WorldWideScience

Sample records for antigenic peptide vaccine

  1. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    Directory of Open Access Journals (Sweden)

    Taguchi Hiroaki

    2011-08-01

    Full Text Available Abstract Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens, carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1 the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2 synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.

  2. MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans

    Directory of Open Access Journals (Sweden)

    Cunha-Neto E.

    1999-01-01

    Full Text Available The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.

  3. Optimized tumor cryptic peptides: the basis for universal neo-antigen-like tumor vaccines.

    Science.gov (United States)

    Menez-Jamet, Jeanne; Gallou, Catherine; Rougeot, Aude; Kosmatopoulos, Kostas

    2016-07-01

    The very impressive clinical results recently obtained in cancer patients treated with immune response checkpoint inhibitors boosted the interest in immunotherapy as a therapeutic choice in cancer treatment. However, these inhibitors require a pre-existing tumor specific immune response and the presence of tumor infiltrating T cells to be efficient. This immune response can be triggered by cancer vaccines. One of the main issues in tumor vaccination is the choice of the right antigen to target. All vaccines tested to date targeted tumor associated antigens (TAA) that are self-antigens and failed to show a clinical efficacy because of the immune self-tolerance to TAA. A new class of tumor antigens has recently been described, the neo-antigens that are created by point mutations of tumor expressing proteins and are recognized by the immune system as non-self. Neo-antigens exhibit two main properties: they are not involved in the immune self-tolerance process and are immunogenic. However, the majority of the neo-antigens are patient specific and their use as cancer vaccines requires their previous identification in each patient individualy that can be done only in highly specialized research centers. It is therefore evident that neo-antigens cannot be used for patient vaccination worldwide. This raises the question of whether we can find neo-antigen like vaccines, which would not be patient specific. In this review we show that optimized cryptic peptides from TAA are neo-antigen like peptides. Optimized cryptic peptides are recognized by the immune system as non-self because they target self-cryptic peptides that escape self-tolerance; in addition they are strongly immunogenic because their sequence is modified in order to enhance their affinity for the HLA molecule. The first vaccine based on the optimized cryptic peptide approach, Vx-001, which targets the widely expressed tumor antigen telomerase reverse transcriptase (TERT), has completed a large phase I clinical

  4. Presenting a foreign antigen on live attenuated Edwardsiella tarda using twin-arginine translocation signal peptide as a multivalent vaccine.

    Science.gov (United States)

    Wang, Yamin; Yang, Weizheng; Wang, Qiyao; Qu, Jiangbo; Zhang, Yuanxing

    2013-12-01

    The twin-arginine translocation (Tat) system is a major pathway for transmembrane translocation of fully folded proteins. In this study, a multivalent vaccine to present foreign antigens on live attenuated vaccine Edwardsiella tarda WED using screened Tat signal peptide was constructed. Because the Tat system increases the yields of folded antigens in periplasmic space or extracellular milieu, it is expected to contribute to the production of conformational epitope-derived specific antibodies. E. tarda Tat signal peptides fused with the green fluorescent protein (GFP) was constructed under the control of an in vivo inducible dps promoter. The resulting plasmids were electroporated into WED and the subcellular localizations of GFP were analyzed with Western blotting. Eight signal peptides with optimized GFP translocation efficiency were further fused to a protective antigen glyceraldehyde-3-phosphate dehydrogenase (GapA) from a fish pathogen Aeromonas hydrophila. Signal peptides of DmsA, NapA, and SufI displayed high efficiency for GapA translocation. The relative percent survival (RPS) of turbot was measured with a co-infection of E. tarda and A. hydrophila, and the strain with DmsA signal peptide showed the maximal protection. This study demonstrated a new platform to construct multivalent vaccines using optimized Tat signal peptide in E. tarda. PMID:23994481

  5. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.;

    1997-01-01

    amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  6. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine.

    Science.gov (United States)

    McComb, Ryan C; Ho, Chi-Lee; Bradley, Kenneth A; Grill, Laurence K; Martchenko, Mikhail

    2015-11-27

    The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines. PMID:26514421

  7. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi; Santhanagopolan, Sujatha M.; Baxter, Tiffany K.; Baker, Brian M. (Notre)

    2012-05-08

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.

  8. Development of 111In-labeled tumor-associated antigen peptides for monitoring dendritic-cell-based vaccination

    International Nuclear Information System (INIS)

    Dendritic cells (DC) are professional antigen-presenting cells capable of inducing potent immune responses. In our ongoing clinical trials, human leukocyte antigen (HLA)-A2.1+ melanoma patients are vaccinated with mature DC, presenting tumor-derived peptides in major histocompatibility complexes (MHC) to naive T cells. Previously, we have shown that both intradermally and intranodally injected 111In-labeled mature DC migrate to draining lymph nodes. However, little is known about the fate of the MHC-peptide complex after injection of these peptide-loaded DC. The aim of the present study was to develop radiolabeled, tumor-derived peptides to monitor their binding to MHC Class I. Methods: The HLA-A2.1 binding peptide gp100:154-162mod (gp100:154m) was conjugated with diethylenetriamine pentaacetic acid (DTPA) either at the N-terminus (α-DTPA-gp100:154m) or at the epsilon amino group of the Lys154 residue (ε-DTPA-gp100:154m) and labeled with 111In. Results: The maximum specific activity for both peptides was 13 GBq/μmol. The IC5 of the α-[111In]DTPA-gp100:154m peptide was >75 μM. The IC5 of the 111In-labeled ε-DTPA-gp100:154m was 3 μM, similar to the unconjugated peptide. MHC binding studies showed specific binding of the ε-[111In]DTPA-gp100:154m peptide to the JY cells at 4 deg. C. Interestingly, no specific binding was observed for the α-[111In]DTPA-gp100:154m peptide. In contrast to the α-[111In]DTPA-gp100:154m peptide, the ε-[111In]DTPA-gp100:154m peptide was recognized by cytotoxic T cells. Conclusion: When DTPA was conjugated to the epsilon NH2 group of the Lys154 residue, MHC binding of the peptide was preserved and could still be recognized by cytotoxic T cells. These studies allow the noninvasive determination of the behavior of MHC-peptide complexes on DC in vivo

  9. Cancer vaccine--Antigenics.

    Science.gov (United States)

    2002-01-01

    Antigenics is developing a therapeutic cancer vaccine based on heat-shock proteins (HSPs). The vaccine [HSPPC-96, Oncophage] is in a pivotal phase III clinical trial for renal cancer at 80 clinical sites worldwide. The trial is enrolling at least 500 patients who are randomised to receive surgical removal of the primary tumour followed by out-patient treatment with Oncophage((R)) or surgery only. This study was initiated on the basis of results from a pilot phase I/II study and preliminary results from a phase II study in patients with renal cell cancer. In October 2001, Oncophage was designated as a fast-track product by the Food and Drug Administration in the US for the treatment of renal cell carcinoma. Oncophage is in phase I/II trials in Italy for colorectal cancer (30 patients) and melanoma. The trials in Italy are being conducted at the Istituto dei Tumouri, Milan (in association with Sigma-Tau). Preliminary data from the phase II trial for melanoma was presented at the AACR-NCI-EORTC International Conference in Florida, USA, in October 2001. Oncophage is also in a phase I/II (42 patients) and a phase II trial (84 patients) in the US for renal cell cancer, a phase II trial in the US for non-Hodgkin's lymphoma (35 patients), a phase II trial in the US for sarcoma (20-35 patients), a phase I/II trial in the US for melanoma (36 patients), and phase I/II trials in Germany for gastric (30 patients) and pancreatic cancers. A pilot phase I trial in patients with pancreatic cancer began in the US in 1997 with 5 patients enrolled. In November 2000, Antigenics announced that this trial had been expanded to a phase I/II study which would now include survival as an endpoint and would enroll 5 additional patients. The US trials are being performed at Memorial Sloan-Kettering Cancer Center and the M.D. Anderson Cancer Center. The trials in Germany are being carried out at Johannes Gutenberg-University Hospital, Mainz. Oncophage is an autologous vaccine consisting of

  10. Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukemia-associated antigens: implications for the graft-versus-leukemia effect and peptide vaccine-based immunotherapy

    OpenAIRE

    Yong, Agnes S.M.; Keyvanfar, Keyvan; Eniafe, Rhoda; Savani, Bipin N.; Rezvani, Katayoun; Sloand, Elaine M.; Goldman, John M.; Barrett, A. John

    2008-01-01

    The cure of chronic myeloid leukemia (CML) patients following allogeneic stem cell transplantation (SCT) is attributed to graft-versus-leukemia (GVL) effects targeting alloantigens and/or leukemia-associated antigens (LAA) on leukemia cells. To assess the potential of LAA-peptide vaccines in eliminating leukemia in CML patients, we measured WT1, PR3, ELA2 and PRAME expression in CD34+ progenitor subpopulations in CML patients and compared them with minor histocompatibility antigens (mHAgs) HA...

  11. Personalized peptide vaccination for advanced biliary tract cancer: IL-6, nutritional status and pre-existing antigen-specific immunity as possible biomarkers for patient prognosis

    OpenAIRE

    Yoshitomi, Munehiro; Yutani, Shigeru; Matsueda, Satoko; IOJI, TETSUYA; Komatsu, Nobukazu; SHICHIJO, SHIGEKI; Yamada, Akira; ITOH, KYOGO; SASADA, TETSURO; Kinoshita, Hisafumi

    2011-01-01

    Considering that the prognosis of patients with advanced biliary tract cancer (BTC) remains very poor, with a median survival of less than 1 year, new therapeutic approaches need to be developed. In the present study, a phase II clinical trial of personalized peptide vaccination (PPV) was conducted in advanced BTC patients to evaluate the feasibility of this treatment and to identify potential biomarkers. A maximum of 4 human leukocyte antigen-matched peptides, which were selected based on th...

  12. Redefining an epitope of a malaria vaccine candidate, with antibodies against the N-terminal MSA-2 antigen of Plasmodium harboring non-natural peptide bonds

    OpenAIRE

    Lozano, José Manuel; Guerrero, Yuly Andrea; Alba, Martha Patricia; Lesmes, Liliana Patricia; Escobar, José Oswaldo; Patarroyo, Manuel Elkin

    2013-01-01

    The aim of obtaining novel vaccine candidates against malaria and other transmissible diseases can be partly based on selecting non-polymorphic peptides from relevant antigens of pathogens, which have to be then precisely modified for inducing a protective immunity against the disease. Bearing in mind the high degree of the MSA-221–40 peptide primary structure’s genetic conservation among malaria species, and its crucial role in the high RBC binding ability of Plasmodium falciparum (the main ...

  13. Antigen-Specific CD4+ T Cells Recognize Epitopes of Protective Antigen following Vaccination with an Anthrax Vaccine

    OpenAIRE

    Laughlin, Elsa M.; Miller, Joseph D.; James, Eddie; Fillos, Dimitri; Ibegbu, Chris C.; Mittler, Robert S.; Akondy, Rama; Kwok, William; Ahmed, Rafi; Nepom, Gerald,

    2007-01-01

    Detection of antigen-specific CD4+ T cells is facilitated by the use of fluorescently labeled soluble peptide-major histocompatibility complex (MHC) multimers which mirror the antigen specificity of T-cell receptor recognition. We have used soluble peptide-MHC class II tetramers containing peptides from the protective antigen (PA) of Bacillus anthracis to detect circulating T cells in peripheral blood of subjects vaccinated with an anthrax vaccine. PA-specific HLA class II-restricted T lympho...

  14. Vesicular Stomatitis Virus glycoprotein G carrying a tandem dimer of Foot and Mouth Disease Virus antigenic site A can be used as DNA and peptide vaccine for cattle.

    Science.gov (United States)

    Capozzo, Alejandra V; Wilda, Maximiliano; Bucafusco, Danilo; de los Ángeles Lavoria, María; Franco-Mahecha, Olga L; Mansilla, Florencia C; Pérez-Filgueira, Daniel M; Grigera, Pablo R

    2011-11-01

    Effective Foot and Mouth Disease Virus (FMDV) peptide vaccines for cattle have two major constraints: resemblance of one or more of the multiple conformations of the major VP1 antigenic sites to induce neutralizing antibodies, and stimulation of T cells despite the variable bovine-MHC polymorphism. To overcome these limitations, a chimeric antigen was developed, using Vesicular Stomatitis Virus glycoprotein (VSV-G) as carrier protein of an in tandem-dimer of FMDV antigenic site A (ASA), the major epitope on the VP1 capsid protein (aa 139-149, FMDV-C3 serotype). The G-ASA construct was expressed in the Baculovirus system to produce a recombinant protein (DEL BAC) (cloned in pCDNA 3.1 plasmid) (Invitrogen Corporation, Carlsbad, CA) and was also prepared as a DNA vaccine (pC DEL). Calves vaccinated with both immunogens elicited antibodies that recognized the ASA in whole virion and were able to neutralize FMDV infectivity in vitro. After two vaccine doses, DEL BAC induced serum neutralizing titers compatible with an "expected percentage of protection" above 90%. Plasmid pC DEL stimulated FMDV specific humoral responses earlier than DEL BAC, though IgG1 to IgG2 ratios were lower than those induced by both DEL BAC and inactivated FMDV-C3 after the second dose. DEL BAC induced FMDV-specific secretion of IFN-γ in peripheral blood mononuclear cells of outbred cattle immunized with commercial FMDV vaccine, suggesting its capacity to recall anamnestic responses mediated by functional T cell epitopes. The results show that exposing FMDV-VP1 major neutralizing antigenic site in the context of N-terminal sequences of the VSV G protein can overcome the immunological limitations of FMDV-VP1 peptides as effective protein and DNA vaccines for cattle. PMID:21889542

  15. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models

    Directory of Open Access Journals (Sweden)

    Eguchi Junichi

    2007-02-01

    Full Text Available Abstract Background Toll-like receptor (TLR3 ligands serve as natural inducers of pro-inflammatory cytokines capable of promoting Type-1 adaptive immunity, and TLR3 is abundantly expressed by cells within the central nervous system (CNS. To improve the efficacy of vaccine strategies directed against CNS tumors, we evaluated whether administration of a TLR3 ligand, polyinosinic-polycytidylic (poly-IC stabilized with poly-lysine and carboxymethylcellulose (poly-ICLC would enhance the anti-CNS tumor effectiveness of tumor peptide-based vaccinations. Methods C57BL/6 mice bearing syngeneic CNS GL261 glioma or M05 melanoma received subcutaneous (s.c. vaccinations with synthetic peptides encoding CTL epitopes- mEphA2 (671–679, hgp100 (25–33 and mTRP-2 (180–188 for GL261, or ovalbumin (OVA: 257–264 for M05. The mice also received intramuscular (i.m. injections with poly-ICLC. Results The combination of subcutaneous (s.c. peptide-based vaccination and i.m. poly-ICLC administration promoted systemic induction of antigen (Ag-specific Type-1 CTLs expressing very late activation antigen (VLA-4, which confers efficient CNS-tumor homing of vaccine-induced CTLs based on experiments with monoclonal antibody (mAb-mediated blockade of VLA-4. In addition, the combination treatment allowed expression of IFN-γ by CNS tumor-infiltrating CTLs, and improved the survival of tumor bearing mice in the absence of detectable autoimmunity. Conclusion These data suggest that poly-ICLC, which has been previously evaluated in clinical trials, can be effectively combined with tumor Ag-specific vaccine strategies, thereby providing a greater index of therapeutic efficacy.

  16. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  17. Selection of glutamate-rich protein long synthetic peptides for vaccine development: antigenicity and relationship with clinical protection and immunogenicity.

    Science.gov (United States)

    Theisen, M; Dodoo, D; Toure-Balde, A; Soe, S; Corradin, G; Koram, K K; Kurtzhals, J A; Hviid, L; Theander, T; Akanmori, B; Ndiaye, M; Druilhe, P

    2001-09-01

    Antibodies against three long synthetic peptides (LSPs) derived from the glutamate-rich protein (GLURP) of Plasmodium falciparum were analyzed in three cohorts from Liberia, Ghana, and Senegal. Two overlapping LSPs, LR67 and LR68, are derived from the relatively conserved N-terminal nonrepeat region (R0), and the third, LR70, is derived from the R2 repeat region. A high prevalence of antibody responses to each LSP was observed in all three areas of endemic infection. Levels of cytophilic immunoglobulin G (IgG) antibodies against both GLURP regions were significantly correlated with protection from clinical P. falciparum malaria. Protected children from the Ghana cohort possessed predominantly IgG1 antibodies against the nonrepeat epitope and IgG3 antibodies against the repeat epitope. T-cell proliferation responses, studied in the cohort from Senegal, revealed that T-helper-cell epitopes were confined to the nonrepeat region. When used as immunogens, the LR67 and LR68 peptides elicited strong IgG responses in outbred mice and LR67 also induced antibodies in mice of different H-2 haplotypes, confirming the presence of T-helper-cell epitopes in these constructs. Mouse antipeptide antisera recognized parasite proteins as determined by immunofluorescence and immunoblotting. This indicates that synthetic peptides derived from relatively conserved epitopes of GLURP might serve as useful immunogens for vaccination against P. falciparum malaria. PMID:11500389

  18. Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens

    Directory of Open Access Journals (Sweden)

    Kono Koji

    2012-07-01

    Full Text Available Abstract Background Since a phase I clinical trial using three HLA-A24-binding peptides from TTK protein kinase (TTK, lymphocyte antigen-6 complex locus K (LY6K, and insulin-like growth factor-II mRNA binding protein-3 (IMP3 had been shown to be promising for esophageal squamous cell carcinoma (ESCC, we further performed a multicenter, non-randomized phase II clinical trial. Patients and methods Sixty ESCC patients were enrolled to evaluate OS, PFS, immunological response employing ELISPOT and pentamer assays. Each of the three peptides was administered with IFA weekly. All patients received the vaccination without knowing an HLA-A type, and the HLA types were key-opened at the analysis point. Hence, the endpoints were set to evaluate differences between HLA-A*2402-positive (24(+ and -negative (24(− groups. Results The OS in the 24 (+ group (n = 35 tended to be better than that in the 24(− group (n = 25 (MST 4.6 vs. 2.6 month, respectively, p = 0.121, although the difference was not statistically significant. However, the PFS in the 24(+ group was significantly better than that in the 24(− group (p = 0.032. In the 24(+ group, ELISPOT assay indicated that the LY6K-, TTK-, and IMP3-specific CTL responses were observed after the vaccination in 63%, 45%, and 60% of the 24(+ group, respectively. The patients having LY6K-, TTK-, and IMP3-specific CTL responses revealed the better OS than those not having CTL induction, respectively. The patients showing the CTL induction for multiple peptides have better clinical responses. Conclusions The immune response induced by the vaccination could make the prognosis better for advanced ESCC patients. Trial registration ClinicalTrials.gov, number NCT00995358

  19. High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4(+) T cell responses more than 30 years post-vaccinia virus vaccination

    DEFF Research Database (Denmark)

    Wang, M.; Tang, Sheila Tuyet; Lund, Ole; Dziegiel, M. H.; Buus, S.; Claesson, M. H.

    2009-01-01

    Interferon-gamma secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human leucoc...

  20. A phase II trial of personalized peptide vaccination in castration-resistant prostate cancer patients: prolongation of prostate-specific antigen doubling time

    OpenAIRE

    Noguchi, Masanori; MORIYA, FUKUKO; SUEKANE, SHIGETAKA; Ohnishi, Rei; Matsueda, Satoko; Sasada, Tetsuro; Yamada, Akira; Itoh, Kyogo

    2013-01-01

    Background Cancer vaccine is one of the attractive treatment modalities for patients with castration-resistant prostate cancer (CRPC). However, because of delayed immune responses, its clinical benefits, besides for overall survival (OS), are not well captured by the World Health Organization (WHO) and Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Several surrogate markers for evaluation of cancer vaccine, including prostate-specific antigen doubling time (PSADT), are curren...

  1. Selection of glutamate-rich protein long synthetic peptides for vaccine development: antigenicity and relationship with clinical protection and immunogenicity

    DEFF Research Database (Denmark)

    Theisen, M; Dodoo, D; Toure-Balde, A; Soe, S; Corradin, G; Koram, K K; Kurtzhals, J A; Hviid, L; Theander, T; Akanmori, B; Ndiaye, M; Druilhe, P

    2001-01-01

    Antibodies against three long synthetic peptides (LSPs) derived from the glutamate-rich protein (GLURP) of Plasmodium falciparum were analyzed in three cohorts from Liberia, Ghana, and Senegal. Two overlapping LSPs, LR67 and LR68, are derived from the relatively conserved N-terminal nonrepeat reg...

  2. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine

    OpenAIRE

    Cui, Chengji; Stevens, Vernon C.; Schwendeman, Steven P.

    2006-01-01

    Advanced contraceptive peptide vaccines suffer from the unavailability of adjuvants capable of enhancing the antibody response with acceptable safety. We sought to overcome this limitation by employing two novel poly(lactic-co-glycolic acid) (PLGA) microsphere formulations to deliver a synthetic human chorionic gonadotropin (hCG) peptide antigen co-synthesized with a T-cell epitope from tetanus toxoid, C-TT2-CTP35: surface-conjugated immunogen to induce phagocytosis; and encapsulated peptide ...

  3. Selection of Glutamate-Rich Protein Long Synthetic Peptides for Vaccine Development: Antigenicity and Relationship with Clinical Protection and Immunogenicity

    OpenAIRE

    Theisen, Michael; Dodoo, Daniel; Toure-Balde, Aissatou; Soe, Soe; Corradin, Giampietro; Koram, Kwadwo K.; Kurtzhals, Jørgen A. L.; Hviid, Lars; Theander, Thor; Akanmori, Bartholomew; Ndiaye, Mohamadou; Druilhe, Pierre

    2001-01-01

    Antibodies against three long synthetic peptides (LSPs) derived from the glutamate-rich protein (GLURP) of Plasmodium falciparum were analyzed in three cohorts from Liberia, Ghana, and Senegal. Two overlapping LSPs, LR67 and LR68, are derived from the relatively conserved N-terminal nonrepeat region (R0), and the third, LR70, is derived from the R2 repeat region. A high prevalence of antibody responses to each LSP was observed in all three areas of endemic infection. Levels of cytophilic immu...

  4. Comparison of melanoma antigens in whole tumor vaccine to those from IIB-MEL-J cells.

    Science.gov (United States)

    McGee, J M; Patten, M R; Malnar, K F; Price, J A; Mayes, J S; Watson, G H

    1999-06-01

    Immunotherapy for melanoma shows promise. Our previous whole tumor (WT) vaccine was noted to have positive clinical effects. We have now developed a new, safer melanoma vaccine that is derived from IIB-MEL-J tissue culture (TC) cells. In this study, we compare by Western blot analyses the antigens in the WT vaccine to antigens in the TC vaccine. Sera from 12 WT vaccine recipients, 8 melanoma patients who received no immunotherapy, and 8 controls served as a source of antibodies to investigate potential antigens in the vaccines. Three major antigenic peptides with approximate molecular weighs of 46, 40, and 36 kDA were present in both vaccines, while two other antigenic peptides with approximate molecular weighs of 68 and 48 kDA were present only in the TC vaccine. The reaction was similar between the patients who received the WT vaccine and those who did not receive the vaccine. Some of the individuals who did not have melanoma showed some reaction, but not to the extent of the melanoma patients. The intensity of immunostaining was greater for the TC vaccine when compared to the WT vaccine, indicating that these proteins are in a higher concentration in the TC vaccine. This new vaccine from IIB-MEL-J tissue culture cells provides a higher yield and a much more consistent source of potentially clinically relevant antigens without risk of infection or contamination by other irrelevant materials. PMID:10850304

  5. Long-Term Follow-Up of HLA-A2+ Patients with High-Risk, Hormone-Sensitive Prostate Cancer Vaccinated with the Prostate Specific Antigen Peptide Homologue (PSA146-154

    Directory of Open Access Journals (Sweden)

    Supriya Perambakam

    2010-01-01

    Full Text Available Twenty-eight HLA-A2+ patients with high-risk, locally advanced or metastatic, hormone-sensitive prostate cancer were immunized with a peptide homologue of prostate-specific antigen, PSA146-154, between July 2002 and September 2004 and monitored for clinical and immune responses. Fifty percent of the patients developed strong PSA146-154-peptide-specific delayed-type hypersensitivity skin responses, tetramer and/or IFN-γ responses within one year. Thirteen patients had stable or declining serum levels of PSA one year post-vaccination. A decreased risk of biochemical progression was observed in patients who developed augmented tetramer responses at six months compared to pre-vaccination levels (P=.02. Thirteen patients have died while 15 patients remain alive with a mean overall survival of 60 months (95% CI, 51 to 68 months per Kaplan-Meier analysis. A trend towards greater overall survival was detected in men with high-risk, hormone-sensitive CaP who developed specific T-cell immunity following vaccination with PSA146-154 peptide.

  6. Beyond antigens and adjuvants: formulating future vaccines.

    Science.gov (United States)

    Moyer, Tyson J; Zmolek, Andrew C; Irvine, Darrell J

    2016-03-01

    The need to optimize vaccine potency while minimizing toxicity in healthy recipients has motivated studies of the formulation of vaccines to control how, when, and where antigens and adjuvants encounter immune cells and other cells/tissues following administration. An effective subunit vaccine must traffic to lymph nodes (LNs), activate both the innate and adaptive arms of the immune system, and persist for a sufficient time to promote a mature immune response. Here, we review approaches to tailor these three aspects of vaccine function through optimized formulations. Traditional vaccine adjuvants activate innate immune cells, promote cell-mediated transport of antigen to lymphoid tissues, and promote antigen retention in LNs. Recent studies using nanoparticles and other lymphatic-targeting strategies suggest that direct targeting of antigens and adjuvant compounds to LNs can also enhance vaccine potency without sacrificing safety. The use of formulations to regulate biodistribution and promote antigen and inflammatory cue co-uptake in immune cells may be important for next-generation molecular adjuvants. Finally, strategies to program vaccine kinetics through novel formulation and delivery strategies provide another means to enhance immune responses independent of the choice of adjuvant. These technologies offer the prospect of enhanced efficacy while maintaining high safety profiles necessary for successful vaccines. PMID:26928033

  7. CELLULAR VACCINES IN LISTERIOSIS: ROLE OF THE LISTERIA ANTIGEN GAPDH.

    Directory of Open Access Journals (Sweden)

    Ricardo eCalderon-Gonzalez

    2014-02-01

    Full Text Available The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH, and several epitopes such as the LLO peptides, LLO189–201 and LLO91–99 and the GAPDH peptide, GAPDH1–22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1–22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91–99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1–22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes.

  8. Peptide/protein vaccine delivery system based on PLGA particles.

    Science.gov (United States)

    Allahyari, Mojgan; Mohit, Elham

    2016-03-01

    Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024

  9. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  10. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection

    OpenAIRE

    Tipper, Donald J.; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolde...

  11. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine.

    Science.gov (United States)

    Cui, Chengji; Stevens, Vernon C; Schwendeman, Steven P

    2007-01-01

    Advanced contraceptive peptide vaccines suffer from the unavailability of adjuvants capable of enhancing the antibody response with acceptable safety. We sought to overcome this limitation by employing two novel poly(lactic-co-glycolic acid) (PLGA) microsphere formulations to deliver a synthetic human chorionic gonadotropin (hCG) peptide antigen co-synthesized with a T-cell epitope from tetanus toxoid (TT), C-TT2-CTP35: surface-conjugated immunogen to induce phagocytosis; and encapsulated peptide to provide a depot effect, with MgCO(3) co-encapsulated in the polymer to neutralize acidity from the biodegrading PLGA polyester. A single immunization of encapsulated peptide in rabbits elicited a stronger antibody response with equivalent duration relative to a positive control--three injections of the peptide administered in a squalene-based water-in-oil emulsion. Surface-conjugated peptide was less effective but enhanced antibody levels at 1/5 the dose, relative to soluble antigen. Most remarkable and unexpected was the finding that co-encapsulation of base was essential to attain the powerful adjuvant effect of the PLGA-MgCO(3) system, as the MgCO(3)-free microspheres were completely ineffective. A promising contraceptive hCG peptide vaccine with acceptable side effects (i.e., local tissue reactions) was achieved by minimizing PLGA and MgCO(3) doses, without significantly affecting antibody response. PMID:16996662

  12. Designing malaria vaccines to circumvent antigen variability.

    Science.gov (United States)

    Ouattara, Amed; Barry, Alyssa E; Dutta, Sheetij; Remarque, Edmond J; Beeson, James G; Plowe, Christopher V

    2015-12-22

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. PMID:26475447

  13. Chagas disease-specific antigens: characterization of epitopes in CRA/FRA by synthetic peptide mapping and evaluation by ELISA-peptide assay

    OpenAIRE

    Bottino, Carolina G; Gomes, Luciano P; Pereira, José B; José R. Coura; Provance, David William; De-Simone, Salvatore G

    2013-01-01

    Background The identification of epitopes in proteins recognized by medically relevant antibodies is useful for the development of peptide-based diagnostics and vaccines. In this study, epitopes in the cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins from Trypanosoma cruzi were identified using synthetic peptide techniques and pooled sera from Chagasic patients. The epitopes were further assayed with an ELISA assay based on synthetic peptides. Methods Twent...

  14. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Directory of Open Access Journals (Sweden)

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  15. Clearance of depot vaccine SPIO-labeled antigen and substrate visualized using MRI.

    Science.gov (United States)

    Brewer, Kimberly D; Lake, Kerry; Pelot, Nicole; Stanford, Marianne M; DeBay, Drew R; Penwell, Andrea; Weir, Genevieve M; Karkada, Mohan; Mansour, Marc; Bowen, Chris V

    2014-12-01

    Immunotherapies, including peptide-based vaccines, are a growing area of cancer research, and understanding their mechanism of action is crucial for their continued development and clinical application. Exploring the biodistribution of vaccine components may be key to understanding this action. This work used magnetic resonance imaging (MRI) to characterize the in vivo biodistribution of the antigen and oil substrate of the vaccine delivery system known as DepoVax(TM). DepoVax uses a novel adjuvanted lipid-in-oil based formulation to solubilise antigens and promote a depot effect. In this study, antigen or oil were tagged with superparamagnetic iron oxide (SPIO), making them visible on MR images. This enables tracking of individual vaccine components to determine changes in biodistribution. Mice were injected with SPIO-labeled antigen or SPIO-labeled oil, and imaged to examine clearance of labeled components from the vaccine site. The SPIO-antigen was steadily cleared, with nearly half cleared within two months post-vaccination. In contrast, the SPIO-oil remained relatively unchanged. The biodistribution of the SPIO-antigen component within the vaccine site was heterogeneous, indicating the presence of active clearance mechanisms, rather than passive diffusion or drainage. Mice injected with SPIO-antigen also showed MRI contrast for several weeks post-vaccination in the draining inguinal lymph node. These results indicate that MRI can visualize the in vivo longitudinal biodistribution of vaccine components. The sustained clearance is consistent with antigen up-take and trafficking by immune cells, leading to accumulation in the draining lymph node, which corresponds to the sustained immune responses and reduced tumor burden observed in vaccinated mice. PMID:25444822

  16. Peptide Vaccines for Hypertension and Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Hironori Nakagami

    2014-11-01

    Full Text Available Vaccines are commonly used as a preventive medicine for infectious diseases worldwide; however, the trial for an amyloid beta vaccine against Alzheimer’s disease will open a new concept in vaccination. In case of therapeutic vaccines for cancer, their targets are usually specific antigens in cancer cells, allowing activated cytotoxic T cells (CTLs to attach and remove the antigen-presenting cancer cells. In our therapeutic vaccines against hypertension, the target is angiotensin II (Ang II and induced anti-Ang II antibodies could efficiently ameliorate high blood pressure. Similarly, we developed the therapeutic vaccine against DPP4 for diabetes mellitus. However, because Ang II or DPP4 is an endogenous hormone, we must avoid autoimmune disease induced by these vaccines. Therefore, our system was used to design a therapeutic vaccine that elicits anti-Ang II or DPP4 antibodies without CTL activation against Ang II or DPP4. In this review, we will describe our concept of therapeutic vaccines for hypertension and diabetes mellitus.

  17. Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation

    Directory of Open Access Journals (Sweden)

    Hung Chien-Fu

    2010-11-01

    Full Text Available Abstract Background Effective vaccination against human papillomavirus (HPV represents an opportunity to control cervical cancer. Peptide-based vaccines targeting HPV E6 and/or E7 antigens while safe, will most likely require additional strategies to enhance the vaccine potency. Methods We tested the HPV-16 E7 peptide-based vaccine in combination with a strategy to enhance CD4+ T help using a Pan HLA-DR epitope (PADRE peptide and a strategy to enhance dendritic cell activation using the toll-like receptor 3 ligand, poly(I:C. Results We observed that mice vaccinated with E7 peptide-based vaccine in combination with PADRE peptide and poly(I:C generated better E7-specific CD8+ T cell immune responses as well as significantly improved therapeutic anti-tumor effects against TC-1 tumors compared to E7 peptide-based vaccine with either PADRE peptide or poly(I:C alone. Furthermore, we found that intratumoral vaccination with the E7 peptide in conjunction with PADRE peptide and poly(I:C generates a significantly higher frequency of E7-specific CD8+ T cells as well as better survival compared to subcutaneous vaccination with the same regimen in treated mice. Conclusions The combination of PADRE peptide and poly(I:C with antigenic peptide is capable of generating potent antigen-specific CD8+ T cell immune responses and antitumor effects in vaccinated mice. Our study has significant clinical implications for peptide-based vaccination.

  18. Complex Minigene Library Vaccination for Discovery of Pre-Erythrocytic Plasmodium T Cell Antigens

    Science.gov (United States)

    Stone, Brad C.; Kas, Arnold; Billman, Zachary P.; Fuller, Deborah H.; Fuller, James T.; Shendure, Jay; Murphy, Sean C.

    2016-01-01

    Development of a subunit vaccine targeting liver-stage Plasmodium parasites requires the identification of antigens capable of inducing protective T cell responses. However, traditional methods of antigen identification are incapable of evaluating T cell responses against large numbers of proteins expressed by these parasites. This bottleneck has limited development of subunit vaccines against Plasmodium and other complex intracellular pathogens. To address this bottleneck, we are developing a synthetic minigene technology for multi-antigen DNA vaccines. In an initial test of this approach, pools of long (150 bp) antigen-encoding oligonucleotides were synthesized and recombined into vectors by ligation-independent cloning to produce two DNA minigene library vaccines. Each vaccine encoded peptides derived from 36 (vaccine 1) and 53 (vaccine 2) secreted or transmembrane pre-erythrocytic P. yoelii proteins. BALB/cj mice were vaccinated three times with a single vaccine by biolistic particle delivery (gene gun) and screened for interferon-γ-producing T cell responses by ELISPOT. Library vaccination induced responses against four novel antigens. Naïve mice exposed to radiation-attenuated sporozoites mounted a response against only one of the four novel targets (PyMDH, malate dehydrogenase). The response to PyMDH could not be recalled by additional homologous sporozoite immunizations but could be partially recalled by heterologous cross-species sporozoite exposure. Vaccination against the dominant PyMDH epitope by DNA priming and recombinant Listeria boosting did not protect against sporozoite challenge. Improvements in library design and delivery, combined with methods promoting an increase in screening sensitivity, may enable complex minigene screening to serve as a high-throughput system for discovery of novel T cell antigens. PMID:27070430

  19. Method for the synthesis of highly pure vaccines using the lipid core peptide system.

    Science.gov (United States)

    Moyle, Peter M; Olive, Colleen; Good, Michael F; Toth, Istvan

    2006-12-01

    Traditional vaccines consisting of whole attenuated microorganisms, killed microorganisms, or microbial components, administered with an adjuvant (e.g. alum), have been proved to be extremely successful. However, to develop new vaccines, or to improve upon current vaccines, new vaccine development techniques are required. Peptide vaccines offer the capacity to administer only the minimal microbial components necessary to elicit appropriate immune responses, minimizing the risk of vaccination associated adverse effects, and focusing the immune response toward important antigens. Peptide vaccines, however, are generally poorly immunogenic, necessitating administration with powerful, and potentially toxic adjuvants. The attachment of lipids to peptide antigens has been demonstrated as a potentially safe method for adjuvanting peptide epitopes. The lipid core peptide (LCP) system, which incorporates a lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity, has been demonstrated to boost immunogenicity of attached peptide epitopes without the need for additional adjuvants. The synthesis of LCP systems normally yields a product that cannot be purified to homogeneity. The current study describes the development of methods for the synthesis of highly pure LCP analogs using native chemical ligation. Because of the highly lipophilic nature of the LCP lipid adjuvant, difficulties (e.g. poor solubility) were experienced with the ligation reactions. The addition of organic solvents to the ligation buffer solubilized lipidic species, but did not result in successful ligation reactions. In comparison, the addition of approximately 1% (w/v) sodium dodecyl sulfate (SDS) proved successful, enabling the synthesis of two highly pure, tri-epitopic Streptococcus pyogenes LCP analogs. Subcutaneous immunization of B10.BR (H-2(k)) mice with one of these vaccines, without the addition of any adjuvant, elicited high levels of systemic IgG antibodies against each of

  20. Delivery of a multivalent scrambled antigen vaccine induces broad spectrum immunity and protection against tuberculosis.

    Science.gov (United States)

    West, Nicholas P; Thomson, Scott A; Triccas, James A; Medveczky, C Jill; Ramshaw, Ian A; Britton, Warwick J

    2011-10-13

    The development of effective anti-Tuberculosis (TB) vaccines is an important step towards improved control of TB in high burden countries. Subunit vaccines are advantageous in terms of safety, particularly in the context of high rates of HIV co-infection, but they must contain sufficient Mycobacterium tuberculosis antigens to stimulate immunity in genetically diverse human populations. We have used a novel approach to develop a synthetic scrambled antigen vaccine (TB-SAVINE), comprised of overlapping, recombined peptides from four M. tuberculosis proteins, Ag85B, ESAT-6, PstS3 and Mpt83, each of which is immunogenic and protective against experimental TB. This polyvalent TB-SAVINE construct stimulated CD4 and CD8T cell responses against the individual proteins and M. tuberculosis in C57BL/6 and Balb/c mice, when delivered as DNA, Fowl Pox Virus or Vaccinia Virus vaccines. In addition, the DNA-TBS vaccine induced protective immunity against pulmonary M. tuberculosis infection in C57BL/6 mice. Co-immunization of Balb/c mice with virally expressed TBS and HIV1-SAVINE vaccine stimulated strong T cell responses to both the M. tuberculosis and HIV proteins, indicating no effects of antigenic competition. Further development of this TB-SAVINE vaccine expressing components from multiple M. tuberculosis proteins may prove an effective vaccine candidate against TB, which could potentially form part of a safe, combined preventative strategy together with HIV immunisations. PMID:21846485

  1. A Review of Pneumococcal Vaccines: Current Polysaccharide Vaccine Recommendations and Future Protein Antigens

    OpenAIRE

    Daniels, Calvin C.; Rogers, P. David; Shelton, Chasity M.

    2016-01-01

    This review describes development of currently available pneumococcal vaccines, provides summary tables of current pneumococcal vaccine recommendations in children and adults, and describes new potential vaccine antigens in the pipeline. Streptococcus pneumoniae, the bacteria responsible for pneumonia, otitis media, meningitis and bacteremia, remains a cause of morbidity and mortality in both children and adults. Introductions of unconjugated and conjugated pneumococcal polysaccharide vaccine...

  2. Strategies for Designing and Monitoring Malaria Vaccines Targeting Diverse Antigens

    OpenAIRE

    Barry, Alyssa E; Arnott, Alicia

    2014-01-01

    After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic...

  3. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit; Almanzar, Giovanni; Parson, Walther; Buus, Søren; Lindner, Herbert; Grubeck-Loebenstein, Beatrix

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic...... proteins and peptides. Little information is available presently about the consequences of such modifications on the immune response. To model oxidative modification of an immunodominant antigenic peptide, we oxidized the methionine residue of the human CMV pp65(495-503) (NLVPMVATV) peptide. Such...... modifications of an antigenic peptide can affect MHC binding or TCR recognition. Using binding and dissociation assays, we demonstrate that oxidative modification of the CMVpp65(495-503) peptide leads to a decreased binding of the pMHC complex to the TCR, whereas binding of the peptide to the MHC class I...

  4. Overlapping Synthetic Peptides Encoding TPD52 as Breast Cancer Vaccine in Mice: Prolonged Survival1

    OpenAIRE

    Mirshahidi, Saied; Kramer, Victor G; James B Whitney; Essono, Sosthène; Lee, Sandra; Dranoff, Glenn; Anderson, Karen S.; Ruth M Ruprecht

    2009-01-01

    Peptide-based vaccines, one of several anti-tumor immunization strategies currently under investigation, can elicit both MHC Class I-restricted (CD8+) and Class II-restricted (CD4+) responses. However, the need to identify specific T-cell epitopes in the context of MHC alleles has hampered the application of this approach. We have tested overlapping synthetic peptides (OSP) representing a tumor antigen as a novel approach that bypasses the need for epitope mapping, since OSP contain all possi...

  5. Long-Term Follow-Up of HLA-A2+ Patients with High-Risk, Hormone-Sensitive Prostate Cancer Vaccinated with the Prostate Specific Antigen Peptide Homologue (PSA146-154)

    OpenAIRE

    Perambakam, Supriya; Xie, Hui; Edassery, Seby; Peace, David J.

    2011-01-01

    Twenty-eight HLA-A2+ patients with high-risk, locally advanced or metastatic, hormone-sensitive prostate cancer were immunized with a peptide homologue of prostate-specific antigen, PSA146-154, between July 2002 and September 2004 and monitored for clinical and immune responses. Fifty percent of the patients developed strong PSA146-154-peptide-specific delayed-type hypersensitivity skin responses, tetramer and/or IFN-γ responses within one year. Thirteen patients had stable or declining serum...

  6. Long-Term Follow-Up of HLA-A2+ Patients with High-Risk, Hormone-Sensitive Prostate Cancer Vaccinated with the Prostate Specific Antigen Peptide Homologue (PSA146-154)

    OpenAIRE

    Perambakam, Supriya; Xie, Hui; Edassery, Seby; Peace, David J.

    2010-01-01

    Twenty-eight HLA-A2+ patients with high-risk, locally advanced or metastatic, hormone-sensitive prostate cancer were immunized with a peptide homologue of prostate-specific antigen, PSA146-154, between July 2002 and September 2004 and monitored for clinical and immune responses. Fifty percent of the patients developed strong PSA146-154-peptide-specific delayed-type hypersensitivity skin responses, tetramer and/or IFN-γ responses within one year. Thirteen patients had stable or declining serum...

  7. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides

    Science.gov (United States)

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-07-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI

  8. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection.

    Science.gov (United States)

    Tipper, Donald J; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%. PMID:27213160

  9. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection

    Directory of Open Access Journals (Sweden)

    Donald J. Tipper

    2016-01-01

    Full Text Available Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs. YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP or U65-Apolipoprotein A1 (ApoA1 subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%.

  10. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection

    Science.gov (United States)

    Tipper, Donald J.; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%.

  11. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES

    International Nuclear Information System (INIS)

    To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG2a rather than IgG1 antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8+ T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES

  12. Pentamers not found in the universal proteome can enhance antigen specific immune responses and adjuvant vaccines.

    Science.gov (United States)

    Patel, Ami; Dong, Jessica C; Trost, Brett; Richardson, Jason S; Tohme, Sarah; Babiuk, Shawn; Kusalik, Anthony; Kung, Sam K P; Kobinger, Gary P

    2012-01-01

    Certain short peptides do not occur in humans and are rare or non-existent in the universal proteome. Antigens that contain rare amino acid sequences are in general highly immunogenic and may activate different arms of the immune system. We first generated a list of rare, semi-common, and common 5-mer peptides using bioinformatics tools to analyze the UniProtKB database. Experimental observations indicated that rare and semi-common 5-mers generated stronger cellular responses in comparison with common-occurring sequences. We hypothesized that the biological process responsible for this enhanced immunogenicity could be used to positively modulate immune responses with potential application for vaccine development. Initially, twelve rare 5-mers, 9-mers, and 13-mers were incorporated in frame at the end of an H5N1 hemagglutinin (HA) antigen and expressed from a DNA vaccine. The presence of some 5-mer peptides induced improved immune responses. Adding one 5-mer peptide exogenously also offered improved clinical outcome and/or survival against a lethal H5N1 or H1N1 influenza virus challenge in BALB/c mice and ferrets, respectively. Interestingly, enhanced anti-HBsAg antibody production by up to 25-fold in combination with a commercial Hepatitis B vaccine (Engerix-B, GSK) was also observed in BALB/c mice. Mechanistically, NK cell activation and dependency was observed with enhancing peptides ex vivo and in NK-depleted mice. Overall, the data suggest that rare or non-existent oligopeptides can be developed as immunomodulators and supports the further evaluation of some 5-mer peptides as potential vaccine adjuvants. PMID:22937099

  13. Pentamers not found in the universal proteome can enhance antigen specific immune responses and adjuvant vaccines.

    Directory of Open Access Journals (Sweden)

    Ami Patel

    Full Text Available Certain short peptides do not occur in humans and are rare or non-existent in the universal proteome. Antigens that contain rare amino acid sequences are in general highly immunogenic and may activate different arms of the immune system. We first generated a list of rare, semi-common, and common 5-mer peptides using bioinformatics tools to analyze the UniProtKB database. Experimental observations indicated that rare and semi-common 5-mers generated stronger cellular responses in comparison with common-occurring sequences. We hypothesized that the biological process responsible for this enhanced immunogenicity could be used to positively modulate immune responses with potential application for vaccine development. Initially, twelve rare 5-mers, 9-mers, and 13-mers were incorporated in frame at the end of an H5N1 hemagglutinin (HA antigen and expressed from a DNA vaccine. The presence of some 5-mer peptides induced improved immune responses. Adding one 5-mer peptide exogenously also offered improved clinical outcome and/or survival against a lethal H5N1 or H1N1 influenza virus challenge in BALB/c mice and ferrets, respectively. Interestingly, enhanced anti-HBsAg antibody production by up to 25-fold in combination with a commercial Hepatitis B vaccine (Engerix-B, GSK was also observed in BALB/c mice. Mechanistically, NK cell activation and dependency was observed with enhancing peptides ex vivo and in NK-depleted mice. Overall, the data suggest that rare or non-existent oligopeptides can be developed as immunomodulators and supports the further evaluation of some 5-mer peptides as potential vaccine adjuvants.

  14. Chitosan-Poly (I:C-PADRE Based Nanoparticles as Delivery Vehicles for Synthetic Peptide Vaccines

    Directory of Open Access Journals (Sweden)

    Jorge F. Correia-Pinto

    2015-09-01

    Full Text Available The safety and precision of peptide antigens has prompted the search for adjuvants capable of increasing the immune response against these intrinsically poorly immunogenic antigens. The integration of both immunostimulants and peptide antigens within nanometric delivery systems for their co-delivery to immune cells is a promising vaccination strategy. With this in mind, the potential synergistic effect of the immunostimulant poly (I:C (pIC and a T-Helper peptide (PADRE, integrated into a chitosan (CS based nanostructure, was explored. The value of this nanostructured combination of materials was assessed for a peptide antigen (1338aa derived from the HPV-16 L2 protein. These nanoparticles, produced by ionic gelation technique, exhibited a nanometric size (<300 nm, a high positive surface charge (>40 mV and high pIC association efficiency (>96%. They also showed capacity for the association of both the 1338aa and PADRE peptides. The influence of the presence of pIC and PADRE in the nanocomposition, as well as that of the peptide presentation form (encapsulated versus surface adsorbed on the antibody induction was evaluated in a preliminary in vivo study. The data obtained highlights the possibility to engineer nanoparticles through the rational combination of a number of adjuvant molecules together with the antigen.

  15. New Data on Vaccine Antigen Deficient Bordetella pertussis Isolates

    Directory of Open Access Journals (Sweden)

    Valérie Bouchez

    2015-09-01

    Full Text Available Evolution of Bordetella pertussis is driven by natural and vaccine pressures. Isolates circulating in regions with high vaccination coverage present multiple allelic and antigenic variations as compared to isolates collected before introduction of vaccination. Furthermore, during the last epidemics reported in regions using pertussis acellular vaccines, isolates deficient for vaccine antigens, such as pertactin (PRN, were reported to reach high proportions of circulating isolates. More sporadic filamentous hemagglutinin (FHA or pertussis toxin (PT deficient isolates were also collected. The whole genome of some recent French isolates, deficient or non-deficient in vaccine antigens, were analyzed. Transcription profiles of the expression of the main virulence factors were also compared. The invasive phenotype in an in vitro human tracheal epithelial (HTE cell model of infection was evaluated. Our genomic analysis focused on SNPs related to virulence genes known to be more likely to present allelic polymorphism. Transcriptomic data indicated that isolates circulating since the introduction of pertussis vaccines present lower transcription levels of the main virulence genes than the isolates of the pre-vaccine era. Furthermore, isolates not producing FHA present significantly higher expression levels of the entire set of genes tested. Finally, we observed that recent isolates are more invasive in HTE cells when compared to the reference strain, but no multiplication occurs within cells.

  16. Discovery of Novel Plasmodium falciparum Pre-Erythrocytic Antigens for Vaccine Development.

    Directory of Open Access Journals (Sweden)

    Joao C Aguiar

    Full Text Available Nearly 100% protection against malaria infection can be achieved in humans by immunization with P. falciparum radiation-attenuated sporozoites (RAS. Although it is thought that protection is mediated by T cell and antibody responses, only a few of the many pre-erythrocytic (sporozoite and liver stage antigens that are targeted by these responses have been identified.Twenty seven P. falciparum pre-erythrocytic antigens were selected using bioinformatics analysis and expression databases and were expressed in a wheat germ cell-free protein expression system. Recombinant proteins were recognized by plasma from RAS-immunized subjects, and 21 induced detectable antibody responses in mice and rabbit and sera from these immunized animals were used to characterize these antigens. All 21 proteins localized to the sporozoite: five localized to the surface, seven localized to the micronemes, cytoplasm, endoplasmic reticulum or nucleus, two localized to the surface and cytoplasm, and seven remain undetermined. PBMC from RAS-immunized volunteers elicited positive ex vivo or cultured ELISpot responses against peptides from 20 of the 21 antigens.These T cell and antibody responses support our approach of using reagents from RAS-immunized subjects to screen potential vaccine antigens, and have led to the identification of a panel of novel P. falciparum antigens. These results provide evidence to further evaluate these antigens as vaccine candidates.ClinicalTrials.gov NCT00870987 ClinicalTrials.gov NCT00392015.

  17. Discovery of Novel Plasmodium falciparum Pre-Erythrocytic Antigens for Vaccine Development

    Science.gov (United States)

    Aguiar, Joao C.; Bolton, Jessica; Wanga, Joyce; Sacci, John B.; Iriko, Hideyuki; Mazeika, Julie K.; Han, Eun-Taek; Limbach, Keith; Patterson, Noelle B.; Sedegah, Martha; Cruz, Ann-Marie; Tsuboi, Takafumi; Hoffman, Stephen L.; Carucci, Daniel; Hollingdale, Michael R.; Villasante, Eileen D.; Richie, Thomas L.

    2015-01-01

    Background Nearly 100% protection against malaria infection can be achieved in humans by immunization with P. falciparum radiation-attenuated sporozoites (RAS). Although it is thought that protection is mediated by T cell and antibody responses, only a few of the many pre-erythrocytic (sporozoite and liver stage) antigens that are targeted by these responses have been identified. Methodology Twenty seven P. falciparum pre-erythrocytic antigens were selected using bioinformatics analysis and expression databases and were expressed in a wheat germ cell-free protein expression system. Recombinant proteins were recognized by plasma from RAS-immunized subjects, and 21 induced detectable antibody responses in mice and rabbit and sera from these immunized animals were used to characterize these antigens. All 21 proteins localized to the sporozoite: five localized to the surface, seven localized to the micronemes, cytoplasm, endoplasmic reticulum or nucleus, two localized to the surface and cytoplasm, and seven remain undetermined. PBMC from RAS-immunized volunteers elicited positive ex vivo or cultured ELISpot responses against peptides from 20 of the 21 antigens. Conclusions These T cell and antibody responses support our approach of using reagents from RAS-immunized subjects to screen potential vaccine antigens, and have led to the identification of a panel of novel P. falciparum antigens. These results provide evidence to further evaluate these antigens as vaccine candidates. Trial Registration ClinicalTrials.gov NCT00870987 ClinicalTrials.gov NCT00392015 PMID:26292257

  18. Vaccine delivery by penetratin: mechanism of antigen presentation by dendritic cells.

    Science.gov (United States)

    Pouniotis, Dodie; Tang, Choon-Kit; Apostolopoulos, Vasso; Pietersz, Geoffrey

    2016-08-01

    Cell-penetrating peptides (CPP) or membrane-translocating peptides such as penetratin from Antennapedia homeodomain or TAT from human immunodeficiency virus are useful vectors for the delivery of protein antigens or their cytotoxic (Tc) or helper (Th) T cell epitopes to antigen-presenting cells. Mice immunized with CPP containing immunogens elicit antigen-specific Tc and/or Th responses and could be protected from tumor challenges. In the present paper, we investigate the mechanism of class I and class II antigen presentation of ovalbumin covalently linked to penetratin (AntpOVA) by bone marrow-derived dendritic cells with the use of biochemical inhibitors of various pathways of antigen processing and presentation. Results from our study suggested that uptake of AntpOVA is via a combination of energy-independent (membrane fusion) and energy-dependent pathways (endocytosis). Once internalized by either mechanism, multiple tap-dependent or independent antigen presentation pathways are accessed while not completely dependent on proteasomal processing but involving proteolytic trimming in the ER and Golgi compartments. Our study provides an understanding on the mechanism of antigen presentation mediated by CPP and leads to greater insights into future development of vaccine formulations. PMID:27138940

  19. Cancer-germline antigen vaccines and epigenetic enhancers

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Burns, Jorge; Ditzel, Henrik Jorn

    2010-01-01

    can be achieved using epigenetic modifiers. AREAS COVERED IN THIS REVIEW: We provide an overview of the potential of CG antigens as targets for cancer immunotherapy, including advantages and disadvantages. We also discuss the current state of development of CG antigen vaccines, and the potential...... synergistic effect of combining CG antigen immunotherapeutic strategies with epigenetic modifiers. WHAT THE READER WILL GAIN: The reader will gain an overview of the past, present and future role of CG antigens in cancer immunotherapy. TAKE HOME MESSAGE: Chemoimmunotherapy using epigenetic drugs and CG...

  20. Novel vaccine strategies to T-independent antigens.

    Science.gov (United States)

    Lesinski, G B; Westerink, M A

    2001-11-01

    T cell independent antigens do not require T cell help to induce an immune response, and are characterized by a lack of immunologic memory. These antigens can be divided into two classes, TI-1 or TI-2. TI-1 antigens, such as bacterial lipopolysaccharide, are potent B-cell mitogens, capable of non-specific, polyclonal activation of B cells. In contrast, TI-2 antigens can only activate mature B cells and consist of highly repetitive structures, such as capsular polysaccharides (CPS) from bacteria. Many vaccines currently in use consist of purified capsular polysaccharides from pathogenic bacteria such as Streptococcus pneumoniae and Neisseria meningitidis. These vaccines are efficacious in immune-competent adults, however, due to their TI-2 nature, are not effective in children <2 years of age. Converting polysaccharides into T cell dependent (TD) antigens, allows children, <2, to produce an effective immune response. This review focuses on various strategies used to convert the immune response to polysaccharide antigens from TI-2 to a TD response. Conjugate vaccines, anti-idiotypic antibodies, phage display library technology and DNA vaccines are discussed. PMID:11576678

  1. Three-day dendritic cells for vaccine development: Antigen uptake, processing and presentation

    Directory of Open Access Journals (Sweden)

    Schendel Dolores J

    2010-09-01

    Full Text Available Abstract Background Antigen-loaded dendritic cells (DC are capable of priming naïve T cells and therefore represent an attractive adjuvant for vaccine development in anti-tumor immunotherapy. Numerous protocols have been described to date using different maturation cocktails and time periods for the induction of mature DC (mDC in vitro. For clinical application, the use of mDC that can be generated in only three days saves on the costs of cytokines needed for large scale vaccine cell production and provides a method to produce cells within a standard work-week schedule in a GMP facility. Methods In this study, we addressed the properties of antigen uptake, processing and presentation by monocyte-derived DC prepared in three days (3d mDC compared with conventional DC prepared in seven days (7d mDC, which represent the most common form of DC used for vaccines to date. Results Although they showed a reduced capacity for spontaneous antigen uptake, 3d mDC displayed higher capacity for stimulation of T cells after loading with an extended synthetic peptide that requires processing for MHC binding, indicating they were more efficient at antigen processing than 7d DC. We found, however, that 3d DC were less efficient at expressing protein after introduction of in vitro transcribed (ivtRNA by electroporation, based on published procedures. This deficit was overcome by altering electroporation parameters, which led to improved protein expression and capacity for T cell stimulation using low amounts of ivtRNA. Conclusions This new procedure allows 3d mDC to replace 7d mDC for use in DC-based vaccines that utilize long peptides, proteins or ivtRNA as sources of specific antigen.

  2. Molecular characterization of antigen-peptide pulsed dendritic cells: immature dendritic cells develop a distinct molecular profile when pulsed with antigen peptide.

    Directory of Open Access Journals (Sweden)

    Amy X Yang

    Full Text Available As dendritic cells (DCs are the most potent professional antigen-presenting cells, they are being tested as cancer vaccines for immunotherapy of established cancers. Although numerous studies have characterized DCs by their phenotype and function, few have identified potential molecular markers of antigen presentation prior to vaccination of host. In this study we generated pre-immature DC (piDC, immature DC (iDC, and mature DC (mDC from human peripheral blood monocytes (PBMC obtained from HLA-A2 healthy donors, and pulsed them with human papillomavirus E7 peptide (p11-20, a class I HLA-A2 binding antigen. We then characterized DCs for cell surface phenotype and gene expression profile by microarray technology. We identified a set of 59 genes that distinguished three differentiation stages of DCs (piDC, iDC and mDC. When piDC, iDC and mDC were pulsed with E7 peptide for 2 hrs, the surface phenotype did not change, however, iDCs rather than mDCs showed transcriptional response by up-regulation of a set of genes. A total of 52 genes were modulated in iDC upon antigen pulsing. Elongation of pulse time for iDCs to 10 and 24 hrs did not significantly bring further changes in gene expression. The E7 peptide up-modulated immune response (KPNA7, IGSF6, NCR3, TREM2, TUBAL3, IL8, NFKBIA, pro-apoptosis (BTG1, SEMA6A, IGFBP3 and SRGN, anti-apoptosis (NFKBIA, DNA repair (MRPS11, RAD21, TXNRD1, and cell adhesion and cell migration genes (EPHA1, PGF, IL8 and CYR61 in iDCs. We confirmed our results by Q-PCR analysis. The E7 peptide but not control peptide (PADRE induced up-regulation of NFKB1A gene only in HLA-A2 positive iDCs and not in HLA-A2 negative iDCs. These results suggest that E7 up-regulation of genes is specific and HLA restricted and that these genes may represent markers of antigen presentation and help rapidly assess the quality of dendritic cells prior to administration to the host.

  3. Global inhibition of DC priming capacity in the spleen of self-antigen vaccinated mice requires IL-10

    Directory of Open Access Journals (Sweden)

    Douglas Matthew Marvel

    2014-02-01

    Full Text Available DC in the spleen are highly activated following intravenous vaccination with a foreign antigen, promoting expansion of effector T cells, but remain phenotypically and functionally immature after vaccination with a self-antigen. Up-regulation or suppression of expression of a cohort of pancreatic enzymes 24-72 hours post-vaccination can be used as a biomarker of stimulatory versus toleragenic DC, respectively. Here we show, using MUC1 transgenic mice (MUC1.Tg and a vaccine based on the MUC1 peptide which these mice perceive as a self-antigen, that the difference in enzyme expression that predicts whether DC will promote immune response or immune tolerance, is seen as early as 4-8 hours following vaccination. We also identify early production of IL-10 as a predominant factor that both correlates with this early time point and controls DC function. Pre-treating mice with an antibody against the IL-10 receptor (IL-10R prior to vaccination results in DC that up-regulate CD40, CD80, and CD86 and promote stronger IFNγ+ T cell responses. This study suggests that transient inhibition of IL-10 prior to vaccination could improve responses to cancer vaccines that utilize self-tumor antigens.

  4. Identification of two new protective pre-erythrocytic malaria vaccine antigen candidates

    Directory of Open Access Journals (Sweden)

    Patterson Noelle

    2011-03-01

    Full Text Available Abstract Background Despite years of effort, a licensed malaria vaccine is not yet available. One of the obstacles facing the development of a malaria vaccine is the extensive heterogeneity of many of the current malaria vaccine antigens. To counteract this antigenic diversity, an effective malaria vaccine may need to elicit an immune response against multiple malaria antigens, thereby limiting the negative impact of variability in any one antigen. Since most of the malaria vaccine antigens that have been evaluated in people have not elicited a protective immune response, there is a need to identify additional protective antigens. In this study, the efficacy of three pre-erythrocytic stage malaria antigens was evaluated in a Plasmodium yoelii/mouse protection model. Methods Mice were immunized with plasmid DNA and vaccinia virus vectors that expressed one, two or all three P. yoelii vaccine antigens. The immunized mice were challenged with 300 P. yoelii sporozoites and evaluated for subsequent infection. Results Vaccines that expressed any one of the three antigens did not protect a high percentage of mice against a P. yoelii challenge. However, vaccines that expressed all three antigens protected a higher percentage of mice than a vaccine that expressed PyCSP, the most efficacious malaria vaccine antigen. Dissection of the multi-antigen vaccine indicated that protection was primarily associated with two of the three P. yoelii antigens. The protection elicited by a vaccine expressing these two antigens exceeded the sum of the protection elicited by the single antigen vaccines, suggesting a potential synergistic interaction. Conclusions This work identifies two promising malaria vaccine antigen candidates and suggests that a multi-antigen vaccine may be more efficacious than a single antigen vaccine.

  5. IMMUNOLOGICAL CHARACTERISTIC OF SYNTHETIC PEPTIDES SIMILAR TO ACTUAL HIV ANTIGEN DETERMINANTS

    Directory of Open Access Journals (Sweden)

    S. V. Korobova

    2016-01-01

    Full Text Available The development of HIV vaccine remains an important goal in prophylaxis and therapy of HIV/ AIDS epidemics. There are various approaches for development of а candidate vaccine based on induction of neutralizing antibodies and cell-mediated immunity. Synthetic peptides are considered promising vaccine antigens since they are capable of activating both humoral and cellular immune response. HIV-1 envelope gp120 is the target for neutralizing antiviral antibodies. The V3 region of the HIV-1 gp120 is highly immunogenic and important for the virus-coreceptor interaction. In a RV144 vaccine trial, the levels of vaccine-induced IgG antibodies recognizing V1V2 regions from multiple HIV-1 subtypes show inverse correlations with a risk for HIV-1 infection. Meanwhile, HIV is characterized by high diversity. The consensus and mosaic immunogens are complete but artificial proteins, which are computationally designed to elicit immune responses with improved cross-reactive broadness. We have been studied immunogenic properties of synthetic peptides derived from V1, V2, V3 loop regions of the consensus M HIV1 (CON-S sequence group of the gp 120 envelope protein and V3 loop derived from a Russian RUA022a2 isolate. These peptides specifically reacted to HIV-positive sera in ELISA, thus indicating their similarity to appropriate HIV proteins. The peptides proved to be weakly immunogenic. Therefore, Freund complete adjuvant was used to enhance peptide immunogenicity. To assess the immunogenicity, the mice were immunized with a peptide mixture. Antibodies have been developed to every peptide from the mixture, being, predominantly, of IgG isotype. The antibody titers depended on the length of peptide sequences. However, the sera from immunized mice did not have a HIV neutralizing activity. The serum neutralization was assessed by pseudovirus-based assay, using a molecular clone of virus isolates CAP 45.2.00.G3 and QH.209.14.M.EnvA2. The virus neutralization is a

  6. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses

    Directory of Open Access Journals (Sweden)

    Ma W

    2012-03-01

    Full Text Available Wenxue Ma1, Mingshui Chen1, Sharmeela Kaushal1,2, Michele McElroy1,2, Yu Zhang3, Cengiz Ozkan3, Michael Bouvet1,2, Carol Kruse4, Douglas Grotjahn5, Thomas Ichim6, Boris Minev1,7,81Moores Cancer Center, University of California San Diego, 2Department of Surgery, University of California San Diego, 3Laboratory of Biomaterials and Nanotechnology, University of California Riverside, 4UCLA Division of Neurosurgery, Los Angeles, 5Chemistry Department, San Diego State University, San Diego, 6MediStem Inc. San Diego, 7UCSD Division of Neurosurgery, San Diego, 8Genelux Corporation, San Diego, CA, USA Abstract: The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide nanoparticles (PLGA-NPs encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs loaded with PLGA-NPs encapsulating tumor antigenic peptide(s. The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA. Antigen-specific cytotoxic T lymphocytes (CTLs were generated and evaluated by CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI. The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund’s adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of -15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs

  7. Candidate vaccine antigens identified by antibodies from mice vaccinated with 15- or 50-kilorad-irradiated cercariae of Schistosoma mansoni.

    OpenAIRE

    Richter, D.; Harn, D A

    1993-01-01

    In murine schistosomiasis, the highest levels of resistance to cercarial challenge are obtained by vaccination with radiation-attenuated cercariae. To identify candidate vaccine antigens relevant to the vaccine model, we examined parasite antigens recognized by antibodies from mice vaccinated with irradiated cercariae of Schistosoma mansoni. To optimize recognition of a wide spectrum of antigens, several factors that influence the level of protection in this model were varied; specifically, w...

  8. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine

    OpenAIRE

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming

    2015-01-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the “next-generation” recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA...

  9. Candidate Multi-Peptide-Vaccine Against Classical Swine Fever Virus Induces Strong Antibody Response with Predefined Specificity

    Institute of Scientific and Technical Information of China (English)

    张耿; 董晓楠; 陈应华

    2002-01-01

    Previous investigations demonstrated that the envelope glycoprotein E2 (gp55) of classical swine fever virus (CSFV) is the most immunogenic protein. Interestingly, recombinant protein E2 that contains only one structural antigenic unit (unit B/C or A) could protect pigs from a lethal challenge of CSFV. Based on these findings, we designed and prepared five overlapping synthetic peptides that covered the sequence unit B/C (aa 693-777) of Shimen E2 and conjugated individual peptides with bovine serum albumin (BSA). After the vaccination, the specificity of the rabbit sera was analyzed in the enzyme-linked immunosorbent assay (ELISA) and the fast protein liquid chromatography (FPLC). The results show that each of the five candidate peptide-vaccines can successfully induce a high titer of specific antibodies in New Zealand White Rabbits (n=3). Subsequently, the five candidate peptide-vaccines were applied in combination for immunization of pigs (n=10) and induced specific and strong humoral responses against all of the five designed peptides in pigs. Our studies indicate that the candidate multi-peptide-vaccine would prove an excellent marker vaccine against CSFV and provide a model for developing effective synthetic peptide vaccines to stop viral epidemics in humans and animals.

  10. Autologous peptides constitutively occupy the antigen binding site on Ia

    DEFF Research Database (Denmark)

    Buus, S; Sette, A; Colon, S M;

    1988-01-01

    Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype was...

  11. [Peptide vaccine therapy with TLR-9 agonist for patients with esophageal squamous cell carcinoma].

    Science.gov (United States)

    Katsuda, Masahiro; Iwahashi, Makoto; Matsuda, Kenji; Miyazawa, Motoki; Nakamori, Mikihito; Nakamura, Masaki; Naka, Teiji; Ojima, Toshiyasu; Iida, Takeshi; Yamaue, Hiroki

    2011-11-01

    Patients with advanced carcinoma are thought to have an impaired immune surveillance system. Therefore, the potent helper action is required for the induction of an antitumor immune response in such patients. We evaluated the efficacy of CpG-ODN, which is TLR-9 agonist, as cancer vaccine adjuvant through in vitro experiments. We also conducted a phase I clinical trial for patients with advanced esophageal squamous cell carcinoma (ESCC) using peptide vaccine in combination with CpG-B. In vitro experiments showed that CpG-ODN caused various immune-modifications, suggesting an efficacy of CpG-ODN as peptide vaccine adjuvant. Moreover, the immune monitoring data in phase I clinical trial suggested that CpG-B augmented the generation of antigen-specific T cell responses and innate immunity. These data indicated that the vaccination with cancer-testis antigen derived peptide in combination with CpG-B may be useful as a new immunotherapy for patients with advanced ESCC. PMID:22202246

  12. Synthetic carbohydrate antigens for HIV vaccine design

    OpenAIRE

    Wang, Lai-Xi

    2013-01-01

    The heavy glycosylation of HIV envelope constitutes a strong defense mechanism for the virus to evade host immune response, which accounts for a major barrier for HIV vaccine development. Nevertheless, the identification of a number of glycan-dependent broadly HIV-neutralizing antibodies from HIV-infected individuals, including 2G12, PG9, PG16, PGT121-123, PGT125-128, and PGT135, strongly suggests that the defensive viral “glycan shield” can be important targets of vaccines. The novel glycan ...

  13. Chimeric Epitope Vaccine from Multistage Antigens for Lymphatic Filariasis.

    Science.gov (United States)

    Anugraha, G; Madhumathi, J; Prince, P R; Prita, P J Jeya; Khatri, V K; Amdare, N P; Reddy, M V R; Kaliraj, P

    2015-10-01

    Lymphatic filariasis, a mosquito-borne parasitic disease, affects more than 120 million people worldwide. Vaccination for filariasis by targeting different stages of the parasite will be a boon to the existing MDA efforts of WHO which required repeated administration of the drug to reduce the infection level and sustained transmission. Onset of a filaria-specific immune response achieved through antigen vaccines can act synergistically with these drugs to enhance the parasite killing. Multi-epitope vaccine approach has been proved to be successful against several parasitic diseases as it overcomes the limitations associated with the whole antigen vaccines. Earlier results from our group suggested the protective efficacy of multi-epitope vaccine comprising two immunodominant epitopes from Brugia malayi antioxidant thioredoxin (TRX), several epitopes from transglutaminase (TGA) and abundant larval transcript-2 (ALT-2). In this study, the prophylactic efficacy of the filarial epitope protein (FEP), a chimera of selective epitopes identified from our earlier study, was tested in a murine model (jird) of filariasis with L3 larvae. FEP conferred a significantly (P < 0.0001) high protection (69.5%) over the control in jirds. We also observed that the multi-epitope recombinant construct (FEP) induces multiple types of protective immune responses, thus ensuring the successful elimination of the parasite; this poses FEP as a potential vaccine candidate. PMID:26179420

  14. Phase I vaccination trial of SYT-SSX junction peptide in patients with disseminated synovial sarcoma

    Directory of Open Access Journals (Sweden)

    Asanuma Hiroko

    2005-01-01

    Full Text Available Abstract Background Synovial sarcoma is a high-grade malignant tumor of soft tissue, characterized by the specific chromosomal translocation t(X;18, and its resultant SYT-SSX fusion gene. Despite intensive multimodality therapy, the majority of metastatic or relapsed diseases still remain incurable, thus suggesting a need for new therapeutic options. We previously demonstrated the antigenicity of SYT-SSX gene-derived peptides by in vitro analyses. The present study was designed to evaluate in vivo immunological property of a SYT-SSX junction peptide in selected patients with synovial sarcoma. Methods A 9-mer peptide (SYT-SSX B: GYDQIMPKK spanning the SYT-SSX fusion region was synthesized. Eligible patients were those (i who have histologically and genetically confirmed, unresectable synovial sarcoma (SYT-SSX1 or SYT-SSX2 positive, (ii HLA-A*2402 positive, (iii between 20 and 70 years old, (iv ECOG performance status between 0 and 3, and (v who gave informed consent. Vaccinations with SYT-SSX B peptide (0.1 mg or 1.0 mg were given subcutaneously six times at 14-day intervals. These patients were evaluated for DTH skin test, adverse events, tumor size, tetramer staining, and peptide-specific CTL induction. Results A total of 16 vaccinations were carried out in six patients. The results were (i no serious adverse effects or DTH reactions, (ii suppression of tumor progression in one patient, (iii increases in the frequency of peptide-specific CTLs in three patients and a decrease in one patient, and (iv successful induction of peptide-specific CTLs from four patients. Conclusions Our findings indicate the safety of the SYT-SSX junction peptide in the use of vaccination and also give support to the property of the peptide to evoke in vivo immunological responses. Modification of both the peptide itself and the related protocol is required to further improve the therapeutic efficacy.

  15. First Peptide Vaccine Providing Protection against Viral Infection in the Target Animal: Studies of Canine Parvovirus in Dogs.

    NARCIS (Netherlands)

    J.P.M. Langeveld; J. Ignacio Casal; A.D.M.E. Osterhaus (Albert); E. Cortes; R.L. de Swart (Rik); C. Vela (Carmen); K. Dalsgaard (Kristian); W.C. Puijk (Wouter); W.M.M. Schaaper (Wim); R.H. Meloen

    1994-01-01

    textabstractA synthetic peptide vaccine which protects dogs against challenge with virulent canine parvovirus is described. The amino acid sequence used was discovered in previous studies on the immunogenic properties of previously mapped antigenic sites and represents the amino-terminal region of

  16. First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs.

    NARCIS (Netherlands)

    J.P.M. Langeveld; J.I. Casal; A.D.M.E. Osterhaus (Albert); E. Cortes; R.L. de Swart (Rik); C. Vela (Carmen); K. Dalsgaard (Kristian); W.C. Puijk (Wouter); W.M.M. Schaaper (Wim); R.H. Meloen

    1994-01-01

    textabstractA synthetic peptide vaccine which protects dogs against challenge with virulent canine parvovirus is described. The amino acid sequence used was discovered in previous studies on the immunogenic properties of previously mapped antigenic sites and represents the amino-terminal region of v

  17. Developing Peptide Mimotopes of Capsular Polysaccharides and Lipopolysaccharides Protective Antigens of Pathogenic Burkholderia Bacteria.

    Science.gov (United States)

    Guo, Pengfei; Zhang, Jing; Tsai, Shien; Li, Bingjie; Lo, Shyh-Ching

    2016-06-01

    Burkholderia pseudomallei (BP) and Burkholderia mallei (BM) are two species of pathogenic Burkholderia bacteria. Our laboratory previously identified four monoclonal antibodies (MAbs) that reacted against Burkholderia capsular polysaccharides (PS) and lipopolysaccharides (LPS) and effectively protected against a lethal dose of BP/BM infections in mice. In this study, we used phage display panning against three different phage peptide libraries to select phage clones specifically recognized by each of the four protective MAbs. After sequencing a total of 179 candidate phage clones, we examined in detail six selected phage clones carrying different peptide inserts for the specificity of binding by the respective target MAbs. Chemically synthesized peptides corresponding to those displayed by the six phage clones were conjugated to keyhole limpet hemocyanin carrier protein and tested for their binding specificity to the respective protective MAbs. The study revealed that four of the six peptides, all derived from the library displaying dodecapeptides, functioned well as "mimotopes" of Burkholderia PS and LPS as demonstrated by a high degree of specific competition against the binding of three protective MAbs to BP and BM. Our results suggest that the four selected peptide mimics corresponding to PS/LPS protective antigens of BP and BM could potentially be developed into peptide vaccines against pathogenic Burkholderia bacteria. PMID:27328059

  18. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant loop region of hepatitis B core antigen: Insertion of multiple copies of M2e increases immunogenicity and protective efficiency.

    Science.gov (United States)

    Ravin, Nikolai V; Blokhina, Elena A; Kuprianov, Victor V; Stepanova, Liudmila A; Shaldjan, Aram A; Kovaleva, Anna A; Tsybalova, Liudmila M; Skryabin, Konstantin G

    2015-06-26

    The extracellular domain of the transmembrane protein M2 (M2e) of influenza A virus is a promising target for the development of "universal" vaccines against influenza. M2e is a poor immunogen by itself; however, when M2e is linked to an appropriate carrier, such as hepatitis B virus core (HBc) particles, it becomes highly immunogenic. Insertions of target peptides into the surface-exposed major immunodominant loop region (MIR) of the HBc antigen are especially immunogenic, but such insertions often affect the protein folding and formation of recombinant virus-like particles. To facilitate an appropriate conformation of the M2e insert, we introduced flexible linkers at the junction points between the insert and flanking HBc sequences. This approach allowed the construction of recombinant HBc particles carrying 1, 2 and 4 copies of M2e in the MIR region. These particles were produced in Escherichia coli and purified to homogeneity. The immune response and protective activity of hybrid HBc particles in mice correlated with the number of inserted M2e peptides: the highest immunogenicity and complete protection of mice against the lethal challenge by influenza virus was observed with particles carrying four copies of M2e. The possibility of the simultaneous presentation of M2e peptides from several important influenza strains on a single HBc particle could also facilitate the development of a broad-specificity vaccine efficient not only against influenza A strains of human origin but also for newly emerging strains of animal origin, such as the avian influenza. PMID:25937448

  19. A novel strategy to improve antigen presentation for active immunotherapy in cancer. Fusion of the human papillomavirus type 16 E7 antigen to a cell penetrating peptide

    International Nuclear Information System (INIS)

    Facilitating the delivery of exogenous antigens to antigen-presenting cells, ensuing processing and presentation via the major histocompatibility complex class I and induction of an effective immune response are fundamental for an effective therapeutic cancer vaccine. In this regard, we propose the use of cell-penetrating peptides fused to a tumor antigen. To demonstrate this concept we designed a fusion protein comprising a novel cell-penetrating and immunostimulatory peptide corresponding to residues 32 to 51 of the Limulus anti-lipopolysaccharide factor protein (LALF32-51) linked to human papillomavirus 16 E7 antigen (LALF32-51-E7). In this work, we demonstrated that the immunization with LALF32-51-E7 using the TC-1 mouse model induces a potent and long-lasting anti-tumor response supported on an effective E7-specific CD8+T-cell response. The finding that therapeutic immunization with LALF32-51 or E7 alone, or an admixture of LALF32-51 and E7, does not induce significant tumor reduction indicates that covalent linkage between LALF32-51 and E7 is required for the anti-tumor effect. These results support the use of this novel cell-penetrating peptide as an efficient means for delivering therapeutic targets into cellular compartments with the induction of a cytotoxic CD8+T lymphocyte immune response. This approach is promissory for the treatment of tumors associated with the human papillomavirus 16, which is responsible for the 50% of cervical cancer cases worldwide and other malignancies. Furthermore, protein-based vaccines can circumvent the major histocompatibility complex specificity limitation associated with peptide vaccines providing a greater extent in their application

  20. Synthetic peptides with antigenic specificity for bacterial toxins.

    Science.gov (United States)

    Sela, M; Arnon, R; Jacob, C O

    1986-01-01

    The attachment of a diphtheria toxin-specific synthetic antigenic determinant and a synthetic adjuvant to a synthetic polymeric carrier led to production of a totally synthetic macromolecule which provoked protective antibodies against diphtheria when administered in aqueous solution. When peptides related to the B subunit of cholera toxin were synthesized and attached to tetanus toxoid, antibodies produced against the conjugate reacted in some but not all cases with intact cholera toxin and (especially with peptide CTP 3, residues 50-64) neutralized toxin reactivity, as tested by permeability in rabbit skin, fluid accumulation in ligated small intestinal loops and adenylate cyclase activation. Polymerization of the peptide without any external carrier, or conjugation with the dipalmityl lysine group, had as good an effect in enhancing the immune response as its attachment to tetanus toxoid. Prior exposure to the carrier suppressed the immune response to the epitope attached to it, whereas prior exposure to the synthetic peptide had a good priming effect when the intact toxin was given; when two different peptides were attached to the same carrier, both were expressed. Antisera against peptide CTP 3 were highly cross-reactive with the heat-labile toxin of Escherichia coli and neutralized it to the same extent as cholera toxin, which is not surprising in view of the great homology between the two proteins. A synthetic oligonucleotide coding for CTP 3 has been used to express the peptide in a form suitable for immunization. It led to a priming effect against the intact cholera toxin. PMID:2426052

  1. Immune overload: Parental attitudes toward combination and single antigen vaccines.

    Science.gov (United States)

    Hulsey, Ella; Bland, Tami

    2015-05-21

    Parental concerns have led to a recent decline in immunization coverage, resulting in outbreaks of diseases that were once under control in the US. As the CDC vaccination schedule continues to increase in complexity, the number of required injections per office visit increases as well. Some parents perceive that there is trauma associated with the administration of multiple injections, and research shows that having multiple vaccines due in a single visit is associated with delays and lower immunization rates. Combination vaccines make vaccination more efficient by incorporating the antigens of several different diseases into a single injection, but many parents worry that they may overload the child's developing immune system and leave him or her susceptible to secondary infections. This literature review synthesizes current evidence regarding the parental fear of vaccine-induced immune system overload and the fear of vaccine-associated trauma, in an attempt to understand the scope and nature of these fears. Despite the wealth of knowledge about each of these fears individually, it is still unknown which is of greater concern and how this affects parental decision-making. PMID:25891399

  2. Effects of pre-existing anti-carrier immunity and antigenic element multiplicity on efficacy of a modular virus-like particle vaccine.

    Science.gov (United States)

    Chuan, Yap P; Rivera-Hernandez, Tania; Wibowo, Nani; Connors, Natalie K; Wu, Yang; Hughes, Fiona K; Lua, Linda H L; Middelberg, Anton P J

    2013-09-01

    Modularization of a peptide antigen for presentation on a microbially synthesized murine polyomavirus (MuPyV) virus-like particle (VLP) offers a new alternative for rapid and low-cost vaccine delivery at a global scale. In this approach, heterologous modules containing peptide antigenic elements are fused to and displayed on the VLP carrier, allowing enhancement of peptide immunogenicity via ordered and densely repeated presentation of the modules. This study addresses two key engineering questions pertaining to this platform, exploring the effects of (i) pre-existing carrier-specific immunity on modular VLP vaccine effectiveness and (ii) increase in the antigenic element number per VLP on peptide-specific immune response. These effects were studied in a mouse model and with modular MuPyV VLPs presenting a group A streptococcus (GAS) peptide antigen, J8i. The data presented here demonstrate that immunization with a modular VLP could induce high levels of J8i-specific antibodies despite a strong pre-existing anti-carrier immune response. Doubling of the J8i antigenic element number per VLP did not enhance J8i immunogenicity at a constant peptide dose. However, the strategy, when used in conjunction with increased VLP dose, could effectively increase the peptide dose up to 10-fold, leading to a significantly higher J8i-specific antibody titer. This study further supports feasibility of the MuPyV modular VLP vaccine platform by showing that, in the absence of adjuvant, modularized GAS antigenic peptide at a dose as low as 150 ng was sufficient to raise a high level of peptide-specific IgGs indicative of bactericidal activity. PMID:23532896

  3. Prospects for T cell immunotherapy of tumours by vaccination with immunodominant and subdominant peptides.

    Science.gov (United States)

    Melief, C J; Kast, W M

    1994-01-01

    Immunotherapy of tumours by adoptive transfer of cytotoxic T lymphocytes (CTL) is now feasible in experimental murine systems. These CTL recognize peptide sequences of defined length presented by major histocompatibility complex (MHC) class I molecules. Effective eradication of large tumour masses requires co-administration of interleukin 2. Tumour escape strategies are numerous but in various instances can be counteracted by defined measures. Initiation of CTL responses against poorly immunogenic virally induced tumours and other tumours requires novel strategies to overcome T cell inertia. We propose a strategy in which CTL are raised against target molecules of choice including differentiation antigens of restricted tissue distribution (autoantigens) or mutated/overexpressed oncogene products. The steps proposed include: (1) identification of target molecules of choice. (2) Identification in these target molecules of peptides fitting MHC allele-specific peptide motifs involved in peptide binding to MHC molecules. (3) Evaluation of actual binding of such peptides to specific MHC class I molecules. (4) In vitro CTL response induction by such peptides, presented by highly efficient antigen-presenting cells such as antigen processing-defective cells carrying empty MHC class I molecules loaded with a single peptide or dendritic cells. Both types of cells are capable of primary CTL response induction in vitro. (5) Evaluation of proper processing by the demonstration of tumour cell lysis by these CTL. (6) Adoptive transfer of tumour-specific CTL generated in vitro or vaccination with peptides. These various steps have now been taken for several viruses, virally induced tumours and other types of tumours and the first indications that this strategy is useful have been obtained. PMID:7796678

  4. Identification of a peptide binding protein that plays a role in antigen presentation.

    OpenAIRE

    Lakey, E K; Margoliash, E.; Pierce, S K

    1987-01-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface ...

  5. Protective efficacy of bacterial membranes containing surface-exposed BM95 antigenic peptides for the control of cattle tick infestations.

    Science.gov (United States)

    Canales, Mario; Labruna, Marcelo B; Soares, João F; Prudencio, Carlos R; de la Fuente, José

    2009-12-01

    The Rhipicephalus (Boophilus) microplus BM86 and BM95 glycoproteins are homologous proteins that protect cattle against tick infestations. In this study, we demonstrated that the recombinant chimeric protein comprising tick BM95 immunogenic peptides fused to the A. marginale MSP1a N-terminal region for presentation on the Escherichia coli membrane was protective against R. microplus infestations in rabbits. This system provides a novel and simple approach for the production of tick protective antigens by surface display of antigenic protein chimera on live E. coli and suggests the possibility of using recombinant bacterial membrane fractions for vaccination against cattle tick infestations. PMID:19835826

  6. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788. ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  7. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant region of hepatitis B core antigen: Broad protective efficacy of particles carrying four copies of M2e.

    Science.gov (United States)

    Tsybalova, Liudmila M; Stepanova, Liudmila A; Kuprianov, Victor V; Blokhina, Elena A; Potapchuk, Marina V; Korotkov, Alexander V; Gorshkov, Andrey N; Kasyanenko, Marina A; Ravin, Nikolai V; Kiselev, Oleg I

    2015-06-26

    A long-term objective when designing influenza vaccines is to create one with broad cross-reactivity that will provide effective control over influenza, no matter which strain has caused the disease. Here we summarize the results from an investigation into the immunogenic and protective capacities inherent in variations of a recombinant protein, HBc/4M2e. This protein contains four copies of the ectodomain from the influenza virus protein M2 (M2e) fused within the immunodominant loop of the hepatitis B virus core antigen (HBc). Variations of this basic design include preparations containing M2e from the consensus human influenza virus; the M2e from the highly pathogenic avian A/H5N1 virus and a combination of two copies from human and two copies from avian influenza viruses. Intramuscular delivery in mice with preparations containing four identical copies of M2e induced high IgG titers in blood sera and bronchoalveolar lavages. It also provoked the formation of memory T-cells and antibodies were retained in the blood sera for a significant period of time post immunization. Furthermore, these preparations prevented the death of 75-100% of animals, which were challenged with lethal doses of virus. This resulted in a 1.2-3.5 log10 decrease in viral replication within the lungs. Moreover, HBc particles carrying only "human" or "avian" M2e displayed cross-reactivity in relation to human (A/H1N1, A/H2N2 and A/H3N2) or A/H5N1 and A(H1N1)pdm09 viruses, respectively; however, with the particles carrying both "human" and "avian" M2e this effect was much weaker, especially in relation to influenza virus A/H5N1. It is apparent from this work that to quickly produce vaccine for a pandemic it would be necessary to have several variations of a recombinant protein, containing four copies of M2e (each one against a group of likely influenza virus strains) with these relevant constructs housed within a comprehensive collection Escherichia coli-producers and maintained ready for use

  8. Antigen Presentation Ability of Salmonella Carrying DNA Vaccine Model and MCP-3 gene

    Directory of Open Access Journals (Sweden)

    Endang Winiati Bachtiar

    2015-11-01

    Full Text Available The objective of this study is to determine the antigen presentation ability of a DNA vaccine model that is co-delivered with that of recombinant Salmonella enterica serovar Typhimurium (STM1 expressing chemokine macrophage chemotactic protein-3 (MCP-3. The DNA vaccine, pVROVA, was constructed by amplification of the ovalbumin coding region from sOVA-C1. Dendritic cells (DCs were obtained from IL-4 and GMCSF stimulated mouse bone marrow stem cell. Cultured DCs were incubated with STM1 carrying a model ovalbumin gene (pVROVA. Furthermore, MHC class I antigen presentation of a dominant OVA peptide was assayed in vitro. The experiments were designed to determine the effect of co-delivering MCP-3 with that of ovalbumin in STM1. Our results show that a plasmid pROVA-carrying ovalbumin gene was succesfully constructed and sequence analysis of the ovalbumin-coding revealed an identity match of 100% with that of the chicken ovalbumin DNA sequences from the GenBank database. We also found that the presence of the MCP-3 encoding plasmid in STM1 or E. coli DH1 could increase the recovery of both STM1 and E. coli DH1 over those that carry the empty plasmids. Antigen presentation assay also indicates that MCP-3 can positively influence the presentation of ovalbumin. Conclusion: the infection of DCs by STM1-carrying DNA vaccine and MCP-3 results in an increase of processing and presentation of ovalbumin in vitro.Keywords : DNA vaccine, MCP-3, APC, Salmonella, Dendritic cells

  9. A computational method for identification of vaccine targets from protein regions of conserved human leukocyte antigen binding

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Simon, Christian; Kudahl, Ulrich J.;

    2015-01-01

    variable regions, where all variants bind HLA. These regions, although variable, can thus be considered stable in terms of HLA binding and represent valuable vaccine targets. Results: We applied this method to predict CD8+ T-cell targets in influenza A H7N9 hemagglutinin and significantly increased the...... number of potential vaccine targets compared to the number of targets discovered using the traditional approach where low-frequency peptides are excluded. Conclusions: We developed a webserver with an intuitive visualization scheme for summarizing the T cell-based antigenic potential of any given protein...

  10. Efficacy of a Vaccine Based on Protective Antigen and Killed Spores against Experimental Inhalational Anthrax▿ ‡

    OpenAIRE

    Gauthier, Yves P.; Tournier, Jean-Nicolas; Paucod, Jean-Charles; Corre, Jean-Philippe; Mock, Michèle; Goossens, Pierre L.; Vidal, Dominique R.

    2008-01-01

    Protective antigen (PA)-based anthrax vaccines acting on toxins are less effective than live attenuated vaccines, suggesting that additional antigens may contribute to protective immunity. Several reports indicate that capsule or spore-associated antigens may enhance the protection afforded by PA. Addition of formaldehyde-inactivated spores (FIS) to PA (PA-FIS) elicits total protection against cutaneous anthrax. Nevertheless, vaccines that are effective against cutaneous anthrax may not be so...

  11. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Directory of Open Access Journals (Sweden)

    Simon H Apte

    Full Text Available Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+ and/or CD8(+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  12. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine.

    Science.gov (United States)

    Ma, Jimei; Xu, Jinmei; Guan, Lingyu; Hu, Tianjian; Liu, Qin; Xiao, Jingfan; Zhang, Yuanxing

    2014-07-01

    It is an attractive strategy to develop a recombinant bacterial vector vaccine by expressing exogenous protective antigen to induce the immune response, and the main concern is how to enhance the cellular internalization of antigen produced by bacterial vector. Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides which facilitate cellular uptake of various molecular cargoes and therefore have great potentials in vector vaccine design. In this work, eleven different CPPs were fused to the C-terminus of EGFP respectively, and the resultant EGFP-CPP fusion proteins were expressed and purified to assay their cross-membrane transport in macrophage J774 A.1 cells. Among the tested CPPs, TAT showed an excellent capability to deliver the cargo protein EGFP into cytoplasm. In order to establish an efficient antigen delivery system in Escherichia coli, the EGFP-TAT synthesis circuit was combined with an in vivo inducible lysis circuit PviuA-E in E. coli to form an integrated antigen delivery system, the resultant E. coli was proved to be able to lyse upon the induction of a mimic in vivo signal and thus release intracellular EGFP-TAT intensively, which were assumed to undergo a more efficient intracellular delivery by CPP to evoke protective immune responses. Based on the established antigen delivery system, the protective antigen gene flgD from an invasive intracellular fish pathogen Edwardsiella tarda EIB202, was applied to establish an E. coli recombinant vector vaccine. This E. coli vector vaccine presented superior immune protection (RPS = 63%) under the challenge with E. tarda EIB202, suggesting that the novel antigen delivery system had great potential in bacterial vector vaccine applications. PMID:24746937

  13. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.

    Directory of Open Access Journals (Sweden)

    Alison E Mahan

    2016-03-01

    Full Text Available Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.  .

  14. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.

    Science.gov (United States)

    Mahan, Alison E; Jennewein, Madeleine F; Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D; Baden, Lindsey; Barouch, Dan H; Alter, Galit

    2016-03-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.  . PMID:26982805

  15. Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig.

    OpenAIRE

    Little, S F; Knudson, G B

    1986-01-01

    Several strains of Bacillus anthracis have been reported previously to cause fatal infection in immunized guinea pigs. In this study, guinea pigs were immunized with either a protective antigen vaccine or a live Sterne strain spore vaccine, then challenged with virulent B. anthracis strains isolated from various host species from the United States and foreign sources. Confirmation of previously reported studies (which used only protective antigen vaccines) was made with the identification of ...

  16. Probing vaccine antigens against bovine mastitis caused by Streptococcus uberis.

    Science.gov (United States)

    Collado, Rosa; Prenafeta, Antoni; González-González, Luis; Pérez-Pons, Josep Antoni; Sitjà, Marta

    2016-07-19

    Streptococcus uberis is a worldwide pathogen that causes intramammary infections in dairy cattle. Because virulence factors determining the pathogenicity of S. uberis have not been clearly identified so far, a commercial vaccine is not yet available. Different S. uberis strains have the ability to form biofilm in vitro, although the association of this kind of growth with the development of mastitis is unknown. The objective of this study was to evaluate the potential use as vaccine antigens of proteins from S. uberis biofilms, previously identified by proteomic and immunological analyses. The capability of eliciting a protective immune response by targeted candidates was assayed on a murine model. Sera from rabbits immunized with S. uberis biofilm preparations and a convalescent cow intra-mammary infected with S. uberis were probed against cell wall proteins from biofilm and planktonic cells previously separated by two-dimensional gel electrophoresis. Using rabbit immunized serum, two proteins were found to be up-regulated in biofilm cells as compared to planktonic cells; when serum from the convalescent cow was used, up to sixteen biofilm proteins were detected. From these proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-biphosphate aldolase (FBA), and elongation factor Ts (EFTs) were chosen to be tested as vaccine antigen candidates. For this purpose, different groups of mice were immunized with the three recombinant-expressed proteins (each one formulated separately in a vaccine), and thereafter intraperitoneally challenged with S. uberis. The three proteins induced specific IgG antibodies, but a significant reduction of mortality was only observed in the groups of mice vaccinated with FBA or EFTs. These results suggest that FBA and EFTs might be considered as strong antigenic candidates for a vaccine against S. uberis bovine mastitis. Moreover, this is the first study to indicate that also in S. uberis, GAPDH, FBA and EFTs, as proteins

  17. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine.

    Science.gov (United States)

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei

    2015-05-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. PMID:25787135

  18. Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides

    OpenAIRE

    Zervoudi, Efthalia; Papakyriakou, Athanasios; Georgiadou, Dimitra; Evnouchidou, Irini; Gajda, Anna; Poreba, Marcin; Salvesen, Guy S.; Drag, Marcin; Hattori, Akira; Swevers, Luc; Vourloumis, Dionisios; Stratikos, Efstratios

    2011-01-01

    Abstract ER aminopeptidase 1 (ERAP1), ER aminopeptidase 2 (ERAP2) and Insulin Regulated aminopeptidase (IRAP) are three homologous enzymes that play critical roles in the generation of antigenic peptides. These aminopeptidases excise amino acids from N-terminally extended precursors of antigenic peptides in order to generate the correct length epitopes for binding onto MHC class I molecules. The specificity of these peptidases can affect antigenic peptide selection, but has not yet...

  19. Identification of peptide sequences as a measure of Anthrax vaccine stability during storage.

    Science.gov (United States)

    Whiting, Gail; Wheeler, Jun X; Rijpkema, Sjoerd

    2014-01-01

    The UK anthrax vaccine is an alum precipitate of a sterile filtrate of Bacillus anthracis Sterne culture (AVP). An increase in shelf life of AVP from 3 to 5 years prompted us to investigate the in vivo potency and the antigen content of 12 batches with a shelf life of 6.4 to 9.9 years and one bulk with a shelf life of 23.8 years. All batches, except for a 9.4-year-old batch, passed the potency test. Mass spectrometry (MS) and in-gel difference 2-dimensional gel electrophoresis (DIGE) were used to examine antigens of the pellet and supernatant of AVP. The pellet contained proteins with a MW in excess of 15 kDa. DIGE of desorbed proteins from the pellet revealed that with aging, 19 spots showed a significant change in size or intensity, a sign of protein degradation. MS identified 21 proteins including protective antigen (PA), enolase, lethal factor (LF), nucleoside diphosphate kinase, edema factor, and S-layer proteins. Fifteen proteins were detected for the first time including metabolic enzymes, iron binding proteins, and manganese dependent superoxide dismutase (MnSOD). The supernatant contained131 peptide sequences. Peptides representing septum formation inhibitor protein and repeat domain protein were most abundant. Five proteins were shared with the pellet: 2,3,4,5-tetrahydropyridine-6-dicarboxylate N-succinyltransferase, enolase, LF, MnSOD, and PA. The number of peptide sequences increased with age. Peptides from PA and LF appeared once batches exceeded their shelf life by 2 and 4 years, respectively. In conclusion, changes in antigen content resulting from decay or desorption only had a limited effect on in vivo potency of AVP. The presence of PA and LF peptides in the supernatant can inform on the age and stability of AVP. PMID:24637775

  20. Design of the ATAQ peptide and its evaluation as an immunogen to develop a Rhipicephalus vaccine.

    Science.gov (United States)

    Aguirre, André de Abreu Rangel; Lobo, Francisco Pereira; Cunha, Rodrigo Casquero; Garcia, Marcos Valério; Andreotti, Renato

    2016-05-15

    Tick infestation may cause several problems including affecting domestic animal health and reducing the production of meat and milk, among others. Resistance to several classes of acaricides have been reported, forcing researchers to search for alternative measures, such as vaccines against ticks, to ensure tick control while having no or at least low negative impacts on the environment and public health. However, the current commercially available vaccines in different strains of Rhipicephalus microplus are reported to be of low efficacy. Fortunately, reverse vaccinology approaches have shown positive results in the new generation of vaccines. On this basis, a synthetic peptide from the ATAQ protein, which is present in the gut and Malpighi tubes of R. microplus, was synthesized. The ATAQ proteins were isolated, characterized and sequenced from several species of the genus Rhipicephalus. The alignment showed 93.3% identity among DNA sequences of ATAQs from these species. Because of this, immunization trials with this peptide were conducted on mice, rabbits and cattle to evaluate the humoral immune response and the efficacy against Rhipicephalus sanguineus in addition to R. microplus. Based on recent results, we conclude that reverse vaccinology is a promising approach because it is more accurate and faster than conventional methods in the detection of potential antigens to use in anti-tick vaccines. It is not only applicable against R. microplus but also against tick species that play important roles in spreading other diseases. ATAQ proteins should be considered as the antigen in new trials to develop a multi-antigenic vaccine. Although these peptides behave as hapten and are not able to be recognized by the immune system on its own, using carriers and adjuvants helps its presentation and induces strong immune responses. Furthermore, an efficiency of 35% reduction in overall life cycle parameters was reported for R. microplus (98% for ELISA responder animals) and

  1. Design of a heterosubtypic epitope-based peptide vaccine fused with hemokinin-1 against influenza viruses

    Institute of Scientific and Technical Information of China (English)

    Shahla; Shahsavandi; Mohammad; Majid; Ebrahimi; Kaveh; Sadeghi; Homayoon; Mahravani

    2015-01-01

    Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1(HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte(CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin(HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.

  2. TH1 and TH2 responses are influenced by HLA antigens in healthy neonates vaccinated with recombinant hepatitis B vaccine.

    OpenAIRE

    Abdollah Jafarzadeh; Fazel Shokri

    2012-01-01

    The immune response to hepatitis B surface antigen (HBsAg) is influenced by several factors, of which HLA antigens and balanced secretion of Th1/Th2 cytokines play important roles. The aim of this study was to evaluate the influence of HLA antigens on cytokine secretion by HBsAg-stimulated peripheral blood mononuclear cells (PBMC) from healthy neonates vaccinated with recombinant HBsAg. PBMCs were isolated from 48 Iranian neonates vaccinated with a recombinant HBV vaccine. The cells were stim...

  3. Peptide Based Vaccine Approaches for Cancer—A Novel Approach Using a WT-1 Synthetic Long Peptide and the IRX-2 Immunomodulatory Regimen

    Directory of Open Access Journals (Sweden)

    James E. Egan

    2011-10-01

    Full Text Available Therapeutic cancer vaccines have the potential to generate a long lasting immune response that will destroy tumor cells with specificity and safety, in contrast to many other current cancer therapies. Clinical success to date has been limited by a number of factors including choice of immunogenic cancer rejection antigens, optimization of vaccine platforms and immune adjuvants to effectively polarize the immune response, and incorporation of strategies to reverse cancer mediated immune suppression by utilization of effective adjuvant/immune modulators. WT-1 (Wilms’ tumor gene 1 is a cancer antigen that is required for tumorigenesis, expressed in a high percentage of tumor cells and rarely expressed in adult normal cells. Moreover spontaneous immunity to WT-1 is seen in cancer patients and can be augmented with various therapeutic vaccine approaches. IRX-2 is an immune modulator with demonstrated preclinical and clinical pleiotropic immune activities including enhancement of the immune response to potential tumor antigens. This paper presents the rationale and preclinical data for utilizing the WT-1 tumor antigen in a novel vaccine platform consisting of a synthetic long peptide containing multiple class I and class II epitopes in combination with the IRX-2 immunomodulatory regimen to overcome immuno-suppressive pathways and enhance the anti-tumor response.

  4. Peptide Based Vaccine Approaches for Cancer—A Novel Approach Using a WT-1 Synthetic Long Peptide and the IRX-2 Immunomodulatory Regimen

    International Nuclear Information System (INIS)

    Therapeutic cancer vaccines have the potential to generate a long lasting immune response that will destroy tumor cells with specificity and safety, in contrast to many other current cancer therapies. Clinical success to date has been limited by a number of factors including choice of immunogenic cancer rejection antigens, optimization of vaccine platforms and immune adjuvants to effectively polarize the immune response, and incorporation of strategies to reverse cancer mediated immune suppression by utilization of effective adjuvant/immune modulators. WT-1 (Wilms' tumor gene 1) is a cancer antigen that is required for tumorigenesis, expressed in a high percentage of tumor cells and rarely expressed in adult normal cells. Moreover spontaneous immunity to WT-1 is seen in cancer patients and can be augmented with various therapeutic vaccine approaches. IRX-2 is an immune modulator with demonstrated preclinical and clinical pleiotropic immune activities including enhancement of the immune response to potential tumor antigens. This paper presents the rationale and preclinical data for utilizing the WT-1 tumor antigen in a novel vaccine platform consisting of a synthetic long peptide containing multiple class I and class II epitopes in combination with the IRX-2 immunomodulatory regimen to overcome immuno-suppressive pathways and enhance the anti-tumor response

  5. INFLUENCE OF IMMUNOMODULATION ON THE FIRST STAGE OF ANTIGEN SPECIFIC RESPONSE TO HERPES VACCINE IN EXPERIMENT

    Directory of Open Access Journals (Sweden)

    MARIA OMAROVA

    2011-08-01

    Full Text Available The influence of immunomodulation on dynamics of early antigen specific response (antigen binding lymphocytes - ABL was studied in the experiment with rabbits immunization by herpes vaccine. Acceleration of appearance and disappearance of ABL after one-time immunization with herpes vaccine by introduction of licensed preparations of interleukin-1, interleukin-2, polyoxidonium and interferon inductor bacterial was revealed.

  6. Proteome-wide antigen discovery of novel protective vaccine candidates against Staphylococcus aureus infection

    DEFF Research Database (Denmark)

    Rasmussen, Karina Juhl; Mattsson, Andreas Holm; Pilely, Katrine;

    2016-01-01

    is an urgent need to institute non-antimicrobial measures, such as vaccination, against the spread of MRSA. With the aim of finding new protective antigens for vaccine development, this study used a proteome-wide in silico antigen prediction platform to screen the proteome of S. aureus strain MRSA252...

  7. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Lourena Emanuele Costa

    Full Text Available BACKGROUND: The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL. Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. METHODOLOGY/MAIN FINDINGS: Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin, showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. CONCLUSIONS/SIGNIFICANCE: This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the

  8. Effect of particulate adjuvant on the anthrax protective antigen dose required for effective nasal vaccination.

    Science.gov (United States)

    Bento, Dulce; Staats, Herman F; Borges, Olga

    2015-07-17

    Successful vaccine development is dependent on the development of effective adjuvants since the poor immunogenicity of modern subunit vaccines typically requires the use of potent adjuvants and high antigen doses. In recent years, adjuvant formulations combining both immunopotentiators and delivery systems have emerged as a promising strategy to develop effective and improved vaccines. In this study we investigate if the association of the mast cell activating adjuvant compound 48/80 (C48/80) with chitosan nanoparticles would promote an antigen dose sparing effect when administered intranasally. Even though the induction of strong mucosal immunity required higher antigen doses, incorporation of C48/80 into nanoparticles provided significant dose sparing when compared to antigen and C48/80 in solution with no significant effect on serum neutralizing antibodies titers. These results suggest the potential of this novel adjuvant combination to improve the immunogenicity of a vaccine and decrease the antigen dose required for vaccination. PMID:26087299

  9. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens.

    Science.gov (United States)

    Almazán, Consuelo; Moreno-Cantú, Orlando; Moreno-Cid, Juan A; Galindo, Ruth C; Canales, Mario; Villar, Margarita; de la Fuente, José

    2012-01-01

    Vaccines containing the Rhipicephalus (Boophilus) microplus BM86 and BM95 antigens protect cattle against tick infestations. Tick subolesin (SUB), elongation factor 1a (EF1a) and ubiquitin (UBQ) are new candidate protective antigens for the control of cattle tick infestations. Previous studies showed that R. microplus BM95 immunogenic peptides fused to the Anaplasma marginale major surface protein (MSP) 1a N-terminal region (BM95-MSP1a) for presentation on the Escherichia coli membrane were protective against R. microplus infestations in rabbits. In this study, we extended these results by expressing SUB-MSP1a, EF1a-MSP1a and UBQ-MSP1a fusion proteins on the E. coli membrane using this system and demonstrating that bacterial membranes containing the chimeric proteins BM95-MSP1a and SUB-MSP1a were protective (>60% vaccine efficacy) against experimental R. microplus and Rhipicephalus annulatus infestations in cattle. This system provides a novel, simple and cost-effective approach for the production of tick protective antigens by surface display of antigenic protein chimera on the E. coli membrane and demonstrates the possibility of using recombinant bacterial membrane fractions in vaccine preparations to protect cattle against tick infestations. PMID:22085549

  10. Primary vaccination of adults with reduced antigen-content diphtheria-tetanus-acellular pertussis or dTpa-inactivated poliovirus vaccines compared to diphtheria-tetanus-toxoid vaccines.

    NARCIS (Netherlands)

    Theeten, H.; Rumke, H.C.; Hoppener, F.J.; Vilatimo, R.; Narejos, S.; Damme, P. van; Hoet, B.

    2007-01-01

    OBJECTIVE: To evaluate immunogenicity and reactogenicity of primary vaccination with reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) or dTpa-inactivated poliovirus (dTpa-IPV) vaccine compared to diphtheria-tetanus-toxoid vaccines (Td) in adults > or = 40 years of age without

  11. Immunogenicity of multiple antigen peptides containing Plasmodium vivax CS epitopes in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Myriam A. Herrera

    1994-01-01

    Full Text Available Multiple antigen peptide systems (MAPs allow the incorporation of various epitopes in to a single synthetic peptide immunogen. We have characterized the immune response of BALB/c mice to a series of MAPs assembled with different B and T cell epitopes derived from the Plasmodium vivax circumsporozoite (CS protein. A B-cell epitope from the central repeat domain and two T-cell epitopes from the amino and carboxyl flanking regions were used to assembled eight different MAPs. An additional universal T cell epitope (ptt-30 from tetanus toxin protein was included. Immunogenicity in terms of antibody responses and in vitro T lymphocyte proliferation was evaluated. MAPs containing B and T cell epitopes induced high titers of anti-peptides antibodies, which recognized the native protein on sporozoites as determined by IFAT. The antibody specificity was also determined by a competitive inhibition assay with different MAPs. A MAP containing the B cell epitope (p11 and the universal epitope ptt-30 together with another composed of p11 and the promiscuous T cell epitope (p25 proved to be the most immunogenic. The strong antibody response and specificity for the cognate protein indicates that further studies designed to assess the potential of these proteins as human malaria vaccine candidates are warranted.

  12. Influenza virosomes supplemented with GPI-0100 adjuvant: a potent vaccine formulation for antigen dose sparing

    OpenAIRE

    Liu, Heng; de Vries-Idema, Jacqueline; ter Veer, Wouter; Wilschut, Jan; Huckriede, Anke

    2014-01-01

    Adjuvants can stimulate vaccine-induced immune responses and can contribute decisively to antigen dose sparing when vaccine antigen production is limited, as for example during a pandemic influenza outbreak. We earlier showed that GPI-0100, a semi-synthetic saponin derivative with amphiphilic structure, significantly stimulates the immunogenicity and protective efficacy of influenza subunit vaccine administered via a systemic route. Here, we evaluated the adjuvant effect of GPI-0100 on a viro...

  13. Therapy of established B16-F10 melanoma tumors by a single vaccination of CTL/T helper peptides in VacciMax®

    Directory of Open Access Journals (Sweden)

    Korets-Smith Ella

    2007-04-01

    Full Text Available Abstract Background Melanoma tumors are known to express antigens that usually induce weak immune responses of short duration. Expression of both tumor-associated antigens p53 and TRP2 by melanoma cells raises the possibility of simultaneously targeting more than one antigen in a therapeutic vaccine. In this report, we show that VacciMax® (VM, a novel liposome-based vaccine delivery platform, can increase the immunogenicity of melanoma associated antigens, resulting in tumor elimination. Methods C57BL/6 mice bearing B16-F10 melanoma tumors were vaccinated subcutaneously 6 days post tumor implantation with a mixture of synthetic peptides (modified p53: 232–240, TRP-2: 181–188 and PADRE and CpG. Tumor growth was monitored and antigen-specific splenocyte responses were assayed by ELISPOT. Results Vaccine formulated in VM increased the number of both TRP2- and p53-specific IFN-γ producing splenocytes following a single vaccination. Vaccine formulated without VM resulted only in enhanced IFN-γ producing splenocytes to one CTL epitopes (TRP2:180–188, suggesting that VM overcomes antigen dominance and enhances immunogenicity of multiple epitopes. Vaccination of mice bearing 6-day old B16-F10 tumors with both TRP2 and p53-peptides formulated in VM successfully eradicated tumors in all mice. A control vaccine which contained all ingredients except liposomes resulted in eradication of tumors in no more than 20% of mice. Conclusion A single administration of VM is capable of inducing an effective CTL response to multiple tumor-associated antigens. The responses generated were able to reject 6-day old B16-F10 tumors.

  14. Comparison of IFN-gamma responses to mycobacterial antigens as markers of response to BCG vaccination.

    Science.gov (United States)

    Weir, Rosemary E; Fine, Paul E M; Floyd, Sian; Stenson, Sally; Stanley, Carolynne; Branson, Keith; Britton, Warwick J; Huygen, Kris; Singh, Mahavir; Black, Gillian; Dockrell, Hazel M

    2008-01-01

    An increase in interferon-gamma (IFN-gamma) production to Mycobacterium tuberculosis purified protein derivative (Mtb PPD), as measured in the cultured diluted whole blood assay, is one indicator of a protective immune response to BCG vaccine. We have explored the potential for this assay to be improved by measuring IFN-gamma responses to more defined antigens of M. tuberculosis (short-term and mid-term culture filtrates, ESAT-6, 38 kDa), Mycobacterium bovis (MPB70), M. bovis BCG (Antigen 85) and Mycobacterium leprae (35 kDa), in UK teenagers before and 1 year after BCG vaccination (or no vaccination as controls). There was a significant increase in response to the culture filtrates post-vaccination, but this was no greater than that to Mtb PPD. Many teenagers responded to the purified antigens, in particular to Antigen 85, prior to vaccination, and BCG vaccination could only augment this pre-existing response to a limited extent; prior exposure to environmental mycobacteria can thus induce cross-reactive responses to antigens which complicate interpretation of in vitro assays of vaccine response. In contrast, ESAT-6 was recognised by only one teenager prior to vaccination, and, as expected, responses were not boosted by BCG. We therefore conclude that Mtb PPD is the antigen preparation of choice for assessing the immunogenicity of BCG vaccination. PMID:18277396

  15. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases.

    Science.gov (United States)

    Nuttall, P A; Trimnell, A R; Kazimirova, M; Labuda, M

    2006-04-01

    Tick vaccines derived from Bm86, a midgut membrane-bound protein of the cattle tick, Boophilus microplus, are currently the only commercially available ectoparasite vaccines. Despite its introduction to the market in 1994, and the recognized need for alternatives to chemical pesticides, progress in developing effective antitick vaccines (and ectoparasite vaccines in general) is slow. The primary rate-limiting step is the identification of suitable antigenic targets for vaccine development. Two sources of candidate vaccine antigens have been identified: 'exposed' antigens that are secreted in tick saliva during attachment and feeding on a host and 'concealed' antigens that are normally hidden from the host. Recently, a third group of antigens has been distinguished that combines the properties of both exposed and concealed antigens. This latter group offers the prospect of a broad-spectrum vaccine effective against both adults and immature stages of a wide variety of tick species. It also shows transmission-blocking and protective activity against a tick-borne pathogen. With the proliferation of molecular techniques and their application to vaccine development, there are high hopes for new and effective antitick vaccines that also control tick-borne diseases. PMID:16542317

  16. Expression of HIV-1 antigens in plants as potential subunit vaccines

    Directory of Open Access Journals (Sweden)

    Tanzer Fiona L

    2008-06-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 has infected more than 40 million people worldwide, mainly in sub-Saharan Africa. The high prevalence of HIV-1 subtype C in southern Africa necessitates the development of cheap, effective vaccines. One means of production is the use of plants, for which a number of different techniques have been successfully developed. HIV-1 Pr55Gag is a promising HIV-1 vaccine candidate: we compared the expression of this and a truncated Gag (p17/p24 and the p24 capsid subunit in Nicotiana spp. using transgenic plants and transient expression via Agrobacterium tumefaciens and recombinant tobamovirus vectors. We also investigated the influence of subcellular localisation of recombinant protein to the chloroplast and the endoplasmic reticulum (ER on protein yield. We partially purified a selected vaccine candidate and tested its stimulation of a humoral and cellular immune response in mice. Results Both transient and transgenic expression of the HIV antigens were successful, although expression of Pr55Gag was low in all systems; however, the Agrobacterium-mediated transient expression of p24 and p17/p24 yielded best, to more than 1 mg p24/kg fresh weight. Chloroplast targeted protein levels were highest in transient and transgenic expression of p24 and p17/p24. The transiently-expressed p17/p24 was not immunogenic in mice as a homologous vaccine, but it significantly boosted a humoral and T cell immune response primed by a gag DNA vaccine, pTHGagC. Conclusion Transient agroinfiltration was best for expression of all of the recombinant proteins tested, and p24 and p17/p24 were expressed at much higher levels than Pr55Gag. Our results highlight the usefulness of plastid signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The p17/p24 protein effectively boosted T cell and humoral responses in mice primed by the DNA vaccine pTHGagC, showing that this plant

  17. Immune response to immunodominant Mycobacterium tuberculosis antigen ESAT-6 derived peptide is HLA-haplotype dependent

    OpenAIRE

    Smart, Michele; Behrens, Marshall; David, Luckey; Conway, Catherine; Taneja, Veena

    2014-01-01

    The antigenic proteins of Mycobacterium tuberculosis (Mtb) have been defined. We used synthetic peptides of secreted antigens, early secreted antigenic target 6 (ESAT-6) and cultural filtrate protein-10 (CFP-10), of Mtb and characterized the immune response in context of HLA genes. Humanized mice lacking endogenous class II molecules but expressing various human DR and DQ HLA transgenes singly or as a haplotype were used to study the HLA-mediated immune response to peptides. Our observations ...

  18. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs

    Science.gov (United States)

    Hiremath, Jagadish; Kang, Kyung-il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B.; Jiang, X.; Lee, Chang Won; Renukaradhya, Gourapura J.

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs. PMID:27093541

  19. Dynamics of polymorphism in a malaria vaccine antigen at a vaccine-testing site in Mali.

    Directory of Open Access Journals (Sweden)

    Shannon L Takala

    2007-03-01

    Full Text Available BACKGROUND: Malaria vaccines based on the 19-kDa region of merozoite surface protein 1 (MSP-1(19 derived from the 3D7 strain of Plasmodium falciparum are being tested in clinical trials in Africa. Knowledge of the distribution and natural dynamics of vaccine antigen polymorphisms in populations in which malaria vaccines will be tested will guide vaccine design and permit distinction between natural fluctuations in genetic diversity and vaccine-induced selection. METHODS AND FINDINGS: Using pyrosequencing, six single-nucleotide polymorphisms in the nucleotide sequence encoding MSP-1(19 were genotyped from 1,363 malaria infections experienced by 100 children who participated in a prospective cohort study in Mali from 1999 to 2001. The frequencies of 14 MSP-1(19 haplotypes were compared over the course of the malaria transmission season for all three years, in three age groups, and in consecutive infections within individuals. While the frequency of individual MSP-1(19 haplotypes fluctuated, haplotypes corresponding to FVO and FUP strains of P. falciparum (MSP-1(19 haplotypes QKSNGL and EKSNGL, respectively were most prevalent during three consecutive years and in all age groups with overall prevalences of 46% (95% confidence interval [CI] 44%-49% and 36% (95% CI 34%-39%, respectively. The 3D7 haplotype had a lower overall prevalence of 16% (95% CI 14%-18%. Multiplicity of infection based on MSP-1(19 was higher at the beginning of the transmission season and in the oldest individuals (aged > or =11 y. Three MSP-1(19 haplotypes had a reduced frequency in symptomatic infections compared to asymptomatic infections. Analyses of the dynamics of MSP-1(19 polymorphisms in consecutive infections implicate three polymorphisms (at positions 1691, 1700, and 1701 as being particularly important in determining allele specificity of anti-MSP-1(19 immunity. CONCLUSIONS: Parasites with MSP-1(19 haplotypes different from that of the leading vaccine strain were

  20. Analysis of Antibody Responses to Protective Antigen-Based Anthrax Vaccines through Use of Competitive Assays▿

    OpenAIRE

    Rebecca A Brady; Verma, Anita; Meade, Bruce D.; Burns, Drusilla L.

    2010-01-01

    The licensed anthrax vaccine and many of the new anthrax vaccines being developed are based on protective antigen (PA), a nontoxic component of anthrax toxin. For this reason, an understanding of the immune response to PA vaccination is important. In this study, we examined the antibody response elicited by PA-based vaccines and identified the domains of PA that contribute to that response in humans as well as nonhuman primates (NHPs) and rabbits, animal species that will be used to generate ...

  1. Elucidating the mechanisms of protein antigen adsorption to the CAF/NAF liposomal vaccine adjuvant systems

    DEFF Research Database (Denmark)

    Hamborg, Mette; Rose, Fabrice; Jorgensen, Lene;

    2014-01-01

    The reverse vaccinology approach has recently resulted in the identification of promising protein antigens, which in combination with appropriate adjuvants can stimulate customized, protective immune responses. Although antigen adsorption to adjuvants influences vaccine efficacy and safety, little...... attractive interaction with the zwitterionic liposomes. In contrast, the net cationic lysozyme showed very little interaction with either types of liposome. Adsorption of α-lactalbumin altered its tertiary structure, affected lipid membrane packing below and above the phase transition temperature, and...... way vaccine antigens are presented to antigen-presenting cells, and may play an important role for the efficacy of the vaccine-induced immune response. These studies thus exemplify the importance of characterizing the molecular interactions between the vaccine antigen and adjuvant along with...

  2. Identification of a peptide binding protein that plays a role in antigen presentation

    International Nuclear Information System (INIS)

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from [35S]methionine-labeled cells, appears as two discrete bands of ≅72 and 74 kDa after NaDodSO4/PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation

  3. Multimerized HIV-gp41-derived peptides as fusion inhibitors and vaccines.

    Science.gov (United States)

    Nomura, Wataru; Mizuguchi, Takaaki; Tamamura, Hirokazu

    2016-11-01

    To date, several antigens based on the amino-terminal leucine/isoleucine heptad repeat (NHR) region of an HIV-1 envelope protein gp41 and fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of gp41 have been reported. We have developed a synthetic antigen targeting the membrane-fusion mechanism of HIV-1. This uses a template designed with C3-symmetric linkers and mimics the trimeric form of the NHR-derived peptide N36. The antiserum obtained by immunization of the N36 trimeric antigen binds preferentially to the N36 trimer and blocks HIV-1 infection effectively, compared with the antiserum obtained by immunization of the N36 monomer. Using another template designed with different C3-symmetric linkers, we have also developed a synthetic peptide mimicking the trimeric form of the CHR-derived peptide C34, with ∼100 times the inhibitory activity against the HIV-1 fusion mechanism than that of the monomer C34 peptide. A dimeric derivative of C34 has potent inhibitory activity at almost the same levels as this C34 trimer mimic, suggesting that presence of a dimeric form of C34 is structurally critical for fusion inhibitors. As examples of rising mid-size drugs, this review describes an effective strategy for the design of HIV vaccines and fusion inhibitors based on a relationship with the native structure of proteins involved in HIV fusion mechanisms. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 622-628, 2016. PMID:26583370

  4. Structural Characterization by NMR of a Double Phosphorylated Chimeric Peptide Vaccine for Treatment of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Stefan Berger

    2013-04-01

    Full Text Available Rational design of peptide vaccines becomes important for the treatment of some diseases such as Alzheimer’s disease (AD and related disorders. In this study, as part of a larger effort to explore correlations of structure and activity, we attempt to characterize the doubly phosphorylated chimeric peptide vaccine targeting a hyperphosphorylated epitope of the Tau protein. The 28-mer linear chimeric peptide consists of the double phosphorylated B cell epitope Tau229-237[pThr231/pSer235] and the immunomodulatory T cell epitope Ag85B241-255 originating from the well-known antigen Ag85B of the Mycobacterium tuberculosis, linked by a four amino acid sequence -GPSL-. NMR chemical shift analysis of our construct demonstrated that the synthesized peptide is essentially unfolded with a tendency to form a β-turn due to the linker. In conclusion, the -GPSL- unit presumably connects the two parts of the vaccine without transferring any structural information from one part to the other. Therefore, the double phosphorylated epitope of the Tau peptide is flexible and accessible.

  5. Vaccination with map specific peptides reduces map burden in tissues of infected goats

    DEFF Research Database (Denmark)

    Melvang, Heidi Mikkelsen; Hassan, Sufia Butt; Thakur, Aneesh;

    As an alternative to protein-based vaccines, we investigated the effect of post-exposure vaccination with Map specific peptides in a goat model aiming at developing a Map vaccine that will neither interfere with diagnosis of paratuberculosis nor bovine tuberculosis. Peptides were initially select...... in the unvaccinated control group seroconverted in ID Screen® ELISA at last sampling prior to euthanasia. These results indicate that a subunit vaccine against Map can induce a protective immune response against paratuberculosis in goats....

  6. Challenges to the development of antigen-specific breast cancer vaccines

    International Nuclear Information System (INIS)

    Continued progress in the development of antigen-specific breast cancer vaccines depends on the identification of appropriate target antigens, the establishment of effective immunization strategies, and the ability to circumvent immune escape mechanisms. Methods such as T cell epitope cloning and serological expression cloning (SEREX) have led to the identification of a number target antigens expressed in breast cancer. Improved immunization strategies, such as using dendritic cells to present tumor-associated antigens to T lymphocytes, have been shown to induce antigen-specific T cell responses in vivo and, in some cases, objective clinical responses. An outcome of successful tumor immunity is the evolution of antigen-loss tumor variants. The development of a polyvalent breast cancer vaccine, directed against a panel of tumor-associated antigens, may counteract this form of immune escape

  7. Production of schistosome antigens for immunodiagnosis and vaccines: the role of recombinant DNA technology

    International Nuclear Information System (INIS)

    A major problem to confront biochemists studying the immunology of parasitic infection is a paucity of the organisms themselves. Conventional biochemical techniques for the isolation and purification of individual antigens are inappropriate. This problem has been alleviated by the application of recombinant DNA technology. It is now possible to produce large quantities of individual antigens by cloning the corresponding genes into plasmids (or other vectors) and subsequent expression in bacteria. Antigens produced in this way may provide the basis of a specific diagnostic test and vaccines. This paper describes the identification of cDNA clones of Schistosoma mansoni which encode a major egg antigen and schistosomula surface antigens. These antigens are thought to be species specific and may form the basis of a diagnostic test. The schistosomula antigens are also possible candidates for inclusion in an experimental vaccine against infection with S. mansoni. (author)

  8. WT1 Peptide Cancer Vaccine for Patients with Hematopoietic Malignancies and Solid Cancers

    Directory of Open Access Journals (Sweden)

    Yoshihiro Oka

    2007-01-01

    Full Text Available Wild-type Wilms' tumor gene WT1 is expressed at a high level in hematopoietic malignancies including acute leukemia, chronic myelogenous leukemia, and myelodysplastic syndromes, as well as in various kinds of solid cancers. Human cytotoxic T lymphocytes (CTLs, which could specifically lyse WT1-expressing tumor cells with HLA class I restriction, were generated in vitro. It was also demonstrated that mice immunized with the WT1 peptide rejected challenges by WT1-expressing cancer cells and survived with no signs of autoaggression to normal organs that physiologically expressed WT1. Furthermore, we and others detected IgM and IgG WT1 antibodies in patients with hematopoietic malignancies, indicating that the WT1 protein was highly immunogenic, and that immunoglobulin class-switch-inducing, WT1-specific, cellular immune responses were elicited in these patients. CD8+ WT1-specific CTLs were also detected in peripheral blood or tumor-draining lymph nodes of cancer patients. These results provided us with the rationale for elicitation of CTL responses targeting the WT1 product for cancer immunotherapy. On the basis of these findings, we performed a phase I clinical trial of a WT1 peptide cancer vaccine for the patients with malignant neoplasms. These results strongly suggested that the WT1 peptide cancer vaccine had efficacy in the clinical setting because clinical responses, including reduction of leukemic blast cells or regression of tumor masses, were observed after the WT1 vaccination in patients with hematopoietic malignancies or solid cancers. The power of a tumor-associated-antigen (TAA-derived cancer vaccine may be enhanced in combination with stronger adjuvants, helper peptide, molecular-target-based drugs, or some chemotherapy drugs, such as gemcitabine, which has been revealed to suppress regulartory T-cell function. In contrast, reduction of WT1 peptide dose may be needed for the treatment of patients with hematological stem cell diseases

  9. Update on HER-2 as a target for cancer therapy: HER2/neu peptides as tumour vaccines for T cell recognition

    International Nuclear Information System (INIS)

    During the past decade there has been renewed interest in the use of vaccine immunotherapy for the treatment of cancer. This review focuses on HER2/neu, a tumour-associated antigen that is overexpressed in 10–40% of breast cancers and other carcinomata. Several immunogenic HER2/neu peptides recognized by T lymphocytes have been identified to be included in cancer vaccines. Some of these peptides have been assessed in clinical trials of patients with breast and ovarian cancer. Although it has been possible to detect immunological responses against the peptides in the immunized patients, no clinical responses have so far been described. Immunological tolerance to self-antigens like HER2/neu may limit the functional immune responses against them. It will be of interest to determine whether immune responses against HER2/neu epitopes can be of relevance to cancer treatment

  10. Non-cytolytic antigen clearance in DNA-vaccinated mice with electropotation

    Institute of Scientific and Technical Information of China (English)

    Jin-liang PENG; Yong-gang ZHAO; Jun-hua MAI; Wen-ka PANG; Wei GUO; Guang-ming CHEN; Guo-yu MO; Gui-rong RAO; Yu-hong XU

    2007-01-01

    Aim: To explore the potential of electroporation (EP)-mediated hepatitis B virus (HBV) DNA vaccination for the treatment of chronic HBV infection. Methods: BALB/c mice were vaccinated with HBV DNA vaccine encoding for the HBV preS2-S antigen, combined with or without EP. HBV surface antigen expression plasmid was administered into mice liver via a hydrodynamic injection to mimic HBV infection. The clearance of antigen in the serum and liver was detected by ELISA assay and immunohistochemical staining. The histopathology of the liver tissues was examined by HE staining and serum alanine aminotransferase assay.Results: The immunogenicity ofHBV DNA vaccine encoding for the HBV preS2-S antigen can be improved by EP-mediated vaccine delivery. The elicited immune responses can indeed reduce the expression of HBV surface antigen (HBsAg) in hepatocytes of the mouse model that was transfected to express HBsAg using the hydrodynamic injection method. The antigen clearance process did not cause significant toxicity to liver tissue, suggesting a non-cytolytic mechanism. Conclusion: The EP-aided DNA vaccination may have potential in mediating viral clearance in chronic hepatitis B patients.

  11. Design and Antigenic Epitopes Prediction of a New Trial Recombinant Multiepitopic Rotaviral Vaccine: In Silico Analyses.

    Science.gov (United States)

    Jafarpour, Sima; Ayat, Hoda; Ahadi, Ali Mohammad

    2015-01-01

    Rotavirus is the major etiologic factor of severe diarrheal disease. Natural infection provides protection against subsequent rotavirus infection and diarrhea. This research presents a new vaccine designed based on computational models. In this study, three types of epitopes are considered-linear, conformational, and combinational-in a proposed model protein. Several studies on rotavirus vaccines have shown that VP6 and VP4 proteins are good candidates for vaccine production. In the present study, a fusion protein was designed as a new generation of rotavirus vaccines by bioinformatics analyses. This model-based study using ABCpred, BCPREDS, Bcepred, and Ellipro web servers showed that the peptide presented in this article has the necessary properties to act as a vaccine. Prediction of linear B-cell epitopes of peptides is helpful to investigate whether these peptides are able to activate humoral immunity. PMID:25965449

  12. Full protection in mink against mink enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein

    DEFF Research Database (Denmark)

    Langeveld, J. P.; Kamstrup, Søren; Uttenthal, Åse;

    1995-01-01

    Two recently developed vaccines—one based on synthetic peptide and one based on recombinant capsid protein—fully protected dogs against heavy experimental canine parvovirus (CPV) infection. The high sequence homology (>98%) and antigenic similarity between CPV and mink enteritis virus (MEV), feline...... panleukopenia virus, and raccoon parvovirus, suggest that both vaccines could protect mink, cats and raccoons against these respective host range variants. This was tested in mink and turned out to be the case. The two vaccines were fully protective and as effective as a conventional commercial vaccine based on...

  13. Surface Modification of Liposomal Vaccines by Peptide Conjugation

    Directory of Open Access Journals (Sweden)

    Hazra M2

    2011-01-01

    Full Text Available The aim of the present work was to prepare liposomal vaccine formulation by incorporating naked plasmid DNA that can trigger humoral and cell mediated protective immunity against infection. For these cationic lipids like dimyristoyl phosphatidylcholine (DMPC, dioleyl phosphatidyl ethanolamine (DOPE, [1, 2 – dioleyloxy -3-(trimethyl ammonium propane] (DOTAP, were taken in the ratio of 4:2:1 respectively. The liposomal formulations thus prepared were surface modified by peptide conjugation with the help of EDC and NHS. Physical characterization of liposomal formulationswas done by estimating the average size distribution, which gives an average liposomal size of 53.0nm. Concentration of peptide bound liposomes wasestimated by Lowry method which entails that bound protein concentration was 30.5 µg/ml.

  14. Peptide-based candidate vaccine against respiratory syncytial virus.

    Science.gov (United States)

    Yusibov, Vidadi; Mett, Vadim; Mett, Valentina; Davidson, Carley; Musiychuk, Konstantin; Gilliam, Suzan; Farese, Ann; Macvittie, Thomas; Mann, Dean

    2005-03-18

    We engineered a 21-mer peptide representing amino acids 170-190 of the respiratory syncytial virus (RSV) G protein as a fusion with the Alfalfa mosaic virus (AlMV) coat protein (CP), produced recombinant AlMV particles presenting this peptide (VMR-RSV) on their surfaces and tested the immunogenicity in vitro in human dendritic cells and in vivo in non-human primates. Significant pathogen-specific immune responses were generated in both systems: (i) human dendritic cells armed with VMR-RSV generated vigorous CD4+ and CD8+ T cell responses; (ii) non-human primates that received these particles responded by mounting strong cellular and humoral immune responses. This approach may validate the use of a novel RSV vaccine delivery vehicle in humans. PMID:15755607

  15. A Novel Laser Vaccine Adjuvant Increases the Motility of Antigen Presenting Cells

    OpenAIRE

    Farinelli, Bill; Doukas, Apostolos; Gelfand, Jeffrey Alan; Anderson, Richard Rox; Mei X. Wu; Chen, Xinyuan; Kim, Pilhan; Yun, Seok-Hyun

    2010-01-01

    Background Development of a potent vaccine adjuvant without introduction of any side effects remains an unmet challenge in the field of the vaccine research. Methodology/Principal Findings We found that laser at a specific setting increased the motility of antigen presenting cells (APCs) and immune responses, with few local or systemic side effects. This laser vaccine adjuvant (LVA) effect was induced by brief illumination of a small area of the skin or muscle with a nondestructive...

  16. Limitations of plasmid vaccines to complex viruses: selected myxoma virus antigens as DNA vaccines were not protective.

    Science.gov (United States)

    Adams, Mathew M; van Leeuwen, Barbara H; Kerr, Peter J

    2004-11-25

    Myxoma virus, a poxvirus of the genus Leporipoxvirus, is the causative agent of the disease myxomatosis which is highly lethal in European rabbits (Oryctolagus cuniculus). Current vaccines to protect against myxomatosis are either attenuated live strains of the virus or the antigenically related rabbit fibroma virus. We examined the immune response of outbred domestic rabbits to the individual myxoma virus antigens M055R, M073R, M115L and M121R, delivered as DNA vaccines co-expressing rabbit interleukin-2 or interleukin-4. M115L and M121R were also delivered simultaneously. None of the vaccine constructs were able to protect the rabbits from disease or reduce mortality after challenge with virulent myxoma virus, despite induction of antigen-specific cell-mediated and humoral immune responses. PMID:15531037

  17. Successful adjuvant-free vaccination of BALB/c mice with mutated amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Wahi Monika M

    2008-02-01

    Full Text Available Abstract Background A recent human clinical trial of an Alzheimer's disease (AD vaccine using amyloid beta (Aβ 1–42 plus QS-21 adjuvant produced some positive results, but was halted due to meningoencephalitis in some participants. The development of a vaccine with mutant Aβ peptides that avoids the use of an adjuvant may result in an effective and safer human vaccine. Results All peptides tested showed high antibody responses, were long-lasting, and demonstrated good memory response. Epitope mapping indicated that peptide mutation did not lead to epitope switching. Mutant peptides induced different inflammation responses as evidenced by cytokine profiles. Ig isotyping indicated that adjuvant-free vaccination with peptides drove an adequate Th2 response. All anti-sera from vaccinated mice cross-reacted with human Aβ in APP/PS1 transgenic mouse brain tissue. Conclusion Our study demonstrated that an adjuvant-free vaccine with different Aβ peptides can be an effective and safe vaccination approach against AD. This study represents the first report of adjuvant-free vaccines utilizing Aβ peptides carrying diverse mutations in the T-cell epitope. These largely positive results provide encouragement for the future of the development of human vaccinations for AD.

  18. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    Science.gov (United States)

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. PMID:25102364

  19. Protective efficacy of vaccination with Neospora caninum multiple recombinant antigens against experimental Neospora caninum infection

    OpenAIRE

    Cho, Jung-Hwa; Chung, Woo-Suk; Song, Kyoung-Ju; Na, Byoung-kuk; Kang, Seung-Won; Song, Chul-Yong; Kim, Tong-Soo

    2005-01-01

    Protective efficacy of vaccination with Neospora caninum multiple recombinant antigens against N. caninum infection was evaluated in vitro and in vivo. Two major immunodominant surface antigens (NcSAG1 and NcSRS2) and two dense granule proteins (NcDG1 and NcDG2) of N. caninum tachyzoites were expressed in E. coli, respectively. An in vitro neutralization assay using polyclonal antisera raised against each recombinant antigen showed inhibitory effects on the invasion of N. caninum tachyzoites ...

  20. Experimental Study of Interference Between Pertussis Antigens and Salk Poliomyelitis Vaccine

    Directory of Open Access Journals (Sweden)

    H. Mirehamsy

    1962-01-01

    Full Text Available An interference is observed between whooping-cough antigens and Salk polioc vaccine even if the two components are mixed immediately before use. The phenomenon is more evident when flUlid antigens are injected. Pertussis soluble antigen, which gives a good serological response in rabbits, when used alone or combined with DT, is inactivated in the presence of Salk polio vacc:ne

  1. Investigation of the response to the enterobacterial common antigen after typhoid vaccination

    Directory of Open Access Journals (Sweden)

    Arlete M. Milhomem

    1987-03-01

    Full Text Available Antibodies against the Salmonella typhi enterobacterial common antigen (ECA and the O and H antigens were investigated in sera from healthy male subjects who had been previously vaccinated with the typhoid vaccine. No serological response to ECA was observed. Sera from subjects not previously vaccinated presented titers of ECA hemagglutinins which quantitatively were related to the presence ofH titers, but not to O agglutinins but with no statistical significance. The results are discussed in relation to the possible protective immunological mechanisms in typhoid fever.

  2. Potential of Translationally Controlled Tumor Protein-Derived Protein Transduction Domains as Antigen Carriers for Nasal Vaccine Delivery.

    Science.gov (United States)

    Bae, Hae-Duck; Lee, Joohyun; Jin, Xing-Hai; Lee, Kyunglim

    2016-09-01

    Nasal vaccination offers a promising alternative to intramuscular (i.m.) vaccination because it can induce both mucosal and systemic immunity. However, its major drawback is poor absorption of large antigens in the nasal epithelium. Protein transduction domains (PTDs), also called cell-penetrating peptides, have been proposed as vehicles for nasal delivery of therapeutic peptides and proteins. Here, we evaluated the potential of a mutant PTD derived from translationally controlled tumor protein (designated TCTP-PTD 13) as an antigen carrier for nasal vaccines. We first compared the l- and d-forms of TCTP-PTD 13 isomers (l- or d-TCTP-PTD 13) as antigen carriers. Studies in mice demonstrated that nasally administered mixtures of the model antigen ovalbumin (OVA) and d-TCTP-PTD 13 induced higher plasma IgG titers and secretory IgA levels in nasal washes than nasally administered OVA alone, OVA/l-TCTP-PTD 13, or i.m.-injected OVA. Plasma IgG subclass responses (IgG1 and IgG2a) of mice nasally administered OVA/d-TCTP-PTD 13 showed that the predominant IgG subclass was IgG1, indicating a Th2-biased immune response. We also used synthetic CpG oligonucleotides (CpG) as a Th1 immune response-inducing adjuvant. Nasally administered CpG plus OVA/d-TCTP-PTD 13 was superior in eliciting systemic and mucosal immune responses compared to those induced by nasally administered OVA/d-TCTP-PTD 13. Furthermore, the OVA/CpG/d-TCTP-PTD 13 combination skewed IgG1 and IgG2a profiles of humoral immune responses toward a Th1 profile. These findings suggest that TCTP-derived PTD is a suitable vehicle to efficiently carry antigens and to induce more powerful antigen-specific immune responses and a more balanced Th1/Th2 response when combined with a DNA adjuvant. PMID:27454469

  3. FULL-LENGTH PEPTIDE ASSAY OF ANTIGENIC PROFILE OF ENVELOPE PROTEINS FROM SIBERIAN ISOLATES OF HEPATITIS C VIRUS

    Directory of Open Access Journals (Sweden)

    A. A. Grazhdantseva

    2014-07-01

    Full Text Available Antigenic profiles of envelope glycoproteins of hepatitis C virus presented by three genotypes 1b, 2a/2c and 3a, which are most widespread in the territory of Russia and, in particular, in Novosibirsk, were studied using a panel of overlapping synthetic peptides. It was shown that highly immunogenic peptide epitopes of Е1 and Е2 proteins common for all HCV genotypes, are located in amino acid positions 250-260, 315-325 (Е1 protein, 390-400 (hypervariable region 1, 430-440, and 680-690 (Е2 protein. The greatest inter-genotypic differences were recorded in positions 280-290, 410-430 and 520-540. A novel antigenic determinant was detected in the region of aa 280-290 of the Е1 protein which was typical only for HCV 2a/2c genotype. A broad variation in the boundaries for the most epitopes suggests a high variability of the Е1 and Е2 viral proteins; however, a similar repertoire of antibodies induced by different HCV genotypes indicates to an opportunity of designing a new generation of cross-reactive HCV vaccines based on mapping of the E1 and E2 antigenic regions.

  4. Prime-Boost Vaccination Using Chemokine-Fused gp120 DNA and HIV Envelope Peptides Activates Both Immediate and Long-Term Memory Cellular Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2010-01-01

    Full Text Available HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFγ ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans.

  5. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer

    Directory of Open Access Journals (Sweden)

    Minamida Hidetoshi

    2004-06-01

    Full Text Available Abstract Survivin is a member of the inhibitor of apoptosis protein (IAP family containing a single baculovirus IAP repeat domain. It is expressed during fetal development but becomes undetectable in terminally differentiated normal adult tissues. We previously reported that survivin and its splicing variant survivin-2B was expressed abundantly in various types of tumor tissues as well as tumor cell lines and was suitable as a target antigen for active-specific anti-cancer immunization. Subsequently, we identified an HLA-A24-restricted antigenic peptide, survivin-2B80-88 (AYACNTSTL recognized by CD8+ cytotoxic T lymphocytes (CTLs. We, therefore, started a phase I clinical study assessing the efficacy of survivin-2B peptide vaccination in patients with advanced or recurrent colorectal cancer expressing survivin. Vaccinations with survivin-2B peptide were given subcutaneously six times at 14-day intervals. Of 15 patients who finished receiving the vaccination schedule, three suffered slight toxicities, including anemia (grade 2, general malaise (grade 1, and fever (grade 1. No severe adverse events were observed in any patient. In 6 patients, tumor marker levels (CEA and CA19-9 decreased transiently during the period of vaccination. Slight reduction of the tumor volume was observed in one patient, which was considered a minor responder. No changes were noted in three patients while the remaining eleven patients experienced tumor progression. Analysis of peripheral blood lymphocytes of one patient using HLA-A24/peptide tetramers revealed an increase in peptide-specific CTL frequency from 0.09% to 0.35% of CD8+ T cells after 4 vaccinations. This phase I clinical study indicates that survivin-2B peptide-based vaccination is safe and should be further considered for potential immune and clinical efficacy in HLA-A24-expression patients with colorectal cancer.

  6. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro

    Science.gov (United States)

    Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna

    2013-02-01

    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.

  7. Immunogenicity of Mycobacterium avium subsp. paratuberculosis specific peptides for inclusion in a subunit vaccine against paratuberculosis

    DEFF Research Database (Denmark)

    Mikkelsen, Heidi; Tollefsen, S.; Olsen, I.;

    efficacies. The main problem with available vaccines is their interference with surveillance and diagnosis of bovine tuberculosis and paratuberculosis. Our ultimate aim is to develop a subunit vaccine consisting of selected MAP peptides, which allow differentiation of infected from vaccinated animals. Here...

  8. TH1 and TH2 responses are influenced by HLA antigens in healthy neonates vaccinated with recombinant hepatitis B vaccine.

    Directory of Open Access Journals (Sweden)

    Abdollah Jafarzadeh

    2012-12-01

    Full Text Available The immune response to hepatitis B surface antigen (HBsAg is influenced by several factors, of which HLA antigens and balanced secretion of Th1/Th2 cytokines play important roles. The aim of this study was to evaluate the influence of HLA antigens on cytokine secretion by HBsAg-stimulated peripheral blood mononuclear cells (PBMC from healthy neonates vaccinated with recombinant HBsAg. PBMCs were isolated from 48 Iranian neonates vaccinated with a recombinant HBV vaccine. The cells were stimulated in vitro with rHBsAg and the concentration of IL-4, IL-10, IL-12 and IFN-γ were quantitated in culture supernatant by sandwich ELISA. HLA typing was performed by microlymphocytotoxicity method. Significant diminished secretion of both Th1 (IFN-γ and Th2 (IL-4, IL-10 cytokines was observed in HBsAg-stimulated PBMC from vaccinees expressing the HLA-DR7 compared to DR7 negative vaccinees. Similarly, lower production of these cytokines was also observed in vaccinees with DR7-DR53-DQ2, B7-DR7-DR53-DQ2 and A2-DR7-DR53-DQ2 haplotypes (p<0.05, p <0.005. While HBsAg-stimulated PBMC of DR13+ subjects produced lower levels of Th2-type cytokines (IL-4 and IL-10, those of HLA-B8+ or HLA-A9+ subjects produced higher levels of Th2-type cytokines. Cytokine secretion in response to PHA mitogen was not associated with a given HLA antigen or haplotype and was similarly represented in all groups of subjects irrespective of their HLA complex. These results indicate that HLA antigens may differentially influence cytokine secretion by HBsAg-specific T-cells of healthy neonates vaccinated with recombinant HB vaccine. This phenomenon may have an important implication for control of the immune response to HBsAg vaccine.

  9. Immunogenicity of Mycobacterium tuberculosis Antigens in Mycobacterium bovis BCG-Vaccinated and M. bovis-Infected Cattle

    OpenAIRE

    Mustafa, A. S.; Skeiky, Y A; Al-Attiyah, R.; Alderson, M. R.; Hewinson, R. G.; Vordermeier, H M

    2006-01-01

    The development of novel vaccine strategies supplementing Mycobacterium bovis BCG (BCG) constitutes an urgent research challenge. To identify potential subunit vaccine candidates, we have tested a series of eight recently identified Mycobacterium tuberculosis antigens in M. bovis-infected and BCG-vaccinated cattle. These antigens were characterized on the basis of their ability to induce in vitro gamma interferon responses in infected or BCG-vaccinated calves. We were able to establish a hier...

  10. Real-time PCR analysis of genes encoding tumor antigens in esophageal tumors and a cancer vaccine

    DEFF Research Database (Denmark)

    Weinert, Brian T; Krishnadath, Kausilia K; Milano, Francesca;

    2009-01-01

    Tumor antigens are the primary target of therapeutic cancer vaccines. We set out to define and compare the expression pattern of tumor antigen genes in esophagus carcinoma biopsies and in an allogeneic tumor lysate-based cancer vaccine, MelCancerVac. Cells used for vaccine production were treated...... the production of the vaccine. Quantitative PCR was used to assay 74 tumor antigen genes in patients with squamous cell carcinoma of the esophagus. 81% (13/16) of tumors expressed more than five cancer/testis (CT) antigens. A total of 96 genes were assayed in the tumor cell clone (DDM1.7) used to make...

  11. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines.

    Science.gov (United States)

    Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun

    2016-01-01

    Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. PMID:26624805

  12. CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Alice W Yewdall

    Full Text Available Immunotherapeutic strategies to stimulate anti-tumor immunity are promising approaches for cancer treatment. A major barrier to their success is the immunosuppressive microenvironment of tumors, which inhibits the functions of endogenous dendritic cells (DCs that are necessary for the generation of anti-tumor CD8+ T cells. To overcome this problem, autologous DCs are generated ex vivo, loaded with tumor antigens, and activated in this non-suppressive environment before administration to patients. However, DC-based vaccines rarely induce tumor regression.We examined the fate and function of these DCs following their injection using murine models, in order to better understand their interaction with the host immune system. Contrary to previous assumptions, we show that DC vaccines have an insignificant role in directly priming CD8+ T cells, but instead function primarily as vehicles for transferring antigens to endogenous antigen presenting cells, which are responsible for the subsequent activation of T cells.This reliance on endogenous immune cells may explain the limited success of current DC vaccines to treat cancer and offers new insight into how these therapies can be improved. Future approaches should focus on creating DC vaccines that are more effective at directly priming T cells, or abrogating the tumor induced suppression of endogenous DCs.

  13. Novel selective inhibitors of aminopeptidases that generate antigenic peptides.

    Science.gov (United States)

    Papakyriakou, Athanasios; Zervoudi, Efthalia; Theodorakis, Emmanuel A; Saveanu, Loredana; Stratikos, Efstratios; Vourloumis, Dionisios

    2013-09-01

    Endoplasmic reticulum aminopeptidases, ERAP1 and ERAP2, as well as Insulin regulated aminopeptidase (IRAP) play key roles in antigen processing, and have recently emerged as biologically important targets for manipulation of antigen presentation. Taking advantage of the available structural and substrate-selectivity data for these enzymes, we have rationally designed a new series of inhibitors that display low micromolar activity. The selectivity profile for these three highly homologous aminopeptidases provides a promising avenue for modulating intracellular antigen processing. PMID:23916253

  14. Assessing the relationship between antigenicity and immunogenicity of human rabies vaccines when administered by intradermal route

    Science.gov (United States)

    Bilagumba, Gangaboraiah; Ravish, Haradanahalli Shankarappa; Narayana, Hanumanthappa Ashwath Doddabele

    2010-01-01

    The metadata of 10 published studies and 3 vaccine trial reports comprising of 19 vaccine cohorts from four countries conducted over a period of 23 years (1986–2009) was used for metaanalysis. The vaccines studied were purified chick embryo cell vaccine (Rabipur, India and Germany), purified vero cell rabies vaccine (Verorab, France; Indirab, India) and human diploid cell vaccine (MIRV, France). The potency of these vaccines varied from 0.55 IU to 2.32 IU per intradermal dose of 0.1 ml per site. The vaccines were administered to 1,011 subjects comprising of 19 cohorts and using five different ID regimens. The immunogenicity was measured by assays of rabies virus neutralizing antibody (RVNA) titres using rapid fluorescent focus inhibition test (RFFIT) [15 cohorts] and mouse neutralization test (MNT) [4 cohorts]. The statistical analysis of the data was done by Karl Pearson's correlation coefficient to measure the relationship between antigenicity and immunogenicity. It was revealed that, there was no significant linear relationship between antigenicity and immunogenicity of rabies vaccines when administered by intradermal route (p > 0.230 and p > 0.568). PMID:20523131

  15. Immunization with antigenic peptides complexed with β-glucan induces potent cytotoxic T-lymphocyte activity in combination with CpG-ODNs.

    Science.gov (United States)

    Mochizuki, Shinichi; Morishita, Hiromi; Kobiyama, Kouji; Aoshi, Taiki; Ishii, Ken J; Sakurai, Kazuo

    2015-12-28

    The induction of antigen-specific immune responses requires immunization with not only antigens, but also adjuvants. CpG oligonucleotides (CpG-ODNs) are well-known ligands for Toll-like receptor 9 and a potent adjuvant that induces both Th1-type humoral and cellular immune responses including cytotoxic T-lymphocyte responses. We previously demonstrated that β-glucan schizophyllan (SPG) can form complexes with CpG-ODNs with attached dA40 (CpG-dA/SPG), which can accumulate in macrophages in the draining inguinal lymph nodes and induce strong immune responses by co-administration of antigenic proteins, namely ovalbumin (OVA). Immunization with antigenic peptides, OVA257-264, did not induce these antigen-specific immune responses even in combination with CpG-dA/SPG, indicating that peptides require a carrier to antigen presenting cells. In this study, we prepared conjugates comprising OVA257-264 and dA40, and made complexes with SPG. Immunization with OVA257-264-dA/SPG induced peptide-specific immune responses in combination with CpG-dA regardless of complexation with SPG both in vitro and in vivo. When splenocytes from immunized mice were incubated with E.G7-OVA tumor model cells presenting OVA peptides, the number of cells drastically decreased after 24h. Furthermore, mice pre-immunized with OVA257-264-dA/SPG and CpG-ODNs exhibited a long delay in tumor growth after tumor inoculation. Therefore, these peptide-dA/SPG and CpG-dA/SPG complexes could be used as a potent vaccine for the treatment of cancers and infectious diseases. PMID:26562685

  16. Vaccination of cattle with TickGARD induces cross-reactive antibodies binding to conserved linear peptides of Bm86 homologues in Boophilus decoloratus.

    Science.gov (United States)

    Odongo, David; Kamau, Lucy; Skilton, Robert; Mwaura, Stephen; Nitsch, Cordula; Musoke, Anthony; Taracha, Evans; Daubenberger, Claudia; Bishop, Richard

    2007-01-26

    Vaccines based on recombinant Bm86 gut antigen from Boophilus microplus are a useful component of integrated control strategies against B. microplus infestations of cattle. The capacity of such vaccines to control heterologous infestations by two African tick species was investigated. The mean weight of engorged female ticks and mean egg mass per tick were significantly reduced in B. decoloratus infestations, but there was no effect of the vaccine against adult Rhipicephalus appendiculatus. We cloned, sequenced and expressed two Bm86 homologues (Bd86) from B. decoloratus. Amino acid sequence identity between Bd86 homologues (Bd86-1 and Bd86-2) and Bm86 was 86% and 85%, respectively, compared to 93% identity between the variants. Native Bd86 protein in B. decoloratus tick mid-gut sections and recombinant Bd86-1 reacted strongly with sera from TickGARD vaccinated cattle. TickGARD can therefore protect against a heterologous tick species with multiple antigen sequences. Epitope mapping using sera from TickGARD-vaccinated cattle identified two linear peptides conserved between the Bd86 homologues and Bm86. These epitopes represent candidate synthetic peptide vaccines for control of Boophilus spp. and the pathogens transmitted by these tick vectors. PMID:17070625

  17. Comparative vaccination of cattle against Boophilus microplus with recombinant antigen Bm86 alone or in combination with recombinant Bm91.

    Science.gov (United States)

    Willadsen, P; Smith, D; Cobon, G; McKenna, R V

    1996-05-01

    Cattle were vaccinated either with a single recombinant tick antigen, Bm86 or with a combination of two recombinant antigens, Bm86 and Bm91 from the tick Boophilus microplus. In three experiments, the responses of cattle to subsequent challenge with the tick were assessed. The addition of the Bm91 antigen enhanced the efficacy of the vaccination over that with Bm86 alone to a statistically significant degree. Moreover, co-vaccination with two antigens did not impair the response of cattle to the Bm86 antigen. Finally, responses of individual cattle to the two antigens were independent. All of these results may be relevant to the increase in efficacy expected from a dual antigen vaccine. PMID:9229376

  18. CD4+ T-cell lines used to evaluate a Mycobacterium avium subsp. paratuberculosis (MAP) peptide vaccine

    DEFF Research Database (Denmark)

    Lybeck, Kari; Sjurseth, Siri K.; Al-Touama, Zainab;

    The aim of the study was to establish a protocol for generation of MAP-specific T-cell lines and to use these lines for evaluation of a peptide vaccine. A protocol for culturing T-cell lines from peripheral blood of goats naturally infected with MAP was established. CD4+ T cells were positively...... selected using an anti CD4 mAb and Dynabeads. Sorted CD4+ cells were cultivated with purified protein derivative from MAP (PPDj) or E. coli sonicate, IL-2, and IL-15. After two cultivation cycles, T cells were tested for recall responses in a proliferative T-cell assay. T-cell line responses were in...... antigens. T-cell lines were now generated by cultivating CD4+ cells with peptides instead of PPDj. Initially, both healthy and MAP-infected goats were vaccinated with 119 peptides defined by in silico analysis. Cellular responses to the peptides were not detected using standard IFN- γ plasma ELISA. However...

  19. Expression and Immunogenicity of the Mycobacterial Ag85B/ESAT-6 Antigens Produced in Transgenic Plants by Elastin-Like Peptide Fusion Strategy

    Directory of Open Access Journals (Sweden)

    Doreen Manuela Floss

    2010-01-01

    Full Text Available This study explored a novel system combining plant-based production and the elastin-like peptide (ELP fusion strategy to produce vaccinal antigens against tuberculosis. Transgenic tobacco plants expressing the mycobacterial antigens Ag85B and ESAT-6 fused to ELP (TBAg-ELP were generated. Purified TBAg-ELP was obtained by the highly efficient, cost-effective, inverse transition cycling (ICT method and tested in mice. Furthermore, safety and immunogenicity of the crude tobacco leaf extracts were assessed in piglets. Antibodies recognizing mycobacterial antigens were produced in mice and piglets. A T-cell immune response able to recognize the native mycobacterial antigens was detected in mice. These findings showed that the native Ag85B and ESAT-6 mycobacterial B- and T-cell epitopes were conserved in the plant-expressed TBAg-ELP. This study presents the first results of an efficient plant-expression system, relying on the elastin-like peptide fusion strategy, to produce a safe and immunogenic mycobacterial Ag85B-ESAT-6 fusion protein as a potential vaccine candidate against tuberculosis.

  20. Bacterial Antigen Expression Is an Important Component in Inducing an Immune Response to Orally Administered Salmonella-Delivered DNA Vaccines

    OpenAIRE

    Gahan, Michelle E.; Webster, Diane E.; Wesselingh, Steven L.; Richard A. Strugnell; Yang, Ji

    2009-01-01

    Background The use of Salmonella to deliver heterologous antigens from DNA vaccines is a well-accepted extension of the success of oral Salmonella vaccines in animal models. Attenuated S. typhimurium and S. typhi strains are safe and efficacious, and their use to deliver DNA vaccines combines the advantages of both vaccine approaches, while complementing the limitations of each technology. An important aspect of the basic biology of the Salmonella/DNA vaccine platform is the relative contribu...

  1. Vaccination of Rhesus Macaques with the Anthrax Vaccine Adsorbed Vaccine Produces a Serum Antibody Response That Effectively Neutralizes Receptor-Bound Protective Antigen In Vitro ▿

    OpenAIRE

    Clement, Kristin H.; Rudge, Thomas L.; Mayfield, Heather J.; Carlton, Lena A.; Hester, Arelis; Niemuth, Nancy A.; Sabourin, Carol L.; Brys, April M.; Quinn, Conrad P.

    2010-01-01

    Anthrax toxin (ATx) is composed of the binary exotoxins lethal toxin (LTx) and edema toxin (ETx). They have separate effector proteins (edema factor and lethal factor) but have the same binding protein, protective antigen (PA). PA is the primary immunogen in the current licensed vaccine anthrax vaccine adsorbed (AVA [BioThrax]). AVA confers protective immunity by stimulating production of ATx-neutralizing antibodies, which could block the intoxication process at several steps (binding of PA t...

  2. INDUCEMENT OF ANTITUMOR-IMMUNITY BY DC ACTIVATED BY HSP70-H22 TUMOR ANTIGEN PEPTIDE

    Institute of Scientific and Technical Information of China (English)

    冯作化; 黄波; 张桂梅; 李东; 王洪涛

    2003-01-01

    Objective: To investigate the feasibility of decreasing the dosage of tumor antigen peptides by dendritic cell (DC)-presenting and the characteristics of modification of DC by heat shock protein (Hsp70) and antigen peptides. Methods: Peptides were bound to Hsp70 and used to modify DC in vitro. The metabolism of the modified DC and the cytokines secreted by the modified DC were determined. The activation of lymphocytes by the modified DC and Hsp70-H22 peptides was tested. The cytotoxicity of the activated lymphocytes to H22 tumor cells was analyzed. The inhibitory effect of tumor in mice by the injection of DC and Hsp70-H22 peptides was tested. Results: 0.15μg of H22 peptides bound with Hsp70 could make 2×105 DC mature. 4×103 matured DC could activate 2×106 lymphocytes. The same amount of lymphocytes could be activated to produce similar cytotoxicity to tumor cells by either DC modified by 0.003μg of peptides bound with Hsp70 or by direct stimulation with 0.15μg of peptides bound with Hsp70. The dosage of peptides could be reduced by about 50 folds if the modified DC was used for injection instead of Hsp70-peptides. Peptides from normal hepatocytes, bound with Hsp70, could not make DC mature, nor activate lymphocytes through DC. Conclusion: The dosage of Hsp70-H22 peptides can be reduced significantly by DC-presenting to activate lymphocytes. Peptides from normal cells could not activate lymphocytes by either Hsp70-presenting or DC-presenting and they have little chance to induce autoimmunity.

  3. Human Leukocyte Antigens Influence the Antibody Response to Hepatitis B Vaccine

    OpenAIRE

    Abdollah Jafarzadeh; Masoome Bagheri-Jamebozorgi; Maryam Nemati; Forough Golsaz-Shirazi; Fazel Shokri

    2015-01-01

    Hepatitis B virus (HBV) infection and its sequelae such as cirrhosis and hepatocellular carcinoma has remained a serious public health problem throughout the world. The WHO strategy for effective control of HBV infection and its complications is mass vaccination of neonates and children within the framework of Expanded Programme on Immunization (EPI). Vaccination with hepatitis B surface antigen (HBsAg) induces protective antibody response (anti-HBs ≥ 10 IU/L) in 90-99% of vaccinees.The lack ...

  4. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines

    Directory of Open Access Journals (Sweden)

    Cleo Goyvaerts

    2015-01-01

    Full Text Available In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  5. Sulfate-binding protein, CysP, is a candidate vaccine antigen of Moraxella catarrhalis.

    Science.gov (United States)

    Murphy, Timothy F; Kirkham, Charmaine; Johnson, Antoinette; Brauer, Aimee L; Koszelak-Rosenblum, Mary; Malkowski, Michael G

    2016-07-19

    Moraxella catarrhalis causes otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease (COPD). A vaccine to prevent M. catarrhalis infections would have an enormous impact globally in preventing morbidity caused by M. catarrhalis in these populations. Using a genome mining approach we have identified a sulfate binding protein, CysP, of an ATP binding cassette (ABC) transporter system as a novel candidate vaccine antigen. CysP expresses epitopes on the bacterial surface and is highly conserved among strains. Immunization with CysP induces potentially protective immune responses in a murine pulmonary clearance model. In view of these features that indicate CysP is a promising vaccine antigen, we conducted further studies to elucidate its function. These studies demonstrated that CysP binds sulfate and thiosulfate ions, plays a nutritional role for the organism and functions in intracellular survival of M. catarrhalis in human respiratory epithelial cells. The observations that CysP has features of a vaccine antigen and also plays an important role in growth and survival of the organism indicate that CysP is an excellent candidate vaccine antigen to prevent M. catarrhalis otitis media and infections in adults with COPD. PMID:27265455

  6. Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis.

    Science.gov (United States)

    Duthie, Malcolm S; Favila, Michelle; Hofmeyer, Kimberley A; Tutterrow, Yeung L; Reed, Steven J; Laurance, John D; Picone, Alessandro; Guderian, Jeffrey; Bailor, H Remy; Vallur, Aarthy C; Liang, Hong; Mohamath, Raodoh; Vergara, Julie; Howard, Randall F; Coler, Rhea N; Reed, Steven G

    2016-05-27

    Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli -expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs. PMID:27142329

  7. Immunological control of ticks through vaccination with Boophilus microplus gut antigens.

    Science.gov (United States)

    De La Fuente, J; Rodríguez, M; García-García, J C

    2000-01-01

    The control of tick infestations and the transmission of tick-borne diseases remain a challenge for the scientific community. Traditional control methods have been only partially successful. Recently, vaccination with recombinant Boophilus microplus gut antigens has been shown to control tick infestations. Our Bm86-containing vaccine formulation (Gavac) has been effective for the control of artificial infestations of B. annulatus, B. decoloratus, and chemically sensitive and resistant B. microplus strains from Australia, Africa, America, and Iran. Preliminary results with Hyalomma spp. and Rhipicephalus spp. suggest partial cross protection. In field trials, vaccination with Gavac controlled B. microplus and B. annulatus infestations and reduced the transmission of babesiosis, resulting in important savings for the cattle industry. Different degrees of susceptibility to the vaccination with Bm86 and sequence variations in the Bm86 locus have been reported. The Bm95 antigen was isolated from the Argentinean Bm86-resistant B. microplus strain A. A Bm95-based vaccine was used to protect cattle against tick infestations under production conditions with similar results to that obtained with Gavac. The Bm95 antigen from strain A was able to protect against infestations with Bm86-sensitive and Bm86-resistant tick strains, thus suggesting that Bm95 could be a more universal antigen in protecting cattle against infestations by B. microplus strains from different geographical areas. These results clearly demonstrate the advantage and possibilities for the immunological control of ticks. PMID:11193686

  8. Successful vaccination with a polyvalent live vector despite existing immunity to an expressed antigen.

    Science.gov (United States)

    Flexner, C; Murphy, B R; Rooney, J F; Wohlenberg, C; Yuferov, V; Notkins, A L; Moss, B

    1988-09-15

    A global vaccination strategy must take into account production and delivery costs as well as efficacy and safety. A heat-stable, polyvalent vaccine that requires only one inoculation and induces a high level of humoral and cellular immunity against several diseases is therefore desirable. A new approach is to use live microorganisms such as mycobacteria, enteric bacteria, adenoviruses, herpesviruses and poxviruses as vaccine vectors. A potential limitation of live polyvalent vaccines, however, is existing immunity within the target population not only to the vector, but to any of the expressed antigens. This could restrict replication of the vector, curtail expression of antigens, and reduce the total immune response to the vaccine. Recently acquired immunity to vaccinia virus can severely limit the efficacy of a live recombinant vaccinia-based vaccine, so a strategy involving closely spaced inoculations with the same vector expressing different antigens may present difficulties. We have constructed a recombinant vaccinia virus that expresses surface proteins from two diverse pathogens, influenza A virus haemagglutinin and herpes simplex virus type 1 (HSV-1) glycoprotein D. Mice that had recently recovered from infection with either HSV-1 or influenza A virus could still be effectively immunized with the double recombinant. PMID:2842693

  9. 6-(4-Amino-2-butyl-imidazoquinolyl)-norleucine: Toll-like receptor 7 and 8 agonist amino acid for self-adjuvanting peptide vaccine.

    Science.gov (United States)

    Fujita, Yoshio; Hirai, Kazuyuki; Nishida, Keigo; Taguchi, Hiroaki

    2016-05-01

    Generally, small peptides by themselves are weak to induce antibody responses. Toll-like receptor (TLR) ligands are attractive candidates of vaccine adjuvants to improve their antigenicity. The covalent conjugation of TLR ligands with antigens to produce self-adjuvanting peptide vaccine is a promising approach. Based on the structure of TLR7/8 ligands, a series of synthetic amino acids 6-imidazoquinolyl-norleucines were synthesized, wherein an imidazoquinoline structure as the TLR7/8 agonistic pharmacophores was constructed on the ε-NH2 group of Lys. Of them, 6-(4-amino-2-butyl-imidazoquinolyl)-norleucine showed the most potent TLR7 and TLR8 agonistic activities with EC50 values of 8.55 and 106 μM, respectively. Subsequently, mice were immunized with the influenza A virus M2e antigen mixed with or covalently conjugated to the TLR7/8 agonist amino acid, which led to induction of M2e specific antibody productions in the absence of other adjuvant. We successfully developed a novel efficient tool for self-adjuvanting peptide vaccines targeting TLR7/8. PMID:26874701

  10. Selective induction of cell-mediated immunity and protection of rhesus macaques from chronic SHIVKU2 infection by prophylactic vaccination with a conserved HIV-1 envelope peptide-cocktail

    International Nuclear Information System (INIS)

    Infection of Indian-origin rhesus macaques by the simian human immunodeficiency virus (SHIV) is considered to be a suitable preclinical model for directly testing efficacy of vaccine candidates based on the HIV-1 envelope. We used this model for prophylactic vaccination with a peptide-cocktail comprised of highly conserved HIV-1 envelope sequences immunogenic/antigenic in macaques and humans. Separate groups of macaques were immunized with the peptide-cocktail by intravenous and subcutaneous routes using autologous dendritic cells (DC) and Freund's adjuvant, respectively. The vaccine elicited antigen specific IFN-γ-producing cells and T-cell proliferation, but not HIV-neutralizing antibodies. The vaccinated animals also exhibited efficient cross-clade cytolytic activity against target cells expressing envelope proteins corresponding to HIV-1 strains representative of multiple clades that increased after intravenous challenge with pathogenic SHIVKU2. Virus-neutralizing antibodies were either undetectable or present only transiently at low levels in the control as well as vaccinated monkeys after infection. Significant control of plasma viremia leading to undetectable levels was achieved in majority of vaccinated monkeys compared to mock-vaccinated controls. Monkeys vaccinated with the peptide-cocktail using autologous DC, compared to Freund's adjuvant, and the mock-vaccinated animals, showed significantly higher IFN-γ production, higher levels of vaccine-specific IFN-γ producing CD4+ cells and significant control of plasma viremia. These results support DC-based vaccine delivery and the utility of the conserved HIV-1 envelope peptide-cocktail, capable of priming strong cell-mediated immunity, for potential inclusion in HIV vaccination strategies

  11. Turnover of Ia-peptide complexes is facilitated in viable antigen-presenting cells: biosynthetic turnover of Ia vs. peptide exchange.

    OpenAIRE

    Harding, C V; Roof, R W; Unanue, E R

    1989-01-01

    Macrophages and B cells process antigens to produce antigenic peptides that associate with class II major histocompatibility complex molecules (e.g., Ia molecules); these Ia-peptide complexes are recognized by CD4+ T lymphocytes. Processing of the antigen hen egg white lysozyme was inhibited by cycloheximide in peritoneal exudate cells (PECs, largely macrophages), but not in TA3 B-lymphoma cells. The uptake and metabolism of hen egg white lysozyme was largely intact in cycloheximide-treated P...

  12. Antigenic peptide trimming by ER aminopeptidases – insights from structural studies

    OpenAIRE

    Stratikos, Efstratios; Stern, Lawrence J.

    2013-01-01

    Generation and destruction of antigenic peptides by ER resident aminopeptidases ERAP1 and ERAP2 have been shown in the last few years to be important for the correct functioning and regulation of the adaptive immune response. These two highly homologous aminopeptidases appear to have evolved complex mechanisms well suited for their biological role in antigen presentation. Furthermore, polymorphic variability in these enzymes appears to affect their function and predispose individuals to disea...

  13. Evasion of peptide, but not lipid antigen presentation, through pathogen-induced dendritic cell maturation

    OpenAIRE

    Hava, David L.; van der Wel, Nicole ,; Cohen, Nadia; Dascher, Christopher C.; Houben, Diane; León, Luis; Agarwal, Sandeep; Sugita, Masahiko; van Zon, Maaike; Kent, Sally C.; Shams, Homayoun; Peters, Peter J.; Brenner, Michael B.

    2008-01-01

    Dendritic cells (DC) present lipid and peptide antigens to T cells on CD1 and MHC Class II (MHCII), respectively. The relative contribution of these systems during the initiation of adaptive immunity after microbial infection is not characterized. MHCII molecules normally acquire antigen and rapidly traffic from phagolysosomes to the plasma membrane as part of DC maturation, whereas CD1 molecules instead continually recycle between these sites before, during, and after DC maturation. We find ...

  14. Potential Target Antigens for a Universal Vaccine in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Renee Vermeij

    2010-01-01

    Full Text Available The prognosis of epithelial ovarian cancer (EOC, the primary cause of death from gynaecological malignancies, has only modestly improved over the last decades. Immunotherapeutic treatment using a cocktail of antigens has been proposed as a “universal” vaccine strategy. We determined the expression of tumor antigens in the context of MHC class I expression in 270 primary tumor samples using tissue microarray. Expression of tumor antigens p53, SP17, survivin, WT1, and NY-ESO-1 was observed in 120 (48.0%, 173 (68.9%, 208 (90.0%, 129 (56.3%, and 27 (11.0% of 270 tumor specimens, respectively. In 93.2% of EOC, at least one of the investigated tumor antigens was (overexpressed. Expression of MHC class I was observed in 78.1% of EOC. In 3 out 4 primary tumors, (overexpression of a tumor antigen combined with MHC class I was observed. These results indicate that a multiepitope vaccine, comprising these antigens, could serve as a universal therapeutic vaccine for the vast majority of ovarian cancer patients.

  15. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy.

    Directory of Open Access Journals (Sweden)

    Deanna M Schmitt

    Full Text Available Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS, does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.

  16. Epitope-based recombinant diagnostic antigen to distinguish natural infection from vaccination with hepatitis A virus vaccines.

    Science.gov (United States)

    Su, Qiudong; Guo, Minzhuo; Jia, Zhiyuan; Qiu, Feng; Lu, Xuexin; Gao, Yan; Meng, Qingling; Tian, Ruiguang; Bi, Shengli; Yi, Yao

    2016-07-01

    Hepatitis A virus (HAV) infection can stimulate the production of antibodies to structural and non-structural proteins of the virus. However, vaccination with an inactivated or attenuated HAV vaccine produces antibodies mainly against structural proteins, whereas no or very limited antibodies are produced against the non-structural proteins. Current diagnostic assays to determine exposure to HAV, such as the Abbott HAV AB test, detect antibodies only to the structural proteins and so are not able to distinguish a natural infection from vaccination with an inactivated or attenuated virus. Here, we constructed a recombinant tandem multi-epitope diagnostic antigen (designated 'H1') based on the immune-dominant epitopes of the non-structural proteins of HAV to distinguish the two situations. H1 protein expressed in Escherichia coli and purified by affinity and anion exchange chromatography was applied in a double-antigen sandwich ELISA for the detection of anti-non-structural HAV proteins, which was confirmed to distinguish a natural infection from vaccination with an inactivated or attenuated HAV vaccine. PMID:26994964

  17. Structural Basis For Antigenic Peptide Precursor Processing by the Endoplasmic Reticulum Aminopeptidase ERAP1

    OpenAIRE

    Nguyen, Tina T.; Chang, Shih-Chung; Evnouchidou, Irini; Ian A York; Zikos, Christos; Rock, Kenneth L.; Goldberg, Alfred L.; Stratikos, Efstratios; Stern, Lawrence J.

    2011-01-01

    ERAP1 trims antigen precursors to fit into MHC class I proteins. To perform this function, ERAP1 has unique substrate preferences, trimming long peptides while sparing shorter ones. To identify the structural basis for ERAP1's unusual properties, we determined the X-ray crystal structure of human ERAP1 bound to bestatin. The structure reveals an open conformation with a large interior compartment. An extended groove originating from the enzyme's catalytic center can accommodate long peptides ...

  18. Conformation and dynamics of the hinge peptide: a potential carrier for antigenic sequences

    Czech Academy of Sciences Publication Activity Database

    Maloň, Petr; Urbanová, M.; Buděšínský, Miloš; Gut, Vladimír; Hlaváček, Jan; Niederhafner, Petr; Dlouhá, Helena; Palivec, L.; Jankovská, Vendula; Wünsch, E.

    Geneva : Kenes International, 2005 - (Flegl, M.; Fridkin, M.; Gilon, C.; Slaninová, J.), s. 1039-1040 ISBN 965-90833-0-0. [Peptides 2004. International and European Peptide Symposium /3./ /29./. Praha (CZ), 05.09.2004-10.09.2004] R&D Projects: GA ČR(CZ) GA203/02/0328 Institutional research plan: CEZ:AV0Z40500505 Keywords : conformation * dynamics * antigenic sequences * VCD Subject RIV: CE - Biochemistry

  19. Antigenic glycans in parasitic infections: implications for vaccines and diagnostics.

    Science.gov (United States)

    Nyame, A Kwame; Kawar, Ziad S; Cummings, Richard D

    2004-06-15

    Infections by parasitic protozoans and helminths are a major world-wide health concern, but no vaccines exist to the major human parasitic diseases, such as malaria, African trypanosomiasis, amebiasis, leishmaniasis, schistosomiasis, and lymphatic filariasis. Recent studies on a number of parasites indicate that immune responses to parasites in infected animals and humans are directed to glycan determinants within cell surface and secreted glycoconjugates and that glycoconjugates are important in host-parasite interactions. Because of the tremendous success achieved recently in generating carbohydrate-protein conjugate vaccines toward microbial infections, such as Haemophilus influenzae type b, there is renewed interest in defining parasite-derived glycans in the prospect of developing conjugate vaccines and new diagnostics for parasitic infections. Parasite-derived glycans are compelling vaccine targets because they have structural features that distinguish them from mammalian glycans. There have been exciting new developments in techniques for glycan analysis and the methods for synthesizing oligosaccharides by chemical or combined chemo-enzymatic approaches that now make it feasible to generate parasite glycans to test as vaccine candidates. Here, we highlight recent progress made in elucidating the immunogenicity of glycans from some of the major human and animal parasites, the potential for developing conjugate vaccines for parasitic infections, and the possible utilization of these novel glycans in diagnostics. PMID:15158669

  20. mTOR inhibition improves antitumor effects of vaccination with antigen-encoding RNA.

    Science.gov (United States)

    Diken, Mustafa; Kreiter, Sebastian; Vascotto, Fulvia; Selmi, Abderraouf; Attig, Sebastian; Diekmann, Jan; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2013-12-01

    Vaccination with in vitro transcribed RNA encoding tumor antigens is an emerging approach in cancer immunotherapy. Attempting to further improve RNA vaccine efficacy, we have explored combining RNA with immunomodulators such as rapamycin. Rapamycin, the inhibitor of mTOR, was used originally for immunosuppression. Recent reports in mouse systems, however, suggest that mTOR inhibition may enhance the formation and differentiation of the memory CD8(+) T-cell pool. Because memory T-cell formation is critical to the outcome of vaccination approaches, we studied the impact of rapamycin on the in vivo primed RNA vaccine-induced immune response using the chicken ovalbumin-expressing B16 melanoma model in C57BL/6 mice. Our data show that treatment with rapamycin at the effector-to-memory transition phase skews the vaccine-induced immune response toward the formation of a quantitatively and qualitatively superior memory pool and results in a better recall response. Tumor-infiltrating immune cells from these mice display a favorable ratio of effector versus suppressor cell populations. Survival of mice treated with the combined regimen of RNA vaccination with rapamycin is significantly longer (91.5 days) than that in the control groups receiving only one of these compounds (32 and 46 days, respectively). Our findings indicate that rapamycin enhances therapeutic efficacy of antigen-specific CD8(+) T cells induced by RNA vaccination, and we propose further clinical exploration of rapamycin as a component of immunotherapeutic regimens. PMID:24778131

  1. Transcription factor Fos-related antigen 1 is an effective target for a breast cancer vaccine

    Science.gov (United States)

    Luo, Yunping; Zhou, He; Mizutani, Masato; Mizutani, Noriko; Reisfeld, Ralph A.; Xiang, Rong

    2003-07-01

    Protection against breast cancer was achieved with a DNA vaccine against murine transcription factor Fos-related antigen 1, which is overexpressed in aggressively proliferating D2F2 murine breast carcinoma. Growth of primary s.c. tumor and dissemination of pulmonary metastases was markedly suppressed by this oral DNA vaccine, carried by attenuated Salmonella typhimurium, encoding murine Fos-related antigen 1, fused with mutant polyubiquitin, and cotransformed with secretory murine IL-18. The life span of 60% of vaccinated mice was tripled in the absence of detectable tumor growth after lethal tumor cell challenge. Immunological mechanisms involved activation of T, natural killer, and dendritic cells, as indicated by up-regulation of their activation markers and costimulatory molecules. Markedly increased specific target cell lysis was mediated by both MHC class I-restricted CD8+ T cells and natural killer cells isolated from splenocytes of vaccinated mice, including a significant release of proinflammatory cytokines IFN- and IL-2. Importantly, fluorescence analysis of fibroblast growth factor 2 and tumor cell-induced vessel growth in Matrigel plugs demonstrated marked suppression of angiogenesis only in vaccinated animals. Taken together, this multifunctional DNA vaccine proved effective in protecting against growth and metastases of breast cancer by combining the action of immune effector cells with suppression of tumor angiogenesis. vaccine | tumor | metastases | antiangiogenesis

  2. Combined Reduced-Antigen Content Tetanus, Diphtheria, and Acellular Pertussis (Tdap) Vaccine-Related Erythema Nodosum: Case Report and Review of Vaccine-Associated Erythema Nodosum

    OpenAIRE

    Cohen, Philip R.

    2013-01-01

    Background Vaccination programs reduce the morbidity and mortality of diphtheria, pertussis, and tetanus. Erythema nodosum is a reactive erythema that can be associated with infections, drugs, and many conditions. The new onset of erythema nodosum after receiving vaccination is uncommon. Purpose Combined reduced-antigen content tetanus, diphtheria, and acellular pertussis (Tdap) vaccine-associated erythema nodosum is described and the reports of vaccine-related erythema nodosum are summarized...

  3. Combination of Two Candidate Subunit Vaccine Antigens Elicits Protective Immunity to Ricin and Anthrax Toxin in Mice

    OpenAIRE

    David J Vance; Rong, Yinghui; Brey, Robert N.; Mantis, Nicholas J.

    2014-01-01

    In an effort to develop combination vaccines for biodefense, we evaluated a ricin subunit antigen, RiVax, given in conjunction with an anthrax protective antigen, DNI. The combination led to high endpoint titer antibody response, neutralizing antibodies, and protective immunity against ricin and anthrax lethal toxin. This is a natural combination vaccine, since both antigens are recombinant subunit proteins that would be given to the same target population.

  4. Combination of two candidate subunit vaccine antigens elicits protective immunity to ricin and anthrax toxin in mice.

    Science.gov (United States)

    Vance, David J; Rong, Yinghui; Brey, Robert N; Mantis, Nicholas J

    2015-01-01

    In an effort to develop combination vaccines for biodefense, we evaluated a ricin subunit antigen, RiVax, given in conjunction with an anthrax protective antigen, DNI. The combination led to high endpoint titer antibody response, neutralizing antibodies, and protective immunity against ricin and anthrax lethal toxin. This is a natural combination vaccine, since both antigens are recombinant subunit proteins that would be given to the same target population. PMID:25475957

  5. HA03 as an Iranian Candidate Concealed Antigen for Vaccination against Hyalomma anatolicum anatolicum: Comparative Structural and In silico Studies

    OpenAIRE

    Mohammadi, A.; Aghaiypour, K; Keywanfar, H.; Paykari, H.,; Tajbakhsh, H.; Jalali, A.H.,; Safavieh, S.; Foroghi, A.

    2013-01-01

    In the last decades researchers had focused on developing a vaccine against tick based on protective antigen. Recombinant vaccines based on concealed antigen from Boophilus microplus have been developed in Australia and Cuba by the name of TICKGARD and GAVAC (De La Fuente and Kocan, 2006). Further studies on this antigen have shown some extent of protection against other species (De Vos et al., 2001). In Iran most important species is Hyalomma anatolicum and limited information about its cont...

  6. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Akira Yano

    2015-01-01

    Full Text Available The reduction of brain amyloid beta (Aβ peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer’s disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ40, and Aβ42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  7. Immunogenicity in mice and rabbits of DNA vaccines expressing woodchuck hepatitis virus antigens.

    Science.gov (United States)

    Luxembourg, Alain; Hannaman, Drew; Wills, Ken; Bernard, Robert; Tennant, Bud C; Menne, Stephan; Cote, Paul J

    2008-07-29

    The licensed vaccine against hepatitis B virus (HBV) is an effective means to prevent infection, but is not an effective therapeutic strategy to treat established chronic infections when used alone. In an animal model of chronic HBV infection (the woodchuck experimentally infected with woodchuck hepatitis virus (WHV)), the combination of conventional vaccine and potent antiviral drugs has shown promise as a potential therapeutic intervention. This approach might be improved further through the application of newer vaccine technologies. In the present study, we evaluated electroporation (EP)-based intramuscular (i.m.) delivery of a codon-optimized DNA vaccine for the WHV surface antigen (WHsAg) in mice and rabbits. In mice, this immunization procedure compared favorably to vaccination by i.m. injection of the DNA vaccine or i.m. administration of a recombinant WHsAg-alum vaccine, exhibiting characteristics expected to be beneficial for a therapeutic vaccine strategy. These included dose efficiency, consistency, vigorous induction of antibody responses to WHsAg, as well as a Th1 bias. Following scale-up to rabbits, a species that approximates the size of the woodchuck, the EP dosing regimen was markedly more effective than conventional i.m. injection of the DNA vaccine. Taken together, these results provide the foundation for studies of EP-based DNA immunization in the woodchuck in order to further assess its potential as an immunotherapeutic approach for treatment of chronic HBV infection in humans. PMID:18556096

  8. A chemically synthesized peptide which elicits humoral and cellular immune responses to mycobacterial antigens.

    OpenAIRE

    Minden, P; Houghten, R A; Spear, J R; Shinnick, T M

    1986-01-01

    Monoclonal antibodies directed to Mycobacterium bovis BCG (BCG) and to M. tuberculosis H37Rv (H37Rv) were used in conjunction with affinity chromatography to prepare a mycobacterial component which was designated BCG-a. A synthetic peptide antigen was prepared based on the amino acid sequence of BCG-a and was designated BCG-a-P. Significant immunological similarities were found between BCG-a-P and antigens in extracts of BCG and H37Rv but not between BCG-a-P and antigens of nontuberculous myc...

  9. Identification of a Novel P190-Derived Breakpoint Peptide Suitable for Peptide Vaccine Therapeutic Approach in Ph+ Acute Lymphoblastic Leukemia Patients

    Directory of Open Access Journals (Sweden)

    Micaela Ippoliti

    2012-01-01

    Full Text Available Ph+ acute lymphoblastic leukemia (Ph+ ALL is a high-risk acute leukemia with poor prognosis, in which the specific t(9;22(q34;q11 translocation results in a chimeric bcr-abl (e1a2 breakpoint and in a 190 KD protein (p190 with constitutive tyrosine kinase activity. The advent of first- and second-generation tyrosine kinase inhibitors (TKIs improved the short-term outcome of Ph+ ALL patients not eligible for allo-SCT; yet disease recurrence is almost inevitable. Peptides derived from p190-breakpoint area are leukemia-specific antigens that may mediate an antitumor response toward p190+ leukemia cells. We identified one peptide named p190-13 able to induce in vitro peptide-specific CD4+ T cell proliferation in Ph+ ALL patients in complete remission during TKIs. Thus this peptide appears a good candidate for developing an immune target vaccine strategy possibly synergizing with TKIs for remission maintenance.

  10. Recombinant peptide replicates immunogenicity of synthetic linear peptide chimera for use as pre-erythrocytic stage malaria vaccine

    OpenAIRE

    Silva-Flannery, Luciana M.; Cabrera-Mora, Monica; Jiang, Jianlin; Moreno, Alberto

    2008-01-01

    Synthetic linear peptide chimeras (LPCscys+) show promise as delivery platforms for malaria subunit vaccines. Maximal immune response to LPCscys+ in rodent malaria models depends upon formation of cross-linkages to generate homopolymers, presenting challenges for vaccine production. To replicate the immunogenicity of LPCscys+ using a recombinant approach, we designed a recombinant LPC (rLPC) based on Plasmodium yoelii circumsporozoite protein-specific sequences of 208 amino acids consisting o...

  11. Impaired Antigen-Specific Immune Response to Vaccines in Children with Antibody Production Defects.

    Science.gov (United States)

    Szczawinska-Poplonyk, Aleksandra; Breborowicz, Anna; Samara, Husam; Ossowska, Lidia; Dworacki, Grzegorz

    2015-08-01

    The impaired synthesis of antigen-specific antibodies, which is indispensable for an adaptive immune response to infections, is a fundamental pathomechanism that leads to clinical manifestations in children with antibody production defects. The aim of this study was to evaluate the synthesis of antigen-specific antibodies following immunization in relation to peripheral blood B cell subsets in young children with hypogammaglobulinemia. Twenty-two children, aged from 8 to 61 months, with a deficiency in one or more major immunoglobulin classes participated in the study. Postvaccination antibodies against tetanus and diphtheria toxoids, the surface antigen of the hepatitis B virus, and the capsular Haemophilus influenzae type b polysaccharide antigen were assessed along with an immunophenotypic evaluation of peripheral blood B lymph cell maturation. A deficiency of antibodies against the tetanus toxoid was assessed in 73% of cases and that against the diphtheria toxoid was assessed in 68% of cases, whereas a deficiency of antibodies against the surface antigen of the hepatitis B virus was revealed in 59% of the children included in the study. A defective response to immunization with a conjugate vaccine with the Haemophilus influenzae type b polysaccharide antigen was demonstrated in 55% of hypogammaglobulinemic patients. Increased proportions of transitional B lymph cells and an accumulation of plasmablasts accompanied antibody deficiencies. The defective response to vaccine protein and polysaccharide antigens is a predominating disorder of humoral immunity in children with hypogammaglobulinemia and may result from a dysfunctional state of the cellular elements of the immune system. PMID:26018535

  12. A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes

    Directory of Open Access Journals (Sweden)

    Sue D. Xiang

    2015-10-01

    Full Text Available Sperm protein antigen 17 (Sp17, expressed in primary as well as in metastatic lesions in >83% of patients with ovarian cancer, is a promising ovarian cancer vaccine candidate. Herein we describe the formulation of nanoparticle based vaccines based on human Sp17 (hSp17 sequence derived peptides, and map the immuno-dominant T cell and antibody epitopes induced using such formulations. The primary T and B cell immuno-dominant region within Sp17 was found to be the same when using biocompatible nanoparticle carriers or the conventional “mix-in” pro-inflammatory adjuvant CpG, both mapping to amino acids (aa 111–142. However, delivery of hSp17111–142 as a nanoparticle conjugate promoted a number of new properties, changing the dominant antibody isotype induced from IgG2a to IgG1 and the fine specificity of the B cell epitopes within hSp17111–142, from an immuno-dominant region 134–142 aa for CpG, to region 121–138 aa for nanoparticles. Associated with this change in specificity was a substantial increase in antibody cross-reactivity between mouse and human Sp17. These results indicate conjugation of antigen to nanoparticles can have major effects on fine antigen specificity, which surprisingly could be beneficially used to increase the cross-reactivity of antibody responses.

  13. A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes.

    Science.gov (United States)

    Xiang, Sue D; Gao, Qian; Wilson, Kirsty L; Heyerick, Arne; Plebanski, Magdalena

    2015-01-01

    Sperm protein antigen 17 (Sp17), expressed in primary as well as in metastatic lesions in >83% of patients with ovarian cancer, is a promising ovarian cancer vaccine candidate. Herein we describe the formulation of nanoparticle based vaccines based on human Sp17 (hSp17) sequence derived peptides, and map the immuno-dominant T cell and antibody epitopes induced using such formulations. The primary T and B cell immuno-dominant region within Sp17 was found to be the same when using biocompatible nanoparticle carriers or the conventional "mix-in" pro-inflammatory adjuvant CpG, both mapping to amino acids (aa) 111-142. However, delivery of hSp17111-142 as a nanoparticle conjugate promoted a number of new properties, changing the dominant antibody isotype induced from IgG2a to IgG1 and the fine specificity of the B cell epitopes within hSp17111-142, from an immuno-dominant region 134-142 aa for CpG, to region 121-138 aa for nanoparticles. Associated with this change in specificity was a substantial increase in antibody cross-reactivity between mouse and human Sp17. These results indicate conjugation of antigen to nanoparticles can have major effects on fine antigen specificity, which surprisingly could be beneficially used to increase the cross-reactivity of antibody responses. PMID:26529027

  14. Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea.

    Science.gov (United States)

    Zielke, Ryszard A; Wierzbicki, Igor H; Baarda, Benjamin I; Gafken, Philip R; Soge, Olusegun O; Holmes, King K; Jerse, Ann E; Unemo, Magnus; Sikora, Aleksandra E

    2016-07-01

    Expanding efforts to develop preventive gonorrhea vaccines is critical because of the dire possibility of untreatable gonococcal infections. Reverse vaccinology, which includes genome and proteome mining, has proven very successful in the discovery of vaccine candidates against many pathogenic bacteria. However, progress with this approach for a gonorrhea vaccine remains in its infancy. Accordingly, we applied a comprehensive proteomic platform-isobaric tagging for absolute quantification coupled with two-dimensional liquid chromatography and mass spectrometry-to identify potential gonococcal vaccine antigens. Our previous analyses focused on cell envelopes and naturally released membrane vesicles derived from four different Neisseria gonorrhoeae strains. Here, we extended these studies to identify cell envelope proteins of N. gonorrhoeae that are ubiquitously expressed and specifically induced by physiologically relevant environmental stimuli: oxygen availability, iron deprivation, and the presence of human serum. Together, these studies enabled the identification of numerous potential gonorrhea vaccine targets. Initial characterization of five novel vaccine candidate antigens that were ubiquitously expressed under these different growth conditions demonstrated that homologs of BamA (NGO1801), LptD (NGO1715), and TamA (NGO1956), and two uncharacterized proteins, NGO2054 and NGO2139, were surface exposed, secreted via naturally released membrane vesicles, and elicited bactericidal antibodies that cross-reacted with a panel of temporally and geographically diverse isolates. In addition, analysis of polymorphisms at the nucleotide and amino acid levels showed that these vaccine candidates are highly conserved among N. gonorrhoeae strains. Finally, depletion of BamA caused a loss of N. gonorrhoeae viability, suggesting it may be an essential target. Together, our data strongly support the use of proteomics-driven discovery of potential vaccine targets as a sound

  15. Performance of two Bm86 antigen vaccin formulation against tick using crossbreed bovines in stall test.

    Science.gov (United States)

    Andreotti, Renato

    2006-01-01

    Cattle tick control remains a serious problem for cattle farms in Brazil due to the limited success achieved with chemicals. In Brazil, the use of vaccines for tick control associated with the use of chemicals and pasture rotation may open possibilities for integrated control. However, it is important to know whether regional Boophilus microplus strains are sensitive to antibodies produced by the available antigens: antigen preparations Gavac™ and TickGard(PLUS). The aim of this research was to evaluate the performance of two Bm86 antigen vaccine formulation against tick using crossbred bovines in stall test antigen against a regional B. microplus strain. The experiment was carried out in central Brazil (20 degrees 27'S, 54 degrees 37'W). A trial was conducted in stall conditions on crossbred cattle under controlled infestation. Two groups of 16 animals each, homogeneous in weight and sex, were vaccinated with Gavac™ or TickGard(PLUS), two groups of eight animals as control. Challenge was performed on three alternate days, with 5,000 larvae each time, beginning 21 days after the second injection. The antibody response was measured by ELISA and vaccinated animals presented immune response considering IgG levels. The results showed 49.2% and 46.4% protection efficacy for Gavac™ and TickGard(PLUS), respectively. PMID:16978472

  16. Human Leukocyte Antigens Influence the Antibody Response to Hepatitis B Vaccine.

    Science.gov (United States)

    Jafarzadeh, Abdollah; Bagheri-Jamebozorgi, Masoome; Nemati, Maryam; Golsaz-Shirazi, Forough; Shokri, Fazel

    2015-06-01

    Hepatitis B virus (HBV) infection and its sequelae such as cirrhosis and hepatocellular carcinoma has remained a serious public health problem throughout the world. The WHO strategy for effective control of HBV infection and its complications is mass vaccination of neonates and children within the framework of Expanded Programme on Immunization (EPI). Vaccination with hepatitis B surface antigen (HBsAg) induces protective antibody response (anti-HBs ≥ 10 IU/L) in 90-99% of vaccinees. The lack of response to HBsAg has been attributed to a variety of immunological mechanisms, including defect in antigen presentation, defect in HBsAg-specific T and/or B cell repertoires, T-cell suppression, increase in the regulatory T cell count, lack of necessary help of T-cells for production of anti-HBs by B cells, defect in Th1 and/or Th2 cytokine production and selective killing of HBsAg-specific B-cells by human leukocyte antigen (HLA)-restricted cytotoxic T lymphocytes. The HLA complex plays an important role in many of these immunological processes. A variety of HLA class I, II, and III alleles and antigens have been reported to be associated with antibody response to HBsAg vaccination in different ethnic populations. Moreover, some HLA haplotypes were also associated with responsiveness to HBsAg. In this review the association of the HLA specificities with antibody response to hepatitis B (HB) vaccine is discussed. PMID:26546891

  17. Experimental studies of a vaccine formulation of recombinant human VEGF antigen with aluminum phosphate

    Science.gov (United States)

    Pérez Sánchez, Lincidio; Morera Díaz, Yanelys; Bequet-Romero, Mónica; Ramses Hernández, Gerardo; Rodríguez, Yadira; Castro Velazco, Jorge; Puente Pérez, Pedro; Ayala Avila, Marta; Gavilondo, Jorge V

    2015-01-01

    CIGB-247 is a cancer vaccine that is a formulation of a recombinant protein antigen representative of the human vascular endothelial growth factor (VEGF) with a bacterially-derived adjuvant (VSSP). The vaccine has shown an excellent safety profile in mice, rats, rabbits, not-human primates and in recent clinical trials in cancer patients. Response to the vaccine is characterized by specific antibody titers that neutralize VEGF/VEGFR2 binding and a cytotoxic tumor-specific response. To expand our present anti-VEGF active immunotherapy strategies, we have now studied in mice and non-human primates the effects of vaccination with a formulation of our recombinant VEGF antigen and aluminum phosphate adjuvant (hereafter denominated CIGB-247-A). Administered bi-weekly, CIGB-247-A produces high titers of anti-VEGF IgG blocking antibodies in 2 mice strains. Particularly in BALB/c, the treatment impaired subcutaneous F3II mammary tumor growth and reduced the number of spontaneous lung macro metastases, increasing animals' survival. Spleen cells from specifically immunized mice directly killed F3II tumor cells in vitro. CIGB-247-A also showed to be immunogenic in non-human primates, which developed anti-VEGF blocking antibodies and the ability for specific direct cell cytotoxic responses, all without impairing the healing of deep skin wounds or other side effect. Our results support consideration of aluminum phosphate as a suitable adjuvant for the development of new vaccine formulations using VEGF as antigen. PMID:25891359

  18. Successful vaccination against Boophilus microplus and Babesia bovis using recombinat antigens

    Directory of Open Access Journals (Sweden)

    P. Willadsen

    1992-01-01

    Full Text Available Current methods for the control of the cattle tick Boophils microplus and the agent of bovine babesiosis, Babesia bovis are unsatisfactory. Effective immunological control of both parasites would have great advantages. However, naturally acquired immunity to the tick is generally unable to prevent serious production losses. A vaccine against the tick, based on a novel form of immunization, is being developed. A protective antigen has been isolated from the tick, characterized and produced as an effective, recombinant protein. A vaccine incorporating this antigen is currently undergoing field trials. In the Australian situation, improved tick control will probably increase endemic instability with respect to B. bovis. Fortunately, a trivalent, recombinant B. bovis vaccine has also been developed. This too is now undergoing pre-registration field trials.

  19. Long term hepatitis B vaccine in infants born to hepatitis B e antigen positive mothers

    OpenAIRE

    Poovorawan, Y.; Sanpavat, S.; Chumdermpadetsuk, S.; Safary, A.

    1997-01-01

    Neonates of hepatitis B surface antigen (HBsAg) positive and hepatitis B encoded antigen (HBeAg) positive mothers received 10 µg of recombinant hepatitis B vaccine at months 0, 1, 6, or 0, 1, 2, 12, with or without immunoglobulin at birth, and were followed up to the age of 8 years for HBsAg, anti-HBc, and anti-HBs. Some were boosted at month 60. The overall vaccine protection at month 12 was 96.2%. No child became a chronic carrier beyond the age of 3 years, showing that this vaccine provide...

  20. Enhanced T cell responses to antigenic peptides targeted to B cell surface Ig, Ia, or class I molecules

    OpenAIRE

    1988-01-01

    The helper T cell recognition of soluble globular protein antigens requires that the proteins be processed by an APC, releasing a peptide that is transported to and held on the APC surface where it is recognized by the specific T cell in conjunction with Ia. When cellular processing functions are blocked, APC lose their ability to present native antigens while retaining the capacity to activate T cells when provided with a cognate peptide fragment that contains the T cell antigenic determinan...

  1. Structural requirements for the interaction between class II MHC molecules and peptide antigens

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Appella, E; Adorini, L; Grey, H M

    1990-01-01

    Previous work from our and other laboratories indicates that T cells recognize a complex between the MHC restriction element and peptide antigen fragments. This paper reviews the structural characteristics of the formation of such a complex. By analyzing in detail the interactions between purified...

  2. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague

    Directory of Open Access Journals (Sweden)

    Huang SS

    2014-02-01

    Full Text Available Shih-shiung Huang,1 I-Hsun Li,2,3 Po-da Hong,1 Ming-kung Yeh1,2,41Biomedical Engineering Program, Graduate Institute of Engineering, Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China; 2School of Pharmacy, 3Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China; 4Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, Republic of ChinaAbstract: Yersinia pestis F1 antigen-loaded poly(DL-lactide-co-glycolide/polyethylene glycol (PEG (PLGA/PEG microspheres were produced using a water-in-oil-in-water emulsion/solvent extraction technique and assayed for their percent yield, entrapment efficiency, surface morphology, particle size, zeta potential, in vitro release properties, and in vivo animal protect efficacy. The Y. pestis F1 antigen-loaded microspheres (mean particle size 3.8 µm exhibited a high loading capacity (4.5% w/w, yield (85.2%, and entrapment efficiency (38.1%, and presented a controlled in vitro release profile with a low initial burst (18.5%, then continued to release Y. pestis F1 antigen over 70 days. The distribution (% of Y. pestis F1 on the microspheres surface, outer layer, and core was 3.1%, 28.9%, and 60.7%, respectively. A steady release rate was noticed to be 0.55 µg Y. pestis F1 antigen/mg microspheres/day of Y. pestis F1 antigen release maintained for 42 days. The cumulative release amount at the 1st, 28th, and 42nd days was 8.2, 26.7, and 31.0 µg Y. pestis F1 antigen/mg microspheres, respectively. The 100 times median lethal dose 50% (LD50 of Y. pestis Yokohama-R strain by intraperitoneal injection challenge in mice test, in which mice received one dose of 40 µg F1 antigen content of PLGA/PEG microspheres, F1 antigen in Al(OH3, and in comparison with F1 antigen in Al(OH3 vaccine in two doses, was evaluated after given by subcutaneous

  3. Construction and characterization of an HCV-derived multi-epitope peptide antigen containing B-cell HVR1 mimotopes and T-cell conserved epitopes

    Institute of Scientific and Technical Information of China (English)

    GAO; Jun; GONG; Yuping; ZHAO; Ping; ZHU; Qing; YANG; Xiaoping; QI; Zhongtian

    2006-01-01

    Hepatitis C (HCV) genome is highly variable, particularly in the hypervariable region 1(HVR1) of its E2 envelope gene. The variability of HCV genome has been a major obstacle for developing HCV vaccines. Due to B-cell HVR1 mimotopes mimicking the antigenicity of natural HVR1 epitopes and some T-cell epitopes from the consensus sequence of HCV genes conserving among the different HCV genotypes, we synthesized an minigene of HCV-derived multi-epitope peptide antigen (CMEP), which contains 9 B-cell HVR1 mimotopes in E2, 2 conserved CTL epitopes in C, 1conserved CTL epitope in NS3 and 1 conserved Th epitope in NS3. This minigene was cloned into a GST expression vector to generate a fusion protein GST-CMER The immunogenic properties of CEMP were characterized by HCV infected patients' sera, and found that the reactivity frequency reached 75%. The cross reactivity of anti-CEMP antibody with different natural HVR1 variants was up to 90%. Meanwhile, we constructed an HCV DNA vaccine candidate, plasmid pVAX1.0-st-CMEP carrying the recombinant gene (st) of a secretion signal peptide and PADRE universal Th cell epitope sequence in front of the CMEP minigene. Immunization of rabbits with pVAX1.0-st-CMEP resulted in the production of antibody, which was of the same cross reactivity as the fusion protein GST-CMEP.Our findings indicate that the HCV-derived multi-epitope peptide antigen in some degree possessed the characteristics of neutralizing HCV epitopes, and would be of the value as a candidate for the development of HCV vaccines.

  4. Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2.

    Science.gov (United States)

    Mpakali, Anastasia; Giastas, Petros; Mathioudakis, Nikolas; Mavridis, Irene M; Saridakis, Emmanuel; Stratikos, Efstratios

    2015-10-23

    Endoplasmic reticulum (ER) aminopeptidases process antigenic peptide precursors to generate epitopes for presentation by MHC class I molecules and help shape the antigenic peptide repertoire and cytotoxic T-cell responses. To perform this function, ER aminopeptidases have to recognize and process a vast variety of peptide sequences. To understand how these enzymes recognize substrates, we determined crystal structures of ER aminopeptidase 2 (ERAP2) in complex with a substrate analogue and a peptidic product to 2.5 and 2.7 Å, respectively, and compared them to the apo-form structure determined to 3.0 Å. The peptides were found within the internal cavity of the enzyme with no direct access to the outside solvent. The substrate analogue extends away from the catalytic center toward the distal end of the internal cavity, making interactions with several shallow pockets along the path. A similar configuration was evident for the peptidic product, although decreasing electron density toward its C terminus indicated progressive disorder. Enzymatic analysis confirmed that visualized interactions can either positively or negatively impact in vitro trimming rates. Opportunistic side-chain interactions and lack of deep specificity pockets support a limited-selectivity model for antigenic peptide processing by ERAP2. In contrast to proposed models for the homologous ERAP1, no specific recognition of the peptide C terminus by ERAP2 was evident, consistent with functional differences in length selection and self-activation between these two enzymes. Our results suggest that ERAP2 selects substrates by sequestering them in its internal cavity and allowing opportunistic interactions to determine trimming rates, thus combining substrate permissiveness with sequence bias. PMID:26381406

  5. Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Maurizio Chiriva-Internati

    Full Text Available Sperm protein (Sp17 is an attractive target for ovarian cancer (OC vaccines because of its over-expression in primary as well as in metastatic lesions, at all stages of the disease. Our studies suggest that a Sp17-based vaccine can induce an enduring defense against OC development in C57BL/6 mice with ID8 cells, following prophylactic and therapeutic treatments. This is the first time that a mouse counterpart of a cancer testis antigen (Sp17 was shown to be expressed in an OC mouse model, and that vaccination against this antigen significantly controlled tumor growth. Our study shows that the CpG-adjuvated Sp17 vaccine overcomes the issue of immunologic tolerance, the major barrier to the development of effective immunotherapy for OC. Furthermore, this study provides a better understanding of OC biology by showing that Th-17 cells activation and contemporary immunosuppressive T-reg cells inhibition is required for vaccine efficacy. Taken together, these results indicate that prophylactic and therapeutic vaccinations can induce long-standing protection against OC and delay tumor growth, suggesting that this strategy may provide additional treatments of human OC and the prevention of disease onset in women with a family history of OC.

  6. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G; Hviid, Lars

    2002-01-01

    statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM) in......Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited to...... particular, to provide robust evidence of a causal link between the two in order to allow efficient and evidence-based identification of candidate antigens for malaria vaccine development....

  7. Plant-Based Vaccine: Mice Immunized with Chloroplast-Derived Anthrax Protective Antigen Survive Anthrax Lethal Toxin Challenge

    OpenAIRE

    Koya, Vijay; Moayeri, Mahtab; Leppla, Stephen H.; Daniell, Henry

    2005-01-01

    The currently available human vaccine for anthrax, derived from the culture supernatant of Bacillus anthracis, contains the protective antigen (PA) and traces of the lethal and edema factors, which may contribute to adverse side effects associated with this vaccine. Therefore, an effective expression system that can provide a clean, safe, and efficacious vaccine is required. In an effort to produce anthrax vaccine in large quantities and free of extraneous bacterial contaminants, PA was expre...

  8. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  9. A vaccine prepared from the 22 nm particles of surface hepatitis B antigen (HBsAg)

    International Nuclear Information System (INIS)

    A method for obtaining a subunit inactivated vaccine preparation from the 22-nm particles of HBsAg is proposed. For inactivation of the residual infectious hepatitis B virus (HBV) the preparations were successively treated with 1% sodium dodecyl sulfate (SDS) and nucleases. In addition, thermal denaturation and ultraviolet irradiation of HBV DNA were used. As a control the biologic activity of a reference virus (SV40) was tested after the same treatment. The effectiveness of DNA inactivation was monitored by adding 3H-thymidine labeled reference virus to the vaccine preparations. The purified and inactivated HBsAg was adsorbed on Al2O3. Antigenicity was calculated on the basis of the determination of antibody in guinea pigs immunized with various doses of the vaccine, and the release of 125I- HBsAg from blood and kidneys in immunized and control mice was analyzed. Possible methods of inactivation and control of HBV vaccine is discussed

  10. Co-expression of tumor antigen and interleukin-2 from an adenoviral vector augments the efficiency of therapeutic tumor vaccination

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech; Steffensen, Maria Abildgaard; Nørgaard Nielsen, Karen;

    2014-01-01

    approach where the target antigen fused to Ii is expressed from the adenoviral E1 region and IL-2 is expressed from the E3 region. Immunization of mice with this new vector construct resulted in an augmented primary effector CD8+ T-cell response. Furthermore, in a melanoma model we observed significantly...... prolonged tumor control in vaccinated wild type (WT) mice. The improved tumor control required antigen-specific cells, since no tumor control was observed, unless the melanoma cells expressed the vaccine targeted antigen. We also tested our new vaccine in immunodeficient (CD80/86 deficient) mice. Following...

  11. Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus.

    Science.gov (United States)

    Xia, Ming; Wei, Chao; Wang, Leyi; Cao, Dianjun; Meng, Xiang-Jin; Jiang, Xi; Tan, Ming

    2016-01-01

    Hepatitis E virus (HEV), rotavirus (RV), and astrovirus (AstV) are important pathogens that transmit through a common fecal-oral route, causing hepatitis (HEV) and gastroenteritis (RV and AstV) respectively in humans. In this study, we developed and evaluated two subunit vaccine candidates that consisted of the same protruding or spike protein antigens of the three viruses in two formats, a fusion of the three antigens into one molecule (fused vaccine) vs. a mixture of the three free antigens together (mixed vaccine). Both vaccines were easily made via E. coli expression system. Mouse immunization experiments showed that the fused vaccine elicited significantly higher antibody responses against the three viral antigens than those induced by the mixed vaccine. In addition, the mouse post-immune antisera of the fused vaccine revealed significantly higher neutralizing titers against HEV infection in cell culture, as well as significantly higher 50% blocking titers (BT50) against RV VP8-HBGA receptor interactions than those of the post-immune antisera after immunization of the mixed vaccine. Thus, the fused vaccine is a promising trivalent vaccine candidate against HEV, RV, and AstV, which is worth for further development. PMID:27194006

  12. Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus

    Science.gov (United States)

    Xia, Ming; Wei, Chao; Wang, Leyi; Cao, Dianjun; Meng, Xiang-Jin; Jiang, Xi; Tan, Ming

    2016-01-01

    Hepatitis E virus (HEV), rotavirus (RV), and astrovirus (AstV) are important pathogens that transmit through a common fecal-oral route, causing hepatitis (HEV) and gastroenteritis (RV and AstV) respectively in humans. In this study, we developed and evaluated two subunit vaccine candidates that consisted of the same protruding or spike protein antigens of the three viruses in two formats, a fusion of the three antigens into one molecule (fused vaccine) vs. a mixture of the three free antigens together (mixed vaccine). Both vaccines were easily made via E. coli expression system. Mouse immunization experiments showed that the fused vaccine elicited significantly higher antibody responses against the three viral antigens than those induced by the mixed vaccine. In addition, the mouse post-immune antisera of the fused vaccine revealed significantly higher neutralizing titers against HEV infection in cell culture, as well as significantly higher 50% blocking titers (BT50) against RV VP8-HBGA receptor interactions than those of the post-immune antisera after immunization of the mixed vaccine. Thus, the fused vaccine is a promising trivalent vaccine candidate against HEV, RV, and AstV, which is worth for further development. PMID:27194006

  13. Characterization of the Antigen Processing Machinery and Endogenous Peptide Presentation of a Bat MHC Class I Molecule.

    Science.gov (United States)

    Wynne, James W; Woon, Amanda P; Dudek, Nadine L; Croft, Nathan P; Ng, Justin H J; Baker, Michelle L; Wang, Lin-Fa; Purcell, Anthony W

    2016-06-01

    Bats are a major reservoir of emerging and re-emerging infectious diseases, including severe acute respiratory syndrome-like coronaviruses, henipaviruses, and Ebola virus. Although highly pathogenic to their spillover hosts, bats harbor these viruses, and a large number of other viruses, with little or no clinical signs of disease. How bats asymptomatically coexist with these viruses is unknown. In particular, little is known about bat adaptive immunity, and the presence of functional MHC molecules is mostly inferred from recently described genomes. In this study, we used an affinity purification/mass spectrometry approach to demonstrate that a bat MHC class I molecule, Ptal-N*01:01, binds antigenic peptides and associates with peptide-loading complex components. We identified several bat MHC class I-binding partners, including calnexin, calreticulin, protein disulfide isomerase A3, tapasin, TAP1, and TAP2. Additionally, endogenous peptide ligands isolated from Ptal-N*01:01 displayed a relatively broad length distribution and an unusual preference for a C-terminal proline residue. Finally, we demonstrate that this preference for C-terminal proline residues was observed in Hendra virus-derived peptides presented by Ptal-N*01:01 on the surface of infected cells. To our knowledge, this is the first study to identify endogenous and viral MHC class I ligands for any bat species and, as such, provides an important avenue for monitoring and development of vaccines against major bat-borne viruses both in the reservoir and spillover hosts. Additionally, it will provide a foundation to understand the role of adaptive immunity in bat antiviral responses. PMID:27183594

  14. Phase I clinical trial of the vaccination for the patients with metastatic melanoma using gp100-derived epitope peptide restricted to HLA-A*2402

    Directory of Open Access Journals (Sweden)

    Baba Toshiyuki

    2010-09-01

    Full Text Available Abstract Background The tumor associated antigen (TAA gp100 was one of the first identified and has been used in clinical trials to treat melanoma patients. However, the gp100 epitope peptide restricted to HLA-A*2402 has not been extensively examined clinically due to the ethnic variations. Since it is the most common HLA Class I allele in the Japanese population, we performed a phase I clinical trial of cancer vaccination using the HLA-A*2402 gp100 peptide to treat patients with metastatic melanoma. Methods The phase I clinical protocol to test a HLA-A*2402 gp100 peptide-based cancer vaccine was designed to evaluate safety as the primary endpoint and was approved by The University of Tokyo Institutional Review Board. Information related to the immunologic and antitumor responses were also collected as secondary endpoints. Patients that were HLA-A*2402 positive with stage IV melanoma were enrolled according to the criteria set by the protocol and immunized with a vaccine consisting of epitope peptide (VYFFLPDHL, gp100-in4 emulsified with incomplete Freund's adjuvant (IFA for the total of 4 times with two week intervals. Prior to each vaccination, peripheral blood mononuclear cells (PBMCs were separated from the blood and stored at -80°C. The stored PBMCs were thawed and examined for the frequency of the peptide specific T lymphocytes by IFN-γ- ELISPOT and MHC-Dextramer assays. Results No related adverse events greater than grade I were observed in the six patients enrolled in this study. No clinical responses were observed in the enrolled patients although vitiligo was observed after the vaccination in two patients. Promotion of peptide specific immune responses was observed in four patients with ELISPOT assay. Furthermore, a significant increase of CD8+ gp100-in4+ CTLs was observed in all patients using the MHC-Dextramer assay. Cytotoxic T lymphocytes (CTLs clones specific to gp100-in4 were successfully established from the PBMC of some

  15. Analysis of protective antigen peptide binding motifs using bacterial display technology

    Science.gov (United States)

    Sarkes, Deborah A.; Dorsey, Brandi L.; Stratis-Cullum, Dimitra N.

    2015-05-01

    In today's fast-paced world, a new biological threat could emerge at any time, necessitating a prompt, reliable, inexpensive detection reagent in each case. Combined with magnetic-activated cell sorting (MACS), bacterial display technology makes it possible to isolate selective, high affinity peptide reagents in days to weeks. Utilizing the eCPX display scaffold is also a rapid way to screen potential peptide reagents. Peptide affinity reagents for protective antigen (PA) of the biothreat Bacillus anthracis were previously discovered using bacterial display. Bioinformatics analysis resulted in the consensus sequence WXCFTC. Additionally, we have discovered PA binding peptides with a WW motif, one of which, YGLHPWWKNAPIGQR, can pull down PA from 1% human serum. The strength of these two motifs combined, to obtain a WWCFTC consensus, is assessed here using Fluorescence Activated Cell Sorting (FACS). While monitoring binding to PA, overall expression of the display scaffold was assessed using the YPet Mona expression control tag (YPet), and specificity was assessed by binding to Streptavidin R-Phycoerythrin (SAPE). The importance of high YPet binding is highlighted as many of the peptides in one of the three replicate experiments fell below our 80% binding threshold. We demonstrate that it is preferable to discard this experiment, due to questionable expression of the peptide itself, than to try to normalize for relative expression. The peptides containing the WWCFTC consensus were of higher affinity and greater specificity than the peptides containing the WW consensus alone, validating further investigation to optimize known PA binders.

  16. Analysis of endogenous peptides bound by soluble MHC class I molecules: a novel approach for identifying tumor-specific antigens.

    Science.gov (United States)

    Barnea, Eilon; Beer, Ilan; Patoka, Renana; Ziv, Tamar; Kessler, Ofra; Tzehoval, Esther; Eisenbach, Lea; Zavazava, Nicholas; Admon, Arie

    2002-01-01

    The Human MHC Project aims at comprehensive cataloging of peptides presented within the context of different human leukocyte antigens (HLA) expressed by cells of various tissue origins, both in health and in disease. Of major interest are peptides presented on cancer cells, which include peptides derived from tumor antigens that are of interest for immunotherapy. Here, HLA-restricted tumor-specific antigens were identified by transfecting human breast, ovarian and prostate tumor cell lines with truncated genes of HLA-A2 and HLA-B7. Soluble HLA secreted by these cell lines were purified by affinity chromatography and analyzed by nano-capillary electrospray ionization-tandem mass spectrometry. Typically, a large peptide pool was recovered and sequenced including peptides derived from MAGE-B2 and mucin and other new tumor-derived antigens that may serve as potential candidates for immunotherapy. PMID:11782012

  17. Antigen dose escalation study of a VEGF-based therapeutic cancer vaccine in non human primates.

    Science.gov (United States)

    Morera, Yanelys; Bequet-Romero, Mónica; Ayala, Marta; Pérez, Pedro Puente; Castro, Jorge; Sánchez, Javier; Alba, José Suárez; Ancízar, Julio; Cosme, Karelia; Gavilondo, Jorge V

    2012-01-01

    CIGB-247 is a cancer therapeutic, based on recombinant modified human vascular endothelial growth factor (VEGF) as antigen, in combination with the oil free adjuvant VSSP (very small sized proteoliposomes of Neisseria meningitidis outer membrane). Our previous experimental studies in mice with CIGB-247 have shown that the vaccine has both anti-tumoral and anti-metastatic activity, and produces both antibodies that block VEGF-VEGF receptor interaction, and a specific T-cell cytotoxic response against tumor cells. CIGB-247, with an antigen dose of 100 μg, has been characterized by an excellent safety profile in mice, rats, rabbits, and non human primates. In this article we extend the immunogenicity and safety studies of CIGB-247 in non human primates, scaling the antigen dose from 100 μg to 200 and 400 μg/vaccination. Our results indicate that such dose escalation did not affect animal behavior, clinical status, and blood parameters and biochemistry. Also, vaccination did not interfere with skin deep skin wound healing. Anti-VEGF IgG antibodies and specific T-cell mediated responses were documented at all three studied doses. Antigen dose apparently did not determine differences in maximum antibody titer during the 8 weekly immunization induction phase, or the subsequent increase in antibodies seen for monthly boosters delivered afterwards. Higher antigen doses had a positive influence in antibody titer maintenance, after cessation of immunizations. Boosters were important to achieve maximum antibody VEGF blocking activity, and specific T-cell responses in all individuals. Purified IgG from CIGB-247 immunized monkey sera was able to impair proliferation and formation of capillary-like structures in Matrigel, for HMEC cells in culture. Altogether, these results support the further clinical development of the CIGB-247 therapeutic cancer vaccine, and inform on the potential mechanisms involved in its effect. PMID:22075086

  18. Cattle tick vaccines: many candidate antigens, but will a commercially viable product emerge?

    Science.gov (United States)

    Guerrero, Felix D; Miller, Robert J; Pérez de León, Adalberto A

    2012-05-01

    The cattle tick, Rhipicephalus microplus, is arguably the world's most economically important external parasite of cattle. Sustainable cattle tick control strategies are required to maximise the productivity of cattle in both large production operations and small family farms. Commercially available synthetic acaricides are commonly used in control and eradication programs, but indiscriminate practices in their application have resulted in the rapid evolution of resistance among populations in tropical and subtropical regions where the invasive R. microplus thrives. The need for novel technologies that could be used alone or in combination with commercially available synthetic acaricides is driving a resurgence of cattle tick vaccine discovery research efforts by various groups globally. The aim is to deliver a next-generation vaccine that has an improved efficacy profile over the existing Bm86-based cattle tick vaccine product. We present a short review of these projects and offer our opinion on what constitutes a good target antigen and vaccine, and what might influence the market success of candidate vaccines. The previous experience with Bm86-based vaccines offers perspective on marketing and producer acceptance aspects that a next-generation cattle tick vaccine product must meet for successful commercialisation. PMID:22549026

  19. Applying the Concept of Peptide Uniqueness to Anti-Polio Vaccination

    Directory of Open Access Journals (Sweden)

    Darja Kanduc

    2015-01-01

    Full Text Available Background. Although rare, adverse events may associate with anti-poliovirus vaccination thus possibly hampering global polio eradication worldwide. Objective. To design peptide-based anti-polio vaccines exempt from potential cross-reactivity risks and possibly able to reduce rare potential adverse events such as the postvaccine paralytic poliomyelitis due to the tendency of the poliovirus genome to mutate. Methods. Proteins from poliovirus type 1, strain Mahoney, were analyzed for amino acid sequence identity to the human proteome at the pentapeptide level, searching for sequences that (1 have zero percent of identity to human proteins, (2 are potentially endowed with an immunologic potential, and (3 are highly conserved among poliovirus strains. Results. Sequence analyses produced a set of consensus epitopic peptides potentially able to generate specific anti-polio immune responses exempt from cross-reactivity with the human host. Conclusion. Peptide sequences unique to poliovirus proteins and conserved among polio strains might help formulate a specific and universal anti-polio vaccine able to react with multiple viral strains and exempt from the burden of possible cross-reactions with human proteins. As an additional advantage, using a peptide-based vaccine instead of current anti-polio DNA vaccines would eliminate the rare post-polio poliomyelitis cases and other disabling symptoms that may appear following vaccination.

  20. Totally synthetic peptide-based immunocontraceptive vaccines show activity in dogs of different breeds.

    Science.gov (United States)

    Walker, John; Ghosh, Souravi; Pagnon, Joanne; Colantoni, Caterina; Newbold, Andrea; Zeng, Weiguang; Jackson, David C

    2007-10-10

    In this study we examine the immunogenicity of totally synthetic peptide-based immunocontraceptive vaccines in dogs. Seven individual epitope-based vaccines were assembled in which a different T helper (T(H)) cell epitope derived from the sequence of F protein of canine distemper virus was synthesized in tandem with a peptide representing luteinising hormone releasing hormone (LHRH). Each of the individual T(H)-LHRH peptide vaccines was inoculated subcutaneously into dogs. The results demonstrate that five of the seven peptide vaccines were able to elicit strong anti-LHRH antibody responses in beagle foxhounds accompanied by a concomitant suppression in the levels of the hormones testosterone and progesterone in the majority of the animals. A pool of these five peptides was then used to inoculate five different breeds of dogs. All animals responded with high levels of anti-LHRH antibody. An investigation of the proliferative responses of peripheral blood mononuclear cells (PBMC) obtained from inoculated dogs showed that the majority of breeds responded to each of the individual T helper cell epitope tested. The results provide a strategy for development of an immunocontraceptive vaccine for use in multiple breeds of dogs. PMID:17825958

  1. Vaccination of pigs with Toxoplasma gondii antigens incorporated in immunostimulating complexes (iscoms)

    OpenAIRE

    Freire R.L.; Navarro I.T.; Bracarense A.P.F.R.L.; Gennari S.M.

    2003-01-01

    Immunity to Toxoplasma gondii was studied in pigs, after vaccination with T. gondii antigens incorporated into immunostimulating complexes. Nine pigs (group 1 - G1) were inoculated subcutaneously with T. gondii iscoms (LIV-5 sample) and three doses were given at 21 and 13 day-intervals. The results were compared in other three groups of nine pigs each: animals in group 2 (G2) were immunized with the LIV-5 antigens without Quil A, animals in group 3 (G3) were inoculated with tachyzoites of RH ...

  2. Antigenic peptide trimming by ER aminopeptidases--insights from structural studies.

    Science.gov (United States)

    Stratikos, Efstratios; Stern, Lawrence J

    2013-10-01

    Generation and destruction of antigenic peptides by ER resident aminopeptidases ERAP1 and ERAP2 have been shown in the last few years to be important for the correct functioning and regulation of the adaptive immune response. These two highly homologous aminopeptidases appear to have evolved complex mechanisms well suited for their biological role in antigen presentation. Furthermore, polymorphic variability in these enzymes appears to affect their function and predispose individuals to disease. This review discusses our current understanding of the molecular mechanisms behind ERAP1/2 function as suggested by several recently determined crystallographic structures of these enzymes. PMID:23545452

  3. Exosome targeting of tumor antigens expressed by cancer vaccines can improve antigen immunogenicity and therapeutic efficacy.

    Science.gov (United States)

    Rountree, Ryan B; Mandl, Stefanie J; Nachtwey, James M; Dalpozzo, Katie; Do, Lisa; Lombardo, John R; Schoonmaker, Peter L; Brinkmann, Kay; Dirmeier, Ulrike; Laus, Reiner; Delcayre, Alain

    2011-08-01

    MVA-BN-PRO (BN ImmunoTherapeutics) is a candidate immunotherapy product for the treatment of prostate cancer. It encodes 2 tumor-associated antigens, prostate-specific antigen (PSA), and prostatic acid phosphatase (PAP), and is derived from the highly attenuated modified vaccinia Ankara (MVA) virus stock known as MVA-BN. Past work has shown that the immunogenicity of antigens can be improved by targeting their localization to exosomes, which are small, 50- to 100-nm diameter vesicles secreted by most cell types. Exosome targeting is achieved by fusing the antigen to the C1C2 domain of the lactadherin protein. To test whether exosome targeting would improve the immunogenicity of PSA and PAP, 2 additional versions of MVA-BN-PRO were produced, targeting either PSA (MVA-BN-PSA-C1C2) or PAP (MVA-BN-PAP-C1C2) to exosomes, while leaving the second transgene untargeted. Treatment of mice with MVA-BN-PAP-C1C2 led to a striking increase in the immune response against PAP. Anti-PAP antibody titers developed more rapidly and reached levels that were 10- to 100-fold higher than those for mice treated with MVA-BN-PRO. Furthermore, treatment with MVA-BN-PAP-C1C2 increased the frequency of PAP-specific T cells 5-fold compared with mice treated with MVA-BN-PRO. These improvements translated into a greater frequency of tumor rejection in a PAP-expressing solid tumor model. Likewise, treatment with MVA-BN-PSA-C1C2 increased the antigenicity of PSA compared with treatment with MVA-BN-PRO and resulted in a trend of improved antitumor efficacy in a PSA-expressing tumor model. These experiments confirm that targeting antigen localization to exosomes is a viable approach for improving the therapeutic potential of MVA-BN-PRO in humans. PMID:21670078

  4. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design

    International Nuclear Information System (INIS)

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NΔ52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.

  5. PLAP efficiently generates mature antigenic peptides in vitro but in patterns distinct from ERAP11

    OpenAIRE

    Georgiadou, Dimitra; Hearn, Arron; Evnouchidou, Irini; Chroni, Angeliki; Leondiadis, Leondios; Ian A York; Rock, Kenneth L.; Stratikos, Efstratios

    2010-01-01

    All three members of the oxytocinase sub-family of M1 aminopeptidases, ERAP1 (ERAAP), ERAP2 and PLAP (IRAP), have been implicated in the generation of MHC class I-presented peptides. ERAP1 and 2 trim peptides in the endoplasmic reticulum for direct presentation whereas PLAP has been recently implicated in cross presentation. The best characterized member of the family, ERAP1, has unique enzymatic properties that fit well with its role in antigen processing. ERAP1 can trim a large variety of l...

  6. Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats

    OpenAIRE

    Berens, Shawn J.; Brayton, Kelly A.; Molloy, John B.; Bock, Russell E.; Lew, Ala E.; McElwain, Terry F.

    2005-01-01

    The merozoite surface antigen 2 (MSA-2) proteins of Babesia bovis are members of the variable merozoite surface antigen (VMSA) family that have been implicated in erythrocyte invasion and are important targets for antibody-mediated blocking of invasion. Extensive sequence variation in another VMSA member, MSA-1, has been shown in all vaccine breakthrough isolates. To test the hypothesis that the msa-2 genes of vaccine breakthrough isolates would also encode a diverse set of proteins, the comp...

  7. Protection of Mice with a Divalent Tuberculosis DNA Vaccine Encoding Antigens Ag85B and MPT64

    Institute of Scientific and Technical Information of China (English)

    Xia TIAN; Hong CAI; Yu-Xian ZHU

    2004-01-01

    DNA vaccine may be a promising tool for controlling tuberculosis development. However,vaccines encoding single antigens of mycobacterium did not produce protective effect as BCG did. In the present study, we evaluated the immunogenicity and protective efficacy of a divalent DNA vaccine encoding two immunodominant antigens Ag85B and MPT64 of Mycobacterium tuberculosis. We found that both humoral and Th1-type (high IFN-γ, low IL-4) cellular responses obtained from the divalent DNA vaccine group were significantly higher than that conferred by BCG. RT-PCR results showed that antigens were expressed differentially in various organs in divalent DNA vaccine group. The survival rate for mice treated with the divalent DNA vaccine after challenging with high doses of virulent M. tuberculosis H37Rv was significantly higher than that of the BCG group or any of the single DNA vaccine group. Significant differences were also found between the single and divalent DNA vaccinated mice in terms of body, spleen and lung weight. Bacterial loading decreased about 2000-fold in lungs and about 100-fold in spleens of divalent DNA vaccinated mice when compared with that of the control group. We conclude that our divalent DNA vaccine may be a better choice for controlling tuberculosis disease in animals.

  8. Antibodies against a class II HLA-peptide complex raised by active immunization of mice with antigen mimicking peptides

    DEFF Research Database (Denmark)

    Dam-Tuxen, R; Riise, Erik Skjold

    2009-01-01

    Multiple sclerosis (MS) is an autoimmune disease linked to the human leucocyte antigen (HLA) class II genes DRB1*1501, DRB5*0101 and DQB1*0602. T cells reactive towards the DRB1*1501 in complex with various peptides derived from myelin basic protein (MBP), which is the major component of myelin......, have been found in the peripheral blood of MS patients. These autoreactive T cells are believed to play a role in the pathogenesis of MS. In this article, antibodies against the HLA complex DR2b (DRA1*0101/DRB1*1501) in complex with the MBP-derived peptide MBP(85-99) have been generated by immunization...

  9. Chloroplast-Derived Vaccine Antigens and Biopharmaceuticals: Expression, Folding, Assembly and Functionality

    OpenAIRE

    Chebolu, S.; Daniell, H

    2009-01-01

    Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antib...

  10. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Directory of Open Access Journals (Sweden)

    David Dauvillée

    Full Text Available BACKGROUND: Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS, the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. METHODS AND FINDINGS: We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. CONCLUSION: This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles

  11. Human Leukocyte Antigens Influence the Antibody Response to Hepatitis B Vaccine

    Directory of Open Access Journals (Sweden)

    Abdollah Jafarzadeh

    2015-10-01

    Full Text Available Hepatitis B virus (HBV infection and its sequelae such as cirrhosis and hepatocellular carcinoma has remained a serious public health problem throughout the world. The WHO strategy for effective control of HBV infection and its complications is mass vaccination of neonates and children within the framework of Expanded Programme on Immunization (EPI. Vaccination with hepatitis B surface antigen (HBsAg induces protective antibody response (anti-HBs ≥ 10 IU/L in 90-99% of vaccinees.The lack of  response to  HBsAg has  been attributed  to a variety of  immunological mechanisms, including defect in antigen presentation, defect in HBsAg-specific T and/or B cell repertoires, T-cell suppression, increase in the regulatory T cell count, lack of necessary help of T-cells for production of anti-HBs by B cells, defect in Th1 and/or Th2 cytokine production  and  selective  killing  of  HBsAg-specific  B-cells  by  human  leukocyte  antigen (HLA-restricted cytotoxic T lymphocytes. The HLA complex plays an important role in many of these immunological processes.A variety of HLA class I, II, and III alleles and antigens have been reported to beassociated with antibody response to HBsAg vaccination in different ethnic populations. Moreover, some HLA haplotypes were also associated with responsiveness to HBsAg.In this review the association of the HLA specificities with antibody response to hepatitis B (HB vaccine is discussed.

  12. Control of Boophilus microplus populations in grazing cattle vaccinated with a recombinant Bm86 antigen preparation.

    Science.gov (United States)

    Rodríguez, M; Penichet, M L; Mouris, A E; Labarta, V; Luaces, L L; Rubiera, R; Cordovés, C; Sánchez, P A; Ramos, E; Soto, A

    1995-04-01

    Current methods for the control of cattle tick Boophilus microplus infestations are not effective and the parasite remains a serious problem for the cattle industry in tropical and subtropical areas. Recently, we developed a vaccine against B. microplus employing a recombinant Bm86 (rBm86) antigen preparation (Gavac, Heber Biotec) and it was shown to induce a protective response in vaccinated animals under controlled conditions. Here we show that, under field conditions in grazing cattle, the vaccine is able to control B. microplus populations. Two parasite-free farms were employed for the study. In the first farm, animals were vaccinated with the recombinant vaccine, while, in the second, animals received a saline injection in adjuvant. After immunization, animals were artificially infected and the infestation rate was recorded. Over the 33 weeks of the experiment, the infestation rate was lower in the vaccinated group compared with the control group. At the end of the experiment it was necessary to use chemicals in the control farm after serious losses in production and animals. PMID:7660571

  13. Vaccination with a cocktail of Ancylostoma ceylanicum recombinant antigens leads to worm burden reduction in hamsters.

    Science.gov (United States)

    Wiśniewski, Marcin; Łapiński, Maciej; Daniłowicz-Luebert, Emilia; Jaros, Sławomir; Długosz, Ewa; Wędrychowicz, Halina

    2016-09-01

    Hookworms, a group to which Ancylostoma ceylanicum belongs, are gastrointestinal nematodes that infect more than 700 million people around the world. They are a leading cause of anemia in developing countries. In order to effectively prevent hookworm infections research is conducted to develop an effective vaccine using recombinant antigens of the parasite. The aim of this study was to examine the influence of the hosts' on protection against ancylostomiasis and the shaping of the humoral immune response among Syrian hamsters after immunization with a cocktail of five A. ceylanicum recombinant antigens. Ace-ASP-3, Ace-ASP-4, Ace-APR-1, Ace-MEP-6 and Ace-MEP-7 were obtained in the pET expression system. Immunization with a vaccine cocktail resulted in a 33.5% worm burden reduction. The immunogenicity of the recombinant proteins were determined using ELISA. Statistical analysis showed that vaccinated hamsters developed stronger humoral responses to four of five recombinant antigens (the exception being Ace-ASP-3) compared to hamsters from the control group. PMID:27447220

  14. Multiple antigen peptide dendrimer elicits antibodies for detecting rat and mouse growth hormone binding proteins

    OpenAIRE

    Aguilar, Roberto M.; Talamantes, Frank J.; Bustamante, Juan J.; Muñoz, Jesus; Treviño, Lisa R.; Martinez, Andrew O.; Haro, Luis S.

    2009-01-01

    The membrane-bound rat growth hormone receptor (GH-R) and an alternatively spliced isoform, the soluble rat GH binding protein (GH-BP), are comprised of identical N-terminal GH binding domains, however, their C-terminal sequences differ. Immunological reagents are needed to distinguish between the two isoforms in order to understand their respective roles in mediating the actions of GH. Accordingly, a tetravalent multiple antigen peptide (MAP) dendrimer with four identical branches of a C-ter...

  15. TSOL18 Vaccine Antigen of Taenia solium: Development of Monoclonal Antibodies and Field Testing of the Vaccine in Cameroon

    Directory of Open Access Journals (Sweden)

    Assana, E.

    2010-01-01

    Full Text Available Chapter 1 reviews the literature about the immunological aspects of taeniid cestode infections and the existing vaccines against Taenia solium cysticercosis in pigs. One of the most promising vaccines is TSOL18, a protein that has been identified in the oncosphere of Taenia solium and expressed as a recombinant molecule in E. coli. Repeated experimental trials have shown that this vaccine is able to protect up to 100% of the immunised pigs against a challenge infection with T. solium. Antibodies raised by the vaccine are capable of killing the parasite in in vitro cultures and it is believed that antibody and complement mediated killing of invading parasites is the major protective immune mechanism induced by vaccination with TSOL18. The identification of the villages with a high risk of T. solium infection, which could subsequently be used in the vaccine trial, is reported in chapter 2. A survey was conducted in 150 households owning 1756 pigs in the rural areas of Mayo-Danay division in the far north region of Cameroon. A questionnaire survey was carried out to collect information on the pig farming system and to identify potential risk factors for T. solium cysticercosis infection in pigs. Blood samples were collected from 398 pigs with the aim of estimating the sero-prevalence of Taenia solium cysticercosis. The results showed that 90.7% of the pigs were free roaming during the dry season and that 42.7% of households keeping pigs in the rural areas had no latrine facility. Seventy six percent of the interviewed pig owners affirmed that the members of the household used open field defecation. ELISA for antigen and antibody detection showed an apparent prevalence of porcine cysticercosis of 24.6% and 32.2%, respectively. A Bayesian approach using the conditional dependence between the two diagnostic tests indicated that the true sero-prevalence of cysticercosis in Mayo-Danay was 26.6%. Binary logistic regression analysis indicated that the

  16. Doubly Phosphorylated Peptide Vaccines to Protect Transgenic P301S Mice against Alzheimer’s Disease Like Tau Aggregation

    Directory of Open Access Journals (Sweden)

    Monique Richter

    2014-07-01

    Full Text Available Intracellular neurofibrillary tangles and extracellular senile plaques are potential targets for active and passive immunotherapies. In this study we used the transgenic mouse model P301S for active immunizations with peptide vaccines composed of a double phosphorylated tau neoepitope (pSer202/pThr205, pThr212/pSer214, pThr231/pSer235 and an immunomodulatory T cell epitope from the tetanus toxin or tuberculosis antigen Ag85B. Importantly, the designed vaccine combining Alzheimer’s disease (AD specific B cell epitopes with foreign (bacterial T cell epitopes induced fast immune responses with high IgG1 titers after prophylactic immunization that subsequently decreased over the observation period. The effectiveness of the immunization was surveyed by evaluating the animal behavior, as well as the pathology in the brain by biochemical and histochemical techniques. Immunized mice clearly lived longer with reduced paralysis than placebo-treated mice. Additionally, they performed significantly better in rotarod and beam walk tests at the age of 20 weeks, indicating that the disease development was slowed down. Forty-eight weeks old vaccinated mice passed the beam walk test significantly better than control animals, which together with the increased survival rates undoubtedly prove the treatment effect. In conclusion, the data provide strong evidence that active immune therapies can reduce toxic effects of deposits formed in AD.

  17. Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I

    DEFF Research Database (Denmark)

    Cuesta, Àngel M; Suárez, Eduardo; Larsen, Martin; Jensen, Kim Bak; Sanz, Laura; Compte, Marta; Kristensen, Peter; Álvarez-Vallina, Luis

    2006-01-01

    Although DNA-based cancer vaccines have been successfully tested in mouse models, a major drawback of cancer vaccination still remains, namely that tumour antigens are weak and fail to generate a vigorous immune response in tumour-bearing patients. Genetic technology offers strategies for promoti...

  18. Identifying protective Streptococcus pyogenes vaccine antigens recognized by both B and T cells in human adults and children

    DEFF Research Database (Denmark)

    Mortensen, Rasmus; Nissen, Thomas Nørrelykke; Fredslund, Sine;

    2016-01-01

    No commercial vaccine exists against Group A streptococci (GAS; Streptococcus pyogenes) and only little is known about anti-GAS protective immunity. In our effort to discover new protective vaccine candidates, we selected 21 antigens based on an in silico evaluation. These were all well...

  19. Structural Basis For Antigenic Peptide Precursor Processing by the Endoplasmic Reticulum Aminopeptidase ERAP1

    Energy Technology Data Exchange (ETDEWEB)

    T Nguyen; S Chang; I Evnouchidou; I York; C Zikos; K Rock; A Goldberg; E Stratikos; L Stern

    2011-12-31

    ERAP1 trims antigen precursors to fit into MHC class I proteins. To fulfill this function, ERAP1 has unique substrate preferences, trimming long peptides but sparing shorter ones. To identify the structural basis for ERAP1's unusual properties, we determined the X-ray crystal structure of human ERAP1 bound to bestatin. The structure reveals an open conformation with a large interior compartment. An extended groove originating from the enzyme's catalytic center can accommodate long peptides and has features that explain ERAP1's broad specificity for antigenic peptide precursors. Structural and biochemical analyses suggest a mechanism for ERAP1's length-dependent trimming activity, whereby binding of long rather than short substrates induces a conformational change with reorientation of a key catalytic residue toward the active site. ERAP1's unique structural elements suggest how a generic aminopeptidase structure has been adapted for the specialized function of trimming antigenic precursors.

  20. Pentamers Not Found in the Universal Proteome Can Enhance Antigen Specific Immune Responses and Adjuvant Vaccines

    OpenAIRE

    Ami Patel; Dong, Jessica C.; Brett Trost; Richardson, Jason S.; Sarah Tohme; Shawn Babiuk; Anthony Kusalik; Kung, Sam K. P.; Kobinger, Gary P.

    2012-01-01

    Certain short peptides do not occur in humans and are rare or non-existent in the universal proteome. Antigens that contain rare amino acid sequences are in general highly immunogenic and may activate different arms of the immune system. We first generated a list of rare, semi-common, and common 5-mer peptides using bioinformatics tools to analyze the UniProtKB database. Experimental observations indicated that rare and semi-common 5-mers generated stronger cellular responses in comparison wi...

  1. Vaccination of pigs with Toxoplasma gondii antigens incorporated in immunostimulating complexes (iscoms

    Directory of Open Access Journals (Sweden)

    Freire R.L.

    2003-01-01

    Full Text Available Immunity to Toxoplasma gondii was studied in pigs, after vaccination with T. gondii antigens incorporated into immunostimulating complexes. Nine pigs (group 1 - G1 were inoculated subcutaneously with T. gondii iscoms (LIV-5 sample and three doses were given at 21 and 13 day-intervals. The results were compared in other three groups of nine pigs each: animals in group 2 (G2 were immunized with the LIV-5 antigens without Quil A, animals in group 3 (G3 were inoculated with tachyzoites of RH T. gondii isolate, and animals in group 4 (G4 received no vaccination. Four animals were neither vaccinated nor challenged with T. gondii (group 5 - G5. Thirty days after vaccination, pigs were challenged orally with 5´10(4 oocysts at AS-28 T. gondii isolate. Euthanasia was carried out 47 days after challenge and specimens of the heart, muscle, brain, liver, tongue and retina were inoculated into mice. Three out of nine pigs from G2 and one out of nine pigs from G4 showed hypertermia after the challenge. Antibody response was analysed by indirect fluorescent antibody test. The first iscom immunization (G1 induced low antibody levels, the second and third produced high antibody levels, similarly to the RH isolate infection (G3. Western blotting analysis indicated that the antibody response in animals in G1, after challenge, was more intense than in animals in the non-vaccinated group. T. gondii was not isolated by bioassays from tissues of iscom vaccinated pigs, while recovery was obtained from four animals in G4, one in G2 and one in G3.

  2. Evaluation of antigens stability of tobacco seeds as edible vaccine against VTEC strains

    Directory of Open Access Journals (Sweden)

    Luciana Rossi

    2015-11-01

    Full Text Available Plants have represent a promising alternative for biopharmaceutical proteins (Ma et al., 2003; Rossi et al., 2014. Many plant based edible vaccines have been shown to be effective in inducing local immune responses (Rossi et al., 2013. Edible vaccines can activate both mucosal and systemic immunity, as they come in contact with the digestive tract lining. This dual effect would provide first-line defense against pathogens invading through the mucosa. The antigens are released in the intestines are taken up by M cells that are present over the Payer’s patches (in the ileum and the gut associated lymphoid tissue (GALT. Edible vaccines represent an important worldwide goal for the prevention of the enteric diseases, also in livestock. In particular, the enteric infections are a significant clinical problem in pigs. Verocytotoxic Escherichia (E. coli strains are responsible for serious enterotoxaemia that causes important economic losses in the pig industry. The production of a vaccine for oral administration of transgenic seeds could be a practical and efficient system to prevent the infection and to reduce the antibiotic use. This study was focused on tobacco plants, previously transformed by agroinfection for the seed-specific expression of antigenic proteins (F18 adhesive fimbriae and the B subunit of the Vt2e toxin as model of edible vaccines against verocytotoxic E. coli strains. The dietary administration of transgenic tobacco seeds promotes a significant increase in the number of mucosal IgA-producing cells of the tunica propria in both small and large intestine in mice (Rossi et al., 2013. A protective effect of oral administration of transgenic tobacco seeds was also observed against verocytotoxic Escherichia coli infection in piglets (Rossi et al., 2014. The aim of this study was to assess the seed-expression stability, that is a important requirement in the vaccine production, of F 18 and Vt2e-B heterologous genes into the progeny of

  3. Engineering of the PapMV vaccine platform with a shortened M2e peptide leads to an effective one dose influenza vaccine.

    Science.gov (United States)

    Carignan, Damien; Thérien, Ariane; Rioux, Gervais; Paquet, Geneviève; Gagné, Marie-Ève Laliberté; Bolduc, Marilène; Savard, Pierre; Leclerc, Denis

    2015-12-16

    The emergence of highly virulent influenza strains and the risks of pandemics as well as the limited efficiency of the current seasonal vaccines are important public health concerns. There is a major need for new influenza vaccines that would be broadly cross-protective. The ectodomain of matrix protein 2 (M2e) is highly conserved amongst different influenza strains and could be used as a broad spectrum antigen. To overcome its low immunogenicity we have fused a short peptide epitope derived from the human consensus sequence of M2e (amino acids 6-14, EVETPIRNE) to the N-terminus of papaya mosaic virus coat protein. The fusion harboring coat proteins were assembled around a single stranded RNA into virus-like particles (PapMV-sM2e). The resulting PapMV-sM2e rod-shaped particle was stable and indistinguishable from regular PapMV particles. A single intramuscular immunization with PapMV-sM2e was sufficient to mount appreciable levels of CD4 dependent M2e specific total IgG and IgG2a antibody in mice sera. PapMV-sM2e proved to be self-adjuvanting since the addition of PapMV as an exogenous adjuvant did not result in significantly improved antibody titers. In addition, we confirmed the adjuvant property of PapMV-sM2e using the trivalent inactivated flu vaccine as antigen and demonstrated that the newly engineered nanoparticles areas efficacious as an adjuvant than the original PapMV nanoparticles. Upon infection with a sub-lethal dose of influenza, PapMV-sM2e vaccinated animals were completely protected from virus induced morbidity and mortality. Mice immunized with decreasing amounts of PapMV-sM2e and challenged with a more stringent dose of influenza virus displayed dose-dependent levels of protection. Seventy percent of the mice immunized once with the highest dose of PapMV-sM2e survived the challenged. The survival of the mice correlated mainly with the levels of anti-M2e IgG2a antibodies obtained before the infection. These results demonstrate that PapMV-sM2e can

  4. Early cellular immune response to a new candidate mycobacterial vaccine antigen in childhood tuberculosis.

    Science.gov (United States)

    Schepers, K; Dirix, V; Mouchet, F; Verscheure, V; Lecher, S; Locht, C; Mascart, F

    2015-02-18

    The search for novel vaccines against tuberculosis (TB) would benefit from in-depths knowledge of the human immune responses to Mycobacterium tuberculosis (Mtb) infection. Here, we characterised in a low TB incidence country, the immune responses to a new candidate vaccine antigen against TB, the heparin-binding haemagglutinin (HBHA), in young children in contact with an active TB case (aTB). Children with no history of BCG vaccination were compared to those vaccinated at birth to compare the initial immune responses to HBHA with secondary immune responses. Fifty-eight children with aTB and 76 with latent TB infection (LTBI) were included and they were compared to 90 non-infected children. Whereas Mtb-infected children globally secreted more interferon-gamma (IFN-γ) in response to HBHA compared to the non-infected children, these IFN-γ concentrations were higher in previously BCG-vaccinated compared to non-vaccinated children. The IFN-γ concentrations were similar in LTBI and aTB children, but appeared to differ qualitatively. Whereas the IFN-γ secretion induced by native methylated and recombinant non-methylated HBHA were well correlated for aTB, this was not the case for LTBI children. Thus, Mtb-infected young children develop IFN-γ responses to HBHA that are enhanced by prior BCG vaccination, indicating BCG-induced priming, thereby supporting a prime-boost strategy for HBHA-based vaccines. The qualitative differences between aTB and LTBI in their HBHA-induced IFN-γ responses may perhaps be exploited for diagnostic purposes. PMID:25583385

  5. Intranasal vaccination with adjuvant-free S. aureus antigens effectively protects mice against experimental sepsis.

    Science.gov (United States)

    Stegmiller, Nataly Pescinalli; Barcelos, Estevão Carlos; Leal, Janine Miranda; Covre, Luciana Polaco; Donatele, Dirlei Molinari; de Matos Guedes, Herbet Leonel; Cunegundes, Marco Cesar; Rodrigues, Rodrigo Ribeiro; Gomes, Daniel Cláudio Oliviera

    2016-06-24

    Staphylococcus aureus (S. aureus) is a Gram-positive coccal bacterium comprising part of the human skin, nares and gastrointestinal tract normal microbiota. It is also an important cause of nosocomial/community-acquired infections in humans and animals, which can cause a diverse array of infections, including sepsis, which is a progressive systemic inflammation response syndrome that is frequently fatal. The emergence of drug-resistant strains and the high toxicity of the treatments used for these infections point out the need to develop an effective, inexpensive and safe vaccine that can be used prophylactically. In this work, we used an experimental sepsis model to evaluate the effectiveness of whole antigens from S. aureus (SaAg) given by the intranasal route to induce protective immunity against S. aureus infection in mice. BALB/c mice were vaccinated via intranasal or intramuscular route with two doses of SaAg, followed by biocompatibility and immunogenicity evaluations. Vaccinated animals did not show any adverse effects associated with the vaccine, as determined by transaminase and creatinine measurements. Intranasal, but not intramuscular vaccination with SaAg led to a significant reduction in IL-10 production and was associated with increased level of IFN-γ and NO. SaAg intranasal vaccination was able to prime cellular and humoral immune responses and inducing a higher proliferation index and increased production of specific IgG1/IgG2, which contributed to decrease the bacterial load in both liver and the spleen and improve survival during sepsis. These findings present the first evidence of the effectiveness of whole Ag intranasal-based vaccine administration, which expands the vaccination possibilities against S. aureus infection. PMID:27091687

  6. Anthrax Vaccine Antigen-Adjuvant Formulations Completely Protect New Zealand White Rabbits against Challenge with Bacillus anthracis Ames Strain Spores

    OpenAIRE

    Peachman, Kristina K.; Li, Qin; Matyas, Gary R.; Shivachandra, Sathish B.; Lovchik, Julie; Lyons, Rick C.; Alving, Carl R; Rao, Venigalla B.; Rao, Mangala

    2012-01-01

    In an effort to develop an improved anthrax vaccine that shows high potency, five different anthrax protective antigen (PA)-adjuvant vaccine formulations that were previously found to be efficacious in a nonhuman primate model were evaluated for their efficacy in a rabbit pulmonary challenge model using Bacillus anthracis Ames strain spores. The vaccine formulations include PA adsorbed to Alhydrogel, PA encapsulated in liposomes containing monophosphoryl lipid A, stable liposomal PA oil-in-wa...

  7. A Brief Review of Computer-Assisted Approaches to Rational Design of Peptide Vaccines

    Directory of Open Access Journals (Sweden)

    Ashesh Nandy

    2016-05-01

    Full Text Available The growing incidences of new viral diseases and increasingly frequent viral epidemics have strained therapeutic and preventive measures; the high mutability of viral genes puts additional strains on developmental efforts. Given the high cost and time requirements for new drugs development, vaccines remain as a viable alternative, but there too traditional techniques of live-attenuated or inactivated vaccines have the danger of allergenic reactions and others. Peptide vaccines have, over the last several years, begun to be looked on as more appropriate alternatives, which are economically affordable, require less time for development and hold the promise of multi-valent dosages. The developments in bioinformatics, proteomics, immunogenomics, structural biology and other sciences have spurred the growth of vaccinomics where computer assisted approaches serve to identify suitable peptide targets for eventual development of vaccines. In this mini-review we give a brief overview of some of the recent trends in computer assisted vaccine development with emphasis on the primary selection procedures of probable peptide candidates for vaccine development.

  8. A Brief Review of Computer-Assisted Approaches to Rational Design of Peptide Vaccines

    Science.gov (United States)

    Nandy, Ashesh; Basak, Subhash C.

    2016-01-01

    The growing incidences of new viral diseases and increasingly frequent viral epidemics have strained therapeutic and preventive measures; the high mutability of viral genes puts additional strains on developmental efforts. Given the high cost and time requirements for new drugs development, vaccines remain as a viable alternative, but there too traditional techniques of live-attenuated or inactivated vaccines have the danger of allergenic reactions and others. Peptide vaccines have, over the last several years, begun to be looked on as more appropriate alternatives, which are economically affordable, require less time for development and hold the promise of multi-valent dosages. The developments in bioinformatics, proteomics, immunogenomics, structural biology and other sciences have spurred the growth of vaccinomics where computer assisted approaches serve to identify suitable peptide targets for eventual development of vaccines. In this mini-review we give a brief overview of some of the recent trends in computer assisted vaccine development with emphasis on the primary selection procedures of probable peptide candidates for vaccine development. PMID:27153063

  9. Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide.

    Science.gov (United States)

    Oji, Yusuke; Hashimoto, Naoya; Tsuboi, Akihiro; Murakami, Yui; Iwai, Miki; Kagawa, Naoki; Chiba, Yasuyoshi; Izumoto, Shuichi; Elisseeva, Olga; Ichinohasama, Ryo; Sakamoto, Junichi; Morita, Satoshi; Nakajima, Hiroko; Takashima, Satoshi; Nakae, Yoshiki; Nakata, Jun; Kawakami, Manabu; Nishida, Sumiyuki; Hosen, Naoki; Fujiki, Fumihiro; Morimoto, Soyoko; Adachi, Mayuko; Iwamoto, Masahiro; Oka, Yoshihiro; Yoshimine, Toshiki; Sugiyama, Haruo

    2016-09-15

    We previously evaluated Wilms' tumor gene 1 (WT1) peptide vaccination in a large number of patients with leukemia or solid tumors and have reported that HLA-A*24:02 restricted, 9-mer WT1-235 peptide (CYTWNQMNL) vaccine induces cellular immune responses and elicits WT1-235-specific cytotoxic T lymphocytes (CTLs). However, whether this vaccine induces humoral immune responses to produce WT1 antibody remains unknown. Thus, we measured IgG antibody levels against the WT1-235 peptide (WT1-235 IgG antibody) in patients with glioblastoma multiforme (GBM) receiving the WT1 peptide vaccine. The WT1-235 IgG antibody, which was undetectable before vaccination, became detectable in 30 (50.8%) of a total of 59 patients during 3 months of WT1 peptide vaccination. The dominant WT1-235 IgG antibody subclass was Th1-type, IgG1 and IgG3 . WT1-235 IgG antibody production was significantly and positively correlated with both progression-free survival (PFS) and overall survival (OS). Importantly, the combination of WT1-235 IgG antibody production and positive delayed type-hypersensitivity (DTH) to the WT1-235 peptide was a better prognostic marker for long-term OS than either parameter alone. These results suggested that WT1-235 peptide vaccination induces not only WT1-235-specific CTLs as previously described but also WT1-235-specific humoral immune responses associated with antitumor cellular immune response. Our results indicate that the WT1 IgG antibody against the WT1 peptide may be a useful predictive marker, with better predictive performance in combination with DTH to WT1 peptide, and provide a new insight into the antitumor immune response induction in WT1 peptide vaccine-treated patients. PMID:27170523

  10. Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion.

    Science.gov (United States)

    Sim, B K; Orlandi, P A; Haynes, J D; Klotz, F W; Carter, J M; Camus, D; Zegans, M E; Chulay, J D

    1990-11-01

    The Plasmodium falciparum gene encoding erythrocyte binding antigen-175 (EBA-175), a putative receptor for red cell invasion (Camus, D., and T. J. Hadley. 1985. Science (Wash. DC). 230:553-556.), has been isolated and characterized. DNA sequencing demonstrated a single open reading frame encoding a translation product of 1,435 amino acid residues. Peptides corresponding to regions on the deduced amino acid sequence predicted to be B cell epitopes were assessed for immunogenicity. Immunization of mice and rabbits with EBA-peptide 4, a synthetic peptide encompassing amino acid residues 1,062-1,103, produced antibodies that recognized P. falciparum merozoites in an indirect fluorescent antibody assay. When compared to sera from rabbits immunized with the same adjuvant and carrier protein, sera from rabbits immunized with EBA-peptide 4 inhibited merozoite invasion of erythrocytes in vitro by 80% at a 1:5 dilution. Furthermore, these sera inhibited the binding of purified, authentic EBA-175 to erythrocytes, suggesting that their activity in inhibiting merozoite invasion of erythrocytes is mediated by blocking the binding of EBA-175 to erythrocytes. Since the nucleotide sequence of EBA-peptide 4 is conserved among seven strains of P. falciparum from throughout the world (Sim, B. K. L. 1990. Mol. Biochem. Parasitol. 41:293-296.), these data identify a region of the protein that should be a focus of vaccine development efforts. PMID:2229177

  11. Vaccine potential of recombinant antigens of Theileria annulata and Hyalomma anatolicum anatolicum against vector and parasite.

    Science.gov (United States)

    Jeyabal, L; Kumar, Binod; Ray, Debdatta; Azahahianambi, Palavesam; Ghosh, Srikanta

    2012-09-10

    In an attempt to develop vaccine against Hyalomma anatolicum anatolicum and Theileria annulata, three antigens were expressed in prokaryotic expression system and protective potentiality of the antigens was evaluated in cross bred calves. Two groups (grs. 1 and 4) of male cross-bred (Bos indicus × Bos taurus) calves were immunized with rHaa86, a Bm86 ortholog of H. a. anatolicum, while one group of calves (gr. 2) were immunized with cocktails of two antigens viz., surface antigens of T. annulata (rSPAG1, rTaSP). One group each was kept as negative controls (grs. 3 and 5). The animals of groups 1, 2 and 3 were challenged with T. annulata infected H. a. anatolicum adults while the animals of groups 1, 3, 4 and 5 were challenged with uninfected adult ticks. A significantly high (p<0.05) antibody responses to all the three antigens were detected in immunized calves, but the immune response was comparatively higher with rHaa86 followed by rTaSP and rSPAG1. Upon challenge with T. annulata infected ticks, animals of all groups showed symptoms of the disease but there was 50% survival of calves of group 1 while all non immunized control calves (group 3) and rSPAG1+rTaSP immunized calves died. The rHaa86 antigen was found efficacious to protect calves against more than 71.4-75.5% of the challenge infestation. The experiment has given a significant clue towards the development of rHaa86 based vaccine against both H. a. anatolicum and T. annulata. PMID:22546546

  12. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy

    OpenAIRE

    Focke-Tejkl, Margarete; Weber, Milena; Niespodziana, Katarzyna; Neubauer, Angela; Huber, Hans; Henning, Rainer; Stegfellner, Gottfried; Maderegger, Bernhard; Hauer, Martina; Stolz, Frank; Niederberger, Verena; Marth, Katharina; Eckl-Dorna, Julia; Weiss, Richard; Thalhamer, Josef

    2015-01-01

    Background Grass pollen is one of the most important sources of respiratory allergies worldwide. Objective This study describes the development of a grass pollen allergy vaccine based on recombinant hypoallergenic derivatives of the major timothy grass pollen allergens Phl p 1, Phl p 2, Phl p 5, and Phl p 6 by using a peptide-carrier approach. Methods Fusion proteins consisting of nonallergenic peptides from the 4 major timothy grass pollen allergens and the PreS protein from hepatitis B viru...

  13. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    Science.gov (United States)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  14. Enhanced protective efficacy of a chimeric form of the schistosomiasis vaccine antigen Sm-TSP-2.

    Directory of Open Access Journals (Sweden)

    Mark S Pearson

    Full Text Available The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1 and IgG(3 from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1, suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic.

  15. Enhanced protective efficacy of a chimeric form of the schistosomiasis vaccine antigen Sm-TSP-2.

    Science.gov (United States)

    Pearson, Mark S; Pickering, Darren A; McSorley, Henry J; Bethony, Jeffrey M; Tribolet, Leon; Dougall, Annette M; Hotez, Peter J; Loukas, Alex

    2012-01-01

    The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1) and IgG(3) from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1), suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic. PMID:22428079

  16. Review of hepatitis B surface antigen-1018 ISS adjuvant-containing vaccine safety and efficacy.

    Science.gov (United States)

    Barry, Mazin; Cooper, Curtis

    2007-11-01

    Existing hepatitis B virus (HBV) vaccines produce seroprotective titers in > 90% of healthy adult recipients following 3 doses administered over 6 months. The durability of this response is variable. Vaccine efficacy is greatly diminished in immune compromised patients. Given the high worldwide prevalence and burden of disease produced by chronic HBV infection, vaccines capable of producing high rates of durable seroprotective HBV surface antibody titers are required. Immunostimulatory sequences (ISS) containing repeating sequences of cytosine phosphoguanosine (CpG) dinucleotide motifs have emerged as useful tools for modulating immune responses. Dynavax Technologies produced a synthetic oligodexynucleotide (ODN) containing these motifs, resulting in an unmethylated cytosine and phosphoguanosine ODN called 1018 ISS. Dynavax's hepatitis B virus vaccine HEPLISAV is comprised of 1018 ISS mixed with recombinant hepatitis B surface antigen. Clinical trials, to date, have shown that HEPLISAV produces rapid, high titer, sustained seroprotection in healthy adults and vaccine hyporesponsive populations. Although additional supporting data are required, this represents a promising strategy to facilitate worldwide HBV prevention efforts. PMID:17961095

  17. Vaccination with replication-deficient recombinant adenoviruses encoding the main surface antigens of toxoplasma gondii induces immune response and protection against infection in mice.

    Science.gov (United States)

    Caetano, Bráulia C; Bruña-Romero, Oscar; Fux, Blima; Mendes, Erica A; Penido, Marcus L O; Gazzinelli, Ricardo T

    2006-04-01

    We have generated recombinant adenoviruses encoding three genetically modified surface antigens (SAGs) of the parasite Toxoplasma gondii, that is, AdSAG1, AdSAG2, and AdSAG3. Modifications included the removal of their glycosylphosphatidylinositol (GPI) anchoring motifs and, in some cases, the exchange of the native signal peptide for influenza virus hemagglutinin signal sequence. Adenovirus immunization of BALB/c mice elicited potent antibody responses against each protein, displaying a significant bias toward a helper T cell type 1 (Th1) profile in animals vaccinated with AdSAG1. Furthermore, the presence of parasite-specific IFN-gamma-producing T cells was analyzed by proliferation assays and enzyme-linked immunospot assays in the same animals. Splenocytes from immunized mice secreted IFN-gamma after in vitro stimulation with tachyzoite lysate antigen or with a fraction enriched for membrane-purified GPI-anchored proteins (F3) from the T. gondii tachyzoite surface. Epitopes recognized by CD8+ T cells were identified in SAG1 and SAG3, but not SAG2, sequences, although this protein also induced a specific response. We also tested the capacity of the immune responses detected to protect mice against a challenge with live T. gondii parasites. Although no protection was observed against tachyzoites of the highly virulent RH strain, a significant reduction in cyst loads in the brain was observed in animals challenged with the P-Br strain. Thus, up to 80% of the cysts were eliminated from animals vaccinated with a mixture of the three recombinant viruses. Because adenoviruses seemed capable of inducing Th1-biased protective immune responses against T. gondii antigens, other parasite antigens should be tested alone or in combination with those described here to further develop a protective vaccine against toxoplasmosis. PMID:16610929

  18. In situ polyethylene sebacate particulate carriers as an alternative to Freund's adjuvant for delivery of a contraceptive peptide vaccine--A feasibility study.

    Science.gov (United States)

    D'Souza, Anisha A; Yevate, Smita V; Bandivdekar, A H; Devarajan, Padma V

    2015-12-30

    The present study evaluates the feasibility of particulate carriers of a biodegradable polymer polyethylene sebacate (PES) as an alternative to Freund's adjuvant in the design of a peptide vaccine formulation. The vaccine formulation comprised of PES and the antigen KLH conjugated 80kDa HSA peptide-1 dissolved in N-methyl-2-pyrrolidone (NMP)/NMP-water as solvent. The antigen revealed good stability and the formulations were readily syringeable. Intradermal injection of the formulations resulted in the formation of PES particulates in situ at the site of injection. The NMP formulations revealed larger particulates which elicited no immunogenic response when injected in rabbits. On the other hand the NMP-water formulation revealed formation of microparticles which were significantly smaller in size, in combination with a small fraction of nanoparticles. It elicited an antibody titer up to 1:3200 in rabbits following intradermal injection. Western blot confirmed generation of antibodies specific to the peptide. Contraceptive efficacy was confirmed by loss of sperm motility and head-to-head agglutination of sperms in the treatment group. Unlike the severe reactions observed with administration of Freund's adjuvant, only mild hypersensitivity reaction was observed with the PES formulations. The mild reaction coupled with the contraceptive efficacy observed suggested PES particulates as a viable alternative to Freund's adjuvant. PMID:26551675

  19. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    Science.gov (United States)

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...

  20. Linkage of bacterial protein synthesis and presentation of MHC class I-restricted Listeria monocytogenes-derived antigenic peptides.

    Directory of Open Access Journals (Sweden)

    Silke Grauling-Halama

    Full Text Available The processing and MHC class I-restricted presentation of antigenic peptides derived from the p60 protein of the facultative intracellular bacterium Listeria monocytogenes is tightly linked to bacterial protein synthesis. We used non-linear regression analysis to fit a mathematical model of bacterial antigen processing to a published experimental data set showing the accumulation and decay of p60-derived antigenic peptides in L. monocytogenes-infected cells. Two alternative models equally describe the experimental data. The simulation accounting for a stable and a hypothetical rapidly degraded form of antigen predicts that the antigenic peptides p60 217-225 and p60 449-457 are derived from a putative instable form of p60 with an average intracellular half-life of approximately 3 minutes accounting for approximately 31% of all p60 molecules synthesized. The alternative model predicts that both antigenic peptides are processed from p60 degraded intracellularly with a half-life of 109 min and that antigen processing only occurs as long as bacterial protein synthesis is not inhibited. In order to decide between both models the intracellular accumulation of p60 in infected cells was studied experimentally and compared with model predictions. Inhibition of p60 degradation by the proteasome inhibitor epoxomicin revealed that during the first 3 h post infection approximately 30% of synthesized p60 molecules were degraded. This value is significantly lower than the approximately 50% degradation of p60 that would be expected in the presence of the predicted putative short-lived state of p60 and also fits precisely with the predictions of the alternative model, indicating that the tight connection of bacterial protein biosynthesis and antigen processing and presentation of L. monocyctogenes-derived antigenic peptides is not caused by the presence of a highly instable antigenic substrate.

  1. Restoration of proliferative response to M. leprae antigens in lepromatous T cells against candidate antileprosy vaccines.

    Science.gov (United States)

    Mustafa, A S

    1996-09-01

    Several studies conducted in the last decade suggest that Mycobacterium lepraereactive T cells exist in lepromatous patients, but their number may be too few to yield a detectable response in cell-mediated immunity (CMI) assays. Immunizations with candidate antileprosy vaccines and stimulation of T cells with M. leprae + interleukin-2 restore the M. leprae-induced CMI response in lepromatous leprosy patients. These immunizations and stimulation may enrich the pre-existing M. leprae-responsive T cells in lepromatous patients and, thereby, induce a detectable CMI response to M. leprae antigens upon repeat testing. To verify this proposition, we carried out a study in a group of 10 lepromatous leprosy patients. Peripheral blood mononuclear cells (PBMC) obtained from these patients were anergic to M. leprae antigens in proliferative assays, but they responded to the antigens of candidate antileprosy vaccines, i.e., M. bovis BCG, M. bovis BCG + M. leprae, and Mycobacterium w. The enrichment of M. leprae-responsive T cells was performed by establishing T-cell lines from the PBMC after in vitro stimulation with M. leprae, M. bovis BCG, M. bovis BCG + M. leprae, and Mycobacterium w. When tested for their proliferative responses, 1/10, 3/10, 6/10 and 2/10 T-cell lines established against M. leprae, M. bovis BCG, M. bovis BCG + M. leprae, and Mycobacterium w, respectively, responded to M. leprae. These results suggest that enrichment of pre-existing M. leprae-responsive T cells may contribute to the restoration of the T-cell response to M. leprae in some lepromatous patients. Four of the 10 M. leprae-induced T-cell lines proliferated in response to the 65 kDa, 36 kDa, 28 kDa, and 12 kDa recombinant antigens of M. leprae, suggesting that the nonresponsiveness of T cells in some lepromatous patients may be overcome by using recombinant antigens of M. leprae. PMID:8862259

  2. Synthetic Peptide Ligands of the Antigen Binding Receptor Induce Programmed Cell Death in a Human B-Cell Lymphoma

    Science.gov (United States)

    Renschler, Markus F.; Bhatt, Ramesh R.; Dower, William J.; Levy, Ronald

    1994-04-01

    Peptide ligands for the antigen binding site of the surface immunoglobulin receptor of a human B-cell lymphoma cell line were identified with the use of filamentous phage libraries displaying random 8- and 12-amino acid peptides. Corresponding synthetic peptides bound specifically to the antigen binding site of this immunoglobulin receptor and blocked the binding of an anti-idiotype antibody. The ligands, when conjugated to form dimers or tetramers, induced cell death by apoptosis in vitro with an IC50 between 40 and 200 nM. This effect was associated with specific stimulation of intracellular protein tyrosine phosphorylation.

  3. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores

    OpenAIRE

    Chichester, Jessica A.; Manceva, Slobodanka D; Rhee, Amy; Coffin, Megan V.; Musiychuk, Konstantin; Mett, Vadim; Shamloul, Moneim; Norikane, Joey; Streatfield, Stephen J.; Yusibov, Vidadi

    2013-01-01

    The potential use of Bacillus anthracis as a bioterrorism weapon threatens the security of populations globally, requiring the immediate availability of safe, efficient and easily delivered anthrax vaccine for mass vaccination. Extensive research efforts have been directed toward the development of recombinant subunit vaccines based on protective antigen (PA), the principal virulence factor of B. anthracis. Among the emerging technologies for the production of these vaccine antigens is our la...

  4. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis.

    Science.gov (United States)

    Casey, William T; Spink, Natasha; Cia, Felipe; Collins, Cassandra; Romano, Maria; Berisio, Rita; Bancroft, Gregory J; McClean, Siobhán

    2016-05-17

    Burkholderia pseudomallei is the causative agent of melioidosis, which is associated with a range of clinical manifestations, including sepsis and fatal pneumonia and is endemic in Southeast Asia and Northern Australia. Treatment can be challenging and control of infection involves prolonged antibiotic therapy, yet there are no approved vaccines available to prevent infection. Our aim was to develop and assess the potential of a prophylactic vaccine candidate targeted against melioidosis. The identified candidate is the 22kDa outer membrane protein, OmpW. We previously demonstrated that this protein was immunoprotective in mouse models of Burkholderia cepacia complex (Bcc) infections. We cloned Bp_ompW in Escherichia coli, expressed and purified the protein. Endotoxin free protein administered with SAS adjuvant protected Balb/C mice (75% survival) relative to controls (25% survival) (p<0.05). A potent serological response was observed with IgG2a to IgG1 ratio of 6.0. Furthermore C57BL/6 mice were protected for up to 80 days against a lethal dose of B. pseudomallei and surpassed the efficacy of the live attenuated 2D2 positive control. BpompW is homologous across thirteen sequenced B. pseudomallei strains, indicating that it should be broadly protective against B. pseudomallei. In conclusion, we have demonstrated that BpOmpW is able to induce protective immunity against melioidosis and is likely to be an effective vaccine antigen, possibly in combination with other subunit antigens. PMID:27091689

  5. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines.

    Science.gov (United States)

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel ('nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination. PMID:20562880

  6. Investigation of the response to the enterobacterial common antigen after typhoid vaccination

    Directory of Open Access Journals (Sweden)

    Arlete M. Milhomem

    1987-03-01

    Full Text Available Antibodies against the Salmonella typhi enterobacterial common antigen (ECA and the O and H antigens were investigated in sera from healthy male subjects who had been previously vaccinated with the typhoid vaccine. No serological response to ECA was observed. Sera from subjects not previously vaccinated presented titers of ECA hemagglutinins which quantitatively were related to the presence ofH titers, but not to O agglutinins but with no statistical significance. The results are discussed in relation to the possible protective immunological mechanisms in typhoid fever.Anticorpos contra o antígeno comum de enterobactérias (ECA bem como contra os antigenos somáticos (O e flagelar (H de Salmonella typhi foram investigados no soro de recrutas do sexo masculino, após a vacinação. Não fo i detectada resposta humoral para ECA. Os soros obtidos antes da vacinação mostraram hemaglutininas para ECA acompanhando a presença de aglutininas para o antígeno H, ao contrário do que se observou em relação ao antígeno O. Discutem-se os resultados quanto ao possível mecanismo da imunoproteção da febre tifóide.

  7. Non-immunogenicity of overlapping gag peptides pulsed on autologous cells after vaccination of HIV infected individuals.

    Directory of Open Access Journals (Sweden)

    Henrik N Kløverpris

    Full Text Available BACKGROUND: HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping Gag peptides on autologous lymphocytes (OPAL has proven immunogenic and effective in reducing viral loads in multiple pigtail macaque studies, warranting clinical evaluation. METHODOLOGY: We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach 'OPAL-HIV-Gag(c'. This vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous reinfusion. Patients with undetectable HIV viral loads (<50 copies/ml plasma on HAART received four administrations at week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups: 12 mg (n = 6, 24 mg (n = 7, 48 mg (n = 2 or matching placebo (n = 8 with 18 immunologically evaluable. T-cell immunogenicity was assessed by IFNγ ELIspot and intracellular cytokine staining (ICS. RESULTS: The OPAL-HIV-Gag(c peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c, 1/6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked, transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours in OPAL-HIV-Gag(c but not in placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P<0.001, compared to post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16. CONCLUSION

  8. Biological role of surface Toxoplasma gondii antigen in development of vaccine

    Institute of Scientific and Technical Information of China (English)

    Ke-Yi Liu; Dian-Bo Zhang; Qing-Kuan Wei; Jin Li; Gui-Ping Li; Jin-Zhi Yu

    2006-01-01

    AIM: To analyze the biological role of the surface antigen of Toxoplasma gondii (T gondii) in development of vaccine.METHODS: The surface antigen of Tgondii (SAG1)was expressed in vitro. The immune response of the host to the antigen was investigated by detection of specific antibody reaction to SAG1 and production of cytokines. Mice were immunized with recombinant SAG1and challenged with lethal strain of T gondii RH. The monoclonal antibody to r-SAG1 was prepared and used to study the effects of SAG1 on T gondii tachyzoites under electromicroscope.RESULTS:The mice immunized with recombinant SAG1 delayed death for 60 h compared to the control group.The recombinant SAG1 induced specific high titer of IgG and IgM antibodies as well as IFN-γ, IL-2 and IL-4cytokines in mice. In contrast, IL-12, IL-6 and TNF-αwere undetectable. When T gondii tachyzoites were treated with the monoclonal antibody to r-SAG1, the parasites were gathered together, destroyed, deformed,swollen, and holes and gaps formed on the surface.CONCLUSION: SAG1 may be an excellent vaccine candidate against T gondii. The immune protection induced by SAG1 against Tgondii may be regulated by both hormone- and cell-mediated immune response.

  9. Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli.

    Science.gov (United States)

    Moriel, Danilo Gomes; Bertoldi, Isabella; Spagnuolo, Angela; Marchi, Sara; Rosini, Roberto; Nesta, Barbara; Pastorello, Ilaria; Corea, Vanja A Mariani; Torricelli, Giulia; Cartocci, Elena; Savino, Silvana; Scarselli, Maria; Dobrindt, Ulrich; Hacker, Jörg; Tettelin, Hervé; Tallon, Luke J; Sullivan, Steven; Wieler, Lothar H; Ewers, Christa; Pickard, Derek; Dougan, Gordon; Fontana, Maria Rita; Rappuoli, Rino; Pizza, Mariagrazia; Serino, Laura

    2010-05-18

    Extraintestinal pathogenic Escherichia coli (ExPEC) are a common cause of disease in both mammals and birds. A vaccine to prevent such infections would be desirable given the increasing antibiotic resistance of these bacteria. We have determined the genome sequence of ExPEC IHE3034 (ST95) isolated from a case of neonatal meningitis and compared this to available genome sequences of other ExPEC strains and a few nonpathogenic E. coli. We found 19 genomic islands present in the genome of IHE3034, which are absent in the nonpathogenic E. coli isolates. By using subtractive reverse vaccinology we identified 230 antigens present in ExPEC but absent (or present with low similarity) in nonpathogenic strains. Nine antigens were protective in a mouse challenge model. Some of them were also present in other pathogenic non-ExPEC strains, suggesting that a broadly protective E. coli vaccine may be possible. The gene encoding the most protective antigen was detected in most of the E. coli isolates, highly conserved in sequence and found to be exported by a type II secretion system which seems to be nonfunctional in nonpathogenic strains. PMID:20439758

  10. Antigen-oriented T cell migration contributes to myelin peptide induced-EAE and immune tolerance.

    Science.gov (United States)

    Zheng, Peiguo; Fu, Hanxiao; Wei, Gaohui; Wei, Zhongwei; Zhang, Junhua; Ma, Xuehan; Rui, Dong; Meng, Xianchun; Ming, Liang

    2016-08-01

    Treatment with soluble myelin peptide can efficiently and specifically induce tolerance to demyelination autoimmune diseases including multiple sclerosis, however the mechanism underlying this therapeutic effect remains to be elucidated. In actively induced mouse model of experimental autoimmune encephalomyelitis (EAE) we analyzed T cell and innate immune cell responses in the central nervous system (CNS) and spleen after intraperitoneal (i.p.) infusion of myelin oligodendrocyte glycoprotein (MOG). We found that i.p. MOG infusion blocked effector T cell recruitment to the CNS and protected mice from EAE and lymphoid organ atrophy. Innate immune CD11b(+) cells preferentially recruited MOG-specific effector T cells, particularly when activated to become competent antigen presenting cells (APCs). During EAE development, mature APCs were enriched in the CNS rather than in the spleen, attracting effector T cells to the CNS. Increased myelin antigen exposure induced CNS-APC maturation, recruiting additional effector T cells to the CNS, causing symptoms of disease. MOG triggered functional maturation of splenic APCs. MOG presenting APCs interacted with MOG-specific T cells in the spleen, aggregating to cluster around CD11b(+) cells, and were trapped in the periphery. This process was MHC II dependent as an MHC II directed antibody blocked CD4(+) T cell cluster formation. These findings highlight the role of myelin peptide-loaded APCs in myelin peptide-induced EAE and immune tolerance. PMID:27327113

  11. HA03 as an Iranian Candidate Concealed Antigen for Vaccination against Hyalomma anatolicum anatolicum: Comparative Structural and In silico Studies

    Directory of Open Access Journals (Sweden)

    Mohammadi, A.

    2013-12-01

    Full Text Available In the last decades researchers had focused on developing a vaccine against tick based on protective antigen. Recombinant vaccines based on concealed antigen from Boophilus microplus have been developed in Australia and Cuba by the name of TICKGARD and GAVAC (De La Fuente and Kocan, 2006. Further studies on this antigen have shown some extent of protection against other species (De Vos et al., 2001. In Iran most important species is Hyalomma anatolicum and limited information about its control are available. This paper reports structural and polymorphic analysis of HA03 as an Iranian candidate concealed antigen of H. a. anatolicum deposited in Gen-Bank .(Aghaeipour et al. GQ228820. The comparison between this antigen and other mid gut concealed antigen that their characteristics are available in GenBank showed there are high rate of similarity between them. The HA03 amino acid sequence had a homology of around 89%, 64%, 56% with HA98, BM86, BM95 respectively. Potential of MHC class I and II binding region indicated a considerable variation between BM86 antigen and its efficiency against Iranian H. a. anatolicum. In addition, predicted major of hydrophobisity and similarity in N-glycosylation besides large amount of cystein and seven EGF like regions presented in protein structure revealed that value of HA03 as a new protective antigen and the necessity of the development, BM86 homolog of H. a. anatolicum HA03 based recombinant vaccine.

  12. Sequence Variation and Immunologic Cross-Reactivity among Babesia bovis Merozoite Surface Antigen 1 Proteins from Vaccine Strains and Vaccine Breakthrough Isolates

    Science.gov (United States)

    LeRoith, Tanya; Brayton, Kelly A.; Molloy, John B.; Bock, Russell E.; Hines, Stephen A.; Lew, Ala E.; McElwain, Terry F.

    2005-01-01

    The Babesia bovis merozoite surface antigen 1 (MSA-1) is an immunodominant membrane glycoprotein that is the target of invasion-blocking antibodies. While antigenic variation has been demonstrated in MSA-1 among strains from distinct geographical areas, the extent of sequence variation within a region where it is endemic and the effect of variation on immunologic cross-reactivity have not been assessed. In this study, sequencing of MSA-1 from two Australian B. bovis vaccine strains and 14 breakthrough isolates from vaccinated animals demonstrated low sequence identity in the extracellular region of the molecule, ranging from 19.8 to 46.7% between the T vaccine strain and eight T vaccine breakthrough isolates, and from 18.7 to 99% between the K vaccine strain and six K vaccine breakthrough isolates. Although MSA-1 amino acid sequence varied substantially among strains, overall predicted regions of hydrophilicity and hydrophobicity in the extracellular domain were conserved in all strains examined, suggesting a conserved functional role for MSA-1 despite sequence polymorphism. Importantly, the antigenic variation created by sequence differences resulted in a lack of immunologic cross-reactivity among outbreak strains using sera from animals infected with the B. bovis vaccine strains. Additionally, sera from cattle hyperinfected with the Mexico strain of B. bovis and shown to be clinically immune did not cross-react with MSA-1 from any other isolate tested. The results indicate that isolates of B. bovis capable of evading vaccine-induced immunity contain an msa-1 gene that is significantly different from the msa-1 of the vaccine strain, and that the difference can result in a complete lack of cross-reactivity between MSA-1 from vaccine and breakthrough strains in immunized animals. PMID:16113254

  13. Assessing the relationship between antigenicity and immunogenicity of human rabies vaccines when administered by intradermal route: results of a metaanalysis.

    Science.gov (United States)

    Sudarshan, Mysore K; Gangaboraiah, Bilagumba; Ravish, Haradanahalli S; Narayana, Doddabele H Ashwath

    2010-07-01

    The metadata of 10 published studies and 3 vaccine trial reports comprising of 19 vaccine cohorts from four countries conducted over a period of 23 years (1986 - 2009) was used for metaanalysis. The vaccines studied were purified chick embryo cell vaccine (Rabipur, India & Germany), purified vero cell rabies vaccine (Verorab, France; Indirab, India) & human diploid cell vaccine (MIRV, France).The potency of these vaccines varied from 0.55 IU to 2.32 IU per intradermal dose of 0.1 ml per site. The vaccines were administered to 1,011 subjects comprising of 19 cohorts and using five different ID regimens. The immunogenicity was measured by assays of rabies virus neutralizing antibody (RVNA) titres using rapid fluorescent focus inhibition test (RFFIT) [15 cohorts] and mouse neutralization test (MNT) [4 cohorts]. The statistical analysis of the data was done by Karl Pearson's correlation coefficient to measure the relationship between antigenicity and immunogenicity. It was revealed that, there was no significant linear relationship between antigenicity and immunogenicity of rabies vaccines when administered by intradermal route. (p> 0.230 and p>0.568). PMID:20523131

  14. Immunogenic and antigenic activity of an experimental oral rabies vaccine prepared from the strain Vnukovo-32/107.

    Science.gov (United States)

    Svrcek, S; Durove, A; Ondrejka, R; Závadová, J; Süliová, J; Benísek, Z; Vrtiak, O J; Feketeová, J; Mad'ar, M

    1995-03-01

    The immunogenic and antigenic activity of an experimental live oral rabies vaccine prepared from the strain Vnukovo-32/107 was evaluated on the basis of results obtained in 3 sets of experiments. These were carried out as model experiments on white mice, then on target animals--red foxes (Vulpes vulpes) and a related species--farm-bred polar foxes (Alopex lagopus). For quantitative determination of the immunogenic activity of the orally or subcutaneously administered rabies vaccines in model experiments on mice a method was used that had been developed in our laboratory. Antibodies were detected and quantified by an ELISA kit that had also been developed in our lab. Tenacity of the experimental vaccine (infectious tissue culture medium after yolk addition) was verified at different temperatures; the effects of storage temperature upon virus titre and immunogenic activity were investigated. An important part of the experiments--evaluation of the antigenic and immunogenic activity of the live vaccine at oral vaccination (vaccination baits, conditions simulating field vaccination) was carried out in foxes. The immunogenic activity (challenge experiments with a street virus on day 180 and 360 after vaccination) was evaluated in common foxes (Vulpes vulpes). The results document a high immunogenic and antigenic activity of the experimental live oral rabies vaccine. The strain Vnukovo-32/107 is suitable for the industrial manufacturing of vaccination baits. In the target species--common foxes challenged on day 180 after primovaccination an 83% protection was observed. Challenge on day 180 after revaccination (or day 360 after primovaccination), the orally immunized foxes proved to be 100% protected. For parallel evaluation of the immunogenic activity of an oral vaccine and for antibody titration it is recommended to employ the quantitative mice test and an ELISA technique, respectively. PMID:7762124

  15. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn;

    2007-01-01

    absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T-cell...... elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin......-linked lymphocytic choriomeningitis virus (LCMV)-derived epitopes was long-lived and protective. Notably, in contrast to full-length protein, the response elicited with the beta(2)-microglobulin-linked LCMV-derived epitope was CD4(+) T-cell independent. Furthermore, virus-specific CD8(+) T cells primed in the...

  16. The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development

    DEFF Research Database (Denmark)

    Hviid, Lars

    2010-01-01

    There is substantial immuno-epidemiological evidence that the parasite-encoded, so-called variant surface antigens (VSAs), such as PfEMP1 on the surface of infected erythrocytes (IEs) are important-in some cases probably decisive determinants of clinical outcome of P. falciparum malaria. The...... evidence is increasingly being underpinned by specific molecular understanding of the pathogenic processes involved. Pregnancy-associated malaria (PAM) caused by placenta-sequestering IEs expressing the PfEMP1 variant VAR2CSA is a particularly striking example of this. These findings have raised hopes that...... development of PfEMP1-based vaccines to protect specifically against severe malaria syndromes-in particular PAM-is feasible. This review summarizes the evidence that VSAs are important targets of NAI, discusses why VSA-based vaccines might be feasible despite the extensive intra- and interclonal variation of...

  17. Identification and evaluation of vaccine candidate antigens from the poultry red mite (Dermanyssus gallinae).

    Science.gov (United States)

    Bartley, Kathryn; Wright, Harry W; Huntley, John F; Manson, Erin D T; Inglis, Neil F; McLean, Kevin; Nath, Mintu; Bartley, Yvonne; Nisbet, Alasdair J

    2015-11-01

    An aqueous extract of the haematophagous poultry ectoparasite, Dermanyssus gallinae, was subfractionated using anion exchange chromatography. Six of these subfractions were used to immunise hens and the blood from these hens was fed, in vitro, to poultry red mites. Mite mortality following these feeds was indicative of protective antigens in two of the subfractions, with the risks of mites dying being 3.1 and 3.7 times higher than in the control group (P<0.001). A combination of two-dimensional immunoblotting and immunoaffinity chromatography, using IgY from hens immunised with these subfractions, was used in concert with proteomic analyses to identify the strongest immunogenic proteins in each of these subfractions. Ten of the immunoreactive proteins were selected for assessment as vaccine candidates using the following criteria: intensity of immune recognition; likelihood of exposure of the antigen to the antibodies in a blood meal; proposed function and known vaccine potential of orthologous molecules. Recombinant versions of each of these 10 proteins were produced in Escherichia coli and were used to immunise hens. Subsequent in vitro feeding of mites on blood from these birds indicated that immunisation with Deg-SRP-1 (serpin), Deg-VIT-1 (vitellogenin), Deg-HGP-1 (hemelipoglycoprotein) or Deg-PUF-1 (a protein of unknown function) resulted in significantly increased risk of mite death (1.7-2.8times higher than in mites fed blood from control hens immunised with adjuvant only, P<0.001). The potential for using these antigens in a recombinant vaccine is discussed. PMID:26296690

  18. Prior infection with influenza virus but not vaccination leaves a long-term immunological imprint that intensifies the protective efficacy of antigenically drifted vaccine strains.

    Science.gov (United States)

    Kim, Jin Hyang; Liepkalns, Justine; Reber, Adrian J; Lu, Xiuhua; Music, Nedzad; Jacob, Joshy; Sambhara, Suryaprakash

    2016-01-20

    The role of pre-existing immunity for influenza vaccine responses is of great importance for public health, and thus has been studied in various contexts, yet the impact of differential priming on vaccine responses in the midst of antigenic drift remains to be elucidated. To address this with antigenically related viruses, mice were first primed by either infection or immunization with A/Puerto Rico/8/34 (PR8) virus, then immunized with whole-inactivated A/Fort Monmouth/1/47 (FM1) virus. The ensuing vaccine responses and the protective efficacy of FM1 were superior in PR8 infection-primed mice compared to PR8 immunization-primed or unprimed mice. Increased FM1-specific Ab responses of PR8 infection-primed mice also broadened cross-reactivity against contemporary as well as antigenically more drifted strains. Further, prior infection heightened the protective efficacy of antigenically distant strains, such as A/Brisbane/59/2006 infection followed by immunization with split pandemic H1N1 vaccine (A/California/07/2009). Therefore, influenza infection is a significant priming event that intensifies future vaccine responses against drift strains. PMID:26706277

  19. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    Science.gov (United States)

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  20. A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague.

    Science.gov (United States)

    Rocke, Tonie E; Kingstad-Bakke, Brock; Berlier, Willy; Osorio, Jorge E

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas. PMID:26344891

  1. A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague

    Directory of Open Access Journals (Sweden)

    Tonie E. Rocke

    2014-10-01

    Full Text Available In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN expressing Yersinia pestis antigens (F1 and V307—a truncated version of the V protein provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  2. Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides: S1 specificity of ERAP1, ERAP2 and IRAP

    OpenAIRE

    Zervoudi, Efthalia; Papakyriakou, Athanasios; Georgiadou, Dimitra; Evnouchidou, Irini; Gajda, Anna; Poreba, Marcin; Salvesen, Guy S.; Drag, Marcin; Hattori, Akira; Swevers, Luc; Vourloumis, Dionisios; Stratikos, Efstratios

    2011-01-01

    ER aminopeptidase 1 (ERAP1), ER aminopeptidase 2 (ERAP2) and Insulin Regulated aminopeptidase (IRAP) are three homologous enzymes that play critical roles in the generation of antigenic peptides. These aminopeptidases excise amino acids from N-terminally extended precursors of antigenic peptides in order to generate the correct length epitopes for binding onto MHC class I molecules. The specificity of these peptidases can affect antigenic peptide selection, but has not yet been investigated i...

  3. Phase I Trial of a CD8+ T-Cell Peptide Epitope-Based Vaccine for Infectious Mononucleosis▿

    OpenAIRE

    Elliott, Suzanne L.; Suhrbier, Andreas; Miles, John J.; Lawrence, Greg; Pye, Stephanie J.; Le, Thuy T.; Rosenstengel, Andrew; Nguyen, Tam; Allworth, Anthony; Burrows, Scott R.; COX, JOHN; Pye, David; Moss, Denis J.; Bharadwaj, Mandvi

    2007-01-01

    A single blind, randomized, placebo-controlled, single-center phase I clinical trial of a CD8+ T-cell peptide epitope vaccine against infectious mononucleosis was conducted with 14 HLA B*0801-positive, Epstein-Barr virus (EBV)-seronegative adults. The vaccine comprised the HLA B*0801-restricted peptide epitope FLRGRAYGL and tetanus toxoid formulated in a water-in-oil adjuvant, Montanide ISA 720. FLRGRAYGL-specific responses were detected in 8/9 peptide-vaccine recipients and 0/4 placebo vacci...

  4. Immunogenicity and safety of hepatitis E vaccine in healthy hepatitis B surface antigen positive adults

    OpenAIRE

    Wu, Ting; Huang, Shou-Jie; Zhu, Feng-Cai; Zhang, Xue-Feng; AI, XING; Yan, Qiang; Wang, Zhong-Ze; Yang, Chang-Lin; Jiang, Han-Min; Liu, Xiao-Hui; Guo, Meng; Du, Hai-Lian; Ng, Mun-Hon; Zhang, Jun; Xia, Ningshao

    2013-01-01

    A recombinant hepatitis E vaccine, Hecolin®, has been proven safe and effective in healthy adults. As hepatitis B surface antigen (HBsAg) positive individuals have a higher risk of poor prognosis after super-infection with hepatitis E virus (HEV), the safety and immunogenicity of Hecolin® in this population should be assessed. The present study is an extending analysis of data from a large randomized controlled clinical trial of Hecolin®. Healthy participants (n = 14,065) without current or p...

  5. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    Energy Technology Data Exchange (ETDEWEB)

    Witek, Matthew [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Blomain, Erik S.; Magee, Michael S.; Xiang, Bo; Waldman, Scott A. [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Snook, Adam E., E-mail: adam.snook@jefferson.edu [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2014-04-01

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responses were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance

  6. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    International Nuclear Information System (INIS)

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responses were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance

  7. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2013-02-01

    Full Text Available Abstract While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML and chronic myeloid leukemia (CML, the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.

  8. Monitoring antigenic variations of enterovirus 71: implications for virus surveillance and vaccine development.

    Directory of Open Access Journals (Sweden)

    Min-Yuan Chia

    2014-07-01

    Full Text Available Enterovirus 71 (EV71 causes life-threatening epidemics in Asia and can be phylogenetically classified into three major genogroups (A ∼ C including 11 genotypes (A, B1 ∼ B5, and C1 ∼ C5. Recently, EV71 epidemics occurred cyclically in Taiwan with different genotypes. In recent years, human studies using post-infection sera obtained from children have detected antigenic variations among different EV71 strains. Therefore, surveillance of enterovirus 71 should include phylogenetic and antigenic analysis. Due to limitation of sera available from children with EV71 primary infection, suitable animal models should be developed to generate a panel of antisera for monitoring EV71 antigenic variations. Twelve reference strains representing the 11 EV71 genotypes were grown in rhabdomyosarcoma cells. Infectious EV71 particles were purified and collected to immunize rabbits. The rabbit antisera were then employed to measure neutralizing antibody titers against the 12 reference strains and 5 recent strains. Rabbits immunized with genogroup B and C viruses consistently have a lower neutralizing antibody titers against genogroup A (≧ 8-fold difference and antigenic variations between genogroup B and C viruses can be detected but did not have a clear pattern, which are consistent with previous human studies. Comparison between human and rabbit neutralizing antibody profiles, the results showed that ≧ 8-fold difference in rabbit cross-reactive antibody ratios could be used to screen EV71 isolates for identifying potential antigenic variants. In conclusion, a rabbit model was developed to monitor antigenic variations of EV71, which are critical to select vaccine strains and predict epidemics.

  9. Characterization of antigen processing and presentation by peptide-linked MHC class I molecules

    OpenAIRE

    Tiwari, Neeraj

    2005-01-01

    MHC-Klasse-I-Moleküle präsentieren gewöhnlich Peptide, die aus zytosolischen Antigenproteinen durch proteasomalen Verdau generiert und anschließend vom TAP-Peptidtransporter ins endoplasmatische Retikulum transportiert werden. Es können jedoch auch endozytierte Antigene für die MHC-Klasse-I-vermittelten Antigenpräsentation prozessiert werden, wobei dieser alternative Weg entweder in einer Proteasom/TAP-abhängigen oder unabhängigen Weise abläuft. Während diese so genannte „Kreuzpräsentation“ f...

  10. Mapping the antigenic structure of porcine parvovirus at the level of peptides

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Langeveld, Jan; Bøtner, Anette;

    1998-01-01

    The antigenic structure of the capsid proteins of porcine parvovirus (PPV) was investigated. A total of nine linear epitopes were identified by Pepscan using porcine or rabbit anti-PPV antisera. No sites were identified with a panel of neutralising monoclonal antibodies (MAbs). All epitopes were...... located in the region corresponding to the major capsid protein VP2. Based on this information, and on analogy to other autonomous parvoviruses, 24 different peptides were synthesised, coupled to keyhole limpet haemocyanin (KLH) and used to immunise rabbits. Most antisera were able to bind viral protein...

  11. ANAMNESTIC IMMUNE RESPONSE EIGHT YEARS AFTER IMMUNIZATION OF PRIMATES WITH A MULTIVALENT HIV-1 GP120 VARIABLE PEPTIDE VACCINE

    Directory of Open Access Journals (Sweden)

    Rebecca Rivera

    2013-01-01

    Full Text Available Successful development of an effective HIV vaccine hasn’t occurred yet partly as a consequence of the antigenic variation deployed by HIV-1 to escape the immune system. Our laboratory is dedicated to develop a single peptide synthesis approach to create multivalent peptides representing hypervariable epitopes of the gp120 envelope glycoprotein of HIV-1. Our previous study showed that our HIV HECs are potent immunogens that activate both humoral and cellular arms of the acquired immune response and that these responses are broadly reactive, recognizing epitopes from divergent strains of HIV-1. To detect the long term duration of memory response induced by HIV HECs, two rhesus macaques were immunized at weeks 0 and 8 and euthanized two weeks after a third immunization at week 393 (more than 8 years later. Antibody response to individual components of HIV HEC immunogens and HIV HEC-induced cross-reactive antibody response were determined by an Enzyme-Linked Immunosorbent Assay (ELISA. The antibody titer to individual HIV HEC components and a mixture of the five peptides was greater than 1:5000 dilution. Antibodies from HIV HEC-immunized macaques recognized HIV HEC analogs representing the monovalent epitopes of five variable regions of gp120 from subtype B HIV-1 MN, HIV-1 RF and HIV-1 SF2 isolates with an antibody titer greater than 1: 500 dilution. Moreover, lymphocytes from lymph nodes of HIV HEC-immunized macaques showed T cell proliferative responses specific to HIV HEC individual components and to the five HIV HEC peptides combined. Our results clearly show that in these two macaques, HIV HECs induced strong, long-lasting anamnestic immune responses 8 years after immunization.

  12. Neutralizing antibody and functional mapping of Bacillus anthracis protective antigen-The first step toward a rationally designed anthrax vaccine.

    Science.gov (United States)

    McComb, Ryan C; Martchenko, Mikhail

    2016-01-01

    Anthrax is defined by the Centers for Disease Control and Prevention as a Category A pathogen for its potential use as a bioweapon. Current prevention treatments include Anthrax Vaccine Adsorbed (AVA). AVA is an undefined formulation of Bacillus anthracis culture supernatant adsorbed to aluminum hydroxide. It has an onerous vaccination schedule, is slow and cumbersome to produce and is slightly reactogenic. Next-generation vaccines are focused on producing recombinant forms of anthrax toxin in a well-defined formulation but these vaccines have been shown to lose potency as they are stored. In addition, studies have shown that a proportion of the antibody response against these vaccines is focused on non-functional, non-neutralizing regions of the anthrax toxin while some essential functional regions are shielded from eliciting an antibody response. Rational vaccinology is a developing field that focuses on designing vaccine antigens based on structural information provided by neutralizing antibody epitope mapping, crystal structure analysis, and functional mapping through amino acid mutations. This information provides an opportunity to design antigens that target only functionally important and conserved regions of a pathogen in order to make a more optimal vaccine product. This review provides an overview of the literature related to functional and neutralizing antibody epitope mapping of the Protective Antigen (PA) component of anthrax toxin. PMID:26611201

  13. Dendritic Cell Cancer Vaccines: From the Bench to the Bedside

    Directory of Open Access Journals (Sweden)

    Tamar Katz

    2014-10-01

    Full Text Available The recognition that the development of cancer is associated with acquired immunodeficiency, mostly against cancer cells themselves, and understanding pathways inducing this immunosuppression, has led to a tremendous development of new immunological approaches, both vaccines and drugs, which overcome this inhibition. Both “passive” (e.g. strategies relying on the administration of specific T cells and “active” vaccines (e.g. peptide-directed or whole-cell vaccines have become attractive immunological approaches, inducing cell death by targeting tumor-associated antigens. Whereas peptide-targeted vaccines are usually directed against a single antigen, whole-cell vaccines (e.g. dendritic cell vaccines are aimed to induce robust responsiveness by targeting several tumor-related antigens simultaneously. The combination of vaccines with new immuno-stimulating agents which target “immunosuppressive checkpoints” (anti-CTLA-4, PD-1, etc. is likely to improve and maintain immune response induced by vaccination.

  14. A novel virus-like particle based vaccine platform displaying the placental malaria antigen VAR2CSA

    DEFF Research Database (Denmark)

    Thrane, Susan; Janitzek, Christoph M; Agerbæk, Mette Ø;

    2015-01-01

    failed during clinical testing, virus-like particle (VLP) based vaccines (e.g., the licensed human papillomavirus vaccines) have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response......Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible...... for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have...

  15. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.

    Directory of Open Access Journals (Sweden)

    Susan Thrane

    Full Text Available Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP based vaccines (e.g., the licensed human papillomavirus vaccines have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of

  16. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.

    Science.gov (United States)

    Thrane, Susan; Janitzek, Christoph M; Agerbæk, Mette Ø; Ditlev, Sisse B; Resende, Mafalda; Nielsen, Morten A; Theander, Thor G; Salanti, Ali; Sander, Adam F

    2015-01-01

    Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP) based vaccines (e.g., the licensed human papillomavirus vaccines) have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM) can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA)-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of parasites to CSA

  17. Cross-protective peptide vaccine against influenza A viruses developed in HLA-A*2402 human immunity model.

    Directory of Open Access Journals (Sweden)

    Toru Ichihashi

    Full Text Available BACKGROUND: The virus-specific cytotoxic T lymphocyte (CTL induction is an important target for the development of a broadly protective human influenza vaccine, since most CTL epitopes are found on internal viral proteins and relatively conserved. In this study, the possibility of developing a strain/subtype-independent human influenza vaccine was explored by taking a bioinformatics approach to establish an immunogenic HLA-A24 restricted CTL epitope screening system in HLA-transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-A24 restricted CTL epitope peptides derived from internal proteins of the H5N1 highly pathogenic avian influenza A virus were predicted by CTL epitope peptide prediction programs. Of 35 predicted peptides, six peptides exhibited remarkable cytotoxic activity in vivo. More than half of the mice which were subcutaneously vaccinated with the three most immunogenic and highly conserved epitopes among three different influenza A virus subtypes (H1N1, H3N2 and H5N1 survived lethal influenza virus challenge during both effector and memory CTL phases. Furthermore, mice that were intranasally vaccinated with these peptides remained free of clinical signs after lethal virus challenge during the effector phase. CONCLUSIONS/SIGNIFICANCE: This CTL epitope peptide selection system can be used as an effective tool for the development of a cross-protective human influenza vaccine. Furthermore this vaccine strategy can be applicable to the development of all intracellular pathogens vaccines to induce epitope-specific CTL that effectively eliminate infected cells.

  18. Bacterial antigen expression is an important component in inducing an immune response to orally administered Salmonella-delivered DNA vaccines.

    Directory of Open Access Journals (Sweden)

    Michelle E Gahan

    Full Text Available BACKGROUND: The use of Salmonella to deliver heterologous antigens from DNA vaccines is a well-accepted extension of the success of oral Salmonella vaccines in animal models. Attenuated S. typhimurium and S. typhi strains are safe and efficacious, and their use to deliver DNA vaccines combines the advantages of both vaccine approaches, while complementing the limitations of each technology. An important aspect of the basic biology of the Salmonella/DNA vaccine platform is the relative contributions of prokaryotic and eukaryotic expression in production of the vaccine antigen. Gene expression in DNA vaccines is commonly under the control of the eukaryotic cytomegalovirus (CMV promoter. The aim of this study was to identify and disable putative bacterial promoters within the CMV promoter and evaluate the immunogenicity of the resulting DNA vaccine delivered orally by S. typhimurium. METHODOLOGY/PRINCIPAL FINDINGS: The results reported here clearly demonstrate the presence of bacterial promoters within the CMV promoter. These promoters have homology to the bacterial consensus sequence and functional activity. To disable prokaryotic expression from the CMV promoter a series of genetic manipulations were performed to remove the two major bacterial promoters and add a bacteria transcription terminator downstream of the CMV promoter. S. typhimurium was used to immunise BALB/c mice orally with a DNA vaccine encoding the C-fragment of tetanus toxin (TT under control of the original or the modified CMV promoter. Although both promoters functioned equally well in eukaryotic cells, as indicated by equivalent immune responses following intramuscular delivery, only the original CMV promoter was able to induce an anti-TT specific response following oral delivery by S. typhimurium. CONCLUSIONS: These findings suggest that prokaryotic expression of the antigen and co-delivery of this protein by Salmonella are at least partially responsible for the successful

  19. Evidence for the utility of the Bm86 antigen from Boophilus microplus in vaccination against other tick species.

    Science.gov (United States)

    de Vos, S; Zeinstra, L; Taoufik, O; Willadsen, P; Jongejan, F

    2001-01-01

    The Bm86 antigen, as originally identified in Boophilus microplus, is the basis of commercial tick vaccines against this tick species. The potential for using this antigen or homologues of the antigen in vaccination against other tick species has been assessed. We have conducted vaccine trials in cattle using the B. microplus-derived recombinant Bm86 vaccine (TickGARD) using pairs of vaccinated calves and control calves. These were infested with B. microplus and Boophilus decoloratus larvae simultaneously. For both species, the numbers of engorged female adult ticks, their weight and egg-laying capacity were all reduced, leading to a reduction in reproductive capacity of 74% for B. microplus and 70% for B. decoloratus. Hyalomma anatolicum anatolicum ticks were fed both as immatures as well as adults on vaccinated calves and non-vaccinated controls. There was an overall 50% reduction in the total weight of nymphs engorging on vaccinated calves, and a suggestion of a subsequent effect on feeding adults. For Hyalomma dromedarii there was a 95% reduction in the number of nymphs engorging and a further 55% reduction in weight of those ticks surviving. Rhipicephalus appendiculatus and Amblyomma variegatum ticks were fed simultaneously both as immatures and subsequently as adults. There was no evidence for a significant vaccination effect. Finally, the amino acid sequence of a Bm86 homologue found in H. a. anatolicum unequivocally demonstrated the conservation of this molecule in this species. Our strategy for the development of multivalent anti-tick vaccines is discussed in relation to these findings. PMID:11523920

  20. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP) fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    OpenAIRE

    Rafael Dhalia; Milton Maciel Jr.; Fábia S.P. Cruz; Isabelle F.T. Viana; Mariana L. Palma; Thomas August; Ernesto T.A. Marques Jr.

    2009-01-01

    Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmi...

  1. PreS1 epitope recognition in newborns after vaccination with the third-generation Sci-B-Vac™ vaccine and their relation to the antibody response to hepatitis B surface antigen

    Directory of Open Access Journals (Sweden)

    Madalinski Kazimierz

    2009-01-01

    Full Text Available Abstract Background Sci-B-Vac™ is a recombinant, hepatitis B vaccine derived from a mammalian cell line and containing hepatitis B surface antigen (HBsAg as well as preS1 and preS2 antigens. Few studies have been performed on the antibody responses to preS1 in relation to the antibody to hepatitis B surface antigen (anti-HBs response during immunisation of healthy children with preS-containing vaccines. Results In this study 28 healthy newborns were randomly selected to receive either 2.5 ug or 5.0 ug of the Sci-B-Vac vaccine. Children received three doses of vaccine according to a 0-, 1-, 6-month scheme. Antibodies against the S-protein and three synthetic peptides mimicking three B-cell preS1 epitopes, (21–32 amino acid epitope, (32–47 amino acid epitope and the C-terminal (amino acid epitope 94–117 were determined at 6 and 9 months. Fourteen (50% of the 28 newborns had detectable levels of anti-preS1 (21–32 antibodies; 15 (54% were anti-preS1 (32–47 reactive and 12 (43% were anti-preS1 (94–117 reactive at 6 or 9 months after initiation of the vaccination. Significantly higher levels of anti-HBs were observed in the sera of patients with detectable anti-preS1 (32–47 reactivity (24 550 ± 7375 IU/L, mean ± SEM as compared with the non-reactive sera (5991 ± 1530 IU/L, p Conclusion Recognition of several preS1 epitopes, and in particular, the epitope contained within the second half of the hepatocyte binding site localised in the hepatitis B surface protein of the third-generation hepatitis B vaccine is accompanied by a more pronounced antibody response to the S-gene-derived protein in healthy newborns.

  2. Structures of MART-126/27-35Peptide/HLA-A2 Complexes Reveal a Remarkable Disconnect between Antigen Structural Homology and T Cell Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Borbulevych, Oleg Y; Insaidoo, Francis K; Baxter, Tiffany K; Powell, Jr., Daniel J.; Johnson, Laura A; Restifo, Nicholas P; Baker, Brian M [NIH; (Notre)

    2008-09-17

    Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning amino acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26-35 decamer, although only the 27-35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26-35 and 27-35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-1{sub 26/27-35}-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27-35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone.

  3. Molecular Design and Immunogenicity of a Multiple-epitope FMDV Antigen and DNA Vaccination

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This article reports the design and construction of a multiple-epitope foot and mouth disease virus (FMDV)antigen, designated as OAAT. This recombinant antigen consists of the structural protein VP1 genes from serotypes A and O FMDV, five major VP1 immunodominant epitopes from two genotypes of Asia1 serotype, and three Th2 epitopes originating from the nonstructural protein, three ABC gene and structural protein VP4 gene. Expressions of target gene from these plasmids in HeLa cells were verified by Western-blot. BALB/c mice were immunized intramuscularly with the DNA vaccines thrice every two weeks. We found that pA could induce simultaneously specific antibodies against serotypes A, Asia1, and O FMDV. Compared to those of the controls, the spots of FMDV-specific IFN-γ and cytotoxic activity from mice immunized with pA were significantly increased. pA provided full protection in 2/4 guinea pigs from challenge with FMDV O/NY00 and Asia1/YNBS/58, respectively. The results show that although pA did not give full protection in 100% immunized guinea pigs from challenge with type O and Asia1 FMDV, respectively, OAAT may be potential immunogen against FMDV and pA may be potential DNA vaccines against FMDV.

  4. Amiloride enhances antigen specific CTL by faciliting HBV DNA vaccine entry into cells.

    Directory of Open Access Journals (Sweden)

    Shuang Geng

    Full Text Available The induction of relatively weak immunity by DNA vaccines in humans can be largely attributed to the low efficiency of transduction of somatic cells. Although formulation with liposomes has been shown to enhance DNA transduction of cultured cells, little, if any, effect is observed on the transduction of somatic tissues and cells. To improve the rate of transduction, DNA vaccine delivery by gene gun and the recently developed electroporation techniques have been employed. We report here that to circumvent requirement for such equipment, amiloride, a drug that is prescribed for hypertension treatment, can accelerate plasmid entry into antigen presenting cells (APCs both in vitro and in vivo. The combination induced APCs more dramatically in both maturation and cytokine secretion. Amiloride enhanced development of full CD8 cytolytic function including induction of high levels of antigen specific CTL and expression of IFN-γ+perforin+granzymeB+ in CD8+ T cells. Thus, amiloride is a facilitator for DNA transduction into host cells which in turn enhances the efficiency of the immune responses.

  5. 预防肿瘤术后复发和转移的最新疗法 :热休克蛋白 /肽复合物疫苗的研究与应用%A new strategy to prevent cancer recurrence and metastasis after operation:research and application of heat shock protein/peptides complex vaccine

    Institute of Scientific and Technical Information of China (English)

    陈继营; 袁玫; 卢世璧

    2002-01-01

    Deepened understanding of the mechanism involved in the activation of T cells and improved molecular biology techniques have brought a promising strategy to active a patient's immune system to prevent tumor recurrence and metastasis. Heat shock proteins (HSPs) are chaperones of peptides,It can elicit array of immune responses,such as:present tumor antigens to T cells, stimulate antigen presenting cells to secrete cytokines,mediate maturation of dentritic cells,active NK cells and/T cells.Extract HSP/peptides complex from tumor cells can be used as a polyvalent vaccine for treatment of cancers,The elicited antigen specific immune response is restricted to the tumor from which the HSPs are purified.HSP/peptides complex vaccine has been started in third clinical trials.The rationale,feasibility,advantages and safety of this new approach were discussed.

  6. Synthesis and Evaluation of Glycoconjugates Comprising N-Acyl-Modified Thomsen-Friedenreich Antigens as Anticancer Vaccines.

    Science.gov (United States)

    Sun, Shuang; Zheng, Xiu-Jing; Huo, Chang-Xin; Song, Chengcheng; Li, Qin; Ye, Xin-Shan

    2016-05-19

    Thomsen-Friedenreich (TF) antigen is an important tumor-associated carbohydrate antigen. Its low immunogenicity, however, limits its application in the development of anticancer vaccines. To solve this problem, several N-acyl-modified TF derivatives were synthesized and conjugated with carrier protein CRM197 (a mutated diphtheria toxoid cross-reactive material). The immunological results in BALB/c mice demonstrated that these modified TF antigen conjugates could stimulate the production of higher titers of IgG antibodies that cross-reacted with native TF antigen. These glycoconjugates showed strong lymphocyte proliferative response, suggesting that they can induce cellular immunity. Furthermore, the elicited antisera reacted strongly with TF-positive tumor cells (4T1). In particular, the N-monofluoroacetyl-modified TF conjugate 4-CRM197 showed the strongest complement-dependent cytotoxicity effect against 4T1 cells, implying the potential of this glycoconjugate as an anticancer vaccine. PMID:27075633

  7. Prophylaxis and Therapy of Inhalational Anthrax by a Novel Monoclonal Antibody to Protective Antigen That Mimics Vaccine-Induced Immunity

    OpenAIRE

    Vitale, Laura; Blanset, Diann; Lowy, Israel; O'Neill, Thomas; Goldstein, Joel; Little, Stephen F.; Andrews, Gerard P.; Dorough, Gary; Taylor, Ronald K.; Keler, Tibor

    2006-01-01

    The neutralizing antibody response to the protective antigen (PA) component of anthrax toxin elicited by approved anthrax vaccines is an accepted correlate for vaccine-mediated protection against anthrax. We reasoned that a human anti-PA monoclonal antibody (MAb) selected on the basis of superior toxin neutralization activity might provide potent protection against anthrax. The fully human MAb (also referred to as MDX-1303 or Valortim) was chosen from a large panel of anti-PA human MAbs gener...

  8. Serological Correlate of Protection in Guinea Pigs for a Recombinant Protective Antigen Anthrax Vaccine Produced from Bacillus brevis

    OpenAIRE

    Chun, Jeong-Hoon; Choi, On-Jee; Cho, Min-Hee; Hong, Kee-Jong; Seong, Won Keun; Oh, Hee-Bok; Rhie, Gi-eun

    2012-01-01

    Objective Recombinant protective antigen (rPA) is the active pharmaceutical ingredient of a second generation anthrax vaccine undergoing clinical trials both in Korea and the USA. By using the rPA produced from Bacillus brevis pNU212 expression system, correlations of serological immune response to anthrax protection efficacy were analyzed in a guinea pig model. Methods Serological responses of rPA anthrax vaccine were investigated in guinea pigs that were given single or two injections (inte...

  9. Impact of Acute Malaria on Pre-Existing Antibodies to Viral and Vaccine Antigens in Mice and Humans

    OpenAIRE

    Banga, Simran; Coursen, Jill D.; Portugal, Silvia; Tran, Tuan M.; Hancox, Lisa; Ongoiba, Aissata; Traore, Boubacar; Doumbo, Ogobara K.; Huang, Chiung-Yu; Harty, John T.; Crompton, Peter D.

    2015-01-01

    Vaccine-induced immunity depends on long-lived plasma cells (LLPCs) that maintain antibody levels. A recent mouse study showed that Plasmodium chaubaudi infection reduced pre-existing influenza-specific antibodies—raising concerns that malaria may compromise pre-existing vaccine responses. We extended these findings to P. yoelii infection, observing decreases in antibodies to model antigens in inbred mice and to influenza in outbred mice, associated with LLPC depletion and increased susceptib...

  10. Aromatic-dependent salmonella as anti-bacterial vaccines and as presenters of heterologous antigens or of DNA encoding them.

    Science.gov (United States)

    Stocker, B A

    2000-09-29

    The development of live bacterial vaccines is reviewed, in particular aromatic-dependent Salmonella, either for protection against the corresponding infections (including typhoid fever) or as carrier-presenter of antigens of unrelated pathogens or of DNA specifying them. Aromatic-dependent Salmonella live vaccines are also compared with BCG and Ty21a and the recent records of exceptional situations are discussed in which aroA (deletion) strains of Salmonella typhimurium cause progressive disease in mice. PMID:11000459

  11. Increasing a Robust Antigen-Specific Cytotoxic T Lymphocyte Response by FMDV DNA Vaccination with IL-9 Expressing Construct

    OpenAIRE

    Qiang Zou; Bing Wu; Xiaodan He; Yizhi Zhang; Youmin Kang; Jin Jin; Hanqian Xu; Hu Liu; Bin Wang

    2010-01-01

    Various chemokines and cytokines as adjuvants can be used to improve efficacy of DNA vaccination. In this study, we sought to investigate if a DNA construct expressing IL-9 (designed as proV-IL9) as a molecular adjuvant enhance antigen specific immune responses elicited by the pcD-VP1 DNA vaccination. Mice immunized with pcD-VP1 combined with proV-IL9 developed a strong humoral response. In addition, the coinoculation induced significant higher level of antigen-specific cell proliferation and...

  12. Successful kidney transplantation from a hepatitis B surface antigen-positive donor to an antigen-negative recipient using a novel vaccination regimen.

    Science.gov (United States)

    Singh, Gurmukteshwar; Hsia-Lin, Andrea; Skiest, Daniel; Germain, Michael; O'Shea, Michael; Braden, Gregory

    2013-04-01

    Transplanting a kidney from a hepatitis B surface antigen (HBsAg)-positive donor to an HBsAg-negative recipient who is naturally immune has been successful in countries endemic for hepatitis B virus (HBV). However, in most of these cases, the donors were deceased. We present a report of a successful HBsAg-discordant kidney transplantation in the United States; in this case, a living donor kidney was transplanted to a vaccinated recipient. The wife of a 58-year-old HBsAg-negative man volunteered to donate a kidney to her husband. She had chronic hepatitis B but undetectable HBV DNA. She tested positive for HBsAg and antibody to hepatitis B core antigen, but hepatitis B e antigen was undetectable. The recipient failed to develop an antibody response to 3 doses of intramuscular recombinant HBV vaccine given in consecutive months. Immunity was induced by using biweekly intradermal vaccine. However, antibody titer tapered to vaccine resulted in a prolonged anamnestic response, allowing for successful living unrelated donor transplantation. During the 10 years since transplantation, the patient has continued to have normal liver function, with undetectable HBsAg and HBV DNA. Antibody titers to HBsAg slowly decreased to 5.8 mIU/mL during the 10 years. Transplant function has been well preserved. This approach to inducing long-term immunity for transplantation merits further study in the United States. PMID:23219109

  13. Identification of an erythrocyte binding peptide from the erythrocyte binding antigen, EBA-175, which blocks parasite multiplication and induces peptide-blocking antibodies

    DEFF Research Database (Denmark)

    Jakobsen, P.H.; Heegaard, Peter M. H.; Koch, C.; Wasniowska, K.; Lemnge, M.M.; Jensen, J.B.; Sim, B.K.L.

    1998-01-01

    A biotinylated peptide covering a sequence of 21 amino acids (aa) from the erythrocyte binding antigen (EBA-175) of Plasmodium falciparum bound to human glycophorin A, an erythrocyte receptor for merozoites, as demonstrated by enzyme-linked immunosorbent assay (ELISA) and to erythrocytes as...... the binding of a range of truncated peptides to immobilized glycophorin A. Our data indicate that EBA(aa1085-96) is part of a ligand on the merozoite for binding to erythrocyte receptors. This binding suggests that the EBA(aa1085-96) peptide is involved in a second binding step, independent of sialic...

  14. Subdominant antigens in bacterial vaccines: Am779 is subdominant in the anaplasma marginale outer membrane vaccine but does not associate with protective immunity

    Science.gov (United States)

    Identification of specific antigens responsible for the ability of complex immunogens to induce protection is a major goal in development of bacterial vaccines. Much of the investigation has focused on highly abundant and highly immunodominant outer membrane proteins. Recently however, genomic and p...

  15. cDNA library construction and isolation of genes for candidate vaccine antigens from Chrysomya bezziana (the Old World Screwworm fly

    Directory of Open Access Journals (Sweden)

    Tony Voucolo

    2000-10-01

    Full Text Available The construction and use of cDNA libraries for the isolation of genes encoding candidate antigens for use in a recombinant vaccine against Chrysomya bezziana is described. RNA was isolated and mRNA purified from first and third instar larvae of Chrysomya bezziana and used in the synthesis of two cDNA libraries in the bacteriophage vector λ ZAP express®. These libraries were screened using Digoxigenin-labeled DNA probes obtained from two independent approaches. First, a homolog approach used probes designed from previously characterized peritrophic membrane genes identified from the related myiasis fly, Lucilia cuprina. Secondly, a de novo approach used amino-terminal and internal peptide sequence information derived from purified Chrysomya bezziana peritrophic membrane proteins to generate DNA probes. Three peritrophic membrane genes were identified and characterized. Chrysomya bezziana peritrophin-48 was identified using the homolog approach and, Chrysomya bezziana peritrophin-15 and Chrysomya bezziana peritrophin-42 were identified using the de novo approach. The identification of these genes as encoding candidate antigens against Chrysomya bezziana has allowed the production of recombinant proteins for use in vaccination trials

  16. Enhanced immune stimulation by a therapeutic lymphoma tumor antigen vaccine produced in insect cells involves mannose receptor targeting to antigen presenting cells.

    Science.gov (United States)

    Betting, David J; Mu, Xi Y; Kafi, Kamran; McDonnel, Desmond; Rosas, Francisco; Gold, Daniel P; Timmerman, John M

    2009-01-01

    Therapeutic vaccination of lymphoma patients with tumor-specific immunoglobulin (idiotype, Id) coupled to the carrier protein keyhole limpet hemocyanin (Id-KLH) is undergoing clinical investigation, and methods to improve the immunogenicity of these and other protein tumor antigen vaccines are being sought. Id proteins can be produced via tumor-myeloma hybridomas or recombinant methods in mammalian, bacteria, or insect cells. We now demonstrate that terminal mannose residues, characteristic of recombinant proteins produced in insect cells, yield Id proteins with significantly enhanced immunostimulatory properties compared to Id proteins derived from mammalian cells. Recombinant baculovirus-infected insect cell-derived Id showed higher binding to and activation of human dendritic cells mediated by mannose receptors. In vivo, insect cell-derived Id elicited higher levels of tumor-specific CD8+ cytotoxic T lymphocyte (CTL) and improved eradication of pre-established murine lymphoma. Insect cell and mammalian Id generated similar levels of tumor-specific antibodies, showing no impairment in antibody responses to native tumor antigen despite the glycoslylation differences in the immunogen. Combining insect cell production and maleimide-based KLH conjugation offered the highest levels of anti-tumor immunity. Our data comparing sources of recombinant Id protein tumor antigens used in therapeutic cancer vaccines demonstrate that insect cell-derived antigens can offer several immunologic advantages over proteins derived from mammalian sources. PMID:19000731

  17. Pre-Vaccination Frequencies of Th17 Cells Correlate with Vaccine-Induced T-Cell Responses to Survivin-Derived Peptide Epitopes

    DEFF Research Database (Denmark)

    Køllgaard, Tania Maria Simonsen; Ugurel-Becker, Selma; Idorn, Manja;

    2015-01-01

    Various subsets of immune regulatory cells are suggested to influence the outcome of therapeutic antigen-specific anti-tumor vaccinations. We performed an exploratory analysis of a possible correlation of pre-vaccination Th17 cells, MDSCs, and Tregs with both vaccination-induced T-cell responses as...... an altered activity of immune regulatory cells. Moreover, the frequencies of Th17 cells (p=0.03) and Tregs (p=0.02) were elevated as compared to healthy donors. IL-17-secreting CD4+ T cells displayed an impact on the immunological and clinical effects of vaccination: Patients characterized by high...

  18. Antigenic diversity of meningococcal enterobactin receptor FetA, a vaccine component.

    Science.gov (United States)

    Thompson, Emily A L; Feavers, Ian M; Maiden, Martin C J

    2003-07-01

    Meningococcal FetA (FrpB), an iron-regulated outer-membrane protein and vaccine component, was shown to be highly diverse: a total of 60 fetA alleles, encoding 56 protein sequences, were identified from 107 representative Neisseria meningitidis isolates. Phylogenetic analysis established that the allelic variants had been generated by both point mutation and horizontal genetic exchange. Nucleotide substitution was unevenly distributed in the gene, which contained both conserved and variable sequence regions. The most conserved region of the translated peptide sequence corresponded to an amino-terminal domain of the protein and the most diverse region to a previously identified variable region (VR). A nomenclature system for the peptides encoded by the VR was devised which classified 24 variants into 5 FetA variant families. On the basis of these data, murine polyclonal sera specific for four FetA variants were generated. The reactivities of these sera in whole-cell ELISA experiments were consistent with the hypothesis that the VR encoded an immunodominant epitope and indicated that the sera reacted mainly with variants against which they were raised. The diversity of this protein is likely to limit its effectiveness as a vaccine component. PMID:12855736

  19. Calcium Binding by Ro 60 Multiple Antigenic Peptides on PVDF Membrane.

    Science.gov (United States)

    Kurien, Biji T; Bachmann, Michael P

    2015-01-01

    Antibodies directed against ribonucleoprotein (RNP) particles are observed in systemic lupus erythematosus. Ro RNP particle is one such target. It is composed of a 60 kDa protein (Ro 60 or SS-A) that is non-covalently associated with at least one of the four short uridine-rich RNAs (the hY RNAs). Previously, we showed that multiple antigenic peptides (MAPs) made from the sequence of the Ro 60 autoantigen could be used, using double-immunodiffusion studies, enzyme-linked immunosorbant assay, affinity chromatography, and surface plasmon resonance, to show intramolecular and intermolecular protein-protein interaction within the Ro 60 RNP particle. We also observed that calcium is important in mediating this interaction. We hypothesized, therefore, that 60 kDa Ro is a calcium-binding protein. To investigate this, we electrophoresed 60 kDa Ro MAPs, transferred them to PVDF membrane, and assayed calcium binding using the Quin-2 system. Several Ro 60 MAPs were found to bind calcium using this assay, as well as bovine serum albumin, another calcium-binding protein. However, a MAP constructed from the Sm autoantigen did not bind to calcium. These data, along with our observation regarding the involvement of calcium in protein-protein interaction occurring between Ro 60 antigen and Ro 60 MAPs, makes us propose that Ro 60 antigen is a calcium-binding protein. PMID:26139264

  20. Identification of an erythrocyte binding peptide from the erythrocyte binding antigen, EBA-175, which blocks parasite multiplication and induces peptide-blocking antibodies

    DEFF Research Database (Denmark)

    Jakobsen, P.H.; Heegaard, Peter M. H.; Koch, C.; Wasniowska, K.; Lemnge, M.M.; Jensen, J.B.; Sim, B.K.L.

    1998-01-01

    A biotinylated peptide covering a sequence of 21 amino acids (aa) from the erythrocyte binding antigen (EBA-175) of Plasmodium falciparum bound to human glycophorin A, an erythrocyte receptor for merozoites, as demonstrated by enzyme-linked immunosorbent assay (ELISA) and to erythrocytes as...... the binding of a range of truncated peptides to immobilized glycophorin A. Our data indicate that EBA(aa1085-96) is part of a ligand on the merozoite for binding to erythrocyte receptors. This binding suggests that the EBA(aa1085-96) peptide is involved in a second binding step, independent of sialic...... acid, Antibody recognition of this peptide sequence may protect against merozoite invasion, but only a small proportion of sera from adults from different areas of malaria transmission showed antibody reactivities to the EBA(aa1076-96! peptide, indicating that this sequence is only weakly immunogenic...

  1. Identification of an erythrocyte binding peptide from the erythrocyte binding antigen, EBA-175, which blocks parasite multiplication and induces peptide-blocking antibodies

    DEFF Research Database (Denmark)

    Jakobsen, P H; Heegaard, P M; Koch, C; Wasniowska, K; Lemnge, M M; Jensen, J B; Sim, B K

    1998-01-01

    A biotinylated peptide covering a sequence of 21 amino acids (aa) from the erythrocyte binding antigen (EBA-175) of Plasmodium falciparum bound to human glycophorin A, an erythrocyte receptor for merozoites, as demonstrated by enzyme-linked immunosorbent assay (ELISA) and to erythrocytes as...... the binding of a range of truncated peptides to immobilized glycophorin A. Our data indicate that EBA(aa1085-96) is part of a ligand on the merozoite for binding to erythrocyte receptors. This binding suggests that the EBA(aa1085-96) peptide is involved in a second binding step, independent of sialic...... acid. Antibody recognition of this peptide sequence may protect against merozoite invasion, but only a small proportion of sera from adults from different areas of malaria transmission showed antibody reactivities to the EBA(aa1076-96) peptide, indicating that this sequence is only weakly immunogenic...

  2. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    International Nuclear Information System (INIS)

    Highlights: ► Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. ► A small molecule and a peptide as EBNA1 dimerization inhibitors identified. ► Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. ► Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)’s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459–607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-Jκ binding to the Jκ site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560–574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated with EBNA1 in vitro, and repressed EBNA1-dependent transcription in vivo. Collectively, this study describes two

  3. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Young; Song, Kyung-A [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kieff, Elliott [Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Kang, Myung-Soo, E-mail: mkang@skku.edu [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. Black-Right-Pointing-Pointer A small molecule and a peptide as EBNA1 dimerization inhibitors identified. Black-Right-Pointing-Pointer Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. Black-Right-Pointing-Pointer Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)'s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459-607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-J{kappa} binding to the J{kappa} site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560-574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated

  4. Identification and characterization of profilin antigen among Babesia species as a common vaccine candidate against babesiosis.

    Science.gov (United States)

    Munkhjargal, Tserendorj; Aboge, Gabriel Oluga; Ueno, Akio; Aboulaila, Mahmoud; Yokoyama, Naoaki; Igarashi, Ikuo

    2016-07-01

    We have characterized a member of the profilin (PROF) family protein as a common antigen in three pathogens-Babesia bovis (B. bovis), Babesia bigemina (B. bigemina), and Babesia microti (B. microti)-and evaluated its immunogenic and cross-protective properties against a challenge infection with B. microti in BALB/c mice. The recombinant PROF proteins of B. bovis, B. bigemina, and B. microti were successfully expressed in Escherichia coli (E. coli) as soluble GST fusion proteins (rBboPROF, rBbigPROF, and rBmPROF, respectively), and they were found to be antigenic. On probing with mouse anti-rPROF serum, green fluorescence was observed on the parasites' cytosols by confocal laser microscopy. Immunization regimes in BALB/c mice using rPROFs induced cross-protective immunity against B. microti infection based on high levels of cytokines and immunoglobulin (IgG) titers, a reduction in peak parasitemia levels, and earlier clearance of the parasite as compared with control mice. The findings of the present study indicate that PROF is a common antigen among bovine and murine Babesia parasites, and it might be used as a common vaccine candidate against babesiosis. PMID:27003460

  5. Infection with Plasmodium berghei Boosts Antibody Responses Primed by a DNA Vaccine Encoding Gametocyte Antigen Pbs48/45

    OpenAIRE

    Haddad, Diana; Maciel, Jorge; Kumar, Nirbhay

    2006-01-01

    An important consideration in the development of a malaria vaccine for individuals living in areas of endemicity is whether vaccine-elicited immune responses can be boosted by natural infection. To investigate this question, we used Plasmodium berghei ANKA blood-stage parasites for the infection of mice that were previously immunized with a DNA vaccine encoding the P. berghei sexual-stage antigen Pbs48/45. Intramuscular immunization in mice with one or two doses of DNA-Pbs48/45 or of empty DN...

  6. A Delayed Type Hypersensitivity (DTH) Skin Reaction to Hepatitis B Surface Antigen (HBsAg) and Intradermal Hepatitis B Vaccination

    OpenAIRE

    Nagafuchi, Seiho; Kashiwagi, Seizaburo; Hayashi, Jun; Katsuta, Hitoshi; Ikematsu, Hideyuki; Harada, Mine

    2004-01-01

    The significance of a delayed type hypersensitivity skin reaction to hepatitis B surface antigen (HBsAg) (HBs-DTH) in type B viral hepatitis (VHB) and in intradermal hepatitis B (HB) vaccination is reviewed. HBs-DTH could be developed by the intradermal injection of HB vaccine in anti-HBs positive people and also in persons immunized with HB vaccine. Thus, HBs-DTH could serve as a useful marker for the acquisition of an active Thl type immunoreactivity to HBsAg. HBs-DTH was absent in patients...

  7. Multiple antigen glycopeptides (MAGs) with Tn tumour antigens and incorporated adjuvant: synthesis and immunobiological activities

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; Kelkar, Shripad; Vepřek, Pavel; Hajdůch, M.; Sejbal, J.; Trnka, T.

    Napoli : Edizioni Ziino, 2002 - (Benedetti, E.; Pedone, C.), s. 524-525 ISBN 88-900948-1-8. [Peptides 2002. European Peptide Symposium /27./. Sorrento (IT), 31.08.2002-06.09.2002] R&D Projects: GA ČR GA303/01/0690 Institutional research plan: CEZ:AV0Z4055905 Keywords : Tn antigen * multiple antigen glycopeptide * synthetic vaccine Subject RIV: CE - Biochemistry

  8. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells.

    NARCIS (Netherlands)

    Khan, S.; Bijker, M.S.; Weterings, J.J.; Tanke, H.J.; Adema, G.J.; Hall, T. van; Drijfhout, J.W.; Melief, C.J.; Overkleeft, H.S.; Marel, G.A. van der; Filippov, D.V.; Burg, S.H. van der; Ossendorp, F.

    2007-01-01

    Covalent conjugation of Toll-like receptor ligands (TLR-L) to synthetic antigenic peptides strongly improves antigen presentation in vitro and T lymphocyte priming in vivo. These molecularly well defined TLR-L-peptide conjugates, constitute an attractive vaccination modality, sharing the peptide ant

  9. Application of radionuclide techniques in the characterization of antigens for vaccine development against the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    The development of molecular vaccines against the human malaria parasite Plasmodium falciparum requires the characterization of putative protective antigens. The characterization and structural analyses of the small amounts of antigens present in the parasite is made possible by the use of radiolabelled amino acids, monosaccharides and lipids. Parasite proliferation assays, used to identify antibodies that inhibit parasite growth in vitro, utilize radiolabelled hypoxanthine. The determination of T cell epitopes is dependent on measuring lymphocyte proliferation with radiolabelled thymidine. Radiolabelled antibodies are routinely used in Western blots and epitope analysis. The use of these techniques is illustrated in the characterization of two new merozoite surface antigens. (author). 40 refs, 11 figs

  10. Antigen

    Science.gov (United States)

    An antigen is any substance that causes your immune system to produce antibodies against it. This means your immune ... and is trying to fight it off. An antigen may be a substance from the environment, such ...

  11. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria

    NARCIS (Netherlands)

    van Roosmalen, ML; Kanninga, R; El Khattabi, M; Neef, J; Audouy, S; Bosma, T; Kuipers, A; Post, E; Steen, A; Kok, J; Buist, G; Kuipers, OP; Robillard, G; Leenhouts, K

    2006-01-01

    Mucosal immunization with subunit vaccines requires new types of antigen delivery vehicles and adjuvants for optimal immune responses. We have developed a non-living and non-genetically modified gram-positive bacterial delivery particle (GEM) that has built-in adjuvant activity and a high loading ca

  12. Differences in immune responses against Leishmania induced by infection and by immunization with killed parasite antigen: implications for vaccine discovery.

    Science.gov (United States)

    Mendonça, Sergio C F

    2016-01-01

    The leishmaniases are a group of diseases caused by different species of the protozoan genus Leishmania and transmitted by sand fly vectors. They are a major public health problem in almost all continents. There is no effective control of leishmaniasis and its geographical distribution is expanding in many countries. Great effort has been made by many scientists to develop a vaccine against leishmaniasis, but, so far, there is still no effective vaccine against the disease. The only way to generate protective immunity against leishmaniasis in humans is leishmanization, consisting of the inoculation of live virulent Leishmania as a means to acquire long-lasting immunity against subsequent infections. At present, all that we know about human immune responses to Leishmania induced by immunization with killed parasite antigens came from studies with first generation candidate vaccines (killed promastigote extracts). In the few occasions that the T cell-mediated immune responses to Leishmania induced by infection and immunization with killed parasite antigens were compared, important differences were found both in humans and in animals. This review discusses these differences and their relevance to the development of a vaccine against leishmaniasis, the major problems involved in this task, the recent prospects for the selection of candidate antigens and the use of attenuated Leishmania as live vaccines. PMID:27600664

  13. Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions.

    Science.gov (United States)

    Kim, S B; Seo, I S; Khan, M A; Ki, K S; Lee, W S; Lee, H J; Shin, H S; Kim, H S

    2007-09-01

    This study evaluated the influence of various enzymes on the hydrolysis of whey protein concentrate (WPC) to reduce its antigenic fractions and to quantify the peptides having iron-binding ability in its hydrolysates. Heated (for 10 min at 100 degrees C) WPC (2% protein solution) was incubated with 2% each of Alcalase, Flavourzyme, papain, and trypsin for 30, 60, 90, 120, 150, 180, and 240 min at 50 degrees C. The highest hydrolysis of WPC was observed after 240 min of incubation with Alcalase (12.4%), followed by Flavourzyme (12.0%), trypsin (10.4%), and papain (8.53%). The nonprotein nitrogen contents of WPC hydrolysate followed the hydrolytic pattern of whey. The major antigenic fractions (beta-lactoglobulin) in WPC were degraded within 60 min of its incubation with Alcalase, Flavourzyme, or papain. Chromatograms of enzymatic hydrolysates of heated WPC also indicated complete degradation of beta-lactoglobulin, alpha-lactalbumin, and BSA. The highest iron solubility was noticed in hydrolysates derived with Alcalase (95%), followed by those produced with trypsin (90%), papain (87%), and Flavourzyme (81%). Eluted fraction 1 (F-1) and fraction 2 (F-2) were the respective peaks for the 0.25 and 0.5 M NaCl chromatographic step gradient for analysis of hydrolysates. Iron-binding ability was noticeably higher in F-1 than in F-2 of all hydrolysates of WPC. The highest iron contents in F-1 were observed in WPC hydrolysates derived with Alcalase (0.2 mg/kg), followed by hydrolysates derived with Flavourzyme (0.14 mg/kg), trypsin (0.14 mg/kg), and papain (0.08 mg/kg). Iron concentrations in the F-2 fraction of all enzymatic hydrolysates of WPC were low and ranged from 0.03 to 0.05 mg/kg. Fraction 1 may describe a new class of iron chelates based on the reaction of FeSO4 x 7 H2O with a mixture of peptides obtained by the enzymatic hydrolysis of WPC. The chromatogram of Alcalase F-1 indicated numerous small peaks of shorter wavelengths, which probably indicated a variety of

  14. Vaccines for allergy.

    Science.gov (United States)

    Linhart, Birgit; Valenta, Rudolf

    2012-06-01

    Vaccines aim to establish or strengthen immune responses but are also effective for the treatment of allergy. The latter is surprising because allergy represents a hyper-immune response based on immunoglobulin E production against harmless environmental antigens, i.e., allergens. Nevertheless, vaccination with allergens, termed allergen-specific immunotherapy is the only disease-modifying therapy of allergy with long-lasting effects. New forms of allergy diagnosis and allergy vaccines based on recombinant allergen-derivatives, peptides and allergen genes have emerged through molecular allergen characterization. The molecular allergy vaccines allow sophisticated targeting of the immune system and may eliminate side effects which so far have limited the use of traditional allergen extract-based vaccines. Successful clinical trials performed with the new vaccines indicate that broad allergy vaccination is on the horizon and may help to control the allergy pandemic. PMID:22521141

  15. Expression of HSV-1 ICP0 Antigen Peptide in Prokaryotic Cells and Preparation of Specific Antibody

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As an immediate-early protein of herpes simplex virus, infected-cell polypeptide 0 (ICP0) exhibits complicated interactions with host cells, and its regulatory function on gene expression is of great importance. Since the ICP0 encoding sequence contains many rare codons which are absent in E.coli, and ICP0 is highly unstable in prokaryotic cells, expression of entire ICP0 in prokaryotic cells has never been reported. In order to further investigate the function of ICP0, a recombinant plasmid was constructed by subcloning a cDNA fragment encoding an amino-terminal of 105 residues of the ICP0 protein into pGEX-5x-1 vector. The resulting GST-105 fusion antigen peptide was expressed with high efficiency in E.coli. Antibodies prepared after the immunization of mice with purified fusion protein can recognize not only the denatured ICP0 protein, but also the native ICP0 protein with normal biological conformation.

  16. A DNA vaccine encoding mutated HPV58 mE6E7-Fc-GPI fusion antigen and GM-CSF and B7.1

    Directory of Open Access Journals (Sweden)

    Wang H

    2015-10-01

    Full Text Available He Wang,1 Jiyun Yu,2 Li Li1 1Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 2Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, People’s Republic of China Background: Persistent infection with high-risk human papillomavirus (HPV is a predominant cause of cervical cancer, and HPV58 is the third most common virus detected in the patients with cervical cancer in Asia. E6 and E7 are the viral oncogenes which are constitutively expressed in HPV-associated tumor cells and can be used as target antigens for related immunotherapy. In this study, we modified the HPV58 E6 and E7 oncogenes to eliminate their oncogenic potential and constructed a recombinant DNA vaccine that coexpresses the sig-HPV58 mE6E7-Fc-GPI fusion antigen in addition to granulocyte-macrophage colony-stimulating factor (GM-CSF and B7.1 as molecular adjuvants (PVAX1-HPV58 mE6E7FcGB for the treatment of HPV58 (+ cancer. Methods: PVAX1-HPV58 mE6E7FcGB recombinant DNA vaccine was constructed to express a fusion protein containing a signal peptide, a modified HPV58 mE6E7 gene, and human IgG Fc and glycosylphosphatidylinositol (GPI-anchoring sequences using the modified DNA vaccine vector PVAX1-IRES-GM/B7.1 that coexpresses GM-CSF, and B7.1. C57BL/6 mice were challenged by HPV58 E6E7-expressing B16-HPV58 E6E7 cells, followed by immunization by PVAX1-HPV58 mE6E7FcGB vaccine on days 7, 14, 21 after tumor challenge. The cellular immune responses in immunized mice were assessed by measuring IFN-γ production in splenocytes upon stimulation by HPV58 E6E7-GST protein and the lysis of B16-HPV58 E6E7 target cells by splenocytes after restimulation with HPV58 E6E7-GST protein. The antitumor efficacy was evaluated by monitoring the growth of the tumor. Results: PVAX1-HPV58 mE6E7FcGB elicited varying levels of IFN-lsgdB58onn T-cell immune responses and lysis of target cell in mice in response to the

  17. Cytokines Expression Profile and Kinetics of Peste des petits ruminants Virus Antigen and Antibody in Infected and Vaccinated Goats

    Institute of Scientific and Technical Information of China (English)

    Arun Patel; Kaushal Kishor Rajak; Vinayagamurthy Balamurugan; Arnab Sen; Shashi Bhusan Sudhakar; Veerakyathappa Bhanuprakash; Raj Kumar Singh; Awadh Bihari Pandey

    2012-01-01

    The present study deals with the co-ordination of cytokine(IL-4 and IFN-γ) expression and kinetics of peste des petits ruminants(PPR) virus antigen and antibody in PPRV infected and vaccinated goats.The infected animals exhibited mixed cytokine(both TH1 and TH2) responses in the initial phase of the disease.The infected and dead goats had increased IFN-γ response before their death; while IL-4 remained at the base level.The cytokine expression in recovered animals was almost similar to that of vaccinated ones,where a unique biphasic response of IL-4 expression was observed with an up-regulation of IFN-γ on 7th days post vaccination(dpv).Analysis of PPR virus antigen and antibody kinetics in different components of blood from infected and vaccinated animals revealed that the PPR virus antigen load was highest in plasma followed by serum and blood of the infected animals,whereas vaccinated animals showed only marginal positivity on 9th dpv.The antibody titer was high in serum followed by plasma and blood in both vaccinated and infected animals.Therefore,it is inferred that the presence of antigen and antibody were significant with the expression of cytokine,and that a decreased response of IL-4 was noticed during intermediate phase of the disease i.e.,7 to 12th days post infection(dpi).This indicates the ability to mount a functional TH2 response after 14th dpi could be a critical determinant in deciding the survival of the PPR infected animal.

  18. Development of hepatitis C virus vaccine using hepatitis B core antigen as immuno-carrier

    Institute of Scientific and Technical Information of China (English)

    Jia-Yu Chen; Fan Li

    2006-01-01

    AIM: To develop hepatitis C virus (HCV) vaccine using HBcAg as the immuno-carrier to express HCV T epitope and to investigate its immunogenicity in mice.METHODS: We constructed the plasmid pTrc-coreNheI using gene engineering technique, constructed the pcDNA3.1-coreNheI-GFP plasmid with GFP as the reporter gene, and transfected them into Hela cells.The expression of GFP was observed under confocal microscopy and the feasibility of using HBcAg as an immuno-carrier vaccine was studied. pTrc-core gene with a synthetic T epitope antigen gene of HCV (35-44aa) was fused and expressed in the plasmid pTrccore-HCV (T). For the fusion of the HBcAg-T protein,sucrose, density gradient centrifugation was used, and its molecular weight and purity were analyzed by SDSPAGE. Then balb/c mice were immunized by the plasmid with the HBcAg (expressed by pTrc-core) protein as control. The tumor regression potential was investigated in mice and evaluated at appropriate time. After three times of immunization, the peripheral blood and spleen of vaccinated mice were collected. HBcAb was detected by ELISA, and nonspecific T lymphocyte proliferation and response of splenocytes were respectively examined by MTT assay. T cell subset of blood and spleen were detected by FACS.RESULTS: GFP was successfully expressed. Tumor regression trial showed that no tumor formation was found in the group receiving immunization, while tumor xenograft progression was not changed in the control group. Strong nonspecific lymphocyte proliferation response was induced. FACS also showed that the ratio of CD8+T cells in the experimental group was higher than the controls, but the serum HBcAb in experimental group was similar to the control.CONCLUSION: HBcAg can be used as an immunocarrier of vaccine, the fusion of HBcAg-T protein could induce stronger cellular immune responses and it might be a candidate for therapeutic vaccines specific for HCV.

  19. Development of multiple sclerosis after vaccination against hepatitis B: a study based on human leucocyte antigen haplotypes.

    Science.gov (United States)

    Ozakbas, S; Idiman, E; Yulug, B; Pakoz, B; Bahar, H; Gulay, Z

    2006-09-01

    The aetiology of multiple sclerosis (MS) is still not fully understood. Infectious agents are believed to play a role in the development of this multifactorial disease. Cases in which this disease occurs after administration of both plasma-derived and recombinant hepatitis B vaccines have been reported. In this study, we compared a group of 11 MS patients who developed first clinical symptoms after hepatitis B vaccination (group I) with 71 MS patients who were never vaccinated against hepatitis B and were negative for hepatitis B serology (group II), and 20 healthy controls (group III). Mean age was 27.75 years (19-39) in group I, 30.16 years (18-50) in group II, and 34.4 years (18-50) in group III. Mean attack rate after 2 years was 1.5 in group I and 1.63 in group II. Mean Expanded Disability Status Scale score after 2 years was 1.31 in group I and 1.89 in group II. Human leucocyte antigen (HLA) typing and serology for hepatitis B surface antigen were performed in all groups. In groups I and II, HLA-DR2 was more frequent than in normal healthy subjects. This reflects the general role of HLA in the pathogenesis of MS but suggests that antigen presentation by different HLA is not involved in the development of MS after hepatitis B vaccination. Since there was no difference in the clinical features between vaccinated and nonvaccinated MS patients, this study supports recent reports that hepatitis B vaccination is safe in MS patients and that hepatitis B vaccination is not involved in the development of MS. PMID:16948644

  20. Immunostimulating complexes incorporating Eimeria tenella antigens and plant saponins as effective delivery system for coccidia vaccine immunization.

    Science.gov (United States)

    Berezin, V E; Bogoyavlenskiy, A P; Tolmacheva, V P; Makhmudova, N R; Khudyakova, S S; Levandovskaya, S V; Omirtaeva, E S; Zaitceva, I A; Tustikbaeva, G B; Ermakova, O S; Aleksyuk, P G; Barfield, R C; Danforth, H D; Fetterer, R H

    2008-04-01

    Immunostimulating complexes (ISCOMs) are unique, multimolecular structures formed by encapsulating antigens, lipids, and triterpene saponins of plant origin, and are an effective delivery system for various kinds of antigens. The uses of ISCOMs formulated with saponins from plants collected in Kazakhstan, with antigens from the poultry coccidian parasite Eimeria tenella, were evaluated for their potential use in developing a vaccine for control of avian coccidiosis. Saponins isolated from the plants Aesculus hippocastanum and Glycyrrhiza glabra were partially purified by HPLC. The saponin fractions obtained from HPLC were evaluated for toxicity in chickens and chicken embryos. The HPLC saponin fractions with the least toxicity, compared to a commercial saponin Quil A, were used to assemble ISCOMs. When chicks were immunized with ISCOMs prepared with saponins from Kazakhstan plants and E. tenella antigens, and then challenged with E. tenella oocysts, significant protection was conveyed compared to immunization with antigen alone. The results of this study indicate that ISCOMs formulated with saponins isolated from plants indigenous to Kazakhstan are an effective antigen delivery system which may be successfully used, with low toxicity, for preparation of highly immunogenic coccidia vaccine. PMID:18564738

  1. Multi-antigen vaccines based on complex adenovirus vectors induce protective immune responses against H5N1 avian influenza viruses.

    Science.gov (United States)

    Holman, David H; Wang, Danher; Raja, Nicholas U; Luo, Min; Moore, Kevin M; Woraratanadharm, Jan; Mytle, Nutan; Dong, John Y

    2008-05-19

    There are legitimate concerns that the highly pathogenic H5N1 avian influenza virus could adapt for human-to-human transmission and cause a pandemic similar to the 1918 "Spanish flu" that killed 50 million people worldwide. We have developed pandemic influenza vaccines by incorporating multiple antigens from both avian and Spanish influenza viruses into complex recombinant adenovirus vectors. In vaccinated mice, these vaccines induced strong humoral and cellular immune responses against pandemic influenza virus antigens, and protected vaccinated mice against lethal H5N1 virus challenge. These results indicate that this multi-antigen, broadly protective vaccine may serve as a safer and more effective approach than traditional methods for development of a pandemic influenza vaccine. PMID:18395306

  2. Classification of human leukocyte antigen (HLA) supertypes

    DEFF Research Database (Denmark)

    Wang, Mingjun; Claesson, Mogens H

    2014-01-01

    Identification of new antigenic peptides, derived from infectious agents or cancer cells, which bind to human leukocyte antigen (HLA) class I and II molecules, is of importance for the development of new effective vaccines capable of activating the cellular arm of the immune response. However, the...... barrier to the development of peptide-based vaccines with maximum population coverage is that the restricting HLA genes are extremely polymorphic resulting in a vast diversity of peptide-binding HLA specificities and a low population coverage for any given peptide-HLA specificity. One way to reduce this...... complexity is to group thousands of different HLA molecules into several so-called HLA supertypes: a classification that refers to a group of HLA alleles with largely overlapping peptide binding specificities. In this chapter, we focus on the state-of-the-art classification of HLA supertypes including HLA...

  3. Efficacy of a replikin peptide vaccine against low-pathogenicity avian influenza H5 virus.

    Science.gov (United States)

    Jackwood, Mark W; Bogoch, Samuel; Bogoch, Elenore S; Hilt, Deborah; Williams, Susan M

    2009-12-01

    In this study, the sequence of the H5 and PB1 genes of the low-pathogenic avian influenza virus (LPAI) A/Black Duck/NC/674-964/06 isolate were determined for replikin peptides and used to design and chemically synthesize a vaccine. The vaccine was used to immunize specific-pathogen-free (SPF) leghorn chickens held in Horsfall isolation units, by the upper respiratory route, at 1, 7, and 14 days of age. The birds were challenged at 28 days of age with 1 x 10(6) 50% embryo infective dose of the LPAI Black Duck/NC/674-964/06 H5N1 virus per bird. Oropharyngeal and cloacal swabs were collected at 2, 4, and 7 days postinoculation (PI) for virus detection by real-time RT-PCR. Serum was collected at 7, 14, and 21 days PI and examined for antibodies against avian influenza virus by the enzyme-linked immunosorbent assay and hemagglutination inhibition (HI) tests. Tissue samples for histopathology were collected from three birds per group at 3 days PI. The experimental design consisted of a negative control group (not vaccinated and not challenged) and a vaccinated group, a vaccinated and challenged group, and a positive control group (challenged only). None of the nonchallenged birds, the vaccinated birds, or the vaccinated and challenged birds showed overt clinical signs of disease during the study. A slight depression was observed in the nonvaccinated challenged birds on day 2 postchallenge. Although the numbers of birds per group are small, no shedding of the challenge virus was detected in the vaccinated and challenged birds, whereas oropharyngeal and cloacal shedding was detected in the nonvaccinated and challenged birds. HI antibodies were detected in the vaccinated and nonchallenged group as well as in the vaccinated and challenged group, but rising antibody titers, indicating infection with the LPAI challenge virus, were not detected. Rising HI titers were observed in the nonvaccinated and challenged group. In addition, no antibodies were detected in the

  4. The characteristics exosporium antigens from different vaccine strains of bacillus antracis

    International Nuclear Information System (INIS)

    To develop of both test-systems for rapid detection and identification of B. anthracis spores and a new subunit vaccine the antigens on the spore surface should be characterized. Exosporium consists of two layers-basal and peripheral and has been form by protein, amino- and neutral polysaccharides, lipids and ash. Number of anthrax exosporium proteins was described and identified: glycoprotein BclA, BclB, alanine racemase, inosine hydrolase, glycosyl hydrolase, superoxid dismutase, ExsF, ExsY, ExsK,CotB,CotY and SoaA. So far no glycosylated proteins other then highly immunogenic glycoproteins BclA, BclB were detected in the B. anthracis spore extract although several exosporium-specific glycoprotein have been described in other members of the B.cereus family- B. thuringiensis and B. cereus. Although EA1 protein originally described as main component of S-layer from vegetative cells he can regular observed in different exosporium preparations and additionally some anti- EA1 monoclonal antibodies able to recognize spore surface. We have revealed that EA1 isolated from spore of Russians strain STI-1contain carbohydrate which determine immunogenicity of this antigen. Because some time ago we have found that exosporium protein's pattern variable among B. anthracis strains we investigated exosporium from spore of different strains of B. anthracis including STI-1, Ames, Stern and others. We have comparative characterized antigens by using Western Blotting, Two-Dimensional electrophoresis and Mass Spec analysis. The results of analysis will be presented and discussed.(author)

  5. Recent advances in vaccine delivery.

    Science.gov (United States)

    Cordeiro, Ana S; Alonso, María J

    2016-01-01

    The field of vaccination is moving from the use of attenuated or inactivated pathogens to safer but less immunogenic protein and peptide antigens, which require stronger adjuvant compositions. Antigen delivery carriers appear to play an important role in vaccine development, providing not only antigen protection and controlled release but also an intrinsic adjuvant potential. Among them, carriers based on polymers and lipids are the most representative ones. Patent applications in this area have disclosed, either the design and preparation methods for new biocompatible antigen delivery systems or the application of the previously developed systems for the delivery of novel antigens. Some of them have also reported the use of these technologies for modern therapeutic vaccination approaches. PMID:26667309

  6. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    Science.gov (United States)

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-01

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. PMID:27060051

  7. Comparative analysis of antigen-targeting sequences used in DNA vaccines.

    Science.gov (United States)

    Carvalho, Joana A; Azzoni, Adriano R; Prazeres, Duarte M F; Monteiro, Gabriel A

    2010-03-01

    Plasmid vectors can be optimized by including specific signals that promote antigen targeting to the major antigen presentation and processing pathways, increasing the immunogenicity and potency of DNA vaccines. A pVAX1-based backbone was used to encode the Green Fluorescence Protein (GFP) reporter gene fused either to ISG (Invariant Surface Glycoprotein) or to TSA (trans-sialidase) Trypanosoma brucei genes. The plasmids were further engineered to carry antigen-targeting sequences, which promote protein transport to the extracellular space (secretion signal), lysosomes (LAMP-1) and to the endoplasmic reticulum (adenovirus e1a). Transfection efficiency was not affected by differences in the size between each construct as no differences in the plasmid copy number per cell were found. This finding also suggests that the addition of both ISG gene and targeting sequences did not add sensitive regions prone to nuclease attack to the plasmid. Cells transfected with pVAX1GFP had a significant higher number of transcripts. This could be a result of lower mRNA stability and/or a lower transcription rate associated with the bigger transcripts. On the other hand, no differences were found between transcript levels of each ISG-GFP plasmids. Therefore, the addition of these targeting sequences does not affect the maturation/stability of the transcripts. Microscopy analysis showed differences in protein localization and fluorescent levels of cells transfected with pVAX1GFP and ISG constructs. Moreover, cells transfected with the lamp and secretory sequences presented a distinct distribution pattern when compared with ISG protein. Protein expression was quantified by flow cytometry. Higher cell fluorescence was observed in cells expressing the cytoplasmic fusion protein (ISG-GFP or TSA-GFP) compared with cells where the protein was transported to the lysosomal pathway. Protein transport to the endoplasmic reticulum does not lead to a decrease in the mean fluorescence values. The

  8. Removing N-terminal sequences in pre-S1 domain enhanced antibody and B-cell responses by an HBV large surface antigen DNA vaccine.

    Science.gov (United States)

    Ge, Guohong; Wang, Shixia; Han, Yaping; Zhang, Chunhua; Lu, Shan; Huang, Zuhu

    2012-01-01

    Although the use of recombinant hepatitis B virus surface (HBsAg) protein vaccine has successfully reduced global hepatitis B infection, there are still a number of vaccine recipients who do not develop detectable antibody responses. Various novel vaccination approaches, including DNA vaccines, have been used to further improve the coverage of vaccine protection. Our previous studies demonstrated that HBsAg-based DNA vaccines could induce both humoral and CMI responses in experimental animal models. However, one form of the the HBsAg antigen, the large S antigen (HBs-L), expressed by DNA vaccine, was not sufficiently immunogenic in eliciting antibody responses. In the current study, we produced a modified large S antigen DNA vaccine, HBs-L(T), which has a truncated N-terminal sequence in the pre-S1 region. Compared to the original HBs-L DNA vaccine, the HBs-L(T) DNA vaccine improved secretion in cultured mammalian cells and generated significantly enhanced HBsAg-specific antibody and B cell responses. Furthermore, this improved HBsL DNA vaccine, along with other HBsAg-expressing DNA vaccines, was able to maintain predominantly Th1 type antibody responses while recombinant HBsAg protein vaccines produced in either yeast or CHO cells elicited mostly Th2 type antibody responses. Our data indicate that HBsAg DNA vaccines with improved immunogenicity offer a useful alternative choice to recombinant protein-based HBV vaccines, particularly for therapeutic purposes against chronic hepatitis infection where immune tolerance led to poor antibody responses to S antigens. PMID:22844502

  9. Removing N-terminal sequences in pre-S1 domain enhanced antibody and B-cell responses by an HBV large surface antigen DNA vaccine.

    Directory of Open Access Journals (Sweden)

    Guohong Ge

    Full Text Available Although the use of recombinant hepatitis B virus surface (HBsAg protein vaccine has successfully reduced global hepatitis B infection, there are still a number of vaccine recipients who do not develop detectable antibody responses. Various novel vaccination approaches, including DNA vaccines, have been used to further improve the coverage of vaccine protection. Our previous studies demonstrated that HBsAg-based DNA vaccines could induce both humoral and CMI responses in experimental animal models. However, one form of the the HBsAg antigen, the large S antigen (HBs-L, expressed by DNA vaccine, was not sufficiently immunogenic in eliciting antibody responses. In the current study, we produced a modified large S antigen DNA vaccine, HBs-L(T, which has a truncated N-terminal sequence in the pre-S1 region. Compared to the original HBs-L DNA vaccine, the HBs-L(T DNA vaccine improved secretion in cultured mammalian cells and generated significantly enhanced HBsAg-specific antibody and B cell responses. Furthermore, this improved HBsL DNA vaccine, along with other HBsAg-expressing DNA vaccines, was able to maintain predominantly Th1 type antibody responses while recombinant HBsAg protein vaccines produced in either yeast or CHO cells elicited mostly Th2 type antibody responses. Our data indicate that HBsAg DNA vaccines with improved immunogenicity offer a useful alternative choice to recombinant protein-based HBV vaccines, particularly for therapeutic purposes against chronic hepatitis infection where immune tolerance led to poor antibody responses to S antigens.

  10. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  11. Suppression of humoral immune response to hepatitis B surface antigen vaccine in BALB/c mice by 1-methyl-tryptophan co-administration

    OpenAIRE

    Sparopoulou, T; Eleftheriadis, T; Antoniadi, G; Liakopoulos, V; Stefanidis, I.; Galaktidou, G

    2011-01-01

      Background and the purpose of the study:Indoleamine 2,3-dioxygenase (IDO) suppresses adaptive immune response. The purpose of this study was to determine the effect of the IDO inhibitor namely 1-methyl-DL-tryptophan (DL-1-MT) on antibody production after vaccination with hepatitis B surface (HBs) antigen. Methods:Four groups of BALB/c mice were immunized with a HBs antigen vaccine. In the first group the vaccine had no DL-1-MT, whereas in the other three groups the vaccine containe...

  12. Immunogenicity of three recombinant hepatitis B vaccines administered to students in three doses containing half the antigen amount routinely used for adult vaccination

    Directory of Open Access Journals (Sweden)

    Baldy José Luís da Silveira

    2004-01-01

    Full Text Available We evaluated the immunogenicity of three recombinant hepatitis B vaccines, one Brazilian (Butang, Instituto Butantan and two Korean vaccines (Euvax-B, LG Chemical Ltd. and Hepavax-Gene, Greencross Vaccine Corp., administered intramuscularly to students aged 17 to 19 years in three 10-µg doses (corresponding to half the amount of antigen routinely used for adult vaccination at intervals of one month between the first and second dose, and of four months between the second and third dose. A total of 316 students non-reactive for any serological marker of hepatitis B virus infection were vaccinated: 77 (24.4% with the Butang vaccine, 71 (22.5% with Euvax-B, 85 (26.9% with Hepavax-Gene and, for comparison, 83 (26.2% with Engerix-B (GlaxoSmithKline, whose efficacy in young adults at the dose used here has been confirmed in previous studies. Similar seroconversion rates (anti-HBs > 10 mIU/mL about one month after application of the third dose were obtained for the Butang, Euvax-B, Hepavax-Gene and Engerix-B vaccines (96.2%, 98.6%, 96.5% and 97.6%, respectively. The frequency of good responders (anti-HBs > 100 mIU/mL was also similar among students receiving the four vaccines (85.8%, 91.6%, 89.4% and 89.2%, respectively. The geometric mean titers (GMT of anti-HBs about one month after the third dose obtained with these vaccines were 727.78 ± 6.46 mIU/mL, 2009.09 ± 7.16 mIU/mL, 1729.82 ± 8.85 mIU/mL and 2070.14 ± 11.69 mIU/mL, respectively. The GMT of anti-HBs induced by the Euvax-B and Engerix-B vaccines were higher than those obtained with the Butang vaccine (p < 0.05; this difference was not significant when comparing the other vaccines two-by-two. No spontaneous adverse effects attributable to the application of any dose of the four vaccines were reported.

  13. A Francisella tularensis Live Vaccine Strain That Improves Stimulation of Antigen-Presenting Cells Does Not Enhance Vaccine Efficacy

    OpenAIRE

    Schmitt, Deanna M; Dawn M O'Dee; Joseph Horzempa; Paul E Carlson; Russo, Brian C.; Bales, Jacqueline M.; Brown, Matthew J.; Nau, Gerard J.

    2012-01-01

    Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited s...

  14. Dengue encephalitis-associated immunopathology in the mouse model: Implications for vaccine developers and antigens inducer of cellular immune response.

    Science.gov (United States)

    Marcos, Ernesto; Lazo, Laura; Gil, Lázaro; Izquierdo, Alienys; Suzarte, Edith; Valdés, Iris; Blanco, Aracelys; Ancizar, Julio; Alba, José Suárez; Pérez, Yusleydis de la C; Cobas, Karen; Romero, Yaremis; Guillén, Gerardo; Guzmán, María G; Hermida, Lisset

    2016-08-01

    Despite the many efforts made by the scientific community in the development of vaccine candidates against dengue virus (DENV), no vaccine has been licensed up to date. Although the immunopathogenesis associated to the disease is a key factor to take into account by vaccine developers, the lack of animal models that reproduce the clinical signs of the disease has hampered the vaccine progress. Non-human primates support viral replication, but they are very expensive and do not show signs of disease. Immunocompromised mice develop viremia and some signs of the disease; however, they are not valuable for vaccine testing. Nowadays, immunocompetent mice are the most used model to evaluate the immunogenicity of vaccine candidates. These animals are resistant to DENV infection; therefore, the intracranial inoculation with neuroadapted virus, which provokes viral encephalitis, represents an alternative to evaluate the protective capacity of vaccine candidates. Previous results have demonstrated the crucial role of cellular immune response in the protection induced by the virus and vaccine candidates in this mouse encephalitis model. However, in the present work we are proposing that the magnitude of the cell-mediated immunity and the inflammatory response generated by the vaccine can modulate the survival rate after viral challenge. We observed that the intracranial challenge of naïve mice with DENV-2 induces the recruitment of immune cells that contribute to the reduction of viral load, but does not increase the survival rate. On the contrary, animals treated with cyclophosphamide, an immunosuppressive drug that affects proliferating lymphocytes, had a higher viral load but a better survival rate than untreated animals. These results suggest that the immune system is playing an immunopathogenic role in this model and the survival rate may not be a suitable endpoint in the evaluation of vaccine candidates based on antigens that induce a strong cellular immune response

  15. Hepatitis B Vaccination Coverage and Prevalence of Hepatitis B Surface Antigen Among Children in French Polynesia, 2014.

    Science.gov (United States)

    Patel, Minal K; Le Calvez, Evelyne; Wannemuehler, Kathleen; Ségalin, Jean-Marc

    2016-06-01

    French Polynesia is considered to be moderately endemic for chronic hepatitis B virus infection, with an estimated 3% of the population having hepatitis B surface antigen (HBsAg). From 1990 to 1992, a 3-dose hepatitis B vaccination series was introduced into the routine infant immunization schedule in French Polynesia, including a birth dose (BD). In 2014, a nationally representative 2-stage cluster survey was undertaken to evaluate the impact of the vaccination program on HBsAg prevalence among school children (∼6 years of age) in Cours Préparatoire (CP). Documented vaccination data were reviewed for all eligible children; children with consent were tested for HBsAg with a rapid point-of-care test. In total, 1,660 students were identified; 1,567 (94%) had vaccination data for review and 1,196 (72%) participated in the serosurvey. Three-dose vaccination coverage was 98%, while timely BD coverage, defined as a dose administered within 24 hours of life, was 89%. Receipt of the second and third doses was often delayed, with 75% and 55% receiving a second and third dose within 1 month of the recommended age, respectively. No children tested positive for HBsAg. French Polynesia's vaccination program has achieved high coverage and an HBsAg seroprevalence of 0% (0-0.5%) among CP school children, but timeliness of vaccination could be improved. PMID:27001757

  16. Identification of peptide sequences as a measure of Anthrax vaccine stability during storage

    OpenAIRE

    Whiting, Gail; Wheeler, Jun X.; Rijpkema, Sjoerd

    2014-01-01

    The UK anthrax vaccine is an alum precipitate of a sterile filtrate of Bacillus anthracis Sterne culture (AVP). An increase in shelf life of AVP from 3 to 5 years prompted us to investigate the in vivo potency and the antigen content of 12 batches with a shelf life of 6.4 to 9.9 years and one bulk with a shelf life of 23.8 years. All batches, except for a 9.4-year-old batch, passed the potency test. Mass spectrometry (MS) and in-gel difference 2-dimensional gel electrophoresis (DIGE) were use...

  17. Suppression of Cocaine-Evoked Hyperactivity by Self-Adjuvanting and Multivalent Peptide Nanofiber Vaccines.

    Science.gov (United States)

    Rudra, Jai S; Ding, Ye; Neelakantan, Harshini; Ding, Chunyong; Appavu, Rajagopal; Stutz, Sonja; Snook, Joshua D; Chen, Haiying; Cunningham, Kathryn A; Zhou, Jia

    2016-05-18

    The development of anti-cocaine vaccines that counteract the rewarding effects of the drug are currently being investigated as adjunct therapies for prevention of relapse in abstinent users. However, cocaine is weakly immunogenic and requires conjugation to carrier proteins and coadministration with strong adjuvants, which carry the risk of local reactogenicity and systemic toxicity. Here we report synthetic and multivalent self-assembling peptide nanofibers as adjuvant-free carriers for cocaine vaccines. A novel cocaine hapten modified at the P3 site was conjugated to the N-terminus of an amphipathic self-assembling domain KFE8. In aqueous buffers the cocaine-KFE8 conjugate assembled into β-sheet rich nanofibers, which raised anti-cocaine antibodies without the need for added adjuvants in mice. Vaccinated mice were treated with cocaine and a significant negative correlation was observed between antibody levels and cocaine-evoked hyperactivity. These totally synthetic and multivalent nanofibers with well-defined chemical composition represent the first generation of adjuvant-free cocaine vaccines. PMID:26926328

  18. Evaluation of peptide selection approaches for epitope‐based vaccine design

    DEFF Research Database (Denmark)

    Schubert, B.; Lund, Ole; Nielsen, Morten

    2013-01-01

    A major challenge in epitope-based vaccine (EV) design stems from the vast genomic variation of pathogens and the diversity of the host cellular immune system. Several computational approaches have been published to assist the selection of potential T cell epitopes for EV design. So far, no...... thorough comparison between the current methods has been realized. Using human immunodeficiency virus as test case, different EV selection algorithms were evaluated with respect to their ability to select small peptides sets with broad coverage of allelic and pathogenic diversity. The methods were compared...... in terms of in silico measurements simulating important vaccine properties like the ability of inducing protection against a multivariant pathogen in a population; the predicted immunogenicity; pathogen, allele, and population coverage; as well as the conservation of selected epitopes. Additionally...

  19. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    Energy Technology Data Exchange (ETDEWEB)

    Hebishima, Takehisa [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tada, Seiichi [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Takeshima, Shin-nosuke [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Akaike, Toshihiro [Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501 (Japan); Ito, Yoshihiro [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.

  20. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    International Nuclear Information System (INIS)

    Highlights: ► To develop effective vaccine, we examined the effects of CO3Ap as an antigen carrier. ► OVA contained in CO3Ap was taken up by BMDCs more effectively than free OVA. ► OVA-immunized splenocytes was activated by OVA contained in CO3Ap effectively. ► OVA contained in CO3Ap induced strong OVA-specific immune responses to C57BL/6 mice. ► CO3Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO3Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO3Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO3Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO3Ap induced the proliferation and antigen-specific production of IFN-γ by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO3Ap and OVA-containing alumina salt (Alum), suggesting that CO3Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO3Ap.

  1. Immune responses induced by a Leishmania (Leishmania) amazonensis recombinant antigen in mice and lymphocytes from vaccinated subjects

    OpenAIRE

    Fernandes, Ana Paula; Elizabeth Cortez HERRERA; Wilson MAYRINK; Gazzinelli, Ricardo T.; LIU Wen Yu; Carlos Alberto da COSTA; Tavares, Carlos Alberto Pereira; Melo, Maria Norma; Michalick, Marilene Susan Marques; Gentz, Reiner; NASCIMENTO Evaldo

    1997-01-01

    In the search for Leishmania recombinant antigens that can be used as a vaccine against American Cutaneous Leishmaniasis, we identified a Leishmania (Leishmania) amazonensis recombinant protein of 33 kD (Larp33) which is recognized by antibodies and peripheral blood leukocytes (PBL) from subjects vaccinated with Leishvacin ®, Larp33 was expressed in Escherichia coli after cloning of a 2,2 kb Sau3A digested genomic fragment of L. (L.) amazonensis into the pDS56-6 His vector. Immunoblotting ana...

  2. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8plus T Cell Responses with Distinct Clonotype and Epitope Specificity

    Energy Technology Data Exchange (ETDEWEB)

    M Honda; R Wang; W Kong; M Kanekiyo; Q Akahata; L Xu; K Matsuo; K Natarajan; H Robinson; et al.

    2011-12-31

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.

  3. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct Clonotype and Epitope Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M.; Robinson, H.; Wang, R.; Kong, W.-P.; Kanekiyo, M.; Akahata, W.; Xu, L.; Matsuo, K.; Natarajan, K.; Asher, T. E.; Price, D. A.; Douek, D. C.; Margulies, D. H.; Nabel, G. J.

    2009-08-15

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.

  4. Diagnostic and immunoprophylactic applications of synthetic peptides in veterinary microbiology

    Directory of Open Access Journals (Sweden)

    Saravanan Paramasivam

    2009-10-01

    Full Text Available Chemically synthesized peptides are considered as potential reagents for various applications in biological sciences. They mimic naturally occurring peptides or segments of proteins and have emerged as diagnostic reagents and safe immunogens in animal science. Carefully selected peptides resembling authentic epitopes serve as synthetic antigens in diagnostic tests. Synthetic peptide-based vaccines can elicit antibodies against animal pathogens. The early use of synthetic peptides as a vaccine for foot-and-mouth disease stimulated interest in the development of peptide-based diagnostics and immunoprophylactics. The development of a peptide vaccine for canine parvovirus confirmed the usefulness of peptides as immunoprophylactics. Recently, the advent of the technology for the development of multiple antigenic peptides (MAPs has provided a well-defined method for the production of highly immunogenic peptides and anti-peptide antibodies. Antibodies raised against major epitopes can be used in the detection of the native antigen (virus in the enzyme-linked immunosorbent assay (ELISA and other tests, vindicating the usefulness of peptides for safe, chemically defined, non-infectious diagnostics and immunoprophylactics. This article focuses on the methods for selecting and preparing peptides for the predicted epitopes, their characterization and use, and the application of MAPs.

  5. A randomized phase II clinical trial of personalized peptide vaccination with metronomic low-dose cyclophosphamide in patients with metastatic castration-resistant prostate cancer.

    Science.gov (United States)

    Noguchi, Masanori; Moriya, Fukuko; Koga, Noriko; Matsueda, Satoko; Sasada, Tetsuro; Yamada, Akira; Kakuma, Tatsuyuki; Itoh, Kyogo

    2016-02-01

    This study investigated the effect of metronomic cyclophosphamide (CPA) in combination with personalized peptide vaccination (PPV) on regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC), and whether it could improve the antitumor effect of PPV. Seventy patients with metastatic castration-resistant prostate cancer were randomly assigned (1:1) to receive PPV plus oral low-dose CPA (50 mg/day), or PPV alone. PPV treatment used a maximum of four peptides chosen from 31 pooled peptides according to human leukocyte antigen types and antigen-specific humoral immune responses before PPV, for 8 subcutaneous weekly injections. Peptide-specific cytotoxic T lymphocyte (CTL) and immunoglobulin G responses were measured before and after PPV. The incidence of grade 3 or 4 hematologic adverse events was higher in the PPV plus CPA arm than in the PPV alone arm. Decrease in Treg and increase in MDSC were more pronounced in PPV plus CPA treatment than in PPV alone (p = 0.036 and p = 0.048, respectively). There was no correlation between the changes in Treg or MDSC and CTL response. There was no difference in positive immune responses between the two arms, although overall survival in patients with positive immune responses was longer than in those with negative immune responses (p = 0.001). Significant differences in neither progression-free survival nor overall survival were observed between the two arms. Low-dose CPA showed no change in the antitumor effect of PPV, possibly due to the simultaneous decrease in Treg and increase in MDSC, in patients under PPV. PMID:26728480

  6. Safety and immunogenicity of multi-antigen AMA1-based vaccines formulated with CoVaccine HT™ and Montanide ISA 51 in rhesus macaques

    Directory of Open Access Journals (Sweden)

    Walraven Vanessa

    2011-07-01

    Full Text Available Abstract Background Increasing the breadth of the functional antibody response through immunization with Plasmodium falciparum apical membrane antigen 1 (PfAMA1 multi-allele vaccine formulations has been demonstrated in several rodent and rabbit studies. This study assesses the safety and immunogenicity of three PfAMA1 Diversity-Covering (DiCo vaccine candidates formulated as an equimolar mixture (DiCo mix in CoVaccine HT™ or Montanide ISA 51, as well as that of a PfAMA1-MSP119 fusion protein formulated in Montanide ISA 51. Methods Vaccine safety in rhesus macaques was monitored by animal behaviour observation and assessment of organ and systemic functions through clinical chemistry and haematology measurements. The immunogenicity of vaccine formulations was assessed by enzyme-linked immunosorbent assays and in vitro parasite growth inhibition assays with three culture-adapted P. falciparum strains. Results These data show that both adjuvants were well tolerated with only transient changes in a few of the chemical and haematological parameters measured. DiCo mix formulated in CoVaccine HT™ proved immunologically and functionally superior to the same candidate formulated in Montanide ISA 51. Immunological data from the fusion protein candidate was however difficult to interpret as four out of six immunized animals were non-responsive for unknown reasons. Conclusions The study highlights the safety and immunological benefits of DiCo mix as a potential human vaccine against blood stage malaria, especially when formulated in CoVaccine HT™, and adds to the accumulating data on the specificity broadening effects of DiCo mix.

  7. Bm86 antigen induces a protective immune response against Boophilus microplus following DNA and protein vaccination in sheep.

    Science.gov (United States)

    De Rose, R; McKenna, R V; Cobon, G; Tennent, J; Zakrzewski, H; Gale, K; Wood, P R; Scheerlinck, J P; Willadsen, P

    1999-11-30

    Vaccination of sheep with a plasmid bearing the full length gene for the tick antigen Bm86 either alone or co-administered with plasmid carrying the ovine genes for the cytokines, granulocyte and macrophage colony stimulating factor (GM-CSF) or interleukin (IL)-1beta induced a relatively low level of protection against subsequent tick infestation. This tick damage reached statistical significance only for the groups which were vaccinated with plasmid encoding for Bm86, co-administered with plasmid encoding for ovine GM-CSF. Antibody titres measured against Bm86 were also low in all groups injected with the Bm86 DNA vaccine. Antibody production and anti-tick effect were significantly less than that achieved by two vaccinations with recombinant Bm86 protein. In all cases only a low level of antigen-specific stimulation of peripheral blood lymphocytes was recorded, as measured either by the incorporation of tritiated thymidine or the release of IFN-gamma. Injection of DNA encoding for Bm86, either alone or with co-administered cytokine genes, did however prime for a strong subsequent antibody response following a single injection of recombinant Bm86 protein in adjuvant. Antibody production nevertheless appeared to be slightly less effective than following two vaccinations with recombinant protein. The persistence of antibody following vaccination was the same regardless of the method of primary sensitization. In all cases the half-life of the antibody response was approximately 40-50 days indicating that, in contrast to results reported in mice, DNA vaccination in sheep did not result in sustained antibody production. PMID:10587297

  8. Complexes of trophoblastic peptides and heat shock protein 70 as a novel contraceptive vaccine in a mouse model.

    Science.gov (United States)

    Han, Mei; Yao, Yuan; Zeng, Wangjiang; Wang, Yanfang; Feng, Lin; Zhao, Jie

    2016-04-01

    The concept of contraceptive vaccines has interested reproductive biologists and immunologists for nearly 2 decades, but no approach has been approved. In this study, a new immunocontraceptive vaccine that targets placental trophoblasts was expored. We demonstrated that after in-vitro binding with heat shock protein 70, trophoblast-derived peptides can activate T cells both in vitro and in vivo. The activated T cells have a Th1 bias and specifically cause cytolysis of trophoblasts, leading to the termination of pregnancy. Such activated T cells seem to have an effect on early gestation, rather than influencing preimplantation. We did not observe side-effects of this vaccine in mice. In conclusion, a novel contraceptive strategy is described that uses heat shock protein 70-trophoblastic peptide complexes to generate a specific T-cell immune response against placental trophoblasts. This type of vaccine targeting the post-implantation phase does not generate a permanent effect but possibly raises an ethical issue. PMID:26847794

  9. A High-avidity WT1-reactive T-Cell Receptor Mediates Recognition of Peptide and Processed Antigen but not Naturally Occurring WT1-positive Tumor Cells.

    Science.gov (United States)

    Jaigirdar, Adnan; Rosenberg, Steven A; Parkhurst, Maria

    2016-04-01

    Wilms tumor gene 1 (WT1) is an attractive target antigen for cancer immunotherapy because it is overexpressed in many hematologic malignancies and solid tumors but has limited, low-level expression in normal adult tissues. Multiple HLA class I and class II restricted epitopes have been identified in WT1, and multiple investigators are pursuing the treatment of cancer patients with WT1-based vaccines and adoptively transferred WT1-reactive T cells. Here we isolated an HLA-A*0201-restricted WT1-reactive T-cell receptor (TCR) by stimulating peripheral blood lymphocytes of healthy donors with the peptide WT1:126-134 in vitro. This TCR mediated peptide recognition down to a concentration of ∼0.1 ng/mL when pulsed onto T2 cells as well as recognition of HLA-A*0201 target cells transfected with full-length WT1 cDNA. However, it did not mediate consistent recognition of many HLA-A*0201 tumor cell lines or freshly isolated leukemia cells that endogeneously expressed WT1. We dissected this pattern of recognition further and observed that WT1:126-134 was more efficiently processed by immunoproteasomes compared with standard proteasomes. However, pretreatment of WT1 tumor cell lines with interferon gamma did not appreciably enhance recognition by our TCR. In addition, we highly overexpressed WT1 in several leukemia cell lines by electroporation with full-length WT1 cDNA. Some of these lines were still not recognized by our TCR suggesting possible antigen processing defects in some leukemias. These results suggest WT1:126-134 may not be a suitable target for T-cell based tumor immunotherapies. PMID:26938944

  10. Long-peptide therapeutic vaccination against CRPV-induced papillomas in HLA-A2.1 transgenic rabbits

    Science.gov (United States)

    Hu, Jiafen; Budgeon, Lynn R.; Balogh, Karla K.; Peng, Xuwen; Cladel, Nancy M.; Christensen, Neil D.

    2014-01-01

    Long peptide immunization is a promising strategy to clear established tumors. In the current study, we investigated the therapeutic effect of a naturally existing long peptide that contained two HLA-A2.1 restricted epitopes (CRPVE1/149-157 and CRPVE1/161-169) from cottontail rabbit papillomavirus (CRPV) E1 using our CRPV/HLA-A2.1 transgenic rabbit model. A universal Tetanus Toxin helper motif (TT helper) was tagged at either the N-terminus or the carboxyl-terminus of this long peptide and designated as TT-E1 peptide and E1 peptide-TT respectively. Four groups of HLA-A2.1 transgenic rabbits were infected with wild type CRPV DNA. Three weeks post-infection, the rabbits were immunized four times with TT-E1 peptide, E1peptide only, E1 peptide -TT or TT-control peptide with two-week intervals between immunizations. Tumor outgrowth was monitored and recorded weekly. After the third booster immunization, tumors on two of the four E1 peptide-TT immunized rabbits began to shrink. One animal from this group was free of tumors at the termination of the study. The mean papilloma size of E1 peptide-TT immunized rabbits was significantly smaller when compared with that of the three other groups (P<0.05, one way ANOVA analysis). It is interesting that E1 peptide-TT vaccination not only stimulated stronger T cell mediate immune responses but also stronger antibody generations. We conclude that the location of a TT helper motif tagged at the long peptide vaccine is critical for the outcome of therapeutic responses to persistent tumors in our HLA-A2.1 transgenic rabbit model. PMID:25243025

  11. sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides

    Science.gov (United States)

    Luo, Heng; Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Mendrick, Donna L.; Hong, Huixiao

    2016-01-01

    Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system. PMID:27558848

  12. Bottlenose dolphin (Tursiops truncatus) papillomaviruses: vaccine antigen candidates and screening test development.

    Science.gov (United States)

    Rehtanz, Manuela; Bossart, Gregory D; Doescher, Bethany; Rector, Annabel; Van Ranst, Marc; Fair, Patricia A; Jenson, Alfred B; Ghim, Shin-Je

    2009-01-01

    Papillomaviruses (PVs) have been shown as being the etiologic agents of various benign and malignant tumours in many vertebrate species. In dolphins and porpoises, a high prevalence of orogenital tumours has recently been documented with at least four distinct novel species-specific PV types detected in such lesions. Therefore, we generated the immunological reagents to establish a serological screening test to determine the prevalence of PV infection in Atlantic bottlenose dolphins [(Tursiops truncatus (Tt)]. Using the baculovirus expression system, virus-like particles (VLPs) derived from the L1 proteins of two TtPV types, TtPV1 and TtPV2, were generated. Polyclonal antibodies against TtPV VLPs were produced in rabbits and their specificity for the VLPs was confirmed. Electron microscopy and enzyme-linked immunosorbent assay (ELISA) studies revealed that the generated VLPs self-assembled into particles presenting conformational immunodominant epitopes. As such, these particles are potential antigen candidates for a TtPV vaccine. Subsequently, the VLPs served as antigens in initial ELISA tests using sera from six bottlenose dolphins to investigate PV antibody presence. Three of these sera were derived from dolphins with genital tumour history and showed positive PV ELISA reactivity, while the remaining sera from lesion-free dolphins were PV antibody-negative. The results suggest that the developed screening test may serve as a potential tool for determining PV prevalence and thus for observing transmission rates in dolphin populations as the significance of PV infection in cetaceans starts to unfold. PMID:18676105

  13. H3N2 Mismatch of 2014-15 Northern Hemisphere Influenza Vaccines and Head-to-head Comparison between Human and Ferret Antisera derived Antigenic Maps

    Science.gov (United States)

    Xie, Hang; Wan, Xiu-Feng; Ye, Zhiping; Plant, Ewan P.; Zhao, Yangqing; Xu, Yifei; Li, Xing; Finch, Courtney; Zhao, Nan; Kawano, Toshiaki; Zoueva, Olga; Chiang, Meng-Jung; Jing, Xianghong; Lin, Zhengshi; Zhang, Anding; Zhu, Yanhong

    2015-10-01

    The poor performance of 2014-15 Northern Hemisphere (NH) influenza vaccines was attributed to mismatched H3N2 component with circulating epidemic strains. Using human serum samples collected from 2009-10, 2010-11 and 2014-15 NH influenza vaccine trials, we assessed their cross-reactive hemagglutination inhibition (HAI) antibody responses against recent H3 epidemic isolates. All three populations (children, adults, and older adults) vaccinated with the 2014-15 NH egg- or cell-based vaccine, showed >50% reduction in HAI post-vaccination geometric mean titers against epidemic H3 isolates from those against egg-grown H3 vaccine strain A/Texas/50/2012 (TX/12e). The 2014-15 NH vaccines, regardless of production type, failed to further extend HAI cross-reactivity against H3 epidemic strains from previous seasonal vaccines. Head-to-head comparison between ferret and human antisera derived antigenic maps revealed different antigenic patterns among representative egg- and cell-grown H3 viruses characterized. Molecular modeling indicated that the mutations of epidemic H3 strains were mainly located in antibody-binding sites A and B as compared with TX/12e. To improve vaccine strain selection, human serologic testing on vaccination-induced cross-reactivity need be emphasized along with virus antigenic characterization by ferret model.

  14. In vivo persistence and protective efficacy of the bacille Calmette Guerin vaccine overexpressing the HspX latency antigen

    OpenAIRE

    Spratt, Joanne M.; Britton, Warwick J; Triccas, James A.

    2010-01-01

    New strategies to control infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, are urgently required, particularly in areas where acquired immunodeficiencies are prevalent. In this report we have determined if modification of the current tuberculosis vaccine, Mycobacterium bovis BCG, to constitutively express the mycobacterial HspX latency antigen altered its protective effect against challenge with virulent M. tuberculosis. Overexpression of M. tuberculosis HspX in...

  15. Establishment of an in vivo potency assay for the recombinant hepatit is B surface antigen in monovalent and combined vaccines

    OpenAIRE

    Mabel Izquierdo-López; Karelia Cosme-Diaz; Gerardo García-Illera; Zoe Núñez-Lamotte; Yamila Martínez- Cuéllar; Maribel Vega-Simón; Lourdes Costa-Anguiano; Marisel Quintana-Esquivel; Ileana Rosales-Torres; Omar Mosqueda-Lobaina

    2014-01-01

    In this paper the development of potency assay in animals (mice) was made, with the objective of demonstrating the immunogenic power of the recombinant Hepatitis B surface antigen in monovalent and combined vaccines, produced at the Center of Genetic Engineering and Biotechnology. The potency test is a parameter in quality control and it is also a tool to demonstrate the consistency of the production process. Parameters such as duration of the test, number of animals in the test, ...

  16. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants

    OpenAIRE

    Chen, Qiang; He, Junyun; Phoolcharoen, Waranyoo; Mason, Hugh S.

    2011-01-01

    Expression of recombinant vaccine antigens and monoclonal antibodies using plant viral vectors has developed extensively during the past several years. The approach benefits from high yields of recombinant protein obtained within days after transient delivery of viral vectors to leaves of Nicotiana benthamiana, a tobacco relative. Modified viral genomes of both RNA and DNA viruses have been created. Geminiviruses such as bean yellow dwarf virus (BeYDV) have a small, single stranded DNA genome...

  17. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens.

    Science.gov (United States)

    Volz, Asisa; Lim, Stephanie; Kaserer, Martina; Lülf, Anna; Marr, Lisa; Jany, Sylvia; Deeg, Cornelia A; Pijlman, Gorben P; Koraka, Penelope; Osterhaus, Albert D M E; Martina, Byron E; Sutter, Gerd

    2016-04-01

    West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans. Infections of human and equine cell cultures with recombinant MVA demonstrated efficient synthesis and secretion of WNV envelope proteins in mammalian cells non-permissive for MVA replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA-WNV candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection and induced heterologous neutralizing antibodies. Thus, further studies are warranted to evaluate these recombinant MVA-WNV vaccines in other preclinical models and use them as candidate vaccine in humans. PMID:26939903

  18. A dual TLR agonist adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen ID93.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    Full Text Available With over eight million cases of tuberculosis each year there is a pressing need for the development of new vaccines against Mycobacterium tuberculosis. Subunit vaccines consisting of recombinant proteins are an attractive vaccine approach due to their inherent safety compared to attenuated live vaccines and the uniformity of manufacture. Addition of properly formulated TLR agonist-containing adjuvants to recombinant protein vaccines enhances the antigen-specific CD4(+ T cell response characterized by IFN-γ and TNF, both of which are critical for the control of TB. We have developed a clinical stage vaccine candidate consisting of a recombinant fusion protein ID93 adjuvanted with the TLR4 agonist GLA-SE. Here we examine whether ID93+GLA-SE can be improved by the addition of a second TLR agonist. Addition of CpG containing DNA to ID93+GLA-SE enhanced the magnitude of the multi-functional TH1 response against ID93 characterized by co-production of IFN-γ, TNF, and IL-2. Addition of CpG also improved the protective efficacy of ID93+GLA-SE. Finally we demonstrate that this adjuvant synergy between GLA and CpG is independent of TRIF signaling, whereas TRIF is necessary for the adjuvant activity of GLA-SE in the absence of CpG.

  19. Development of a live attenuated antigenic marker classical swine fever vaccine

    Science.gov (United States)

    Classical Swine Fever, caused by Classical Swine Fever Virus (CSFV), is a highly contagious disease affecting swine worldwide. The two main strategies for disease control are prophylactic vaccination and non-vaccination “stamping out” policies. In a vaccination-to-live strategy, marker vaccines coul...

  20. Evaluation of multiple antigenic peptides based on the Chikungunya E2 protein for improved serological diagnosis of infection.

    Science.gov (United States)

    Bhatnagar, Santwana; Kumar, Pradeep; Mohan, Teena; Verma, Priyanka; Parida, M M; Hoti, S L; Rao, D N

    2015-03-01

    In recent years, Chikungunya virus (CHIKV) reemerged and numerous outbreaks were reported all over the world. After screening CHIKV-positive sera, we had already reported many dominant epitopes within the envelope E2 protein of CHIKV. In the present study, we aimed at developing a highly sensitive immunodiagnostic assay for CHIKV based on a multiple antigenic peptide (MAP) approach using selective epitopes of the E2 protein. MAPs in four different E2 peptide combinations were screened with CHIKV-positive sera. The MAPs reacted with all CHIKV-positive sera and no reactivity was seen with healthy or dengue-positive sera. Our results indicate that MAP 1 seems to be an alternate antigen to full-length protein E2 for immunodiagnosis of CHIKV infections with high sensitivity and specificity. PMID:25412351

  1. Self-adjuvanted hyaluronate--antigenic peptide conjugate for transdermal treatment of muscular dystrophy.

    Science.gov (United States)

    Kong, Won Ho; Sung, Dong Kyung; Kim, Hyemin; Yang, Jeong-A; Ieronimakis, Nicholas; Kim, Ki Su; Lee, Jeehun; Kim, Deok-Ho; Yun, Seok Hyun; Hahn, Sei Kwang

    2016-03-01

    Duchenne's muscular dystrophy (DMD) is a neuromuscular disorder accompanied with muscle weakness and wasting. Since myostatin was reported to be a key regulator of muscle wasting, myostatin inhibitors have been investigated as therapeutic candidates for the treatment of muscular diseases. Here, we report an antigenic peptide of myostatin fragment (MstnF) conjugated to hyaluronate (HA) with a low molecular weight (MW, 17 kDa) for transdermal immunotherapy of DMD. Facilitating the transdermal delivery, the low MW HA showed a boosting effect on the immunization of MstnF possibly by engaging both toll-like receptors and cluster of differentiation 44 (CD44). In vivo two-photon microscopy clearly visualized the effective transdermal penetration of HA-MstnF conjugates into deep intact skin layers. The transdermal immunization of mdx mice significantly increased antibody titers against myostatin. Furthermore, the mdx mice immunized with HA-MstnF conjugates resulted in statistically significant improvement in the biochemical and pathological status of skeletal musculature as well as functional behaviors. PMID:26724457

  2. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice.

    Science.gov (United States)

    Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai

    2014-10-01

    To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB. PMID:24773322

  3. Increasing a Robust Antigen-Specific Cytotoxic T Lymphocyte Response by FMDV DNA Vaccination with IL-9 Expressing Construct

    Directory of Open Access Journals (Sweden)

    Qiang Zou

    2010-01-01

    Full Text Available Various chemokines and cytokines as adjuvants can be used to improve efficacy of DNA vaccination. In this study, we sought to investigate if a DNA construct expressing IL-9 (designed as proV-IL9 as a molecular adjuvant enhance antigen specific immune responses elicited by the pcD-VP1 DNA vaccination. Mice immunized with pcD-VP1 combined with proV-IL9 developed a strong humoral response. In addition, the coinoculation induced significant higher level of antigen-specific cell proliferation and cytotoxic response. This agreed well with higher expression level of IFN-γ and perforin in CD8+ T cells, but not with IL-17 in these T cells. The results indicate that IL-9 induces the development of IFN-γ-producing CD8+ T cells (Tc1, but not the IL-17-producing CD8+ T cells (Tc17. Up-regulated expressions of BCL-2 and BCL-XL were exhibited in these Tc1 cells, suggesting that IL-9 may trigger antiapoptosis mechanism in these cells. Together, these results demonstrated that IL-9 used as molecular adjuvant could enhance the immunogenicity of DNA vaccination, in augmenting humoral and cellular responses and particularly promoting Tc1 activations. Thus, the IL-9 may be utilized as a potent Tc1 adjuvant for DNA vaccines.

  4. Sequence variations in the Boophilus microplus Bm86 locus and implications for immunoprotection in cattle vaccinated with this antigen.

    Science.gov (United States)

    García-García, J C; Gonzalez, I L; González, D M; Valdés, M; Méndez, L; Lamberti, J; D'Agostino, B; Citroni, D; Fragoso, H; Ortiz, M; Rodríguez, M; de la Fuente, J

    1999-11-01

    Cattle tick infestations constitute a major problem for the cattle industry in tropical and subtropical regions of the world. Traditional control methods have been only partially successful, hampered by the selection of chemical-resistant tick populations. The Boophilus microplus Bm86 protein was isolated from tick gut epithelial cells and shown to induce a protective response against tick infestations in vaccinated cattle. Vaccine preparations including the recombinant Bm86 are used to control cattle tick infestations in the field as an alternative measure to reduce the losses produced by this ectoparasite. The principle for the immunological control of tick infestations relies on a polyclonal antibody response against the target antigen and, therefore, should be difficult to select for tick-resistant populations. However, sequence variations in the Bm86 locus, among other factors, could affect the effectiveness of Bm86-containing vaccines. In the present study we have addressed this issue, employing data obtained with B. microplus strains from Australia, Mexico, Cuba, Argentina and Venezuela. The results showed a tendency in the inverse correlation between the efficacy of the vaccination with Bm86 and the sequence variations in the Bm86 locus (R2 = 0.7). The mutation fixation index in the Bm86 locus was calculated and shown to be between 0.02 and 0.1 amino acids per year. Possible implications of these findings for the immunoprotection of cattle against tick infestations employing the Bm86 antigen are discussed. PMID:10668863

  5. Vaccination trials in sheep against Chrysomya bezziana larvae using the recombinant peritrophin antigens Cb15, Cb42 and Cb48

    Directory of Open Access Journals (Sweden)

    Sukarsih

    2000-10-01

    Full Text Available Recombinant forms of a number of peritrophic membrane proteins from the screwworm fly Chrysomya bezziana have been assessed in vitro and in vivo for their efficacy as antigens in vaccination against the tissue-invasive, larval form of the parasite. The proteins included Cb15 and Cb42 expressed in Escherichia coli and Cb48 expressed in both Escherichia coli and Pichia pastoris. In all cases, the in vitro assays of larval growth on serum from vaccinated sheep failed to show inhibition of larval weight gain or any detrimental effect on larval survival relative to controls. Chrysomya bezziana Cb48 has a significant degree of sequence identity with the antigen PM48 from Lucilia cuprina. Feeding Lucilia cuprina larvae on antisera to Cb48 induced a small but statistically significant reduction in weight gain, as does feeding on antisera to PM48. In vivo, larvae feeding on sheep vaccinated with Escherichia coli-expressed Cb15 and Cb42 and Pichia pastoris-expressed Cb48 showed marginally greater weight gain and survival which was equal to or greater than that on non-vaccinated sheep. The significance of these observations is discussed.

  6. A Peptide mimicking a region in proliferating cell nuclear antigen specific to key protein interactions is cytotoxic to breast cancer.

    Science.gov (United States)

    Smith, Shanna J; Gu, Long; Phipps, Elizabeth A; Dobrolecki, Lacey E; Mabrey, Karla S; Gulley, Pattie; Dillehay, Kelsey L; Dong, Zhongyun; Fields, Gregg B; Chen, Yun-Ru; Ann, David; Hickey, Robert J; Malkas, Linda H

    2015-02-01

    Proliferating cell nuclear antigen (PCNA) is a highly conserved protein necessary for proper component loading during the DNA replication and repair process. Proteins make a connection within the interdomain connector loop of PCNA, and much of the regulation is a result of the inherent competition for this docking site. If this target region of PCNA is modified, the DNA replication and repair process in cancer cells is potentially altered. Exploitation of this cancer-associated region has implications for targeted breast cancer therapy. In the present communication, we characterize a novel peptide (caPeptide) that has been synthesized to mimic the sequence identified as critical to the cancer-associated isoform of PCNA. This peptide is delivered into cells using a nine-arginine linking mechanism, and the resulting peptide (R9-cc-caPeptide) exhibits cytotoxicity in a triple-negative breast cancer cell line, MDA-MB-436, while having less of an effect on the normal counterparts (MCF10A and primary breast epithelial cells). The novel peptide was then evaluated for cytotoxicity using various in vivo techniques, including ATP activity assays, flow cytometry, and clonogenetic assays. This cytotoxicity has been observed in other breast cancer cell lines (MCF7 and HCC1937) and other forms of cancer (pancreatic and lymphoma). R9-cc-caPeptide has also been shown to block the association of PCNA with chromatin. Alanine scanning of the peptide sequence, combined with preliminary in silico modeling, gives insight to the disruptive ability and the molecular mechanism of action of the therapeutic peptide in vivo. PMID:25480843

  7. Phase I Study of Safety and Immunogenicity of an Escherichia coli-Derived Recombinant Protective Antigen (rPA) Vaccine to Prevent Anthrax in Adults

    OpenAIRE

    Brown, Bruce K.; Josephine Cox; Anita Gillis; VanCott, Thomas C.; Mary Marovich; Mark Milazzo; Tanya Santelli Antonille; Lindsay Wieczorek; Mckee, Kelly T.; Karen Metcalfe; Mallory, Raburn M.; Deborah Birx; Polonis, Victoria R.; Merlin L Robb

    2010-01-01

    BACKGROUND: The fatal disease caused by Bacillus anthracis is preventable with a prophylactic vaccine. The currently available anthrax vaccine requires a lengthy immunization schedule, and simpler and more immunogenic options for protection against anthrax are a priority for development. In this report we describe a phase I clinical trial testing the safety and immunogenicity of an anthrax vaccine using recombinant Escherichia coli-derived, B. anthracis protective antigen (rPA). METHODOLOGY/P...

  8. Phase I trial of thymidylate synthase poly-epitope peptide (TSPP) vaccine in advanced cancer patients.

    Science.gov (United States)

    Cusi, Maria Grazia; Botta, Cirino; Pastina, Pierpaolo; Rossetti, Maria Grazia; Dreassi, Elena; Guidelli, Giacomo Maria; Fioravanti, Antonella; Martino, Elodia Claudia; Gandolfo, Claudia; Pagliuchi, Marco; Basile, Assunta; Carbone, Salvatore Francesco; Ricci, Veronica; Micheli, Lucia; Tassone, Pierfrancesco; Tagliaferri, Pierosandro; Pirtoli, Luigi; Correale, Pierpaolo

    2015-09-01

    Thymidylate synthase (TS) poly-epitope peptide (TSPP) is a 27-mer peptide vaccine containing the amino acidic sequences of three epitopes with HLA-A2.1-binding motifs of TS, an enzyme overexpressed in cancer cells, which plays a crucial role in DNA repair and replication. Based on the results of preclinical studies, we designed a phase Ib trial (TSPP/VAC1) to investigate, in a dose escalation setting, the safety and the biological activity of TSPP vaccination alone (arm A) or in combination with GM-CSF and IL-2 (arm B) in cancer patients. Twenty-one pretreated metastatic cancer patients, with a good performance status (ECOG ≤ 1) and no severe organ failure or immunological disease, were enrolled in the study (12 in arm A, nine in arm B) between April 2011 and January 2012, with a median follow-up of 28 months. TSPP resulted safe, and its maximal tolerated dose was not achieved. No grade 4 toxicity was observed. The most common adverse events were grade 2 dermatological reactions to the vaccine injection, cough, rhinitis, fever, poly-arthralgia, gastro-enteric symptoms and, to a lesser extent, moderate hypertension and hypothyroidism. We detected a significant rise in auto-antibodies and TS-epitope-specific CTL precursors. Furthermore, TSPP showed antitumor activity in this group of pretreated patients; indeed, we recorded one partial response and seven disease stabilizations (SD) in arm A, and three SD in arm B. Taken together, our findings provide the framework for the evaluation of the TSPP anti-tumor activity in further disease-oriented clinical trials. PMID:26031574

  9. Antigen Processing of the Heptavalent Pneumococcal Conjugate Vaccine Carrier Protein CRM197 Differs Depending on the Serotype of the Attached Polysaccharide

    OpenAIRE

    Leonard, Ethan G.; Canaday, David H.; Harding, Clifford V.; Schreiber, John R.

    2003-01-01

    The pneumococcal (Pn) conjugate vaccine includes seven different polysaccharides (PS) conjugated to CRM197. Utilizing antigen-processing cells and a CRM197-specific mouse T-cell hybridoma, we found that the serotype of conjugated PnPS dramatically affected antigen processing of CRM197. Unconjugated CRM197 and serotype conjugates 14 and 18C were processed more efficiently.

  10. Comparative testing of six antigen-based malaria vaccine candidates directed toward merozoite-stage Plasmodium falciparum

    DEFF Research Database (Denmark)

    Arnot, David E; Cavanagh, David R; Remarque, Edmond J;

    2008-01-01

    Immunogenicity testing of Plasmodium falciparum antigens being considered as malaria vaccine candidates was undertaken in rabbits. The antigens compared were recombinant baculovirus MSP-1(19) and five Pichia pastoris candidates, including two versions of MSP-1(19), AMA-1 (domains I and II), AMA-1...

  11. A New Gene Family (ariel) Encodes Asparagine-Rich Entamoeba histolytica Antigens, Which Resemble the Amebic Vaccine Candidate Serine-Rich E. histolytica Protein

    OpenAIRE

    Mai, Zhiming; Samuelson, John

    1998-01-01

    A family of genes, called ariel, are named for and encode asparagine-rich Entamoeba histolytica antigens containing 2 to 16 octapeptide repeats. Ariel proteins, which are constitutively expressed by trophozoites, belong to a large antigen family that includes the serine-rich E. histolytica protein (SREHP), an amebic vaccine candidate.

  12. Cutting Edge: Coding Single Nucleotide Polymorphisms of Endoplasmic Reticulum Aminopeptidase 1 Can Affect Antigenic Peptide Generation In Vitro by Influencing Basic Enzymatic Properties of the Enzyme

    OpenAIRE

    Evnouchidou, Irini; Kamal, Ram P.; Seregin, Sergey S.; Goto, Yoshikuni; Tsujimoto, Masafumi; Hattori, Akira; Voulgari, Paraskevi V; Drosos, Alexandros A.; Amalfitano, Andrea; Ian A York; Stratikos, Efstratios

    2011-01-01

    ER aminopeptidase 1 (ERAP1) customizes antigenic peptide precursors for MHC class I presentation and edits the antigenic peptide repertoire. Coding single nucleotide polymorphisms (SNPs) in ERAP1 were recently linked with predisposition to autoimmune disease, suggesting a link between pathogenesis of autoimmunity and ERAP1-mediated Ag processing. To investigate this possibility, we analyzed the effect that disease-linked SNPs have on Ag processing by ERAP1 in vitro. Michaelis–Menten analysis ...

  13. Synthesis of a peptide-universal nucleotide antigen: towards next-generation antibodies to detect topoisomerase I-DNA covalent complexes.

    Science.gov (United States)

    Perkins, Angela L; Peterson, Kevin L; Beito, Thomas G; Flatten, Karen S; Kaufmann, Scott H; Harki, Daniel A

    2016-04-26

    The topoisomerase (topo) I-DNA covalent complex represents an attractive target for developing diagnostic antibodies to measure responsiveness to drugs. We report a new antigen, peptide , and four murine monoclonal antibodies raised against that exhibit excellent specificity for recognition of in comparison to structurally similar peptides by enzyme-linked immunosorbent assays. Although topo I-DNA complex detection was not achieved in cellular samples by these new antibodies, a new strategy for antigen design is reported. PMID:27113574

  14. Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model.

    Science.gov (United States)

    Alipour Talesh, Ghazal; Ebrahimi, Zahra; Badiee, Ali; Mansourian, Mercedeh; Attar, Hossein; Arabi, Leila; Jalali, Seyed Amir; Jaafari, Mahmoud Reza

    2016-08-01

    In the current study we aimed at developing a vaccine delivery/adjuvant system to enhance anti-tumor immunity against the natural multi-epitope HER2/Neu-derived P5 peptide. Polyriboinosinic: polyribocytidylic acid [Poly (I:C)] is a strong immunoadjuvant able to enhance specific antitumor immunity induced by peptide-based vaccines. Nevertheless, delivering the peptide and adjuvant intracellularly into their target site remains a challenging issue. We hypothesized this barrier could be overcome through the use of a cationic nanoliposome carrier system which can carry and protect the antigen and adjuvant in the extracellular environment and augment the induction of antitumor immunity. P5 was encapsulated in cationic nanoliposomes composed of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)-Cholesterol either alone or complexed with Poly (I:C). Immunocompetent BALB/c mice were immunized with the formulations 3 times in two-week intervals and the efficiency and type of immune response were then evaluated both in vitro and in vivo. The groups immunized with Lip-P5+PIC (DOTAP-Cholestrol-P5+Poly (I:C)) and Lip+PIC (DOTAP-Cholestrol+Poly (I:C)) enhanced the release of Interferon (IFN)-γ in comparison with other groups. Flow cytometry analysis revealed that Lip-P5+PIC formulation induced the highest level of IFN-γ in CD8(+) lymphocytes. Lip-P5+PIC, Lip+PIC and Lip-P5 (DOTAP-Cholestrol-P5) provided some extent of protection in terms of tumor regression in TUBO tumor mice model during the first 65days post tumor challenge but at the end only the tumors of mice immunized with Lip-P5+PIC were significantly smaller than all other groups. Furthermore, tumors of mice receiving Lip-P5+PIC grew at a significantly slower rate throughout the observation period. Our results showed that the combination of Poly (I:C) and DOTAP with the tumor antigen and without applying additional T-helper epitope induced strong antitumor responses. The observations presented here are of great interest

  15. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice.

    Science.gov (United States)

    Ghaffari-Nazari, Haniyeh; Tavakkol-Afshari, Jalil; Jaafari, Mahmoud Reza; Tahaghoghi-Hajghorbani, Sahar; Masoumi, Elham; Jalali, Seyed Amir

    2015-01-01

    Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu) using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL) in combination with a universal Pan DR epitope (PADRE) or CpG-oligodeoxynucleotides (CpG-ODNs) as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice. PMID:26556756

  16. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Haniyeh Ghaffari-Nazari

    Full Text Available Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL in combination with a universal Pan DR epitope (PADRE or CpG-oligodeoxynucleotides (CpG-ODNs as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice.

  17. Suppression of humoral immune response to hepatitis B surface antigen vaccine in BALB/c mice by 1-methyl-tryptophan co-administration

    Directory of Open Access Journals (Sweden)

    T Sparopoulou

    2011-07-01

    Full Text Available   Background and the purpose of the study:Indoleamine 2,3-dioxygenase (IDO suppresses adaptive immune response. The purpose of this study was to determine the effect of the IDO inhibitor namely 1-methyl-DL-tryptophan (DL-1-MT on antibody production after vaccination with hepatitis B surface (HBs antigen. Methods:Four groups of BALB/c mice were immunized with a HBs antigen vaccine. In the first group the vaccine had no DL-1-MT, whereas in the other three groups the vaccine contained 1 mg , 10 mg and 20 mg DL-1-MT. Blood samples were collected 5 weeks post-vaccination and anti-HBs antibodies in the serum were measured by ELISA. Results:Compared to the three groups of mice that were immunized with the vaccines containing DL-1-MT, serum anti-HBs level was much higher in the mice that were immunized with the vaccine with out DL-1-MT. Conclusions:Inhibition of IDO at the time of vaccination decreased humoral immune response to HBs antigen vaccine. The idea that IDO activity is simply immunosuppressive may need to be re-evaluated.

  18. Evaluation of a Salmonella vectored vaccine expressing Mycobacterium avium subsp. paratuberculosis antigens against challenge in a goat model.

    Directory of Open Access Journals (Sweden)

    Syed M Faisal

    Full Text Available Johnes disease (JD, caused by Mycobacterium avium subsp paratuberculosis (MAP, occurs worldwide as chronic granulomatous enteritis of domestic and wild ruminants. To develop a cost effective vaccine, in a previous study we constructed an attenuated Salmonella strain that expressed a fusion product made up of partial fragments of MAP antigens (Ag85A, Ag85B and SOD that imparted protection against challenge in a mouse model. In the current study we evaluated the differential immune response and protective efficacy of the Sal-Ag vaccine against challenge in a goat model as compared to the live attenuated vaccine MAP316F. PBMCs from goats vaccinated with Sal-Ag and challenged with MAP generated significantly lower levels of IFN-γ, following in vitro stimulation with either Antigen-mix or PPD jhonin, than PBMC from MAP316F vaccinated animals. Flow cytometric analysis showed the increase in IFN-γ correlated with a significantly higher level of proliferation of CD4, CD8 and γδT cells and an increased expression of CD25 and CD45R0 in MAP316F vaccinated animals as compared to control animals. Evaluation of a range of cytokines involved in Th1, Th2, Treg, and Th17 immune responses by quantitative PCR showed low levels of expression of Th1 (IFN-γ, IL-2, IL-12 and proinflammatory cytokines (IL-6, IL-8, IL-18, TNF-α in the Sal-Ag immunized group. Significant levels of Th2 and anti-inflammatory cytokines transcripts (IL-4, IL-10, IL-13, TGF-β were expressed but their level was low and with a pattern similar to the control group. Over all, Sal-Ag vaccine imparted partial protection that limited colonization in tissues of some animals upon challenge with wild type MAP but not to the level achieved with MAP316F. In conclusion, the data indicates that Sal-Ag vaccine induced only a low level of protective immunity that failed to limit the colonization of MAP in infected animals. Hence the Sal-Ag vaccine needs further refinement to increase its efficacy.

  19. Towards a universal vaccine for avian influenza: protective efficacy of modified Vaccinia virus Ankara and Adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus.

    Science.gov (United States)

    Boyd, Amy C; Ruiz-Hernandez, Raul; Peroval, Marylene Y; Carson, Connor; Balkissoon, Devanand; Staines, Karen; Turner, Alison V; Hill, Adrian V S; Gilbert, Sarah C; Butter, Colin

    2013-01-11

    Current vaccines targeting surface proteins can drive antigenic variation resulting either in the emergence of more highly pathogenic viruses or of antigenically distinct viruses that escape control by vaccination and thereby persist in the host population. Influenza vaccines typically target the highly mutable surface proteins and do not provide protection against heterologous challenge. Vaccines which induce immune responses against conserved influenza epitopes may confer protection against heterologous challenge. We report here the results of vaccination with recombinant modified Vaccinia virus Ankara (MVA) and Adenovirus (Ad) expressing a fusion construct of nucleoprotein and matrix protein (NP+M1). Prime and boost vaccination regimes were trialled in different ages of chicken and were found to be safe and immunogenic. Interferon-γ (IFN-γ) ELISpot was used to assess the cellular immune response post secondary vaccination. In ovo Ad prime followed by a 4 week post hatch MVA boost was identified as the most immunogenic regime in one outbred and two inbred lines of chicken. Following vaccination, one inbred line (C15I) was challenged with low pathogenic avian influenza (LPAI) H7N7 (A/Turkey/England/1977). Birds receiving a primary vaccination with Ad-NP+M1 and a secondary vaccination with MVA-NP+M1 exhibited reduced cloacal shedding as measured by plaque assay at 7 days post infection compared with birds vaccinated with recombinant viruses containing irrelevant antigen. This preliminary indication of efficacy demonstrates proof of concept in birds; induction of T cell responses in chickens by viral vectors containing internal influenza antigens may be a productive strategy for the development of vaccines to induce heterologous protection against influenza in poultry. PMID:23200938

  20. Optimization of immune responses induced by therapeutic vaccination with cross-reactive antigens in a humanized hepatitis B surface antigen transgenic mouse model.

    Science.gov (United States)

    Bourgine, Maryline; Dion, Sarah; Godon, Ophélie; Guillen, Gerardo; Michel, Marie-Louise; Aguilar, Julio Cesar

    2012-08-15

    The absence of relevant animal models of chronic hepatitis B virus (HBV) infection has hampered the evaluation and development of therapeutic HBV vaccines. In this study, we generated a novel transgenic mouse lineage that expresses human class I and II HLA molecules and the hepatitis B surface antigen (HBsAg). HBsAg and hepatitis B core antigen (HBcAg) administered as plasmid DNAs and recombinant proteins, either alone or in combination, were evaluated as therapeutic vaccine candidates in this mouse model. Our results emphasize the importance of the route of administration in breaking HBsAg tolerance. Although immunizing the transgenic mice with DNA encoding homologous HBsAg was sufficient to induce CD8+ T-cell responses, HBsAg from a heterologous subtype was required to induce a CD4+ T-cell response. Importantly, only prime-boost immunization protocols that combined plasmid DNA injection followed by protein injection induced the production of antibodies against the HBsAg expressed by the transgenic mice. PMID:22591777

  1. An adenoviral cancer vaccine co-encoding a tumor associated antigen together with secreted 4-1BBL leads to delayed tumor progression

    DEFF Research Database (Denmark)

    Ragonnaud, Emeline; Andersson, Anne-Marie C; Pedersen, Anders Elm;

    2016-01-01

    antibody administration. Furthermore, adenovirus encoded 4-1BBL expression has previously been successfully used to enhance responses toward Plasmodium falciparum and Influenza A antigens. We showed that the incorporation of 4-1BBL in the adenovirus vector led to surface expression of 4-1BBL on antigen...... survival compared to the vaccine expressing the membrane form of 4-1BBL. Accordingly, secreted 4-1BBL co-encoded with the Ii linked antigen may offer a simplification compared to administration of drug and vaccine separately....

  2. Antigenicity and Immunogenicity of Salmonella enteritidis: Its Implication for Diagnosis and Development of Local Isolate Vaccine for Poultry

    Directory of Open Access Journals (Sweden)

    Tati Ariyanti

    2008-12-01

    Full Text Available Genus Salmonella consists of more than 2,400 serovars, which can be identified by means of serological method based on the variation of their somatic (O, flagellar (H and capsular antigens (Vi. Salmonella serovars which are able to cause disease in animal or domestic animal are limited, such as: S. pullorum and S. gallinarum which are well adapted to poultry, cause fowl typhoid, S. cholerasuis causes disease in swine. S. typhimurium and S. enteritidis can infect all animals and humans. S. typhimurium and S. enteritidis could be isolated from salmonellosis of poultry, meat, milk and eggs. The prevalence of those isolates within the last two decades tends to increase. Pathogenic Salmonella serovars can infect both animals and humans, colonize the intestinal epithelial cells lead to diarrhoea. Salmonella spp. may enter the lower layer of epithelial cells and the lymphoid vascular system. Humoral antibody and cell mediated immunity responses may develop. Extraintestinal shedding or dissemination of Salmonella spp. may occur and multiply, this may cause latent infections and spread to the environment. Serologic diagnosis of infected animals can be done by means of serum or whole blood agglutination tests with whole cell antigen or ELISA with LPS coated tray, might demonstrate cross reactions among serovars within the one group. ELISA antibody by using fimbrial SEF14 antigen demonstrated specific diagnosis of S. enteritidis infection. The use of S. enteritidis inactive vaccines stimulates high humoral antibody response and protection against challenged homologous serovar within one group (D. The secretory antibody in mucosal surface of intestine and cell mediated immunity were not stimulated after vaccination with inactive Salmonella vaccine. Inactive vaccines (local isolate of S. enteritidis which was developed and evaluated on experimental layer chicken produced protection against challenged homologous and may be used to control vertical

  3. ERAP1 functions override the intrinsic selection of specific antigens as immunodominant peptides, thereby altering the potency of antigen-specific cytolytic and effector memory T-cell responses.

    Science.gov (United States)

    Rastall, David P W; Aldhamen, Yasser A; Seregin, Sergey S; Godbehere, Sarah; Amalfitano, Andrea

    2014-12-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a critical component of the adaptive immune system that has been shown to increase or decrease the presentation of specific peptides on MHC class I molecules. Here, we have demonstrated that ERAP1 functions are not only important during the presentation of antigen-derived peptides, but these functions can also completely change which antigen-derived peptides ultimately become selected as immunodominant T-cell epitopes. Our results suggest that ERAP1 may do this by destroying epitopes that would otherwise become immunodominant in the absence of adequate ERAP1 functionality. We further establish that ERAP1-mediated influences on T-cell functions are both qualitative and quantitative, by demonstrating that loss of ERAP1 function redirects CTL killing toward a different set of antigen-derived epitopes and increases the percent of antigen-specific memory T cells elicited by antigen exposure. As a result, our studies suggest that normal ERAP1 activity can act to suppress the numbers of T effector memory cells that respond to a given antigen. This unique finding may shed light on why certain ERAP1 single nucleotide polymorphisms are associated with several autoimmune diseases, for example, by significantly altering the robustness and quality of CD8+ T-cell memory responses to antigen-derived peptides. PMID:25087231

  4. Protective Antigen-Specific Memory B Cells Persist Years after Anthrax Vaccination and Correlate with Humoral Immunity

    Directory of Open Access Journals (Sweden)

    Lori Garman

    2014-08-01

    Full Text Available Anthrax Vaccine Adsorbed (AVA generates short-lived protective antigen (PA specific IgG that correlates with in vitro toxin neutralization and protection from Bacillus anthracis challenge. Animal studies suggest that when PA-specific IgG has waned, survival after spore challenge correlates with an activation of PA-specific memory B cells. Here, we characterize the quantity and the longevity of AVA-induced memory B cell responses in humans. Peripheral blood mononuclear cells (PBMCs from individuals vaccinated ≥3 times with AVA (n = 50 were collected early (3–6 months, n = 27 or late after their last vaccination (2–5 years, n = 23, pan-stimulated, and assayed by ELISPOT for total and PA-specific memory B cells differentiated into antibody secreting cells (ASCs. PA-specific ASC percentages ranged from 0.02% to 6.25% (median: 1.57% and did not differ between early and late post-vaccination individuals. PA-specific ASC percentages correlated with plasma PA-specific IgG (r = 0.42, p = 0.03 and toxin neutralization (r = 0.52, p = 0.003 early post vaccination. PA-specific ASC percentages correlated with supernatant anti-PA both early (r = 0.60, p = 0.001 and late post vaccination (r = 0.71, p < 0.0001. These data suggest PA-specific memory B cell responses are long-lived and can be estimated after recent vaccination by the magnitude and neutralization capacity of the humoral response.

  5. Lysosome-associated membrane glycoprotein (LAMP)--preliminary study on a hidden antigen target for vaccination against schistosomiasis.

    Science.gov (United States)

    Nawaratna, Sujeevi S K; Gobert, Geoffrey N; Willis, Charlene; Mulvenna, Jason; Hofmann, Andreas; McManus, Donald P; Jones, Malcolm K

    2015-01-01

    Our previously reported gene atlasing of schistosome tissues revealed transcripts that were highly enriched in the digestive tract of Schistosoma mansoni. From these, we selected two candidates, Sm-LAMP and Sm-NPC2 for testing as vaccine targets. The two molecules were selected on the basis of relatively high expression in the gastrodermis, their potentially important biological function, divergence from homologous molecules of the host and possible apical membrane expression in the gastrodermis. Bacterially expressed recombinant peptides corresponding to regions excluding trans-membrane domains of the selected vaccine targets were used in blinded vaccine trials in CBA mice using alum-CpG as adjuvant. Vaccine trials using the recombinant insoluble Sm-LAMP protein showed 16-25% significant reduction in total worm burden. Faecal egg count reduction was 52% and 60% in two trials, respectively, with similar results for the solubly expressed protein. Liver egg burden was reduced significantly (20% and 38%) with an insoluble recombinant Sm-LAMP in two trials, but not with the soluble recombinant form. Parasite fecundity was not affected by either Sm-LAMP protein preparations in the trials. It is concluded that Sm-LAMP may provide limited protection towards S. mansoni infections but could be used in combination with other vaccine candidates, to provide more comprehensive protection. PMID:26472258

  6. Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus.

    Directory of Open Access Journals (Sweden)

    Richard Reeve

    Full Text Available Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence--by controlling for phylogenetic structure--for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization

  7. Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats

    Science.gov (United States)

    Berens, Shawn J.; Brayton, Kelly A.; Molloy, John B.; Bock, Russell E.; Lew, Ala E.; McElwain, Terry F.

    2005-01-01

    The merozoite surface antigen 2 (MSA-2) proteins of Babesia bovis are members of the variable merozoite surface antigen (VMSA) family that have been implicated in erythrocyte invasion and are important targets for antibody-mediated blocking of invasion. Extensive sequence variation in another VMSA member, MSA-1, has been shown in all vaccine breakthrough isolates. To test the hypothesis that the msa-2 genes of vaccine breakthrough isolates would also encode a diverse set of proteins, the complete msa-2 locus was characterized from 12 Australian B. bovis strains and isolates, including two vaccine strains and eight vaccine breakthrough isolates, and compared to the loci in previously and newly characterized American strains. In contrast to American strains, the msa-2 loci of all Australian strains and isolates examined contain, in addition to msa-2c, only a solitary gene (designated msa-2a/b) closely related to American strain msa-2a and msa-2b. Nevertheless, the proteins encoded by these genes are quite diverse both between and within geographic regions and harbor evidence of genetic exchange among other VMSA family members, including msa-1. Moreover, all but one of the Australian breakthrough isolate MSA-2a/b proteins is markedly different from the vaccine strain from which immune escape occurred, consistent with their role in strain-specific protective immunity. The densest distribution of polymorphisms occurs in a hypervariable region (HVR) within the carboxy third of the molecule that is highly proline rich. Variation in length and content of the HVR is primarily attributable to differences in the order and number of degenerate nucleotide repeats encoding three motifs of unknown function. PMID:16239512

  8. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Bernhards R Ogutu

    Full Text Available OBJECTIVE: The antigen, falciparum malaria protein 1 (FMP1, represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1 of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System, it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children. METHODS: A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg or Rabipur(R rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE was measured over a six-month period following third vaccinations. RESULTS: 374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42 antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7. CONCLUSIONS: FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42 vaccine development should focus

  9. Definition of a physiologic aging autoantigen by using synthetic peptides of membrane protein band 3: localization of the active antigenic sites.

    Science.gov (United States)

    Kay, M M; Marchalonis, J J; Hughes, J; Watanabe, K; Schluter, S F

    1990-08-01

    Senescent cell antigen (SCA), an aging antigen, is a protein that appears on old cells and marks them for removal by the immune system in mammals. It is derived from band 3, a ubiquitous membrane transport protein found in diverse cell types and tissues. We have used synthetic peptides to identify aging antigenic sites on band 3, using a competitive inhibition assay and immunoblotting with IgG directed against the aging antigen on old cells. Results indicate that: (i) the active antigenic sites of the aging antigen reside on membrane protein band 3 residues that are extracellular regions implicated in anion transport (residues 538-554 and 788-827); (ii) a putative ankyrin-binding-region peptide is not involved in SCA activity; and (iii) carbohydrate moieties are not required for the antigenicity or recognition of SCA because synthetic peptides alone abolish binding of senescent cell IgG to erythrocytes. One of the putative transport sites that contributes to the aging antigen is located toward the carboxyl terminus. A model of band 3 is presented. Localization of the active antigenic site on the band 3 molecule facilitates definition of the molecular changes occurring during aging that initiate molecular as well as cellular degeneration. PMID:1696010

  10. Human anti-anthrax protective antigen neutralizing monoclonal antibodies derived from donors vaccinated with anthrax vaccine adsorbed

    OpenAIRE

    Sawada-Hirai, Ritsuko; Jiang, Ivy; Wang, Fei; Sun, Shu Man; Nedellec, Rebecca; Ruther, Paul; Alvarez, Alejandro; Millis, Diane; Morrow, Phillip R.; Kang, Angray S

    2004-01-01

    Background Potent anthrax toxin neutralizing human monoclonal antibodies were generated from peripheral blood lymphocytes obtained from Anthrax Vaccine Adsorbed (AVA) immune donors. The anti-anthrax toxin human monoclonal antibodies were evaluated for neutralization of anthrax lethal toxin in vivo in the Fisher 344 rat bolus toxin challenge model. Methods Human peripheral blood lymphocytes from AVA immunized donors were engrafted into severe combined immunodeficient (SCID) mice. Vaccination w...

  11. A multi-antigen vaccine in combination with an immunotoxin targeting tumor-associated fibroblast for treating murine melanoma

    Science.gov (United States)

    Fang, Jinxu; Hu, Biliang; Li, Si; Zhang, Chupei; Liu, Yarong; Wang, Pin

    2016-01-01

    A therapeutically effective cancer vaccine must generate potent antitumor immune responses and be able to overcome tolerance mechanisms mediated by the progressing tumor itself. Previous studies showed that glycoprotein 100 (gp100), tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2) are promising immunogens for melanoma immunotherapy. In this study, we administered these three melanoma-associated antigens via lentiviral vectors (termed LV-3Ag) and found that this multi-antigen vaccine strategy markedly increased functional T-cell infiltration into tumors and generated protective and therapeutic antitumor immunity. We also engineered a novel immunotoxin, αFAP-PE38, capable of targeting fibroblast activation protein (FAP)-expressing fibroblasts within the tumor stroma. When combined with αFAP-PE38, LV-3Ag exhibited greatly enhanced antitumor effects on tumor growth in an established B16 melanoma model. The mechanism of action underlying this combination treatment likely modulates the immune suppressive tumor microenvironment and, consequently, activates cytotoxic CD8+ T cells capable of specifically recognizing and destroying tumor cells. Taken together, these results provide a strong rationale for combining an immunotoxin with cancer vaccines for the treatment of patients with advanced cancer. PMID:27119119

  12. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient.

    Directory of Open Access Journals (Sweden)

    Manami Miyai

    Full Text Available Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01 in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB gene next generation sequencing (NGS to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3 rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF. Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133% even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB

  13. Targeting hepatitis B virus antigens to dendritic cells by heat shock protein to improve DNA vaccine potency

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate a novel DNA vaccination based upon expression of the HBV e antigen fused to a heat shock protein (HSP) as a strategy to enhance DNA vaccine potency.METHODS: A pCMV-HBeAg-HSP DNA vaccine and a control DNA vaccine were generated. Mice were immunized with these different construct. Immune responses were measured 2 wk after a second immunization by a T cell response assay, CTL cytotoxicity assay, and an antibody assay in C57BL/6 and BALB/c mice. CT26-HBeAg tumor cell challenge test in vivo was performed in BALB/c mice to monitor anti-tumor immune responses.RESULTS: In the mice immunized with pCMV-HBe-HSP DNA, superior CTL activity to target HBV-positive target cells was observed in comparison with mice immunized with pCMV-HBeAg (44% ± 5% vs 30% ± 6% in E: T > 50:1, P < 0.05). ELISPOT assays showed a stronger T-cell response from mice immunized with pCMV-HBe-HSP than that from pCMV-HBeAg immunized animals when stimulated either with MHC class Ⅰ or class Ⅱ epitopes derived from HBeAg (74% ± 9% vs 31% ± 6%, P < 0.01). ELISA assays revealed an enhanced HBeAg antibody response from mice immunized with pCMV-HBe-HSP than from those immunized with pCMV-HBeAg. The lowest tumor incidence and the slowest tumor growth were observed in mice immunized with pCMV-HBe-HSP when challenged with CT26-HBeAg.CONCLUSION: The results of this study demonstrate a broad enhancement of antigen-specific CD4+ helper,CD8+ cytotoxic T-cell, and B-cell responses by a novel DNA vaccination strategy. They also proved a stronger antigen-specific immune memory, which may be superior to currently described HBV DNA vaccination strategies for the treatment of chronic HBV infection.

  14. Clinical and immunological evaluation of anti-apoptosis protein, survivin-derived peptide vaccine in phase I clinical study for patients with advanced or recurrent breast cancer

    Directory of Open Access Journals (Sweden)

    Asanuma Hiroko

    2008-05-01

    Full Text Available Abstract Background We previously reported that survivin-2B, a splicing variant of survivin, was expressed in various types of tumors and that survivin-2B peptide might serve as a potent immunogenic cancer vaccine. The objective of this study was to examine the toxicity of and to clinically and immunologically evaluate survivin-2B peptide in a phase I clinical study for patients with advanced or recurrent breast cancer. Methods We set up two protocols. In the first protocol, 10 patients were vaccinated with escalating doses (0.1–1.0 mg of survivin-2B peptide alone 4 times every 2 weeks. In the second protocol, 4 patients were vaccinated with the peptide at a dose of 1.0 mg mixed with IFA 4 times every 2 weeks. Results In the first protocol, no adverse events were observed during or after vaccination. In the second protocol, two patients had induration at the injection site. One patient had general malaise (grade 1, and another had general malaise (grade 1 and fever (grade 1. Peptide vaccination was well tolerated in all patients. In the first protocol, tumor marker levels increased in 8 patients, slightly decreased in 1 patient and were within the normal range during this clinical trial in 1 patient. With regard to tumor size, two patients were considered to have stable disease (SD. Immunologically, in 3 of the 10 patients (30%, an increase of the peptide-specific CTL frequency was detected. In the second protocol, an increase of the peptide-specific CTL frequency was detected in all 4 patients (100%, although there were no significant beneficial clinical responses. ELISPOT assay showed peptide-specific IFN-γ responses in 2 patients in whom the peptide-specific CTL frequency in tetramer staining also was increased in both protocols. Conclusion This phase I clinical study revealed that survivin-2B peptide vaccination was well tolerated. The vaccination with survivin-2B peptide mixed with IFA increased the frequency of peptide-specific CTL more

  15. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches.

    Science.gov (United States)

    Nezafat, Navid; Karimi, Zeinab; Eslami, Mahboobeh; Mohkam, Milad; Zandian, Sanam; Ghasemi, Younes

    2016-06-01

    Cholera continues to be a major global health concern. Among different Vibrio cholerae strains, only O1 and O139 cause acute diarrheal diseases that are related to epidemic and pandemic outbreaks. The currently available cholera vaccines are mainly lived and attenuated vaccines consisting of V. cholerae virulence factors such as toxin-coregulated pili (TCP), outer membrane proteins (Omps), and nontoxic cholera toxin B subunit (CTB). Nowadays, there is a great interest in designing an efficient epitope vaccine against cholera. Epitope vaccines consisting of immunodominant epitopes and adjuvant molecules enhance the possibility of inciting potent protective immunity. In this study, V. cholerae protective antigens (OmpW, OmpU, TcpA and TcpF) and the CTB, which is broadly used as an immunostimulatory adjuvant, were analyzed using different bioinformatics and immunoinformatics tools. The common regions between promiscuous epitopes, binding to various HLA-II supertype alleles, and B-cell epitopes were defined based upon the aforementioned protective antigens. The ultimately selected epitopes and CTB adjuvant were fused together using proper GPGPG linkers to enhance vaccine immunogenicity. A three-dimensional model of the thus constructed vaccine was generated using I-TASSER. The model was structurally validated using the ProSA-web error-detection software and the Ramachandran plot. The validation results indicated that the initial 3D model needed refinement. Subsequently, a high-quality model obtained after various refinement cycles was used for defining conformational B-cell epitopes. Several linear and conformational B-cell epitopes were determined within the epitope vaccine, suggesting likely antibody triggering features of our designed vaccine. Next, molecular docking was performed between the 3D vaccine model and the tertiary structure of the toll like receptor 2 (TLR2). To gain further insight into the interaction between vaccine and TLR2, molecular dynamics

  16. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.

  17. Establishment of an in vivo potency assay for the recombinant hepatit is B surface antigen in monovalent and combined vaccines

    Directory of Open Access Journals (Sweden)

    Mabel Izquierdo-López

    2014-12-01

    Full Text Available In this paper the development of potency assay in animals (mice was made, with the objective of demonstrating the immunogenic power of the recombinant Hepatitis B surface antigen in monovalent and combined vaccines, produced at the Center of Genetic Engineering and Biotechnology. The potency test is a parameter in quality control and it is also a tool to demonstrate the consistency of the production process. Parameters such as duration of the test, number of animals in the test, as well as different areas for the maintenance of the animals were evaluated. The results on the applicability of the potency test, to two presentations of the vaccines; monovalent Heberbiovac HB and pentavalent liquid in one vial Heberpenta-L are shown, for which specificity studies, evaluating different vaccine lots, the behavior of linearity, and parallelism, as well as establishing quality specification of the test were performed. This assay led to the obtainment of reliable results for the vaccines evaluated, the consistent evaluation of the immunogenic power and the monitoring of different production processes.

  18. Peptide vaccination induces profound changes in the immune system in patients with B-cell chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Michael Schmitt

    2011-04-01

    Full Text Available Although the immune status of chronic lymphocytic leukemia (CLL patients is mostly characterized by immunosuppression, there is an accumulation of in vivo (graft-versus-leukemia effect and in vitro (spontaneous remissions after infections data that indicates that CLL might be effectively targeted by T-cell based immunotherapy. Recently, we characterized receptor for hyaluronic acid mediated motility (RHAMM as a preferential target for immunotherapy of CLL. We also completed a RHAMM-derived peptide vaccination phase I/II clinical trial in CLL. Here, we present a detailed immunological analysis of six CLL patients vaccinated with HLA-A2 restricted RHAMM-derived epitope R3 (ILSLELMKL. Beside effective induction of R3-specific cytotoxic T-cells, peptide vaccination caused profound changes in different T-cell subsets as well as cytokines. We present longitudinal analyses of Th17, CD8+CD103+, CD8+CD137+ and IL-17 producing CD8+ T cells (CD8+IL- -17+ as well as important cytokines involved in regulation of immune response such as TGF-β, IL-10, IL-2 and TNF throughout the peptide vaccination period. (Folia Histochemica et Cytobiologica 2011, Vol. 49, No. 1, 161–167

  19. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression

    International Nuclear Information System (INIS)

    Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 μg pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-α, IL-1β, IL-6, IFN-γ) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-γ and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1

  20. Expression of immunogenic epitopes of hepatitis B surface antigen with hybrid flagellin proteins by a vaccine strain of Salmonella.

    OpenAIRE

    Wu, J Y; Newton, S; Judd, A; Stocker, B; Robinson, W S

    1989-01-01

    A nonvirulent Salmonella dublin flagellin-negative, aromatic-dependent live vaccine strain has been used to express hepatitis B virus surface antigen epitopes in an immunogenic form. The envelope proteins of the virion are encoded by the S gene, which contains the pre-S1, pre-S2, and S coding regions. Synthetic oligonucleotides corresponding to amino acid residues S-(122-137) and pre-S2-(120-145) were inserted in-frame into the hypervariable region of a cloned Salmonella flagellin gene, and t...

  1. Synthetic Self-Adjuvanting Glycopeptide Cancer Vaccines

    Science.gov (United States)

    Payne, Richard; McDonald, David; Byrne, Scott

    2015-10-01

    Due to changes in glycosyltransferase expression during tumorigenesis, the glycoproteins of cancer cells often carry highly truncated carbohydrate chains compared to those on healthy cells. These glycans are known as tumor-associated carbohydrate antigens, and are prime targets for use in vaccines for the prevention and treatment of cancer. Herein, we review the state-of-the-art in targeting the immune system towards tumor-associated glycopeptide antigens via synthetic self adjuvanting vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in the same molecule. The majority of the self-adjuvanting glycopeptide cancer vaccines reported to date employ antigens from mucin 1, a protein which is highly over-expressed and aberrantly glycosylated in many forms of cancer. The adjuvants used in these vaccines predominantly include lipopeptide- or lipoamino acid-based TLR2 agonists, although studies investigating stimulation of TLR9 and TLR4 are also discussed. Most of these adjuvants are highly lipophilic, and, upon conjugation to antigenic peptides, provide amphiphilic vaccine molecules. The amphiphilic nature of these vaccine constructs can lead to the formation of higher-order structures by vaccines in solution, which are likely to be important for their efficacy in vivo.

  2. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Directory of Open Access Journals (Sweden)

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  3. Grafting of a peptide probe for Prostate-Specific Antigen detection using diazonium electroreduction and click chemistry.

    Science.gov (United States)

    Strzemińska, I; Sainte Rose Fanchine, S; Anquetin, G; Reisberg, S; Noël, V; Pham, M C; Piro, B

    2016-07-15

    The main objective of this work was to validate a label-free electrochemical method of protein detection using peptides as capture probes. As a proof-of-concept, we used a 7 amino acids sequence (HSSKLQL) specific for Prostate Specific Antigen. We investigated various electrografting conditions of two anilines (2-[(4-aminophenyl)sulfanyl]-8-hydroxy-1,4-naphthoquinone and 4-azidoaniline) further converted in situ into their corresponding diazonium salts on glassy carbon electrodes. It was demonstrated that the best method to obtain a mixed layer is the simultaneous electroreduction of the two diazonium salts. 4-azidoaniline was used to covalently immobilize the ethynyl-functionalized peptide probe by click coupling, and the hydroxynaphthoquinone derivative plays the role of electrochemical transducer of the peptide-protein recognition. The proteolytic activity of PSA towards a small peptide substrate carrying streptavidin at its distal end was also investigated to design an original sensing architecture leading to a reagentless, label free, and "signal-on" PSA sensor. Without optimization, the limit of quantification can be estimated in the nM to pM range. PMID:26938492

  4. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    DEFF Research Database (Denmark)

    Tamborrini, Marco; Stoffel, Sabine A; Westerfeld, Nicole; Amacker, Mario; Theisen, Michael; Zurbriggen, Rinaldo; Pluschke, Gerd

    2011-01-01

    In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs) have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant ...... fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP....

  5. Antigen design enhances the immunogenicity of Semliki Forest virus-based therapeutic human papillomavirus vaccines

    NARCIS (Netherlands)

    Ip, P. P.; Boerma, A.; Walczak, M.; Oosterhuis, K.; Haanen, J. B.; Schumacher, T. N.; Nijman, H. W.; Daemen, T.

    2015-01-01

    Cellular immunity against cancer can be achieved with viral vector-and DNA-based immunizations. In preclinical studies, cancer vaccines are very potent, but in clinical trials these potencies are not achieved yet. Thus, a rational approach to improve cancer vaccines is warranted. We previously demon

  6. Reduced antibody responses against Plasmodium falciparum vaccine candidate antigens in the presence of Trichuris trichiura

    DEFF Research Database (Denmark)

    Esen, Meral; Mordmüller, Benjamin; de Salazar, Pablo Martinez;

    2012-01-01

    BACKGROUND: Helminth infections are highly prevalent in the tropics and may have an effect on immune responses to vaccines due to their immunomodulatory effect. The prevalence of helminth infections in young children, the target group for malaria and most other vaccines, is high. Therefore we ass...

  7. Hepatitis B surface antigen positivity after twinrix vaccination: a case report.

    Science.gov (United States)

    Lee, Yirang; Kim, Jae-Seok; Park, Ji-Young; Kim, Soo Young; Hwang, In Hong; Cho, Hyoun Chan

    2014-01-01

    Travelers might have an increased risk of hepatitis B virus (HBV) infection. We report a case of prolonged transient hepatitis B surface antigenemia in a healthy Canadian female 8 days after administration of a combined hepatitis A and hepatitis B vaccine. Travel health providers providing hepatitis B vaccines need to be aware of this phenomenon and educate their patients accordingly. PMID:24861218

  8. Size-exclusion HPLC provides a simple, rapid, and versatile alternative method for quality control of vaccines by characterizing the assembly of antigens.

    Science.gov (United States)

    Yang, Yanli; Li, Hao; Li, Zhengjun; Zhang, Yan; Zhang, Songping; Chen, Yi; Yu, Mengran; Ma, Guanghui; Su, Zhiguo

    2015-02-25

    The assembly of antigen structure is often crucial to the potency of vaccines. Currently adopted methods like animal testing and ultracentrifugation take long time and are difficult to automate for multiple samples. Here we develop a size-exclusion high-performance liquid chromatography (SE-HPLC) method to characterize the assembly of antigen structure during both manufacturing process and storage. Three important vaccine antigens including inactivated foot and mouth disease virus (FMDV), which is a virus vaccine; and two virus-like particles (VLPs) vaccines involving hepatitis B core antigen (HBcAg) VLPs, and hepatitis B surface antigen (HBsAg) VLPs, were successfully analyzed using commercially available TSK gel columns with pore size above 45nm. Combined with other analytical methods including SDS-PAGE, dynamic light scattering, wavelength scan, and multi-angle laser light scattering, the SE-HPLC method was proven to be a simple, rapid, and reliable tool for antigen particles assembly analysis. Specifically, for FMDV whole virus particle, SE-HPLC was used to analyze 146S content in vaccine preparations and the thermal dissociation of the 146S. For HBcAg-VLPs that are expressed in recombinant Escherichia coli, its expression level during cell culture process was quantitatively monitored by SE-HPLC. The SE-HPLC also showed applicability for quality check of HBsAg vaccine preparations by monitoring the product consistency of different lot number and the product stability during storage. Results shown in this work clearly demonstrated that SE-HPLC method has potential as a versatile alternative technology for control of the final product by both manufacturers and the regulatory agencies. PMID:25604799

  9. The combination of Pleurotus ferulae water extract and CpG-ODN enhances the immune responses and antitumor efficacy of HPV peptides pulsed dendritic cell-based vaccine.

    Science.gov (United States)

    Li, Jinyu; Li, Jinyao; Aipire, Adila; Luo, JiaoJiao; Yuan, Pengfei; Zhang, Fuchun

    2016-06-30

    Our previous study reported that the combination of Pleurotus ferulae water extract (PFWE) and CpG (PFWE+CpG) enhanced the maturation and function of dendritic cells (DCs). Here, we investigated the effects of PFWE+CpG on the immune responses and antitumor efficacy of DC-based vaccine. We observed that all of HPV E6 and E7 peptides pulsed DCs (HPV-immature DCs, HPV+PFWE-, +CpG- or +PFWE+CpG-DCs) induced antigen-specific CD8(+) T cell responses and HPV+PFWE+CpG-DCs induced highest level of CD8(+) T cell responses. The antitumor efficacy of HPV-DCs vaccines was evaluated in TC-1 tumor mouse model. The early therapeutic study showed that HPV+PFWE-, +CpG- and +PFWE+CpG-DCs greatly inhibited tumor growth. Moreover, HPV+PFWE+CpG-DCs controlled tumor growth at a faster rate compared to other groups. These three groups induced HPV-specific CD8(+) T cell responses and significantly decreased the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)). However, only HPV+PFWE+CpG-DCs significantly decreased the frequency of natural Tregs (nTregs: CD4(+)CD25(+)Fopx3(+)). Furthermore, HPV+PFWE+CpG-DCs also significantly inhibited tumor growth in the late therapeutic study. The results showed that PFWE+CpG enhanced the immune responses and antitumor efficacy of DC-based vaccine, suggesting that PFWE+CpG might be the potential candidate for the generation of clinical-grade mature DCs. PMID:27211038

  10. PREDICTION OF ANTIGENIC AND BINDING SITES OF NEUROTOXIN 23 OF SCORPION (LYCHASMUCRONACTUS SP.)

    OpenAIRE

    Bharati K Thosare; Ingale, Arun G

    2015-01-01

    Identification of antigenic and binding site of protein is highly desirable for the design of vaccines and immunodiagnostics. The present exercise deals with a prediction of antigenic as well as binding sites of neurotoxin 23 of Lychasmucronactus. This species of scorpion having diverse molecules of toxic peptide, the peptide neurotoxin 23 is 96 amino acids long of which 23 to 96 specifically code for neurotoxin. The total of 27 such different ligand binding residue were identifie...

  11. Assessment by electron-microscopy of recombinant Vibrio cholerae and Salmonella vaccine strains expressing enterotoxigenic Escherichia coli-specific surface antigens.

    Science.gov (United States)

    Ziethlow, V; Favre, D; Viret, J-F; Frey, J; Stoffel, M H

    2008-03-01

    Diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) requires adhesion of microorganisms to enterocytes. Hence, a promising approach to immunoprophylaxis is to elicit antibodies against colonisation factor antigens (CFAs). Genes encoding the most prevalent ETEC-specific surface antigens were cloned into Vibrio cholerae and Salmonella vaccine strains. Expression of surface antigens was assessed by electron-microscopy. Whereas negative staining was effective in revealing CFA/I and CS3, but not CS6, immunolabelling allowed identification of all surface antigens examined. The V. cholerae vaccine strain CVD103 did not express ETEC-specific colonisation factors, whereas CVD103-HgR expressed CS3 only. However, expression of both CFA/I and CS3 was demonstrated in Salmonella Ty21a. PMID:18093230

  12. Combining Viral Vectored and Protein-in-adjuvant Vaccines Against the Blood-stage Malaria Antigen AMA1: Report on a Phase 1a Clinical Trial

    OpenAIRE

    Susanne H. Hodgson; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Thomas W Rampling; Biswas, Sumi; Ian D Poulton; Miura, Kazutoyo; Douglas, Alexander D.; Alanine, Daniel GW; Illingworth, Joseph J.; de Cassan, Simone C.; ZHU, DAMING; Nicosia, Alfredo; Long, Carole A.

    2014-01-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines—chimpanzee adenovir...

  13. Immunological Correlates for Protection against Intranasal Challenge of Bacillus anthracis Spores Conferred by a Protective Antigen-Based Vaccine in Rabbits

    OpenAIRE

    Weiss, Shay; Kobiler, David; Levy, Haim; Marcus, Hadar; Pass, Avi; Rothschild, Nili; Altboum, Zeev

    2006-01-01

    Correlates between immunological parameters and protection against Bacillus anthracis infection in animals vaccinated with protective antigen (PA)-based vaccines could provide surrogate markers to evaluate the putative protective efficiency of immunization in humans. In previous studies we demonstrated that neutralizing antibody levels serve as correlates for protection in guinea pigs (S. Reuveny et al., Infect. Immun. 69:2888-2893, 2001; H. Marcus et al., Infect. Immun. 72:3471-3477, 2004). ...

  14. Cell-mediated immunity elicited by the blood stage malaria vaccine apical membrane antigen 1 in Malian adults: Results of a Phase I randomized trial

    OpenAIRE

    Lyke, Kirsten E; Daou, Modibo; DIARRA, ISSA; Kone, Abdoulaye; Kouriba, Bourema; Thera, Mohamadou A.; Dutta, Sheetij; Lanar, David E.; Heppner, D Gray; Doumbo, Ogobara K.; Plowe, Christopher V.; Sztein, Marcelo B.

    2009-01-01

    The development of a safe and effective malaria vaccine is impeded by the complexity of the Plasmodium life cycle. A vaccine that elicits both cell-mediated and humoral immune responses might be needed for protection against this multistage parasitic infection. Apical membrane antigen 1 (AMA-1) plays a key role in erythrocytic invasion but is also expressed in sporozoites and in late stage liver schizonts, where it may provide a target of protective cell-mediated immunity (CMI). A Phase 1 tri...

  15. Utilizing the antigen capsid-incorporation strategy for the development of adenovirus serotype 5-vectored vaccine approaches.

    Science.gov (United States)

    Gu, Linlin; Farrow, Anitra L; Krendelchtchikov, Alexandre; Matthews, Qiana L

    2015-01-01

    Adenovirus serotype 5 (Ad5) has been extensively modified with traditional transgene methods for the vaccine development. The reduced efficacies of these traditionally modified Ad5 vectors in clinical trials could be primarily correlated with Ad5 pre-existing immunity (PEI) among the majority of the population. To promote Ad5-vectored vaccine development by solving the concern of Ad5 PEI, the innovative Antigen Capsid-Incorporation strategy has been employed. By merit of this strategy, Ad5-vectored we first constructed the hexon shuttle plasmid HVR1-KWAS-HVR5-His6/pH5S by subcloning the hypervariable region (HVR) 1 of hexon into a previously constructed shuttle plasmid HVR5-His6/pH5S, which had His6 tag incorporated into the HVR5. This HVR1 DNA fragment containing a HIV epitope ELDKWAS was synthesized. HVR1-KWAS-HVR5-His6/pH5S was then linearized and co-transformed with linearized backbone plasmid pAd5/∆H5 (GL) , for homologous recombination. This recombined plasmid pAd5/H5-HVR1-KWAS-HVR5-His6 was transfected into cells to generate the viral vector Ad5/H5-HVR1-KWAS-HVR5-His6. This vector was validated to have qualitative fitness indicated by viral physical titer (VP/ml), infectious titer (IP/ml) and corresponding VP/IP ratio. Both the HIV epitope and His6 tag were surface-exposed on the Ad5 capsid, and retained epitope-specific antigenicity of their own. A neutralization assay indicated the ability of this divalent vector to circumvent neutralization by Ad5-positive sera in vitro. Mice immunization demonstrated the generation of robust humoral immunity specific to the HIV epitope and His6. This proof-of-principle study suggested that the protocol associated with the Antigen Capsid-Incorporation strategy could be feasibly utilized for the generation of Ad5-vectored vaccines by modifying different capsid proteins. This protocol could even be further modified for the generation of rare-serotype adenovirus-vectored vaccines. PMID:25993057

  16. Differential Effects of Prior Exposure to Environmental Mycobacteria on Vaccination with Mycobacterium bovis BCG or a Recombinant BCG Strain Expressing RD1 Antigens

    OpenAIRE

    Demangel, Caroline; Garnier, Thierry; Rosenkrands, Ida; Cole, Stewart T.

    2005-01-01

    In silico analysis reveals that most protective antigens expressed by the antituberculous vaccine Mycobacterium bovis BCG (BCG) are conserved in M. avium, supporting the hypothesis that exposure to environmental mycobacteria generates cross-reactive immune responses blocking BCG activity. We investigated the impact of sensitization with M. avium, M. scrofulaceum, or M. vaccae on the protective efficacy of a recombinant BCG strain expressing RD1 antigens (BCG::RD1), using a mouse model of expe...

  17. Induction of Immune Tolerance in Asthmatic Mice by Vaccination with DNA Encoding an Allergen–Cytotoxic T Lymphocyte-Associated Antigen 4 Combination ▿

    OpenAIRE

    Zhang, Fang; Huang, Gang; Hu, Bo; Song, Yong; Shi, Yi

    2011-01-01

    Allergen-specific immunotherapy is a potential treatment for allergic diseases. We constructed an allergen–cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)-encoding DNA vaccine, administered it directly to antigen-presenting cells (APCs), and investigated its ability and mechanisms to ameliorate allergic airway inflammation in an asthmatic mouse model. An allergen-CTLA-4 DNA plasmid (OVA-CTLA-4-pcDNA3.1) encoding an ovalbumin (OVA) and the mouse CTLA-4 extracellular domain was constructed...

  18. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection.

    NARCIS (Netherlands)

    Chaput, N.; Schartz, N.E.; Andre, F.; Taieb, J.; Novault, S.; Bonnaventure, P.; Aubert, N.; Bernard, J.; Lemonnier, F.; Merad, M.; Adema, G.J.; Adams, M.; Ferrantini, M.; Carpentier, A.F.; Escudier, B.; Tursz, T.; Angevin, E.; Zitvogel, L.

    2004-01-01

    Ideal vaccines should be stable, safe, molecularly defined, and out-of-shelf reagents efficient at triggering effector and memory Ag-specific T cell-based immune responses. Dendritic cell-derived exosomes could be considered as novel peptide-based vaccines because exosomes harbor a discrete set of p

  19. Vaccinations

    Science.gov (United States)

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  20. Benchmarking B-Cell Epitope Prediction for the Design of Peptide-Based Vaccines: Problems and Prospects

    OpenAIRE

    Caoili, Salvador Eugenio C.

    2010-01-01

    To better support the design of peptide-based vaccines, refinement of methods to predict B-cell epitopes necessitates meaningful benchmarking against empirical data on the cross-reactivity of polyclonal antipeptide antibodies with proteins, such that the positive data reflect functionally relevant cross-reactivity (which is consistent with antibody-mediated change in protein function) and the negative data reflect genuine absence of cross-reactivity (rather than apparent absence of cross-reac...

  1. Differences in immunogenicity and vaccine potential of peptides from .I.Schistosoma mansoni./I. glyceraldehyde 3-phosphate dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Tallima, H.; Montash, M.; Vepřek, Pavel; Velek, Jiří; Ježek, Jan; El Ridi, R.

    2003-01-01

    Roč. 21, - (2003), s. 3290-3300. ISSN 0264-410X R&D Projects: GA ČR GA303/01/0690 Grant ostatní: ICGEB(IT) CRP/EGY98-03 Institutional research plan: CEZ:AV0Z4055905 Keywords : .I.Schistosoma mansoni./I. * glyceraldehyde 3-phosphate dehydrogenase * synthetic peptide vaccine Subject RIV: CC - Organic Chemistry Impact factor: 3.007, year: 2003

  2. Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antigen vaccine formulations against murine visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Bhowmick Sudipta

    2010-06-01

    Full Text Available Abstract Background The development of an effective vaccine against visceral leishmaniasis (VL caused by Leishmania donovani is an essential aim for controlling the disease. Use of the right adjuvant is of fundamental importance in vaccine formulations for generation of effective cell-mediated immune response. Earlier we reported the protective efficacy of cationic liposome-associated L. donovani promastigote antigens (LAg against experimental VL. The aim of the present study was to compare the effectiveness of two very promising adjuvants, Bacille Calmette-Guerin (BCG and Monophosphoryl lipid A (MPL plus trehalose dicorynomycolate (TDM with cationic liposomes, in combination with LAg, to confer protection against murine VL. Results All the three formulations afforded significant protection against L. donovani in both the visceral organs, liver and spleen. Although comparable level of protection was observed in BCG+LAg and MPL-TDM+LAg immunized mice, highest level of protection was exhibited by the liposomal LAg immunized group. Significant increase in anti-LAg IgG levels were detected in both MPL-TDM+LAg and liposomal LAg immunized animals with higher levels of IgG2a than IgG1. But BCG+LAg failed to induce any antibody response. As an index of cell-mediated immunity DTH responses were measured and significant response was observed in mice vaccinated with all the three different formulations. However, highest responses were observed with liposomal vaccine immunization. Comparative evaluation of IFN-γ and IL-4 responses in immunized mice revealed that MPL-TDM+LAg group produced the highest level of IFN-γ but lowest IL-4 level, while BCG+LAg demonstrated generation of suboptimum levels of both IFN-γ and IL-4 response. Elicitation of moderate levels of prechallenge IFN-γ along with optimum IL-4 corresponds with successful vaccination with liposomal LAg. Conclusion This comparative study reveals greater effectiveness of the liposomal vaccine for

  3. An Alternative and Effective HIV Vaccination Approach Based on Inhibition of Antigen Presentation Attenuators in Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Current efforts to develop HIV vaccines that seek to stimulate immune responses have been disappointing, underscoring the inability of natural immune responses to control HIV-1 infection. Here we tested an alternative strategy to induce anti-HIV immune responses by inhibiting a host's natural immune inhibitor. METHODS AND FINDINGS: We used small interfering RNA (siRNA to inhibit suppressor of cytokine signaling (SOCS 1, a key negative regulator of the JAK/STAT pathway, and investigated the effect of this silencing on the ability of dendritic cells (DCs to induce anti-HIV-1 immunity. We found that SOCS1-silenced DCs broadly induced enhanced HIV-1 envelope (Env-specific CD8(+ cytotoxic T lymphocytes and CD4(+ T helper cells, as well as antibody responses, in mice. Importantly, SOCS1-silenced DCs were more resistant to HIV Env-mediated suppression and were capable of inducing memory HIV Env-specific antibody and T cell responses. SOCS1-restricted signaling, as well as production of proinflammatory cytokines such as interleukin-12 by DCs, play a critical role in regulating the anti-HIV immune response. Furthermore, the potency of HIV DNA vaccination is significantly enhanced by coimmunization with SOCS1 siRNA expressor DNA. CONCLUSIONS: This study demonstrates that SOCS1 functions as an antigen presentation attenuator to control both HIV-1-specific humoral and cellular responses. This study represents the first, to our knowledge, attempt to elicit HIV-specific T cell and antibody responses by inhibiting a host's antigen presentation attenuator, which may open a new and alternative avenue to develop effective therapeutic and prophylactic HIV vaccines.

  4. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future

    OpenAIRE

    Valenta, Rudolf; Campana, Raffaela; Focke-Tejkl, Margit; Niederberger, Verena

    2016-01-01

    In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the char...

  5. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. PMID:27030586

  6. Response of health care workers with isolated antibody to hepatitis B core antigen to hepatitis B vaccine.

    Science.gov (United States)

    Chiarakul, Supawadee; Eunumjitkul, Krissana; Vorapimol, Ar-Reerat; Kaewkungwal, Jaranit; Chimparlee, Nitinan; Poovorawan, Yong

    2011-07-01

    Isolated hepatitis B core antibody (antiHBc) without hepatitis B surface antigen (HBsAg) or hepatitis B surface antibody (antiHBs) is found during routine screening for hepatitis B virus (HBV) markers. Isolated antiHBc may indicate immunity against HBV or occult infection. To determine the immune response of health care workers (HCWs) with isolated antiHBc, HCWs were divided into two groups. A single dose of recombinant hepatitis B (HB) vaccine was administered to HCWs with isolated antiHBc (n = 36) and healthy HCWs (n = 20) seronegative for HBsAg, antiHBc and antiHBs. One month later, the subjects were tested for antiHBs. Twenty-one of 36 HCW (58.3%) in the antiHBc group had antiHBs, while only 1 of 20 HCW (5.0%) in the seronegative control group had a detectable antiHBs titer exceeding 10 mIU/ml. The antiHBs response in HCWs with antiHBc was significantly higher than in the seronegative group. The subjects' sera were tested for HBV DNA by nested PCR. Of those with antiHBc, 4 had detectable HBV DNA (occult HBV infection). None of these 4 responded to the vaccine. Therefore, the response elicited by a single dose of HB vaccine administered to patients with antiHBc may serve as an indicator of occult HBV infection. PMID:22299465

  7. Therapeutic vaccination using cationic liposome-adjuvanted HIV type 1 peptides representing HLA-supertype-restricted subdominant T cell epitopes

    DEFF Research Database (Denmark)

    Román, Victor Raúl Gómez; Jensen, Kristoffer Jarlov; Jensen, Sanne Skov;

    2013-01-01

    were assessed in untreated HIV-1-infected individuals in Guinea-Bissau, West Africa. Twenty-three HIV-1-infected individuals were randomized to receive placebo (n=5) or vaccine (n=18). Safety was appraised by clinical follow-up combined with monitoring of biochemistry, hematology, CD4 T cell counts...... is feasible and safe in Guinea-Bissau and that it is possible to redirect T cell immunity with CAF01-adjuvanted HIV-1 peptide vaccine during untreated HIV-1 infection in some patients. However, relatively few preexisting and vaccine-induced HIV-1 T cell responses to CD8 T cell epitopes were detected...... against HIV-1 using IFN-γ ELISpot in this chronically infected African population....

  8. Dendritic cells engineered to express defined allo-HLA peptide complexes induce antigen-specific cytotoxic T cells efficiently killing tumour cells

    DEFF Research Database (Denmark)

    Stronen, E; Abrahamsen, I W; Gaudernack, G; Wälchli, S; Munthe, E; Buus, S; Johansen, F-E; Lund-Johansen, F; Olweus, J

    2009-01-01

    , efficiently present externally loaded peptides from the antigen, Melan-A/MART-1 to T cells from HLA-A*0201-negative donors. CD8(+) T cells binding HLA-A*0201/MART-1 pentamers were detected already after 12 days of co-culture in 11/11 donors. The majority of cells from pentamer(+) cell lines were CTL and...... efficiently killed HLA-A*0201(+) melanoma cells, whilst sparing HLA-A*0201(+) B-cells. Allo-restricted CTL specific for peptides from the leukaemia-associated antigens CD33 and CD19 were obtained with comparable efficiency. Collectively, the results show that dendritic cells engineered to express defined allo...

  9. 猪口蹄疫O型合成肽疫苗及其主要特点%Synthetic peptide vaccine of O-type foot-and-mouth disease of swine and its main characteristic

    Institute of Scientific and Technical Information of China (English)

    任巧玲; 邢宝松; 郭红霞

    2014-01-01

    At present, foot-and-mouth disease is one of the animal diseases which seriously endan-ger Chinese pig industry,,and vaccination is an important prevention methord for this disease. New-ly developed Synthetic peptide vaccine of O-type foot-and-mouth disease in swine has aroused great attention for its high immunogenicity, good biological safety, differentiate infection from vacci-nation, and so on. Foot-and-mouth disease virus, the antigenic epitope of type O foot-and-mouth disease virus, and the research status of synthetic peptide vaccine of type O foot-and-mouth dis-ease of swine and its main characteristic are discussed in this article In order to provide refer-ences for the promotion and the application of this vaccination.%口蹄疫是当前严重危害我国养猪业的疾病之一,长期以来免疫接种是我国预防该病的重要措施。近年来研制出的猪口蹄疫O型合成肽疫苗以其免疫原性高、生物安全性好、可有效区分免疫动物和感染动物等优点引起了人们的高度重视。本文主要介绍了口蹄疫病毒、O型口蹄疫病毒的抗原位点和猪口蹄疫O型合成肽疫苗的研究概况及其主要特点,旨在为猪口蹄疫O型合成肽疫苗的推广应用提供参考。

  10. Successful Renal Transplantation in a Patient with HBS Antigen Positivity Caused By Hepatitis B Vaccination

    OpenAIRE

    Yildirim, Tolga; Şeref Rahmi YILMAZ; Ercan TÜRKMEN; Mahmut ALTINDAL; Fazıl Tuncay AKİ; Erdem, Yunus; Ünal YASAVUL; Çetin TURGAN

    2013-01-01

    Hepatitis B infection is one of the causes of morbidity and mortality in long-term survivors of renal transplantation. Hepatitis B vaccination is recommended for HbsAg and antiHbs antibody negative end stage renal disease patients before transplantation. Serologies to detect hepatitis B infection are included in the routine assessment of renal transplant candidates. However false positive assays for HbsAg can be recognized after hepatitis B vaccination. Hemodialysis patients have been found t...

  11. Immunogenicity and Protection Efficacy of Subunit-based Smallpox Vaccines Using Variola Major Antigens

    OpenAIRE

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2007-01-01

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the ide...

  12. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Directory of Open Access Journals (Sweden)

    Daniel M Appledorn

    Full Text Available BACKGROUND: Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions. CONCLUSION/SIGNIFICANCE: The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  13. An adenoviral cancer vaccine co-encoding a tumor associated antigen together with secreted 4-1BBL leads to delayed tumor progression.

    Science.gov (United States)

    Ragonnaud, Emeline; Andersson, Anne-Marie C; Pedersen, Anders Elm; Laursen, Henriette; Holst, Peter J

    2016-04-19

    Previous studies have shown promising results when using an agonistic anti-4-1BB antibody treatment against established tumors. While this is promising, this type of treatment can induce severe side effects. Therefore, we decided to incorporate the membrane form of 4-1BB ligand (4-1BBL) in a replicative deficient adenovirus vaccine expressing the invariant chain (Ii) adjuvant fused to a tumor associated antigen (TAA). The Ii adjuvant increases and prolongs TAA specific CD8+ T cells as previously shown and local expression of 4-1BBL was chosen to avoid the toxicity associated with systemic antibody administration. Furthermore, adenovirus encoded 4-1BBL expression has previously been successfully used to enhance responses toward Plasmodium falciparum and Influenza A antigens. We showed that the incorporation of 4-1BBL in the adenovirus vector led to surface expression of 4-1BBL on antigen presenting cells, but it did not enhance T cell responses in mice towards the Ii linked antigen. In tumor-bearing mice, our vaccine was found to decrease the frequency of TAA specific CD8+ T cells, but this difference did not alter the therapeutic efficacy. In order to reconcile our findings with the previous reports of increased anti-cancer efficacy using systemically delivered 4-1BB agonists, we incorporated a secreted version of 4-1BBL (Fc-4-1BBL) in our vaccine and co-expressed it with the Ii linked to TAA. In tumor bearing mice, this vaccine initially delayed tumor growth and slightly increased survival compared to the vaccine expressing the membrane form of 4-1BBL. Accordingly, secreted 4-1BBL co-encoded with the Ii linked antigen may offer a simplification compared to administration of drug and vaccine separately. PMID:27004934

  14. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer.

    Science.gov (United States)

    Carreón, Diana; de la Lastra, José M Pérez; Almazán, Consuelo; Canales, Mario; Ruiz-Fons, Francisco; Boadella, Mariana; Moreno-Cid, Juan A; Villar, Margarita; Gortázar, Christian; Reglero, Manuel; Villarreal, Ricardo; de la Fuente, José

    2012-01-01

    Red deer (Cervus elaphus) and white-tailed deer (Odocoileus virginianus) are hosts for different tick species and tick-borne pathogens and play a role in tick dispersal and maintenance in some regions. These factors stress the importance of controlling tick infestations in deer and several methods such as culling and acaricide treatment have been used. Tick vaccines are a cost-effective alternative for tick control that reduced cattle tick infestations and tick-borne pathogens prevalence while reducing the use of acaricides. Our hypothesis is that vaccination with vector protective antigens can be used for the control of tick infestations in deer. Herein, three experiments were conducted to characterize (1) the antibody response in red deer immunized with recombinant BM86, the antigen included in commercial tick vaccines, (2) the antibody response and control of cattle tick infestations in white-tailed deer immunized with recombinant BM86 or tick subolesin (SUB) and experimentally infested with Rhipicephalus (Boophilus) microplus, and (3) the antibody response and control of Hyalomma spp. and Rhipicephalus spp. field tick infestations in red deer immunized with mosquito akirin (AKR), the SUB ortholog and candidate protective antigen against different tick species and other ectoparasites. The results showed that deer produced an antibody response that correlated with the reduction in tick infestations and was similar to other hosts vaccinated previously with these antigens. The overall vaccine efficacy was similar between BM86 (E=76%) and SUB (E=83%) for the control of R. microplus infestations in white-tailed deer. The field trial in red deer showed a 25-33% (18-40% when only infested deer were considered) reduction in tick infestations, 14-20 weeks after the first immunization. These results demonstrated that vaccination with vector protective antigens could be used as an alternative method for the control of tick infestations in deer to reduce tick populations

  15. Proof of concept: A bioinformatic and serological screening method for identifying new peptide antigens for Chlamydia trachomatis related sequelae in women☆

    OpenAIRE

    Stansfield, Scott H.; Patel, Pooja; Debattista, Joseph; Charles W Armitage; Cunningham, Kelly; Timms, Peter; Allan, John; Mittal, Aruna; Huston, Wilhelmina M.

    2013-01-01

    This study aimed to identify new peptide antigens from Chlamydia (C.) trachomatis in a proof of concept approach which could be used to develop an epitope-based serological diagnostic for C. trachomatis related infertility in women. A bioinformatics analysis was conducted examining several immunodominant proteins from C. trachomatis to identify predicted immunoglobulin epitopes unique to C. trachomatis. A peptide array of these epitopes was screened against participant sera. The participants ...

  16. Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients.

    Science.gov (United States)

    Knights, Ashley J; Nuber, Natko; Thomson, Christopher W; de la Rosa, Olga; Jäger, Elke; Tiercy, Jean-Marie; van den Broek, Maries; Pascolo, Steve; Knuth, Alexander; Zippelius, Alfred

    2009-03-01

    The development of effective anti-cancer vaccines requires precise assessment of vaccine-induced immunity. This is often hampered by low ex vivo frequencies of antigen-specific T cells and limited defined epitopes. This study investigates the applicability of modified, in vitro-transcribed mRNA encoding a therapeutically relevant tumour antigen to analyse T cell responses in cancer patients. In this study transfection of antigen presenting cells, by mRNA encoding the tumour antigen NY-ESO-1, was optimised and applied to address spontaneous and vaccine-induced T cell responses in cancer patients. Memory CD8+ T cells from lung cancer patients having detectable humoral immune responses directed towards NY-ESO-1 could be efficiently detected in peripheral blood. Specific T cells utilised a range of different T cell receptors, indicating a polyclonal response. Specific killing of a panel of NY-ESO-1 expressing tumour cell lines indicates recognition restricted to several HLA allelic variants, including a novel HLA-B49 epitope. Using a modified mRNA construct targeting the translated antigen to the secretory pathway, detection of NY-ESO-1-specific CD4+ T cells in patients could be enhanced, which allowed the in-depth characterisation of established T cell clones. Moreover, broad CD8+ and CD4+ T cell responses covering multiple epitopes were detected following mRNA stimulation of patients treated with a recombinant vaccinia/fowlpox NY-ESO-1 vaccine. This approach allows for a precise monitoring of responses to tumour antigens in a setting that addresses the breadth and magnitude of antigen-specific T cell responses, and that is not limited to a particular combination of known epitopes and HLA-restrictions. PMID:18663444

  17. Impaired Antigen-Specific Immune Response to Vaccines in Children with Antibody Production Defects

    OpenAIRE

    Szczawinska-Poplonyk, Aleksandra; Breborowicz, Anna; Samara, Husam; Ossowska, Lidia; Dworacki, Grzegorz

    2015-01-01

    The impaired synthesis of antigen-specific antibodies, which is indispensable for an adaptive immune response to infections, is a fundamental pathomechanism that leads to clinical manifestations in children with antibody production defects. The aim of this study was to evaluate the synthesis of antigen-specific antibodies following immunization in relation to peripheral blood B cell subsets in young children with hypogammaglobulinemia. Twenty-two children, aged from 8 to 61 months, with a def...

  18. Tumor antigen specific iTreg accumulate in the tumor microenvironment and suppress therapeutic vaccination

    OpenAIRE

    Schreiber, Taylor H; Wolf, Dietlinde; Bodero, Maria; Podack, Eckhard

    2012-01-01

    Tumor specific antigens (TSA) provide an opportunity to mobilize therapeutic immune responses against cancer. To evade such responses, tumor development in immunocompetent hosts is accompanied by acquisition of both active and passive mechanisms of immune suppression, including recruitment of CD4+FoxP3+ regulatory T cells (Treg). Thymic derived Treg (nTreg) may recognize self-antigens in the tumor microenvironment, while peripherally induced Treg (iTreg) may preferentially recognize the same ...

  19. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8(+) T Cell Responses, Enabling Faster Resolution of Influenza Disease.

    Science.gov (United States)

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M; Fredriksen, Agnete Brunsvik; Tregoning, John S

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8(+) T cells can improve protection. To further explore the role of CD8(+) T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8(+) T cells. However, DNA vaccine regimes that induced CD8(+) T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-E(d) single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines. PMID:27602032

  20. DNA vaccines

    OpenAIRE

    Coban, Cevayir; Kobiyama, Kouji; Jounai, Nao; Tozuka, Miyuki; Ishii, Ken J.

    2013-01-01

    Since the introduction of DNA vaccines two decades ago, this attractive strategy has been hampered by its low immunogenicity in humans. Studies conducted to improve the immunogenicity of DNA vaccines have shown that understanding the mechanism of action of DNA vaccines might be the key to successfully improving their immunogenicity. Our current understanding is that DNA vaccines induce innate and adaptive immune responses in two ways: (1) encoded protein (or polypeptide) antigen(s) by the DNA...

  1. Specificity for the tumor-associated self-antigen WT1 drives the development of fully functional memory T cells in the absence of vaccination.

    Science.gov (United States)

    Pospori, Constandina; Xue, Shao-An; Holler, Angelika; Voisine, Cecile; Perro, Mario; King, Judith; Fallah-Arani, Farnaz; Flutter, Barry; Chakraverty, Ronjon; Stauss, Hans J; Morris, Emma C

    2011-06-23

    Recently, vaccines against the Wilms Tumor antigen 1 (WT1) have been tested in cancer patients. However, it is currently not known whether physiologic levels of WT1 expression in stem and progenitor cells of normal tissue result in the deletion or tolerance induction of WT1-specific T cells. Here, we used an human leukocyte antigen-transgenic murine model to study the fate of human leukocyte antigen class-I restricted, WT1-specific T cells in the thymus and in the periphery. Thymocytes expressing a WT1-specific T-cell receptor derived from high avidity human CD8 T cells were positively selected into the single-positive CD8 population. In the periphery, T cells specific for the WT1 antigen differentiated into CD44-high memory phenotype cells, whereas T cells specific for a non-self-viral antigen retained a CD44(low) naive phenotype. Only the WT1-specific T cells, but not the virus-specific T cells, displayed rapid antigen-specific effector function without prior vaccination. Despite long-term persistence of WT1-specific memory T cells, the animals did not develop autoimmunity, and the function of hematopoietic stem and progenitor cells was unimpaired. This is the first demonstration that specificity for a tumor-associated self-antigen may drive differentiation of functionally competent memory T cells. PMID:21447831

  2. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Annual Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-04-16

    The goal of this proposal is to demonstrate that co-localization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of recombinant subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. NLPs are are biocompatible, high-density lipoprotein mimetics that are amenable to the incorporation of multiple, chemically-disparate adjuvant and antigen molecules. We hypothesize that the ability to co-localize optimized adjuvant formulations with subunit antigens within a single particle will enhance the stimulation and activation of key immune effector cells, increasing the protective efficacy of subunit antigen-based vaccines. While Burkholderia spp. and F. tularensis subunit antigens are the focus of this proposal, we anticipate that this approach is applicable to a wide range of DOD-relevant biothreat agents. The F344 rat aerosol challenge model for F. tularensis has been successfully established at Battelle under this contract, and Year 3 efficacy studies performed at Battelle demonstrated that an NLP vaccine formulation was able to enhance survival of female F344 rats relative to naïve animals. In addition, Year 3 focused on the incorporation of multiple Burkholderia antigens (both polysaccharides and proteins) onto adjuvanted NLPs, with immunological analysis poised to begin in the next quarter.

  3. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  4. Hepatitis B Surface Antigen S Gene is an Effective Carrier Molecule for Developing GnRH DNA Immunocastration Vaccine in Mice.

    Science.gov (United States)

    Han, Y G; Ye, W J; Liu, G Q; Jiang, X P; Ijaz, N; Zhao, J Y; Tesema, B

    2016-06-01

    Relatively molecular mass of GnRH antigens is small and hence needs to couple to a large carrier molecule to enhance its immunogenicity. This study investigated whether hepatitis B surface antigen S (HBsAg-S) gene can be used as an effective carrier molecule for developing GnRH DNA immunocastration vaccine. Two copies of human GnRH gene were fused with HBsAg-S gene for constructing a recombinant plasmid pVAX-HBsAg-S-2GnRH that coded for 27 kDa target fusion protein. Ten male mice were divided into two equal groups, treatment and control. The vaccine (50 μg/mice) prepared in saline solution was injected into male mice at weeks 0, 1, 2, 4 and 7 of the experiment. Vaccine's efficacy was evaluated in terms of GnRH-specific IgG antibody response, plasma testosterone levels, testicular weight and extent of the testicular tissue damage. The specific anti-GnRH antibody titre in vaccinated animals was significantly higher than in controls in only 4th week of immunization (p vaccinated animals showed lower testicular weight than those of the controls (p vaccinated animals was suppressed. In conclusion, in this study, the engineered plasmid to be used as a GnRH DNA vaccine induced antibody response and suppressed spermatogenesis in mice. This suggests that HBsAg-S gene can be an effective carrier molecule for developing GnRH DNA immunocastration vaccine when relatively molecular mass of the aimed antigens is small. PMID:27157596

  5. Synthesis and characterization of antigenic influenza A M2e protein peptide-poly(acrylic) acid bioconjugate and determination of toxicity in vitro.

    Science.gov (United States)

    Kilinc, Yasemin Budama; Akdeste, Zeynep Mustafaeva; Koc, Rabia Cakir; Bagirova, Melahat; Allahverdiyev, Adil

    2014-01-01

    The influenza A virus is a critical public health problem that causes epidemics and pandemics, and occurs widely all over the world. Various vaccines against the virus have not provided a solution to the problem. Different approaches, particularly M2e peptide-based vaccines, are available for developing universal vaccines against influenza A. However, it is important to select a suitable carrier to obtain an effective vaccine. Accordingly, studies on the usage of various carriers are ongoing. Particularly, polymer-based carriers have gained importance due to both drug delivery and adjuvant effects. Therefore, bioconjugate of the M2e protein peptide from the influenza A virus covalent bonded with poly(acrylic) acid was synthesized in our study for the first time. The characterization was performed using size-exclusion chromatography and fluorescence spectroscopy; subsequently, it was found that the bioconjugate of the examined lower doses (0.05 and 0.5 mg/ml) have no toxic effects on human cell lines. These results suggest that, in the future, the poly(acrylic) acid bioconjugate of the M2e peptide should be studied in vivo for universal vaccine development against the influenza A virus. PMID:25482080

  6. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens.

    Science.gov (United States)

    Antrobus, Richard D; Coughlan, Lynda; Berthoud, Tamara K; Dicks, Matthew D; Hill, Adrian Vs; Lambe, Teresa; Gilbert, Sarah C

    2014-03-01

    Adenoviruses are potent vectors for inducing and boosting cellular immunity to encoded recombinant antigens. However, the widespread seroprevalence of neutralizing antibodies to common human adenovirus serotypes limits their use. Simian adenoviruses do not suffer from the same drawbacks. We have constructed a replication-deficient chimpanzee adenovirus-vectored vaccine expressing the conserved influenza antigens, nucleoprotein (NP), and matrix protein 1 (M1). Here, we report safety and T-cell immunogenicity following vaccination with this novel recombinant simian adenovirus, ChAdOx1 NP+M1, in a first in human dose-escalation study using a 3+3 study design, followed by boosting with modified vaccinia virus Ankara expressing the same antigens in some volunteers. We demonstrate ChAdOx1 NP+M1 to be safe and immunogenic. ChAdOx1 is a promising vaccine vector that could be used to deliver vaccine antigens where strong cellular immune responses are required for protection. PMID:24374965

  7. Montanide ISA 71 VG adjuvant enhances antibody and cell-ediated immune responses to profilin subunit antigen vaccination and promotes protection against Eimeria acervulina and Eimeria tenella

    Science.gov (United States)

    The present study was conducted to investigate the immunoenhancing effects of ISA 71 VG adjuvant on profilin subunit antigen vaccination. Broiler chickens were immunized subcutaneously with a purified Eimeria acervulina recombinant profilin protein, either alone or mixed with ISA 71 VG, and host imm...

  8. Cloning,expression and purification of B cell epitope antigen peptide of EGFR dimerization%EGFR二聚化B细胞表位抗原肤基因克隆、表达与纯化

    Institute of Scientific and Technical Information of China (English)

    朱磊; 吴梅芝; 赵林; 黄绮玲; 梁梅; 李黄金

    2011-01-01

    目的 利用基因工程手段建立表皮生长因子受体(EGFR)二聚化B细胞表位抗原肽MVF-ER的高效制备方法.方法 采用重叠延伸PCR扩增MVF-ER后克隆于表达载体pET32a,于大肠杆菌BL21(DE3)进行表达,产物采用肠激酶酶切和镍离子鳌合亲和层析法纯化.结果 通过10对引物5步重叠延伸得到273bp的扩增产物,目的基因与硫氧环蛋白(Trx)融合后可高效表达,经酶切和层析后得到纯度为95%的抗原肤.结论 成功建立抗原肽"MVF-ER"的高效制备方法,为进一步研究EGFR过表达恶性肿瘤的治疗性疫苗打下了坚实基础.%We aim to establish a high performance preparation system for B cell epitope antigen peptide of EGFR dimerization for further research on therapeutic vaccine of EGFR over-expression tumors. The MVF-ER gene of 273 bp was amplified by splicing overlap extension PCR (SOE-PCR), then cloned into the vector of pET32a, and expressed in E.coli BL21 (DE3) in the form of fusion with Trx. The expression product was purified by Ni+ affinity chromatography. The antigen peptide was recovered from the fusion protein by enterokinase and purified to a purity of 95% confirmed by SDS-PAGE. The results above showed that the preparation method of MVF-ER antigen peptide was successfully established, which will facilitate further study of the therapeutic cancer vaccine.

  9. Activated human γδ T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens.

    Science.gov (United States)

    Altvater, Bianca; Pscherer, Sibylle; Landmeier, Silke; Kailayangiri, Sareetha; Savoldo, Barbara; Juergens, Heribert; Rossig, Claudia

    2012-03-01

    Specific cellular immunotherapy of cancer requires efficient generation and expansion of cytotoxic T lymphocytes (CTLs) that recognize tumor-associated self-antigens. Here, we investigated the capacity of human γδ T cells to induce expansion of CD8+ T cells specific for peptides derived from the weakly immunogenic tumor-associated self-antigens PRAME and STEAP1. Coincubation of aminobisphosphonate-stimulated human peripheral blood-derived γδ T cells (Vγ9+Vδ2+), loaded with HLA-A*02-restricted epitopes of PRAME, with autologous peripheral blood CD8+ T cells stimulated the expansion of peptide-specific cytolytic effector memory T cells. Moreover, peptide-loaded γδ T cells efficiently primed antigen-naive CD45RA+ CD8+ T cells against PRAME peptides. Direct comparisons with mature DCs revealed equal potency of γδ T cells and DCs in inducing primary T-cell responses and peptide-specific T-cell activation and expansion. Antigen presentation by γδ T-APCs was not able to overcome the limited capacity of peptide-specific T cells to interact with targets expressing full-length antigen. Importantly, T cells with regulatory phenotype (CD4+ CD25hiFoxP3+) were lower in cocultures with γδ T cells compared to DCs. In summary, bisphosphonate-activated γδ T cells permit generation of CTLs specific for weakly immunogenic tumor-associated epitopes. Exploiting this strategy for effective immunotherapy of cancer requires strategies that enhance the avidity of CTL responses to allow for efficient targeting of cancer. PMID:21928126

  10. Control of ticks resistant to immunization with Bm86 in cattle vaccinated with the recombinant antigen Bm95 isolated from the cattle tick, Boophilus microplus.

    Science.gov (United States)

    García-García, J C; Montero, C; Redondo, M; Vargas, M; Canales, M; Boue, O; Rodríguez, M; Joglar, M; Machado, H; González, I L; Valdés, M; Méndez, L; de la Fuente, J

    2000-04-28

    The recombinant Bm86-containing vaccine Gavac(TM) against the cattle tick Boophilus microplus has proved its efficacy in a number of experiments, especially when combined with acaricides in an integrated manner. However, tick isolates such as the Argentinean strain A, show low susceptibility to this vaccine. In this paper we report on the isolation of the Bm95 gene from the B. microplus strain A, which was cloned and expressed in the yeast Pichia pastoris producing a glycosylated and particulated recombinant protein. This new antigen was effective against different tick strains in a pen trial, including the B. microplus strain A, resistant to vaccination with Bm86. A Bm95-based vaccine was used to protect cattle against tick infestations under production conditions, lowering the number of ticks on vaccinated animals and, therefore, reducing the frequency of acaricide treatments. The Bm95 antigen from strain A was able to protect against infestations with Bm86-sensitive and Bm86-resistant tick strains, thus suggesting that Bm95 could be a more universal antigen to protect cattle against infestations by B. microplus strains from different geographical areas. PMID:10717348

  11. Heat shock protein-peptide complex-96 (Vitespen for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Robert J. Amato

    2011-12-01

    Full Text Available Heat shock proteins (HSPs are the most abundant and ubiquitous soluble intracellular proteins. Members of the HSP family bind peptides, they include antigenic peptides generated within cells. HSPs also interact with antigen-presenting cells (APCs through CD91 and other receptors, eliciting a cascade of events that includes re-presentation of HSP-chaperoned peptides by major histocompatability complex (MHC, translocation of nuclear factorkappaB (NFkB into the nuclei, and maturation of dendritic cells (DCs. These consequences point to a key role of heat shock proteins in fundamental immunological phenomena such as activation of APCs, indirect presentation (or crosspriming of antigenic peptides, and chaperoning of peptides during antigen presentation. The properties of HSPs also allow them to be used for immunotherapy of cancers and infections in novel ways. This paper reviews the development and clinical trial progress of vitespen, an HSP peptide complex vaccine based on tumor-derived glycoprotein 96.

  12. Antigenic analysis of classical swine fever virus E2 glycoprotein using pig antibodies identifies residues contributing to antigenic variation of the vaccine C-strain and group 2 strains circulating in China

    Directory of Open Access Journals (Sweden)

    Peng Jinrong

    2010-12-01

    Full Text Available Abstract Background Glycoprotein E2, the immunodominant protein of classical swine fever virus (CSFV, can induce neutralizing antibodies and confer protective immunity in pigs. Our previous phylogenetic analysis showed that subgroup 2.1 viruses branched away from subgroup 1.1, the vaccine C-strain lineage, and became dominant in China. The E2 glycoproteins of CSFV C-strain and recent subgroup 2.1 field isolates are genetically different. However, it has not been clearly demonstrated how this diversity affects antigenicity of the protein. Results Antigenic variation of glycoprotein E2 was observed not only between CSFV vaccine C-strain and subgroup 2.1 strains, but also among strains of the same subgroup 2.1 as determined by ELISA-based binding assay using pig antisera to the C-strain and a representative subgroup 2.1 strain QZ-07 currently circulating in China. Antigenic incompatibility of E2 proteins markedly reduced neutralization efficiency against heterologous strains. Single amino acid substitutions of D705N, L709P, G713E, N723S, and S779A on C-strain recombinant E2 (rE2 proteins significantly increased heterologous binding to anti-QZ-07 serum, suggesting that these residues may be responsible for the antigenic variation between the C-strain and subgroup 2.1 strains. Notably, a G713E substitution caused the most dramatic enhancement of binding of the variant C-strain rE2 protein to anti-QZ-07 serum. Multiple sequence alignment revealed that the glutamic acid residue at this position is conserved within group 2 strains, while the glycine residue is invariant among the vaccine strains, highlighting the role of the residue at this position as a major determinant of antigenic variation of E2. A variant Simpson's index analysis showed that both codons and amino acids of the residues contributing to antigenic variation have undergone similar diversification. Conclusions These results demonstrate that CSFV vaccine C-strain and group 2 strains

  13. Topical vaccination with functionalized particles targeting dendritic cells.

    Science.gov (United States)

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens. PMID:23426134

  14. Recent advances in the molecular design of synthetic vaccines

    Science.gov (United States)

    Jones, Lyn H.

    2015-12-01

    Vaccines have typically been prepared using whole organisms. These are normally either attenuated bacteria or viruses that are live but have been altered to reduce their virulence, or pathogens that have been inactivated and effectively killed through exposure to heat or formaldehyde. However, using whole organisms to elicit an immune response introduces the potential for infections arising from a reversion to a virulent form in live pathogens, unproductive reactions to vaccine components or batch-to-batch variability. Synthetic vaccines, in which a molecular antigen is conjugated to a carrier protein, offer the opportunity to circumvent these problems. This Perspective will highlight the progress that has been achieved in developing synthetic vaccines using a variety of molecular antigens. In particular, the different approaches used to develop conjugate vaccines using peptide/proteins, carbohydrates and other small molecule haptens as antigens are compared.

  15. Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines

    OpenAIRE

    Singh, Shakti; Vedi, Satish; Samrat, Subodh Kumar; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2016-01-01

    Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intr...

  16. A polyvalent vaccine for high-risk prostate patients: "are more antigens better?"

    DEFF Research Database (Denmark)

    Slovin, Susan F; Ragupathi, Govind; Fernandez, Celina; Diani, Meghan; Jefferson, Matthew P; Wilton, Andrew; Kelly, W Kevin; Morris, Michael; Solit, David; Clausen, Henrik; Livingston, Philip; Scher, Howard I

    2007-01-01

    We have shown the immunogenicity and safety of synthetic carbohydrate vaccines when conjugated to the carrier keyhole limpet hemocyanin (KLH) and given with the adjuvant, QS-21, in patients with biochemically relapsed prostate cancer. To determine whether immune response could be further enhanced...... detected. We address the relevance of the multivalent approach for prostate cancer treatment.......We have shown the immunogenicity and safety of synthetic carbohydrate vaccines when conjugated to the carrier keyhole limpet hemocyanin (KLH) and given with the adjuvant, QS-21, in patients with biochemically relapsed prostate cancer. To determine whether immune response could be further enhanced...

  17. The structural basis for T-antigen hydrolysis by Streptococcus pneumoniae: a target for structure-based vaccine design.

    Science.gov (United States)

    Caines, Matthew E C; Zhu, Haizhong; Vuckovic, Marija; Willis, Lisa M; Withers, Stephen G; Wakarchuk, Warren W; Strynadka, Natalie C J

    2008-11-14

    Streptococcus pneumoniae endo-alpha-N-acetylgalactosaminidase is a cell surface-anchored glycoside hydrolase from family GH101 involved in the breakdown of mucin type O-linked glycans. The 189-kDa mature enzyme specifically hydrolyzes the T-antigen disaccharide from extracellular host glycoproteins and is representative of a broadly important class of virulence factors that have remained structurally uncharacterized due to their large size and highly modular nature. Here we report a 2.9 angstroms resolution crystal structure that remarkably captures the multidomain architecture and characterizes a catalytic center unexpectedly resembling that of alpha-amylases. Our analysis presents a complete model of glycoprotein recognition and provides a basis for the structure-based design of novel Streptococcus vaccines and therapeutics. PMID:18784084

  18. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-13

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the third quarter of the third year, F344 rats vaccinated with adjuvanted NLP formulations were challenged with F. tularensis SCHU S4 at Battelle. Preliminary data indicate that up to 65% of females vaccinated intranasally with an NLP-based formulation survived this challenge, compared to only 20% survival of naïve animals. In addition, NLPs were successfully formulated with Burkholderia protein antigens. IACUC approval for immunological assessments in BALB/c mice was received and we anticipate that these assessments will begin by March 2015, pending ACURO approval.

  19. Immunochemical characterization and purification of Sm-97 a Schistosoma manosin antigen monospecifically recognized by antibodies from mice protectively immunized with a nonliving vaccine

    International Nuclear Information System (INIS)

    Mice protected against Shistosoma mansoni infection by intradermal (i.d.) vaccination with nonliving schistosomula or soluble extracts of larval or adult schistosomes (SCHLARP and SWAP, respectively) produce antibodies that react by Western blot analysis with one antigen of M/sub r/ (x 10-3) 97 in SWAP prepared in the presence of protease inhibitors and two antigens of M/sub r/ (x 10-3) 95 and 78 in SWAP prepared in their absence. Vaccine antibodies also immunoprecipitated a single 97k molecule, with a pI of 5.5, from detergent extracts of [35S]methionine-labeled schistosomes. Three hybridomas, produced from spleen cells of i.d. immunized mice, all recognized both the 95k/78k doublet and one 97k antigen, indicating that the two lower M/sub r/ components are degradation products of the same 97k molecule. 125I-concanavalin a bound weakly to purified Sm-97, indicating that this antigen is minimally glycosylated. Competitive radioimmunoassays performed with 125I-labeled monoclonal antibodies and purified antigen defined at least two distinct epitopes on Sm-97. Antibodies from i.d. vaccinated mice recognized both monoclonal antibody-defined epitopes, whereas anti-Sm-97 antibodies in chronic infection sera recognized neither. Finally, purified Sm-97 was shown to elicit delayed-type hypersensitivity in i.d. vaccinated mice, suggesting that this molecule is also capable of evoking cell-mediated responses, a finding consistent with its proposed function as a vaccine immunogen

  20. I-Ad-binding peptides derived from unrelated protein antigens share a common structural motif

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S;

    1988-01-01

    represent a mechanism to achieve a very permissive type of interaction that yet retained some degree of specificity. In the present set of experiments we analyzed the I-Ad binding pattern of a series of overlapping peptides derived from sperm whale myoglobin (residues 102-125) and influenza hemagglutinin...

  1. Structural analysis of peptides capable of binding to more than one Ia antigen

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S;

    1989-01-01

    The Ia binding regions were analyzed for three unrelated peptide Ag (sperm whale myoglobin 106-118, influenza hemagglutinin 130-142, and lambda repressor protein 12-26) for which binding to more than one Ia molecule has previously been demonstrated. By determining the binding profile of three...

  2. Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Berntsen, Annika; Hadrup, Sine Reker;

    2010-01-01

    vaccination with autologous monocyte-derived mature dendritic cells (DC) pulsed with p53, survivin and telomerase-derived peptides (HLA-A2+ patients) or with autologous/allogeneic tumor lysate (HLA-A2(-) patients) in combination with low-dose interleukin (IL)-2 and interferon (IFN)-alpha2b....

  3. Assessment of cathepsin D and L-like proteinases of poultry red mite, Dermanyssus gallinae (De Geer), as potential vaccine antigens.

    Science.gov (United States)

    Bartley, Kathryn; Huntley, John F; Wright, Harry W; Nath, Mintu; Nisbet, Alasdair J

    2012-05-01

    Vaccination is a feasible strategy for controlling the haematophagous poultry red mite Dermanyssus gallinae. A cDNA library enriched for genes upregulated after feeding was created to identify potential vaccine antigens. From this library, a gene (Dg-CatD-1) encoding a 383 amino acid protein (Dg-CatD-1) with homology to cathepsin D lysosomal aspartyl proteinases was identified as a potential vaccine candidate. A second gene (Dg-CatL-1) encoding a 341 amino acid protein (Dg-CatL-1) with homology to cathepsin L cysteine proteinases was also selected for further study. IgY obtained from naturally infested hens failed to detect Dg-CatD-1 suggesting that it is a concealed antigen. Conversely, Dg-CatL-1 was detected by IgY derived from natural-infestation, indicating that infested hens are exposed to Dg-CatL-1. Mortality rates 120 h after mites had been fed anti-Dg-CatD-1 were significantly higher than those fed control IgY (PF<0·01). In a survival analysis, fitting a proportional hazards model to the time of death of mites, anti-Dg-CatD-1 and anti-Dg-CatL-1 IgY had 4·42 and 2·13 times higher risks of dying compared with controls (PF<0·05). Dg-CatD-1 and L-1 both have potential as vaccine antigens as part of a multi-component vaccine and have the potential to be improved as vaccine antigens using alternative expression systems. PMID:22310226

  4. Secretion of protective antigens by tissue-stage nematode larvae revealed by proteomic analysis and vaccination-induced sterile immunity.

    Science.gov (United States)

    Hewitson, James P; Ivens, Al C; Harcus, Yvonne; Filbey, Kara J; McSorley, Henry J; Murray, Janice; Bridgett, Stephen; Ashford, David; Dowle, Adam A; Maizels, Rick M

    2013-08-01

    Gastrointestinal nematode parasites infect over 1 billion humans, with little evidence for generation of sterilising immunity. These helminths are highly adapted to their mammalian host, following a developmental program through successive niches, while effectively down-modulating host immune responsiveness. Larvae of Heligmosomoides polygyrus, for example, encyst in the intestinal submucosa, before emerging as adult worms into the duodenal lumen. Adults release immunomodulatory excretory-secretory (ES) products, but mice immunised with adult H. polygyrus ES become fully immune to challenge infection. ES products of the intestinal wall 4th stage (L4) larvae are similarly important in host-parasite interactions, as they readily generate sterile immunity against infection, while released material from the egg stage is ineffective. Proteomic analyses of L4 ES identifies protective antigen targets as well as potential tissue-phase immunomodulatory molecules, using as comparators the adult ES proteome and a profile of H. polygyrus egg-released material. While 135 proteins are shared between L4 and adult ES, 72 are L4 ES-specific; L4-specific proteins correspond to those whose transcription is restricted to larval stages, while shared proteins are generally transcribed by all life cycle forms. Two protein families are more heavily represented in the L4 secretome, the Sushi domain, associated with complement regulation, and the ShK/SXC domain related to a toxin interfering with T cell signalling. Both adult and L4 ES contain extensive but distinct arrays of Venom allergen/Ancylostoma secreted protein-Like (VAL) members, with acetylcholinesterases (ACEs) and apyrase APY-3 particularly abundant in L4 ES. Serum antibodies from mice vaccinated with L4 and adult ES react strongly to the VAL-1 protein and to ACE-1, indicating that these two antigens represent major vaccine targets for this intestinal nematode. We have thus defined an extensive and novel repertoire of H

  5. Secretion of protective antigens by tissue-stage nematode larvae revealed by proteomic analysis and vaccination-induced sterile immunity.

    Directory of Open Access Journals (Sweden)

    James P Hewitson

    2013-08-01

    Full Text Available Gastrointestinal nematode parasites infect over 1 billion humans, with little evidence for generation of sterilising immunity. These helminths are highly adapted to their mammalian host, following a developmental program through successive niches, while effectively down-modulating host immune responsiveness. Larvae of Heligmosomoides polygyrus, for example, encyst in the intestinal submucosa, before emerging as adult worms into the duodenal lumen. Adults release immunomodulatory excretory-secretory (ES products, but mice immunised with adult H. polygyrus ES become fully immune to challenge infection. ES products of the intestinal wall 4th stage (L4 larvae are similarly important in host-parasite interactions, as they readily generate sterile immunity against infection, while released material from the egg stage is ineffective. Proteomic analyses of L4 ES identifies protective antigen targets as well as potential tissue-phase immunomodulatory molecules, using as comparators the adult ES proteome and a profile of H. polygyrus egg-released material. While 135 proteins are shared between L4 and adult ES, 72 are L4 ES-specific; L4-specific proteins correspond to those whose transcription is restricted to larval stages, while shared proteins are generally transcribed by all life cycle forms. Two protein families are more heavily represented in the L4 secretome, the Sushi domain, associated with complement regulation, and the ShK/SXC domain related to a toxin interfering with T cell signalling. Both adult and L4 ES contain extensive but distinct arrays of Venom allergen/Ancylostoma secreted protein-Like (VAL members, with acetylcholinesterases (ACEs and apyrase APY-3 particularly abundant in L4 ES. Serum antibodies from mice vaccinated with L4 and adult ES react strongly to the VAL-1 protein and to ACE-1, indicating that these two antigens represent major vaccine targets for this intestinal nematode. We have thus defined an extensive and novel

  6. Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial.

    Science.gov (United States)

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel Gw; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-12-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible. PMID:25156127

  7. Purification, crystallization and preliminary X-ray diffraction analysis of the human major histocompatibility antigen HLA-B*2703 complexed with a viral peptide and with a self-peptide

    International Nuclear Information System (INIS)

    The product of the human leukocyte antigen (HLA) gene HLA-B*2703 differs from that of the prototypical subtype HLA-B*2705 by a single amino acid at heavy-chain residue 59 that is involved in anchoring the peptide N-terminus within the A pocket of the molecule. Two B*2703–peptide complexes were crystallized using the hanging-drop vapour-diffusion method using PEG 8000 as a precipitant. A pocket of the molecule, two HLA-B*2703–peptide complexes were crystallized and data sets were collected to high resolution using synchrotron radiation. The product of the human leukocyte antigen (HLA) gene HLA-B*2703 differs from that of the prototypical subtype HLA-B*2705 by a single amino acid at heavy-chain residue 59 that is involved in anchoring the peptide N-terminus within the A pocket of the molecule. Two B*2703–peptide complexes were crystallized using the hanging-drop vapour-diffusion method using PEG 8000 as a precipitant. The crystals belong to space group P21 (pVIPR peptide) or P212121 (pLMP2 peptide). Data sets were collected to 1.55 Å (B*2703–pVIPR) or 2.0 Å (B*2703–pLMP2) resolution using synchrotron radiation. With B*2705–pVIPR as a search model, a clear molecular-replacement solution was found for both B*2703 complexes

  8. Antigenicity and Diagnostic Potential of Vaccine Candidates in Human Chagas Disease

    OpenAIRE

    Shivali Gupta; Xianxiu Wan; Zago, Maria P.; Martinez Sellers, Valena C.; Silva, Trevor S.; Dadjah Assiah; Monisha Dhiman; Sonia Nuñez; Petersen, John R; Vázquez-Chagoyán, Juan C.; Jose G Estrada-Franco; Nisha Jain Garg

    2013-01-01

    BACKGROUND: Chagas disease, caused by Trypanosoma cruzi, is endemic in Latin America and an emerging infectious disease in the US and Europe. We have shown TcG1, TcG2, and TcG4 antigens elicit protective immunity to T. cruzi in mice and dogs. Herein, we investigated antigenicity of the recombinant proteins in humans to determine their potential utility for the development of next generation diagnostics for screening of T. cruzi infection and Chagas disease. METHODS AND RESULTS: Sera samples f...

  9. Anti-cattle tick vaccines: Many candidate antigens, but will a commercially viable product emerge?

    Science.gov (United States)

    This is an invited paper from the editor-in-chief of International Journal for Parasitology who requested a Current Opinion manuscript to discuss the status of anti-cattle tick vaccine research. Arguably the world's most significant arthropod pest of cattle, control of the cattle tick, Rhipicephalus...

  10. BCG Δzmp1 vaccine induces enhanced antigen specific immune responses in cattle.

    Science.gov (United States)

    Khatri, Bhagwati; Whelan, Adam; Clifford, Derek; Petrera, Agnese; Sander, Peter; Vordermeier, H Martin

    2014-02-01

    Mycobacterium bovis (M. bovis) causes major economy and public health problem in numerous countries. In Great Britain, despite the use of a test-and-slaughter strategy, the incidence of bovine tuberculosis (bTB) in cattle has steadily risen in recent years. One strategy being considered to reduce the burden of bTB in cattle is the development of an efficient vaccine. The only current potentially available vaccine against tuberculosis, live attenuated M. bovis bacille Calmette-Guérin (BCG), has demonstrated variable efficacy in both humans and cattle and the development of improved vaccination strategies for cattle is a research priority. In this study we assessed the immunogenicity in cattle of two recombinant BCG strains, namely BCG Pasteur Δzmp1::aph and BCG Danish Δzmp1. By applying a recently defined predictive immune-correlate of protection (T cell memory responses measured by cultured ELISPOT), we have compared these two recombinant BCG with wild-type BCG Danish SSI. Our results demonstrated that both strains induced superior T cell memory responses compared to wild-type BCG. These data provide support for the prioritisation of testing BCG Danish Δzmp1 in vaccination/M. bovis challenge studies to determine its protective efficacy. PMID:24394444

  11. A Challenge for the Development of Malaria Vaccines: Polymorphic Target Antigens

    OpenAIRE

    Sutherland, C.

    2007-01-01

    Parasites of the genus Plasmodium cause many hundreds of millions of cases of malaria worldwide optimism that in the future effective va