the same collection. It demonstrates that crude extracts of Artemisia diffusa inhibit the growth of Plasmodium berghei in vivo in NMRI mice. The microscopic examination of Giemsa stained slides showed a virtual absence of all blood-stage of murine malaria treated with three concentrations of herbal extracts including 27, 2.7 and 0.27 mg/ml. These observations suggest that the active constituents in the extract may be cytotoxic for P. berghei, thereby inhibiting their development to the erythrocytic stage. The results specifically indicated the inhibitory effects of the A.diffusa crude extracts and the fraction which contains sesquiterpene lactones including Tehranolide, on the developmental stages of P. berghei by decreasing parasitaemia.

  2. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

    Directory of Open Access Journals (Sweden)

    Julia Penna-Coutinho

    Full Text Available The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2. The IC(50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use.

  3. Liposomal formulations for inhalation.

    Science.gov (United States)

    Cipolla, David; Gonda, Igor; Chan, Hak-Kim

    2013-08-01

    No marketed inhaled products currently use sustained release formulations such as liposomes to enhance drug disposition in the lung, but that may soon change. This review focuses on the interaction between liposomal formulations and the inhalation technology used to deliver them as aerosols. There have been a number of dated reviews evaluating nebulization of liposomes. While the information they shared is still accurate, this paper incorporates data from more recent publications to review the factors that affect aerosol performance. Recent reviews have comprehensively covered the development of dry powder liposomes for aerosolization and only the key aspects of those technologies will be summarized. There are now at least two inhaled liposomal products in late-stage clinical development: ARIKACE(®) (Insmed, NJ, USA), a liposomal amikacin, and Pulmaquin™ (Aradigm Corp., CA, USA), a liposomal ciprofloxacin, both of which treat a variety of patient populations with lung infections. This review also highlights the safety of inhaled liposomes and summarizes the clinical experience with liposomal formulations for pulmonary application. PMID:23919478

  4. Evaluation of the ex vivo antimalarial activity of organotin (IV) ethylphenyldithiocarbamate on erythrocytes infected with Plasmodium berghei NK 65.

    Science.gov (United States)

    Awang, Normah; Jumat, Hafizah; Ishak, Shafariatul Akmar; Kamaludin, Nurul Farahana

    2014-06-01

    Malaria is the most destructive and dangerous parasitic disease. The commonness of this disease is getting worse mainly due to the increasing resistance of Plasmodium falciparum against antimalarial drugs. Therefore, the search for new antimalarial drug is urgently needed. This study was carried out to evaluate the effects of dibutyltin (IV) ethylphenyldithiocarbamate (DBEP), diphenyltin (IV) ethylphenyldithiocarbamate (DPEP) and triphenyltin (IV) ethylphenyldithiocarbamate (TPEP) compounds as antimalarial agents. These compounds were evaluated against erythrocytes infected with Plasmodium berghei NK65 via ex vivo. Organotin (IV) ethylphenyldithiocarbamate, [R(n)Sn(C9H10NS2)(4-n)] with R = C4H9 and C6H5 for n = 2; R = C6H5 for n = 3 is chemically synthesised for its potential activities. pLDH assay was employed for determination of the concentration that inhibited 50% of the Plasmodium's activity (IC50) after 24 h treatment at concentration range of 10-0.0000001 mg mL(-1). Plasmodium berghei NK65 was cultured in vitro to determine the different morphology of trophozoite and schizont. Only DPEP and TPEP compounds have antimalarial activity towards P. berghei NK65 at IC50 0.094±0.011 and 0.892±0.088 mg mL(-1), respectively. The IC50 of DPEP and TPEP were lowest at 30% parasitemia with IC50 0.001±0.00009 and 0.0009±0.0001 mg mL(-1), respectively. In vitro culture showed that TPEP was effective towards P. berghei NK65 in trophozoite and schizont morphology with IC50 0.0001±0.00005 and 0.00009±0.00003 μg mL(-1), respectively. In conclusion, DPEP and TPEP have antimalarial effect on erythrocytes infected with P. berghei NK65 and have potential as antimalarial and schizonticidal agents. PMID:26035957

  5. In vitro antimalarial drug susceptibility in Thai border areas from 1998–2003

    Directory of Open Access Journals (Sweden)

    Mungthin Mathirut

    2005-08-01

    Full Text Available Abstract Background The Thai-Myanmar and Thai-Cambodia borders have been historically linked with the emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs. Indeed, the areas are often described as harbouring multi-drug resistant parasites. These areas of Thailand have experienced significant changes in antimalarial drug exposure patterns over the past decade. This study describes the in vitro antimalarial susceptibility patterns of 95 laboratory-adapted P. falciparum isolates, collected between 1998 and 2003,. Methods Ninety five P. falciparum isolates were collected from five sites in Thailand between 1998 and 2003. After laboratory adaptation to in vitro culture, the susceptibility of these parasites to a range of established antimalarial drugs (chloroquine [CQ], mefloquine [MQ], quinine [QN] and dihydroartemisinin [DHA] was determined by the isotopic microtest. Results Mefloquine (MQ sensitivity remained poorest in areas previously described as MQ-resistant areas. Sensitivity to MQ of parasites from this area was significantly lower than those from areas reported to harbour moderate (p = 0.002 of low level MQ resistance (p = 000001. Importantly for all drugs tested, there was a considerable range in absolute parasite sensitivities. There was a weak, but statistically positive correlation between parasite sensitivity to CQ and sensitivity to both QN and MQ and a positive correlation between MQ and QN. In terms of geographical distribution, parasites from the Thai-Cambodia were tended to be less sensitive to all drugs tested compared to the Thai-Myanmar border. Parasite sensitivity to all drugs was stable over the 6-year collection period with the exception of QN. Conclusion This study highlights the high degree of variability in parasite drug sensitivity in Thailand. There were geographical differences in the pattern of resistance which might reflect differences in drug usage in each area. In contrast to many

  6. A new phloroglucinol derivative from Hypericum calycinum with antifungal and in vitro antimalarial activity.

    Science.gov (United States)

    Decosterd, L A; Hoffmann, E; Kyburz, R; Bray, D; Hostettmann, K

    1991-12-01

    The new phloroglucinol derivative 1 has been isolated from the light petroleum ether extract of the aerial parts of Hypericum calycinum. Its structure has been established by means of 1H- and 13C-NMR spectroscopy and by nOe, MHQC, and HMBC experiments on its monomethyl ether derivative 3. Compound 1 was fungicidal against Cladosporium cucumerinum in a TLC bioassay. In addition, this new phloroglucinol derivative was also found to exert an interesting antimalarial activity in an in vitro test system. PMID:1818346

  7. Characterization of PfTrxR inhibitors using antimalarial assays and in silico techniques

    OpenAIRE

    Munigunti, Ranjith; Gathiaka, Symon; Acevedo, Orlando; Sahu, Rajnish; Tekwani, Babu; Angela I. Calderón

    2013-01-01

    Background The compounds 1,4-napthoquinone (1,4-NQ), bis-(2,4-dinitrophenyl)sulfide (2,4-DNPS), 4-nitrobenzothiadiazole (4-NBT), 3-dimethylaminopropiophenone (3-DAP) and menadione (MD) were tested for antimalarial activity against both chloroquine (CQ)-sensitive (D6) and chloroquine (CQ)-resistant (W2) strains of Plasmodium falciparum through an in vitro assay and also for analysis of non-covalent interactions with P. falciparum thioredoxin reductase (PfTrxR) through in silico docking studies...

  8. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates.

    Science.gov (United States)

    Faidallah, Hassan M; Panda, Siva S; Serrano, Juan C; Girgis, Adel S; Khan, Khalid A; Alamry, Khalid A; Therathanakorn, Tanya; Meyers, Marvin J; Sverdrup, Francis M; Eickhoff, Christopher S; Getchell, Stephen G; Katritzky, Alan R

    2016-08-15

    Click chemistry technique led to novel 1,2,3-triazole-quinine conjugates 8a-g, 10a-o, 11a-h and 13 utilizing benzotriazole-mediated synthetic approach with excellent yields. Some of the synthesized analogs (11a, 11d-h) exhibited antimalarial properties against Plasmodium falciparum strain 3D7 with potency higher than that of quinine (standard reference used) through in vitro standard procedure bio-assay. Statistically significant BMLR-QSAR model describes the bio-properties, validates the observed biological observations and identifies the most important parameters governing bio-activity. PMID:27298002

  9. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    OpenAIRE

    Shen S; Liu SZ; Zhang YS; Du MB; Liang AH; Song LH; Ye ZG

    2015-01-01

    Shuo Shen, Shu-Zhi Liu, Yu-Shi Zhang, Mao-Bo Du, Ai-Hua Liang, Li-Hua Song, Zu-Guang Ye Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China Abstract: Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel ...

  10. Antimalarial drug resistance of Plasmodium falciparum in India: changes over time and space

    OpenAIRE

    Shah, Naman K.; Dhillon, Gajender P S; Dash, Adtiya P; Arora, Usha; Meshnick, Steven R.; Valecha, Neena

    2011-01-01

    After the launch of the National Malaria Control Programme in 1953, the number of malaria cases reported in India fell to an all-time low of 0·1 million in 1965. However, the initial success could not be maintained and a resurgence of malaria began in the late 1960s. Resistance of Plasmodium falciparum to chloroquine was first reported in 1973 and increases in antimalarial resistance, along with rapid urbanisation and labour migration, complicated the challenge that India’s large geographical...

  11. Innovative public-private partnerships to maximize the delivery of anti-malarial medicines: lessons learned from the ASAQ Winthrop experience

    Directory of Open Access Journals (Sweden)

    Sebbag Robert

    2011-05-01

    Full Text Available Abstract Background This case study describes how a public-private partnership initiated to develop a new anti-malarial combination, ASAQ Winthrop, has evolved over time to address issues posed by its effective deployment in the field. Case description In 2002, DNDi created the FACT project to develop two fixed-dose combinations, artesunate-amodiaquine and artesunate-mefloquine, to meet the WHO anti-malarial treatment recommendations and international regulatory agencies approval standards. In 2002, Sanofi-aventis had started a development programme for a fixed-dose combination of artesunate and amodiaquine, to replace its co-blister combination. DNDi and sanofi-aventis joined forces in 2004, with the objective of developing within the shortest possible time frame a non-patented, affordable and easy to use fixed-dose combination of artesunate and amodiaquine adapted to the needs of patients, in particular, those of children. The partners developed Coarsucam®/Artesunate Amodiaquine Winthrop® ("ASAQ Winthrop" which was prequalified by the WHO in 2008. Additional partnerships have since been established by DNDi and sanofi-aventis to ensure: 1 the adoption of this new medicine by malaria-endemic countries, 2 its appropriate usage through a broad range of information tools, and 3 the monitoring of its safety and efficacy in the field through an innovative Risk Management Plan. Discussion and evaluation The partnership between DNDi and sanofi-aventis has enabled the development and pre-qualification of ASAQ Winthrop in a short timeframe. As a result of the multiple collaborations established by the two partners, as of late 2010, ASAQ Winthrop was registered in 30 sub-Saharan African countries and in India, with over 80 million treatments distributed in 21 countries. To date, 10 clinical studies, involving 3432 patients with ASAQ Winthrop were completed to document efficacy and safety issues identified in the Risk Management Plan. Conclusions The

  12. Prediction of potential antimalarial targets of artemisinin based on protein information from whole genome of Plasmodium falciparum

    Institute of Scientific and Technical Information of China (English)

    HAN LiPing; HUANG Qiang; NAN Peng; ZHONG Yang

    2009-01-01

    On the basis of the genomic data and protein pathway information about Plasmodium falciparum clone 3D7 from the NCBI taxonomy database and the KEGG database,eight key protein enzymes in the signal pathways were selected to perform molecular docking with artemisinin.The binding modes obtained from the molecular docking suggested that purine nucleoside phosphorylase (pfPNP),peptide deformylase (pfPDF),and ribose 5-phosphate isomerase (pfRpiA) may be involved in the antimalarial mode of action of artemisinin.Artemisinin exhibited its antimalarial activity probably by interfering with the metabolic pathways of purine,pyrimidine,methionine,glyoxylate and dicarboxylate,or pentose phosphate.

  13. Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review

    Directory of Open Access Journals (Sweden)

    Olliaro P

    2004-01-01

    Full Text Available The emergence and spread of drug resistant malaria represents a considerable challenge to controlling malaria. To date, malaria control has relied heavily on a comparatively small number of chemically related drugs, belonging to either the quinoline or the antifolate groups. Only recently have the artemisinin derivatives been used but mostly in south east Asia. Experience has shown that resistance eventually curtails the life-span of antimalarial drugs. Controlling resistance is key to ensuring that the investment put into developing new antimalarial drugs is not wasted. Current efforts focus on research into new compounds with novel mechanisms of action, and on measures to prevent or delay resistance when drugs are introduced. Drug discovery and development are long, risky and costly ventures. Antimalarial drug development has traditionally been slow but now various private and public institutions are at work to discover and develop new compounds. Today, the antimalarial development pipeline is looking reasonably healthy. Most development relies on the quinoline, antifolate and artemisinin compounds. There is a pressing need to have effective, easy to use, affordable drugs that will last a long time. Drug combinations that have independent modes of action are seen as a way of enhancing efficacy while ensuring mutual protection against resistance. Most research work has focused on the use of artesunate combined with currently used standard drugs, namely, mefloquine, amodiaquine, sulfadoxine/pyrimethamine, and chloroquine. There is clear evidence that combinations improve efficacy without increasing toxicity. However, the absolute cure rates that are achieved by combinations vary widely and depend on the level of resistance of the standard drug. From these studies, further work is underway to produce fixed dose combinations that will be packaged in blister packs. This review will summarise current antimalarial drug developments and outline recent

  14. Olaparib tablet formulation

    DEFF Research Database (Denmark)

    Plummer, Ruth; Swaisland, Helen; Leunen, Karin;

    2015-01-01

    BACKGROUND: The oral PARP inhibitor olaparib has shown efficacy in patients with BRCA-mutated cancer. This Phase I, open-label, three-part study (Parts A-C) in patients with advanced solid tumours evaluated the effect of food on the pharmacokinetics (PK) of olaparib when administered in tablet...... formulation. METHODS: PK data were obtained in Part A using a two-treatment period crossover design; single-dose olaparib 300 mg (two 150 mg tablets) was administered in two prandial states: fasted and fed. In Part B, patients received olaparib tablets (300 mg bid) for 5 days under fasting conditions; in Part...

  15. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  16. Antimalarial properties of Artemisia vulgaris L. ethanolic leaf extract in a Plasmodium berghei murine malaria model

    Directory of Open Access Journals (Sweden)

    Gayan S. Bamunuarachchi

    2013-12-01

    Full Text Available Background & objectives: Artemisinin isolated from Artemisia annua is the most potent antimalarial drug against chloroquine-resistant Plasmodium falciparum malaria. Artemisia vulgaris, an invasive weed, is the only Artemisia species available in Sri Lanka. A pilot study was undertaken to investigate the antiparasitic activity of an A. vulgaris ethanolic leaf extract (AVELE in a P. berghei ANKA murine malaria model that elicits pathogenesis similar to falciparum malaria. Methods: A 4-day suppressive and the curative assays determined the antiparasitic activity of AVELE using four doses (250, 500, 750 and 1000 mg/kg, Coartem® as the positive control and 5% ethanol as the negative control in male ICR mice infected with P. berghei. Results: The 500, 750 and 1000 mg/kg doses of AVELE significantly (p ≤0.01 inhibited parasitaemia by 79.3, 79.6 and 87.3% respectively, in the 4-day suppressive assay, but not in the curative assay. Chronic administration of the high dose of AVELE ruled out overt signs of toxicity and stress as well as hepatotoxicity, renotoxicity and haematotoxicity. Interpretation & conclusion: The oral administration of a crude ethonolic leaf extract of A. vulgaris is non-toxic and possesses potent antimalarial properties in terms of antiparasitic activity.

  17. An Alternative Paradigm for the Role of Antimalarial Plants in Africa

    Directory of Open Access Journals (Sweden)

    Steven Maranz

    2012-01-01

    Full Text Available Most investigations into the antimalarial activity of African plants are centered on finding an indigenous equivalent to artemisinin, the compound from which current frontline antimalarial drugs are synthesized. As a consequence, the standard practice in ethnopharmacological research is to use in vitro assays to identify compounds that inhibit parasites at nanomolar concentrations. This approach fails to take into consideration the high probability of acquisition of resistance to parasiticidal compounds since parasite populations are placed under direct selection for genetic that confers a survival advantage. Bearing in mind Africa's long exposure to malaria and extensive ethnobotanical experimentation with both therapies and diet, it is more likely that compounds not readily overcome by Plasmodium parasites would have been retained in the pharmacopeia and cuisine. Such compounds are characterized by acting primarily on the host rather than directly targeting the parasite and thus cannot be adequately explored in vitro. If Africa's long history with malaria has in fact produced effective plant therapies, their scientific elucidation will require a major emphasis on in vivo investigation.

  18. Phytochemical screening, antimalarial and histopathological studies of Allophylus africanus and Tragia benthamii

    Institute of Scientific and Technical Information of China (English)

    Oladosu I.A.; Balogun S.O.; Ademowo G.O.

    2013-01-01

    The anti-malarial potential of different parts ofAllophylus africanus P.Beauv and Tragia benthamii Baker were determined in vivo for suppressive,curative and cytotoxic activities in mice receiving 0.2 mL of a standard inoculum size of 1 × 107 infected erythrocytes of Plasmodium berghei (NK-65) intraperitoneally.The A.africanus extracts suppressed parasitaemia following administration to infected mice by 92.82%-97.81% on day 7 post-infection against 96.81% for chloroquine.The infected extract-treated animals had significantly moderate (P < 0.05) packed cell volume (PCV) compared with the infected,untreated animals.Phytochemical screening revealed a predominance of tannins,saponins,flavonoids and carbohydrates in all parts of A.africanus,and alkaloids instead of flavonoids in the extract of T.benthamii.The results suggest that the extract possesses considerable antimalarial activity.These results support further studies on A.africanus.

  19. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense

    Directory of Open Access Journals (Sweden)

    Khodakarim Nastaran

    2010-05-01

    Full Text Available Abstract Background There is an urgent need to identify new anti-malarial drug targets for both prophylaxis and chemotherapy, due to the increasing problem of drug resistance to malaria parasites. In the present study, the aim was to discover novel, effective plant-based extracts for the activity against malaria. Methods Ten plants found in Iran were selected by ethnobotanical survey of medicinal plants. The crude ethanolic extracts were tested for in vitro anti-plasmodial activity against two strains of Plasmodium falciparum: K1 (chloroquine-resistant strain and CY27 (chloroquine-sensitive strain, using the parasite lactate dehydrogenase (pLDH assay. The anti-plasmodial activity of the extracts was also assessed in the 4-day suppressive anti-malarial assay in mice inoculated with Plasmodium berghei (ANKA strain. Crude ethanolic extracts showed good anti-plasmodial activity were further fractionated by partitioning in water and dichloromethane. Results Of 10 plant species assayed, three species: Boerhavia elegans (Choisy, Solanum surattense (Burm.f. and Prosopis juliflora (Sw. showed promising anti-plasmodial activity in vitro (IC50 ≤ 50 μg/ml and in vivo with no toxicity. The dichloromethane fraction of three extracts revealed stronger anti-plasmodial activity than the total extracts. Conclusion Anti-plasmodial activities of extracts of B. elegans and S. surattense are reported for the first time.

  20. Synthesis, Cytotoxic and Antimalarial Activities of Benzoyl Thiosemicarbazone Analogs of Isoquinoline and Related Compounds

    Directory of Open Access Journals (Sweden)

    Somsak Ruchirawat

    2010-02-01

    Full Text Available Thiosemicarbazone analogs of papaveraldine and related compounds 1–6 were synthesized and evaluated for cytotoxic and antimalarial activities. The cytotoxic activity was tested against HuCCA-1, HepG2, A549 and MOLT-3 human cancer cell lines. Thiosemicarbazones 1–5 displayed cytotoxicity toward all the tested cell lines, while compounds 2–5 selectively showed potent activity against the MOLT-3 cell lines. Significantly, N(4-phenyl-2-benzoylpyridine thiosemicarbazone 4 exhibited the most potent activity against HuCCA-1, HepG2, A549 and MOLT-3 cell lines with IC50 values of 0.03, 4.75, 0.04 and 0.004 µg/mL, respectively. In addition, 2-benzoylpyridine thio-semicarbazones 3 and 4 showed antimalarial activity against Plasmodium falciparum with IC50 of 10-7 to < 10-6 M. The study demonstrates the quite promising activity of analog 4 as a lead molecule for further development.

  1. Evaluation of the Quality of Artemisinin-Based Antimalarial Medicines Distributed in Ghana and Togo

    Directory of Open Access Journals (Sweden)

    Dorcas Osei-Safo

    2014-01-01

    Full Text Available This study, conducted as part of our overall goal of regular pharmacovigilance of antimalarial medicines, reports on the quality of 132 artemisinin-based antimalarial medicines distributed in Ghana and Togo. Three methods were employed in the quality evaluation—basic (colorimetric tests for establishing the identity of the requisite active pharmaceutical ingredients (APIs, semi-quantitative TLC assay for the identification and estimation of API content, and HPLC assay for a more accurate quantification of API content. From the basic tests, only one sample totally lacked API. The HPLC assay, however, showed that 83.7% of the ACTs and 57.9% of the artemisinin-based monotherapies failed to comply with international pharmacopoeia requirements due to insufficient API content. In most of the ACTs, the artemisinin component was usually the insufficient API. Generally, there was a good correlation between the HPLC and SQ-TLC assays. The overall failure rates for both locally manufactured (77.3% and imported medicines (77.5% were comparable. Similarly the unregistered medicines recorded a slightly higher overall failure rate (84.7% than registered medicines (70.8%. Only two instances of possible cross-border exchange of medicines were observed and there was little difference between the medicine quality of collections from border towns and those from inland parts of both countries.

  2. Understanding the biology of the Plasmodium falciparum apicoplast; an excellent target for antimalarial drug development.

    Science.gov (United States)

    Chakraborty, Arnish

    2016-08-01

    Malaria is a life-threatening tropical disease, caused by the intracellular parasite Plasmodium falciparum. The World Health Organization counts malaria as one of the top ten causes of worldwide death. The unavailability of a successful malaria vaccine and the ever-increasing instances of drug resistance in the malaria parasite demand the discovery of new targets within P. falciparum for the development of next generation antimalarials. Fortunately, all apicomplexan parasites, including P. falciparum harbor a relict, non-photosynthetic plastid known as the apicoplast. The apicoplast is a semi-autonomous organelle within P. falciparum containing a 35kb circular genome. Despite a genome of its own, majority of the apicoplast proteins are encoded by the parasite nucleus and imported into the apicoplast. The organelle has been shown to be essential to P. falciparum survival and the loss the apicoplast manifests as a 'delayed death' response in the parasite. The apicoplast has evolved out of cyanobacteria in a complex, two step endosymbiotic event. As a result the architecture and the gene expression machinery of the apicoplast is quite bacteria-like and is susceptible to a wide range of antibiotics such as fosmidomycin, tetracycline, azithromycin, clindamycin and triclosan. The biosynthetic pathways for isoprenoids, fatty acids and heme operate within the malaria apicoplast, making the organelle an excellent target for drug development. The review focuses on the evolution, biology and the essentiality of the apicoplast within the malaria parasite and discusses some of the recent achievements towards the design and discovery of apicoplast targeted antimalarial compounds.

  3. Formulation and optimization of carbamazepine floating tablets

    Directory of Open Access Journals (Sweden)

    Patel D

    2007-01-01

    Full Text Available Floating tablets of carbamazepine were developed using melt granulation technique. Bees wax was used as a hydrophobic meltable material. Hydroxypropylmethylcellulose, sodium bicarbonate and ethyl cellulose were used as matrixing agent, gas-generating agent and floating enhancer, respectively. The tablets were evaluated for in vitro buoyancy and dissolution studies. A simplex lattice design was applied to investigate the combined effect of 3 formulation variables i.e. amount of hydroxypropyl methylcellulose ( X 1 , ethyl cellulose ( X 2 and sodium bicarbonate ( X 3 . The floating lag time (F lag , time required for 50% (t 50 and 80% drug dissolution (t 80 were taken as responses. Results of multiple regression analysis indicated that, low level of X 1 and X 2 , and high level of X 3 should be used to manufacture the tablet formulation with desired in vitro floating time and dissolution. Formulations developed using simplex lattice design were fitted to various kinetic models for drug release. Formulation S3 was selected as a promising formulation and was found stable at 40 o and 75% relative humidity for 3 months. Present study demonstrates the use of simplex lattice design in the development of floating tablets with minimum experimentation.

  4. Automatic query formulations in information retrieval.

    Science.gov (United States)

    Salton, G; Buckley, C; Fox, E A

    1983-07-01

    Modern information retrieval systems are designed to supply relevant information in response to requests received from the user population. In most retrieval environments the search requests consist of keywords, or index terms, interrelated by appropriate Boolean operators. Since it is difficult for untrained users to generate effective Boolean search requests, trained search intermediaries are normally used to translate original statements of user need into useful Boolean search formulations. Methods are introduced in this study which reduce the role of the search intermediaries by making it possible to generate Boolean search formulations completely automatically from natural language statements provided by the system patrons. Frequency considerations are used automatically to generate appropriate term combinations as well as Boolean connectives relating the terms. Methods are covered to produce automatic query formulations both in a standard Boolean logic system, as well as in an extended Boolean system in which the strict interpretation of the connectives is relaxed. Experimental results are supplied to evaluate the effectiveness of the automatic query formulation process, and methods are described for applying the automatic query formulation process in practice. PMID:10299297

  5. Antimicrobial and antimalarial properties of medicinal plants used by the indigenous tribes of Andaman and Nicobar Islands, India.

    Science.gov (United States)

    Chander, M Punnam; Pillai, C R; Sunish, I P; Vijayachari, P

    2016-07-01

    In this study, methanol extracts of six medicinal plants (Alstonia macrophylla, Claoxylon indicum, Dillenia andamanica, Jasminum syringifolium, Miliusia andamanica and Pedilanthus tithymaloides) traditionally used by Nicobarese tribes of Andaman and Nicobar Islands were studied for antimicrobial and antimalarial activities as well as preliminary photochemical analysis. Plants were collected from Car Nicobar of Andaman and Nicobar Islands and the ethnobotanical data were gathered from traditional healers who inhabit the study area. The methanol extracts were obtained by cold percolation method and the antimicrobial activity was found using agar well diffusion method. Among the plants tested, J. syringifolium, D. andamanica, C. indicum were most active. The antimalarial activity was evaluated against Plasmodium falciparum chloroquine-sensitive MRC-2 isolate. The crude extract of M. andamanica showed excellent antimalarial activity followed by extracts of P. tithymaloides, J. syringifolium and D. andamanica. The chemical injury to erythrocytes was also carried out and it showed that, there were no morphological changes in erythrocytes by the methanol crude extracts. The in vitro antimicrobial and antimalarial activity might be due to the presence of alkaloids, flavonoids, triterpenes, sterols, tannins and saponins in the methanol extracts of tested plants. PMID:27174207

  6. Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products

    Directory of Open Access Journals (Sweden)

    Alaíde Braga de Oliveira

    2009-08-01

    Full Text Available Malaria is still the most destructive and dangerous parasitic infection in many tropical and subtropical countries. The burden of this disease is getting worse, mainly due to the increasing resistance of Plasmodium falciparum against the widely available antimalarial drugs. There is an urgent need for new, more affordable and accessible antimalarial agents possessing original modes of action. Natural products have played a dominant role in the discovery of leads for the development of drugs to treat human diseases, and this fact anticipates that new antimalarial leads may certainly emerge from tropical plant sources. This present review covers most of the recently-published non-alkaloidal natural compounds from plants with antiplasmodial and antimalarial properties, belonging to the classes of terpenes, limonoids, flavonoids, chromones, xanthones, anthraquinones, miscellaneous and related compounds, besides the majority of papers describing antiplasmodial crude extracts published in the last five years not reviewed before. In addition, some perspectives and remarks on the development of new drugs and phytomedicines for malaria are succinctly discussed.

  7. Why Hospital Pharmacists Have Failed to Manage Antimalarial Drugs Stock-Outs in Pakistan? A Qualitative Insight

    Directory of Open Access Journals (Sweden)

    Madeeha Malik

    2013-01-01

    Full Text Available Purpose. This study aimed to explore the perceptions of hospital pharmacists towards drug management and reasons underlying stock-outs of antimalarial drugs in Pakistan. Methods. A qualitative study was designed to explore the perceptions of hospital pharmacists regarding drug management and irrational use of antimalarial drugs in two major cities of Pakistan, namely, Islamabad (national capital and Rawalpindi (twin city. Semistructured interviews were conducted with 16 hospital pharmacists using indepth interview guides at a place and time convenient for the respondents. Interviews, which were audiotaped and transcribed verbatim, were evaluated by thematic content analysis and by other authors’ analysis. Results. Most of the respondents were of the view that financial constraints, inappropriate drug management, and inadequate funding were the factors contributing toward the problem of antimalarial drug stock-outs in healthcare facilities of Pakistan. The pharmacists anticipated that prescribing by nonproprietary names, training of health professionals, accepted role of hospital pharmacist in drug management, implementation of essential drug list and standard treatment guidelines for malaria in the healthcare system can minimize the problem of drug stock outs in healthcare system of Pakistan. Conclusion. The current study showed that all the respondents in the two cities agreed that hospital pharmacist has failed to play an effective role in efficient management of anti-malarial drugs stock-outs.

  8. Design, synthesis and in vitro evaluation of tetrahydropyrimidine-isatin hybrids as potential antitubercular and antimalarial agents

    Institute of Scientific and Technical Information of China (English)

    Tarunkumar Nanjibhai Akhaja; Jignesh Priyakant Raval

    2012-01-01

    A series of 5-substituted-3-[{5-(6-methyl-2-oxo/thioxo-4-phenyl-1,2,3,4-tetrahydropyrimidin-5-yl)-1,3,4-oxadiazol-2-yl}-imino]-1,3-dihydro-2H-indol-2-one were synthesized,characterized and screened for their anti-tubercular and antimalarial activity.

  9. Plasmodium falciparum Thioredoxin Reductase (PfTrxR) and Its Role as a Target for New Antimalarial Discovery.

    Science.gov (United States)

    McCarty, Sara E; Schellenberger, Amanda; Goodwin, Douglas C; Fuanta, Ngolui Rene; Tekwani, Babu L; Calderón, Angela I

    2015-01-01

    The growing resistance to current antimalarial drugs is a major concern for global public health. The pressing need for new antimalarials has led to an increase in research focused on the Plasmodium parasites that cause human malaria. Thioredoxin reductase (TrxR), an enzyme needed to maintain redox equilibrium in Plasmodium species, is a promising target for new antimalarials. This review paper provides an overview of the structure and function of TrxR, discusses similarities and differences between the thioredoxin reductases (TrxRs) of different Plasmodium species and the human forms of the enzyme, gives an overview of modeling Plasmodium infections in animals, and suggests the role of Trx functions in antimalarial drug resistance. TrxR of Plasmodium falciparum is a central focus of this paper since it is the only Plasmodium TrxR that has been crystallized and P. falciparum is the species that causes most malaria cases. It is anticipated that the information summarized here will give insight and stimulate new directions in which research might be most beneficial.

  10. Plants as Sources of Antimalarial Drugs Part. 1. In vitro Test Method for the Evaluation of Crude Extracts from Plants.

    Science.gov (United States)

    O'neill, M J; Bray, D H; Boardman, P; Phillipson, J D; Warhurst, D C

    1985-10-01

    An IN VITRO antimalarial test, utilising the inhibition of uptake of [G- (3)H]-hypoxanthine into PLASMODIUM FALCIPARUM cultured in human blood, has been used to assess the activity of crude extracts of ARTEMISIA ANNUA and A. VULGARIS (Compositae) and of BRUCEA JAVANICA, AILANTHUS ALTISSIMA, and SIMABA CEDRON (Simaroubaceae).

  11. [Optimization of formulations for dietetic pastry products].

    Science.gov (United States)

    Villarroel, M; Uquiche, E; Brito, G; Cancino, M

    2000-03-01

    Optimized formulations of dietetic pastry products such as cake and sponge cake premixes were formulated using the surface response methodology. % Emulsifier agent and baking time were the selected independent variables for cake, as well as % emulsifier agent % chlorinated flour the variables selected for sponge cake. Three different level of each variable summing up thirteen experimental formulae of each product were assessed to optimize the variables that could have some influence in the sensory characteristics of these dietetic products. The total sensory quality was determined for both dietetic products using the composite scoring test and a panel of 18 trained judges. Looking at the contour graphic and considering economic aspects the best combination of variables for cake formulation was 2% emulsifier agent and 48 minutes for baking time, With respect to sponge cake, the best combination was 6% emulsifier agent and 48% chlorinated flour. Shelf life studies showed that both dietetic formulations remained stable during storage conditions of 75 days at 30 degrees C. During this period, significant differences in sensory characteristics were not found (p < 0.05). Data of peroxide values were kept under the critical value reported for detection of organoleptic rancidity. Reported values of hedonic test showed that these dietetics pastry products had good acceptability, and open up marketing opportunities for new products with potential health benefits to consumers. PMID:11048573

  12. Screening of mucoadhesive vaginal gel formulations

    Directory of Open Access Journals (Sweden)

    Ana Ochoa Andrade

    2014-12-01

    Full Text Available Rational design of vaginal drug delivery formulations requires special attention to vehicle properties that optimize vaginal coating and retention. The aim of the present work was to perform a screening of mucoadhesive vaginal gels formulated with carbomer or carrageenan in binary combination with a second polymer (carbomer, guar or xanthan gum. The gels were characterised using in vitroadhesion, spreadability and leakage potential studies, as well as rheological measurements (stress and frequency sweep tests and the effect of dilution with simulated vaginal fluid (SVF on spreadability. Results were analysed using analysis of variance and multiple factor analysis. The combination of polymers enhanced adhesion of both primary gelling agents, carbomer and carrageenan. From the rheological point of view all formulations presented a similar behaviour, prevalently elastic and characterised by loss tangent values well below 1. No correlation between rheological and adhesion behaviour was found. Carbomer and carrageenan gels containing the highest percentage of xanthan gum displayed good in vitro mucoadhesion and spreadability, minimal leakage potential and high resistance to dilution. The positive results obtained with carrageenan-xanthan gum-based gels can encourage the use of natural biocompatible adjuvants in the composition of vaginal products, a formulation field that is currently under the synthetic domain.

  13. Gurson's Model: ALE Formulation and Strain Localization

    Science.gov (United States)

    da Cunda, Luiz A. B.; Creus, Guillermo J.

    2007-05-01

    This paper presents a brief review of Gurson's damage model, employed to describes the strength degradation in ductile metals submitted to large plastic deformations. The damage model is applied using finite elements and an Arbitrary Lagrangian-Eulerian formulation (ALE), to ensure a better quality to the finite elements mesh. The study of the combined application of ALE and Gurson approach to damage modeling and strain localization is the object of this paper.

  14. Food formulation comprising spent coffee grounds

    OpenAIRE

    Castillo, M. Dolores del; Martínez Sáez, Nuria; Ullate, Mónica

    2014-01-01

    [EN] The invention relates to a novel food formulation comprising a combination of spent coffee grounds as a source of antioxidant insoluble dietary fibre and a source of proteins, together with other additional ingredients, used to make healthy solid food for bakeries, pastry shops, and confectioner's, including bread, pastries, biscuits, breakfast cereals and appetisers, for the general population and for people with special nutritional requirements.

  15. Plutonium Immobilization Project Baseline Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.

    1999-02-01

    A key milestone for the Immobilization Project (AOP Milestone 3.2a) in Fiscal Year 1998 (FY98) is the definition of the baseline composition or formulation for the plutonium ceramic form. The baseline formulation for the plutonium ceramic product must be finalized before the repository- and plant-related process specifications can be determined. The baseline formulation that is currently specified is given in Table 1.1. In addition to the baseline formulation specification, this report provides specifications for two alternative formulations, related compositional specifications (e.g., precursor compositions and mixing recipes), and other preliminary form and process specifications that are linked to the baseline formulation. The preliminary specifications, when finalized, are not expected to vary tremendously from the preliminary values given.

  16. Antimalarial drug quality in the most severely malarious parts of Africa - a six country study.

    Directory of Open Access Journals (Sweden)

    Roger Bate

    Full Text Available A range of antimalarial drugs were procured from private pharmacies in urban and peri-urban areas in the major cities of six African countries, situated in the part of that continent and the world that is most highly endemic for malaria. Semi-quantitative thin-layer chromatography (TLC and dissolution testing were used to measure active pharmaceutical ingredient content against internationally acceptable standards. 35% of all samples tested failed either or both tests, and were substandard. Further, 33% of treatments collected were artemisinin monotherapies, most of which (78% were manufactured in disobservance of an appeal by the World Health Organisation (WHO to withdraw these clinically inappropriate medicines from the market. The high persistence of substandard drugs and clinically inappropriate artemisinin monotherapies in the private sector risks patient safety and, through drug resistance, places the future of malaria treatment at risk globally.

  17. Structural Basis for Binding and Selectivity of Antimalarial and Anticancer Ethylenediamine Inhibitors to Protein Farnesyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Hast, Michael A.; Fletcher, Steven; Cummings, Christopher G.; Pusateri, Erin E.; Blaskovich, Michelle A.; Rivas, Kasey; Gelb, Michael H.; Voorhis, Wesley C.Van; Sebti, Said M.; Hamilton, Andrew D.; Beese, Lorena S. ((Yale)); ((USF)); ((UWASH)); ((Duke))

    2009-03-20

    Protein farnesyltransferase (FTase) catalyzes an essential posttranslational lipid modification of more than 60 proteins involved in intracellular signal transduction networks. FTase inhibitors have emerged as a significant target for development of anticancer therapeutics and, more recently, for the treatment of parasitic diseases caused by protozoan pathogens, including malaria (Plasmodium falciparum). We present the X-ray crystallographic structures of complexes of mammalian FTase with five inhibitors based on an ethylenediamine scaffold, two of which exhibit over 1000-fold selective inhibition of P. falciparum FTase. These structures reveal the dominant determinants in both the inhibitor and enzyme that control binding and selectivity. Comparison to a homology model constructed for the P. falciparum FTase suggests opportunities for further improving selectivity of a new generation of antimalarial inhibitors.

  18. Discovery of new antimalarial chemotypes through chemical methodology and library development.

    Science.gov (United States)

    Brown, Lauren E; Chih-Chien Cheng, Ken; Wei, Wan-Guo; Yuan, Pingwei; Dai, Peng; Trilles, Richard; Ni, Feng; Yuan, Jing; MacArthur, Ryan; Guha, Rajarshi; Johnson, Ronald L; Su, Xin-zhuan; Dominguez, Melissa M; Snyder, John K; Beeler, Aaron B; Schaus, Scott E; Inglese, James; Porco, John A

    2011-04-26

    In an effort to expand the stereochemical and structural complexity of chemical libraries used in drug discovery, the Center for Chemical Methodology and Library Development at Boston University has established an infrastructure to translate methodologies accessing diverse chemotypes into arrayed libraries for biological evaluation. In a collaborative effort, the NIH Chemical Genomics Center determined IC(50)'s for Plasmodium falciparum viability for each of 2,070 members of the CMLD-BU compound collection using quantitative high-throughput screening across five parasite lines of distinct geographic origin. Three compound classes displaying either differential or comprehensive antimalarial activity across the lines were identified, and the nascent structure activity relationships (SAR) from this experiment used to initiate optimization of these chemotypes for further development.

  19. Holographic analysis on deformation and restoration of malaria-infected red blood cells by antimalarial drug

    Science.gov (United States)

    Byeon, Hyeokjun; Ha, Young-Ran; Lee, Sang Joon

    2015-11-01

    Malaria parasites induce morphological, biochemical, and mechanical changes in red blood cells (RBCs). Mechanical variations are closely related to the deformability of individual RBCs. The deformation of various RBCs, including healthy and malaria-infected RBCs (iRBCs), can be directly observed through quantitative phase imaging (QPI). The effects of chloroquine treatment on the mechanical property variation of iRBCs were investigated using time-resolved holographic QPI of single live cells on a millisecond time scale. The deformabilities of healthy RBCs, iRBCs, and drug-treated iRBCs were compared, and the effect of chloroquine on iRBC restoration was experimentally examined. The present results are beneficial to elucidate the dynamic characteristics of iRBCs and the effect of the antimalarial drug on iRBCs.

  20. Compatibility assessment of thermoplastic formulations

    OpenAIRE

    D. McAteer; Weaver, M.; Blair, L H; Flood, N; Gaulter, S E

    2016-01-01

    Prior to the large-scale preparation of any new chemical formulation an assessment of the potential reactivity between the components must be carried out. This practice, which is common to many fields including pharmaceutical science, is particularly essential in the case of energetic formulations whose chemical incompatibility may result in an unexpected and potentially explosive decomposition. The common method used to investigate incompatibility is to heat 1:1 (w/w) formulations and eva...

  1. Explosive Formulation Code Naming SOP

    Energy Technology Data Exchange (ETDEWEB)

    Martz, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-19

    The purpose of this SOP is to provide a procedure for giving individual HME formulations code names. A code name for an individual HME formulation consists of an explosive family code, given by the classified guide, followed by a dash, -, and a number. If the formulation requires preparation such as packing or aging, these add additional groups of symbols to the X-ray specimen name.

  2. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance.

    Science.gov (United States)

    Warhurst, David C; Craig, John C; Raheem, K Saki

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications. PMID:27483471

  3. Diversity and utilization of antimalarial ethnophytotherapeutic remedies among the Kikuyus (Central Kenya

    Directory of Open Access Journals (Sweden)

    Bussmann Rainer W

    2006-02-01

    Full Text Available Abstract Plants in Kenya are becoming increasingly important as sources of traditional medicines. The World Health Organization (WHO has estimated that malaria kills about 2.7 million people every year, 90% of who are from Africa. Malaria continues to be a national concern in Kenya as it plays a major role in the high mortality rates being experienced currently. The use and miss-use of chloroquine to prevent and treat falciparium malaria has led to widespread appearance of chloroquine resistant parasites in Kenya and other tropical countries. These factors and the rising costs of non-chloroquine drugs have made the local people to turn to traditional remedies for management of this menace. This paper examines the current utilization of traditional plant medicines in managing malaria menace in Central Kenya. The results show both indigenous and introduced species are in use indicating traditional medicinal practices in this region are dynamic. In total 58 species in 54 genera and 33 families were identified. The family Rubiaceae was found to have the highest number of reported species. Use of the various taxa is compared between five districts within Central Province of Kenya. The commonest species in this pharmacopoeia are: Caesalpinia volkensii Harms, Strychnos henningsii Gilg, Ajuga remota Benth., Warbugia ugandensis Sprague and Olea europaea L. The first three species are used in all the five districts while the others are restricted in some of the districts. In 74% of the anti-malarial plant species reported in this study, the remedies are obtained in destructive manner and may need conservation measures to ensure sustainable utilization. The results of this study become a basis for selecting plants for further pharmacological and phytochemical studies in developing new and locally relevant anti-malarial agents.

  4. Combating poor-quality anti-malarial medicines: a call to action.

    Science.gov (United States)

    Bassat, Quique; Tanner, Marcel; Guerin, Philippe J; Stricker, Kirstin; Hamed, Kamal

    2016-01-01

    The circulation of poor-quality medicines continues to undermine the fight against many life-threatening diseases. Anti-malarial medicines appear to have been particularly compromised and present a major public health threat in malaria-endemic countries, negatively affecting individuals and their communities. Concerted collaborative efforts are required from global, regional and national organizations, involving the public and private sectors, to address the problem. While many initiatives are underway, a number of unmet needs deserve urgent and increased multisector attention. At the global level, there is a need for an international public health legal framework or treaty on poor-quality medicines, with statutes suitable for integration into national laws. In addition, increased international efforts are required to strengthen the governance of global supply chains and enhance cooperation between national medicine regulation authorities and law enforcement bodies. Increased investment is needed in innovative technologies that will enable healthcare teams to detect poor-quality medicines at all levels of the supply chain. At the regional level, a number of initiatives would be beneficial-key areas are standardization, simplification, and reciprocal recognition of registration processes and development of quality control capacity in regional centres of excellence that are better aligned with public health needs; improved surveillance methods and creation of a framework for compulsory and transparent reporting of poor-quality medicines; additional support for national medicine regulation authorities and other national partner authorities; and an increase in support for regional laboratories to boost their capabilities in detecting poor-quality medicines. It is vital that all stakeholders involved in efforts against poor-quality anti-malarial medicines extend and strengthen their actions in these critical areas and thus effectively support global health development

  5. Present development concerning antimalarial activity of phospholipid metabolism inhibitors with special reference to in vivo activity

    Directory of Open Access Journals (Sweden)

    Marie L. Ancelin

    1994-01-01

    Full Text Available The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50 against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain. This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50/ED50 but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral

  6. Malaria healthcare policy change in Kenya: Implications on sales and marketing of antimalarials

    Directory of Open Access Journals (Sweden)

    Peter K. Ngure , Lorraine Nyaoke & David Minja

    2012-03-01

    Full Text Available Background & objectives: Malaria healthcare policy change in Kenya aimed at improving the control of malariabut faced a number of challenges in implementation related to marketing of the drugs. This research investigatedthe effect of the change of the national malaria policy on drug sales and strategic marketing responses ofantimalarial pharmaceutical companies in Kenya.Study design: A descriptive cross-sectional design was employed to describe the existing state of antimalarialsmarket in Kenya after the change of the malaria healthcare policy.Results & conclusion: Policy change did result in an increase in the sales of Coartem®. Novartis Pharma recordeda 97% growth in sales of Coartem® between 2003 and 2004. However, this increase was not experienced by allthe companies. Further, SPs (which had been replaced as first-line therapy for malaria registered good sales. Inmost cases, these sales were higher than the sales of Coartem®. Generally, the sales contribution of SPs andgeneric antimalarial medicines exceeded that of Coartem® for most distributors. The most common changemade to marketing strategies by distributors (62.5% was to increase imports of antimalarials. A total of 40% ofthe manufacturers preferred to increase their budgetary allocation for marketing activities. In view of the factthat continued sale of SP drugs and limited availability of AL poses the risk of increasing the incidence ofmalaria in Kenya, it is therefore, recommended that pharmacy surveillance systems be strengthened to ensuredrugs that have been rendered non-viable or that prescription-only medicines are not sold contrary to the nationalguidelines.

  7. In Vivo Antimalarial Activity of Annona muricata Leaf Extract in Mice Infected with Plasmodium berghei.

    Science.gov (United States)

    Somsak, Voravuth; Polwiang, Natsuda; Chachiyo, Sukanya

    2016-01-01

    Malaria is one of the most important infectious diseases in the world. The choice for the treatment is highly limited due to drug resistance. Hence, finding the new compounds to treat malaria is urgently needed. The present study was attempted to evaluate the antimalarial activity of the Annona muricata aqueous leaf extract in Plasmodium berghei infected mice. Aqueous leaf extract of A. muricata was prepared and tested for acute toxicity in mice. For efficacy test in vivo, standard 4-day suppressive test was carried out. ICR mice were inoculated with 10(7) parasitized erythrocytes of P. berghei ANKA by intraperitoneal injection. The extracts (100, 500, and 1000 mg/kg) were then given orally by gavage once a day for 4 consecutive days. Parasitemia, percentage of inhibition, and packed cell volume were subsequently calculated. Chloroquine (10 mg/kg) was given to infected mice as positive control while untreated control was given only distilled water. It was found that A. muricata aqueous leaf extract at doses of 100, 500, and 1000 mg/kg resulted in dose dependent parasitemia inhibition of 38.03%, 75.25%, and 85.61%, respectively. Survival time was prolonged in infected mice treated with the extract. Moreover, no mortality to mice was observed with this extract up to a dose of 4000 mg/kg. In conclusion, the A. muricata aqueous leaf extract exerted significant antimalarial activity with no toxicity and prolonged survival time. Therefore, this extract might contain potential lead molecule for the development of a new drug for malaria treatment.

  8. Baseline LAW Glass Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  9. Acceptability by community health workers in Senegal of combining community case management of malaria and seasonal malaria chemoprevention

    DEFF Research Database (Denmark)

    Tine, Roger Ck; Ndiaye, Pascal; Ndour, Cheikh T;

    2013-01-01

    Community case management of malaria (CCMm) and seasonal malaria chemoprevention (SMC) are anti-malarial interventions that can lead to substantial reduction in malaria burden acting in synergy. However, little is known about the social acceptability of these interventions. A study was undertaken...... to assess whether combining the interventions would be an acceptable approach to malaria control for community health workers (CHWs)....

  10. Adherence of community caretakers of children to pre-packaged antimalarial medicines (HOMAPAK® among internally displaced people in Gulu district, Uganda

    Directory of Open Access Journals (Sweden)

    Opwonya John

    2006-05-01

    Full Text Available Abstract Background In 2002, home-based management of fever (HBMF was introduced in Uganda, to improve access to prompt, effective antimalarial treatment of all fevers in children under 5 years. Implementation is through community drug distributors (CDDs who distribute pre-packaged chloroquine plus sulfadoxine-pyrimethamine (HOMAPAK® free of charge to caretakers of febrile children. Adherence of caretakers to this regimen has not been studied. Methods A questionnaire-based survey combined with inspection of blister packaging was conducted to investigate caretakers' adherence to HOMAPAK®. The population surveyed consisted of internally displaced people (IDPs from eight camps. Results A total of 241 caretakers were interviewed. 95.0% (CI: 93.3% – 98.4% of their children had received the correct dose for their age and 52.3% of caretakers had retained the blister pack. Assuming correct self-reporting, the overall adherence was 96.3% (CI: 93.9% – 98.7%. The nine caretakers who had not adhered had done so because the child had improved, had vomited, did not like the taste of the tablets, or because they forgot to administer the treatment. For 85.5% of cases treatment had been sought within 24 hours. Blister packaging was considered useful by virtually all respondents, mainly because it kept the drugs clean and dry. Information provided on, and inside, the package was of limited use, because most respondents were illiterate. However, CDDs had often told caretakers how to administer the treatment. For 39.4% of respondents consultation with the CDD was their reported first action when their child has fever and 52.7% stated that they consult her/him if the child does not get better. Conclusion In IDP camps, the HBMF strategy forms an important component of medical care for young children. In case of febrile illness, most caretakers obtain prompt and adequate antimalarial treatment, and adhere to it. A large proportion of malaria episodes are thus

  11. Formulation and Evaluation of Coprocessed Excipient for Mouth Dissolving Formulation

    Directory of Open Access Journals (Sweden)

    Gandhi PP and Mundada AS

    2016-03-01

    Full Text Available In the present study an attempt has been made to evaluate Ocimum bascilium mucilage coprocessed with Mannitol as a novel super disintegrant. Coprocessed excipients were prepared by solvent evaporation method and evaluated in the formulation of mouth dissolving tablets of Terbutaline sulphate. Formulated mouth dissolving tablets were characterised for physicochemical parameters like hardness, friability, weight variation, disintegration time, drug content and in vitro drug release behaviour. The outcomes of physicochemical evaluation of formulations showed that all developed formulations had desirable features. The coprocessed mucilage (Mannitol: Mucilage exhibited disintegration within 8 sec at the concentration of 1 gm: 65 mg as compared to the coprocessed Mannitol: SSG which disintegrated within 11 sec at the concentration of 1 gm: 85 mg. The developed excipient showed improvement in parent excipient functionalities and proving coprocessed mucilage of Ocimum bascilium to be an excellent novel superdisintegrant in mouth dissolving formulation and thus it can be exploited commercially.

  12. A Chemical Proteomics Approach for the Search of Pharmacological Targets of the Antimalarial Clinical Candidate Albitiazolium in Plasmodium falciparum Using Photocrosslinking and Click Chemistry

    OpenAIRE

    Diana Marcela Penarete-Vargas; Anaïs Boisson; Serge Urbach; Hervé Chantelauze; Suzanne Peyrottes; Laurent Fraisse; Vial, Henri J

    2014-01-01

    Plasmodium falciparum is responsible for severe malaria which is one of the most prevalent and deadly infectious diseases in the world. The antimalarial therapeutic arsenal is hampered by the onset of resistance to all known pharmacological classes of compounds, so new drugs with novel mechanisms of action are critically needed. Albitiazolium is a clinical antimalarial candidate from a series of choline analogs designed to inhibit plasmodial phospholipid metabolism. Here we developed an origi...

  13. Development of a TaqMan Allelic Discrimination Assay for detection of Single Nucleotides Polymorphisms associated with anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Kamau Edwin

    2012-01-01

    Full Text Available Abstract Background Anti-malarial drug resistance poses a threat to current global efforts towards control and elimination of malaria. Several methods are used in monitoring anti-malarial drug resistance. Molecular markers such as single nucleotide polymorphism (SNP for example are increasingly being used to identify genetic mutations related to anti-malarial drug resistance. Several methods are currently being used in analysis of SNP associated with anti-malarial drug resistance and although each one of these methods has unique strengths and shortcoming, there is still need to improve and/or develop new methods that will close the gap found in the current methods. Methods TaqMan Allelic Discrimination assays for detection of SNPs associated with anti-malarial drug resistance were designed for analysis on Applied Biosystems PCR platform. These assays were designed by submitting SNP sequences associated with anti-malarial drug resistance to Applied Biosystems website. Eleven SNPs associated with resistance to anti-malarial drugs were selected and tested. The performance of each SNP assay was tested by creating plasmid DNAs carrying codons of interests and analysing them for analysis. To test the sensitivity and specificity of each SNP assay, 12 clinical samples were sequenced at codons of interest and used in the analysis. Plasmid DNAs were used to establish the Limit of Detection (LoD for each assay. Results Data from genetic profiles of the Plasmodium falciparum laboratory strains and sequence data from 12 clinical samples was used as the reference method with which the performance of the SNP assays were compared to. The sensitivity and specificity of each SNP assay was establish at 100%. LoD for each assay was established at 2 GE, equivalent to less than 1 parasite/μL. SNP assays performed well in detecting mixed infection and analysis of clinical samples. Conclusion TaqMan Allelic Discrimination assay provides a good alternative tool in

  14. Saltstone Clean Cap Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C

    2005-04-22

    The current operation strategy for using Saltstone Vault 4 to receive 0.2 Ci/gallon salt solution waste involves pouring a clean grout layer over the radioactive grout prior to initiating pour into another cell. This will minimize the radiating surface area and reduce the dose rate at the vault and surrounding area. The Clean Cap will be used to shield about four feet of Saltstone poured into a Z-Area vault cell prior to moving to another cell. The minimum thickness of the Clean Cap layer will be determined by the cesium concentration and resulting dose levels and it is expected to be about one foot thick based on current calculations for 0.1 Ci Saltstone that is produced in the Saltstone process by stabilization of 0.2 Ci salt solution. This report documents experiments performed to identify a formulation for the Clean Cap. Thermal transient calculations, adiabatic temperature rise measurements, pour height, time between pour calculations and shielding calculations were beyond the scope and time limitations of this study. However, data required for shielding calculations (composition and specific gravity) are provided for shielding calculations. The approach used to design a Clean Cap formulation was to produce a slurry from the reference premix (10/45/45 weight percent cement/slag/fly ash) and domestic water that resembled as closely as possible the properties of the Saltstone slurry. In addition, options were investigated that may offer advantages such as less bleed water and less heat generation. The options with less bleed water required addition of dispersants. The options with lower heat contained more fly ash and less slag. A mix containing 10/45/45 weight percent cement/slag/fly ash with a water to premix ratio of 0.60 is recommended for the Clean Cap. Although this mix may generate more than 3 volume percent standing water (bleed water), it has rheological, mixing and flow properties that are similar to previously processed Saltstone. The recommended

  15. Pharmacokinetics and bioavailability of oxycodone and acetaminophen following single-dose administration of MNK-795, a dual-layer biphasic IR/ER combination formulation, under fed and fasted conditions

    Directory of Open Access Journals (Sweden)

    Devarakonda K

    2014-08-01

    Full Text Available Krishna Devarakonda,1 Terri Morton,1 Rachel Margulis,2 Michael Giuliani,3 Thomas Barrett4 1Clinical Pharmacology and Pharmacokinetics, 2Clinical Operations, 3Research and Development, 4Clinical Affairs, Mallinckrodt Inc., Hazelwood, MO, USA Background: XARTEMIS™ XR (formerly MNK-795 is a combination oxycodone (OC and acetaminophen (APAP analgesic with both immediate-release and extended-release (ER components (ER OC/APAP. The tablets are designed with gastric-retentive ER oral delivery technology that releases the ER component at a controlled rate in the upper gastrointestinal tract. Because consumption of food has demonstrated an impact on the pharmacokinetics (PK of some marketed products using gastric-retentive ER oral delivery technology, a characterization of the effects of fed (high- and low-fat diets versus fasted conditions on the PK of ER OC/APAP was performed. Methods: This Phase I study used an open-label randomized single-dose three-period six-sequence crossover single-center design. Healthy adult participants (n=48 were randomized to receive two tablets of ER OC/APAP under three conditions: following a high-fat meal; following a low-fat meal; and fasted. Plasma concentration versus time data from predose throughout designated times up to 48 hours postdose was used to estimate the PK parameters of oxycodone and APAP. Results: Thirty-one participants completed all three treatment periods. Both oxycodone and APAP were rapidly absorbed under fasted conditions. Total oxycodone and APAP exposures (area under the plasma drug concentration-time curve [AUC] from ER OC/APAP were not significantly affected by food, and minimal changes to maximum observed plasma concentration for oxycodone and APAP were also noted. However, food marginally delayed the time to maximum observed plasma concentration of oxycodone and APAP. There was no indication that tolerability was affected by food. Conclusion: The findings from this study suggest that ER OC

  16. Effects of co-cultured fish species combination and formulated feed supplement on phytoplankton community in the enclosures with inte-grated culture of freshwater pearl mussel and fishes%不同鱼类混养组合与饲喂方式对鱼蚌综合养殖水体浮游植物群落结构的影响

    Institute of Scientific and Technical Information of China (English)

    唐金玉; 王岩; 戴杨鑫; 李由明

    2014-01-01

    利用三角帆蚌(Hyriopsis cumingii)、草鱼(Ctenoparyngodon idellus)、银鲫(Carassius gibelio)、鲢(Hypopthalmic-hthys molitrix)和鳙(Aristichthys nobilis)构建鱼蚌综合养殖系统,通过155 d围隔(面积32 m2)实验检验两种鱼类组合(草鱼+鲫+鲢+鳙或鲢+鳙)和两种饲喂方式(投喂或不投喂配合饲料)对浮游植物群落结构的影响。采用2×2设计,设4个处理: GISB-F(草鱼+鲫+鲢+鳙+投喂配合饲料)、GISB-NF(草鱼+鲫+鲢+鳙+不投喂配合饲料)、SB-F(鲢+鳙+投喂配合饲料)和SB-NF(鲢+鳙+不投喂配合饲料)。每个围隔内三角帆蚌、草鱼、鲫、鲢和鳙的放养量分别为20、15、5、5和5 ind。结果表明,各处理围隔内浮游植物生物量平均值为3.7×108~6.0×108 cell·L–1。改变鱼类组合和饲喂方式对浮游植物种类组成、优势种优势度、群落多样性、生物量以及浮游植物生物量中蓝藻的比例无显著影响,但投喂配合饲料导致叶绿素 a 增加。浮游植物实验前期主要优势种为十字藻属(Crucigenia)和栅藻属(Scenedesmus)种类,后期为平裂藻属(Merismopedia)和微囊藻属(Microcyslis)种类,表明浮游植物群落演变具有明显的季节性特点以及优势种逐渐演化为蓝藻的规律。水温、氨态氮、总氮和高锰酸钾指数对浮游植物群落结构具有显著影响。各处理围隔内氨态氮、总氮和高锰酸钾指数均随时间延长而增加,说明改变鱼类组合和饲喂方式不会影响围隔内蓝藻水华发生的趋势。%A 155-day enclosure experiment was conducted to evaluate the effects of co-cultured fish species combina-tion (either the combination of grass carp Ctenopharyngodon idellus, gibel carp Carassius gibelio, silver carp Hypoph-thalmichthys molitrix and bighead carp Aristichthys nobilis or the combination of silver carp and bighead carp) and formulated feed supplement regime (with or without feed supplement) on phytoplankton community in

  17. Towards a methodology to formulate sustainable diets for livestock: accounting for environmental impact in diet formulation.

    Science.gov (United States)

    Mackenzie, S G; Leinonen, I; Ferguson, N; Kyriazakis, I

    2016-05-28

    The objective of this study was to develop a novel methodology that enables pig diets to be formulated explicitly for environmental impact objectives using a Life Cycle Assessment (LCA) approach. To achieve this, the following methodological issues had to be addressed: (1) account for environmental impacts caused by both ingredient choice and nutrient excretion, (2) formulate diets for multiple environmental impact objectives and (3) allow flexibility to identify the optimal nutritional composition for each environmental impact objective. An LCA model based on Canadian pig farms was integrated into a diet formulation tool to compare the use of different ingredients in Eastern and Western Canada. By allowing the feed energy content to vary, it was possible to identify the optimum energy density for different environmental impact objectives, while accounting for the expected effect of energy density on feed intake. A least-cost diet was compared with diets formulated to minimise the following objectives: non-renewable resource use, acidification potential, eutrophication potential, global warming potential and a combined environmental impact score (using these four categories). The resulting environmental impacts were compared using parallel Monte Carlo simulations to account for shared uncertainty. When optimising diets to minimise a single environmental impact category, reductions in the said category were observed in all cases. However, this was at the expense of increasing the impact in other categories and higher dietary costs. The methodology can identify nutritional strategies to minimise environmental impacts, such as increasing the nutritional density of the diets, compared with the least-cost formulation.

  18. Towards a methodology to formulate sustainable diets for livestock: accounting for environmental impact in diet formulation.

    Science.gov (United States)

    Mackenzie, S G; Leinonen, I; Ferguson, N; Kyriazakis, I

    2016-05-28

    The objective of this study was to develop a novel methodology that enables pig diets to be formulated explicitly for environmental impact objectives using a Life Cycle Assessment (LCA) approach. To achieve this, the following methodological issues had to be addressed: (1) account for environmental impacts caused by both ingredient choice and nutrient excretion, (2) formulate diets for multiple environmental impact objectives and (3) allow flexibility to identify the optimal nutritional composition for each environmental impact objective. An LCA model based on Canadian pig farms was integrated into a diet formulation tool to compare the use of different ingredients in Eastern and Western Canada. By allowing the feed energy content to vary, it was possible to identify the optimum energy density for different environmental impact objectives, while accounting for the expected effect of energy density on feed intake. A least-cost diet was compared with diets formulated to minimise the following objectives: non-renewable resource use, acidification potential, eutrophication potential, global warming potential and a combined environmental impact score (using these four categories). The resulting environmental impacts were compared using parallel Monte Carlo simulations to account for shared uncertainty. When optimising diets to minimise a single environmental impact category, reductions in the said category were observed in all cases. However, this was at the expense of increasing the impact in other categories and higher dietary costs. The methodology can identify nutritional strategies to minimise environmental impacts, such as increasing the nutritional density of the diets, compared with the least-cost formulation. PMID:26987378

  19. Evaluation of antimalarial, free-radical-scavenging and insecticidal activities of Artemisia scoparia and A. Spicigera, Asteraceae

    Directory of Open Access Journals (Sweden)

    Fariba H. Afshar

    2011-12-01

    Full Text Available Artemisia species (Asteraceae, widespread throughout the world, are a group of important medicinal plants. The extracts of two medicinal plants of this genus, Artemisia scoparia Waldst. & Kit. and A. spicigera C. Koch, were evaluated for potential antimalarial, free-radical-scavenging and insecticidal properties, using the heme biocrystallisation and inhibition assay, the DPPH assay and the contact toxicity bioassay using the pest Tribolium castaneum, respectively. The methanol extracts of both species showed strong free-radical-scavenging activity and the RC50 values were 0.0317 and 0.0458 mg/mL, respectively, for A. scoparia and A. spicigera. The dichloromethane extracts of both species displayed a moderate level of potential antimalarial activity providing IC50 at 0.778 and 0.999 mg/mL for A. scoparia and A. spicigera, respectively. Both species of Artemisia showed insecticidal properties. However, A. spicigera was more effective than A. scoparia.

  20. Vector incrimination and effects of antimalarial drugs on malaria transmission and control in the Amazon Basin of Brazil

    Directory of Open Access Journals (Sweden)

    T. A. Klein

    1992-01-01

    Full Text Available World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral, methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.

  1. Multiple treatment comparisons in a series of anti-malarial trials with an ordinal primary outcome and repeated treatment evaluations

    Directory of Open Access Journals (Sweden)

    Youdom Solange

    2012-05-01

    Full Text Available Abstract Background Artemisinin-based combination therapies (ACT are widely used in African countries, including Cameroon. Between 2005 and 2007, five randomized studies comparing different treatment arms among artesunate-amodiaquine and other ACT were conducted in Cameroonian children aged two to 60 months who had uncomplicated Plasmodium falciparum malaria. In these studies, the categorical criterion proposed by the World Health Organization (WHO to assess the relative effectiveness of anti-malarial drugs was repeatedly evaluated on Days 14, 21 and 28 after treatment initiation. The aim of the present study was to compare the effects of different treatments on this repeated ordinal outcome, hence using the fully available information. Methods The quantitative synthesis was based on individual patient data. Due to the incomplete block design concerning treatment arms between different trials, a mixed treatment comparison (MTC meta-analysis approach was adopted. The repeated ordinal outcome was modelled through a latent variable, as a proportional odds mixed model with trial, period and treatment arms as covariates. The model was further complexified to account for the variance heterogeneity, and the individual log-residual variance was modelled as a linear mixed model, as well. The effects of individual covariates at inclusion, such as parasitaemia, fever, gender and weight, were also tested. Model parameters were estimated using a Bayesian approach via the WinBUGS software. After selecting the best model using Deviance Information Criterion (DIC, mixed treatment comparisons were based on the estimated treatment effects. Results Modeling the residual variance improved the model ability to adjust the data. The results showed that, compared to artesunate-amodiaquine (ASAQ, dihydroartemisinin-piperaquine (DHPP was significantly more efficacious. Artesunate-chlorproguanil-dapsone (ASCD was less efficacious than artesunate

  2. Activity of clinically relevant antimalarial drugs on Plasmodium falciparum mature gametocytes in an ATP bioluminescence "transmission blocking" assay.

    Directory of Open Access Journals (Sweden)

    Joël Lelièvre

    Full Text Available BACKGROUND: Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes. However, to date, the main limitation for measuring the effect of molecules against mature gametocytes on a large scale is the lack of a standardized and reliable method. Here we provide an efficient method to produce and purify mature gametocytes in vitro. Based on this new procedure, we developed a robust, affordable, and sensitive ATP bioluminescence-based assay. We then assessed the activity of 17 gold-standard anti-malarial drugs on Plasmodium late stage gametocytes. METHODS AND FINDINGS: Difficulties in producing large amounts of gametocytes have limited progress in the development of malaria transmission blocking assays. We improved the method established by Ifediba and Vanderberg to obtain viable, mature gametocytes en masse, whatever the strain used. We designed an assay to determine the activity of antimalarial drugs based on the intracellular ATP content of purified stage IV-V gametocytes after 48 h of drug exposure in 96/384-well microplates. Measurements of drug activity on asexual stages and cytotoxicity on HepG2 cells were also obtained to estimate the specificity of the active drugs. CONCLUSIONS: The work described here represents another significant step towards determination of the activity of new molecules on mature gametocytes of any strain with an automated assay suitable for medium/high-throughput screening. Considering that the biology of the forms involved in the sexual and asexual stages is very different, a screen of our 2 million-compound library may allow us to discover novel anti-malarial

  3. Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs

    OpenAIRE

    Mu, Jianbing; Myers, Rachel A.; Jiang, Hongying; Liu, Shengfa; Ricklefs, Stacy; Waisberg, Michael; Chotivanich, Kesinee; Wilairata, Polrat; Krudsood, Srivicha; White, Nicholas J; Udomsangpetch, Rachanee; Cui, Liwang; Ho, May; Ou, Fengzheng; Li, Haibo

    2010-01-01

    Antimalarial drugs impose strong pressure on Plasmodium falciparum parasites and leave signatures of selection in the parasite genome 1,2. Search for signals of selection may lead to genes encoding drug or immune targets 3. The lack of high-throughput genotyping methods, inadequate knowledge of parasite population history, and time-consuming adaptations of parasites to in vitro culture have hampered genome-wide association studies (GWAS) of parasite traits. Here we report genotyping of DNA fr...

  4. Anti-malarial activity and toxicity assessment of Himatanthus articulatus, a plant used to treat malaria in the Brazilian Amazon

    OpenAIRE

    Vale, Valdicley V; Thyago C. Vilhena; Trindade, Rafaela C Santos; Ferreira, Márlia Regina C; Percário, Sandro; Soares, Luciana F; Pereira, Washington Luiz A; Geraldo C. Brandão; Oliveira, Alaíde B; Dolabela, Maria F; De Vasconcelos, Flávio

    2015-01-01

    Background Plasmodium falciparum has become resistant to some of the available drugs. Several plant species are used for the treatment of malaria, such as Himatanthus articulatus in parts of Brazil. The present paper reports the phyto-chemistry, the anti-plasmodial and anti-malarial activity, as well as the toxicity of H. articulatus. Methods Ethanol and dichloromethane extracts were obtained from the powder of stem barks of H. articulatus and later fractionated and analysed. The anti-plasmod...

  5. Finding parasites and finding challenges: improved diagnostic access and trends in reported malaria and anti-malarial drug use in Livingstone district, Zambia

    Directory of Open Access Journals (Sweden)

    Masaninga Freddie

    2012-10-01

    Full Text Available Abstract Background Understanding the impact of malaria rapid diagnostic test (RDT use on management of acute febrile disease at a community level, and on the consumption of anti-malarial medicines, is critical to the planning and success of scale-up to universal parasite-based diagnosis by health systems in malaria-endemic countries. Methods A retrospective study of district-wide community-level RDT introduction was conducted in Livingstone District, Zambia, to assess the impact of this programmed on malaria reporting, incidence of mortality and on district anti-malarial consumption. Results Reported malaria declined from 12,186 cases in the quarter prior to RDT introduction in 2007 to an average of 12.25 confirmed and 294 unconfirmed malaria cases per quarter over the year to September 2009. Reported malaria-like fever also declined, with only 4,381 RDTs being consumed per quarter over the same year. Reported malaria mortality declined to zero in the year to September 2009, and all-cause mortality declined. Consumption of artemisinin-based combination therapy (ACT dropped dramatically, but remained above reported malaria, declining from 12,550 courses dispensed by the district office in the quarter prior to RDT implementation to an average of 822 per quarter over the last year. Quinine consumption in health centres also declined, with the district office ceasing to supply due to low usage, but requests for sulphadoxine-pyrimethamine (SP rose to well above previous levels, suggesting substitution of ACT with this drug in RDT-negative cases. Conclusions RDT introduction led to a large decline in reported malaria cases and in ACT consumption in Livingstone district. Reported malaria mortality declined to zero, indicating safety of the new diagnostic regime, although adherence and/or use of RDTs was still incomplete. However, a deficiency is apparent in management of non-malarial fever, with inappropriate use of a low-cost single dose drug, SP

  6. Increasing use of artemisinin-based combination therapy for treatment of malaria infection in Nigerian hospitals

    Directory of Open Access Journals (Sweden)

    Igboeli NU

    2010-12-01

    Full Text Available Objectives: This study aimed at describing the pattern of outpatient antimalarial drug prescribing in a secondary and a tertiary hospital, and to assess adherence to the National Antimalarial Treatment Guideline (ATG. Methods: An audit of antimalarial prescription files from the two health facilities for a period of six months in 2008 was conducted. Semi structured questionnaires were used to collect information from the doctors and pharmacists on their awareness and knowledge of the National Antimalarial Treatment Guideline. Results: Artemisinin-based combination therapies (ACTs were the most prescribed antimalarials. Overall, 81.4% of the total prescriptions contained ACTs, out of which 56.8% were artemether-lumefantrine. However, adherence to the drugs indicated by national guideline within the DU90% was 38.5% for the tertiary and 66.7 % for the secondary hospital. The standard practice of prescribing with generic name was still not adhered to as evidenced in the understudied hospitals. The percentage of health care providers that were aware of the ATG was 88.2% for doctors and 85.1% for pharmacists. However, 13.3% and 52.2% of doctors and pharmacists respectively could not properly list the drugs specified in the guideline. Amodiaquine was the most commonly preferred option for managing children aged 0 – 3 months with malaria infection against the indicated oral quinine.Conclusion: This study showed an increased use of artemisinin-based combination therapy for the treatment of uncomplicated malaria compared previous reports in Nigeria. This study also highlights the need for periodic in-service quality assurance among health professionals with monitoring of adherence to and assessment of knowledge of clinical guidelines to ensure the practice of evidence based medicine.

  7. Identification and functional validation of the novel antimalarial resistance locus PF10_0355 in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Daria Van Tyne

    2011-04-01

    Full Text Available The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (∼ 1 SNP/kb, and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS, searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.

  8. The use of genotyping in antimalarial clinical trials: a systematic review of published studies from 1995–2005

    Directory of Open Access Journals (Sweden)

    Rosenthal Philip J

    2006-12-01

    Full Text Available Abstract Background The use of genotyping to distinguish recrudescent from new infections is currently recommended for all clinical antimalarial efficacy trials by the World Health Organization. However, genotyping-adjusted drug efficacy estimates may vary between trials due to the use of different genotyping methods and to the different settings in which these methods are applied. Methods A systematic review of all clinical antimalarial efficacy trials published from 1995–2005 was performed to characterize the use of genotyping, including the methods used and the effect of these methods on estimates of drug efficacy. Results In a multivariate analysis, the method of interpretation of genotyping results, the studied therapy, the location of the trial, and the duration of study follow-up all had statistically significant effects on the percent of genotyped outcomes classified as new infections. Conclusion Criteria for defining appropriate, standardized genotyping methods for use in different settings are needed to enable more accurate estimates of antimalarial drug efficacy and better comparison between trials. The advantages and disadvantages of different genotyping methods and their potential impact in various settings are discussed.

  9. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor

    Science.gov (United States)

    Goldgof, Gregory M.; Durrant, Jacob D.; Ottilie, Sabine; Vigil, Edgar; Allen, Kenneth E.; Gunawan, Felicia; Kostylev, Maxim; Henderson, Kiersten A.; Yang, Jennifer; Schenken, Jake; LaMonte, Gregory M.; Manary, Micah J.; Murao, Ayako; Nachon, Marie; Stanhope, Rebecca; Prescott, Maximo; McNamara, Case W.; Slayman, Carolyn W.; Amaro, Rommie E.; Suzuki, Yo; Winzeler, Elizabeth A.

    2016-01-01

    The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity. PMID:27291296

  10. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  11. Effects of mometasone furoate/formoterol fumarate fixed-dose combination formulation on chronic obstructive pulmonary disease (COPD: results from a 52-week Phase III trial in subjects with moderate-to-very severe COPD

    Directory of Open Access Journals (Sweden)

    Doherty DE

    2012-02-01

    Full Text Available Dennis E Doherty1, Donald P Tashkin2, Edward Kerwin3, Barbara A Knorr4, Tulin Shekar4, Sibabrata Banerjee4, Heribert Staudinger41Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY, 2David Geffen School of Medicine at UCLA, Los Angeles, CA, 3Clinical Research Institute of Southern Oregon, Medford, OR, 4Merck Sharp & Dohme Corp, Whitehouse Station, NJ, USARationale: The purpose of this study was to investigate the clinical efficacy and safety of a fixed-dose combination of mometasone furoate/formoterol fumarate (MF/F administered via a metered-dose inhaler in subjects with moderate-to-very severe chronic obstructive pulmonary disease (COPD.Methods: This multicenter, double-blind, placebo-controlled trial had a 26-week treatment period and a 26-week safety extension. Subjects (n = 1196, at least 40 years old, were current or ex-smokers randomized to twice-daily inhaled MF/F 400/10 µg, MF/F 200/10 µg, MF 400 µg, F 10 µg, or placebo. The trial’s co-primary endpoints were mean changes from baseline, as area under the curve (AUC, in forced expiratory volume (FEV1 over 0–12 hours (AUC0-12 h FEV1 with MF/F versus MF, and in morning (AM pre-dose (trough FEV1 with MF/F versus F after 13 weeks of treatment. Key secondary endpoints were the effects of MF/F on respiratory health status using the Saint George’s Respiratory Questionnaire (SGRQ, symptom-free nights, partly stable COPD at 26 weeks, and time to first COPD exacerbation.Results: The largest improvements in AUC0-12 h FEV1 were observed with MF/F 400/10 µg and MF/F 200/10 µg. Serial spirometry results demonstrated that bronchodilator effects with MF/F occurred rapidly (within 5 minutes, persisted for 12 hours after dosing, and were sustained over the 26-week treatment period. Similar findings were observed for AM pre-dose FEV1, for which effects were further investigated, excluding subjects whose AM FEV1 data were incorrectly collected after 2

  12. Formulation and evaluation of buccoadhesive quetiapine fumarate tablets

    OpenAIRE

    Appa Rao Potu; Naresh Pujari; Shashidher Burra; Prabhakar Reddy Veerareddy

    2012-01-01

    The aim of present study was to develop and evaluate buccoadhesive Quetiapine Fumarate (QF) tablets, which is extensively metabolised by liver. Buccoadhesive tablets of QF were prepared using HPMC K4M, HPMC K15M and combination of carbopol and HPC as mucoadhesive polymers by direct compression method. Sodium deoxycholate was added to formulation to improve the permeation of drug. The formulations were tested for bioadhesion strength, ex vivo residence time, swelling time and in vitro dissolut...

  13. In vitro study on sustained release capsule formulation of acetazolamide.

    Science.gov (United States)

    Pandey, V P; Kannan, K; Manavalan, R; Desai, N

    2003-10-01

    In the present study formulation of sustained release capsule of acetazolamide 250 mg was tried using nonpareil seeds. Nonpareil seeds were coated with drug, polyvinylpyrrolidone, glyceryl monostearate, microcrystalline wax, and glyceryl distearate either individually or in combination to achieve sustained release capsule 250 mg. In successful formulation 20% drug coated pellets and 80% wax coated pellets were taken. Wax coated pellets for successful formulation contained coating of microcrystalline wax and glyceryl distearate on drug coated pellets of the same concentration of 1.6% w/w. Successful formulated sustained release capsule 250 mg of acetazolamide was compared in in vitro study with theoretical sustained release formulation suggested by wagner and one marketed sustained release capsule 250 mg. Formulated capsule showed result superior to or on par with marketed capsule. For successful formulation pellets were filled in '1' size hard gelatin capsule and stability study was carried out in hot air over at room temperature and 45 degrees C for 5 weeks. The formulation was found stable in respect of drug content and release rate.

  14. G6PD Deficiency and Antimalarial Efficacy for Uncomplicated Malaria in Bangladesh: A Prospective Observational Study

    Science.gov (United States)

    Ley, Benedikt; Alam, Mohammad Shafiul; Thriemer, Kamala; Hossain, Mohammad Sharif; Kibria, Mohammad Golam; Auburn, Sarah; Poirot, Eugenie; Price, Ric N.; Khan, Wasif Ali

    2016-01-01

    Background The Bangladeshi national treatment guidelines for uncomplicated malaria follow WHO recommendations but without G6PD testing prior to primaquine administration. A prospective observational study was conducted to assess the efficacy of the current antimalarial policy. Methods Patients with uncomplicated malaria, confirmed by microscopy, attending a health care facility in the Chittagong Hill Tracts, Bangladesh, were treated with artemether-lumefantrine (days 0–2) plus single dose primaquine (0.75mg/kg on day2) for P. falciparum infections, or with chloroquine (days 0–2) plus 14 days primaquine (3.5mg/kg total over 14 days) for P. vivax infections. Hb was measured on days 0, 2 and 9 in all patients and also on days 16 and 30 in patients with P. vivax infection. Participants were followed for 30 days. The study was registered with the clinical trials website (NCT02389374). Results Between September 2014 and February 2015 a total of 181 patients were enrolled (64% P. falciparum, 30% P. vivax and 6% mixed infections). Median parasite clearance times were 22.0 (Interquartile Range, IQR: 15.2–27.3) hours for P. falciparum, 20.0 (IQR: 9.5–22.7) hours for P. vivax and 16.6 (IQR: 10.0–46.0) hours for mixed infections. All participants were afebrile within 48 hours, two patients with P. falciparum infection remained parasitemic at 48 hours. No patient had recurrent parasitaemia within 30 days. Adjusted male median G6PD activity was 7.82U/gHb. One male participant (1/174) had severe G6PD deficiency (<10% activity), five participants (5/174) had mild G6PD deficiency (10–60% activity). The Hb nadir occurred on day 2 prior to primaquine treatment in P. falciparum and P. vivax infected patients; mean fractional fall in Hb was -8.8% (95%CI -6.7% to -11.0%) and -7.4% (95%CI: -4.5 to -10.4%) respectively. Conclusion The current antimalarial policy remains effective. The prevalence of G6PD deficiency was low. Main contribution to haemolysis in G6PD normal

  15. G6PD Deficiency and Antimalarial Efficacy for Uncomplicated Malaria in Bangladesh: A Prospective Observational Study.

    Directory of Open Access Journals (Sweden)

    Benedikt Ley

    Full Text Available The Bangladeshi national treatment guidelines for uncomplicated malaria follow WHO recommendations but without G6PD testing prior to primaquine administration. A prospective observational study was conducted to assess the efficacy of the current antimalarial policy.Patients with uncomplicated malaria, confirmed by microscopy, attending a health care facility in the Chittagong Hill Tracts, Bangladesh, were treated with artemether-lumefantrine (days 0-2 plus single dose primaquine (0.75mg/kg on day2 for P. falciparum infections, or with chloroquine (days 0-2 plus 14 days primaquine (3.5mg/kg total over 14 days for P. vivax infections. Hb was measured on days 0, 2 and 9 in all patients and also on days 16 and 30 in patients with P. vivax infection. Participants were followed for 30 days. The study was registered with the clinical trials website (NCT02389374.Between September 2014 and February 2015 a total of 181 patients were enrolled (64% P. falciparum, 30% P. vivax and 6% mixed infections. Median parasite clearance times were 22.0 (Interquartile Range, IQR: 15.2-27.3 hours for P. falciparum, 20.0 (IQR: 9.5-22.7 hours for P. vivax and 16.6 (IQR: 10.0-46.0 hours for mixed infections. All participants were afebrile within 48 hours, two patients with P. falciparum infection remained parasitemic at 48 hours. No patient had recurrent parasitaemia within 30 days. Adjusted male median G6PD activity was 7.82U/gHb. One male participant (1/174 had severe G6PD deficiency (<10% activity, five participants (5/174 had mild G6PD deficiency (10-60% activity. The Hb nadir occurred on day 2 prior to primaquine treatment in P. falciparum and P. vivax infected patients; mean fractional fall in Hb was -8.8% (95%CI -6.7% to -11.0% and -7.4% (95%CI: -4.5 to -10.4% respectively.The current antimalarial policy remains effective. The prevalence of G6PD deficiency was low. Main contribution to haemolysis in G6PD normal individuals was attributable to acute malaria rather

  16. Cytotoxicity of antimalarial plant extracts from Kenyan biodiversity to the brine shrimp, Artemia salina L. (Artemiidae

    Directory of Open Access Journals (Sweden)

    Joseph Mwanzia Nguta

    2012-07-01

    Full Text Available Artemia salina (Artemiidae, the brine shrimp larva, is an invertebrate used in the alternative test to determine toxicity of chemicals and natural products. In this study the medium lethal concentration fifty (LC50 values of 45 antimalarial plant extracts and positive controls, cyclophosphamide and etoposide were determined using Artemia salina (Artemiidae. Out of the 45 organic extracts screened for activity against Artemia salina larvae, 23 (51% of the crude extracts demonstrated activity at or below 100 μg/mL, and were categorized as having strong cytotoxic activity, 18 (40% of the crude extracts had LC50 values between 100 μg/mL and 500 μg/mL, and were categorized as having moderate cytotoxicity, 2 (4.5% of the crude extracts had LC50 values between 500 μg/mL and 1000 μg/mL, and were considered to have weak cytotoxic activity, while 2 (4.5% of the crude extracts had LC50 values greater than 1000 μg/mL and were considered to be non toxic. Approximately 20% (9 of the aqueous extracts demonstrated activity at or below 100 g/mL and were considered to have strong cytotoxic activity, 40% (18 of the screened aqueous crude extracts had LC50 values between 100 μg/mL and 500 μg/mL and were considered to be moderately cytotoxic, 16% (7 of the crude extracts had LC50 values between 500 μg/mL and 1000 μg/mL and were considered to have weak cytotoxic activity while 24% (11 of the aqueous extracts had LC50 values greater than 1000μg/mL and were categorized as non toxic The positive controls, cyclophosphamide and etoposide exhibited strong cytotoxicity with LC50 values of 95 μg/mL and 6 μg/mL respectively in a 24 hour lethality study, validating their use as anticancer agents. In the current study, 95.5% of all the screened organic extracts and 76% of the investigated aqueous extracts demonstrated LC50 values <1000 g/mL, indicating that these plants could not make safe anti-malarial treatments. This calls for dose adjustment amongst the

  17. Relativistic formulation of quark model

    International Nuclear Information System (INIS)

    A relativistic model, which describes spin-orbital excitations of quark-antiquark bound system, is proposed. A formulation of the model provides the meson classification established in frame of the nonrelativistic quark model. 3 refs

  18. System Effectiveness Model Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Coates, Cameron W [ORNL; Jackson, Denise F [ORNL

    2008-01-01

    Evaluation of system effectiveness has numerous pitfalls. System objectives may be poorly defined, may shift during the system life or may be hard to quantify. Further, individual perceptions of the quantifications may differ. Whatever the cause, system effectiveness has been an elusive term to quantitatively define. The proposed model presents a quantitative system effectiveness model and establishes a utilitarian approach for its use with the illustrative application to a nuclear safeguards system. The model uses the Type I and Type II statistical error rates as input to the component or subsystem effectiveness calculation which, when combined using a utilitarian methodology, quantify the overall system effectiveness. The methodology will use a survey of expert judgment to determine the relative importance of the individual subsystems through a statistically designed web survey. The web based survey will be available to nuclear material protection, control, and accounting experts attending the 2008 INMM conference. This model and methodology will provide a repeatable quantifiable measure for any system but in this case a simple safeguards system is used as an example.

  19. Formulation Optimization of Arecoline Patches

    Directory of Open Access Journals (Sweden)

    Pao-Chu Wu

    2014-01-01

    Full Text Available The response surface methodology (RSM including polynomial equations has been used to design an optimal patch formulation with appropriate adhesion and flux. The patch formulations were composed of different polymers, including Eudragit RS 100 (ERS, Eudragit RL 100 (ERL and polyvinylpyrrolidone K30 (PVP, plasticizers (PEG 400, and drug. In addition, using terpenes as enhancers could increase the flux of the drug. Menthol showed the highest enhancement effect on the flux of arecoline.

  20. Anti-malarial Activities of Two Soil Actinomycete Isolates from Sabah via Inhibition of Glycogen Synthase Kinase 3β.

    Science.gov (United States)

    Dahari, Dhiana Efani; Salleh, Raifana Mohamad; Mahmud, Fauze; Chin, Lee Ping; Embi, Noor; Sidek, Hasidah Mohd

    2016-08-01

    Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3β (GSK3β)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3β. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3β (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3β compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3β. In addition

  1. SMS for Life: a pilot project to improve anti-malarial drug supply management in rural Tanzania using standard technology

    Directory of Open Access Journals (Sweden)

    Mwafongo Winfred

    2010-10-01

    Full Text Available Abstract Background Maintaining adequate supplies of anti-malarial medicines at the health facility level in rural sub-Saharan Africa is a major barrier to effective management of the disease. Lack of visibility of anti-malarial stock levels at the health facility level is an important contributor to this problem. Methods A 21-week pilot study, 'SMS for Life', was undertaken during 2009-2010 in three districts of rural Tanzania, involving 129 health facilities. Undertaken through a collaborative partnership of public and private institutions, SMS for Life used mobile telephones, SMS messages and electronic mapping technology to facilitate provision of comprehensive and accurate stock counts from all health facilities to each district management team on a weekly basis. The system covered stocks of the four different dosage packs of artemether-lumefantrine (AL and quinine injectable. Results Stock count data was provided in 95% of cases, on average. A high response rate (≥ 93% was maintained throughout the pilot. The error rate for composition of SMS responses averaged 7.5% throughout the study; almost all errors were corrected and messages re-sent. Data accuracy, based on surveillance visits to health facilities, was 94%. District stock reports were accessed on average once a day. The proportion of health facilities with no stock of one or more anti-malarial medicine (i.e. any of the four dosages of AL or quinine injectable fell from 78% at week 1 to 26% at week 21. In Lindi Rural district, stock-outs were eliminated by week 8 with virtually no stock-outs thereafter. During the study, AL stocks increased by 64% and quinine stock increased 36% across the three districts. Conclusions The SMS for Life pilot provided visibility of anti-malarial stock levels to support more efficient stock management using simple and widely available SMS technology, via a public-private partnership model that worked highly effectively. The SMS for Life system has

  2. Niosomal Formulation Of Orlistat: Formulation And In-Vitro Evaluation

    Directory of Open Access Journals (Sweden)

    SAMYUKTHA RANI. B

    2011-06-01

    Full Text Available The purpose of the research was to prepare Orlistat niosomes from proniosome to improve its poor and variable oral bioavailability. The non-ionic surfactant vesicles are prepared by the reverse phase evaporation technique (slurry method. The slurry of - Cyclodextrin and Span 60 was dried to form a free flowing powder in rotary flash evaporator which could be rehydrated by addition of buffer (0.5% NaCl with 3% SLS at pH 6.0. The lipid mixture consisted of cholesterol, Span 60 and - Cyclodextrin carrier in molar ratios of (0.1:0.9:1 to 0.9:0.1:1 respectively. The niosomal formulations were evaluated for particle size, entrapment efficiency, in-vitro drug release, release kinetics, Interactions and compatibility (FT-IR, surface morphology (SEM, stability studies, conductivity and sedimentation rate, pH density, viscosity. The formulation OT9 which showed higher entrapment efficiency of 44.09% and invitro releases of 94.59% at the end of 12hrs was found to be best among all the 9 formulations. Release was best fitted with Hixson kinetics and it shows that the drug release may follow diffusion mechanism. FT-IR data revealed that, compatible and there were no interactions between the drug and excipients added in the formulation. SEM images of niosomes with various magnifications revealed the mean size of the niosomes were 100 nm with smooth surface. Niosome formulation has showed appropriate stability for 90 days by storing the formulation at room temperature. Thus the niosomal formulations could be a promising delivery system for Orlistat with improved oral bioavailability, stability and for sustained drug release.

  3. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Jr., Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara; Garuti, Helen; Wittlin, Sergio; Papastogiannidis, Petros; Lin, Jing-wen; Janse, Chris J.; Khan, Shahid M.; Duraisingh, Manoj; Coleman, Bradley; Goldsmith, Elizabeth J.; Phillips, Margaret A.; Munoz, Benito; Wirth, Dyann F.; Klinger, Jeffrey D.; Wiegand, Roger; Sybertz, Edmund (Leiden-MC); (Puerto Rico); (STPHI); (Harvard); (GSK); (Genzyme); (UTSMC)

    2010-11-22

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED{sub 50} values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.

  4. Iron(III) protoporphyrin IX complexes of the antimalarial Cinchona alkaloids quinine and quinidine.

    Science.gov (United States)

    de Villiers, Katherine A; Gildenhuys, Johandie; le Roex, Tanya

    2012-04-20

    The antimalarial properties of the Cinchona alkaloids quinine and quinidine have been known for decades. Surprisingly, 9-epiquinine and 9-epiquinidine are almost inactive. A lack of definitive structural information has precluded a clear understanding of the relationship between molecular structure and biological activity. In the current study, we have determined by single crystal X-ray diffraction the structures of the complexes formed between quinine and quinidine and iron(III) protoporphyrin IX (Fe(III)PPIX). Coordination of the alkaloid to the Fe(III) center is a key feature of both complexes, and further stability is provided by an intramolecular hydrogen bond formed between a propionate side chain of Fe(III)PPIX and the protonated quinuclidine nitrogen atom of either alkaloid. These interactions are believed to be responsible for inhibiting the incorporation of Fe(III)PPIX into crystalline hemozoin during its in vivo detoxification. It is also possible to rationalize the greater activity of quinidine compared to that of quinine.

  5. Cytotoxic and Antimalarial Amaryllidaceae Alkaloids from the Bulbs of Lycoris radiata

    Directory of Open Access Journals (Sweden)

    Bin Hao

    2013-02-01

    Full Text Available Phytochemical investigation of the 80% ethanol extract of the bulbs of Lycoris radiata resulted in the isolation of five new Amaryllidaceae alkaloids: (+-5,6-dehydrolycorine (1, (+-3α,6β-diacetyl-bulbispermine (2, (+-3α-hydroxy-6β-acetyl- bulbispermine (3, (+-8,9-methylenedioxylhomolycorine-N-oxide (5, and 5,6-dihydro-5- methyl-2-hydroxyphenanthridine (7, together with two known compounds, (+-3α-methoxy- 6β-acetylbulbispermine (4 and (+-homolycorine- N-oxide (6. Structural elucidation of all the compounds were performed by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC NMR spectroscopy, in addition to high resolution mass spectrometry. Alkaloid 1 showed potent cytotoxicity against astrocytoma and glioma cell lines (CCF-STTG1, CHG-5, SHG-44, and U251, as well as HL-60, SMMC-7721, and W480 cell lines with IC50 values of 9.4–11.6 μM. Additonally, compound 1 exhibited antimalarial activity with IC50 values of 2.3 μM for D-6 strain and 1.9 μM for W-2 strain of Plasmodium falciparum.

  6. Assessment of Antimalarial Activity against Plasmodium falciparum and Phytochemical Screening of Some Yemeni Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Mohammed A. Alshawsh

    2009-01-01

    Full Text Available Developing countries, where malaria is one of the most prevalent diseases, still rely on traditional medicine as a source for the treatment of this disease. In the present study, six selected plants (Acalypha fruticosa, Azadirachta indica, Cissus rotundifolia, Echium rauwalfii, Dendrosicyos socotrana and Boswellia elongata commonly used in Yemen by traditional healers for the treatment of malaria as well as other diseases, were collected from different localities of Yemen, dried and extracted with methanol and water successfully. The antiplasmodial activity of the extracts was evaluated against fresh clinical isolates of Plasmodium falciparum. The selectivity parameters to evaluate the efficacy of these medicinal plants were measured by in vitro micro test (Mark III according to World Health Organization (WHO 1996 & WHO 2001 protocols of antimalarial drug tests. Among the investigated 12 extracts, three were found to have significant antiplasmodial activity with IC50 values less than 4 µg/ml, namely the water extracts of A. fruticosa, A. indica and D. socotrana. Six extracts showed moderate activity with IC50 values ranging from 10 to 30 µg/ml and three appeared to be inactive with IC50 values more than 30 µg/ml. In addition, preliminary phytochemical screening of the methanolic and aqueous extracts indicated the presence of saponins, tannins, flavonoids, terpenoids, polysaccharides and peptides.

  7. Application of computer assisted combinatorial chemistry in antivirial, antimalarial and anticancer agents design

    Science.gov (United States)

    Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.

    Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.

  8. In vivo antioxidant assessment of two antimalarial plants-Allamamda cathartica and Bixa orellana

    Institute of Scientific and Technical Information of China (English)

    Omonhinmin A. Conrad; Ijeoma Precious Dike; Uche Agbara

    2013-01-01

    Objective: To determine the free radical scavenging potentials pytochemical constituents of ethanol leaves extracts of Allamanda cathartica (A. cathartica) and Bixa orellana (B. orellana) and thus their effects in antimalarial activities. Methods: Both ethanol extracted plant samples were administered at 50 mg/mL, 100 mg/mL and 200 mg/mL to Albino rats and then administered with CCl4 at 1 mL/kg body weight, in liquid paraffin (1:1, v/v) for 2 days (negative control) and compared with 5% Tween 80 (placebo) and vitamin E (positive control) pretreatments. Thiobarbituric acid reactive substances (TBARS), glutathione (GSH) and catalase (CAT) activities in blood and liver tissues were assessed. Results: In CCl4 treated rats, TBARS levels significantly increased, while decreased GSH and CAT levels were recorded for both plant extracts. Generally, higher TBARS and GSH values were recorded for blood than for liver homogenates; with reverse trend observed for CAT level. Increased concentrations of A. cathartica extract recorded significant antioxidant levels similar to tocopherol (vitamin E). Reducing sugars, saponins, flavonoids were recorded for both species; alkaloids in A. cathartica and terpenoids in B. orellana. Conclusions: A.cathartica, possess phytochemicals that recorded significant antioxidative defense activities for blood and liver tissues with increasing concentration. However B. orellana did not record similar results.

  9. Antimalarial evaluation of the chemical constituents of hairy root culture of Bixa orellana L.

    Science.gov (United States)

    Zhai, Bo; Clark, Julie; Ling, Taotao; Connelly, Michele; Medina-Bolivar, Fabricio; Rivas, Fatima

    2013-01-01

    Over 216 million malaria cases are reported annually worldwide and about a third of these cases, primarily children under the age of five years old, will not survive the infection. Despite this significant world health impact, only a limited number of therapeutic agents are currently available. The lack of scaffold diversity poses a threat in the event that multi-drug-resistant strains emerge. Terrestrial natural products have provided a major source of chemical diversity for starting materials in many FDA approved drugs over the past century. Bixa orellana L. is a popular plant used in South America for the treatment of malaria. In search of new potential therapeutic agents, the chemical constituents of a selected hairy root culture line of Bixa orellana L. were characterized utilizing NMR and mass spectrometry methods, followed by its biological evaluation against malaria strains 3D7 and K1. The crude extract and its isolated compounds demonstrated EC50 values in the micromolar range. Herein, we report our findings on the chemical constituents of Bixa orellana L. from hairy roots responsible for the observed antimalarial activity. PMID:24406786

  10. Antimalarial Evaluation of the Chemical Constituents of Hairy Root Culture of Bixa orellana L.

    Directory of Open Access Journals (Sweden)

    Bo Zhai

    2014-01-01

    Full Text Available Over 216 million malaria cases are reported annually worldwide and about a third of these cases, primarily children under the age of five years old, will not survive the infection. Despite this significant world health impact, only a limited number of therapeutic agents are currently available. The lack of scaffold diversity poses a threat in the event that multi-drug–resistant strains emerge. Terrestrial natural products have provided a major source of chemical diversity for starting materials in many FDA approved drugs over the past century. Bixa orellana L. is a popular plant used in South America for the treatment of malaria. In search of new potential therapeutic agents, the chemical constituents of a selected hairy root culture line of Bixa orellana L. were characterized utilizing NMR and mass spectrometry methods, followed by its biological evaluation against malaria strains 3D7 and K1. The crude extract and its isolated compounds demonstrated EC50 values in the micromolar range. Herein, we report our findings on the chemical constituents of Bixa orellana L. from hairy roots responsible for the observed antimalarial activity.

  11. Resistance of Plamodium falciparum to Antimalarial Drugs in Zaragoza (Antioquia, Colombia, 1998

    Directory of Open Access Journals (Sweden)

    Silvia Blair-Trujillo

    2002-04-01

    Full Text Available Plasmodium falciparum sensitivity to chloroquine (CHL, amodiaquine (AMO and sulfadoxine/pyrimethamine (SDX/PYR was assessed in vivo and in vitro in a representative sample from the population of Zaragoza in El Bajo Cauca region (Antioquia-Colombia. There were 94 patients with P. falciparum evaluated. For the in vivo test the patients were followed by clinical examination and microscopy, during 7 days. The in vitro test was performed following the recommendations of the World Health Organization. The in vivo prevalence of resistance to CHL was 67%, to AMO 3% and to SDX/PYR 9%. The in vitro test showed sensitivity to all antimalarials evaluated. Concordance for CHL between the in vivo and in vitro tests was 33%. For AMO and SDX/PYR, the concordance was 100%. We conclude that a high percentage of patients are resistant to CHL (in vivo. A high rate of intestinal parasitism might explain in part, the differences observed between the in vivo and the in vitro results. Therefore, new policies and treatment regimens should be proposed for the treatment of the infection in the region. Nationwide studies assessing the degree of resistance are needed.

  12. Reverse pharmacology for developing an anti-malarial phytomedicine. The example of Argemone mexicana

    Directory of Open Access Journals (Sweden)

    Claudia Simoes-Pires

    2014-12-01

    Reverse pharmacology, also called bedside-to-bench, is a research approach based on the traditional knowledge and relates to reversing the classical laboratory to clinic pathway to a clinic to laboratory practice. It is a trans-disciplinary approach focused on traditional knowledge, experimental observations and clinical experiences. This paper is an overview of the reverse pharmacology approach applied to the decoction of Argemone mexicana, used as an antimalarial traditional medicine in Mali. A. mexicana appeared as the most effective traditional medicine for the treatment of uncomplicated falciparum malaria in Mali, and the clinical efficacy of the decoction was comparable to artesunate–amodiaquine as previously published. Four stages of the reverse pharmacology process will be described here with a special emphasis on the results for stage 4. Briefly, allocryptopine, protopine and berberine were isolated through bioguided fractionation, and had their identity confirmed by spectroscopic analysis. The three alkaloids showed antiparasitic activity in vitro, of which allocryptopine and protopine were selective towards Plasmodium falciparum. Furthermore, the amount of the three active alkaloids in the decoction was determined by quantitative NMR, and preliminary in vivo assays were conducted. On the basis of these results, the reverse pharmacology approach is discussed and further pharmacokinetic studies appear to be necessary in order to determine whether these alkaloids can be considered as phytochemical markers for quality control and standardization of an improved traditional medicine made with this plant.

  13. Inhibition of Plasmodium falciparum Hsp90 Contributes to the Antimalarial Activities of Aminoalcohol-carbazoles.

    Science.gov (United States)

    Wang, Tai; Mäser, Pascal; Picard, Didier

    2016-07-14

    Malaria caused by the protozoan parasite Plasmodium falciparum (Pf) remains a major public health problem throughout the developing world. One molecular target that should receive more attention is the molecular chaperone Hsp90. It is essential and highly conserved in all eukaryotes, including in protozoan parasites. We have identified an amino-alcohol carbazole (N-CBZ) as a PfHsp90-selective inhibitor by virtually docking a large set of antimalarial compounds, previously found in a phenotypic screen, into a PfHsp90-specific pocket. By correlating the ability of 30 additional N-CBZ derivatives to bind directly to PfHsp90 with their Pf-inhibitory activity, we found that these types of compounds are more likely to inhibit Pf growth if they bind PfHsp90. For plausible targets such as PfHsp90, our workflow may help identifying the molecular target for compounds found by screening large chemical libraries for a desired biological effect and, conversely, ensuring biological effectiveness for compounds affecting a particular target. PMID:27312008

  14. Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery

    Science.gov (United States)

    Pradhan, Anupam; Siwo, Geoffrey H.; Singh, Naresh; Martens, Brian; Balu, Bharath; Button-Simons, Katrina A.; Tan, Asako; Zhang, Min; Udenze, Kenneth O.; Jiang, Rays H.Y.; Ferdig, Michael T.; Adams, John H.; Kyle, Dennis E.

    2015-01-01

    The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profiles in a collection of mutants. Inferences of drug mechanisms of action and targets can be obtained by associations between shifts in drug fitness and specific genetic changes in the mutants. In this screen, P. falciparum, piggyBac single insertion mutants were profiled for altered responses to antimalarial drugs and metabolic inhibitors to create chemogenomic profiles. Drugs targeting the same pathway shared similar response profiles and multiple pairwise correlations of the chemogenomic profiles revealed novel insights into drugs’ mechanisms of action. A mutant of the artemisinin resistance candidate gene - “K13-propeller” gene (PF3D7_1343700) exhibited increased susceptibility to artemisinin drugs and identified a cluster of 7 mutants based on similar enhanced responses to the drugs tested. Our approach of chemogenomic profiling reveals artemisinin functional activity, linked by the unexpected drug-gene relationships of these mutants, to signal transduction and cell cycle regulation pathways. PMID:26541648

  15. Antimalarial activity of selected Sudanese medicinal plants with emphasis to Maytenus senegalensis

    International Nuclear Information System (INIS)

    The aim of the present study is to identify and characterize the antimalrial agents from traitional Sudanese medicinal plants. 49 plants parts representing 26 species from 15 families were extracted and screened for their in vitro antimalrial activity using P. falciparum strain 3D7 which is chloroquine sensitive and Dd2 strain which is chloroquine resistant and pyrimethamine sensitive.The plant species investigated exhibited diverse botanical families. They includes Annonaceae, Aristolochiaceae, Asteraceae, Balantiaceae, Caesalpiniceae, Celasteraceae, Cucurbitaceae, Fabaceae, Graminae, Meliaceae, Myrtaceae, Polygonaceae, Rubiaceae, Rutaceae, and simaroubaceae. The evaluation of these plants for their antimalarial activity and their effect on lymphocyte proliferation was carried out. 57 extracts were tested on the chloroquine sensitive strain (3D7). Where 34 extracts (59%) exhibited significant activity against 3D7 with IC50 values ≤ 50 μ g/ml. While 21 extracts (57%) showed antimalrial activities with IC50 values ≤ 50 μ g/ml on Dd2. 13 extracts (22%) and ten extracts (18%) only showed an activity with IC50 values ≤ 5 μ g/ml on 3 D7 and Dd2, respectively. The activities of some plant extracts, which affected 3D7 strain, were measured using the radiolabelled (3H) hypoxanthine method and microscopical count. 15 plant extracts (48%) from 32 showed IC50 values ≤ 50 μ g/ml against 3D7 strain using the radiolabelled hypoxanthine methods and only 5 extracts (16%) showed IC50 values ≤ 5 μ g/ml against 3D7. Most of the extracts screened had a low effect on lymphocyte proliferation (IC50 values >100 μ g/ml), where as Sonochous cornatus, Balanites aegyptiaca, Tamarindus indica, Acacia nilotica, Annona squamosa, Eucalyptus globulus and Cassia tora enhanced lymphocyte proliferation. liquid-liquid partition of methanolic preparation of Acacia nilotica seeds and husk showed that the ethylacetate phase possessed the highest activity against both 3D7 and Dd2 strains

  16. Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery.

    Science.gov (United States)

    Pradhan, Anupam; Siwo, Geoffrey H; Singh, Naresh; Martens, Brian; Balu, Bharath; Button-Simons, Katrina A; Tan, Asako; Zhang, Min; Udenze, Kenneth O; Jiang, Rays H Y; Ferdig, Michael T; Adams, John H; Kyle, Dennis E

    2015-01-01

    The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profiles in a collection of mutants. Inferences of drug mechanisms of action and targets can be obtained by associations between shifts in drug fitness and specific genetic changes in the mutants. In this screen, P. falciparum, piggyBac single insertion mutants were profiled for altered responses to antimalarial drugs and metabolic inhibitors to create chemogenomic profiles. Drugs targeting the same pathway shared similar response profiles and multiple pairwise correlations of the chemogenomic profiles revealed novel insights into drugs' mechanisms of action. A mutant of the artemisinin resistance candidate gene - "K13-propeller" gene (PF3D7_1343700) exhibited increased susceptibility to artemisinin drugs and identified a cluster of 7 mutants based on similar enhanced responses to the drugs tested. Our approach of chemogenomic profiling reveals artemisinin functional activity, linked by the unexpected drug-gene relationships of these mutants, to signal transduction and cell cycle regulation pathways.

  17. Social Groupwork. A Model for Goal Formulation.

    Science.gov (United States)

    Tompkins, Rosamond P.; Gallo, Frank T.

    1978-01-01

    A conceptual model for goal formulation in social groupwork, discussion of existing models and their limitations, and an attempt to formulate an encompassing groupwork model that facilitates goal formulation. (Author/PD)

  18. Four formulations of noncommutative quantum mechanics

    CERN Document Server

    Gouba, Laure

    2016-01-01

    Four formulations of noncommutative quantum mechanics are reviewed. These are the canonical, path-integral, Weyl-Wigner and systematic formulations. The four formulations are charaterized by a deformed Heisenberg algebra but differ in mathematical and conceptual overview.

  19. FORMULATION AND EVALUATION OF ISONIAZID AND ETHAMBUTOL HYDROCHLORIDE COMBINATION TABLETS

    OpenAIRE

    Margret Chandira R; Jayakar B; Palanisamy P

    2012-01-01

    Ethambutol hydrochloride and Isoniazid Drugs are used as Antituberculosis agents. It is mainly used in the initial Treatment of pulmonary tuberculosis. Here in present study compressed tablet of Ethambutol hydrochloride and Isoniazid prepared by using HPMC, HPC, and PVPK -30 as binders. Compressed tablets of Ethambutol hydrochloride and Isoniazid were prepared by wet granulation method. Among different trials of F1 to F9 with wet granulation, the trial F1 showed satisfactory in-vitro drug re...

  20. A review of age-old antimalarial drug to combat malaria:efficacy up-gradation by nanotechnology based drug delivery

    Institute of Scientific and Technical Information of China (English)

    Satyajit Tripathy; Somenath Roy

    2014-01-01

    Malaria is uncontrolled burden in the world till now.Despite of different efforts to develop antimalarial drug for decades, any anti-malarial drug can able to eradicate completely till now. Many anti-malarial substances are practically ineffectual because of their physicochemical limitations, cytotoxicity, chemical instability and degradation, and limited activities against intracellular parasites.Taking into consideration, the amount of research is going to conduct in the field of nanoparticle based drug delivery systems, lead to new ways of improving the treatment of infectious diseases.The study has focused on the progress and advancement of research on nanotechnology based drug delivery to eradicate the malaria.We like to focus the efficacy of nanotechnology based drug applicationfor the opening out of novel chemotherapeutics in laboratory research, which may show the way to better use with age-old antimalarial drug and may draw the attention of pharmaceutical industries for the improvement and designing of effective anti-malarial drugs in future.

  1. Evaluation of anti-malarial activity of Artemisia turcomanica and A. kopetdaghensis by cell-free β-hematin formation assay

    Directory of Open Access Journals (Sweden)

    M. Mojarrab

    2016-10-01

    Full Text Available Background and objectives:The plants of genus Artemisia (Asteraceae have been conventionally used for prevention and medication of a number of ailments. In the present research, ten extracts with different polarities from aerial parts of two Artemisia species, A. kopetdaghensis and A. turcomanica were evaluated for their potential anti-malarial properties. Methods: The plant materials were extracted successively with petroleum ether (PE, dichloromethane (DCM, ethyl acetate (EtOAC, ethanol, and ethanol-water (1:1 v/v  by cold maceration method. Cell free β-hematin formation assay were used for assessing anti-malarial activity of obtained extracts. Results: DCM extract of A. kopetdaghensis and PE extract of A. turcomanica showed remarkable anti-malarial activity with IC50 values of 1.04±0.02 mg/mL and 0.90±0.27 mg/mL, respectively, compared to positive control (chloroquine, IC50 0.04±0.01 mg/mL. Conclusion:  It seems that the anti-malarial activity of these extracts might be bound up with the presence of compounds with low or medium polarity; hence, this preliminary test indicated that these potent extracts could be considered for further investigations to find new sources of anti-malarial phytochemicals.

  2. Pharmacognostical Characterization of an Anti-Diabe tic Polyherbal Formulation

    Directory of Open Access Journals (Sweden)

    P P JOHN

    2015-03-01

    Full Text Available Standardization of drugs and formulation is one theessential parameter in today’s drug discovery. Current study includes pharmacognostic study of a polyherbal formulation which comprise of six crude powdered drugs i.e.Acacia catechu, Phyllanthus embellica, Pterocarpus marsupium, Salacia reticulata, Tinospora cordifoliaand Vetiveria zizanioides, which is used locally for diabetes. Morphological, microscopical and physico-chemical studies were done to standardize the plant ingredients and also for the formulation. Current study includes lycopodium spore method, which is one of the most important methods for standardization of individual powder drug and powdered formulations. When combined with various parameters like linearity, specificity, precision, repeatability and accuracy, the method become a powerful tool to uncover and check even a very small amount of adulteration in a large extent. Mean value for the identifying characters in the mixture was near to one-sixth as compared to the drug when they were individually studied, vindicating our assumption that after mixing the ratio remained intact in the formulation. Thus, this method can be used for finding the exact ratio of drugs in any formulation in near future. All the result of the study could be useful in setting some diagnostic indices for the identification and preparation of a monograph of the drugs. The developed technique will be useful for standardization of different formulations also.

  3. Pyrrolidine-Acridine hybrid in Artemisinin-based combination: a pharmacodynamic study.

    Science.gov (United States)

    Pandey, Swaroop Kumar; Biswas, Subhasish; Gunjan, Sarika; Chauhan, Bhavana Singh; Singh, Sunil Kumar; Srivastava, Kumkum; Singh, Sarika; Batra, Sanjay; Tripathi, Renu

    2016-09-01

    Aiming to develop new artemisinin-based combination therapy (ACT) for malaria, antimalarial effect of a new series of pyrrolidine-acridine hybrid in combination with artemisinin derivatives was investigated. Synthesis, antimalarial and cytotoxic evaluation of a series of hybrid of 2-(3-(substitutedbenzyl)pyrrolidin-1-yl)alkanamines and acridine were performed and mode of action of the lead compound was investigated. In vivo pharmacodynamic properties (parasite clearance time, parasite reduction ratio, dose and regimen determination) against multidrug resistant (MDR) rodent malaria parasite and toxicological parameters (median lethal dose, liver function test, kidney function test) were also investigated. 6-Chloro-N-(4-(3-(3,4-dimethoxybenzyl)pyrrolidin-1-yl)butyl)-2-methoxyacridin-9-amine (15c) has shown a dose dependent haem bio-mineralization inhibition and was found to be the most effective and safe compound against MDR malaria parasite in Swiss mice model. It displayed best antimalarial potential with artemether (AM) in vitro as well as in vivo. The combination also showed favourable pharmacodynamic properties and therapeutic response in mice with established MDR malaria infection and all mice were cured at the determined doses. The combination did not show toxicity at the doses administered to the Swiss mice. Taken together, our findings suggest that compound 15c is a potential partner with AM for the ACT and could be explored for further development. PMID:27230403

  4. FORMULATION AND EVALUATION OF TASTE MASKED DISPERSIBLE TABLETS OF CHLOROQUINE PHOSPHATE

    Directory of Open Access Journals (Sweden)

    Moon Rajkumar Sukdeo

    2012-09-01

    Full Text Available The primary aim of present work was to formulate and evaluate taste masked dispersible tablets of Chloroquine phosphate, an antimalarial drug, using ion exchange resins like INDION 294 and TULSION 339 as a taste masking agent and superdisintegrating agents like crospovidone and sodium starch glycolate in different concentrations. Characterization of drug was done by melting point determination, FT-IR spectroscopy and UV-spectroscopy. Drug-resin complexes were prepared by batch method using the resins in different ratios. Drug loading study was carried at different pH. INDION 294 showed highest drug loading (93.31%. Hence, further studies were done using INDION 294. The drug-resin complexes were studied for micromeritic properties, in vitro drug release and taste masking ability by determining threshold bitterness concentration of the drug. The complexes were characterized by drug content, FTIR and DSC studies. Powder blends were prepared and evaluated for various physical properties. Dispersible tablets of drug-resin complex (DRC were prepared by wet granulation method using crospovidone and sodium starch glycolate in different concentrations as superdisintegrants. Tablets were evaluated for thickness, hardness, friability, uniformity of weight, dispersion time, uniformity of dispersion, disintegration time, wetting time, wetting volume, content of active ingredient and dissolution studies. All the formulations showed the evaluated parameters within the acceptable limits for dispersible tablets. Finally, formulation F3 was taken as an optimized formulation which was containing 3% of crospovidone and showed the least in vitro disintegration time and an excellent drug release. Stability study was also conducted on the optimized batch F3 which showed good results.

  5. A variational formulation of electrodynamics

    CERN Document Server

    De Nicola, Antonio

    2007-01-01

    We present a variational formulation of electrodynamics using de Rham even and odd differential forms. Our formulation relies on a variational principle more complete than the Hamilton principle and thus leads to field equations with external sources and permits the derivation of the constitutive relations. We interpret a domain in space-time as an odd de Rham 4-current. This permits a treatment of different types of boundary problems in an unified way. In particular we obtain a smooth transition to the infinitesimal version by using a current with a one point support.

  6. Screening of Kenyan medicinal plants for antimalarial effects on Plasmodium falciparum in vitror. Final report for the period 15 December 1993 - 31 December 1994

    International Nuclear Information System (INIS)

    The antimalarial activities of extracts of Albizia gummifera and Aspilia mossambicensis against culture adapted isolates of Plasmodium falciparum were evaluated using an in citro 3H-hypoxanthine uptake technique. Chloroquine was used as a standard antimalarial drug for comparison with the plant extracts. The plant extracts showed various levels of activities (expressed as 50% inhibitory concentration (IC50s) in ug/ml of test culture) against P. falciparum in vitro, with Al gummifera showing the highest activity (eman IC50 of 5.98 ± 2.9 SD, n=6), followed by A. mossambicensis (mean IC50 73.36 ± 59.3 SD, n=18). The mean antimalarial activity of chloroquine (in ug/ml) was 0.037 (± 0.04 SD, n=10), far higher than that of the plant extracts. (author). 5 refs, 2 tabs

  7. Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil.

    Science.gov (United States)

    Andrade-Neto, Valter F; Brandão, Maria G L; Oliveira, Francielda Q; Casali, Vicente W D; Njaine, Brian; Zalis, Mariano G; Oliveira, Luciana A; Krettli, Antoniana U

    2004-08-01

    Bidens pilosa (Asteraceae), a medicinal plant used worldwide, has antimalarial activity as shown in previous work. This study tested ethanol extracts from wild plants collected in three different regions of Brazil and from plants cultivated in various soil conditions. The extracts were active in mice infected with P. berghei: doses of humus enriched soil, were active; but the wild plants were the most active. Analysis using thin layer chromatography demonstrated the presence of flavonoids (compounds considered responsible for the antimalarial activity) in all plants tested, even though at different profiles. Because B. pilosa is proven to be active against P. falciparum drug-resistant parasites in vitro, and in rodent malaria in vivo, it is a good candidate for pre-clinical tests as a phytotherapeutic agent or for chemical isolation of the active compounds with the aim of finding new antimalarial drugs.

  8. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda

    Directory of Open Access Journals (Sweden)

    Hubbard Alan E

    2010-01-01

    Full Text Available Abstract Background Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Methods Samples were genotyped using both gel and capillary electrophoresis from randomized trials of artemether-lumefantrine (AL vs. dihydroartemisinin-piperaquine (DP performed in two areas of Uganda: Kanungu, where transmission is moderate, and Apac, where transmission is very high. Both gel and capillary methods evaluated polymorphic regions of the merozoite surface protein 1 and 2 and glutamine rich protein genes. Results Capillary electrophoresis detected more alleles and provided higher discriminatory power than agarose gel electrophoresis at both study sites. There was only moderate agreement between classification of outcomes with the two methods in Kanungu (kappa = 0.66 and poor agreement in Apac (kappa = 0.24. Overall efficacy results were similar when using gel vs. capillary methods in Kanungu (42-day risk of treatment failure for AL: 6.9% vs. 5.5%, p = 0.4; DP 2.4% vs. 2.9%, p = 0.5. However, the measured risk of recrudescence was significantly higher when using gel vs. capillary electrophoresis in Apac (risk of treatment failure for AL: 17.0% vs. 10.7%, p = 0.02; DP: 8.5% vs. 3.4%, p = 0.03. Risk differences between AL and DP were not significantly different whether gel or capillary methods were used. Conclusions Genotyping with gel electrophoresis overestimates the risk of recrudescence in anti-malarial trials performed in areas of high transmission intensity. Capillary electrophoresis provides more accurate outcomes for such trials and should be performed when possible. In areas of moderate transmission

  9. Identification of β-hematin inhibitors in a high-throughput screening effort reveals scaffolds with in vitro antimalarial activity

    Directory of Open Access Journals (Sweden)

    Rebecca D. Sandlin

    2014-12-01

    Full Text Available The emergence of drug resistant strains of Plasmodium spp. creates a critical need for the development of novel antimalarials. Formation of hemozoin, a crystalline heme detoxification process vital to parasite survival serves as an important drug target. The quinoline antimalarials including chloroquine and amodiaquine owe their antimalarial activity to inhibition of hemozoin formation. Though in vivo formation of hemozoin occurs within the presence of neutral lipids, the lipophilic detergent NP-40 was previously shown to serve as a surrogate in the β-hematin (synthetic hemozoin formation process. Consequently, an NP-40 mediated β-hematin formation assay was developed for use in high-throughput screening. Here, the assay was utilized to screen 144,330 compounds for the identification of inhibitors of crystallization, resulting in 530 hits. To establish the effectiveness of these target-based β-hematin inhibitors against Plasmodium falciparum, each hit was further tested in cultures of parasitized red blood cells. This effort revealed that 171 of the β-hematin inhibitors are also active against the parasite. Dose–response data identified 73 of these β-hematin inhibitors have IC50 values ⩽5 μM, including 25 compounds with nanomolar activity against P. falciparum. A scaffold-based analysis of this data identified 14 primary scaffolds that represent 46% of the 530 total hits. Representative compounds from each of the classes were further assessed for hemozoin inhibitory activity in P. falciparum infected human erythrocytes. Each of the hit compounds tested were found to be positive inhibitors, while a negative control did not perturb this biological pathway in culture.

  10. Molecular monitoring of plasmodium falciparum drug susceptibility at the time of the introduction of artemisinin-based combination therapy in Yaoundé, Cameroon: Implications for the future

    Directory of Open Access Journals (Sweden)

    Menard Sandie

    2012-04-01

    Full Text Available Abstract Background Regular monitoring of the levels of anti-malarial resistance of Plasmodium falciparum is an essential policy to adapt therapy and improve malaria control. This monitoring can be facilitated by using molecular tools, which are easier to implement than the classical determination of the resistance phenotype. In Cameroon, chloroquine (CQ, previously the first-line therapy for uncomplicated malaria was officially withdrawn in 2002 and replaced initially by amodiaquine (AQ monotherapy. Then, artemisinin-based combination therapy (ACT, notably artesunate-amodiaquine (AS-AQ or artemether-lumefantrine (AL, was gradually introduced in 2004. This situation raised the question of the evolution of P. falciparum resistance molecular markers in Yaoundé, a highly urbanized Cameroonian city. Methods The genotype of pfcrt 72 and 76 and pfmdr1 86 alleles and pfmdr1 copy number were determined using real-time PCR in 447 P. falciparum samples collected between 2005 and 2009. Results This study showed a high prevalence of parasites with mutant pfcrt 76 (83% and pfmdr1 86 (93% codons. On the contrary, no mutations in the pfcrt 72 codon and no samples with duplication of the pfmdr1 gene were observed. Conclusion The high prevalence of mutant pfcrt 76T and pfmdr1 86Y alleles might be due to the choice of alternative drugs (AQ and AS-AQ known to select such genotypes. Mutant pfcrt 72 codon was not detected despite the prolonged use of AQ either as monotherapy or combined with artesunate. The absence of pfmdr1 multicopies suggests that AL would still remain efficient. The limited use of mefloquine or the predominance of mutant pfmdr1 86Y codon could explain the lack of pfmdr1 amplification. Indeed, this mutant codon is rarely associated with duplication of pfmdr1 gene. In Cameroon, the changes of therapeutic strategies and the simultaneous use of several formulations of ACT or other anti-malarials that are not officially recommended result in a

  11. Hyperbolic Formulation of General Relativity

    CERN Document Server

    Abrahams, A M; Choquet-Bruhat, Y; York, J W; Abrahams, Andrew; Anderson, Arlen; Choquet-Bruhat, Yvonne; York, James W.

    1998-01-01

    Two geometrical well-posed hyperbolic formulations of general relativity are described. One admits any time-slicing which preserves a generalized harmonic condition. The other admits arbitrary time-slicings. Both systems have only the physical characteristic speeds of zero and the speed of light.

  12. Case Formulation in TADS CBT

    Science.gov (United States)

    Rogers, Gregory M.; Reinecke, Mark A.; Curry, John F.

    2005-01-01

    For the Treatment for Adolescents With Depression Study (TADS), a cognitive-behavioral therapy (CBT) manual was developed with the aim of balancing standardization and flexibility. In this article, we describe the manual's case formulation procedures, which served as one major mechanism of flexibility in TADS CBT. We first describe the essential…

  13. Curcumin nanodisks: formulation and characterization

    OpenAIRE

    Ghosh, Mistuni; Singh, Amareshwar T.K.; Xu, Wenwei; Sulchek, Todd; Gordon, Leo I.; Ryan, Robert O.

    2010-01-01

    Nanodisks (ND) are nanoscale, disk-shaped phospholipid bilayers whose edge is stabilized by apolipoproteins. In the present study, ND were formulated with the bioactive polyphenol, curcumin, at a 6:1 phospholipid:curcumin molar ratio. Atomic force microscopy revealed that curcumin-ND are particles with diameters

  14. Hamiltonian formulation of bond graphs

    NARCIS (Netherlands)

    Golo, Goran; Schaft, van der Arjan; Breedveld, Peter C.; Maschke, Bernhard M.; Johansson, R.; Rantzer, A.

    2003-01-01

    This paper deals with the mathematical formulation of bond graphs. It is proven that the power continuous part of bond graphs, the junction structure, can be associated with a Dirac structure and that the equations describing a bond graph model correspond to a port Hamiltonian system. The conditions

  15. Isoxazole mediated synthesis of 4-(1H)pyridones: improved preparation of antimalarial candidate GSK932121.

    Science.gov (United States)

    Fernández, Jorge; Chicharro, Jesús; Bueno, José M; Lorenzo, Milagros

    2016-08-01

    A new synthesis of the antimalarial clinical candidate GSK932121 is described. This approach has two key reactions, the selective acylation of an unprotected 3-hydroxymethyl-5-methyl isoxazole and the reductive N-O bond cleavage of the previously functionalized isoxazole derivative, to give the 4-(1H)pyridone ring present in the final structure. The complete synthesis consists of 5 steps (versus 10 steps in previously published reports) and has enabled the preparation of the material in kilogram scale to support clinical studies.

  16. Mestizos with Systemic Lupus Erythematosus Develop Renal Disease Early while Antimalarials Retard its Appearance: Data from a Latin American Cohort

    Science.gov (United States)

    Pons-Estel, Guillermo J.; Alarcón, Graciela S.; Burgos, Paula I.; Hachuel, Leticia; Boggio, Gabriela; Wojdyla, Daniel; Nieto, Romina; Alvarellos, Alejandro; Catoggio, Luis J.; Guibert-Toledano, Marlene; Sarano, Judith; Massardo, Loreto; Vásquez, Gloria M.; Iglesias-Gamarra, Antonio; Lavras Costallat, Lilian T.; Da Silva, Nilzio A.; Alfaro, José L.; Abadi, Isaac; Segami, María I.; Huerta, Guillermo; Cardiel, Mario H.; Pons-Estel, Bernardo A.

    2014-01-01

    Objectives To assess the predictors of time-to-lupus renal disease in Latin American patients. Methods SLE patients (n=1480) from GLADEL’s (Grupo Latino Americano De Estudio de Lupus) longitudinal inception cohort were studied. Endpoint was ACR renal criterion development after SLE diagnosis (prevalent cases excluded). Renal disease predictors were examined by univariable and multivariable Cox proportional hazards regression analyses. Antimalarials were considered time-dependent in alternative analyses. Results Of the entire cohort, 265 patients (17.9%) developed renal disease after entering the cohort. Of them, 88 (33.2%) developed persistent proteinuria, 44 (16.6%) cellular casts and 133 (50.2%) both; 233 patients (87.9%) were women; mean (± SD) age at diagnosis was 28.0 (11.9) years; 12.8% were African-Latin Americans, 52.5% Mestizos, 34.7% Caucasians (p=0.0016). Mestizo ethnicity (HR 1.61, 95% CI 1.19–2.17), hypertension (HR 3.99, 95% CI 3.02–5.26) and SLEDAI at diagnosis (HR 1.04, 95% CI 1.01–1.06) were associated with a shorter time-to-renal disease occurrence; antimalarial use (HR 0.57, 95% CI 0.43–0.77), older age at onset (HR 0.90, 95% CI 0.85–0.95, for every 5 years) and photosensitivity (HR 0.74, 95% CI 0.56–0.98) were associated with a longer time. Alternative model results were consistent with the antimalarial protective effect (HR 0.70, 95% CI 0.50–0.99). Conclusions Our data strongly support the fact that Mestizo patients are at increased risk of developing renal disease early while antimalarials seem to delay the appearance of this SLE manifestation. These data have important implications for the treatment of these patients regardless of their geographic location. PMID:23857989

  17. Feasibility, safety and effectiveness of combining home based malaria management and seasonal malaria chemoprevention in children less than 10 years in Senegal

    DEFF Research Database (Denmark)

    Tine, Roger C K; Ndour, Cheikh T; Faye, Babacar;

    2014-01-01

    Home-based management of malaria (HMM) may improve access to diagnostic testing and treatment with artemisinin combination therapy (ACT). In the Sahel region, seasonal malaria chemoprevention (SMC) is now recommended for the prevention of malaria in children. It is likely that combinations of ant...... of antimalarial interventions can reduce the malaria burden. This study assessed the feasibility, effectiveness and safety of combining SMC and HMM delivered by community health workers (CHWs)....

  18. Evaporation and skin penetration characteristics of mosquito repellent formulations

    Energy Technology Data Exchange (ETDEWEB)

    Reifenrath, W.G.; Hawkins, G.S.; Kurtz, M.S.

    1989-03-01

    Formulations of the mosquito repellent N,N-diethyl-3-methylbenzamide (deet) in combination with a variety of additives were developed to control repellent evaporation and percutaneous penetration. Deet was also formulated with the repellent dimethyl phthalate to study the interaction of the two compounds on the skin. The evaporation and penetration processes were evaluated on whole and split-thickness pig skin using radiolabeled repellents with an in vitro apparatus. Under essentially still air and air flow conditions, one of the deet formulations resulted in significantly reduced total evaporation and percutaneous penetration of deet as compared to unformulated repellent. When deet and dimethyl phthalate were combined, neither repellent affected the total amount of evaporation and penetration of the other compound. However, initial percutaneous penetration and evaporation rates were slightly less and decayed less rapidly than when both chemicals were tested separately at the same dose. These results indicated a degree of competition of the two compounds for the same avenues of loss.

  19. Reduction of anti-malarial consumption after rapid diagnostic tests implementation in Dar es Salaam: a before-after and cluster randomized controlled study

    Directory of Open Access Journals (Sweden)

    Swai Ndeniria

    2011-04-01

    Full Text Available Abstract Background Presumptive treatment of all febrile patients with anti-malarials leads to massive over-treatment. The aim was to assess the effect of implementing malaria rapid diagnostic tests (mRDTs on prescription of anti-malarials in urban Tanzania. Methods The design was a prospective collection of routine statistics from ledger books and cross-sectional surveys before and after intervention in randomly selected health facilities (HF in Dar es Salaam, Tanzania. The participants were all clinicians and their patients in the above health facilities. The intervention consisted of training and introduction of mRDTs in all three hospitals and in six HF. Three HF without mRDTs were selected as matched controls. The use of routine mRDT and treatment upon result was advised for all patients complaining of fever, including children under five years of age. The main outcome measures were: (1 anti-malarial consumption recorded from routine statistics in ledger books of all HF before and after intervention; (2 anti-malarial prescription recorded during observed consultations in cross-sectional surveys conducted in all HF before and 18 months after mRDT implementation. Results Based on routine statistics, the amount of artemether-lumefantrine blisters used post-intervention was reduced by 68% (95%CI 57-80 in intervention and 32% (9-54 in control HF. For quinine vials, the reduction was 63% (54-72 in intervention and an increase of 2.49 times (1.62-3.35 in control HF. Before-and-after cross-sectional surveys showed a similar decrease from 75% to 20% in the proportion of patients receiving anti-malarial treatment (Risk ratio 0.23, 95%CI 0.20-0.26. The cluster randomized analysis showed a considerable difference of anti-malarial prescription between intervention HF (22% and control HF (60% (Risk ratio 0.30, 95%CI 0.14-0.70. Adherence to test result was excellent since only 7% of negative patients received an anti-malarial. However, antibiotic

  20. Antimalarial drug interactions of compounds isolated from Kigelia africana (Bignoniaceae) and their synergism with artemether, against the multidrug-resistant W2mef Plasmodium falciparum strain.

    Science.gov (United States)

    Zofou, Denis; Tene, Mathieu; Tane, Pierre; Titanji, Vincent P K

    2012-02-01

    For decades, drug resistance has been the major obstacle in the fight against malaria, and the search for new drugs together with the combination therapy constitutes the major approach in responding to this situation. The present study aims at assessing the in vitro antimalarial activity of four compounds isolated from Kigelia africana stem bark (atranorin - KAE1, specicoside - KAE7, 2β,3β,19α-trihydroxy-urs-12-20-en-28-oic acid - KAE3, and p-hydroxy-cinnamic acid - KAE10) and their drug interactions among themselves and their combination effects with quinine and artemether. The antiplasmodial activity and drug interactions were evaluated against the multidrug-resistant W2mef strain of Plasmodium falciparum using the parasite lactate dehydrogenase assay. Three of the four compounds tested were significantly active against W2mef: specicoside (IC(50) = 1.02 ± 0.17 μM), 2β,3β,19α-trihydroxy-urs-12-en-28-oic acid (IC(50) = 1.86 ± 0.15 μM) and atranorin (IC(50) = 1.78 ± 0.18 μM), whereas p-hydroxy-cinnamic acid showed a weak activity (IC(50) = 12.89 ± 0.87 μM). A slight synergistic effect was observed between atranorin and 2β,3β,19α-trihydroxy-urs-12-en-28-oic acid (Combination index, CI = 0.82) whereas the interaction between specicoside and p-hydroxy-cinnamic acid were instead antagonistic (CI = 2.67). All the three compounds showed synergistic effects with artemether, unlike the slight antagonistic interactions of atranorin and 2β,3β,19α-trihydroxy-urs-12-en-28-oic acid in combination with quinine. K. africana compounds are therefore likely to serve as leads in the development of new partner drugs in artemether-based combination therapy. PMID:21814840

  1. Formulation design and evaluation of amorphous ABT-102 nanoparticles.

    Science.gov (United States)

    Jog, Rajan; Kumar, Sumit; Shen, Jie; Jugade, Nital; Tan, David Cheng Thiam; Gokhale, Rajeev; Burgess, Diane J

    2016-02-10

    Amorphous nanoparticles are able to enhance the kinetic solubility and concomitant dissolution rates of BCS class II and BCS class II/IV molecules due to their characteristic increased supersaturation levels, smaller particle size and greater surface area. A DoE approach was applied to investigate formulation and spray drying process parameters for the preparation of spray dried amorphous ABT-102 nanoparticles. Stability studies were performed on the optimized formulations to monitor physical and chemical changes under different temperature and humidity conditions. SLS/soluplus and SLS/PVP K25 were the best stabilizer combinations. Trehalose was used to prevent nanoparticle aggregation during spray drying. Particle size distribution, moisture content, PXRD, PLM, FTIR and in vitro dissolution were utilized to characterize the spray dried nanoparticle formulations. The formulations prepared using soluplus showed enhanced dissolution rate compared to those prepared using PVP K25. Following three months storage, it was observed that the formulations stored at 4°C were stable in terms of particle size distribution, moisture content, and crystallinity, whereas those stored at 25°C/60%RH and 40°C/75%RH were unstable. A predictive model to prepare stable solid spray dried amorphous ABT-102 nanoparticles, incorporating both formulation and process parameters, was successfully developed using multiple linear regression analysis. PMID:26705150

  2. Competing intermolecular interactions of artemisinin-type agents and aspirin with membrane phospholipids: Combined model mass spectrometry and quantum-chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Pashynska, Vlada, E-mail: vlada@vl.kharkov.ua [B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Lenin Ave., 47, 61103 Kharkov (Ukraine); Stepanian, Stepan [B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Lenin Ave., 47, 61103 Kharkov (Ukraine); Gömöry, Agnes; Vekey, Karoly [Institute of Organic Chemistry of Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudosok korutja, 2, Budapest H-1117 (Hungary); Adamowicz, Ludwik [University of Arizona, Department of Chemistry and Biochemistry, Tucson, AZ 85721 (United States)

    2015-07-09

    Highlights: • Competitive binding of artemisinin agents and aspirin with phospholipids is shown. • Complexation between the antimalarial drugs and aspirin molecules is also found. • Energetically favorable structures of the model complexes are identified by DFT. • Membranotropic activity of the studied drugs can be modified under joint usage. - Abstract: Study of intermolecular interactions of antimalarial artemisinin-type drugs and aspirin with membrane phospholipids is important in term of elucidation of the drugs activity modification under their joint usage. Combined experimental and computational study of the interaction of dihydroartemisinin, α-artemether, and artesunate with aspirin (ASP) and dipalmitoylphosphatidylcholine (DPPC) is performed by electrospray ionization (ESI) mass spectrometry and by DFT B3LYP/aug-cc-pVDZ methods. The results of the ESI investigation of systems containing artemisinin-type agent, ASP and DPPC, reveal a competition between the antimalarial agents and ASP for binding with DPPC molecules. The complexation between the antimalarial drugs and ASP is also found. Observed phenomena suggest that membranotropic activity of artemisin-type agents and aspirin is modified under their combined usage. To elucidate structure-energy characteristics of the non-covalent complexes studied the model DFT calculations are performed for dihydroartemisinin · ASP complex and complexes of the each drug with phosphatidylcholine head of DPPC in neutral and cationized forms.

  3. Competing intermolecular interactions of artemisinin-type agents and aspirin with membrane phospholipids: Combined model mass spectrometry and quantum-chemical study

    International Nuclear Information System (INIS)

    Highlights: • Competitive binding of artemisinin agents and aspirin with phospholipids is shown. • Complexation between the antimalarial drugs and aspirin molecules is also found. • Energetically favorable structures of the model complexes are identified by DFT. • Membranotropic activity of the studied drugs can be modified under joint usage. - Abstract: Study of intermolecular interactions of antimalarial artemisinin-type drugs and aspirin with membrane phospholipids is important in term of elucidation of the drugs activity modification under their joint usage. Combined experimental and computational study of the interaction of dihydroartemisinin, α-artemether, and artesunate with aspirin (ASP) and dipalmitoylphosphatidylcholine (DPPC) is performed by electrospray ionization (ESI) mass spectrometry and by DFT B3LYP/aug-cc-pVDZ methods. The results of the ESI investigation of systems containing artemisinin-type agent, ASP and DPPC, reveal a competition between the antimalarial agents and ASP for binding with DPPC molecules. The complexation between the antimalarial drugs and ASP is also found. Observed phenomena suggest that membranotropic activity of artemisin-type agents and aspirin is modified under their combined usage. To elucidate structure-energy characteristics of the non-covalent complexes studied the model DFT calculations are performed for dihydroartemisinin · ASP complex and complexes of the each drug with phosphatidylcholine head of DPPC in neutral and cationized forms

  4. In-silico studies on DegP protein of Plasmodium falciparum in search of anti-malarials.

    Science.gov (United States)

    Sharma, Drista; Soni, Rani; Patel, Sachin; Joshi, Deepti; Bhatt, Tarun Kumar

    2016-09-01

    Despite encouraging progress over the past decade, malaria caused by the Plasmodium parasite continues to pose an enormous disease burden and is one of the major global health problems. The extreme challenge in malaria management is the resistance of parasites to traditional monochemotherapies like chloroquine and sulfadoxine-pyrimethamine. No vaccine is yet in sight, and the foregoing effective drugs are also losing ground against the disease due to the resistivity of parasites. New antimalarials with novel mechanisms of action are needed to circumvent existing or emerging drug resistance. DegP protein, secretory in nature has been shown to be involved in regulation of thermo-oxidative stress generated during asexual life cycle of Plasmodium, probably required for survival of parasite in host. Considering the significance of protein, in this study, we have generated a three-dimensional structure of PfDegP followed by validation of the modeled structure using several tools like RAMPAGE, ERRAT, and others. We also performed an in-silico screening of small molecule database against PfDegP using Glide. Furthermore, molecular dynamics simulation of protein and protein-ligand complex was carried out using GROMACS. This study substantiated potential drug-like molecules and provides the scope for development of novel antimalarial drugs. PMID:27491850

  5. De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Science.gov (United States)

    Annadurai, Ramasamy S; Neethiraj, Ramprasad; Jayakumar, Vasanthan; Damodaran, Anand C; Rao, Sudha Narayana; Katta, Mohan A V S K; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  6. Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections.

    Directory of Open Access Journals (Sweden)

    Janet M Meredith

    Full Text Available Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. Historically the genetic modification of insects has relied upon transposable elements which have many limitations despite their successful use. To circumvent these limitations the Streptomyces phage phiC31 integrase system has been successfully adapted for site-specific transgene integration in insects. Here, we present the first site-specific transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 targeting site at a defined genomic location. A second phase of genetic modification then achieved site-specific integration of Vida3, a synthetic anti-malarial gene. Expression of Vida3, specifically in the midgut of bloodfed females, offered consistent and significant protection against Plasmodium yoelii nigeriensis, reducing average parasite intensity by 85%. Similar protection was observed against Plasmodium falciparum in some experiments, although protection was inconsistent. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters for their expression, enabling those offering maximum effect with minimum fitness cost to be identified. In the future, this technology will allow effective comparisons and informed choices to be made, potentially leading to complete transmission blockade.

  7. Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.

    Science.gov (United States)

    Okombo, John; Kamau, Alice W; Marsh, Kevin; Sutherland, Colin J; Ochola-Oyier, Lynette Isabella

    2014-12-01

    Molecular surveillance of drug resistance markers through time provides crucial information on genomic adaptations, especially in parasite populations exposed to changing drug pressures. To assess temporal trends of established genotypes associated with tolerance to clinically important antimalarials used in Kenya over the last two decades, we sequenced a region of the pfcrt locus encompassing codons 72-76 of the Plasmodium falciparum chloroquine resistance transporter, full-length pfmdr1 - encoding multi-drug resistance protein, P-glycoprotein homolog (Pgh1) and pfdhfr encoding dihydrofolate reductase, in 485 archived Plasmodium falciparum positive blood samples collected in coastal Kenya at four different time points between 1995 and 2013. Microsatellite loci were also analyzed to compare the genetic backgrounds of parasite populations circulating before and after the withdrawal of chloroquine and sulfadoxine/pyrimethamine. Our results reveal a significant increase in the prevalence of the pfcrt K76 wild-type allele between 1995 and 2013 from 38% to 81.7% (p drug in contrast to a selective sweep around the triple mutant pfdhfr allele, leading to a mono-allelic population at this locus. These findings highlight the importance of continual surveillance and characterization of parasite genotypes as indicators of the therapeutic efficacy of antimalarials, particularly in the context of changes in malaria treatment policy. PMID:25516825

  8. Plasmodium IspD (2-C-Methyl-D-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target

    Science.gov (United States)

    Imlay, Leah S.; Armstrong, Christopher M.; Masters, Mary Clare; Li, Ting; Price, Kathryn E.; Edwards, Rachel L.; Mann, Katherine M.; Li, Lucy X.; Stallings, Christina L.; Berry, Neil G.; O’Neill, Paul M.; Odom, Audrey R.

    2015-01-01

    As resistance to current therapies spreads, novel antimalarials are urgently needed. In this work, we examine the potential for therapeutic intervention via the targeting of Plasmodium IspD (2-C-methyl-D-erythritol 4-phosphate cytidyltransferase), the second dedicated enzyme of the essential methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis. Enzymes of this pathway represent promising therapeutic targets because the pathway is not present in humans. The Malaria Box compound, MMV008138, inhibits Plasmodium falciparum growth, and PfIspD has been proposed as a candidate intracellular target. We find that PfIspD is the sole intracellular target of MMV008138 and characterize the mode of inhibition and target-based resistance, providing chemical validation of this target. Additionally, we find that the Pf ISPD genetic locus is refractory to disruption in malaria parasites, providing independent genetic validation for efforts targeting this enzyme. This work provides compelling support for IspD as a druggable target for the development of additional, much-needed antimalarial agents. PMID:26783558

  9. De Novo transcriptome assembly (NGS of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Directory of Open Access Journals (Sweden)

    Ramasamy S Annadurai

    Full Text Available Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  10. Formulation of elastic multi-structures

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the creative and groundbreaking work done by Feng and Shi, some further work has been carried out comprehensively by the first author on the formulation of elastic multi-structures. The main contribution of this paper can be summarized as follows: The work of Feng and Shi has been extended to an elastic multi-structures with nonlinear structural element: shell in both linear and nonlinear case. Three general combinations of multi-structures have been formulated, that is, Case 1: linear elements of 3-D body, 1-D bar/beam, 2-D plates and 2-D shell; Case 2: nonlinear elements of 3-D body, 1-D bar/beam, 2-D plates and 2-D shell; and Case 3: the linear-nonlinear mix problem of 3-D body (nonlinear), 1-D bar/beam (linear), 2-D plates (linear) and 2-D shell (linear). From the investigation, it has proved that the higher dimensional element will have a strong influence on the lower one with the inner linkage boundaries, and also proved that solution uniqueness of elastic multi-structures is different from a single 3-D body.

  11. Projecting India's energy requirements for policy formulation

    International Nuclear Information System (INIS)

    Energy policy has to have a long-term perspective. To formulate it one needs to know the contours of energy requirements and options. Different approaches have been followed in literature, each with their own problems. A top down econometric approach provides little guidance on policies, while a bottom up approval requires too much knowledge and too many assumptions. Using top-down econometric approach for aggregate overall benchmarking and a detailed activity analysis model, Integrated Energy System Model, for a few large sectors, provides a unique combination for easing the difficulties of policy formulation. The model is described in this paper. Eleven alternate scenarios are built, designed to map out extreme points of feasible options. Results show that even after employing all domestic energy resource to their full potential, there will be a continued rise of fossil fuel use, continued importance of coal, and continued rise of import dependence. Energy efficiency emerges as a major option with a potential to reduce energy requirement by as much as 17%. Scenario results point towards pushing for development of alternative sources.

  12. Projecting India's energy requirements for policy formulation

    International Nuclear Information System (INIS)

    Energy policy has to have a long-term perspective. To formulate it one needs to know the contours of energy requirements and options. Different approaches have been followed in literature, each with their own problems. A top down econometric approach provides little guidance on policies, while a bottom up approval requires too much knowledge and too many assumptions. Using top-down econometric approach for aggregate overall benchmarking and a detailed activity analysis model, Integrated Energy System Model, for a few large sectors, provides a unique combination for easing the difficulties of policy formulation. The model is described in this paper. Eleven alternate scenarios are built, designed to map out extreme points of feasible options. Results show that even after employing all domestic energy resource to their full potential, there will be a continued rise of fossil fuel use, continued importance of coal, and continued rise of import dependence. Energy efficiency emerges as a major option with a potential to reduce energy requirement by as much as 17%. Scenario results point towards pushing for development of alternative sources. (author)

  13. Langevin formulation of quantum dynamics

    International Nuclear Information System (INIS)

    We first show that nonrelativistic quantum mechanics formulated at imaginary-(h/2 π) can formally be viewed as the Fokker-Planck description of a frictionless brownian motion, which occurs (in general) in an absorbing medium. We next offer a new formulation of quantum mechanics, which is basically the Langevin treatment of this brownian motion. Explicitly, we derive a noise-average representation for the transition probability W(X'',t''|X',t'), in terms of the solutions to a Langevin equation with a Gaussian white-noise. Upon analytic continuation back to real-(h/2 π),W(X'',t''|X',t') becomes the propagator of the original Schroedinger equation. Our approach allows for a straightforward application to quantum dynamical problems of the mathematical techniques of classical stochastic processes. Moreover, computer simulations of quantum mechanical systems can be carried out by using numerical programs based on the Langevin dynamics. (author). 19 refs, 1 tab

  14. A Comparison of Fick and Maxwell-Stefan Diffusion Formulations in PEMFC Cathode Gas Diffusion Layers

    CERN Document Server

    Lindstrom, Michael

    2013-01-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. Fick formulations can be considered as approximations of Maxwell-Stefan in a certain sense. For this application, the formulations can be compared computationally in a simple, one dimensional setting. We observe that the predictions of the formulations are very similar, despite their seemingly different structure. Analytic insight is given to the result. In addition, it is seen that for both formulations, diffusion laws are small perturbations from bulk flow. The work is also intended as a reference to multi-component gas diffusion formulations in the fuel cell setting.

  15. Formulation and evaluation of floating tablets of liquorice extract

    Directory of Open Access Journals (Sweden)

    H N Aswatha Ram

    2010-01-01

    Full Text Available Background: Floating tablets prolong the gastric residence time of drugs, improve bioavailability, and facilitate local drug delivery to the stomach. With this objective, floating tablets containing aqueous extract of liquorice as drug was prepared for the treatment of Helicobacter pylori and gastric ulcers. Methods: The aqueous extract of liquorice was standardized by HPTLC. Tablets containing HPMC K100M (hydrophilic polymer, liquorice extract, sodium bicarbonate (gas generating agent, talc, and magnesium stearate were prepared using direct compression method. The formulations were evaluated for physical parameters like diameter, thickness, hardness, friability, uniformity of weight, drug content, buoyancy time, dissolution, and drug release mechanism. The formulations were optimized on the basis of buoyancy time and in vitro drug release. Results: The diameter of all formulations was in the range 11.166-11.933 mm; thickness was in the range 4.02-4.086 mm. The hardness ranged from 3.1 to 3.5 kg/cm 2 . All formulations passed the USP requirements for friability and uniformity of weight. The buoyancy time of all tablet formulations was less than 5 min and tablet remained in floating condition throughout the study. All the tablet formulations followed zero-order kinetics and Korsemeyer-Peppas model in drug release. Conclusion: The optimized formulation was found to be F6 which released 98.3% of drug in 8 h in vitro, while the buoyancy time was 3.5 min. Formulations containing psyllium husk, sodium bicarbonate and HPMC K100M in combination can be a promising for gastroretentive drug delivery systems.

  16. Statistical mechanics formulation of radiobiology

    CERN Document Server

    Sotolongo-Grau, O; Santos-Miranda, J A; Antoranz, J C; Sotolongo-Costa, Oscar

    2009-01-01

    The expression of survival factors for radiation damaged cells is empirical and based on probabilistic assumptions. We obtain it either from the maximum entropy principle for the classical Boltzmann-Gibbs entropy and/or from the Tsallis entropy. Empiric models are found to be particular cases of the obtained expression. The survival factor exhibits a phase transition behaviour. This formulation supports different tissues grouped as universality classes.

  17. Efficacy of artemisinin-based combination therapy for treatment of persons with uncomplicated Plasmodium falciparum malaria in West Sumba District, East Nusa Tenggara Province, Indonesia, and genotypic profiles of the parasite.

    NARCIS (Netherlands)

    Asih, P.B.; Dewi, R.M.; Tuti, S.; Sadikin, M.; Sumarto, W.; Sinaga, B.; Ven, A.J.A.M. van der; Sauerwein, R.W.; Syafruddin, D.

    2009-01-01

    Reports on treatment failures associated with the use of first-and second-line antimalarial drugs chloroquine and sulfadoxine-pyrimethamine have recently increased in many parts of Indonesia. The present study evaluated artemisinin-based combination therapy for treatment of persons with uncomplicate

  18. Tangent bundle formulation of a charged gas

    CERN Document Server

    Sarbach, Olivier

    2013-01-01

    We discuss the relativistic kinetic theory for a simple, collisionless, charged gas propagating on an arbitrary curved spacetime geometry. Our general relativistic treatment is formulated on the tangent bundle of the spacetime manifold and takes advantage of its rich geometric structure. In particular, we point out the existence of a natural metric on the tangent bundle and illustrate its role for the development of the relativistic kinetic theory. This metric, combined with the electromagnetic field of the spacetime, yields an appropriate symplectic form on the tangent bundle. The Liouville vector field arises as the Hamiltonian vector field of a natural Hamiltonian. The latter also defines natural energy surfaces, called mass shells, which turn out to be smooth Lorentzian submanifolds. A simple, collisionless, charged gas is described by a distribution function which is defined on the mass shell and satisfies the Liouville equation. Suitable fibre integrals of the distribution function define observable fie...

  19. Nanoparticle formulations of cisplatin for cancer therapy.

    Science.gov (United States)

    Duan, Xiaopin; He, Chunbai; Kron, Stephen J; Lin, Wenbin

    2016-09-01

    The genotoxic agent cisplatin, used alone or in combination with radiation and/or other chemotherapeutic agents, is an important first-line chemotherapy for a broad range of cancers. The clinical utility of cisplatin is limited both by intrinsic and acquired resistance and dose-limiting normal tissue toxicity. That cisplatin shows little selectivity for tumor versus normal tissue may be a critical factor limiting its value. To overcome the low therapeutic ratio of the free drug, macromolecular, liposomal, and nanoparticle drug delivery systems have been explored toward leveraging the enhanced permeability and retention effect and promoting delivery of cisplatin to tumors. Here, we survey recent advances in nanoparticle formulations of cisplatin, focusing on agents that show promise in preclinical or clinical settings. WIREs Nanomed Nanobiotechnol 2016, 8:776-791. doi: 10.1002/wnan.1390 For further resources related to this article, please visit the WIREs website. PMID:26848041

  20. In vitro properties of surface-modified solid lipid microspheres containing an antimalarial drug:halofantrine

    Institute of Scientific and Technical Information of China (English)

    Anthony A Attama; Collins N Igbonekwu

    2011-01-01

    Objective:To formulate and evaluatein vitro, surface-modified solid lipid microspheres containing halofantrine using lipid matrix formed from goat fat and a phospholipid (P90H). Methods: The model drug, halofantrine in an increasing concentration of1%, 2%, 3%, 4% and5% w/w was incorporated into surface-modified solid lipid microspheres formulated by hot homogenization. Effect of drug concentration on the encapsulation efficiency was studied. The dispersion was evaluated using particle size, particle morphology, pH and encapsulation efficiency. The drug formulation with highest encapsulation efficiency was selected and used for the release studies and compared with the release from a commercial dosage form (Halfan® 250 mg tablet, Glaxo-Smithkline, Mayenne France) using simulated gastric fluid (SGF pH1.2), simulated intestinal fluid (SIF pH7.2) and phosphate buffer (pH6.8) as biorelevant media. Results were analyzed statistically and the level of significance was taken to beP<0.05). Results:Discrete and spherical solid lipid microspheres were produced. The particle size of the dispersion was low (32.48-33.87 μm) with minimal particle growth and high encapsulation efficiencies(86.8%-91.0%) after3 months. The pH of the microspheres dispersion changed appreciably after3 months.In vitro release result obtained revealed sustained and controlled drug release from the lipid microspheres compared with the tablet dosage form.Conclusions:Formulation of halofantrine as solid lipid microspheres presents a better alternative to the conventional tablet formulation as thein vitro dissolution of the highly lipophilic halofantrine was highly improved.