WorldWideScience

Sample records for antigenic peptide vaccine

  1. Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines.

    Science.gov (United States)

    Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold

    2004-02-01

    We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.

  2. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    Directory of Open Access Journals (Sweden)

    Taguchi Hiroaki

    2011-08-01

    Full Text Available Abstract Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens, carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1 the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2 synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.

  3. MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans

    Directory of Open Access Journals (Sweden)

    Cunha-Neto E.

    1999-01-01

    Full Text Available The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.

  4. Photochemical Internalization of Peptide Antigens Provides a Novel Strategy to Realize Therapeutic Cancer Vaccination

    Directory of Open Access Journals (Sweden)

    Markus Haug

    2018-04-01

    Full Text Available Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here, we investigated the potential of PCI as a novel, minimally invasive, and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen-presenting cells (APCs in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30- to 100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses.

  5. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.

    1997-01-01

    Synthetic peptides have frequently been used to immunize animals. However, peptides less than about 20 to 30 amino acids long are poor immunogens. In general, to increase its immunogenicity, the presentation of the peptide should be improved, and molecular weight needs to be increased. Many...... attempts have been made to couple peptide immunogens to different carrier proteins [e.g. keyhole limper haemocyanin (KLH) or ovalbumin]. This leads to very complex structures, however. We used a controlled conjugation of a peptide to a single long-chain fatty acid like palmitic acid by a thioester...... or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  6. Synthetic peptide vaccines: palmitoylation of peptide antigens by an thioester bond increases immunogenicity

    NARCIS (Netherlands)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.; Dalsgaard, K.; Langeveld, J.P.M.; Boshuizen, R.S.; Meloen, R.H.

    1997-01-01

    Synthetic peptides have frequently been used to immunize animals. However, peptides less than about 20 to 30 amino acids long are poor immunogens. In general, to increase its immunogenicity, the presentation of the peptide should be improved, and molecular weight needs to be increased. Many attempts

  7. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi; Santhanagopolan, Sujatha M.; Baxter, Tiffany K.; Baker, Brian M. (Notre)

    2012-05-08

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.

  8. HLA-A2-restricted glypican-3 peptide-specific CTL clones induced by peptide vaccine show high avidity and antigen-specific killing activity against tumor cells.

    Science.gov (United States)

    Yoshikawa, Toshiaki; Nakatsugawa, Munehide; Suzuki, Shiro; Shirakawa, Hirofumi; Nobuoka, Daisuke; Sakemura, Noriko; Motomura, Yutaka; Tanaka, Yukie; Hayashi, Shin-Ichi; Nakatsura, Tetsuya

    2011-05-01

    Glypican-3 (GPC3) is an onco-fetal antigen that is overexpressed in human hepatocellular carcinoma (HCC), and is only expressed in the placenta and embryonic liver among normal tissues. Previously, we identified an HLA-A2-restricted GPC3(144-152) (FVGEFFTDV) peptide that can induce GPC3-reactive CTLs without inducing autoimmunity in HLA-A2 transgenic mice. In this study, we carried out a phase I clinical trial of HLA-A2-restricted GPC3(144-152) peptide vaccine in 14 patients with advanced HCC. Immunological responses were analyzed by ex vivo γ-interferon enzyme-linked immunospot assay. The frequency of GPC3(144-152) peptide-specific CTLs after vaccination (mean, 96; range, 5-441) was significantly larger than that before vaccination (mean, 6.5; range, 0-43) (P Network number 000001395. © 2011 Japanese Cancer Association.

  9. Multivalent immunity targeting tumor-associated antigens by intra-lymph node DNA-prime, peptide-boost vaccination.

    Science.gov (United States)

    Smith, K A; Qiu, Z; Wong, R; Tam, V L; Tam, B L; Joea, D K; Quach, A; Liu, X; Pold, M; Malyankar, U M; Bot, A

    2011-01-01

    Active immunotherapy of cancer has yet to yield effective therapies in the clinic. To evaluate the translatability of DNA-based vaccines we analyzed the profile of T-cell immunity by plasmid vaccination in a murine model, using transcriptome microarray analysis and flow cytometry. DNA vaccination resulted in specific T cells expressing low levels of co-inhibitory molecules (most notably PD-1), strikingly different from the expression profile elicited by peptide immunization. In addition, the T-cell response primed through this dual-antigen-expressing plasmid (MART-1/Melan-A and tyrosinase) translated into a substantial proliferation capacity and functional conversion to antitumor effector cells after tyrosinase and MART-1/Melan-A peptide analog boost. Furthermore, peptide boost rescued the immune response against the subdominant tyrosinase epitope. This immunization approach could be adapted to elicit potent immunity against multiple tumor antigens, resulting in a broader immune response that was more effective in targeting human tumor cells. Finally, this study sheds light on a novel mechanism of immune homeostasis through synchronous regulation of co-inhibitory molecules on T cells, highly relevant to heterologous prime boost approaches involving DNA vaccines as priming agents.

  10. Peptide Vaccine Against Paracoccidioidomycosis.

    Science.gov (United States)

    Taborda, Carlos P; Travassos, Luiz R

    2017-01-01

    The chapter reviews methods utilized for the isolation and characterization of a promising immunogen candidate, aiming at a human vaccine against paracoccidioidomycosis. Peptide P10 carries a T-CD4+ epitope and was identified as an internal sequence of the major diagnostic antigen known as gp43 glycoprotein. It successfully treated massive intratracheal infections by virulent Paracoccidioides brasiliensis in combination with chemotherapy.An introduction about the systemic mycosis was found essential to understand the various options that were considered to design prophylactic and therapeutic vaccine protocols using peptide P10.

  11. High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4(+) T cell responses more than 30 years post-vaccinia virus vaccination

    DEFF Research Database (Denmark)

    Wang, M.; Tang, Sheila Tuyet; Lund, Ole

    2009-01-01

    Interferon-gamma secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human leucoc...... leucocyte antigen (HLA) class I binders (K-D...

  12. Ii-Key/HER-2/neu MHC class-II antigenic epitope vaccine peptide for breast cancer.

    Science.gov (United States)

    Gillogly, Michael E; Kallinteris, Nikoletta L; Xu, Minzhen; Gulfo, Joseph V; Humphreys, Robert E; Murray, James L

    2004-06-01

    Cytotoxic T lymphocytes (CTL)- and T-helper cell-specific, and major histocompatibility complex (MHC) class-I and class-II peptides, respectively, of the HER-2/ neu protein, induce immune responses in patients. A major challenge in developing cancer peptide vaccines is breaking tolerance to tumor-associated antigens which are functionally self-proteins. An adequate CD4+ T-helper response is required for effective and lasting responses. Stimulating anti-cancer CD4+ T cell responses by MHC class-II epitope peptides has been limited by their weak potency, at least compared with tight-binding MHC class-I epitope peptides. Previously, a potent T-cell response to a MHC class-II epitope was engineered by coupling the N-terminus of the pigeon cytochrome C [PGCC(95-104)] MHC class-II epitope to the C-terminus of an immunoregulatory segment of the Ii protein (hIi77-81, the Ii-Key peptide) through a polymethylene spacer. In vitro presentation of the MHC class-II epitope to a T hybridoma was enhanced greatly (>250 times). Now, an Ii-Key/HER-2/neu (777-789) MHC class-II epitope hybrid peptide stimulated lymphocytes from both a healthy donor and a patient with metastatic breast carcinoma. The in vitro primary stimulation with the hybrid peptide strongly activated IFN-gamma release, whereas the epitope-only peptide was weakly active. In fact, the hybrid stimulated IFN-gamma release as well as the wild-type peptide when augmented with IL-12; however, the hybrid was comparable to free peptide in stimulating IL-4 release. This pattern is consistent with preferential activation along a non-tolerogenic Th1 pathway. Such Ii-Key/MHC class-II epitope hybrid peptides have both diagnostic and therapeutic applications.

  13. Phase II Study of Personalized Peptide Vaccination with Both a Hepatitis C Virus-Derived Peptide and Peptides from Tumor-Associated Antigens for the Treatment of HCV-Positive Advanced Hepatocellular Carcinoma Patients

    Directory of Open Access Journals (Sweden)

    Shigeru Yutani

    2015-01-01

    Full Text Available Objective. To evaluate safety and immune responses of personalized peptide vaccination (PPV for hepatitis C virus- (HCV- positive advanced hepatocellular carcinoma (HCC. Patients and Methods. Patients diagnosed with HCV-positive advanced HCC were eligible for this study. A maximum of four HLA-matched peptides were selected based on the preexisting IgG responses specific to 32 different peptides, which consisted of a single HCV-derived peptide at core protein positions 35–44 (C-35 and 31 peptides derived from 15 different tumor-associated antigens (TAAs, followed by subcutaneous administration once per week for 8 weeks. Peptide-specific cytotoxic T lymphocyte (CTL and IgG responses were measured before and after vaccination. Results. Forty-two patients were enrolled. Grade 3 injection site skin reaction was observed in 2 patients, but no other PPV-related severe adverse events were noted. Peptide-specific CTL responses before vaccination were observed in only 3 of 42 patients, but they became detectable in 23 of 36 patients tested after vaccination. Peptide-specific IgG responses were also boosted in 19 of 36 patients. Peptide-specific IgG1 responses to both C-35 and TAA-derived peptides could be potentially prognostic for overall survival. Conclusion. Further clinical study of PPV would be warranted for HCV-positive advanced HCC, based on the safety and strong immune induction.

  14. Effectiveness of intranasal vaccination against Angiostrongylus costaricensis using a serine/threonine phosphatase 2 A synthetic peptide and recombinant antigens.

    Science.gov (United States)

    Solano-Parada, J; Gonzalez-Gonzalez, G; Torró, L M de Pablos; dos Santos, M F Brazil; Espino, A M; Burgos, M; Osuna, A

    2010-07-19

    Intranasal immunization was assayed in C57BL/6 mice against Angiostrongylus costaricensis using a synthetic and a recombinant peptide belonging to the catalytic region of the serine/threonine phosphatase 2 A (PP2A) of the parasite. Immunization was carried out with the synthetic peptide (SP) polymerized either with itself or with the beta fraction of the cholera toxin (CTB) and then enclosed in nanocapsules of phosphatidyl choline, cholesterol and Quil A (ISCOM). Another group of mice was immunized with recombinant peptide. Immunization consisted of two intranasal inoculations at two-week intervals, and the challenge with L3 larvae was made one month after the last vaccination. The effectiveness of immunization was evaluated 30 days after infection by analysis of the number of parasites in the arteries of the immunized mice, as well as by measuring spleen sizes in the experimental groups. The response induced was determined by identifying the isotypes of IgG as well as the IgE and IgA specific antigen response. The interleukins produced by the splenocyte culture of the different groups were assessed after exposing them to the peptide used in the immunization. From our results, 60%, 80%, and 100% protection against the A. costaricensis challenge was achieved in mice immunized with polymerized synthetic peptide in ISCOM, synthetic peptide polymerized with the CTB in ISCOM and inclusion bodies respectively. Splenomegaly was found to be less evident in the immunized mice than in the controls. A significant increase in IFN gamma and IL-17 levels was observed in the group with 100% protection. The results showed that vaccination through the nasal mucosa may constitute a useful method of immunization and result in a protective immune response against A. costaricensis. (c) 2010 Elsevier Ltd. All rights reserved.

  15. Identification of Lck-derived peptides applicable to anti-cancer vaccine for patients with human leukocyte antigen-A3 supertype alleles

    OpenAIRE

    Naito, M; Komohara, Y; Ishihara, Y; Noguchi, M; Yamashita, Y; Shirakusa, T; Yamada, A; Itoh, K; Harada, M

    2007-01-01

    The identification of peptide vaccine candidates to date has been focused on human leukocyte antigen (HLA)-A2 and -A24 alleles. In this study, we attempted to identify cytotoxic T lymphocyte (CTL)-directed Lck-derived peptides applicable to HLA-A11+, -A31+, or -A33+ cancer patients, because these HLA-A alleles share binding motifs, designated HLA-A3 supertype alleles, and because the Lck is preferentially expressed in metastatic cancer. Twenty-one Lck-derived peptides were prepared based on t...

  16. [SYNTHETIC PEPTIDE VACCINES].

    Science.gov (United States)

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  17. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation

    NARCIS (Netherlands)

    Rahimian, Sima; Fransen, Marieke F.; Kleinovink, Jan Willem; Christensen, Jonatan Riis; Amidi, Maryam|info:eu-repo/dai/nl/304834912; Hennink, Wim E.|info:eu-repo/dai/nl/070880409; Ossendorp, Ferry

    2015-01-01

    The aim of the current study was to develop a cancer vaccine formulation for treatment of human papillomavirus (HPV)-induced malignancies. Synthetic long peptides (SLPs) derived from HPV16 E6 and E7 oncoproteins have been used for therapeutic vaccination in clinical trials with promising results. In

  18. Tumor antigen-specific FOXP3+ CD4 T cells identified in human metastatic melanoma: peptide vaccination results in selective expansion of Th1-like counterparts.

    Science.gov (United States)

    Jandus, Camilla; Bioley, Gilles; Dojcinovic, Danijel; Derré, Laurent; Baitsch, Lukas; Wieckowski, Sébastien; Rufer, Nathalie; Kwok, William W; Tiercy, Jean-Marie; Luescher, Immanuel F; Speiser, Daniel E; Romero, Pedro

    2009-10-15

    We have previously shown that vaccination of HLA-A2 metastatic melanoma patients with the analogue Melan-A(26-35(A27L)) peptide emulsified in a mineral oil induces ex vivo detectable specific CD8 T cells. These are further enhanced when a TLR9 agonist is codelivered in the same vaccine formulation. Interestingly, the same peptide can be efficiently recognized by HLA-DQ6-restricted CD4 T cells. We used HLA-DQ6 multimers to assess the specific CD4 T-cell response in both healthy individuals and melanoma patients. We report that the majority of melanoma patients carry high frequencies of naturally circulating HLA-DQ6-restricted Melan-A-specific CD4 T cells, a high proportion of which express FOXP3 and proliferate poorly in response to the cognate peptide. Upon vaccination, the relative frequency of multimer+ CD4 T cells did not change significantly. In contrast, we found a marked shift to FOXP3-negative CD4 T cells, accompanied by robust CD4 T-cell proliferation upon in vitro stimulation with cognate peptide. A concomitant reduction in TCR diversity was also observed. This is the first report on direct ex vivo identification of antigen-specific FOXP3+ T cells by multimer labeling in cancer patients and on the direct assessment of the impact of peptide vaccination on immunoregulatory T cells.

  19. Multiple antigenic peptide (MAP): a synthetic peptide dendrimer for diagnostic, antiviral and vaccine strategies for emerging and re-emerging viral diseases.

    Science.gov (United States)

    Joshi, Vinay Ganeshrao; Dighe, Vikas D; Thakuria, Dimpal; Malik, Yashpal Singh; Kumar, Satish

    2013-12-01

    The peptide dendrimer provides novel strategies for various biological applications. Assembling of peptide in macromolecular structure is expected to give rational models as drugs, their delivery and diagnostic reagents. Improved understanding of virus structure and their molecular interactions with ligands have paved the way for treatment and control of emerging and re-emerging viral diseases. This review presents a brief account of a synthetic peptide dendrimer used for diagnostic, therapeutic and prophylactic applications. The designs comprise of multiple antigenic peptides which are being used as alternate synthetic antigens for different viruses.

  20. Juzentaihoto Failed to Augment Antigen-Specific Immunity but Prevented Deterioration of Patients’ Conditions in Advanced Pancreatic Cancer under Personalized Peptide Vaccine

    Directory of Open Access Journals (Sweden)

    Shigeru Yutani

    2013-01-01

    Full Text Available Juzentaihoto (JTT is a well-known Japanese herbal medicine, which has been reported to modulate immune responses and enhance antitumor immunity in animal models. However, it is not clear whether JTT has similar effects on humans. In particular, there is little information on the effects of JTT in antigen-specific immunity in cancer patients. Here we conducted a randomized clinical study to investigate whether combined usage of JTT could affect antigen-specific immunity and clinical findings in advanced pancreatic cancer patients undergoing personalized peptide vaccination (PPV, in which HLA-matched vaccine antigens were selected based on the preexisting host immunity. Fifty-seven patients were randomly assigned to receive PPV with (n=28 or without (n=29 JTT. Unexpectedly, JTT did not significantly affect cellular or humoral immune responses specific to the vaccine antigens, which were determined by antigen-specific interferon-γ secretion in T cells and antigen-specific IgG titers in plasma, respectively. Nevertheless, JTT prevented deterioration of patients’ conditions, such as anemia, lymphopenia, hypoalbuminemia, plasma IL-6 elevation, and reduction of performance status, which are frequently observed in advanced cancers. To our knowledge, this is the first clinical study that examined the immunological and clinical effects of JTT in cancer patients undergoing immunotherapy in humans.

  1. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models

    Directory of Open Access Journals (Sweden)

    Eguchi Junichi

    2007-02-01

    Full Text Available Abstract Background Toll-like receptor (TLR3 ligands serve as natural inducers of pro-inflammatory cytokines capable of promoting Type-1 adaptive immunity, and TLR3 is abundantly expressed by cells within the central nervous system (CNS. To improve the efficacy of vaccine strategies directed against CNS tumors, we evaluated whether administration of a TLR3 ligand, polyinosinic-polycytidylic (poly-IC stabilized with poly-lysine and carboxymethylcellulose (poly-ICLC would enhance the anti-CNS tumor effectiveness of tumor peptide-based vaccinations. Methods C57BL/6 mice bearing syngeneic CNS GL261 glioma or M05 melanoma received subcutaneous (s.c. vaccinations with synthetic peptides encoding CTL epitopes- mEphA2 (671–679, hgp100 (25–33 and mTRP-2 (180–188 for GL261, or ovalbumin (OVA: 257–264 for M05. The mice also received intramuscular (i.m. injections with poly-ICLC. Results The combination of subcutaneous (s.c. peptide-based vaccination and i.m. poly-ICLC administration promoted systemic induction of antigen (Ag-specific Type-1 CTLs expressing very late activation antigen (VLA-4, which confers efficient CNS-tumor homing of vaccine-induced CTLs based on experiments with monoclonal antibody (mAb-mediated blockade of VLA-4. In addition, the combination treatment allowed expression of IFN-γ by CNS tumor-infiltrating CTLs, and improved the survival of tumor bearing mice in the absence of detectable autoimmunity. Conclusion These data suggest that poly-ICLC, which has been previously evaluated in clinical trials, can be effectively combined with tumor Ag-specific vaccine strategies, thereby providing a greater index of therapeutic efficacy.

  2. Filamentous bacteriophage fd as an antigen delivery system in vaccination.

    Science.gov (United States)

    Prisco, Antonella; De Berardinis, Piergiuseppe

    2012-01-01

    Peptides displayed on the surface of filamentous bacteriophage fd are able to induce humoral as well as cell-mediated immune responses, which makes phage particles an attractive antigen delivery system to design new vaccines. The immune response induced by phage-displayed peptides can be enhanced by targeting phage particles to the professional antigen presenting cells, utilizing a single-chain antibody fragment that binds dendritic cell receptor DEC-205. Here, we review recent advances in the use of filamentous phage fd as a platform for peptide vaccines, with a special focus on the use of phage fd as an antigen delivery platform for peptide vaccines in Alzheimer's Disease and cancer.

  3. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  4. Selection of glutamate-rich protein long synthetic peptides for vaccine development: antigenicity and relationship with clinical protection and immunogenicity

    DEFF Research Database (Denmark)

    Theisen, M; Dodoo, D; Toure-Balde, A

    2001-01-01

    Antibodies against three long synthetic peptides (LSPs) derived from the glutamate-rich protein (GLURP) of Plasmodium falciparum were analyzed in three cohorts from Liberia, Ghana, and Senegal. Two overlapping LSPs, LR67 and LR68, are derived from the relatively conserved N-terminal nonrepeat...... antisera recognized parasite proteins as determined by immunofluorescence and immunoblotting. This indicates that synthetic peptides derived from relatively conserved epitopes of GLURP might serve as useful immunogens for vaccination against P. falciparum malaria....... were confined to the nonrepeat region. When used as immunogens, the LR67 and LR68 peptides elicited strong IgG responses in outbred mice and LR67 also induced antibodies in mice of different H-2 haplotypes, confirming the presence of T-helper-cell epitopes in these constructs. Mouse antipeptide...

  5. Myeloid dendritic cells loaded with dendritic tandem multiple antigenic telomerase reverse transcriptase (hTERT) epitope peptides: a potentially promising tumor vaccine.

    Science.gov (United States)

    Niu, Bai-lin; Du, Hui-min; Shen, Hua-ping; Lian, Zheng-rong; Li, Jin-zheng; Lai, Xing; Wei, Si-dong; Zou, Li-quan; Gong, Jian-ping

    2012-05-14

    Human telomerase reverse transcriptase (hTERT) has been identified as an ideal tumor-associated antigen (TAA). Use of a synthetic hTERT epitope peptide to pulse dendritic cells can induce autologous T cell anti-tumor immune responses, but such responses induced by a single epitope peptide have been shown to be weak and a narrow-spectrum. Here, we designed dendritic tandem multiple antigenic peptides (MAPs) containing the following three hTERT epitope peptides: I540, V461 and L766, which are HLA-A*02-, HLA-A*24- and HLA-RDB1*04/11/15-restricted, respectively. The MAPs and their three single-epitope peptides were obtained through solid-phase synthesis. Healthy volunteers that were HLA-A*02(+)/HLA-DRB1*04(+) and HLA-A*24(+)/HLA-DRB1*15(+) were recruited. Myeloid dendritic cells were isolated by magnetic activated cell sorting and were divided into a MAP-stimulated group (MAP-DC), a group in which the three epitope peptides were mixed and used to stimulate the DCs (MixP-DC) and a no peptide-stimulated group (NoP-DC, control group). All of the DCs were cultured in serum-free medium, pulsed with the corresponding peptides on the 3rd, 5th and 7th days, and co-cultured with autologous lymphocytes when they were mature. The related cytokines were measured via ELISA. The killing effects of cytotoxic T lymphocytes (CTLs) on SW480/A549 tumor cells expressing HLA-A*02(+), HepG2/SMMC-7721 cells expressing HLA-A*24(+) and SKOV3 cells negative for HLA-A*02/A*24 were detected by flow cytometry. Our results indicated that the CTLs induced by the MAP-DCs had the greatest anti-tumor effect. Therefore, the dendritic tandem multiple antigenic hTERT epitope peptides combined with MDCs may represent a powerful, broad-spectrum anti-tumor vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. NOG-hIL-4-Tg, a new humanized mouse model for producing tumor antigen-specific IgG antibody by peptide vaccination.

    Directory of Open Access Journals (Sweden)

    Yoshie Kametani

    Full Text Available Immunodeficient mice transplanted with human peripheral blood mononuclear cells (PBMCs are promising tools to evaluate human immune responses to vaccines. However, these mice usually develop severe graft-versus-host disease (GVHD, which makes estimation of antigen-specific IgG production after antigen immunization difficult. To evaluate antigen-specific IgG responses in PBMC-transplanted immunodeficient mice, we developed a novel NOD/Shi-scid-IL2rγnull (NOG mouse strain that systemically expresses the human IL-4 gene (NOG-hIL-4-Tg. After human PBMC transplantation, GVHD symptoms were significantly suppressed in NOG-hIL-4-Tg compared to conventional NOG mice. In kinetic analyses of human leukocytes, long-term engraftment of human T cells has been observed in peripheral blood of NOG-hIL-4-Tg, followed by dominant CD4+ T rather than CD8+ T cell proliferation. Furthermore, these CD4+ T cells shifted to type 2 helper (Th2 cells, resulting in long-term suppression of GVHD. Most of the human B cells detected in the transplanted mice had a plasmablast phenotype. Vaccination with HER2 multiple antigen peptide (CH401MAP or keyhole limpet hemocyanin (KLH successfully induced antigen-specific IgG production in PBMC-transplanted NOG-hIL-4-Tg. The HLA haplotype of donor PBMCs might not be relevant to the antibody secretion ability after immunization. These results suggest that the human PBMC-transplanted NOG-hIL-4-Tg mouse is an effective tool to evaluate the production of antigen-specific IgG antibodies.

  7. Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens

    Directory of Open Access Journals (Sweden)

    Kono Koji

    2012-07-01

    Full Text Available Abstract Background Since a phase I clinical trial using three HLA-A24-binding peptides from TTK protein kinase (TTK, lymphocyte antigen-6 complex locus K (LY6K, and insulin-like growth factor-II mRNA binding protein-3 (IMP3 had been shown to be promising for esophageal squamous cell carcinoma (ESCC, we further performed a multicenter, non-randomized phase II clinical trial. Patients and methods Sixty ESCC patients were enrolled to evaluate OS, PFS, immunological response employing ELISPOT and pentamer assays. Each of the three peptides was administered with IFA weekly. All patients received the vaccination without knowing an HLA-A type, and the HLA types were key-opened at the analysis point. Hence, the endpoints were set to evaluate differences between HLA-A*2402-positive (24(+ and -negative (24(− groups. Results The OS in the 24 (+ group (n = 35 tended to be better than that in the 24(− group (n = 25 (MST 4.6 vs. 2.6 month, respectively, p = 0.121, although the difference was not statistically significant. However, the PFS in the 24(+ group was significantly better than that in the 24(− group (p = 0.032. In the 24(+ group, ELISPOT assay indicated that the LY6K-, TTK-, and IMP3-specific CTL responses were observed after the vaccination in 63%, 45%, and 60% of the 24(+ group, respectively. The patients having LY6K-, TTK-, and IMP3-specific CTL responses revealed the better OS than those not having CTL induction, respectively. The patients showing the CTL induction for multiple peptides have better clinical responses. Conclusions The immune response induced by the vaccination could make the prognosis better for advanced ESCC patients. Trial registration ClinicalTrials.gov, number NCT00995358

  8. Effective clinical-scale production of dendritic cell vaccines by monocyte elutriation directly in medium, subsequent culture in bags and final antigen loading using peptides or RNA transfection.

    Science.gov (United States)

    Erdmann, Michael; Dörrie, Jan; Schaft, Niels; Strasser, Erwin; Hendelmeier, Martin; Kämpgen, Eckhart; Schuler, Gerold; Schuler-Thurner, Beatrice

    2007-09-01

    Dendritic cell (DC) vaccination approaches are advancing fast into the clinic. The major obstacle for further improvement is the current lack of a simple functionally "closed" system to generate standardized monocyte-derived (mo) DC vaccines. Here, we significantly optimized the use of the Elutra counterflow elutriation system to enrich monocytic DC precursors by (1) developing an algorithm to avoid red blood cell debulking and associated monocyte loss before elutriation, and (2) by elutriation directly in culture medium rather than phosphate-buffered saline. Upon elutriation the bags containing the collected monocytes are simply transferred into the incubator to generate DC progeny as the final "open" washing step is no longer required. Elutriation resulted in significantly more (> or = 2-fold) and purer DC than the standard gradient centrifugation/adherence-based monocyte enrichment, whereas morphology, maturation markers, viability, migratory capacity, and T cell stimulatory capacity were identical. Subsequently, we compared RNA transfection, as this is an increasingly used approach to load DC with antigen. Elutra-derived and adherence-derived DC could be electroporated with similar, high efficiency (on average >85% green fluorescence protein positive), and appeared also equal in antigen expression kinetics. Both Elutra-derived and adherence-derived DC, when loaded with the MelanA peptide or electroporated with MelanA RNA, showed a high T cell stimulation capacity, that is, priming of MelanA-specific CD8+ T cells. Our optimized Elutra-based procedure is straightforward, clearly superior to the standard gradient centrifugation/plastic adherence protocol, and now allows the generation of large numbers of peptide-loaded or RNA-transfected DC in a functionally closed system.

  9. Vaccination with M2e-based multiple antigenic peptides: characterization of the B cell response and protection efficacy in inbred and outbred mice.

    Directory of Open Access Journals (Sweden)

    Amaya I Wolf

    Full Text Available The extracellular domain of the influenza A virus protein matrix protein 2 (M2e is remarkably conserved between various human isolates and thus is a viable target antigen for a universal influenza vaccine. With the goal of inducing protection in multiple mouse haplotypes, M2e-based multiple antigenic peptides (M2e-MAP were synthesized to contain promiscuous T helper determinants from the Plasmodium falciparum circumsporozoite protein, the hepatitis B virus antigen and the influenza virus hemagglutinin. Here, we investigated the nature of the M2e-MAP-induced B cell response in terms of the distribution of antibody (Ab secreting cells (ASCs and Ab isotypes, and tested the protective efficacy in various mouse strains.Immunization of BALB/c mice with M2e-MAPs together with potent adjuvants, CpG 1826 oligonucleotides (ODN and cholera toxin (CT elicited high M2e-specific serum Ab titers that protected mice against viral challenge. Subcutaneous (s.c. and intranasal (i.n. delivery of M2e-MAPs resulted in the induction of IgG in serum and airway secretions, however only i.n. immunization induced anti-M2e IgA ASCs locally in the lungs, correlating with M2-specific IgA in the bronchio-alveolar lavage (BAL. Interestingly, both routes of vaccination resulted in equal protection against viral challenge. Moreover, M2e-MAPs induced cross-reactive and protective responses to diverse M2e peptides and variant influenza viruses. However, in contrast to BALB/c mice, immunization of other inbred and outbred mouse strains did not induce protective Abs. This correlated with a defect in T cell but not B cell responsiveness to the M2e-MAPs.Anti-M2e Abs induced by M2e-MAPs are highly cross-reactive and can mediate protection to variant viruses. Although synthetic MAPs are promising designs for vaccines, future constructs will need to be optimized for use in the genetically heterogeneous human population.

  10. Peptide Vaccines for Cancer

    Directory of Open Access Journals (Sweden)

    Kono K

    2013-10-01

    Full Text Available Background: In general, the preferable characteristic of the target molecules for development of cancer vaccines are high immunogenicity, very common expression in cancer cells, specific expression in cancer cells and essential molecules for cell survival (to avoid loss of expression. We previously reported that three novel HLA-A24-restricted immunodominant peptides, which were derived from three different oncoantigens, TTK, LY6K, and IMP-3,were promising targets for cancer vaccination for esophageal squamous cell carcinoma (ESCCpatients. Then, we had performed a phase I clinical trial using three HLA-A24-binding peptides and the results had been shown to be promising for ESCC. Therefore, we further performed a multicenter, non-randomized phase II clinical trial. Patients and Methods: Sixty ESCC patients were enrolled to evaluate OS, PFS, immunological response employing ELISPOT and pentamer assays. Each of the three peptides was administered with IFA weekly. All patients received the vaccination without knowing an HLA-A type, and the HLA types were key-opened at the analysis point. Hence, the endpoints were set to evaluate differences between HLA-A*2402-positive (24(+ and -negative (24(- groups. Results: The OS in the 24 (+ group (n=35 tended to be better than that in the 24(- group (n=25 (MST 4.6 vs. 2.6 month, respectively, p = 0.121, although the difference was not statistically significant. However, the PFS in the 24(+ group was significantly better than that in the 24(- group (p = 0.032. In the 24(+ group, ELISPOT assay indicated that the LY6K-, TTK-, and IMP3-specific CTL responses were observed after the vaccination in 63%, 45%, and 60% of the 24(+ group, respectively. The patients having LY6K-, TTK-, and IMP3-specific CTL responses revealed the better OS than those not having CTL induction, respectively. The patients showing the CTL induction for multiple peptides have better clinical responses. Conclusion: The immune response induced

  11. Development of Peptide Vaccines in Dengue.

    Science.gov (United States)

    Reginald, Kavita; Chan, Yanqi; Plebanski, Magdalena; Poh, Chit Laa

    2017-09-13

    Dengue is one of the most important arboviral infection worldwide, infecting up to 390 million people and causing 25,000 deaths annually. Although a licensed dengue vaccine is available, it is not efficacious against dengue serotypes that infect people living in South East Asia, where dengue is an endemic disease. Hence, there is an urgent need to develop an efficient dengue vaccine for this region. Data from different clinical trials indicate that a successful dengue vaccine must elicit both neutralizing antibodies and cell mediated immunity. This can be achieved by designing a multi-epitope peptide vaccine comprising B, CD8+ and CD4+ T cell epitopes. As recognition of T cell epitopes are restricted by human leukocyte antigens (HLA), T cell epitopes which are able to recognize several major HLAs will be preferentially included in the vaccine design. While peptide vaccines are safe, biocompatible and cost-effective, it is poorly immunogenic. Strategies to improve its immunogenicity by the use of long peptides, adjuvants and nanoparticle delivery mechanisms are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Liposome-based synthetic long peptide vaccines for cancer immunotherapy

    NARCIS (Netherlands)

    Varypataki, E.M.

    2016-01-01

    Synthetic long peptides (SLP) derived from cancer-associated antigens hold great promise as well-defined antigens for cancer immunotherapy. Clinical studies showed that SLP vaccines have functional potency when applied to pre-malignant stage patients, but need to be improved for use as a therapeutic

  13. Idala: An unnamed Function Peptide Vaccine for Tuberculosis ...

    African Journals Online (AJOL)

    Purpose: To evaluate Myt272 protein antigenicity and immunogenicity by trial vaccination in mice and its in silico analysis as a potential peptide vaccine for tuberculosis. Methods: Myt272 gene, which has 100 % identity with Mycobacterium tuberculosis H37Rv unknown function gene Rv3424c, was ligated by genomic ...

  14. An H5N1 M2e-based multiple antigenic peptide vaccine confers heterosubtypic protection from lethal infection with pandemic 2009 H1N1 virus

    Directory of Open Access Journals (Sweden)

    Yu Hong

    2010-07-01

    Full Text Available Abstract Background A 2009 global influenza pandemic caused by a novel swine-origin H1N1 influenza A virus has posted an increasing threat of a potential pandemic by the highly pathogenic avian influenza (HPAI H5N1 virus, driving us to develop an influenza vaccine which confers cross-protection against both H5N1 and H1N1 viruses. Previously, we have shown that a tetra-branched multiple antigenic peptide (MAP vaccine based on the extracellular domain of M2 protein (M2e from H5N1 virus (H5N1-M2e-MAP induced strong immune responses and cross-protection against different clades of HPAI H5N1 viruses. In this report, we investigated whether such M2e-MAP presenting the H5N1-M2e consensus sequence can afford heterosubtypic protection from lethal challenge with the pandemic 2009 H1N1 virus. Results Our results demonstrated that H5N1-M2e-MAP plus Freund's or aluminum adjuvant induced strong cross-reactive IgG antibody responses against M2e of the pandemic H1N1 virus which contains one amino acid variation with M2e of H5N1 at position 13. These cross-reactive antibodies may maintain for 6 months and bounced back quickly to the previous high level after the 2nd boost administered 2 weeks before virus challenge. H5N1-M2e-MAP could afford heterosubtypic protection against lethal challenge with pandemic H1N1 virus, showing significant decrease of viral replications and obvious alleviation of histopathological damages in the challenged mouse lungs. 100% and 80% of the H5N1-M2e-MAP-vaccinated mice with Freund's and aluminum adjuvant, respectively, survived the lethal challenge with pandemic H1N1 virus. Conclusions Our results suggest that H5N1-M2e-MAP has a great potential to prevent the threat from re-emergence of pandemic H1N1 influenza and possible novel influenza pandemic due to the reassortment of HPAI H5N1 virus with the 2009 swine-origin H1N1 influenza virus.

  15. Vaccination with NY-ESO-1 overlapping peptides mixed with Picibanil OK-432 and montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen.

    Science.gov (United States)

    Wada, Hisashi; Isobe, Midori; Kakimi, Kazuhiro; Mizote, Yu; Eikawa, Shingo; Sato, Eiichi; Takigawa, Nagio; Kiura, Katsuyuki; Tsuji, Kazuhide; Iwatsuki, Keiji; Yamasaki, Makoto; Miyata, Hiroshi; Matsushita, Hirokazu; Udono, Heiichiro; Seto, Yasuyuki; Yamada, Kazuhiro; Nishikawa, Hiroyoshi; Pan, Linda; Venhaus, Ralph; Oka, Mikio; Doki, Yuichiro; Nakayama, Eiichi

    2014-01-01

    We conducted a clinical trial of an NY-ESO-1 cancer vaccine using 4 synthetic overlapping long peptides (OLP; peptides #1, 79-108; #2, 100-129; #3, 121-150; and #4, 142-173) that include a highly immunogenic region of the NY-ESO-1 molecule. Nine patients were immunized with 0.25 mg each of three 30-mer and a 32-mer long NY-ESO-1 OLP mixed with 0.2 KE Picibanil OK-432 and 1.25 mL Montanide ISA-51. The primary endpoints of this study were safety and NY-ESO-1 immune responses. Five to 18 injections of the NY-ESO-1 OLP vaccine were well tolerated. Vaccine-related adverse events observed were fever and injection site reaction (grade 1 and 2). Two patients showed stable disease after vaccination. An NY-ESO-1-specific humoral immune response was observed in all patients and an antibody against peptide #3 (121-150) was detected firstly and strongly after vaccination. NY-ESO-1 CD4 and CD8 T-cell responses were elicited in these patients and their epitopes were identified. Using a multifunctional cytokine assay, the number of single or double cytokine-producing cells was increased in NY-ESO-1-specific CD4 and CD8 T cells after vaccination. Multiple cytokine-producing cells were observed in PD-1 (-) and PD-1 (+) CD4 T cells. In conclusion, our study indicated that the NY-ESO-1 OLP vaccine mixed with Picibanil OK-432 and Montanide ISA-51 was well tolerated and elicited NY-ESO-1-specific humoral and CD4 and CD8 T-cell responses in immunized patients.

  16. Vaccination and the TAP-independent antigen processing pathways.

    Science.gov (United States)

    López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen

    2013-09-01

    The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.

  17. Vaccination and antigenic drift in influenza.

    Science.gov (United States)

    Boni, Maciej F

    2008-07-18

    The relationship between influenza antigenic drift and vaccination lies at the intersection of evolutionary biology and public health, and it must be viewed and analyzed in both contexts simultaneously. In this paper, 1 review what is known about the effects of antigenic drift on vaccination and the effects of vaccination on antigenic drift, and I suggest some simple ways to detect the presence of antigenic drift in seasonal influenza data. If antigenic drift occurs on the time scale of a single influenza season, it may be associated with the presence of herd immunity at the beginning of the season and may indicate a need to monitor for vaccine updates at the end of the season. The relationship between antigenic drift and vaccination must also be viewed in the context of the global circulation of influenza strains and the seeding of local and regional epidemics. In the data sets I consider--from New Zealand, New York, and France--antigenic drift can be statistically detected during some seasons, and seeding of epidemics appears to be endogenous sometimes and exogenous at other times. Improved detection of short-term antigenic drift and epidemic seeding would significantly benefit influenza monitoring efforts and vaccine selection.

  18. A fusion protein consisting of IL-16 and the encephalitogenic peptide of myelin basic protein constitutes an antigen-specific tolerogenic vaccine that inhibits experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Mannie, Mark D; Abbott, Derek J

    2007-08-01

    To test a novel concept for the generation of tolerogenic vaccines, fusion proteins were constructed encompassing a tolerogenic or biasing cytokine and the major encephalitogenic peptide of guinea pig myelin basic protein (GPMBP; i.e., neuroantigen or NAg). The cytokine domain was predicted to condition APC while simultaneously targeting the covalently linked encephalitogenic peptide to the MHC class II Ag processing pathway of those conditioned APC. Rats were given three s.c. injections of cytokine-NAg in saline 1-2 wk apart and then at least 1 wk later were challenged with NAg in CFA. The rank order of tolerogenic activity in the Lewis rat model of EAE was NAgIL16 > IL2NAg > IL1RA-NAg, IL13NAg >or= IL10NAg, GPMBP, GP69-88, and saline. NAgIL16 was also an effective inhibitor of experimental autoimmune encephalomyelitis when administered after an encephalitogenic challenge during the onset of clinical signs. Covalent linkage of the NAg and IL-16 was required for inhibition of experimental autoimmune encephalomyelitis. These data identify IL-16 as an optimal cytokine partner for the generation of tolerogenic vaccines and indicate that such vaccines may serve as Ag-specific tolerogens for the treatment of autoimmune disease.

  19. Towards patient-specific tumor antigen selection for vaccination.

    Science.gov (United States)

    Rammensee, Hans-Georg; Weinschenk, Toni; Gouttefangeas, Cécile; Stevanović, Stefan

    2002-10-01

    In this review, we discuss the possibilities for combining the power of molecular analysis of the antigens expressed in a given individual tumor with the design of a tailored vaccine containing defined antigens. Step 1 is a differential gene expression analysis of tumor and corresponding normal tissue. Step 2 is the analysis of human leukocyte antigen (HLA) ligands on tumor cells. Step 3 is data mining with the aim to select those antigens that might be suitable for tumor attack by the adaptive immune system. Step 4 is the on-the-spot clinical grade production of the constituents of the patient tailored vaccine, e.g. peptides. Step 5 is then vaccination and monitoring. Although it will not be possible to cover all relevant antigens expressed in a tumor, the antigens that can be identified with our present technical possibilities might be enough for improved immunotherapy. The scope of the present review is to explore the possibilities and the formidable technical and logistical challenge for such individual patient-oriented antigen definition to be used for therapeutic immunization.

  20. Defined carriers for synthetic antigens: Hinge Peptides

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Niederhafner, Petr; Gut, Vladimír; Hulačová, Hana; Maloň, Petr

    2005-01-01

    Roč. 29, č. 1 (2005), s. 68 ISSN 0939-4451. [International Congress on Amino Acids and Proteins /9./. 08.08.2005-12.08.2005, Gert Lubec] R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : synthetic carrier * antigen * hinge peptide Subject RIV: CC - Organic Chemistry

  1. Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH.

    Science.gov (United States)

    Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Alvarez-Domínguez, Carmen

    2014-01-01

    The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189-201 and LLO91-99 and the GAPDH peptide, GAPDH1-22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1-22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91-99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1-22-specific CD4(+) and CD8(+) immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4(+) and CD8(+) epitopes.

  2. CELLULAR VACCINES IN LISTERIOSIS: ROLE OF THE LISTERIA ANTIGEN GAPDH.

    Directory of Open Access Journals (Sweden)

    Ricardo eCalderon-Gonzalez

    2014-02-01

    Full Text Available The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH, and several epitopes such as the LLO peptides, LLO189–201 and LLO91–99 and the GAPDH peptide, GAPDH1–22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1–22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91–99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1–22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes.

  3. Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH

    Science.gov (United States)

    Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M. Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L.; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Álvarez-Domínguez, Carmen

    2014-01-01

    The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189−201 and LLO91−99 and the GAPDH peptide, GAPDH1−22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1−22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91−99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1−22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes. PMID:24600592

  4. Unusual antigen presentation offers new insight into HIV vaccine design.

    Science.gov (United States)

    McMichael, Andrew J; Picker, Louis J

    2017-06-01

    Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. An Overview on the Field of Micro- and Nanotechnologies for Synthetic Peptide-Based Vaccines

    Directory of Open Access Journals (Sweden)

    Aiala Salvador

    2011-01-01

    Full Text Available The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity.

  6. An Overview on the Field of Micro- and Nanotechnologies for Synthetic Peptide-Based Vaccines

    Science.gov (United States)

    Salvador, Aiala; Igartua, Manoli; Hernández, Rosa Maria; Pedraz, José Luis

    2011-01-01

    The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity. PMID:21773041

  7. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  8. A systems approach to designing next generation vaccines: combining α-galactose modified antigens with nanoparticle platforms

    Science.gov (United States)

    Phanse, Yashdeep; Carrillo-Conde, Brenda R.; Ramer-Tait, Amanda E.; Broderick, Scott; Kong, Chang Sun; Rajan, Krishna; Flick, Ramon; Mandell, Robert B.; Narasimhan, Balaji; Wannemuehler, Michael J.

    2014-01-01

    Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4+ T cells was also enhanced compared to a traditional adjuvant. Combining the technology platforms and augmenting immune response studies with peptide arrays and informatics analysis provides a new paradigm for rational, systems-based design of next generation vaccine platforms against emerging and re-emerging pathogens.

  9. Increasing vaccine potency through exosome antigen targeting.

    Science.gov (United States)

    Hartman, Zachary C; Wei, Junping; Glass, Oliver K; Guo, Hongtao; Lei, Gangjun; Yang, Xiao-Yi; Osada, Takuya; Hobeika, Amy; Delcayre, Alain; Le Pecq, Jean-Bernard; Morse, Michael A; Clay, Timothy M; Lyerly, Herbert K

    2011-11-21

    While many tumor associated antigens (TAAs) have been identified in human cancers, efforts to develop efficient TAA "cancer vaccines" using classical vaccine approaches have been largely ineffective. Recently, a process to specifically target proteins to exosomes has been established which takes advantage of the ability of the factor V like C1C2 domain of lactadherin to specifically address proteins to exosomes. Using this approach, we hypothesized that TAAs could be targeted to exosomes to potentially increase their immunogenicity, as exosomes have been demonstrated to traffic to antigen presenting cells (APC). To investigate this possibility, we created adenoviral vectors expressing the extracellular domain (ECD) of two non-mutated TAAs often found in tumors of cancer patients, carcinoembryonic antigen (CEA) and HER2, and coupled them to the C1C2 domain of lactadherin. We found that these C1C2 fusion proteins had enhanced expression in exosomes in vitro. We saw significant improvement in antigen specific immune responses to each of these antigens in naïve and tolerant transgenic animal models and could further demonstrate significantly enhanced therapeutic anti-tumor effects in a human HER2+ transgenic animal model. These findings demonstrate that the mode of secretion and trafficking can influence the immunogenicity of different human TAAs, and may explain the lack of immunogenicity of non-mutated TAAs found in cancer patients. They suggest that exosomal targeting could enhance future anti-tumor vaccination protocols. This targeting exosome process could also be adapted for the development of more potent vaccines in some viral and parasitic diseases where the classical vaccine approach has demonstrated limitations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Synthetic melanin bound to subunit vaccine antigens significantly enhances CD8+ T-cell responses.

    Directory of Open Access Journals (Sweden)

    Antoine F Carpentier

    Full Text Available Cytotoxic T-lymphocytes (CTLs play a key role in immunity against cancer; however, the induction of CTL responses with currently available vaccines remains difficult. Because several reports have suggested that pigmentation and immunity might be functionally linked, we investigated whether melanin can act as an adjuvant in vaccines. Short synthetic peptides (8-35 amino acids long containing T-cell epitopes were mixed with a solution of L-Dopa, a precursor of melanin. The mixture was then oxidized to generate nanoparticles of melanin-bound peptides. Immunization with melanin-bound peptides efficiently triggered CTL responses in mice, even against self-antigens and at a very low dose of peptides (microgram range. Immunization against a tumor antigen inhibited the growth of established tumors in mice, an effect that was abrogated by the depletion of CD8+ lymphocytes. These results demonstrate the efficacy of melanin as a vaccine adjuvant.

  11. Designing malaria vaccines to circumvent antigen variability✩

    Science.gov (United States)

    Ouattara, Amed; Barry, Alyssa E.; Dutta, Sheetij; Remarque, Edmond J.; Beeson, James G.; Plowe, Christopher V.

    2016-01-01

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. PMID:26475447

  12. Designing malaria vaccines to circumvent antigen variability.

    Science.gov (United States)

    Ouattara, Amed; Barry, Alyssa E; Dutta, Sheetij; Remarque, Edmond J; Beeson, James G; Plowe, Christopher V

    2015-12-22

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. Copyright © 2015. Published by Elsevier Ltd.

  13. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith

    2016-01-01

    for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce......The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens...... been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly...

  14. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Directory of Open Access Journals (Sweden)

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  15. A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen.

    Science.gov (United States)

    Kakimi, Kazuhiro; Isobe, Midori; Uenaka, Akiko; Wada, Hisashi; Sato, Eiichi; Doki, Yuichiro; Nakajima, Jun; Seto, Yasuyuki; Yamatsuji, Tomoki; Naomoto, Yoshio; Shiraishi, Kenshiro; Takigawa, Nagio; Kiura, Katsuyuki; Tsuji, Kazuhide; Iwatsuki, Keiji; Oka, Mikio; Pan, Linda; Hoffman, Eric W; Old, Lloyd J; Nakayama, Eiichi

    2011-12-15

    We conducted a phase I clinical trial of a cancer vaccine using a 20-mer NY-ESO-1f peptide (NY-ESO-1 91-110) that includes multiple epitopes recognized by antibodies, and CD4 and CD8 T cells. Ten patients were immunized with 600 μg of NY-ESO-1f peptide mixed with 0.2 KE Picibanil OK-432 and 1.25 ml Montanide ISA-51. Primary end points of the study were safety and immune response. Subcutaneous injection of the NY-ESO-1f peptide vaccine was well tolerated. Vaccine-related adverse events observed were fever (Grade 1), injection-site reaction (Grade 1 or 2) and induration (Grade 2). Vaccination with the NY-ESO-1f peptide resulted in an increase or induction of NY-ESO-1 antibody responses in nine of ten patients. The sera reacted with recombinant NY-ESO-1 whole protein as well as the NY-ESO-1f peptide. An increase in CD4 and CD8 T cell responses was observed in nine of ten patients. Vaccine-induced CD4 and CD8 T cells responded to NY-ESO-1 91-108 in all patients with various HLA types with a less frequent response to neighboring peptides. The findings indicate that the 20-mer NY-ESO-1f peptide includes multiple epitopes recognized by CD4 and CD8 T cells with distinct specificity. Of ten patients, two with lung cancer and one with esophageal cancer showed stable disease. Our study shows that the NY-ESO-1f peptide vaccine was well tolerated and elicited humoral, CD4 and CD8 T cell responses in immunized patients. Copyright © 2011 UICC.

  16. Heterologous expression of antigenic peptides in Bacillus subtilis biofilms.

    Science.gov (United States)

    Vogt, Cédric M; Schraner, Elisabeth M; Aguilar, Claudio; Eichwald, Catherine

    2016-08-11

    Numerous strategies have been developed for the display of heterologous proteins in the surface of live bacterial carriers, which can be used as vaccines, immune-modulators, cancer therapy or bioremediation. Bacterial biofilms have emerged as an interesting approach for the expression of proteins of interest. Bacillus subtilis is a well-described, endospore-forming organism that is able to form biofilms and also used as a probiotic, thus making it a suitable candidate for the display of heterologous proteins within the biofilm. Here, we describe the use of TasA, an important structural component of the biofilms formed by B. subtilis, as a genetic tool for the display of heterologous proteins. We first engineered the fusion protein TasA-mCherry and showed that was widely deployed within the B. subtilis biofilms. A significant enhancement of the expression of TasA-mCherry within the biofilm was obtained when depleting both tasA and sinR genes. We subsequently engineered fusion proteins of TasA to antigenic peptides of the E. granulosus parasite, paramyosin and tropomyosin. Our results show that the antigens were well expressed within the biofilm as denoted by macrostructure complementation and by the detection of the fusion protein in both immunoblot and immunohistochemistry. In addition, we show that the recombinant endospores of B. subtilis preserve their biophysical and morphological properties. In this work we provide strong evidence pointing that TasA is a suitable candidate for the display of heterologous peptides, such as antigens, cytokines, enzymes or antibodies, in the B. subtilis biofilms. Finally, our data portray that the recombinant endospores preserve their morphological and biophysical properties and could be an excellent tool to facilitate the transport and the administration.

  17. Characterization of influenza vaccine immunogenicity using influenza antigen microarrays.

    Directory of Open Access Journals (Sweden)

    Jordan V Price

    Full Text Available Existing methods to measure influenza vaccine immunogenicity prohibit detailed analysis of epitope determinants recognized by immunoglobulins. The development of highly multiplex proteomics platforms capable of capturing a high level of antibody binding information will enable researchers and clinicians to generate rapid and meaningful readouts of influenza-specific antibody reactivity.We developed influenza hemagglutinin (HA whole-protein and peptide microarrays and validated that the arrays allow detection of specific antibody reactivity across a broad dynamic range using commercially available antibodies targeted to linear and conformational HA epitopes. We derived serum from blood draws taken from 76 young and elderly subjects immediately before and 28±7 days post-vaccination with the 2008/2009 trivalent influenza vaccine and determined the antibody reactivity of these sera to influenza array antigens.Using linear regression and correcting for multiple hypothesis testing by the Benjamini and Hochberg method of permutations over 1000 resamplings, we identified antibody reactivity to influenza whole-protein and peptide array features that correlated significantly with age, H1N1, and B-strain post-vaccine titer as assessed through a standard microneutralization assay (p<0.05, q <0.2. Notably, we identified several peptide epitopes that were inversely correlated with regard to age and seasonal H1N1 and B-strain neutralization titer (p<0.05, q <0.2, implicating reactivity to these epitopes in age-related defects in response to H1N1 influenza. We also employed multivariate linear regression with cross-validation to build models based on age and pre-vaccine peptide reactivity that predicted vaccine-induced neutralization of seasonal H1N1 and H3N2 influenza strains with a high level of accuracy (84.7% and 74.0%, respectively.Our methods provide powerful tools for rapid and accurate measurement of broad antibody-based immune responses to influenza

  18. Mechanistic insights into the efficacy of cell penetrating peptide-based cancer vaccines.

    Science.gov (United States)

    Grau, Morgan; Walker, Paul R; Derouazi, Madiha

    2018-03-05

    Immunotherapies are increasingly used to treat cancer, with some outstanding results. Immunotherapy modalities include therapeutic vaccination to eliminate cancer cells through the activation of patient's immune system against tumor-derived antigens. Nevertheless, the full potential of therapeutic vaccination has yet to be demonstrated clinically because many early generation vaccines elicited low-level immune responses targeting only few tumor antigens. Cell penetrating peptides (CPPs) are highly promising tools to advance the field towards clinical success. CPPs efficiently penetrate cell membranes, even when linked to antigenic cargos, which can induce both CD8 and CD4 T-cell responses. Pre-clinical studies demonstrated that targeting multiple tumor antigens, even those considered to be poorly immunogenic, led to tumor regression. Therefore, CPP-based cancer vaccines represent a flexible and powerful means to extend therapeutic vaccination to many cancer indications. Here, we review recent findings in CPP development and discuss their use in next generation immunotherapies.

  19. Innovative DNA vaccine to break immune tolerance against tumor self-antigen.

    Science.gov (United States)

    Kang, Tae Heung; Mao, Chih-Ping; La, Victor; Chen, Alexander; Hung, Chien-Fu; Wu, T-C

    2013-02-01

    Vaccination is, in theory, a safe and effective approach for controlling disseminated or metastatic cancer due to the specificity of the mammalian immune system, yet its success in the clinic has been hampered thus far by the problem of immune tolerance to tumor self-antigen. Here we describe a DNA vaccination strategy that is able to control cancer by overcoming immune tolerance to tumor self-antigen. We engineered a DNA construct encoding a dimeric form of a secreted single-chain trimer of major histocompatibility complex class I heavy chain, β2-microglobulin, and peptide antigen linked to immunoglobulin G (SCT-Ag/IgG). The chimeric protein was able to bind to antigen-specific CD8(+) T cells with nearly 100% efficiency and strongly induce their activation and proliferation. In addition, the chimeric protein was able to coat professional antigen-presenting cells through the F(c) receptor to activate antigen-specific CD8(+) T cells. Furthermore, intradermal vaccination with DNA-encoding SCT-Ag/IgG could generate significant numbers of cytotoxic effector T cells against tumor self-antigen and leads to successful therapeutic outcomes in a preclinical model of metastatic melanoma. Our data suggest that the DNA vaccine strategy described in the current study is able to break immune tolerance against endogenous antigen from melanoma and result in potent therapeutic antitumor effects. Such strategy may be used in other antigenic systems for the control of infections and/or cancers.

  20. Strategies for Designing and Monitoring Malaria Vaccines Targeting Diverse Antigens

    Science.gov (United States)

    Barry, Alyssa E.; Arnott, Alicia

    2014-01-01

    After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates. PMID

  1. Strategies for designing and monitoring malaria vaccines targeting diverse antigens

    Directory of Open Access Journals (Sweden)

    Alyssa E Barry

    2014-07-01

    Full Text Available After more than 50 years of intensive research and development, only one malaria vaccine candidate, RTS,S, has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now catalogued the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarise the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximise the potential of future malaria vaccine

  2. Tumor Associated Antigenic Peptides in Prostate Cancer

    National Research Council Canada - National Science Library

    Tiwari, Raj

    2001-01-01

    .... Since this tumor rejection property was specifically mediated by tumor denved and not non-tumor derived gp96-peptide complexes, and that gp96 preparations stripped of its peptides are non-immunogenic...

  3. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma

    Science.gov (United States)

    Rosenberg, Steven A.; Yang, James C.; Schwartzentruber, Douglas J.; Hwu, Patrick; Marincola, Francesco M.; Topalian, Suzanne L.; Restifo, Nicholas P.; Dudley, Mark E.; Schwarz, Susan L.; Spiess, Paul J.; Wunderlich, John R.; Parkhurst, Maria R.; Kawakami, Yutaka; Seipp, Claudia A.; Einhorn, Jan H.; White, Donald E.

    2007-01-01

    The cloning of the genes encoding cancer antigens has opened new possibilities for the treatment of patients with cancer. In this study, immunodominant peptides from the gp100 melanoma-associated antigen were identified, and a synthetic peptide, designed to increase binding to HLA-A2 molecules, was used as a cancer vaccine to treat patients with metastatic melanoma. On the basis of immunologic assays, 91% of patients could be successfully immunized with this synthetic peptide, and 13 of 31 patients (42%) receiving the peptide vaccine plus IL-2 had objective cancer responses, and four additional patients had mixed or minor responses. Synthetic peptide vaccines based on the genes encoding cancer antigens hold promise for the development of novel cancer immunotherapies. PMID:9500606

  4. PeMtb: A Database of MHC Antigenic Peptide of Mycobacterium tuberculosis.

    Science.gov (United States)

    Zia, Qamar; Azhar, Asim; Ahmad, Shadab; Afsar, Mohammad; Hasan, Ziaul; Owais, Mohammad; Alam, Mahfooz; Akbar, Shabab; Ganash, Magdah; Ashraf, Ghulam Md; Zubair, Swaleha; Aliev, Gjumrakch

    2017-11-10

    For design of a subunit vaccine for tuberculosis, identification of antigenic Tcell epitope is of utmost importance. Several MHC prediction server are available that can accurately predict antigenic peptide of variable lengths. However, peptides predicted from one server not necessarily are predicted form another server, thus creating a confusing situation for scientists to choose a best epitope. Keeping the above problem in mind, we developed a comprehensive database of peptides of Mycobacterial proteins. Each protein was taken from PubMed and was run through different MHC prediction servers, with the results being compiled into one database. For each protein, PeMtb generates a set of three different mers of variable lengths (12 mer or 13-mer) based on their ranking; with each mer being predicted for a plethora of MHC alleles. Researcher can choose the peptide (mers) that gives best binding affinity from most of the servers. The database relieves the investigators of the painstaking task of searching various MHC prediction servers for the right epitope (T-cell epitope) for a particular Mycobacterial antigen. We trust and anticipate that PeMtb will be a practical platform for trial and computational analyses of antigenic peptides for Mycobacterium tuberculosis. All the resources and information can be accessed by PeMtb home page www.pemtb-amu.org. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Dissecting antigen processing and presentation routes in dermal vaccination strategies

    NARCIS (Netherlands)

    Platteel, Anouk C M; Henri, Sandrine; Zaiss, Dietmar M; Sijts, Alice J A M

    2017-01-01

    The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8(+) T cell

  6. Identification of protective antigens for vaccination against systemic salmonellosis

    Directory of Open Access Journals (Sweden)

    Dirk eBumann

    2014-08-01

    Full Text Available There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50-200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.

  7. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic...... proteins and peptides. Little information is available presently about the consequences of such modifications on the immune response. To model oxidative modification of an immunodominant antigenic peptide, we oxidized the methionine residue of the human CMV pp65(495-503) (NLVPMVATV) peptide...... of antigenic peptides may affect T cell responses severely by binding T cell clones with different affinity. This may lead to an altered immune response against infectious agents as well as against tumor or autoantigens under oxidative stress conditions....

  8. Synthetic peptides mimicking lipopolysaccharide as a potential vaccine candidates against Vibrio cholerae serogroup O1.

    Science.gov (United States)

    Ghazi, Fatemeh Mohammad Pour; Gargari, Seyed Latif Mousavi

    2017-08-01

    Cholera is a life-threatening diarrhea caused mainly by Gram-negative marine habitant Vibrio cholerae serogroup O1. Cholera vaccination is limited mainly to developed countries, due to the cumbersome and expensive task of vaccine production. In the present work, the aim was to study the immunogenicity of the synthetic mimotopes through two different routes of injection and oral administration. Lipopolysaccharide (LPS) is one of the immunogenic components in Gram-negative bacteria, which cannot be used as a vaccine candidate, due to its high toxic effect. Three phage-displayed selected peptides, with high affinity to anti-LPS VHH tested in our previous study, were chemically synthesized and used as a potential vaccine candidate. In order to enhance the antigenic properties and safe delivery, these peptides were conjugated to BSA as a carrier and encapsulated with PLGA. Peptides were injected intra-peritoneally or administered orally, alone or in combined form. Mice sera and feces were collected for assessment of humoral and mucosal antibody titers, respectively. ELISA plates were coated with mimotope conjugates and V. cholerae , Shigella sonnei and ETEC were used as target antigens. Antibody titer was measured by adding IgG and IgA as primary antibodies. Mice receiving three selected synthetic peptide conjugates (individually or in combination) showed higher antibody titer compared to control groups. The mice immunized with synthetic peptides were protected against more than 15 LD50 of V. cholerae. These peptides are mimicking LPS and can potentially act as vaccine candidates against V. cholerae.

  9. Proteome-wide antigen discovery of novel protective vaccine candidates against Staphylococcus aureus infection

    DEFF Research Database (Denmark)

    Rasmussen, Karina Juhl; Mattsson, Andreas Holm; Pilely, Katrine

    2016-01-01

    , there is an urgent need to institute non-antimicrobial measures, such as vaccination, against the spread of MRSA. With the aim of finding new protective antigens for vaccine development, this study used a proteome-wide in silico antigen prediction platform to screen the proteome of S. aureus strain MRSA252. Thirty......-five different S. aureus proteins were identified, recombinantly expressed, and tested for protection in a lethal sepsis mouse model using S. aureus strain MRSA252 as the challenge organism. We found that 13 of the 35 recombinant peptides yielded significant protection and that 12 of these antigens were highly...... conserved across 70 completely sequenced S. aureus strains. Thus, this in silico platform was capable of identifying novel candidates for inclusion in future vaccines against MRSA....

  10. Evaluation of MAP-specific peptides following vaccination of goats

    DEFF Research Database (Denmark)

    Lybeck, Kari; Sjurseth, Siri K.; Melvang, Heidi Mikkelsen

    01 adjuvant/CAF04 for boosting). Four MAP-infected goats were also vaccinated. In a second vaccination trail, groups of 8 healthy goat kids were vaccinated with genome-based peptides, selected peptides or selected peptides linked together in a recombinant protein (20 µg/peptide or 50 µg protein......Our aim is to develop a subunit MAP vaccine not interfering with the diagnosis of paratuberculosis or bovine tuberculosis. This study’s objective was to evaluate MAP-specific peptides defined by in silico analysis. Peptides were picked by 1) comparing MAP genomes to that of other mycobacterium...... species or 2) selected based on “experience”. Peptides predicted to bind bovine MHC II by in silico analysis were included in further studies, resulting in two panels 1) genome-based and 2) selected. Initially, two groups of 15 healthy goats were vaccinated with one of the two panels (50 µg/peptide in CAF...

  11. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    DEFF Research Database (Denmark)

    Pandya, Mital; Rasmussen, Michael; Hansen, Andreas

    2015-01-01

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8+ T cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presentation......, and different antigen peptide motifs are associated with specific genetic sequences of class I molecules. Understanding bovine leukocyte antigen (BoLA), peptide-MHC class I binding specificities may facilitate development of vaccines or reagents for quantifying the adaptive immune response to intracellular...... pathogens, such as foot-and-mouth disease virus (FMDV). Six synthetic BoLA class I (BoLA-I) molecules were produced, and the peptide binding motif was generated for five of the six molecules using a combined approach of positional scanning combinatorial peptide libraries (PSCPLs) and neural network...

  12. Autologous peptides constitutively occupy the antigen binding site on Ia

    DEFF Research Database (Denmark)

    Buus, S; Sette, A; Colon, S M

    1988-01-01

    Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype was effici...... peptide-MHC complexes may have broad significance in the biology of T cell responses, including generation of the T cell repertoire, the specificity of mixed lymphocyte responses, and the immune surveillance of self and nonself antigens in peripheral lymphoid tissues.......Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype...

  13. Delivery of antigens used for vaccination: recent advances and challenges.

    Science.gov (United States)

    Scherliess, Regina

    2011-10-01

    Pasteur's principle 'isolate, inactivate, inject' was the starting point for the successful development of many vaccines, but now, new ways for antigen discovery and vaccine administration present a challenge. Whereas vaccines against polio, measles and influenza are common for many parts of the world, the development of thermostable vaccines not being injected would ease vaccine distribution in developing countries. This review summarizes the general principles of vaccination and looks at common and novel vaccination targets. It also gives a rationale for using other routes than parenteral administration, such as mucosal or transdermal vaccination, and focuses on novel vaccination vehicles, as well as their formulation and stability aspects. Additionally, the review looks at novel application devices for the administration of vaccines.

  14. Molecular characterization of antigen-peptide pulsed dendritic cells: immature dendritic cells develop a distinct molecular profile when pulsed with antigen peptide.

    Directory of Open Access Journals (Sweden)

    Amy X Yang

    Full Text Available As dendritic cells (DCs are the most potent professional antigen-presenting cells, they are being tested as cancer vaccines for immunotherapy of established cancers. Although numerous studies have characterized DCs by their phenotype and function, few have identified potential molecular markers of antigen presentation prior to vaccination of host. In this study we generated pre-immature DC (piDC, immature DC (iDC, and mature DC (mDC from human peripheral blood monocytes (PBMC obtained from HLA-A2 healthy donors, and pulsed them with human papillomavirus E7 peptide (p11-20, a class I HLA-A2 binding antigen. We then characterized DCs for cell surface phenotype and gene expression profile by microarray technology. We identified a set of 59 genes that distinguished three differentiation stages of DCs (piDC, iDC and mDC. When piDC, iDC and mDC were pulsed with E7 peptide for 2 hrs, the surface phenotype did not change, however, iDCs rather than mDCs showed transcriptional response by up-regulation of a set of genes. A total of 52 genes were modulated in iDC upon antigen pulsing. Elongation of pulse time for iDCs to 10 and 24 hrs did not significantly bring further changes in gene expression. The E7 peptide up-modulated immune response (KPNA7, IGSF6, NCR3, TREM2, TUBAL3, IL8, NFKBIA, pro-apoptosis (BTG1, SEMA6A, IGFBP3 and SRGN, anti-apoptosis (NFKBIA, DNA repair (MRPS11, RAD21, TXNRD1, and cell adhesion and cell migration genes (EPHA1, PGF, IL8 and CYR61 in iDCs. We confirmed our results by Q-PCR analysis. The E7 peptide but not control peptide (PADRE induced up-regulation of NFKB1A gene only in HLA-A2 positive iDCs and not in HLA-A2 negative iDCs. These results suggest that E7 up-regulation of genes is specific and HLA restricted and that these genes may represent markers of antigen presentation and help rapidly assess the quality of dendritic cells prior to administration to the host.

  15. Development, Characterization, and Immunotherapeutic Use of Peptide Mimics of the Thomsen-Friedenreich Carbohydrate Antigen

    Directory of Open Access Journals (Sweden)

    Jamie Heimburg-Molinaro

    2009-08-01

    Full Text Available The tumor-associated carbohydrate Thomsen-Friedenreich antigen (TF-Ag; Galß1-3GalNAcα-O-Ser/Thr is overexpressed on the cell surface of several types of tumor cells, contributing to cancer cell adhesion and metastasis to sites containing TF-Ag-binding lectins. A highly specific immunoglobulin G3 monoclonal antibody (Ab developed to TF-Ag (JAA-F11 impedes TF-Ag binding to vascular endothelium, blocking a primary metastatic step and providing a survival advantage. In addition, in patients, even low levels of antibodies to TF-Ag seem to improve prognosis; thus, it is expected that vaccines generating antibodies toward TF-Ag would be clinically valuable. Unfortunately, vaccinations with protein conjugates of carbohydrate tumor-associated Ags have induced clinically inadequate immune responses. However, immunization using peptides that mimic carbohydrate Ags such as Lewis has resulted in both Ab and T-cell responses. Here, we tested the hypothesis that vaccinations with unique TF-Ag peptide mimics may generate immune responses to TF-Ag epitopes on tumor cells, useful for active immunotherapy against relevant cancers. Peptide mimics of TF-Ag were selected by phage display biopanning using JAA-F11 and rabbit anti-TF-Ag Ab and were analyzed in vitro to confirm TF-Ag peptide mimicry. In vitro, TF-Ag peptide mimics bound to TF-Ag-specific peanut agglutinin and blocked TF-Ag-mediated rolling and stable adhesion of cancer cells to vascular endothelium. In vivo, the immunization with TF-Ag-mimicking multiple antigenic peptides induced TFAg- reactive Ab production. We propose that this novel active immunotherapy approach could decrease tumor burden in cancer patients by specifically targeting TF-Ag-positive cancer cells and blocking metastasis.

  16. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides

    Science.gov (United States)

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-07-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI

  17. Oral vaccination of animals with antigens encapsulated in alginate microspheres.

    Science.gov (United States)

    Bowersock, T L; HogenEsch, H; Suckow, M; Guimond, P; Martin, S; Borie, D; Torregrosa, S; Park, H; Park, K

    1999-03-26

    Most infectious diseases begin at a mucosal surface. Prevention of infection must therefore consider ways to enhance local immunity to prevent the attachment and invasion of microbes. Despite this understanding, most vaccines depend on parenterally administered vaccines that induce a circulating immune response that often does not cross to mucosal sites. Administration of vaccines to mucosal sites induces local immunity. To be effective requires that antigen be administered often. This is not always practical depending on the site where protection is needed, nor comfortable to the patient. Not all mucosal sites have inductive lymphoid tissue present as well. Oral administration is easy to do, is well accepted by humans and animals and targets the largest inductive lymphoid tissue in the body in the intestine. Oral administration of antigen requires protection of antigen from the enzymes and pH of the stomach. Polymeric delivery systems are under investigation to deliver vaccines to the intestine while protecting them from adverse conditions that could adversely affect the antigens. They also can enhance delivery of antigen specifically to the inductive lymphoid tissue. Sodium alginate is a readily available, inexpensive polymer that can be used to encapsulate a wide variety of antigens under mild conditions. Orally administered alginate microspheres containing antigen have successfully induced immunity in mice to enteric (rotavirus) pathogens and in the respiratory tract in cattle with a model antigen (ovalbumin). This delivery system offers a safe, effective means of orally vaccinating large numbers of animals (and perhaps humans) to a variety of infectious agents.

  18. Feasibility study of personalized peptide vaccination for recurrent ovarian cancer patients.

    Science.gov (United States)

    Kawano, Kouichiro; Tsuda, Naotake; Matsueda, Satoko; Sasada, Tetsuro; Watanabe, Noriko; Ushijima, Kimio; Yamaguchi, Tomohiko; Yokomine, Masato; Itoh, Kyogo; Yamada, Akira; Kamura, Toshiharu

    2014-06-01

    To develop a personalized peptide vaccine (PPV) for recurrent ovarian cancer patients and evaluate its efficacy from the point of view of overall survival (OS), Phase II study of PPV was performed. Forty-two patients, 17 with platinum-sensitive and 25 with platinum-resistant recurrent ovarian cancer, were enrolled in this study and received a maximum of four peptides based on HLA-A types and IgG responses to the peptides in pre-vaccination plasma. Expression of 13 of the 15 parental tumor-associated antigens encoding the vaccine peptides, with the two prostate-related antigens being the exceptions, was confirmed in the ovarian cancer tissues. No vaccine-related systemic severe adverse events were observed in any patients. Boosting of cytotoxic T lymphocytes or IgG responses specific for the peptides used for vaccination was observed in 18 or 13 of 42 cases at 6th vaccination, and 19 or 29 of 30 cases at 12th vaccination, respectively. The median survival time (MST) values of the platinum-sensitive- and platinum-resistant recurrent cases were 39.3 and 16.2 months, respectively. The MST of PPV monotherapy or PPV in combination with any chemotherapy during the 1st to 12th vaccination of platinum-sensitive cases was 39.3 or 32.2 months, and that of platinum-resistant cases was 16.8 or 16.1 months, respectively. Importantly, lymphocyte frequency and epitope spreading were significantly prognostic of OS. Because of the safety and possible prolongation of OS, a clinical trial of PPV without chemotherapy during the 1st to 12th vaccination in recurrent ovarian cancer patients is merited.

  19. Use of antigenic cartography in vaccine seed strain selection.

    Science.gov (United States)

    Fouchier, Ron A M; Smith, Derek J

    2010-03-01

    Human influenza A viruses are classic examples of antigenically variable pathogens that have a seemingly endless capacity to evade the host's immune response. The viral hemagglutinin (HA) and neuraminidase (NA) proteins are the main targets of our antibody response to combat infections. HA and NA continuously change to escape from humoral immunity, a process known as antigenic drift. As a result of antigenic drift, the human influenza vaccine is updated frequently. The World Health Organization (WHO) coordinates a global influenza surveillance network that, by the hemagglutination inhibition (HI) assay, routinely characterizes the antigenic properties of circulating strains in order to select new seed viruses for such vaccine updates. To facilitate a quantitative interpretation and easy visualization of HI data, a new computational technique called "antigenic cartography" was developed. Since its development, antigenic cartography has been applied routinely to assist the WHO with influenza surveillance activities. Until recently, antigenic variation was not considered a serious issue with influenza vaccines for poultry. However, because of the diversification of the Asian H5N1 lineage since 1996 into multiple genetic clades and subclades, and because of the long-term use of poultry vaccines against H5 in some parts of the world, this issue needs to be re-addressed. The antigenic properties of panels of avian H5N1 viruses were characterized by HI assay, using mammalian or avian antisera, and analyzed using antigenic cartography methods. These analyses revealed antigenic differences between circulating H5N1 viruses and the H5 viruses used in poultry vaccines. Considerable antigenic variation was also observed within and between H5N1 clades. These observations have important implications for the efficacy and long-term use of poultry vaccines.

  20. WT1 vaccination in AML and MDS: A pilot trial with synthetic analog peptides.

    Science.gov (United States)

    Brayer, Jason; Lancet, Jeffrey E; Powers, John; List, Alan; Balducci, Lodovico; Komrokji, Rami; Pinilla-Ibarz, Javier

    2015-07-01

    Peptide vaccines are capable of eliciting immune responses targeting tumor-associated antigens such as the Wilms' Tumor 1 (WT1) antigen, often overexpressed in myeloid malignancies. Here, we assessed the safety, tolerability, and immunogenicity of a polyvalent WT1 peptide vaccine. Individuals with WT1-positive acute myeloid leukemia (AML) in first (CR1) or second (CR2) remission or with higher-risk myelodysplastic syndrome (MDS) following at least 1 prior line of therapy were vaccinated with a mixture of peptides derived from the WT1 protein, with sargramostim injections before vaccination to amplify immunogenicity. Six vaccinations were delivered biweekly, continuing then monthly until patients received 12 vaccinations or showed disease relapse or progression. Therapeutic efficacy was evaluated by progression-free and overall survival. Immune responses were evaluated by delayed-type hypersensitivity testing and T-cell IFNγ ELISPOT at specified intervals. In 16 patients who received at least one vaccination, 10 completed the planned course of six vaccinations and six continued for up to six additional monthly vaccinations. Vaccinations were well tolerated, with no patients discontinuing due to toxicity. One of two patients with high-risk MDS experienced a prolonged decrease in transfusion dependence. Two of 14 AML patients demonstrated relapse-free survival >1 year. Both patients were in CR2 at time of vaccination, with duration of their remission exceeding duration of their first remission, suggesting a potential benefit. Our WT1 vaccine was well-tolerated. The clinical benefit that we observed in several patients suggests engagement of a protective immune response, indicating a need for further trials. © 2015 Wiley Periodicals, Inc.

  1. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses

    Directory of Open Access Journals (Sweden)

    Ma W

    2012-03-01

    Full Text Available Wenxue Ma1, Mingshui Chen1, Sharmeela Kaushal1,2, Michele McElroy1,2, Yu Zhang3, Cengiz Ozkan3, Michael Bouvet1,2, Carol Kruse4, Douglas Grotjahn5, Thomas Ichim6, Boris Minev1,7,81Moores Cancer Center, University of California San Diego, 2Department of Surgery, University of California San Diego, 3Laboratory of Biomaterials and Nanotechnology, University of California Riverside, 4UCLA Division of Neurosurgery, Los Angeles, 5Chemistry Department, San Diego State University, San Diego, 6MediStem Inc. San Diego, 7UCSD Division of Neurosurgery, San Diego, 8Genelux Corporation, San Diego, CA, USA Abstract: The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide nanoparticles (PLGA-NPs encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs loaded with PLGA-NPs encapsulating tumor antigenic peptide(s. The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA. Antigen-specific cytotoxic T lymphocytes (CTLs were generated and evaluated by CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI. The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund’s adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of -15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs

  2. IMMUNOLOGICAL CHARACTERISTIC OF SYNTHETIC PEPTIDES SIMILAR TO ACTUAL HIV ANTIGEN DETERMINANTS

    Directory of Open Access Journals (Sweden)

    S. V. Korobova

    2016-01-01

    Full Text Available The development of HIV vaccine remains an important goal in prophylaxis and therapy of HIV/ AIDS epidemics. There are various approaches for development of а candidate vaccine based on induction of neutralizing antibodies and cell-mediated immunity. Synthetic peptides are considered promising vaccine antigens since they are capable of activating both humoral and cellular immune response. HIV-1 envelope gp120 is the target for neutralizing antiviral antibodies. The V3 region of the HIV-1 gp120 is highly immunogenic and important for the virus-coreceptor interaction. In a RV144 vaccine trial, the levels of vaccine-induced IgG antibodies recognizing V1V2 regions from multiple HIV-1 subtypes show inverse correlations with a risk for HIV-1 infection. Meanwhile, HIV is characterized by high diversity. The consensus and mosaic immunogens are complete but artificial proteins, which are computationally designed to elicit immune responses with improved cross-reactive broadness. We have been studied immunogenic properties of synthetic peptides derived from V1, V2, V3 loop regions of the consensus M HIV1 (CON-S sequence group of the gp 120 envelope protein and V3 loop derived from a Russian RUA022a2 isolate. These peptides specifically reacted to HIV-positive sera in ELISA, thus indicating their similarity to appropriate HIV proteins. The peptides proved to be weakly immunogenic. Therefore, Freund complete adjuvant was used to enhance peptide immunogenicity. To assess the immunogenicity, the mice were immunized with a peptide mixture. Antibodies have been developed to every peptide from the mixture, being, predominantly, of IgG isotype. The antibody titers depended on the length of peptide sequences. However, the sera from immunized mice did not have a HIV neutralizing activity. The serum neutralization was assessed by pseudovirus-based assay, using a molecular clone of virus isolates CAP 45.2.00.G3 and QH.209.14.M.EnvA2. The virus neutralization is a

  3. Artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP): preparation and immunological analysis of vaccine efficacy.

    Science.gov (United States)

    Masuko, Kazutaka; Wakita, Daiko; Togashi, Yuji; Kita, Toshiyuki; Kitamura, Hidemitsu; Nishimura, Takashi

    2015-01-01

    To elucidate the immunologic mechanisms of artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP), which indicated a great vaccine efficacy in human cancers, we prepared ovalbumin (OVA)-H/K-HELP by conjugating killer and helper epitopes of OVA-model tumor antigen via a glycine-linker. Vaccination of C57BL/6 mice with OVA-H/K-HELP (30 amino acids) but not with short peptides mixture of class I-binding peptide (8 amino-acids) and class II-binding peptide (17 amino-acids) combined with adjuvant CpG-ODN (cytosine-phosphorothioate-guanine oligodeoxynucleotides), induced higher numbers of OVA-tetramer-positive CTL with concomitant activation of IFN-γ-producing CD4(+) Th1 cells. However, replacement of glycine-linker of OVA-H/K-HELP with other peptide-linker caused a significant decrease of vaccine efficacy of OVA-H/K-HELP. In combination with adjuvant CpG-ODN, OVA-H/KHELP exhibited greater vaccine efficacy compared with short peptides vaccine, in both preventive and therapeutic vaccine models against OVA-expressing EG-7 tumor. The elevated vaccine efficacy of OVAH/K-HELP might be derived from the following mechanisms: (i) selective presentation by only professional dendritic cells (DC) in vaccinated draining lymph node (dLN); (ii) a long-term sustained antigen presentation exerted by DC to stimulate both CTL and Th1 cells; (iii) formation of three cells interaction among DC, Th and CTL. In comparative study, H/K-HELP indicated stronger therapeutic vaccine efficacy compared with that of extended class I synthetic long peptide, indicating that both the length of peptide and the presence of Th epitope peptide were crucial aspects for preparing artificially synthesized H/K-HELP vaccine. Copyright © 2014 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  4. Immunoinformatic Analysis of Crimean Congo Hemorrhagic Fever Virus Glycoproteins and Epitope Prediction for Synthetic Peptide Vaccine.

    Science.gov (United States)

    Tipu, Hamid Nawaz

    2016-02-01

    To determine the Crimean Congo Hemorrhagic Fever (CCHF) virus M segement glycoprotein's immunoinformatic parameters, and identify Human Leukocyte Antigen (HLA) class I binders as candidates for synthetic peptide vaccines. Cross-sectional study. Combined Military Hospital, Khuzdar Cantt, in May 2015. Data acquisition, antigenicity prediction, secondary and tertiary structure prediction, residue analysis were done using immunoinformatics tools. HLAclass I binders in glycoprotein's sequence were identified at nanomer length using NetMHC 3.4 and mapped onto tertiary structure. Docking was done for strongest binder against its corresponding allele with CABS-dock. HLAA*0101, 0201, 0301, 2402, 2601 and B*0702, 0801, 2705, 3901, 4001, 5801, 1501 were analyzed against two glycoprotein components of the virus. Atotal of 35 nanomers from GP1, and 3 from GP2 were identified. HLAB*0702 bound maximum number of peptides (6), while HLAB*4001 showed strongest binding affinity. HLAspecific glycoproteins epitope prediction can help identify synthetic peptide vaccine candidates.

  5. Chitosan-Poly (I:C-PADRE Based Nanoparticles as Delivery Vehicles for Synthetic Peptide Vaccines

    Directory of Open Access Journals (Sweden)

    Jorge F. Correia-Pinto

    2015-09-01

    Full Text Available The safety and precision of peptide antigens has prompted the search for adjuvants capable of increasing the immune response against these intrinsically poorly immunogenic antigens. The integration of both immunostimulants and peptide antigens within nanometric delivery systems for their co-delivery to immune cells is a promising vaccination strategy. With this in mind, the potential synergistic effect of the immunostimulant poly (I:C (pIC and a T-Helper peptide (PADRE, integrated into a chitosan (CS based nanostructure, was explored. The value of this nanostructured combination of materials was assessed for a peptide antigen (1338aa derived from the HPV-16 L2 protein. These nanoparticles, produced by ionic gelation technique, exhibited a nanometric size (<300 nm, a high positive surface charge (>40 mV and high pIC association efficiency (>96%. They also showed capacity for the association of both the 1338aa and PADRE peptides. The influence of the presence of pIC and PADRE in the nanocomposition, as well as that of the peptide presentation form (encapsulated versus surface adsorbed on the antibody induction was evaluated in a preliminary in vivo study. The data obtained highlights the possibility to engineer nanoparticles through the rational combination of a number of adjuvant molecules together with the antigen.

  6. Accurate Structure Prediction of Peptide-MHC Complexes for Identifying Highly Immunogenic Antigens

    Science.gov (United States)

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.; Collins, Edward J.; Lee, Ha Youn

    2013-01-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide-MHC complex. Here, we present an in silico protocol for predicting peptide-MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally towards the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide-MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens. PMID:23688437

  7. Efficiency and mechanism of antigen-specific CD8+ T-cell activation using synthetic long peptides.

    Science.gov (United States)

    Zandvliet, Maarten L; Kester, Michel G D; van Liempt, Ellis; de Ru, Arnoud H; van Veelen, Peter A; Griffioen, Marieke; Guchelaar, Henk-Jan; Falkenburg, J H Frederik; Meij, Pauline

    2012-01-01

    Synthetic long peptides that contain immunogenic T-cell epitopes have been used to induce activation of antigen-specific CD8 T cells in vitro for immune monitoring or adoptive transfer, or in vivo after peptide vaccination. However, the efficiency and mechanisms of presentation of exogenous long peptides in human leukocyte antigen (HLA) class I remain to be elucidated. In this study, we demonstrated that the efficiency of antigen-specific CD8 T-cell activation using extended peptide variants of common viral epitopes is variable. We demonstrated that processing and HLA class I presentation of the long peptides were not dependent on the proteasome and transporter associated with antigen processing, illustrating that the classic route of HLA class I presentation was not required for activation of specific CD8 T cells by exogenous synthetic long peptides. Although long peptides were shown to bind to the relevant HLA class I molecules, peptide trimming was likely to be essential for optimal HLA class I presentation and T-cell activation. As the proteasome was not required for processing of exogenous peptides, it is very likely that peptide trimming was mediated by peptidases, which may be located extracellularly at the cell surface, in the cytosol, endoplasmic reticulum, or in endosomal and lysosomal compartments. Furthermore, the results suggested that processing of the correct minimal peptides was facilitated by binding in HLA class I molecules. This mechanism of HLA-guided processing may be important in HLA class I presentation of exogenous long peptides to induce activation of specific CD8 T cells.

  8. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES

    International Nuclear Information System (INIS)

    Kim, Seung Jo; Suh, Dongchul; Park, Sang Eun; Park, Jeong-Sook; Byun, Hyang-Min; Lee, Chan; Lee, Sun Young; Kim, Inho; Oh, Yu-Kyoung

    2003-01-01

    To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG 2a rather than IgG 1 antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8 + T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES

  9. Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing

    NARCIS (Netherlands)

    Platteel, Anouk C M; Marit de Groot, A; Andersen, Peter; Ovaa, Huib; Kloetzel, Peter M; Mishto, Michele; Sijts, Alice J A M

    2016-01-01

    Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA

  10. A computational method for identification of vaccine targets from protein regions of conserved human leukocyte antigen binding

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Simon, Christian; Kudahl, Ulrich J.

    2015-01-01

    Background: Computational methods for T cell-based vaccine target discovery focus on selection of highly conserved peptides identified across pathogen variants, followed by prediction of their binding of human leukocyte antigen molecules. However, experimental studies have shown that T cells ofte...... or proteome using human leukocyte antigen binding predictions and made a web-accessible software implementation freely available at http://met-hilab.cbs.dtu.dk/blockcons/....

  11. Enhancing Vaccine Efficacy by Engineering a Complex Synthetic Peptide To Become a Super Immunogen.

    Science.gov (United States)

    Nordström, Therése; Pandey, Manisha; Calcutt, Ainslie; Powell, Jessica; Phillips, Zachary N; Yeung, Grace; Giddam, Ashwini K; Shi, Yun; Haselhorst, Thomas; von Itzstein, Mark; Batzloff, Michael R; Good, Michael F

    2017-10-15

    Peptides offer enormous promise as vaccines to prevent and protect against many infectious and noninfectious diseases. However, to date, limited vaccine efficacy has been reported and none have been licensed for human use. Innovative ways to enhance their immunogenicity are being tested, but rational sequence modification as a means to improve immune responsiveness has been neglected. Our objective was to establish a two-step generic protocol to modify defined amino acids of a helical peptide epitope to create a superior immunogen. Peptide variants of p145, a conserved helical peptide epitope from the M protein of Streptococcus pyogenes , were designed by exchanging one amino acid at a time, without altering their α-helical structure, which is required for correct antigenicity. The immunogenicities of new peptides were assessed in outbred mice. Vaccine efficacy was assessed in a skin challenge and invasive disease model. Out of 86 variants of p145, seven amino acid substitutions were selected and made the basis of the design for 18 new peptides. Of these, 13 were more immunogenic than p145; 7 induced Abs with significantly higher affinity for p145 than Abs induced by p145 itself; and 1 peptide induced more than 10,000-fold greater protection following challenge than the parent peptide. This peptide also only required a single immunization (compared with three immunizations with the parent peptide) to induce complete protection against invasive streptococcal disease. This study defines a strategy to rationally improve the immunogenicity of peptides and will have broad applicability to the development of vaccines for infectious and noninfectious diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. Cloning and Expression of Genes for Dengue Virus Type-2 Encoded-Antigens for Rapid Diagnosis and Vaccine Development

    Science.gov (United States)

    1990-12-12

    problem associated with monovalent dengue vaccines is that individuals infected with one serotype are fully susceptible to infection with other...replication and virion assembly. Use of synthetic peptides encoding the epitopes of viral antigens recognized by host immune system has augmented our...Della-Porta and Westaway, 1977; Kitano et al., 1974; Heinz et al., 1981). In order to develop a subunit vaccine against dengue virus, it is important to

  13. New Data on Vaccine Antigen Deficient Bordetella pertussis Isolates

    Directory of Open Access Journals (Sweden)

    Valérie Bouchez

    2015-09-01

    Full Text Available Evolution of Bordetella pertussis is driven by natural and vaccine pressures. Isolates circulating in regions with high vaccination coverage present multiple allelic and antigenic variations as compared to isolates collected before introduction of vaccination. Furthermore, during the last epidemics reported in regions using pertussis acellular vaccines, isolates deficient for vaccine antigens, such as pertactin (PRN, were reported to reach high proportions of circulating isolates. More sporadic filamentous hemagglutinin (FHA or pertussis toxin (PT deficient isolates were also collected. The whole genome of some recent French isolates, deficient or non-deficient in vaccine antigens, were analyzed. Transcription profiles of the expression of the main virulence factors were also compared. The invasive phenotype in an in vitro human tracheal epithelial (HTE cell model of infection was evaluated. Our genomic analysis focused on SNPs related to virulence genes known to be more likely to present allelic polymorphism. Transcriptomic data indicated that isolates circulating since the introduction of pertussis vaccines present lower transcription levels of the main virulence genes than the isolates of the pre-vaccine era. Furthermore, isolates not producing FHA present significantly higher expression levels of the entire set of genes tested. Finally, we observed that recent isolates are more invasive in HTE cells when compared to the reference strain, but no multiplication occurs within cells.

  14. Three-day dendritic cells for vaccine development: Antigen uptake, processing and presentation

    Directory of Open Access Journals (Sweden)

    Schendel Dolores J

    2010-09-01

    Full Text Available Abstract Background Antigen-loaded dendritic cells (DC are capable of priming naïve T cells and therefore represent an attractive adjuvant for vaccine development in anti-tumor immunotherapy. Numerous protocols have been described to date using different maturation cocktails and time periods for the induction of mature DC (mDC in vitro. For clinical application, the use of mDC that can be generated in only three days saves on the costs of cytokines needed for large scale vaccine cell production and provides a method to produce cells within a standard work-week schedule in a GMP facility. Methods In this study, we addressed the properties of antigen uptake, processing and presentation by monocyte-derived DC prepared in three days (3d mDC compared with conventional DC prepared in seven days (7d mDC, which represent the most common form of DC used for vaccines to date. Results Although they showed a reduced capacity for spontaneous antigen uptake, 3d mDC displayed higher capacity for stimulation of T cells after loading with an extended synthetic peptide that requires processing for MHC binding, indicating they were more efficient at antigen processing than 7d DC. We found, however, that 3d DC were less efficient at expressing protein after introduction of in vitro transcribed (ivtRNA by electroporation, based on published procedures. This deficit was overcome by altering electroporation parameters, which led to improved protein expression and capacity for T cell stimulation using low amounts of ivtRNA. Conclusions This new procedure allows 3d mDC to replace 7d mDC for use in DC-based vaccines that utilize long peptides, proteins or ivtRNA as sources of specific antigen.

  15. Cancer-germline antigen vaccines and epigenetic enhancers

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Burns, Jorge; Ditzel, Henrik Jorn

    2010-01-01

    can be achieved using epigenetic modifiers. AREAS COVERED IN THIS REVIEW: We provide an overview of the potential of CG antigens as targets for cancer immunotherapy, including advantages and disadvantages. We also discuss the current state of development of CG antigen vaccines, and the potential...... synergistic effect of combining CG antigen immunotherapeutic strategies with epigenetic modifiers. WHAT THE READER WILL GAIN: The reader will gain an overview of the past, present and future role of CG antigens in cancer immunotherapy. TAKE HOME MESSAGE: Chemoimmunotherapy using epigenetic drugs and CG...

  16. Synthetic Peptides as Potential Antigens for Cutaneous Leishmaniosis Diagnosis.

    Science.gov (United States)

    Link, Juliana Seger; Alban, Silvana Maria; Soccol, Carlos Ricardo; Pereira, Gilberto Vinicius Melo; Thomaz Soccol, Vanete

    2017-01-01

    This work's goal was to research new candidate antigens for cutaneous leishmaniosis (CL). In order to reach the goal, we used random peptide phage display libraries screened using antibodies from Leishmania braziliensis patients. After selection, three peptides (P1, P2, and P3) were synthesized using Fmoc chemistry. The peptides individually or a mixture of them (MIX) was subsequently emulsified in complete and incomplete Freund's adjuvant and injected subcutaneously in golden hamsters. Sera from the hamsters administered with P1 presented antibodies that recognized proteins between 76 and 150 kDa from L. braziliensis . Sera from hamsters which had peptides P2 and P3, as well as the MIX, administered presented antibodies that recognized proteins between 52 and 76 kDa of L. braziliensis . The research on the similarity of the peptides' sequences in protein databases showed that they match a 63 kDa glycoprotein. The three peptides and the MIX were recognized by the sera from CL patients by immunoassay approach (ELISA). The peptides' MIX showed the best performance (79% sensitivity) followed by the P1 (72% sensitivity), and the AS presented 91% sensitivity. These results show a new route for discovering molecules for diagnosis or for immunoprotection against leishmaniosis.

  17. Specificities of rabbit antisera to multiple antigen (MAP) peptides.

    Science.gov (United States)

    Chersi, A; di Modugno, F; Falasca, G

    1995-01-01

    Two multiple antigen peptides consisting of 6 and 7 aminoa cid residues, respectively, plus a 12-residue fragment, used as a control, all linked to a polylysine core, were used as immunogens in rabbits in order to obtain an immune response. Rabbit antisera against such polymers were then tested in ELISA against a panel of antigens in order to analyze the specificities of the resulting antibodies. The responses were different for all three immunogens, being partially or totally directed, for two of the three compounds, including the 12-residue control MAP peptide, against the polylysyl core, which is considered as non immunogenic. The third MAP polymer was practically unable to elicit an immune response.

  18. Global inhibition of DC priming capacity in the spleen of self-antigen vaccinated mice requires IL-10

    Directory of Open Access Journals (Sweden)

    Douglas Matthew Marvel

    2014-02-01

    Full Text Available DC in the spleen are highly activated following intravenous vaccination with a foreign antigen, promoting expansion of effector T cells, but remain phenotypically and functionally immature after vaccination with a self-antigen. Up-regulation or suppression of expression of a cohort of pancreatic enzymes 24-72 hours post-vaccination can be used as a biomarker of stimulatory versus toleragenic DC, respectively. Here we show, using MUC1 transgenic mice (MUC1.Tg and a vaccine based on the MUC1 peptide which these mice perceive as a self-antigen, that the difference in enzyme expression that predicts whether DC will promote immune response or immune tolerance, is seen as early as 4-8 hours following vaccination. We also identify early production of IL-10 as a predominant factor that both correlates with this early time point and controls DC function. Pre-treating mice with an antibody against the IL-10 receptor (IL-10R prior to vaccination results in DC that up-regulate CD40, CD80, and CD86 and promote stronger IFNγ+ T cell responses. This study suggests that transient inhibition of IL-10 prior to vaccination could improve responses to cancer vaccines that utilize self-tumor antigens.

  19. Computer analysis of antigenic domains and RGD-like sequences (RGWG) in the E glycoprotein of flaviviruses: an approach to vaccine development.

    Science.gov (United States)

    Becker, Y

    1990-09-01

    Antigenic domains and RGD-like sequences in the E glycoprotein of the flaviviruses Japanese encephalitis virus, yellow fever virus, West Nile virus, dengue type 4 virus, and tick-borne encephalitis virus were analyzed by computer programs that provide information on the physical properties of the polypeptides. The use of computer programs for the development of vaccines based on the synthesis of antigenic peptides is discussed. Synthetic viral peptides are proposed to be used for topical application so as to interfere with the virus-cell interaction. Viral peptides with antigenic epitopes to protect against dengue virus infection without enhancing pathogenesis may also be developed on the basis of the computer analysis.

  20. Identification of Bacterial Surface Antigens by Screening Peptide Phage Libraries Using Whole Bacteria Cell-Purified Antisera

    Science.gov (United States)

    Hu, Yun-Fei; Zhao, Dun; Yu, Xing-Long; Hu, Yu-Li; Li, Run-Cheng; Ge, Meng; Xu, Tian-Qi; Liu, Xiao-Bo; Liao, Hua-Yuan

    2017-01-01

    Bacterial surface proteins can be good vaccine candidates. In the present study, we used polyclonal antibodies purified with intact Erysipelothrix rhusiopthiae to screen phage-displayed random dodecapeptide and loop-constrained heptapeptide libraries, which led to the identification of mimotopes. Homology search of the mimotope sequences against E. rhusiopthiae-encoded ORF sequences revealed 14 new antigens that may localize on the surface of E. rhusiopthiae. When these putative surface proteins were used to immunize mice, 9/11 antigens induced protective immunity. Thus, we have demonstrated that a combination of using the whole bacterial cells to purify antibodies and using the phage-displayed peptide libraries to determine the antigen specificities of the antibodies can lead to the discovery of novel bacterial surface antigens. This can be a general approach for identifying surface antigens for other bacterial species. PMID:28184219

  1. Overcoming viral escape with vaccines that generate and display antigen diversity in vivo

    Directory of Open Access Journals (Sweden)

    García-Quintanilla Albert

    2007-11-01

    Full Text Available Abstract Background Viral diversity is a key problem for the design of effective and universal vaccines. Virtually, a vaccine candidate including most of the diversity for a given epitope would force the virus to create escape mutants above the viability threshold or with a high fitness cost. Presentation of the hypothesis Therefore, I hypothesize that priming the immune system with polyvalent vaccines where each single vehicle generates and displays multiple antigen variants in vivo, will elicit a broad and long-lasting immune response able to avoid viral escape. Testing the hypothesis To this purpose, I propose the use of yeasts that carry virus-like particles designed to pack the antigen-coding RNA inside and replicate it via RNA-dependent RNA polymerase. This would produce diversity in vivo limited to the target of interest and without killing the vaccine vehicle. Implications of the hypothesis This approach is in contrast with peptide cocktails synthesized in vitro and polyvalent strategies where every cell or vector displays a single or definite number of mutants; but similarly to all them, it should be able to overcome original antigenic sin, avoid major histocompatibility complex restriction, and elicit broad cross-reactive immune responses. Here I discuss additional advantages such as minimal global antagonism or those derived from using a yeast vehicle, and potential drawbacks like autoimmunity. Diversity generated by this method could be monitored both genotypically and phenotypically, and therefore selected or discarded before use if needed.

  2. Fluorine substitutions in an antigenic peptide selectively modulate T-cell receptor binding in a minimally perturbing manner

    Energy Technology Data Exchange (ETDEWEB)

    Piepenbrink, Kurt H.; Borbulevych, Oleg Y.; Sommese, Ruth F.; Clemens, John; Armstrong, Kathryn M.; Desmond, Clare; Do, Priscilla; Baker, Brian M.; (Notre Dame)

    2010-08-17

    TCR (T-cell receptor) recognition of antigenic peptides bound and presented by MHC (major histocompatibility complex) molecules forms the basis of the cellular immune response to pathogens and cancer. TCRs bind peptide - MHC complexes weakly and with fast kinetics, features which have hindered detailed biophysical studies of these interactions. Modified peptides resulting in enhanced TCR binding could help overcome these challenges. Furthermore, there is considerable interest in using modified peptides with enhanced TCR binding as the basis for clinical vaccines. In the present study, we examined how fluorine substitutions in an antigenic peptide can selectively impact TCR recognition. Using a structure-guided design approach, we found that fluorination of the Tax peptide [HTLV (human T-cell lymphotropic virus)-1 Tax] enhanced binding by the Tax-specific TCR A6, yet weakened binding by the Tax-specific TCR B7. The changes in affinity were consistent with crystallographic structures and fluorine chemistry, and with the A6 TCR independent of other substitutions in the interface. Peptide fluorination thus provides a means to selectively modulate TCR binding affinity without significantly perturbing peptide composition or structure. Lastly, we probed the mechanism of fluorine's effect on TCR binding and we conclude that our results were most consistent with a 'polar hydrophobicity' mechanism, rather than a purely hydrophobic- or electrostatic-based mechanism. This finding should have an impact on other attempts to alter molecular recognition with fluorine.

  3. Cancer vaccines: an update with special focus on ganglioside antigens.

    Science.gov (United States)

    Bitton, Roberto J; Guthmann, Marcel D; Gabri, Mariano R; Carnero, Ariel J L; Alonso, Daniel F; Fainboim, Leonardo; Gomez, Daniel E

    2002-01-01

    Vaccine development is one of the most promising and exciting fields in cancer research; numerous approaches are being studied to developed effective cancer vaccines. The aim of this form of therapy is to teach the patient's immune system to recognize the antigens expressed in tumor cells, but not in normal tissue, to be able to destroy these abnormal cells leaving the normal cells intact. In other words, is an attempt to teach the immune system to recognize antigens that escaped the immunologic surveillance and are by it, therefore able to survive and, in time, disseminate. However each research group developing a cancer vaccine, uses a different technology, targeting different antigens, combining different carriers and adjuvants, and using different immunization schedules. Most of the vaccines are still experimental and not approved by the US or European Regulatory Agencies. In this work, we will offer an update in the knowledge in cancer immunology and all the anticancer vaccine approaches, with special emphasis in ganglioside based vaccines. It has been demonstrated that quantitative and qualitative changes occur in ganglioside expression during the oncogenic transformation. Malignant transformation appears to activate enzymes associated with ganglioside glycosylation, resulting in altered patterns of ganglioside expression in tumors. Direct evidence of the importance of gangliosides as potential targets for active immunotherapy has been suggested by the observation that human monoclonal antibodies against these glycolipids induce shrinkage of human cutaneous melanoma metastasis. Thus, the cellular over-expression and shedding of gangliosides into the interstitial space may play a central role in cell growth regulation, immune tolerance and tumor-angiogenesis, therefore representing a new target for anticancer therapy. Since 1993 researchers at the University of Buenos Aires and the University of Quilmes (Argentina), have taken part in a project carried out by

  4. First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs.

    NARCIS (Netherlands)

    J.P.M. Langeveld; J.I. Casal; A.D.M.E. Osterhaus (Albert); E. Cortes; R.L. de Swart (Rik); C. Vela (Carmen); K. Dalsgaard (Kristian); W.C. Puijk (Wouter); W.M.M. Schaaper (Wim); R.H. Meloen

    1994-01-01

    textabstractA synthetic peptide vaccine which protects dogs against challenge with virulent canine parvovirus is described. The amino acid sequence used was discovered in previous studies on the immunogenic properties of previously mapped antigenic sites and represents the amino-terminal region of

  5. Peptide vaccination against multiple myeloma using peptides derived from anti-apoptotic proteins

    DEFF Research Database (Denmark)

    Jørgensen, Nicolai Grønne; Ahmad, Shamaila Munir; Abildgaard, Niels

    2016-01-01

    The B-cell lymphoma-2 (Bcl-2) family of proteins play a crucial role in multiple myeloma (MM), contributing to lacking apoptosis which is a hallmark of the disease. This makes the Bcl-2 proteins interesting targets for therapeutic peptide vaccination. We report a phase I trial of therapeutic...... vaccination with peptides from the proteins Bcl-2, Bcl-XL and Mcl-1 in patients with relapsed MM. Vaccines were given concomitant with bortezomib. Out of 7 enrolled patients, 4 received the full course of 8 vaccinations. The remaining 3 patients received fewer vaccinations due to progression, clinical...... decision of lacking effect and development of hypercalcemia, respectively. There were no signs of toxicity other than what was to be expected from bortezomib. Immune responses to the peptides were seen in all 6 patients receiving more than 2 vaccinations. Three patients had increased immune responses after...

  6. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788 ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  7. Cellular Cancer Vaccines: an Update on the Development of Vaccines Generated from Cell Surface Antigens

    Directory of Open Access Journals (Sweden)

    Petr G. Lokhov, Elena E. Balashova

    2010-01-01

    Full Text Available A recent advance in anti-cancer therapies has been the use of cancer cells to develop vaccines. However, immunization with cancer cell-based vaccines has not resulted in significant long-term therapeutic benefits. A possible reason for this is that while cancer cells provide surface antigens that are targets for a desired immune response, they also contain a high abundance of housekeeping proteins, carbohydrates, nucleic acids, lipids, and other intracellular contents that are ubiquitous in all mammalian cells. These ubiquitous molecules are not the intended targets of this therapy approach, and thus, the immune response generated is not sufficient to eliminate the cancer cells present. In this review, a discussion of the cell surface of cancer cells is presented in relation to the goals of improving antigen composition of cancer cell-based vaccines. Strategies to enrich vaccines for cancer-specific antigens are also discussed.

  8. Chagas disease-specific antigens: characterization of epitopes in CRA/FRA by synthetic peptide mapping and evaluation by ELISA-peptide assay.

    Science.gov (United States)

    Bottino, Carolina G; Gomes, Luciano P; Pereira, José B; Coura, José R; Provance, David William; De-Simone, Salvatore G

    2013-12-03

    The identification of epitopes in proteins recognized by medically relevant antibodies is useful for the development of peptide-based diagnostics and vaccines. In this study, epitopes in the cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins from Trypanosoma cruzi were identified using synthetic peptide techniques and pooled sera from Chagasic patients. The epitopes were further assayed with an ELISA assay based on synthetic peptides. Twenty-two overlapping synthetic peptides representing the coding sequence of the T. cruzi CRA and FRA proteins were assessed by a Spot-synthesis array analysis using sera donated by patients with Chagas disease. Shorter peptides were selected that represented the determined epitopes and synthesized by solid phase synthesis to evaluate the patterns of cross-reactivities and discrimination through an ELISA-diagnostic assay. The peptide Spot-synthesis array successfully identified two IgG antigenic determinants in the CRA protein and four in FRA. Bioinformatics suggested that the CRA antigens were unique to T. cruzi while the FRA antigen showed similarity with sequences present within various proteins from Leishmania sp. Subsequently, shorter peptides representing the CRA-1, CRA-2 and FRA-1 epitopes were synthesized by solid phase synthesis and assayed by an ELISA-diagnostic assay. The CRA antigens gave a high discrimination between Chagasic, Leishmaniasis and T. cruzi-uninfected serum. A sensitivity and specificity of 100% was calculated for CRA. While the FRA antigen showed a slightly lower sensitivity (91.6%), its specificity was only 60%. The epitopes recognized by human anti-T. cruzi antibodies have been precisely located in two biomarkers of T. cruzi, CRA and FRA. The results from screening a panel of patient sera through an ELISA assay based on peptides representing these epitopes strongly suggest that the sequences from CRA would be useful for the development of diagnostic reagents that could

  9. Chagas disease-specific antigens: characterization of epitopes in CRA/FRA by synthetic peptide mapping and evaluation by ELISA-peptide assay

    Science.gov (United States)

    2013-01-01

    Background The identification of epitopes in proteins recognized by medically relevant antibodies is useful for the development of peptide-based diagnostics and vaccines. In this study, epitopes in the cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins from Trypanosoma cruzi were identified using synthetic peptide techniques and pooled sera from Chagasic patients. The epitopes were further assayed with an ELISA assay based on synthetic peptides. Methods Twenty-two overlapping synthetic peptides representing the coding sequence of the T. cruzi CRA and FRA proteins were assessed by a Spot-synthesis array analysis using sera donated by patients with Chagas disease. Shorter peptides were selected that represented the determined epitopes and synthesized by solid phase synthesis to evaluate the patterns of cross-reactivities and discrimination through an ELISA-diagnostic assay. Results The peptide Spot-synthesis array successfully identified two IgG antigenic determinants in the CRA protein and four in FRA. Bioinformatics suggested that the CRA antigens were unique to T. cruzi while the FRA antigen showed similarity with sequences present within various proteins from Leishmania sp. Subsequently, shorter peptides representing the CRA-1, CRA-2 and FRA-1 epitopes were synthesized by solid phase synthesis and assayed by an ELISA-diagnostic assay. The CRA antigens gave a high discrimination between Chagasic, Leishmaniasis and T. cruzi-uninfected serum. A sensitivity and specificity of 100% was calculated for CRA. While the FRA antigen showed a slightly lower sensitivity (91.6%), its specificity was only 60%. Conclusions The epitopes recognized by human anti-T. cruzi antibodies have been precisely located in two biomarkers of T. cruzi, CRA and FRA. The results from screening a panel of patient sera through an ELISA assay based on peptides representing these epitopes strongly suggest that the sequences from CRA would be useful for the

  10. Plant-made vaccine antigens and biopharmaceuticals.

    Science.gov (United States)

    Daniell, Henry; Singh, Nameirakpam D; Mason, Hugh; Streatfield, Stephen J

    2009-12-01

    Plant cells are ideal bioreactors for the production and oral delivery of vaccines and biopharmaceuticals, eliminating the need for expensive fermentation, purification, cold storage, transportation and sterile delivery. Plant-made vaccines have been developed for two decades but none has advanced beyond Phase I. However, two plant-made biopharmaceuticals are now advancing through Phase II and Phase III human clinical trials. In this review, we evaluate the advantages and disadvantages of different plant expression systems (stable nuclear and chloroplast or transient viral) and their current limitations or challenges. We provide suggestions for advancing this valuable concept for clinical applications and conclude that greater research emphasis is needed on large-scale production, purification, functional characterization, oral delivery and preclinical evaluation.

  11. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design.

    Science.gov (United States)

    Schiewe, Alexandra J; Haworth, Ian S

    2007-10-01

    Peptide vaccination for cancer immunotherapy requires identification of peptide epitopes derived from antigenic proteins associated with the tumor. Such peptides can bind to MHC proteins (MHC molecules) on the tumor-cell surface, with the potential to initiate a host immune response against the tumor. Computer prediction of peptide epitopes can be based on known motifs for peptide sequences that bind to a certain MHC molecule, on algorithms using experimental data as a training set, or on structure-based approaches. We have developed an algorithm, which we refer to as PePSSI, for flexible structural prediction of peptide binding to MHC molecules. Here, we have applied this algorithm to identify peptide epitopes (of nine amino acids, the common length) from the sequence of the cancer-testis antigen KU-CT-1, based on the potential of these peptides to bind to the human MHC molecule HLA-A2. We compared the PePSSI predictions with those of other algorithms and found that several peptides predicted to be strong HLA-A2 binders by PePSSI were similarly predicted by another structure-based algorithm, PREDEP. The results show how structure-based prediction can identify potential peptide epitopes without known binding motifs and suggest that side chain orientation in binding peptides may be obtained using PePSSI.

  12. Screening of random peptide library of hemagglutinin from pandemic 2009 A(H1N1 influenza virus reveals unexpected antigenically important regions.

    Directory of Open Access Journals (Sweden)

    Wanghui Xu

    Full Text Available The antigenic structure of the membrane protein hemagglutinin (HA from the 2009 A(H1N1 influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify "hot spots" or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins.

  13. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines

    Directory of Open Access Journals (Sweden)

    Flower Darren R

    2007-01-01

    Full Text Available Abstract Background Vaccine development in the post-genomic era often begins with the in silico screening of genome information, with the most probable protective antigens being predicted rather than requiring causative microorganisms to be grown. Despite the obvious advantages of this approach – such as speed and cost efficiency – its success remains dependent on the accuracy of antigen prediction. Most approaches use sequence alignment to identify antigens. This is problematic for several reasons. Some proteins lack obvious sequence similarity, although they may share similar structures and biological properties. The antigenicity of a sequence may be encoded in a subtle and recondite manner not amendable to direct identification by sequence alignment. The discovery of truly novel antigens will be frustrated by their lack of similarity to antigens of known provenance. To overcome the limitations of alignment-dependent methods, we propose a new alignment-free approach for antigen prediction, which is based on auto cross covariance (ACC transformation of protein sequences into uniform vectors of principal amino acid properties. Results Bacterial, viral and tumour protein datasets were used to derive models for prediction of whole protein antigenicity. Every set consisted of 100 known antigens and 100 non-antigens. The derived models were tested by internal leave-one-out cross-validation and external validation using test sets. An additional five training sets for each class of antigens were used to test the stability of the discrimination between antigens and non-antigens. The models performed well in both validations showing prediction accuracy of 70% to 89%. The models were implemented in a server, which we call VaxiJen. Conclusion VaxiJen is the first server for alignment-independent prediction of protective antigens. It was developed to allow antigen classification solely based on the physicochemical properties of proteins without

  14. Synthetic Long Peptide Influenza Vaccine Containing Conserved T and B Cell Epitopes Reduces Viral Load in Lungs of Mice and Ferrets.

    Directory of Open Access Journals (Sweden)

    S K Rosendahl Huber

    Full Text Available Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP, polymerase basic protein 1 (PB1 and matrix protein 1 (M1. C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks.

  15. Enhancing in silico protein-based vaccine discovery for eukaryotic pathogens using predicted peptide-MHC binding and peptide conservation scores.

    Directory of Open Access Journals (Sweden)

    Stephen J Goodswen

    Full Text Available Given thousands of proteins constituting a eukaryotic pathogen, the principal objective for a high-throughput in silico vaccine discovery pipeline is to select those proteins worthy of laboratory validation. Accurate prediction of T-cell epitopes on protein antigens is one crucial piece of evidence that would aid in this selection. Prediction of peptides recognised by T-cell receptors have to date proved to be of insufficient accuracy. The in silico approach is consequently reliant on an indirect method, which involves the prediction of peptides binding to major histocompatibility complex (MHC molecules. There is no guarantee nevertheless that predicted peptide-MHC complexes will be presented by antigen-presenting cells and/or recognised by cognate T-cell receptors. The aim of this study was to determine if predicted peptide-MHC binding scores could provide contributing evidence to establish a protein's potential as a vaccine. Using T-Cell MHC class I binding prediction tools provided by the Immune Epitope Database and Analysis Resource, peptide binding affinity to 76 common MHC I alleles were predicted for 160 Toxoplasma gondii proteins: 75 taken from published studies represented proteins known or expected to induce T-cell immune responses and 85 considered less likely vaccine candidates. The results show there is no universal set of rules that can be applied directly to binding scores to distinguish a vaccine from a non-vaccine candidate. We present, however, two proposed strategies exploiting binding scores that provide supporting evidence that a protein is likely to induce a T-cell immune response-one using random forest (a machine learning algorithm with a 72% sensitivity and 82.4% specificity and the other, using amino acid conservation scores with a 74.6% sensitivity and 70.5% specificity when applied to the 160 benchmark proteins. More importantly, the binding score strategies are valuable evidence contributors to the overall in silico

  16. Immune overload: Parental attitudes toward combination and single antigen vaccines.

    Science.gov (United States)

    Hulsey, Ella; Bland, Tami

    2015-05-21

    Parental concerns have led to a recent decline in immunization coverage, resulting in outbreaks of diseases that were once under control in the US. As the CDC vaccination schedule continues to increase in complexity, the number of required injections per office visit increases as well. Some parents perceive that there is trauma associated with the administration of multiple injections, and research shows that having multiple vaccines due in a single visit is associated with delays and lower immunization rates. Combination vaccines make vaccination more efficient by incorporating the antigens of several different diseases into a single injection, but many parents worry that they may overload the child's developing immune system and leave him or her susceptible to secondary infections. This literature review synthesizes current evidence regarding the parental fear of vaccine-induced immune system overload and the fear of vaccine-associated trauma, in an attempt to understand the scope and nature of these fears. Despite the wealth of knowledge about each of these fears individually, it is still unknown which is of greater concern and how this affects parental decision-making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Cloning and Expression of Genes for Dengue Virus Type-2 Encoded Antigens for Rapid Diagnosis and Vaccine Development

    Science.gov (United States)

    1986-11-26

    SIE cop AD nCloning and Expression of Genes for Dengue Virus ,4. CJ Type 2 Encoded Antigens for Rapid Diagnosis and Vaccine Development 0ANNUAL...pVVI and pVVI7 cDNA clones, synthetic peptides homologous to NS5 and NSI regions were synthesized. These peptides are being used at Walter Reed Army...NO. Frederick, MD 21701-5012 63750A 63750 D808 A i 031 11. TITLE (Include Serurity Classification) Cloning and Expression of Genes for Dengue Virus

  18. Antigen-specific acquired immunity in human brucellosis: implications for diagnosis, prognosis, and vaccine development

    Directory of Open Access Journals (Sweden)

    Anthony P Cannella

    2012-02-01

    Full Text Available Brucella spp. are facultative intracellular Gram negative bacteria with specific tropism for monocytes/macrophages. Clinical manifestations of brucellosis are primarily immune-mediated and not thought to be due to bacterial virulence factors. Acquired immunity to brucellosis has been studied through observations of naturally infected hosts (cattle, goats, laboratory mouse models, and human infection. Cell-mediated immunity drives the clinical manifestations of human disease after exposure to Brucella species but high antibody responses are not associated with protective immunity. The precise mechanisms by which cell-mediated immune responses confer protection or lead to disease manifestations remain poorly understood. Descriptive studies of immune responses in human brucellosis show that TH1 (interferon-gamma are associated with dominant immune responses, findings consistent with animal studies. Whether these T cell responses are protective, or determine the different clinical responses associated with brucellosis is unknown, especially with regard to undulant fever manifestations, relapsing disease, or are associated with responses to distinct sets of Brucella spp. antigens are unknown. Few data regarding T cell responses in terms of specific recognition of Brucella spp. protein antigens and peptidic epitopes, either by CD4+ or CD8+ T cells, have been identified in human brucellosis patients. Additionally because current attenuated Brucella vaccines used in animals cause human disease, there is a true need for a recombinant protein subunit vaccine for human brucellosis, as well as for improved diagnostics in terms of prognosis and identification of unusual forms of brucellosis. This review will focus on current understandings of antigen-specific immune responses induced by Brucella protein antigens that has promise for yielding new insights into vaccine and diagnostics development, and for understanding pathogenetic mechanisms of human

  19. Anti-Lyme Subunit Vaccines: Design and Development of Peptide-Based Vaccine Candidates.

    Science.gov (United States)

    Small, Christina M; Mwangi, Waithaka; Esteve-Gassent, Maria D

    2016-01-01

    Vaccinology today has been presented with several avenues to improve protection against infectious disease. The recent employment of the reverse vaccinology technique has changed the face of vaccine development against many pathogens, including Borrelia burgdorferi, the causative agent of Lyme disease. Using this technique, genomics and in silico analyses come together to identify potentially antigenic epitopes in a high-throughput fashion. The forward methodology of vaccine development was used previously to generate the only licensed human vaccine for Lyme disease, which is no longer on the market. Using reverse vaccinology to identify new antigens and isolate specific epitopes to protect against B. burgdorferi, subunit vaccines will be generated that lack reactogenic and nonspecific epitopes, yielding more effective vaccine candidates. Additionally, novel epitopes are being utilized and are presently in the commercialization pipeline both for B. burgdorferi and other spirochaetal pathogens. The versatility and methodology of the subunit protein vaccine are described as it pertains to Lyme disease from conception to performance evaluation.

  20. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Directory of Open Access Journals (Sweden)

    Simon H Apte

    Full Text Available Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+ and/or CD8(+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  1. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Science.gov (United States)

    Apte, Simon H; Groves, Penny L; Skwarczynski, Mariusz; Fujita, Yoshio; Chang, Chenghung; Toth, Istvan; Doolan, Denise L

    2012-01-01

    Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP) vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+) and/or CD8(+) T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+) T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+) T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  2. Identification of a peptide binding protein that plays a role in antigen presentation

    International Nuclear Information System (INIS)

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-01-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from [ 35 S]methionine-labeled cells, appears as two discrete bands of ≅72 and 74 kDa after NaDodSO 4 /PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation

  3. Immunoinformatic Analysis of Crimean Congo Hemorrhagic Fever Virus Glycoproteins and Epitope Prediction for Synthetic Peptide Vaccine

    International Nuclear Information System (INIS)

    Tipu, H. N.

    2016-01-01

    Objective: To determine the Crimean Congo Hemorrhagic Fever (CCHF) virus M segement glycoprotein's immunoinformatic parameters, and identify Human Leukocyte Antigen (HLA) class I binders as candidates for synthetic peptide vaccines. Study Design: Cross-sectional study. Place and Duration of Study: Combined Military Hospital, Khuzdar Cantt, in May 2015. Methodology: Data acquisition, antigenicity prediction, secondary and tertiary structure prediction, residue analysis were done using immunoinformatics tools. HLA class I binders in glycoprotein's sequence were identified at nanomer length using NetMHC 3.4 and mapped onto tertiary structure. Docking was done for strongest binder against its corresponding allele with CABS-dock. Results: HLA A*0101, 0201, 0301, 2402, 2601 and B*0702, 0801, 2705, 3901, 4001, 5801, 1501 were analyzed against two glycoprotein components of the virus. A total of 35 nanomers from GP1, and 3 from GP2 were identified. HLA B*0702 bound maximum number of peptides (6), while HLA B*4001 showed strongest binding affinity. Conclusion: HLA specific glycoproteins epitope prediction can help identify synthetic peptide vaccine candidates. (author)

  4. Pre-Vaccination Frequencies of Th17 Cells Correlate with Vaccine-Induced T-Cell Responses to Survivin-Derived Peptide Epitopes

    DEFF Research Database (Denmark)

    Køllgaard, Tania; Ugurel-Becker, Selma; Idorn, Manja

    2015-01-01

    Various subsets of immune regulatory cells are suggested to influence the outcome of therapeutic antigen-specific anti-tumor vaccinations. We performed an exploratory analysis of a possible correlation of pre-vaccination Th17 cells, MDSCs, and Tregs with both vaccination-induced T-cell responses......-generating study demonstrated that immune regulatory cells, in particular Th17 cells, play a relevant role for generation of the vaccine-induced anti-tumor immunity in cancer patients, hence warranting further investigation to test for validity as predictive biomarkers....... as well as clinical outcome in metastatic melanoma patients vaccinated with survivin-derived peptides. Notably, we observed dysfunctional Th1 and cytotoxic T cells, i.e. down-regulation of the CD3ζchain (p=0.001) and an impaired IFNγ-production (p=0.001) in patients compared to healthy donors, suggesting...

  5. EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yoo Jin Choi

    Full Text Available Cancer stem-like cells (CSCs may play a key role in tumor initiation, self-renewal, differentiation, and resistance to current treatments. Dendritic cells (DCs play a vital role in host immune reactions as well as antigen presentation. In this study, we explored the suitability of using CSC peptides as antigen sources for DC vaccination against human breast cancer and hepatocellular carcinoma (HCC with the aim of achieving CSC targeting and enhancing anti-tumor immunity. CD44 is used as a CSC marker for breast cancer and EpCAM is used as a CSC marker for HCC. We selected CD44 and EpCAM peptides that bind to HLA-A2 molecules on the basis of their binding affinity, as determined by a peptide-T2 binding assay. Our data showed that CSCs express high levels of tumor-associated antigens (TAAs as well as major histocompatibility complex (MHC molecules. Pulsing DCs with CD44 and EpCAM peptides resulted in the efficient generation of mature DCs (mDCs, thus enhancing T cell stimulation and generating potent cytotoxic T lymphocytes (CTLs. The activation of CSC peptide-specific immune responses by the DC vaccine in combination with standard chemotherapy may provide better clinical outcomes in advanced carcinomas.

  6. Lipid core peptide targeting the cathepsin D hemoglobinase of Schistosoma mansoni as a component of a schistosomiasis vaccine.

    Science.gov (United States)

    Dougall, Annette M; Skwarczynski, Mariusz; Khoshnejad, Makan; Chandrudu, Saranya; Daly, Norelle L; Toth, Istvan; Loukas, Alex

    2014-01-01

    The self-adjuvanting lipid core peptide (LCP) system offers a safe alternative vaccine delivery strategy, eliminating the need for additional adjuvants such as CpG Alum. In this study, we adopted the LCP as a scaffold for an epitope located on the surface of the cathepsin D hemoglobinase (Sm-CatD) of the human blood fluke Schistosoma mansoni. Sm-CatD plays a pivotal role in digestion of the fluke's bloodmeal and has been shown to be efficacious as a subunit vaccine in a murine model of human schistosomiasis. Using molecular modeling we showed that S. mansoni cathepsin D possesses a predicted surface exposed α-helix (A₂₆₃K) that corresponds to an immunodominant helix and target of enzyme-neutralizing antibodies against Necator americanus APR-1 (Na-APR-1), the orthologous protease and vaccine antigen from blood-feeding hookworms. The A₂₆₃K epitope was engineered as two peptide variants, one of which was flanked at both termini with a coil maintaining sequence, thereby promoting the helical characteristics of the native A₂₆₃K epitope. Some of the peptides were fused to a self-adjuvanting lipid core scaffold to generate LCPs. Mice were vaccinated with unadjuvanted peptides, peptides formulated with Freund's adjuvants, or LCPs. Antibodies generated to LCPs recognized native Sm-CatD within a soluble adult schistosome extract, and almost completely abolished its enzymatic activity in vitro. Using immunohistochemistry we showed that anti-LCP antibodies bound to the native Sm-CatD protein in the esophagus and anterior regions of the gastrodermis of adult flukes. Vaccines offer an alternative control strategy in the fight against schistosomiasis, and further development of LCPs containing multiple epitopes from this and other vaccine antigens should become a research priority.

  7. Peptide Based Vaccine Approaches for Cancer—A Novel Approach Using a WT-1 Synthetic Long Peptide and the IRX-2 Immunomodulatory Regimen

    Directory of Open Access Journals (Sweden)

    James E. Egan

    2011-10-01

    Full Text Available Therapeutic cancer vaccines have the potential to generate a long lasting immune response that will destroy tumor cells with specificity and safety, in contrast to many other current cancer therapies. Clinical success to date has been limited by a number of factors including choice of immunogenic cancer rejection antigens, optimization of vaccine platforms and immune adjuvants to effectively polarize the immune response, and incorporation of strategies to reverse cancer mediated immune suppression by utilization of effective adjuvant/immune modulators. WT-1 (Wilms’ tumor gene 1 is a cancer antigen that is required for tumorigenesis, expressed in a high percentage of tumor cells and rarely expressed in adult normal cells. Moreover spontaneous immunity to WT-1 is seen in cancer patients and can be augmented with various therapeutic vaccine approaches. IRX-2 is an immune modulator with demonstrated preclinical and clinical pleiotropic immune activities including enhancement of the immune response to potential tumor antigens. This paper presents the rationale and preclinical data for utilizing the WT-1 tumor antigen in a novel vaccine platform consisting of a synthetic long peptide containing multiple class I and class II epitopes in combination with the IRX-2 immunomodulatory regimen to overcome immuno-suppressive pathways and enhance the anti-tumor response.

  8. Peptide Based Vaccine Approaches for Cancer—A Novel Approach Using a WT-1 Synthetic Long Peptide and the IRX-2 Immunomodulatory Regimen

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, Paul H.; Egan, James E.; Berinstein, Neil L., E-mail: nberinstein@irxtherapeutics.com [IRX Therapeutics, 140 W 57th Street, New York, NY 10019 (United States)

    2011-10-25

    Therapeutic cancer vaccines have the potential to generate a long lasting immune response that will destroy tumor cells with specificity and safety, in contrast to many other current cancer therapies. Clinical success to date has been limited by a number of factors including choice of immunogenic cancer rejection antigens, optimization of vaccine platforms and immune adjuvants to effectively polarize the immune response, and incorporation of strategies to reverse cancer mediated immune suppression by utilization of effective adjuvant/immune modulators. WT-1 (Wilms' tumor gene 1) is a cancer antigen that is required for tumorigenesis, expressed in a high percentage of tumor cells and rarely expressed in adult normal cells. Moreover spontaneous immunity to WT-1 is seen in cancer patients and can be augmented with various therapeutic vaccine approaches. IRX-2 is an immune modulator with demonstrated preclinical and clinical pleiotropic immune activities including enhancement of the immune response to potential tumor antigens. This paper presents the rationale and preclinical data for utilizing the WT-1 tumor antigen in a novel vaccine platform consisting of a synthetic long peptide containing multiple class I and class II epitopes in combination with the IRX-2 immunomodulatory regimen to overcome immuno-suppressive pathways and enhance the anti-tumor response.

  9. Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient.

    Science.gov (United States)

    Löffler, Markus W; Chandran, P Anoop; Laske, Karoline; Schroeder, Christopher; Bonzheim, Irina; Walzer, Mathias; Hilke, Franz J; Trautwein, Nico; Kowalewski, Daniel J; Schuster, Heiko; Günder, Marc; Carcamo Yañez, Viviana A; Mohr, Christopher; Sturm, Marc; Nguyen, Huu-Phuc; Riess, Olaf; Bauer, Peter; Nahnsen, Sven; Nadalin, Silvio; Zieker, Derek; Glatzle, Jörg; Thiel, Karolin; Schneiderhan-Marra, Nicole; Clasen, Stephan; Bösmüller, Hans; Fend, Falko; Kohlbacher, Oliver; Gouttefangeas, Cécile; Stevanović, Stefan; Königsrainer, Alfred; Rammensee, Hans-Georg

    2016-10-01

    We report a novel experimental immunotherapeutic approach in a patient with metastatic intrahepatic cholangiocarcinoma. In the 5year course of the disease, the initial tumor mass, two local recurrences and a lung metastasis were surgically removed. Lacking alternative treatment options, aiming at the induction of anti-tumor T cells responses, we initiated a personalized multi-peptide vaccination, based on in-depth analysis of tumor antigens (immunopeptidome) and sequencing. Tumors were characterized by immunohistochemistry, next-generation sequencing and mass spectrometry of HLA ligands. Although several tumor-specific neo-epitopes were predicted in silico, none could be validated by mass spectrometry. Instead, a personalized multi-peptide vaccine containing non-mutated tumor-associated epitopes was designed and applied. Immunomonitoring showed vaccine-induced T cell responses to three out of seven peptides administered. The pulmonary metastasis resected after start of vaccination showed strong immune cell infiltration and perforin positivity, in contrast to the previous lesions. The patient remains clinically healthy, without any radiologically detectable tumors since March 2013 and the vaccination is continued. This remarkable clinical course encourages formal clinical studies on adjuvant personalized peptide vaccination in cholangiocarcinoma. Metastatic cholangiocarcinomas, cancers that originate from the liver bile ducts, have very limited treatment options and a fatal prognosis. We describe a novel therapeutic approach in such a patient using a personalized multi-peptide vaccine. This vaccine, developed based on the characterization of the patient's tumor, evoked detectable anti-tumor immune responses, associating with long-term tumor-free survival. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. Conservation analysis of dengue virus T-cell epitope-based vaccine candidates using peptide block entropy

    Directory of Open Access Journals (Sweden)

    Lars Ronn Olsen

    2011-12-01

    Full Text Available Broad coverage of the pathogen population is particularly important when designing CD8+ T-cell epitope vaccines against viral pathogens. Traditional approaches to assembling broadly covering sets of peptides are commonly based on assembling highly conserved epitopes. Peptide block entropy analysis is a novel approach to assembling sets of broadly covering antigens. Since T-cell epitopes are recognized as peptides rather than individual residues, this method is based on calculating the information content of blocks of peptides from a multiple sequence alignment of homologous proteins rather than individual residues. The block entropy analysis provides broad coverage by variant inclusion, since high frequency may not be the sole determinant of the immunogenic potential of a predicted MHC class I binder. We applied block entropy analysis method to the proteomes of the four serotypes of dengue virus and found 1,551 blocks of 9-mer peptides, which covered all available sequences with five or fewer unique peptides. In contrast, the benchmark study by Khan et al. (2008, resulted in 165 9-mers being determined as conserved. Many of the blocks are located consecutively in the proteins, so connecting these blocks resulted in 78 conserved regions which can be covered with 457 subunit peptides. Of the 1551 blocks of 9-mer peptides, 110 blocks consisted of peptides all predicted to bind to MHC with similar affinity and the same HLA restriction. In total, we identified a pool of 333 peptides as T-cell epitope candidates. This set could form the basis for a broadly neutralizing dengue virus vaccine. The peptide block entropy analysis approach significantly increases the number of conserved peptide regions in comparison to traditional conservation analysis of individual residues. We determined 457 subunit peptides with the capacity to encompass the diversity of all sequenced DENV strains.

  11. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.

    Science.gov (United States)

    Saadi, Mahdiye; Karkhah, Ahmad; Nouri, Hamid Reza

    2017-07-01

    Current investigations have demonstrated that a multi-epitope peptide vaccine targeting multiple antigens could be considered as an ideal approach for prevention and treatment of brucellosis. According to the latest findings, the most effective immunogenic antigens of brucella to induce immune responses are included Omp31, BP26, BLS, DnaK and L7-L12. Therefore, in the present study, an in silico approach was used to design a novel multi-epitope vaccine to elicit a desirable immune response against brucellosis. First, five novel T-cell epitopes were selected from Omp31, BP26, BLS, DnaK and L7-L12 proteins using different servers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Selected epitopes were fused together by GPGPG linkers to facilitate the immune processing and epitope presentation. Moreover, cholera toxin B (CTB) was linked to N terminal of vaccine construct as an adjuvant by using EAAAK linker. A multi-epitope vaccine was designed based on predicted epitopes which was 377 amino acid residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this multi-epitope vaccine were assessed using immunoinformatics tools and servers. Based on obtained results, a soluble, and non-allergic protein with 40.59kDa molecular weight was constructed. Expasy ProtParam classified this chimeric protein as a stable protein and also 89.8% residues of constructed vaccine were located in favored regions of the Ramachandran plot. Furthermore, this multi-epitope peptide vaccine was able to strongly induce T cell and B-cell mediated immune responses. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide vaccine can be effectively expressed and potentially be used for prophylactic or therapeutic usages against brucellosis. Copyright © 2017 Elsevier B.V. All

  12. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis.

    Science.gov (United States)

    Costa, Lourena Emanuele; Goulart, Luiz Ricardo; Pereira, Nathália Cristina de Jesus; Lima, Mayara Ingrid Sousa; Duarte, Mariana Costa; Martins, Vivian Tamietti; Lage, Paula Sousa; Menezes-Souza, Daniel; Ribeiro, Tatiana Gomes; Melo, Maria Norma; Fernandes, Ana Paula; Soto, Manuel; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz

    2014-01-01

    The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as

  13. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Lourena Emanuele Costa

    Full Text Available BACKGROUND: The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL. Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. METHODOLOGY/MAIN FINDINGS: Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin, showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. CONCLUSIONS/SIGNIFICANCE: This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the

  14. Influenza virosomes supplemented with GPI-0100 adjuvant : a potent vaccine formulation for antigen dose sparing

    NARCIS (Netherlands)

    Liu, Heng; de Vries-Idema, Jacqueline; ter Veer, Wouter; Wilschut, Jan; Huckriede, Anke

    Adjuvants can stimulate vaccine-induced immune responses and can contribute decisively to antigen dose sparing when vaccine antigen production is limited, as for example during a pandemic influenza outbreak. We earlier showed that GPI-0100, a semi-synthetic saponin derivative with amphiphilic

  15. Structural requirements for the interaction between class II MHC molecules and peptide antigens

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Appella, E

    1990-01-01

    IA(d) and IE(d) molecules and their peptide ligands, we found that some structural characteristics apply to both antigen-MHC interactions. In particular, we found: 1) each MHC molecule is capable of binding many unrelated peptides through the same peptide-binding site; 2) despite this permissiveness......Previous work from our and other laboratories indicates that T cells recognize a complex between the MHC restriction element and peptide antigen fragments. This paper reviews the structural characteristics of the formation of such a complex. By analyzing in detail the interactions between purified...... of binding, it is possible to define certain structural features of peptides that are associated with the capacity to bind to a particular MHC specificity (IA(d) or IE(d)); 3) IA(d) and IE(d) molecules recognize different and independent structures on the antigen molecule; 4) only about 10% of the single...

  16. Structural mimicry of O-antigen by a peptide revealed in a complex with an antibody raised against Shigella flexneri serotype 2a.

    Science.gov (United States)

    Theillet, François-Xavier; Saul, Frederick A; Vulliez-Le Normand, Brigitte; Hoos, Sylviane; Felici, Franco; Weintraub, Andrej; Mulard, Laurence A; Phalipon, Armelle; Delepierre, Muriel; Bentley, Graham A

    2009-05-15

    The use of carbohydrate-mimicking peptides to induce immune responses against surface polysaccharides of pathogenic bacteria offers a novel approach to vaccine development. Factors governing antigenic and immunogenic mimicry, however, are complex and poorly understood. We have addressed this question using the anti-lipopolysaccharide monoclonal antibody F22-4, which was raised against Shigella flexneri serotype 2a and shown to protect against homologous infection in a mouse model. In a previous crystallographic study, we described F22-4 in complex with two synthetic fragments of the O-antigen, the serotype-specific saccharide moiety of lipopolysaccharide. Here, we present a crystallographic and NMR study of the interaction of F22-4 with a dodecapeptide selected by phage display using the monoclonal antibody. Like the synthetic decasaccharide, the peptide binds to F22-4 with micromolar affinity. Although the peptide and decasaccharide use very similar regions of the antigen-binding site, indicating good antigenic mimicry, immunogenic mimicry by the peptide was not observed. The F22-4-antigen interaction is significantly more hydrophobic with the peptide than with oligosaccharides; nonetheless, all hydrogen bonds formed between the peptide and F22-4 have equivalents in the oligosaccharide complex. Two bridging water molecules are also in common, adding to partial structural mimicry. Whereas the bound peptide is entirely helical, its structure in solution, as shown by NMR, is helical in the central region only. Moreover, docking the NMR structure into the antigen-binding site shows that steric hindrance would occur, revealing poor complementarity between the major solution conformation and the antibody that could contribute to the absence of immunogenic mimicry.

  17. A polyvalent vaccine for high-risk prostate patients: "are more antigens better?"

    DEFF Research Database (Denmark)

    Slovin, Susan F; Ragupathi, Govind; Fernandez, Celina

    2007-01-01

    vaccine of synthetic "self" antigens broke immunologic tolerance against two or more antigens in all 30 vaccinated patients, was safe, but antibody titers against several of the antigens were lower than those seen in individual monovalent trials. No impact on PSA slope was detected. We address...... with stimulation by multiple antigens, a hexavalent vaccine was prepared using previously determined doses and administered in a Phase II setting to 30 high-risk patients. The hexavalent vaccine included GM2, Globo H, Lewis(y), glycosylated MUC-1-32mer and Tn and TF in a clustered formation, conjugated to KLH...... and mixed with QS-21. Eight vaccinations were administered over 13 months. All 30 patients had significant elevations in antibody titers to at least two of the six antigens; 22 patients had increased reactivity with FACS. These serologic responses were lower than that seen previously in patients treated...

  18. Functional mimicry of a discontinuous antigenic site by a designed synthetic peptide

    NARCIS (Netherlands)

    Villen, J.; Borras, E.; Schaaper, W.M.M.; Meloen, R.H.; Davila, M.; Domingo, E.; Giralt, E.; Andreu, D.

    2002-01-01

    Functional reproduction of the discontinuous antigenic site D of foot-and-mouth disease virus (FMDV) has been achieved by means of synthetic peptide constructions that integrate each of the three protein loops that define the antigenic site into a single molecule. The site D mimics were designed on

  19. Booster Vaccination: The Role of Reduced Antigen Content Vaccines as a Preschool Booster

    Directory of Open Access Journals (Sweden)

    Giovanni Gabutti

    2014-01-01

    Full Text Available The need for boosters for tetanus, diphtheria, pertussis, and polio, starting from preschool age, is related to the waning immune protection conferred by vaccination, the elimination/reduction of natural boosters due to large-scale immunization programs, and the possibility of reintroduction of wild agents from endemic areas. Taking into account the relevance of safety/tolerability in the compliance with vaccination among the population, it have been assessed whether today enough scientific evidences are available to support the use of dTap-IPV booster in preschool age. The review of the literature was conducted using the PubMed search engine. A total of 41 works has been selected; besides, the documentation produced by the World Health Organization, the European Centre for Disease Control, and the Italian Ministry of Health has been consulted. Many recent papers confirm the opportunity to use a low antigenic dose vaccine starting from 4 to 6 years of age. There is also evidence that 10 years after immunization the rate of seroprotected subjects against diphtheria does not differ significantly between those vaccinated with paediatric dose (DTaP or reduced dose (dTaP or dTap product. The dTpa vaccine is highly immunogenic for diphtheria toxoids regardless of prior vaccination history (2 + 1 and 3 + 1 schedules.

  20. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    Directory of Open Access Journals (Sweden)

    Jagadish Hiremath

    Full Text Available Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV. Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA nanoparticle (PLGA-NP based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2 chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

  1. Novel multi-peptide vaccination in Hla-A2+ hormone sensitive patients with biochemical relapse of prostate cancer.

    Science.gov (United States)

    Feyerabend, Susan; Stevanovic, Stefan; Gouttefangeas, Cécile; Wernet, Dorothee; Hennenlotter, Jörg; Bedke, Jens; Dietz, Klaus; Pascolo, Steve; Kuczyk, Markus; Rammensee, Hans-Georg; Stenzl, Arnulf

    2009-06-15

    A phase I/II trial was conducted to assess feasibility and tolerability of tumor associated antigen peptide vaccination in hormone sensitive prostate carcinoma (PC) patients with biochemical recurrence after primary surgical treatment. Nineteen HLA-A2 positive patients with rising PSA without detectable metastatic disease or local recurrence received 11 HLA-A*0201-restricted and two HLA class II synthetic peptides derived from PC tumor antigens subcutaneously for 18 months or until PSA progression. The vaccine was emulgated in montanide ISA51 and combined with imiquimod, GM-CSF, mucin-1-mRNA/protamine complex, local hyperthermia or no adjuvant. PSA was assessed, geometric mean doubling times (DT) calculated and clinical performance monitored. PSA DT of 4 out of 19 patients (21%) increased from 4.9 to 25.8 months during vaccination. Out of these, two patients (11%) exhibited PSA stability for 28 and 31 months which were still continuing at data cut-off. One patient showed no change of PSA DT during vaccination but decline after the therapy. Three patients had an interim PSA decline or DT increase followed by DT decrease compared to baseline PSA DT. Three of the responding patients received imiquimod and one the mucin-1-mRNA/protamine complex as adjuvant; both are Toll-like receptor-7 agonists. Eleven (58%) patients had progressive PSA values. The vaccine was well tolerated, and no grade III or IV toxicity occurred. Multi-peptide vaccination stabilized or slowed down PSA progress in four of 19 cases. The vaccination approach is promising with moderate adverse events. Long-term stability delayed androgen deprivation up to 31 months. TLR-7 co-activation seems to be beneficial.

  2. Multimerized HIV-gp41-derived peptides as fusion inhibitors and vaccines.

    Science.gov (United States)

    Nomura, Wataru; Mizuguchi, Takaaki; Tamamura, Hirokazu

    2016-11-04

    To date, several antigens based on the amino-terminal leucine/isoleucine heptad repeat (NHR) region of an HIV-1 envelope protein gp41 and fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of gp41 have been reported. We have developed a synthetic antigen targeting the membrane-fusion mechanism of HIV-1. This uses a template designed with C3-symmetric linkers and mimics the trimeric form of the NHR-derived peptide N36. The antiserum obtained by immunization of the N36 trimeric antigen binds preferentially to the N36 trimer and blocks HIV-1 infection effectively, compared with the antiserum obtained by immunization of the N36 monomer. Using another template designed with different C3-symmetric linkers, we have also developed a synthetic peptide mimicking the trimeric form of the CHR-derived peptide C34, with ∼100 times the inhibitory activity against the HIV-1 fusion mechanism than that of the monomer C34 peptide. A dimeric derivative of C34 has potent inhibitory activity at almost the same levels as this C34 trimer mimic, suggesting that presence of a dimeric form of C34 is structurally critical for fusion inhibitors. As examples of rising mid-size drugs, this review describes an effective strategy for the design of HIV vaccines and fusion inhibitors based on a relationship with the native structure of proteins involved in HIV fusion mechanisms. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 622-628, 2016. © 2015 Wiley Periodicals, Inc.

  3. [Development of Peptide Vaccines for Triple-Negative Breast Cancer Treatment].

    Science.gov (United States)

    Toh, Uhi; Saku, Shuko; Okabe, Mina; Iwakuma, Nobutaka; Kimitsuki, Yuko; Akashi, Momoko; Ogo, Etsuyo; Yamada, Akira; Shichijo, Shigeki; Itoh, Kyogo; Akagi, Yoshito

    2016-10-01

    Our previous phase II clinical trial showed that therapeutically selected personalized peptide vaccines(PPVs)were effective at boosting anticancer immunity; the immune response after PPV was associated with a clinical outcome as a prognostic factor for metastatic breast cancer(mBC). We conducted an early phase II study to evaluate the safety and efficacy of a new regimen using multiple peptide vaccines(KRM-19)for patients with metastatictriple -negative breast cancer. KRM-19 consisted of 19 mixed peptides chosen from the previously reported 31 PPVs according to their anti-tumor immunologiceffec ts and safety profiles for patients with mBC. All patients had histologically confirmed measurable ER-PgR-HER2- mBC and their human leukocyte antigen(HLA) / -A molecules were A2, A3, A11, A24, A26, A31, or A33. KRM-19(19mg/mL)was administrated subcutaneously every week for a total of 6 doses. Concurrent conventional chemo- and/or endocrine therapy were not permitted during treatment. This was an open-label, early phase II study. The primary endpoint was safety and anti-tumor immunologic effect, while the secondary endpoints were clinical responses and progression-free survival(PFS). The estimated enrollment was 10-15 and 8 patients were enrolled(Clinical trial registry number: UMIN000014616). Measurement of peptide-specific cytotoxic T lymphocyte and IgG responses were conducted before and after vaccination. The correlation between PFS and the increased IgG response and/or CTL levels were investigated.

  4. Immune response to synthetic peptides representing antigenic sites on the glycoprotein of infectious hematopoietic necrosis virus

    Science.gov (United States)

    Emmenegger, Eveline J.; Huang, C.; LaPatra, S.; Winton, James R.

    1995-01-01

    Summary ― Monoclonal antibodies against infectious hematopoietic necrosis virus have been used to react with recombinant expression products in immunoblots and to select neutralization-resistant mutants for sequence analysis. These strategies identified neutralizing and non-neutralizing antigenic sites on the viral glycoprotein. Synthetic peptides based upon the amino acid sequences of these antigenic sites were synthesized and were injected together with an adjuvant into rainbow trout. The constructs generally failed to stimulate neutralizing antibodies in the fish. These results indicate that we need to understand more about the ability of peptide antigens to stimulate fish immune systems.

  5. FULL-LENGTH PEPTIDE ASSAY OF ANTIGENIC PROFILE OF ENVELOPE PROTEINS FROM SIBERIAN ISOLATES OF HEPATITIS C VIRUS

    Directory of Open Access Journals (Sweden)

    A. A. Grazhdantseva

    2010-01-01

    Full Text Available Antigenic profiles of envelope glycoproteins of hepatitis C virus presented by three genotypes 1b, 2a/2c and 3a, which are most widespread in the territory of Russia and, in particular, in Novosibirsk, were studied using a panel of overlapping synthetic peptides. It was shown that highly immunogenic peptide epitopes of Е1 and Е2 proteins common for all HCV genotypes, are located in amino acid positions 250-260, 315-325 (Е1 protein, 390-400 (hypervariable region 1, 430-440, and 680-690 (Е2 protein. The greatest inter-genotypic differences were recorded in positions 280-290, 410-430 and 520-540. A novel antigenic determinant was detected in the region of aa 280-290 of the Е1 protein which was typical only for HCV 2a/2c genotype. A broad variation in the boundaries for the most epitopes suggests a high variability of the Е1 and Е2 viral proteins; however, a similar repertoire of antibodies induced by different HCV genotypes indicates to an opportunity of designing a new generation of cross-reactive HCV vaccines based on mapping of the E1 and E2 antigenic regions.

  6. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    Science.gov (United States)

    Munang’andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-01-01

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy. PMID:27983591

  7. Efficacy demonstration of tetanus vaccines by double antigen ELISA.

    Science.gov (United States)

    Rosskopf, U; Noeske, K; Werner, E

    2005-09-01

    This paper describes a double antigen ELISA (DAE) for rapid, specific and reliable assessment of the antitetanus immune status of horses and sheep. Compared with the indirect ELISA, the double antigen ELISA has the advantage of species-independent testing of sera. Thanks to its test design, it is more specific since the detected antibodies are forced to bind tetanus toxoid twice. In addition, it is very sensitive to tetanus antibodies, enabling the detection of low antibody titres, in range which is relevant for the assessment of the protective status (tetanus toxin neutralising antibodies). The detection limit of the DAE for tetanus antibodies is in the order of 10(-4) EU/ml. A comparison of in vitro results of individual sera with in vivo titres showed that horse sera with titres of 0.04 and 0.05 EU/ml in the DAE showed titres of > 0.05 IU and 0.034 IU/ml respectively during in vivo testing thus indicating good agreement. For tested sheep sera which were rated > 0.05 IU/ml in vivo, the corresponding titre in the DAE was 0.24 EU/ml. Clear tetanus antitoxin establishment of protective ELISA limits requires further comparative examination of sera with low titres (tetanus vaccines ad us. vet. As a consequence, the toxin neutralisation test (still being the standard method of choice for quantifying tetanus toxin neutralising antitoxin titres) could be replaced, since it requires too great a number of animals per test and involves considerable suffering for the animals. The test described here reduces the use of mice and guinea pigs within vaccine efficacy testing. In addition, it involves less exposure of the laboratory personnel to toxin.

  8. Primary vaccination of adults with reduced antigen-content diphtheria-tetanus-acellular pertussis or dTpa-inactivated poliovirus vaccines compared to diphtheria-tetanus-toxoid vaccines.

    NARCIS (Netherlands)

    Theeten, H.; Rumke, H.C.; Hoppener, F.J.; Vilatimo, R.; Narejos, S.; Damme, P. van; Hoet, B.

    2007-01-01

    OBJECTIVE: To evaluate immunogenicity and reactogenicity of primary vaccination with reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) or dTpa-inactivated poliovirus (dTpa-IPV) vaccine compared to diphtheria-tetanus-toxoid vaccines (Td) in adults > or = 40 years of age without

  9. Protection against Mucosal SHIV Challenge by Peptide and Helper-Dependent Adenovirus Vaccines

    Directory of Open Access Journals (Sweden)

    K. Jagannadha Sastry

    2009-11-01

    Full Text Available Groups of rhesus macaques that had previously been immunized with HIV-1 envelope (env peptides and first generation adenovirus serotype 5 (FG-Ad5 vaccines expressing the same peptides were immunized intramuscularly three times with helperdependent adenovirus (HD-Ad vaccines expressing only the HIV-1 envelope from JRFL. No gag, pol, or other SHIV genes were used for vaccination. One group of the FG-Ad5-immune animals was immunized three times with HD-Ad5 expressing env. One group was immunized by serotype-switching with HD-Ad6, HD-Ad1, and HD-Ad2 expressing env. Previous work demonstrated that serum antibody levels against env were significantly higher in the serotype-switched group than in the HD-Ad5 group. In this study, neutralizing antibody and T cell responses were compared between the groups before and after rectal challenge with CCR5-tropic SHIV-SF162P3. When serum samples were assayed for neutralizing antibodies, only weak activity was observed. T cell responses against env epitopes were higher in the serotype-switched group. When these animals were challenged rectally with SHIV-SF162P3, both the Ad5 and serotype-switch groups significantly reduced peak viral loads 2 to 10-fold 2 weeks after infection. Peak viral loads were significantly lower for the serotype-switched group as compared to the HD-Ad5-immunized group. Viral loads declined over 18 weeks after infection with some animals viremia reducing nearly 4 logs from the peak. These data demonstrate significant mucosal vaccine effects after immunization with only env antigens. These data also demonstrate HD-Ad vectors are a robust platform for vaccination.

  10. Computational prediction of immunodominant antigenic regions & potential protective epitopes for dengue vaccination.

    Science.gov (United States)

    Muthusamy, Karthikeyan; Gopinath, Krishnasamy; Nandhini, Dharmalingam

    2016-10-01

    Epitope-based vaccines (EVs) are specific, safe and easy to produce. However, vaccine failure has been frequently reported due to variation within epitopic regions. Therefore, development of vaccines based on conserved epitopes may prevent such vaccine failure. This study was undertaken to identify highly conserved antigenic regions in the four dengue serotypes to produce an epitope-based dengue vaccine. Polyprotein sequences of all four dengue serotypes were collected and aligned using MAFFT multiple sequence alignment plugin with Geneious Pro v6.1. Consensus sequences of the polyproteins for all four dengue serotypes were designed and screened against experimentally proven epitopes to predict potential antigenic regions that are conserved among all four dengue serotypes. The antigenic region VDRGWGNGCGLFGKG was 100 per cent conserved in the consensus polyprotein sequences of all four dengue serotypes. Fifteen experimentally proven epitopes were identical to the immunodominant antigenic region. Computationally predicted antigenic regions may be considered for use in the development of EVs for protection against dengue virus. Such vaccines would be expected to provide protection against dengue infections caused by all dengue serotypes because these would contain antigenic regions highly conserved across those serotypes. Therefore, the immunodominant antigenic region (VDRGWGNGCGLFGKG) and 15 potential epitopes may be considered for use in dengue vaccines.

  11. Safety and immunogenicity of influenza A H5 subunit vaccines: effect of vaccine schedule and antigenic variant.

    Science.gov (United States)

    Belshe, Robert B; Frey, Sharon E; Graham, Irene; Mulligan, Mark J; Edupuganti, Srilatha; Jackson, Lisa A; Wald, Anna; Poland, Gregory; Jacobson, Robert; Keyserling, Harry L; Spearman, Paul; Hill, Heather; Wolff, Mark

    2011-03-01

    The current US national stockpile of influenza H5 vaccine was produced using the antigen from the strain A/Vietnam/1203/2004 (a clade 1 H5 virus). Recent H5 disease has been caused by antigenically divergent H5 viruses, including A/Indonesia/05/2005 (a clade 2 H5 virus). The influence of schedule on the antibody response to 2 doses of H5 vaccines (one a clade 1 hemagglutinin protein [HA] vaccine and one a clade 2 HA vaccine) containing 90 μg of antigen was evaluated in healthy adults 18-49 years of age. Two doses of vaccine were required to induce antibody titers ≥ 1:10 in most subjects. Accelerated schedules were immunogenic, and antibody developed after vaccinations on days 0 and 7, 0 and 14, and 0 and 28, with the day 0 and 7 schedule inducing lower titers than those induced with the other schedules. With mixed vaccine schedules of clade 1 followed by clade 2 vaccine administration, the first vaccination primed for a heterologous boost. The heterologous response was improved when the second vaccination was given 6 months after the first, compared with the response when the second vaccination was given after an interval of 1 month. An accelerated vaccine schedule of injections administered at days 0 and 14 was as immunogenic as a vaccine schedule of injections at days 0 and 28, but both schedules were inferior to a vaccine schedule of injections administered at 0 and 6 months for priming for heterologous vaccine boosting. Clinical Trial Registry Number: NCT00703053.

  12. Dynamics of polymorphism in a malaria vaccine antigen at a vaccine-testing site in Mali.

    Directory of Open Access Journals (Sweden)

    Shannon L Takala

    2007-03-01

    Full Text Available Malaria vaccines based on the 19-kDa region of merozoite surface protein 1 (MSP-1(19 derived from the 3D7 strain of Plasmodium falciparum are being tested in clinical trials in Africa. Knowledge of the distribution and natural dynamics of vaccine antigen polymorphisms in populations in which malaria vaccines will be tested will guide vaccine design and permit distinction between natural fluctuations in genetic diversity and vaccine-induced selection.Using pyrosequencing, six single-nucleotide polymorphisms in the nucleotide sequence encoding MSP-1(19 were genotyped from 1,363 malaria infections experienced by 100 children who participated in a prospective cohort study in Mali from 1999 to 2001. The frequencies of 14 MSP-1(19 haplotypes were compared over the course of the malaria transmission season for all three years, in three age groups, and in consecutive infections within individuals. While the frequency of individual MSP-1(19 haplotypes fluctuated, haplotypes corresponding to FVO and FUP strains of P. falciparum (MSP-1(19 haplotypes QKSNGL and EKSNGL, respectively were most prevalent during three consecutive years and in all age groups with overall prevalences of 46% (95% confidence interval [CI] 44%-49% and 36% (95% CI 34%-39%, respectively. The 3D7 haplotype had a lower overall prevalence of 16% (95% CI 14%-18%. Multiplicity of infection based on MSP-1(19 was higher at the beginning of the transmission season and in the oldest individuals (aged > or =11 y. Three MSP-1(19 haplotypes had a reduced frequency in symptomatic infections compared to asymptomatic infections. Analyses of the dynamics of MSP-1(19 polymorphisms in consecutive infections implicate three polymorphisms (at positions 1691, 1700, and 1701 as being particularly important in determining allele specificity of anti-MSP-1(19 immunity.Parasites with MSP-1(19 haplotypes different from that of the leading vaccine strain were consistently the most prevalent at a vaccine trial

  13. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    2018-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis (TB, causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI, and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660 TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  14. Vaccination with map specific peptides reduces map burden in tissues of infected goats

    DEFF Research Database (Denmark)

    Melvang, Heidi Mikkelsen; Hassan, Sufia Butt; Thakur, Aneesh

    As an alternative to protein-based vaccines, we investigated the effect of post-exposure vaccination with Map specific peptides in a goat model aiming at developing a Map vaccine that will neither interfere with diagnosis of paratuberculosis nor bovine tuberculosis. Peptides were initially select...... in the unvaccinated control group seroconverted in ID Screen® ELISA at last sampling prior to euthanasia. These results indicate that a subunit vaccine against Map can induce a protective immune response against paratuberculosis in goats....

  15. Targeting DNA vaccines to myeloid cells using a small peptide.

    Science.gov (United States)

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N

    2015-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein Ags to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, which results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able to prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient Ag presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WNV-neutralizing Abs that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Vaccinomics Approach for Designing Potential Peptide Vaccine by Targeting Shigella spp. Serine Protease Autotransporter Subfamily Protein SigA

    Directory of Open Access Journals (Sweden)

    Arafat Rahman Oany

    2017-01-01

    Full Text Available Shigellosis, a bacillary dysentery, is closely associated with diarrhoea in human and causes infection of 165 million people worldwide per year. Casein-degrading serine protease autotransporter of enterobacteriaceae (SPATE subfamily protein SigA, an outer membrane protein, exerts both cytopathic and enterotoxic effects especially cytopathic to human epithelial cell type-2 (HEp-2 and is shown to be highly immunogenic. In the present study, we have tried to impose the vaccinomics approach for designing a common peptide vaccine candidate against the immunogenic SigA of Shigella spp. At first, 44 SigA proteins from different variants of S. flexneri, S. dysenteriae, S. boydii, and S. sonnei were assessed to find the most antigenic protein. We retrieved 12 peptides based on the highest score for human leukocyte antigen (HLA supertypes analysed by NetCTL. Initially, these peptides were assessed for the affinity with MHC class I and class II alleles, and four potential core epitopes VTARAGLGY, FHTVTVNTL, HTTWTLTGY, and IELAGTLTL were selected. From these, FHTVTVNTL and IELAGTLTL peptides were shown to have 100% conservancy. Finally, IELAGTLTL was shown to have the highest population coverage (83.86% among the whole world population. In vivo study of the proposed epitope might contribute to the development of functional and unique widespread vaccine, which might be an operative alleyway to thwart dysentery from the world.

  17. Diagnosis of tuberculosis infection based on synthetic peptides from Mycobacterium tuberculosis antigen 85 complex.

    Science.gov (United States)

    Kashyap, Rajpal S; Shekhawat, Seema D; Nayak, Amit R; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F

    2013-06-01

    The laboratory diagnosis of pulmonary tuberculosis (TB) and tuberculous meningitis (TBM) is particularly challenging. The aim of the present work is to develop an immunoassay for the diagnosis of TB infection, using synthetic peptides of antigen (Ag) 85 complex of M. tuberculosis (Mtb) H37Rv. Four peptides (7-10 amino acids long) corresponding to group-specific epitopes of Ag 85 complex of Mtb were synthesized. All peptides were evaluated by enzyme-linked immunosorbent assay (ELISA) for immunoreactivity with sera and CSF samples of TB and TBM patients respectively. The diagnostic value of the four peptides was evaluated in both the samples. It was observed that Ag 85 peptide 1, 3 and 4 had the highest positive rates in the pulmonary patients; however, Ag 85 peptide 1 and 2 had shown good positivity in the TBM subjects. The synthetic peptide based ELISA using Ag 85 complex peptides is a sensitive, specific, rapid and cost effective immunoassay for early diagnosis of pulmonary and extrapulmonary TB. In addition, these synthetic peptides are comparatively easy to produce in a reproducible manner compared with the whole antigen. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment.

    Science.gov (United States)

    Gao, Yingli; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2016-08-01

    Antigen uptake is a critical process for activation of the immune system, and therefore the ability to enhance antigen uptake is a primary consideration in the development of an immersion vaccination of fish. In the present work, flounders (Paralichthys olivaceus) were immersed in three hyperosmotic solutions with 40, 50 and 60‰ salinities, then transferred into seawater of normal salinity (i.e. 30‰) containing formalin-inactivated Edwardsiella tarda for 30 min. The antigen uptake in vaccinated flounder was determined using an absolute quantitative PCR (qPCR). The results showed significantly higher antigen uptake in the tissues of flounders immersed in solutions with 50‰ and 60‰ salinity compared to the control group directly immersed in vaccine (DI) (P immersed in the 50‰ salinity solution, whereas there was no significant difference in antigen uptake between the 40‰ salinity group and the DI group (P > 0.05). A rapid and significant increase in antigen uptake was detected in the mucosal-associated tissues including the gill, skin and intestine (P immersion, which was significantly higher than the levels of uptake measured in the other tissues (P immersion (hpi). The expression profiles of four antigen presentation-related immune genes (MHC Iα, MHC IIα, CD4-1 and CD8α) were investigated after immersion. These four genes showed a significantly stronger response in the immersed flounders exposed to 50‰ salinity compared with the DI group (P immersion, notably 50‰ salinity significantly enhanced antigen uptake and the expression of selected genes associated with antigen presentation, providing evidence for an enhanced immune activation of the fish's immune response by the hyperosmotic immersion treatment prior to vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Modulation of HIV peptide antigen specific cellular immune response by synthetic α- and β-defensin peptides.

    Science.gov (United States)

    Mohan, Teena; Sharma, Chandresh; Bhat, Ajaz A; Rao, D N

    2013-03-25

    Defensin peptides have their direct role in host defense against microbial infection as innate molecules and also thought to contribute to adaptive immunity by recruiting naïve T-cells and immature dendritic cells at the site of infection through CCR6 receptor. The main aim of the present study is to investigate the efficacy of defensins for the induction of cell mediated immune response against the peptide antigen of HIV-1 encapsulated in PLG microparticles through intranasal (IN) route in mice model. To characterized, we have analyzed T-cell proliferation, Th1/Th2 cytokines, β-chemokines production and IFN-γ/perforin secretion from CD4(+)/CD8(+) T-cells in response to HIV immunogen alone and with defensins at different mucosal site i.e. lamina propria (LP), spleen (SP) and peyer's patches (PP). The cellular immunogenicity of HIV peptide with defensin formulations showed a significantly higher (ppeptide. The enhanced cytokines measurement profile showed mixed Th1 and Th2 type of peptide specific immune response by the incorporation of defensins. In the continuation, enhancement in MIP-1α and RANTES level was also observed in HIV peptide-defensin formulations. The FACS data had revealed that CD4(+)/CD8(+) T-cells showed significantly (ppeptide formulations than HIV antigen alone group. Thus, the study emphasized here that defensin peptides have a potential role as mucosal adjuvant, might be responsible for the induction of cell mediated immunity when administered in mice through IN route with HIV peptide antigen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a1, MSA-2b and MSA-2c elicits invasion-inhibitory antibodies and IFN-γ producing cells

    Directory of Open Access Journals (Sweden)

    Alba Marina Gimenez

    2016-11-01

    Full Text Available Abstract Background Babesia bovis is a tick-transmitted protozoan hemoparasite and the causative agent of bovine babesiosis, a potential risk to more than 500 million cattle worldwide. The vaccines currently available are based on attenuated parasites, which are difficult to produce, and are only recommended for use in bovines under one year of age. When used in older animals, these vaccines may cause life-threatening clinical symptoms and eventually death. The development of a multi-subunit recombinant vaccine against B. bovis would be attractive from an economic standpoint and, most importantly, could be recommended for animals of any age. In the present study, recombinant ectodomains of MSA-2a1, MSA-2b and MSA-2c antigens were expressed in Pichia pastoris yeast as secreted soluble peptides. Results The antigens were purified to homogeneity, and biochemically and immunologically characterized. A vaccine formulation was obtained by emulsifying a mixture of the three peptides with the adjuvant Montanide ISA 720, which elicited high IgG antibody titers against each of the above antigens. IgG antibodies generated against each MSA-antigen recognized merozoites and significantly inhibited the invasion of bovine erythrocytes. Cellular immune responses were also detected, which were characterized by splenic and lymph node CD4+ T cells producing IFN-γ and TNF-α upon stimulation with the antigens MSA-2a1 or MSA-2c. Conclusions These data strongly suggest the high protective potential of the presented formulation, and we propose that it could be tested in vaccination trials of bovines challenged with B. bovis.

  1. Augmenting Influenza-Specific T Cell Memory Generation with a Natural Killer T Cell-Dependent Glycolipid-Peptide Vaccine.

    Science.gov (United States)

    Anderson, Regan J; Li, Jasmine; Kedzierski, Lukasz; Compton, Benjamin J; Hayman, Colin M; Osmond, Taryn L; Tang, Ching-Wen; Farrand, Kathryn J; Koay, Hui-Fern; Almeida, Catarina Filipa Dos Santos Sa E; Holz, Lauren R; Williams, Geoffrey M; Brimble, Margaret A; Wang, Zhongfang; Koutsakos, Marios; Kedzierska, Katherine; Godfrey, Dale I; Hermans, Ian F; Turner, Stephen J; Painter, Gavin F

    2017-11-17

    The development of a universal vaccine for influenza A virus (IAV) that does not require seasonal modification is a long-standing health goal, particularly in the context of the increasing threat of new global pandemics. Vaccines that specifically induce T cell responses are of considerable interest because they can target viral proteins that are more likely to be shared between different virus strains and subtypes and hence provide effective cross-reactive IAV immunity. From a practical perspective, such vaccines should induce T cell responses with long-lasting memory, while also being simple to manufacture and cost-effective. Here we describe the synthesis and evaluation of a vaccine platform based on solid phase peptide synthesis and bio-orthogonal conjugation methodologies. The chemical approach involves covalently attaching synthetic long peptides from a virus-associated protein to a powerful adjuvant molecule, α-galactosylceramide (α-GalCer). Strain-promoted azide-alkyne cycloaddition is used as a simple and efficient method for conjugation, and pseudoproline methodology is used to increase the efficiency of the peptide synthesis. α-GalCer is a glycolipid that stimulates NKT cells, a population of lymphoid-resident immune cells that can provide potent stimulatory signals to antigen-presenting cells engaged in driving proliferation and differentiation of peptide-specific T cells. When used in mice, the vaccine induced T cell responses that provided effective prophylactic protection against IAV infection, with the speed of viral clearance greater than that seen from previous viral exposure. These findings are significant because the vaccines are highly defined, quick to synthesize, and easily characterized and are therefore appropriate for large scale affordable manufacture.

  2. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines.

    Science.gov (United States)

    Comber, Joseph D; Philip, Ramila

    2014-05-01

    Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.

  3. Antigenic Cartography of H9 Avian Influenza Virus and Its Application to Vaccine Selection.

    Science.gov (United States)

    Wang, Yue; Davidson, Irit; Fouchier, Ron; Spackman, Erica

    2016-05-01

    Vaccination is frequently used as a control method for the H9 subtype of low pathogenicity avian influenza virus (AIV), which is widespread in Asia and the Middle East. One of the most important factors for selecting an effective vaccine strain is the antigenic match between the hemagglutinin protein of the vaccine and the strain circulating in the field. To demonstrate the antigenic relationships among H9 AIVs, with a focus on Israeli H9 isolates, antigenic cartography was used to develop a map of H9 AIVs. Based on their antigenic diversity, three isolates from Israel were selected for vaccination-challenge studies: 1) the current vaccine virus, A/chicken/Israel/215/2007 H9N2 (Ck/215); 2) A/chicken/Israel/1163/2011 H9N2 (Ck/1163); and 3) A/ostrich/Israel/1436/2003 (Os/1436). A 50% infective dose (ID50) model was used to determine the effect of the vaccines on susceptibility to infection by using a standardized dose of vaccine. Sera collected immediately prior to challenge showed that Ck/215 was the most immunogenic, followed by Ck/1163 and Os/1436. A significant difference in ID50 was only observed with Ck/215 homologous challenge, where the ID50 was increased by 2 log 10 per bird. The ID50 for Ck/1163 was the same, regardless of vaccine, including sham vaccination. The ID50 for Os/1436 was above the maximum possible dose and therefore could not be established.

  4. Immunological evaluation of peptide vaccination for cancer patients with the HLA-A26 allele.

    Science.gov (United States)

    Sakamoto, Shinjiro; Matsueda, Satoko; Takamori, Shinzo; Toh, Uhi; Noguchi, Masanori; Yutani, Shigeru; Yamada, Akira; Shichijo, Shigeki; Yamada, Teppei; Suekane, Shigetaka; Kawano, Kouichiro; Sasada, Tetsuro; Hattori, Noboru; Kohno, Nobuoki; Itoh, Kyogo

    2015-10-01

    To develop a peptide vaccine for cancer patients with the HLA-A26 allele, which is a minor population worldwide, we investigated the immunological responses of HLA-A26(+) /A26(+) cancer patients to four different CTL epitope peptides under personalized peptide vaccine regimens. In personalized peptide vaccine regimens, two to four peptides showing positive peptide-specific IgG responses in pre-vaccination plasma were selected from the four peptide candidates applicable for HLA-A26(+) /A26(+) cancer patients and administered s.c. Peptide-specific CTL and IgG responses along with cytokine levels were measured before and after vaccination. Cell surface markers in PBMCs and plasma cytokine levels were also measured. In this study, 21 advanced cancer patients, including seven lung, three breast, two pancreas, and two colon cancer patients, were enrolled. Their HLA-A26 genotypes were HLA-A26:01 (n = 24), HLA-A26:03 (n = 10), and HLA-A26:02 (n = 8). One, 14, and 6 patients received two, three, and four peptides, respectively. Grade 1 or 2 skin reactions at the injection sites were observed in the majority of patients, but no severe adverse events related to the vaccination were observed. Peptide-specific CTL responses were augmented in 39% or 22% of patients after one or two cycles of vaccination, respectively. Notably, peptide-specific IgG were augmented in 63% or 100% of patients after one or two cycles of vaccination, respectively. Personalized peptide vaccines with these four CTL epitope peptides could be feasible for HLA-A26(+) advanced cancer patients because of their safety and higher rates of immunological responses. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  5. High-affinity memory B cells induced by conjugate vaccines against weak tumor antigens are vulnerable to nonconjugated antigen.

    Science.gov (United States)

    Savelyeva, Natalia; Shipton, Michael; Suchacki, Amy; Babbage, Gavin; Stevenson, Freda K

    2011-07-21

    Induction of antibody-mediated immunity against hematologic malignancies requires CD4(+) T-cell help, but weak tumor antigens generally fail to induce adequate T-cell responses, or to overcome tolerance. Conjugate vaccines can harness alternative help to activate responses, but memory B cells may then be exposed to leaking tumor-derived antigen without CD4(+) T-cell support. We showed previously using lymphoma-derived idiotypic antigen that exposure to "helpless" antigen silences the majority of memory IgG(+) B cells. Transfer experiments now indicate that silencing is permanent. In marked contrast to IgG, most coexisting IgM(+) memory B cells exposed to "helpless" antigen survive. Confirmation in a hapten (NP) model allowed measurement of affinity, revealing this, rather than isotype, as the determinant of survival. IgM(+) B cells had Ig variable region gene usage similar to IgG but with fewer somatic mutations. Survival of memory B cells appears variably controlled by affinity for antigen, allowing a minority of low affinity IgG(+), but most IgM(+), memory B cells to escape deletion in the absence of T-cell help. The latter remain, but the majority fail to undergo isotype switch. These findings could apply to other tumor antigens and are relevant for vaccination strategies aimed to induce long-term antibody.

  6. Human CD4+T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity.

    Science.gov (United States)

    Angelo, Michael A; Grifoni, Alba; O'Rourke, Patrick H; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D; Phillips, Elizabeth; Mallal, Simon; Diehl, Sean A; Kirkpatrick, Beth D; Whitehead, Stephen S; Durbin, Anna P; Sette, Alessandro; Weiskopf, Daniela

    2017-03-01

    Dengue virus (DENV) is responsible for growing numbers of infections worldwide and has proven to be a significant challenge for vaccine development. We previously demonstrated that CD8 + T cell responses elicited by a dengue live attenuated virus (DLAV) vaccine resemble those observed after natural infection. In this study, we screened peripheral blood mononuclear cells (PBMCs) from donors vaccinated with a tetravalent DLAV vaccine (TV005) with pools of dengue virus-derived predicted major histocompatibility complex (MHC) class II binding peptides. The definition of CD4 + T cell responses after live vaccination is important because CD4 + T cells are known contributors to host immunity, including cytokine production, help for CD8 + T and B cells, and direct cytotoxicity against infected cells. While responses to all antigens were observed, DENV-specific CD4 + T cells were focused predominantly on the capsid and nonstructural NS3 and NS5 antigens. Importantly, CD4 + T cell responses in vaccinees were similar in magnitude and breadth to those after natural infection, recognized the same antigen hierarchy, and had similar profiles of HLA restriction. We conclude that TV005 vaccination has the capacity to elicit CD4 + cell responses closely mirroring those observed in a population associated with natural immunity. IMPORTANCE The development of effective vaccination strategies against dengue virus infection is of high global public health interest. Here we study the CD4 T cell responses elicited by a tetravalent live attenuated dengue vaccine and show that they resemble responses seen in humans naturally exposed to dengue virus. This is an important issue, since it is likely that optimal immunity induced by a vaccine requires induction of CD4 + responses against the same antigens as those recognized as dominant in natural infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection against dengue

  7. Peptide-based subunit vaccine against hookworm infection.

    Directory of Open Access Journals (Sweden)

    Mariusz Skwarczynski

    Full Text Available Hookworms infect more people than HIV and malaria combined, predominantly in third world countries. Treatment of infection with chemotherapy can have limited efficacy and re-infections after treatment are common. Heavy infection often leads to debilitating diseases. All these factors suggest an urgent need for development of vaccine. In an attempt to develop a vaccine targeting the major human hookworm, Necator americanus, a B-cell peptide epitope was chosen from the apical enzyme in the hemoglobin digestion cascade, the aspartic protease Na-APR-1. The A(291Y alpha helical epitope is known to induce neutralizing antibodies that inhibit the enzymatic activity of Na-APR-1, thus reducing the capacity for hookworms to digest hemoglobin and obtain nutrients. A(291Y was engineered such that it was flanked on both termini by a coil-promoting sequence to maintain native conformation, and subsequently incorporated into a Lipid Core Peptide (LCP self-adjuvanting system. While A(291Y alone or the chimeric epitope with or without Freund's adjuvants induced negligible IgG responses, the LCP construct incorporating the chimeric peptide induced a strong IgG response in mice. Antibodies produced were able to bind to and completely inhibit the enzymatic activity of Na-APR-1. The results presented show that the new chimeric LCP construct can induce effective enzyme-neutralising antibodies in mice, without the help of any additional toxic adjuvants. This approach offers promise for the development of vaccines against helminth parasites of humans and their livestock and companion animals.

  8. Optimized transitory ectopic expression of promastigote surface antigen protein in Nicotiana benthamiana, a potential anti-leishmaniasis vaccine candidate.

    Science.gov (United States)

    Lacombe, Séverine; Bangratz, Martine; Brizard, Jean-Paul; Petitdidier, Elodie; Pagniez, Julie; Sérémé, Drissa; Lemesre, Jean-Loup; Brugidou, Christophe

    2018-01-01

    In recent years, plants have been shown to be an efficient alternative expression system for high-value pharmaceuticals such as vaccines. However, constitutive expression of recombinant protein remains uncertain on their level of production and biological activity. To overcome these problems, transitory expression systems have been developed. Here, a series of experiments were performed to determine the most effective conditions to enhance vaccine antigen transient accumulation in Nicotiana benthamiana leaves using the promastigote surface antigen (PSA) from the parasitic protozoan Leishmania infantum. This protein has been previously identified as the major antigen of a licensed canine anti-leishmaniasis vaccine. The classical prokaryote Escherichia coli biosystem failed in accumulating PSA. Consequently, the standard plant system based on N. benthamiana has been optimized for the production of putatively active PSA. First, the RNA silencing defense mechanism set up by the plant against PSA ectopic expression was abolished by using three viral suppressors acting at different steps of the RNA silencing pathway. Then, we demonstrated that the signal peptide at the N-terminal side of the PSA is required for its accumulation. The PSA ER signaling and retention with the PSA signal peptide and the KDEL motif, respectively were optimized to significantly increase its accumulation. Finally, we demonstrate that the production of recombinant PSA in N. benthamiana leaves allows the conservation of its immunogenic property. These approaches demonstrate that based on these optimizations, plant based systems can be used to effectively produce the biological active PSA protein. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Identification of Protective B-Cell Epitopes within the Novel Malaria Vaccine Candidate Plasmodium falciparum Schizont Egress Antigen 1.

    Science.gov (United States)

    Nixon, Christina E; Park, Sangshin; Pond-Tor, Sunthorn; Raj, Dipak; Lambert, Lynn E; Orr-Gonzalez, Sachy; Barnafo, Emma K; Rausch, Kelly M; Friedman, Jennifer F; Fried, Michal; Duffy, Patrick E; Kurtis, Jonathan D

    2017-07-01

    Naturally acquired antibodies to Plasmodium falciparum schizont egress antigen 1 (PfSEA-1A) are associated with protection against severe malaria in children. Vaccination of mice with SEA-1A from Plasmodium berghei (PbSEA-1A) decreases parasitemia and prolongs survival following P. berghei ANKA challenge. To enhance the immunogenicity of PfSEA-1A, we identified five linear B-cell epitopes using peptide microarrays probed with antisera from nonhuman primates vaccinated with recombinant PfSEA-1A (rPfSEA-1A). We evaluated the relationship between epitope-specific antibody levels and protection from parasitemia in a longitudinal treatment-reinfection cohort in western Kenya. Antibodies to three epitopes were associated with 16 to 17% decreased parasitemia over an 18-week high transmission season. We are currently designing immunogens to enhance antibody responses to these three epitopes. Copyright © 2017 American Society for Microbiology.

  10. Invariant Chain Modulates HLA Class II Protein Recycling and Peptide Presentation in Nonprofessional Antigen Presenting Cells

    OpenAIRE

    Haque, Azizul; Hajiaghamohseni, Laela M.; Li, Ping; Toomy, Katherine; Blum, Janice S.

    2007-01-01

    The expression of MHC class II molecules and the invariant chain (Ii) chaperone, is coordinately regulated in professional antigen presenting cells (APC). Ii facilitates class II subunit folding as well as transit and retention in mature endosomal compartments rich in antigenic peptides in these APC. Yet, in nonprofessional APC such as tumors, fibroblasts and endocrine tissues, the expression of class II subunits and Ii may be uncoupled. Studies of nonprofessional APC indicate class II molecu...

  11. Phage display allows identification of zona pellucida-binding peptides with species-specific properties: novel approach for development of contraceptive vaccines for wildlife.

    Science.gov (United States)

    Samoylova, Tatiana I; Cochran, Anna M; Samoylov, Alexandre M; Schemera, Bettina; Breiteneicher, Adam H; Ditchkoff, Stephen S; Petrenko, Valery A; Cox, Nancy R

    2012-12-31

    Multiple phage-peptide constructs, where the peptides mimic sperm epitopes that bind to zona pellucida (ZP) proteins, were generated via selection from a phage display library using a novel approach. Selections were designed to allow for identification of ZP-binding phage clones with potential species-specific properties, an important feature for wildlife oral vaccines as the goal is to control overpopulation of a target species while not affecting non-target species' reproduction. Six phage-peptide antigens were injected intramuscularly into pigs and corresponding immune responses evaluated. Administration of the antigens into pigs stimulated production of anti-peptide antibodies, which were shown to act as anti-sperm antibodies. Potentially, such anti-sperm antibodies could interfere with sperm delivery or function in the male or female genital tract, leading to contraceptive effects. Staining of semen samples collected from different mammalian species, including pig, cat, dog, bull, and mouse, with anti-sera from pigs immunized with ZP-binding phage allowed identification of phage-peptide constructs with different levels of species specificity. Based on the intensity of the immune responses and specificity of these responses in different species, two of the antigens with fusion peptide sequences GEGGYGSHD and GQQGLNGDS were recognized as the most promising candidates for development of contraceptive vaccines for wild pigs. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Expression and Immunogenicity of the Mycobacterial Ag85B/ESAT-6 Antigens Produced in Transgenic Plants by Elastin-Like Peptide Fusion Strategy

    Directory of Open Access Journals (Sweden)

    Doreen Manuela Floss

    2010-01-01

    Full Text Available This study explored a novel system combining plant-based production and the elastin-like peptide (ELP fusion strategy to produce vaccinal antigens against tuberculosis. Transgenic tobacco plants expressing the mycobacterial antigens Ag85B and ESAT-6 fused to ELP (TBAg-ELP were generated. Purified TBAg-ELP was obtained by the highly efficient, cost-effective, inverse transition cycling (ICT method and tested in mice. Furthermore, safety and immunogenicity of the crude tobacco leaf extracts were assessed in piglets. Antibodies recognizing mycobacterial antigens were produced in mice and piglets. A T-cell immune response able to recognize the native mycobacterial antigens was detected in mice. These findings showed that the native Ag85B and ESAT-6 mycobacterial B- and T-cell epitopes were conserved in the plant-expressed TBAg-ELP. This study presents the first results of an efficient plant-expression system, relying on the elastin-like peptide fusion strategy, to produce a safe and immunogenic mycobacterial Ag85B-ESAT-6 fusion protein as a potential vaccine candidate against tuberculosis.

  13. Successful adjuvant-free vaccination of BALB/c mice with mutated amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Wahi Monika M

    2008-02-01

    Full Text Available Abstract Background A recent human clinical trial of an Alzheimer's disease (AD vaccine using amyloid beta (Aβ 1–42 plus QS-21 adjuvant produced some positive results, but was halted due to meningoencephalitis in some participants. The development of a vaccine with mutant Aβ peptides that avoids the use of an adjuvant may result in an effective and safer human vaccine. Results All peptides tested showed high antibody responses, were long-lasting, and demonstrated good memory response. Epitope mapping indicated that peptide mutation did not lead to epitope switching. Mutant peptides induced different inflammation responses as evidenced by cytokine profiles. Ig isotyping indicated that adjuvant-free vaccination with peptides drove an adequate Th2 response. All anti-sera from vaccinated mice cross-reacted with human Aβ in APP/PS1 transgenic mouse brain tissue. Conclusion Our study demonstrated that an adjuvant-free vaccine with different Aβ peptides can be an effective and safe vaccination approach against AD. This study represents the first report of adjuvant-free vaccines utilizing Aβ peptides carrying diverse mutations in the T-cell epitope. These largely positive results provide encouragement for the future of the development of human vaccinations for AD.

  14. Antigenic cartography of H9N2 virus and its impact on the vaccine efficacy in chickens

    Science.gov (United States)

    The H9 subtype of avian influenza virus (AIV) is wide-spread in Asia and the Middle East. The efficacy of vaccines is enhanced by the antigenic match of the hemagglutinin protein (HA) between the vaccine and the field strain. To determine how antigenic variations affect the vaccine efficacy, speci...

  15. Analysis of H7 avian influenza viruses by antigenic cartography and correlation to protection by vaccination

    Science.gov (United States)

    The H7 hemagglutinin subtype one of the most common subtypes of avian influenza virus (AIV) in poultry world wide and since it has the potential to become highly pathogenic it is among the priority subtypes for vaccination. Selection of the optimal vaccine seed strains may now be aided by antigenic...

  16. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression

    NARCIS (Netherlands)

    Bins, Adriaan D.; Jorritsma, Annelies; Wolkers, Monika C.; Hung, Chien-Fu; Wu, T.-C.; Schumacher, Ton N. M.; Haanen, John B. A. G.

    2005-01-01

    Induction of immunity after DNA vaccination is generally considered a slow process. Here we show that DNA delivery to the skin results in a highly transient pulse of antigen expression. Based on this information, we developed a new rapid and potent intradermal DNA vaccination method. By

  17. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer

    Directory of Open Access Journals (Sweden)

    Minamida Hidetoshi

    2004-06-01

    Full Text Available Abstract Survivin is a member of the inhibitor of apoptosis protein (IAP family containing a single baculovirus IAP repeat domain. It is expressed during fetal development but becomes undetectable in terminally differentiated normal adult tissues. We previously reported that survivin and its splicing variant survivin-2B was expressed abundantly in various types of tumor tissues as well as tumor cell lines and was suitable as a target antigen for active-specific anti-cancer immunization. Subsequently, we identified an HLA-A24-restricted antigenic peptide, survivin-2B80-88 (AYACNTSTL recognized by CD8+ cytotoxic T lymphocytes (CTLs. We, therefore, started a phase I clinical study assessing the efficacy of survivin-2B peptide vaccination in patients with advanced or recurrent colorectal cancer expressing survivin. Vaccinations with survivin-2B peptide were given subcutaneously six times at 14-day intervals. Of 15 patients who finished receiving the vaccination schedule, three suffered slight toxicities, including anemia (grade 2, general malaise (grade 1, and fever (grade 1. No severe adverse events were observed in any patient. In 6 patients, tumor marker levels (CEA and CA19-9 decreased transiently during the period of vaccination. Slight reduction of the tumor volume was observed in one patient, which was considered a minor responder. No changes were noted in three patients while the remaining eleven patients experienced tumor progression. Analysis of peripheral blood lymphocytes of one patient using HLA-A24/peptide tetramers revealed an increase in peptide-specific CTL frequency from 0.09% to 0.35% of CD8+ T cells after 4 vaccinations. This phase I clinical study indicates that survivin-2B peptide-based vaccination is safe and should be further considered for potential immune and clinical efficacy in HLA-A24-expression patients with colorectal cancer.

  18. Full protection in mink against mink enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein

    DEFF Research Database (Denmark)

    Langeveld, J. P.; Kamstrup, Søren; Uttenthal, Åse

    1995-01-01

    Two recently developed vaccines—one based on synthetic peptide and one based on recombinant capsid protein—fully protected dogs against heavy experimental canine parvovirus (CPV) infection. The high sequence homology (>98%) and antigenic similarity between CPV and mink enteritis virus (MEV), feline...... on inactivated virus. Surprisingly, this protection was obtained after only a single injection. Furthermore, the vaccinal dose of 150 μg of conjugated peptide or 3 μg of recombinant VP2 particles per animal, are sufficiently low to be cost-effective and applicable on a large scale....... panleukopenia virus, and raccoon parvovirus, suggest that both vaccines could protect mink, cats and raccoons against these respective host range variants. This was tested in mink and turned out to be the case. The two vaccines were fully protective and as effective as a conventional commercial vaccine based...

  19. Full protection in mink against mink enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein

    DEFF Research Database (Denmark)

    Langeveld, J. P.; Kamstrup, Søren; Uttenthal, Åse

    1995-01-01

    Two recently developed vaccines—one based on synthetic peptide and one based on recombinant capsid protein—fully protected dogs against heavy experimental canine parvovirus (CPV) infection. The high sequence homology (>98%) and antigenic similarity between CPV and mink enteritis virus (MEV), feline...... panleukopenia virus, and raccoon parvovirus, suggest that both vaccines could protect mink, cats and raccoons against these respective host range variants. This was tested in mink and turned out to be the case. The two vaccines were fully protective and as effective as a conventional commercial vaccine based...... on inactivated virus. Surprisingly, this protection was obtained after only a single injection. Furthermore, the vaccinal dose of 150 μg of conjugated peptide or 3 μg of recombinant VP2 particles per animal, are sufficiently low to be cost-effective and applicable on a large scale....

  20. Experimental Study of Interference Between Pertussis Antigens and Salk Poliomyelitis Vaccine

    Directory of Open Access Journals (Sweden)

    H. Mirehamsy

    1962-01-01

    Full Text Available An interference is observed between whooping-cough antigens and Salk polioc vaccine even if the two components are mixed immediately before use. The phenomenon is more evident when flUlid antigens are injected. Pertussis soluble antigen, which gives a good serological response in rabbits, when used alone or combined with DT, is inactivated in the presence of Salk polio vacc:ne

  1. Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Berntsen, Annika; Hadrup, Sine Reker

    2010-01-01

    Dendritic cells are regarded as the most effective antigen presenting cells and coordinators of the immune response and therefore suitable as vaccine basis. Here we present results from a clinical study in which patients with malignant melanoma (MM) with verified progressive disease received...... vaccination with autologous monocyte-derived mature dendritic cells (DC) pulsed with p53, survivin and telomerase-derived peptides (HLA-A2+ patients) or with autologous/allogeneic tumor lysate (HLA-A2(-) patients) in combination with low-dose interleukin (IL)-2 and interferon (IFN)-alpha2b....

  2. Broadening of the T-cell repertoire to HIV-1 Gag p24 by vaccination of HLA-A2/DR transgenic mice with overlapping peptides in the CAF05 adjuvant

    DEFF Research Database (Denmark)

    Korsholm, Karen S; Karlsson, Ingrid; Tang, Sheila T

    2013-01-01

    -cell responses in CB6F1 mice. The adjuvanted vaccine also induced functional antigen-specific cytotoxicity in vivo. Furthermore, we found that when fragmenting the Gag p24 protein into overlapping Gag p24 peptides, a broader T-cell epitope specificity was induced in the humanized human leukocyte antigen (HLA)-A2....../DR-transgenic mouse model. Thus, combining overlapping Gag p24 peptides with CAF05 appears to be a promising and simple strategy for inducing broader T-cell responses to multiple conserved epitopes which will be relevant for both prophylactic and therapeutic HIV-1 vaccines....

  3. Investigation of the response to the enterobacterial common antigen after typhoid vaccination

    Directory of Open Access Journals (Sweden)

    Arlete M. Milhomem

    1987-03-01

    Full Text Available Antibodies against the Salmonella typhi enterobacterial common antigen (ECA and the O and H antigens were investigated in sera from healthy male subjects who had been previously vaccinated with the typhoid vaccine. No serological response to ECA was observed. Sera from subjects not previously vaccinated presented titers of ECA hemagglutinins which quantitatively were related to the presence ofH titers, but not to O agglutinins but with no statistical significance. The results are discussed in relation to the possible protective immunological mechanisms in typhoid fever.

  4. A randomized placebo-controlled phase Ia malaria vaccine trial of two virosome-formulated synthetic peptides in healthy adult volunteers.

    Directory of Open Access Journals (Sweden)

    Blaise Genton

    2007-10-01

    Full Text Available Influenza virosomes represent an innovative human-compatible antigen delivery system that has already proven its suitability for subunit vaccine design. The aim of the study was to proof the concept that virosomes can also be used to elicit high titers of antibodies against synthetic peptides. The specific objective was to demonstrate the safety and immunogenicity of two virosome-formulated P. falciparum protein derived synthetic peptide antigens given in two different doses alone or in combination.The design was a single blind, randomized, placebo controlled, dose-escalating study involving 46 healthy Caucasian volunteers aged 18-45 years. Five groups of 8 subjects received virosomal formulations containing 10 microg or 50 microg of AMA 49-CPE, an apical membrane antigen-1 (AMA-1 derived synthetic phospatidylethanolamine (PE-peptide conjugate or 10 ug or 50 ug of UK39, a circumsporozoite protein (CSP derived synthetic PE-peptide conjugate or 50 ug of both antigens each. A control group of 6 subjects received unmodified virosomes. Virosomal formulations of the antigens (designated PEV301 and PEV302 for the AMA-1 and the CSP virosomal vaccine, respectively or unmodified virosomes were injected i. m. on days 0, 60 and 180. In terms of safety, no serious or severe adverse events (AEs related to the vaccine were observed. 11/46 study participants reported 16 vaccine related local AEs. Of these 16 events, all being pain, 4 occurred after the 1(st, 7 after the 2(nd and 5 after the 3(rd vaccination. 6 systemic AEs probably related to the study vaccine were reported after the 1(st injection, 10 after the 2(nd and 6 after the 3(rd. Generally, no difference in the distribution of the systemic AEs between either the doses applied (10 respectively 50 microg or the synthetic antigen vaccines (PEV301 and PEV302 used for immunization was found. In terms of immunogenicity, both PEV301 and PEV302 elicited already after two injections a synthetic peptide

  5. Immunization with mannosylated peptide induces poor T cell effector functions despite enhanced antigen presentation

    NARCIS (Netherlands)

    Kel, J.M.; Geus, E.D. de; Stipdonk, M.J. van; Drijfhout, J.W.; Koning, F.; Nagelkerken, L.

    2008-01-01

    In this study, we investigated the development of T cell responses in mice after administration of a mannosylated ovalbumin peptide (M-OVA323-339). Immunization with M-OVA323-339 in complete adjuvant resulted in enhanced antigen presentation in draining lymph nodes. Monitoring the fate of

  6. Multiple Antigen Peptide Vaccines against Plasmodium falciparum Malaria

    Science.gov (United States)

    2010-01-01

    A2 molecule), and one outbred mouse strain (CD1). Th~.: HLA-A2 transgenic mice were included in these studies to facilitate the determination of...sporozoites were obtained by dissection of the salivary glands of Anopheles stephcnsi mosquitoes as described by Ozaki et al. ( 38). The sporozoites were...immunizations, the strongest anti- MAP-! ELISA IgG responses were observed in mice with the C57BU6 background (in both the HLA-A2 transgene and the wild-type

  7. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens

    Directory of Open Access Journals (Sweden)

    Lassi Liljeroos

    2015-01-01

    Full Text Available Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10–20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease.

  8. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Pedro Cecílio

    2017-11-01

    Full Text Available The notion that previous infection by Leishmania spp. in endemic areas leads to robust anti-Leishmania immunity, supports vaccination as a potentially effective approach to prevent disease development. Nevertheless, to date there is no vaccine available for human leishmaniasis. We optimized and assessed in vivo the safety and immunogenicity of an innovative vaccine candidate against human visceral leishmaniasis (VL, consisting of Virus-Like Particles (VLP loaded with three different recombinant proteins (LJL143 from Lutzomyia longipalpis saliva as the vector-derived (VD component, and KMP11 and LeishF3+, as parasite-derived (PD antigens and adjuvanted with GLA-SE, a TLR4 agonist. No apparent adverse reactions were observed during the experimental time-frame, which together with the normal hematological parameters detected seems to point to the safety of the formulation. Furthermore, measurements of antigen-specific cellular and humoral responses, generally higher in immunized versus control groups, confirmed the immunogenicity of the vaccine formulation. Interestingly, the immune responses against the VD protein were reproducibly more robust than those elicited against leishmanial antigens, and were apparently not caused by immunodominance of the VD antigen. Remarkably, priming with the VD protein alone and boosting with the complete vaccine candidate contributed towards an increase of the immune responses to the PD antigens, assessed in the form of increased ex vivo CD4+ and CD8+ T cell proliferation against both the PD antigens and total Leishmania antigen (TLA. Overall, our immunogenicity data indicate that this innovative vaccine formulation represents a promising anti-Leishmania vaccine whose efficacy deserves to be tested in the context of the "natural infection".

  9. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis.

    Science.gov (United States)

    Cecílio, Pedro; Pérez-Cabezas, Begoña; Fernández, Laura; Moreno, Javier; Carrillo, Eugenia; Requena, José M; Fichera, Epifanio; Reed, Steven G; Coler, Rhea N; Kamhawi, Shaden; Oliveira, Fabiano; Valenzuela, Jesus G; Gradoni, Luigi; Glueck, Reinhard; Gupta, Gaurav; Cordeiro-da-Silva, Anabela

    2017-11-01

    The notion that previous infection by Leishmania spp. in endemic areas leads to robust anti-Leishmania immunity, supports vaccination as a potentially effective approach to prevent disease development. Nevertheless, to date there is no vaccine available for human leishmaniasis. We optimized and assessed in vivo the safety and immunogenicity of an innovative vaccine candidate against human visceral leishmaniasis (VL), consisting of Virus-Like Particles (VLP) loaded with three different recombinant proteins (LJL143 from Lutzomyia longipalpis saliva as the vector-derived (VD) component, and KMP11 and LeishF3+, as parasite-derived (PD) antigens) and adjuvanted with GLA-SE, a TLR4 agonist. No apparent adverse reactions were observed during the experimental time-frame, which together with the normal hematological parameters detected seems to point to the safety of the formulation. Furthermore, measurements of antigen-specific cellular and humoral responses, generally higher in immunized versus control groups, confirmed the immunogenicity of the vaccine formulation. Interestingly, the immune responses against the VD protein were reproducibly more robust than those elicited against leishmanial antigens, and were apparently not caused by immunodominance of the VD antigen. Remarkably, priming with the VD protein alone and boosting with the complete vaccine candidate contributed towards an increase of the immune responses to the PD antigens, assessed in the form of increased ex vivo CD4+ and CD8+ T cell proliferation against both the PD antigens and total Leishmania antigen (TLA). Overall, our immunogenicity data indicate that this innovative vaccine formulation represents a promising anti-Leishmania vaccine whose efficacy deserves to be tested in the context of the "natural infection".

  10. Enhanced Class I Tumor Antigen Presentation via Cytosolic Delivery of Exosomal Cargos by Tumor-Cell-Derived Exosomes Displaying a pH-Sensitive Fusogenic Peptide.

    Science.gov (United States)

    Morishita, Masaki; Takahashi, Yuki; Nishikawa, Makiya; Ariizumi, Reiichi; Takakura, Yoshinobu

    2017-11-06

    Tumor-cell-derived exosomes contain endogenous tumor antigens and can be used as a potential cancer vaccine without requiring identification of the tumor-specific antigen. To elicit an effective antitumor effect, efficient tumor antigen presentation by MHC class I molecules on dendritic cells (DC) is desirable. Because DC endocytose exosomes, an endosomal escape mechanism is required for efficient MHC class I presentation of exosomal tumor antigens. In the present study, efficient cytosolic delivery of exosomal tumor antigens was performed using genetically engineered tumor-cell-derived exosomes and pH-sensitive fusogenic GALA peptide. Murine melanoma B16BL6 cells were transfected with a plasmid vector encoding a streptavidin (SAV; a protein that binds to biotin with high affinity)-lactadherin (LA; an exosome-tropic protein) fusion protein to obtain SAV-LA-modified exosomes (SAV-exo). SAV-exo was mixed with biotinylated GALA to obtain GALA-modified exosomes (GALA-exo). Fluorescent microscopic observation using fluorescent-labeled GALA showed that the exosomes were modified with GALA. GALA-exo exerted a membrane-lytic activity under acidic conditions and efficiently delivered exosomal cargos to the cytosol. Moreover, DC treated with GALA-exo showed enhanced tumor antigen presentation capacity by MHC class I molecules. Thus, genetically engineered GALA-exo are effective in controlling the intracellular traffic of tumor-cell-derived exosomes and for enhancing tumor antigen presentation capacity.

  11. Tapasin discriminates peptide-human leukocyte antigen-A*02:01 complexes formed with natural ligands

    DEFF Research Database (Denmark)

    Røder, Gustav Andreas; Geironson, Linda; Rasmussen, Michael

    2011-01-01

    A plethora of peptides are generated intracellularly, and most peptide-human leukocyte antigen (HLA)-I interactions are of a transient, unproductive nature. Without a quality control mechanism, the HLA-I system would be stressed by futile attempts to present peptides not sufficient for the stable...

  12. Identification of novel Lck-derived T helper epitope long peptides applicable for HLA-A2(+) cancer patients as cancer vaccine.

    Science.gov (United States)

    Matsueda, Satoko; Shichijo, Shigeki; Nagata, Sayaka; Seki, Chieko; Yamada, Akira; Noguchi, Masanori; Itoh, Kyogo

    2015-11-01

    The present study attempted to identify T helper epitope long peptides capable of inducing cytotoxic T lymphocytes (CTL) from Lck antigen (p56(Lck) ), the src family tyrosine kinase, which is known to be aberrantly expressed in metastatic cancers cells, in order to develop a long peptide-based cancer vaccine for HLA-A2(+) cancer patients. Based on the biding motif to the HLA-DR and HLA-A2 alleles, 94 peptides were prepared from the Lck antigen. These peptides were screened for their reactivity to immunoglobulin G (IgG) from plasma of cancer patients, followed by testing of their ability to induce both CD4(+) and CD8(+) T lymphocytes showing not only peptide-specific IFN-γ production but cytotoxicity against HLA-A2(+) cancer cells from peripheral blood mononuclear cells (PBMC) of HLA-A2(+) cancer patients. Among 94 peptides tested, the three T helper epitope long peptides and their inner CTL epitope short peptides with HLA-A2 binding motifs were frequently recognized by IgG of cancer patients, and efficiently induced both CD4(+) IFN-γ(+) and CD8(+) IFN-γ(+) T lymphocytes. Patients' PBMC stimulated with these long peptides showed cytotoxicity against HLA-A2(+) Lck(+) cancer cells in HLA-class I and HLA-class II dependent manners. These three peptides might be useful for long peptide-based vaccines for HLA-A2(+) cancer patients with Lck(+) tumor cells. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  13. Radioimmunoassay determination of antigenic concordance among hemagglutinins of vaccine and epidemic influenza virus strains

    Energy Technology Data Exchange (ETDEWEB)

    Blokha, V.V.; Yamnikova, S.S.; Karpovich, L.G.; Yakhno, M.A.; Zakstel' skaya, L.Ya.

    Radioimmunoassay studies were conducted on the antigenic concordance of hemagglutinin of influenza A H3N2 viruses, to determine the suitability of vaccine strains in engendering immunity against viruses circulating in nature. Specifically, the inhibition studies involved the hemagglutinins of the A/Victoria/35/72 vaccine strain, the proposed vaccine strain A/Khabarovsk/15/76, and the RK-5 recombinant strains, containing antigenic determinants of viruses isolated in the 1972-1976 epidemic period (A/Victoria/3/75, A/Leningrad/173/75, A/Victoria/112/76). The results showed that A/Victoria/35/72 is becoming less important as a vaccine, but that RK-5 and A/Khabarovsk/15/76 can provide significant immunity with respect to influenza viruses circulating in 1975-1976. These observations point to the usefulness of radioimmunoassay in assessing the suitability of influenza A viruses for vaccine production. 12 references, 2 figures.

  14. Serum reactome induced by Bordetella pertussis infection and Pertussis vaccines: qualitative differences in serum antibody recognition patterns revealed by peptide microarray analysis.

    Science.gov (United States)

    Valentini, Davide; Ferrara, Giovanni; Advani, Reza; Hallander, Hans O; Maeurer, Markus J

    2015-07-01

    Pertussis (whooping cough) remains a public health problem despite extensive vaccination strategies. Better understanding of the host-pathogen interaction and the detailed B. pertussis (Bp) target recognition pattern will help in guided vaccine design. We characterized the specific epitope antigen recognition profiles of serum antibodies ('the reactome') induced by whooping cough and B. pertussis (Bp) vaccines from a case-control study conducted in 1996 in infants enrolled in a Bp vaccine trial in Sweden (Gustafsson, NEJM, 1996, 334, 349-355). Sera from children with whooping cough, vaccinated with Diphtheria Tetanus Pertussis (DTP) whole-cell (wc), acellular 5 (DPTa5), or with the 2 component (a2) vaccines and from infants receiving only DT (n=10 for each group) were tested with high-content peptide microarrays containing 17 Bp proteins displayed as linear (n=3175) peptide stretches. Slides were incubated with serum and peptide-IgG complexes detected with Cy5-labeled goat anti-human IgG and analyzed using a GenePix 4000B microarray scanner, followed by statistical analysis, using PAM (Prediction Analysis for Microarrays) and the identification of uniquely recognized peptide epitopes. 367/3,085 (11.9%) peptides were recognized in 10/10 sera from children with whooping cough, 239 (7.7%) in DTPwc, 259 (8.4%) in DTPa5, 105 (3.4%) DTPa2, 179 (5.8%) in the DT groups. Recognition of strongly recognized peptides was similar between whooping cough and DPTwc, but statistically different between whooping cough vs. DTPa5 (p<0.05), DTPa2 and DT (p<0.001 vs. both) vaccines. 6/3,085 and 2/3,085 peptides were exclusively recognized in (10/10) sera from children with whooping cough and DTPa2 vaccination, respectively. DTPwc resembles more closely the whooping cough reactome as compared to acellular vaccines. We could identify a unique recognition signature common for each vaccination group (10/10 children). Peptide microarray technology allows detection of subtle differences in

  15. Development of a multicomponent vaccine for Streptococcus pyogenes based on the antigenic targets of IVIG.

    Science.gov (United States)

    Reglinski, Mark; Lynskey, Nicola N; Choi, Yoon Jung; Edwards, Robert J; Sriskandan, Shiranee

    2016-04-01

    Despite over a century of research and the careful scrutiny of many promising targets, there is currently no vaccine available for the prevention of Streptococcus pyogenes infection. Through analysis of the protective, anti-streptococcal components of pooled human immunoglobulin, we previously identified ten highly conserved and invariant S. pyogenes antigens that contribute to anti-streptococcal immunity in the adult population. We sought to emulate population immunity to S. pyogenes through a process of active vaccination, using the antigens targeted by pooled human immunoglobulin. Seven targets were produced recombinantly and mixed to form a multicomponent vaccine (Spy7). Vaccinated mice were challenged with S. pyogenes isolates representing four globally relevant serotypes (M1, M3, M12 and M89) using an established model of invasive disease. Vaccination with Spy7 stimulated the production of anti-streptococcal antibodies, and limited systemic dissemination of M1 and M3 S. pyogenes from an intramuscular infection focus. Vaccination additionally attenuated disease severity due to M1 S. pyogenes as evidenced by reduction in weight loss, and modulated cytokine release. Spy7 vaccination successfully stimulated the generation of protective anti-streptococcal immunity in vivo. Identification of reactive antigens using pooled human immunoglobulin may represent a novel route to vaccine discovery for extracellular bacteria. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines.

    Science.gov (United States)

    Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun

    2016-01-01

    Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Formulation of influenza T cell peptides: in search of a universal influenza vaccine

    OpenAIRE

    Soema, Peter Christiaan

    2015-01-01

    Current seasonal influenza vaccines rely on the induction of antibodies to neutralize the virus. However, influenza viruses frequently undergo genetic mutations due to antigenic drift and shift, altering the surface proteins hemagglutinin and neuraminidase to which antibodies usually bind. This could render vaccine-induced antibody responses ineffective, resulting in an ineffective influenza vaccine. Influenza vaccines based on the induction of T cell responses might be cross-reactive, since ...

  18. Leptospira spp. vaccinal antibodies do not react with Borrelia burgdorferi peptides used in the AccuPlex 4.

    Science.gov (United States)

    Caress, Amber L; Moroff, Scott; Lappin, Michael R

    2017-11-01

    We attempted to determine if Leptospira spp. antibodies induced by vaccination would cross-react with Borrelia burgdorferi antigens used in a commercial automated immunofluorescent assay (AccuPlex 4 BioCD; Antech). Staff- and student-owned dogs ( n = 31) were recruited at a veterinary teaching hospital in a B. burgdorferi nonendemic area. The dogs were randomized and administered 1 of 4 commercial Leptospira spp. vaccines that contained serovars Canicola, Grippotyphosa, Icterohaemorrhagiae, and Pomona, then booster vaccinated 3 wk later. Blood was collected on weeks 0, 3, 4, 8, and 12. After confirming that maximal Leptospira spp. titers occurred on week 4, aliquots of sera from week 4 were shipped frozen for analysis of B. burgdorferi antibodies against OspA, OspC, OspF, P39, and SLP with the AccuPlex system. Week 4 sera from all 31 dogs had a titer of 1:100 for at least 1 Leptospira spp. serovar. Titers of 1:800 or greater were detected against multiple serovars in 27 dogs. None of the samples contained antibodies against the B. burgdorferi OspA, OspC, OspF, P39, and SLP peptides used in the commercial assay. The B. burgdorferi peptides used in the AccuPlex system do not recognize naturally occurring Leptospira spp. antibodies or those induced by the commercial Leptospira spp. vaccines administered in our study.

  19. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens.

    Directory of Open Access Journals (Sweden)

    Christian M Parobek

    2014-04-01

    Full Text Available Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1 and Plasmodium vivax circumsporozoite protein (pvcsp. Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44 and the complete gene of pvcsp (n = 47 from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines.

  20. First characterization of Plasmodium vivax liver stage antigen (PvLSA) using synthetic peptides.

    Science.gov (United States)

    Goo, Youn-Kyoung; Seo, Eun-Jeong; Choi, Yeon-Kyung; Shin, Hyun-Il; Sattabongkot, Jetsumon; Ji, So-Young; Chong, Chom-Kyu; Cho, Shin-Hyung; Lee, Won-Ja; Kim, Jung-Yeon

    2014-02-12

    Plasmodium vivax is the most widespread human malaria in tropical and subtropical countries, including the Republic of Korea. Vivax malaria is characterized by hypnozoite relapse and long latency infection by the retained liver stage of P. vivax, and somewhat surprisingly, little is known of the liver stage antigens of this parasite. Here, we report for the first time the characterization of a liver stage antigen of P. vivax (PvLSA). Five peptides located inside PvLSA were synthesized, and specific anti-sera to the respective peptides were used to localize PvLSA on P. vivax parasites in human liver cells by immunofluorescence. Western blotting and enzyme-linked immunosorbent assay were performed using the five peptides and sera collected from vivax malaria patients and from normal healthy controls. PvLSA was localized on P. vivax parasites in human liver cells. Vivax malaria-infected patients were detected using the five peptides by western blotting. Furthermore, the peptides reacted with the sera of vivax malaria patients. These results suggest that PvLSA may function during the liver stage of P. vivax.

  1. Human Leukocyte Antigen F Presents Peptides and Regulates Immunity through Interactions with NK Cell Receptors.

    Science.gov (United States)

    Dulberger, Charles L; McMurtrey, Curtis P; Hölzemer, Angelique; Neu, Karlynn E; Liu, Victor; Steinbach, Adriana M; Garcia-Beltran, Wilfredo F; Sulak, Michael; Jabri, Bana; Lynch, Vincent J; Altfeld, Marcus; Hildebrand, William H; Adams, Erin J

    2017-06-20

    Evidence is mounting that the major histocompatibility complex (MHC) molecule HLA-F (human leukocyte antigen F) regulates the immune system in pregnancy, infection, and autoimmunity by signaling through NK cell receptors (NKRs). We present structural, biochemical, and evolutionary analyses demonstrating that HLA-F presents peptides of unconventional length dictated by a newly arisen mutation (R62W) that has produced an open-ended groove accommodating particularly long peptides. Compared to empty HLA-F open conformers (OCs), HLA-F tetramers bound with human-derived peptides differentially stained leukocytes, suggesting peptide-dependent engagement. Our in vitro studies confirm that NKRs differentiate between peptide-bound and peptide-free HLA-F. The complex structure of peptide-loaded β 2 m-HLA-F bound to the inhibitory LIR1 revealed similarities to high-affinity recognition of the viral MHC-I mimic UL18 and a docking strategy that relies on contacts with HLA-F as well as β 2 m, thus precluding binding to HLA-F OCs. These findings provide a biochemical framework to understand how HLA-F could regulate immunity via interactions with NKRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A launch vector for the production of vaccine antigens in plants.

    Science.gov (United States)

    Musiychuk, Konstantin; Stephenson, Natalie; Bi, Hong; Farrance, Christine E; Orozovic, Goran; Brodelius, Maria; Brodelius, Peter; Horsey, April; Ugulava, Natalia; Shamloul, Abdel-Moneim; Mett, Vadim; Rabindran, Shailaja; Streatfield, Stephen J; Yusibov, Vidadi

    2007-01-01

    Historically, most vaccines have been based on killed or live-attenuated infectious agents. Although very successful at immunizing populations against disease, both approaches raise safety concerns and often have limited production capacity. This has resulted in increased emphasis on the development of subunit vaccines. Several recombinant systems have been considered for subunit vaccine manufacture, including plants, which offer advantages both in cost and in scale of production. We have developed a plant expression system utilizing a 'launch vector', which combines the advantageous features of standard agrobacterial binary plasmids and plant viral vectors, to achieve high-level target antigen expression in plants. As an additional feature, to aid in target expression, stability and purification, we have engineered a thermostable carrier molecule to which antigens are fused. We have applied this launch vector/carrier system to engineer and express target antigens from various pathogens, including, influenza A/Vietnam/04 (H5N1) virus.

  3. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen....... There is a particular interest in developing robust high-throughput assays as chicken vaccine trials usually comprise many individuals. In many respects, the avian immune system differs from the mammalian, and T cell assessment protocols must be adjusted accordingly to account for, e.g., differences in leukocyte...... in the cells even throughout division. This leads to daughter cells containing half the fluorescence of their parents. When lymphocytes are loaded with CFSE prior to ex vivo stimulation with specific antigen, the measurement of serial halving of its fluorescence by flow cytometry identifies the cells...

  4. Stable accumulation of seed storage proteins containing vaccine peptides in transgenic soybean seeds.

    Science.gov (United States)

    Maruyama, Nobuyuki; Fujiwara, Keigo; Yokoyama, Kazunori; Cabanos, Cerrone; Hasegawa, Hisakazu; Takagi, Kyoko; Nishizawa, Keito; Uki, Yuriko; Kawarabayashi, Takeshi; Shouji, Mikio; Ishimoto, Masao; Terakawa, Teruhiko

    2014-10-01

    There has been a significant increase in the use of transgenic plants for the large-scale production of pharmaceuticals and industrial proteins. Here, we report the stable accumulation of seed storage proteins containing disease vaccine peptides in transgenic soybean seeds. To synthesize vaccine peptides in soybean seeds, we used seed storage proteins as a carrier and a soybean breeding line lacking major seed storage proteins as a host. Vaccine peptides were inserted into the flexible disordered regions in the A1aB1b subunit three-dimensional structure. The A1aB1b subunit containing vaccine peptides in the disordered regions were sorted to the protein storage vacuoles where vaccine peptides are partially cleaved by proteases. In contrast, the endoplasmic reticulum (ER)-retention type of the A1aB1b subunit containing vaccine peptides accumulated in compartments that originated from the ER as an intact pro-form. These results indicate that the ER may be an organelle suitable for the stable accumulation of bioactive peptides using seed storage proteins as carriers. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Genetic diversity of vaccine candidate antigens in Plasmodium falciparum isolates from the Amazon basin of Peru

    Directory of Open Access Journals (Sweden)

    Lucas Carmen M

    2008-05-01

    Full Text Available Abstract Background Several of the intended Plasmodium falciparum vaccine candidate antigens are highly polymorphic and could render a vaccine ineffective if their antigenic sites were not represented in the vaccine. In this study, characterization of genetic variability was performed in major B and T-cell epitopes within vaccine candidate antigens in isolates of P. falciparum from Peru. Methods DNA sequencing analysis was completed on 139 isolates of P. falciparum collected from endemic areas of the Amazon basin in Loreto, Peru from years 1998 to 2006. Genetic diversity was determined in immunological important regions in circumsporozoite protein (CSP, merozoite surface protein-1 (MSP-1, apical membrane antigen-1 (AMA-1, liver stage antigen-1 (LSA-1 and thrombospondin-related anonymous protein (TRAP. Alleles identified by DNA sequencing were aligned with the vaccine strain 3D7 and DNA polymorphism analysis and FST study-year pairwise comparisons were done using the DnaSP software. Multilocus analysis (MLA was performed and average of expected heterozygosity was calculated for each loci and haplotype over time. Results Three different alleles for CSP, seven for MSP-1 Block 2, one for MSP-1 Block 17, three for AMA-1 and for LSA-1 each and one for TRAP were identified. There were 24 different haplotypes in 125 infections with complete locus typing for each gene. Conclusion Characterization of the genetic diversity in Plasmodium isolates from the Amazon Region of Peru showed that P. falciparum T and B cell epitopes in these antigens have polymorphisms more similar to India than to Africa. These findings are helpful in the formulation of a vaccine considering restricted repertoire populations.

  6. THE ANTIGEN-SPECIFIC CELL IN VITRO TESTS FOR POST-VACCINATION ANTIPLAGUE IMMUNITY FORMATION

    Directory of Open Access Journals (Sweden)

    A. N. Kulichenko

    2017-01-01

    Full Text Available The possibility of post-vaccination anti-plague immunity evaluation was researched using antigen-stimulated cells tests in vitro and cytometry analysis. The object of study — the blood samples of 17 people immunised by the live plague vaccine (Yersinia pestis EV epicutaneously. Blood taking was carried out before vaccination and after immunisation on 7 and on 21 days, in 3 and in 6 months. Intensity antigen reactivity of lymphocytes was detected by cell tests in vitro, analysing markers of early (CD45+CD3+CD25+ and late (CD45+CD3+HLA-DR+ lymphocyte activation using flow cytometry. The complex of water-soluble Y. pestis antigens and allergen — pestin PP was tested as antigen. The high stimulating potential was defined of the water-soluble antigens Y. pestis complex. It is shown that coefficient of stimulation of relative level T- lymphocytes which express receptors for IL-2 was positive for all observation times after immunisation. The coefficient of stimulation had maximum values at 21 days (56.37% and at 3 (47.41% months. In identifying HLADR-positive lymphocytes before vaccination, the negative coefficient of stimulation was indicated on 7 and 21 days and the positive coefficient of stimulation was indicated at 3 and at 6 months. Analysis of intensity expression of early and late lymphocyte activation markers dynamics showed the possibility and prospect of application of cellular in vitro tests for the laboratory evaluation of specific reactivity of cellular immunity in both the early (7 days and late (6 months periods after vaccination. The results can be the basis for developing a new algorithm for assessment of immunological effectiveness of vaccination people against plague. It is the algorithm based on the identification of lymphocyte activation markers by antigen stimulation in conditions in vitro.

  7. Immunogenicity of meningococcal PorA antigens in OMV vaccines

    NARCIS (Netherlands)

    Luijkx, T.A.

    2006-01-01

    For the prevention of meningococcal infection caused by group B meningococci, the Netherlands Vaccine Institute (NVI) has developed a hexavalent Porin A (PorA) based Outer Membrane Vesicle (OMV) vaccine (Hexamen). In various clinical studies with HexaMen, differences in the immune responses to the

  8. Formulation of influenza T cell peptides : in search of a universal influenza vaccine

    NARCIS (Netherlands)

    Soema, Peter Christiaan

    2015-01-01

    Current seasonal influenza vaccines rely on the induction of antibodies to neutralize the virus. However, influenza viruses frequently undergo genetic mutations due to antigenic drift and shift, altering the surface proteins hemagglutinin and neuraminidase to which antibodies usually bind. This

  9. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies.

    Science.gov (United States)

    Brossart, P; Heinrich, K S; Stuhler, G; Behnke, L; Reichardt, V L; Stevanovic, S; Muhm, A; Rammensee, H G; Kanz, L; Brugger, W

    1999-06-15

    The tumor-associated antigen MUC1 is overexpressed on various hematological and epithelial malignancies and is therefore a suitable candidate for broadly applicable vaccine therapies. It was demonstrated that major histocompatibility complex (MHC)-unrestricted cytotoxic T cells can recognize epitopes of the MUC1 protein core localized in the tandem repeat domain. There is increasing evidence now that MHC-restricted T cells can also be induced after immunization with the MUC1 protein or segments of the core tandem repeat. Using a computer analysis of the MUC1 amino acid sequence, we identified two novel peptides with a high binding probability to the HLA-A2 molecule. One of the peptides is derived from the tandem repeat region and the other is derived from the leader sequence of the MUC1 protein, suggesting that, in contrast to previous reports, the MUC1-directed immune responses are not limited to the extracellular tandem repeat domain. Cytotoxic T cells (CTL) were generated from several healthy donors by primary in vitro immunization using peptide-pulsed dendritic cells. The addition of a Pan-HLA-DR binding peptide PADRE as a T-helper epitope during the in vitro priming resulted in an increased cytotoxic activity of the MUC1-specific CTL and a higher production of cytokines such as interleukin-12 and interferon-gamma in the cell cultures, demonstrating the importance of CD4 cells for an efficient CTL priming. The peptide induced CTL lysed tumors endogenously expressing MUC1 in an antigen-specific and HLA-A2-restricted fashion, including breast and pancreatic tumor cells as well as renal cell carcinoma cells, showing that these peptides are shared among many tumors. The use of MUC1-derived peptides could provide a broadly applicable approach for the development of dendritic cell-based vaccination therapies.

  10. EphA2-derived peptide vaccine with amphiphilic poly(gamma-glutamic acid) nanoparticles elicits an anti-tumor effect against mouse liver tumor.

    Science.gov (United States)

    Yamaguchi, Shinjiro; Tatsumi, Tomohide; Takehara, Tetsuo; Sasakawa, Akira; Yamamoto, Masashi; Kohga, Keisuke; Miyagi, Takuya; Kanto, Tatsuya; Hiramastu, Naoki; Akagi, Takami; Akashi, Mitsuru; Hayashi, Norio

    2010-05-01

    The prognosis of liver cancer remains poor, but recent advances in nanotechnology offer promising possibilities for cancer treatment. Novel adjuvant, amphiphilic nanoparticles (NPs) composed of L: -phenylalanine (Phe)-conjugated poly(gamma-glutamic acid) (gamma-PGA-Phe NPs) having excellent capacity for carrying peptides, were found to have the potential for use as a peptide vaccine against tumor models overexpressing artificial antigens, such as ovalbumin (OVA). However, the anti-tumor potential of gamma-PGA-Phe NPs vaccines using much less immunogenic tumor-associated antigen (TAA)-derived peptide needs to be clarified. In this study, we evaluated the effectiveness of immunization with EphA2, recently identified TAA, derived peptide-immobilized gamma-PGA-Phe NPs (Eph-NPs) against mouse liver tumor of MC38 cells (EphA2-positive colon cancer cells). Immunization of normal mice with Eph-NPs resulted in generation of EphA2-specific type-1 CD8+ T cells. Immunization with Eph-NPs tended to provide a degree of anti-MC38 liver tumor protection more than that observed for immunization with the mixture of EphA2-derived peptide and complete Freund's adjuvant (Eph + CFA). Neither Eph-NPs nor Eph + CFA vaccines inhibited tumor growth of BL6, EphA2-negative melanoma cells. Splenocytes isolated from MC38-bearing mice treated with Eph-NPs showed strong and specific cytotoxic activity against MC38 cells. Immunization with Eph + CFA induced liver damage as evidenced by elevation of serum alanine aminotransferase, while Eph-NPs vaccination did not exhibit any toxic damage to the liver. These results demonstrated that immunization with Eph-NPs displayed anti-tumor effects against liver tumor by generating acquired immunity equivalent to the toxic adjuvant CFA, suggesting that safe gamma-PGA-Phe NPs could be applied clinically for the vaccine treatment of liver cancer.

  11. Influence of virus strain and antigen mass on efficacy of H5 avian influenza inactivated vaccines.

    Science.gov (United States)

    Swayne, D E; Beck, J R; Garcia, M; Stone, H D

    1999-06-01

    The influence of vaccine strain and antigen mass on the ability of inactivated avian influenza (AI) viruses to protect chicks from a lethal, highly pathogenic (HP) AI virus challenge was studied. Groups of 4-week-old chickens were immunized with inactivated vaccines containing one of 10 haemagglutinin subtype H5 AI viruses, one heterologous H7 AI virus or normal allantoic fluid (sham), and challenged 3 weeks later by intra-nasal inoculation with a HP H5 chicken-origin AI virus. All 10 H5 vaccines provided good protection from clinical signs and death, and produced positive serological reactions on agar gel immunodiffusion and haemagglutination inhibition tests. In experiment 1, challenge virus was recovered from the oropharynx of 80% of chickens in the H5 vaccine group. In five H5 vaccine groups, challenge virus was not recovered from the cloaca of chickens. In the other five H5 vaccine groups, the number of chickens with detection of challenge virus from the cloaca was lower than in the sham group (P turkey/Wisconsin/68 (H5N9) was the best vaccine candidate of the H5 strains tested (PD50= 0.006 μg AI antigen). These data demonstrate that chickens vaccinated with inactivated H5 whole virus AI vaccines were protected from clinical signs and death, but usage of vaccine generally did not prevent infection by the challenge virus, as indicated by recovery of virus from the oropharynx. Vaccine use reduced cloacal detection rates, and quantity of virus shed from the cloaca and oropharynx in some vaccine groups, which would potentially reduce environmental contamination and disease transmission in the field.

  12. Sustained Persistence of IL2 Signaling Enhances the Antitumor Effect of Peptide Vaccines through T-cell Expansion and Preventing PD-1 Inhibition.

    Science.gov (United States)

    Sultan, Hussein; Kumai, Takumi; Fesenkova, Valentyna I; Fan, Aaron E; Wu, Juan; Cho, Hyun-Il; Kobayashi, Hiroya; Harabuchi, Yasuaki; Celis, Esteban

    2018-02-26

    Peptide vaccines can be a successful and cost-effective way of generating T-cell responses against defined tumor antigens, especially when combined with immune adjuvants such as poly-IC. However, strong immune adjuvants can induce a collateral increase in numbers of irrelevant, nonspecific T cells, which limits the effectiveness of the peptide vaccines. Here, we report that providing prolonged IL2 signaling in the form of either IL2/anti-IL2 complexes or pegylated IL2 overcomes the competitive suppressive effect of irrelevant T cells, allowing the preferential expansion of antigen-specific T cells. In addition to increasing the number of tumor-reactive T cells, sustained IL2 enhanced the ability of T cells to resist PD-1-induced negative signals, increasing the therapeutic effectiveness of the vaccines against established tumors. This vaccination strategy using peptides and sustained IL2 could be taken into the clinic for the treatment of cancer. Cancer Immunol Res; 6(5); 1-11. ©2018 AACR. ©2018 American Association for Cancer Research.

  13. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines

    Directory of Open Access Journals (Sweden)

    Cleo Goyvaerts

    2015-01-01

    Full Text Available In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  14. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines.

    Science.gov (United States)

    Goyvaerts, Cleo; Breckpot, Karine

    2015-01-01

    In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  15. Safety of currently licensed hepatitis B surface antigen vaccines in the United States, Vaccine Adverse Event Reporting System (VAERS), 2005-2015.

    Science.gov (United States)

    Haber, Penina; Moro, Pedro L; Ng, Carmen; Lewis, Paige W; Hibbs, Beth; Schillie, Sarah F; Nelson, Noele P; Li, Rongxia; Stewart, Brock; Cano, Maria V

    2018-01-25

    Currently four recombinant hepatitis B (HepB) vaccines are in use in the United States. HepB vaccines are recommended for infants, children and adults. We assessed adverse events (AEs) following HepB vaccines reported to the Vaccine Adverse Event Reporting System (VAERS), a national spontaneous reporting system. We searched VAERS for reports of AEs following single antigen HepB vaccine and HepB-containing vaccines (either given alone or with other vaccines), from January 2005 - December 2015. We conducted descriptive analyses and performed empirical Bayesian data mining to assess disproportionate reporting. We reviewed serious reports including reports of special interest. VAERS received 20,231 reports following HepB or HepB-containing vaccines: 10,291 (51%) in persons 18 years; for 1485 (7.3%) age was missing. Dizziness and nausea (8.4% each) were the most frequently reported AEs following a single antigen HepB vaccine: fever (23%) and injection site erythema (11%) were most frequent following Hep-containing vaccines. Of the 4444 (22%) reports after single antigen HepB vaccine, 303 (6.8%) were serious, including 45 deaths. Most commonly reported cause of death was Sudden Infant Death Syndrome (197). Most common non-death serious reports following single antigen HepB vaccines among infants aged 18 years. Most common vaccination error following single antigen HepB was incorrect product storage. Review current U.S.-licensed HepB vaccines administered alone or in combination with other vaccines did not reveal new or unexpected safety concerns. Vaccination errors were identified which indicate the need for training and education of providers on HepB vaccine indications and recommendations. Published by Elsevier Ltd.

  16. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.; Morozov, Giora I.; Mage, Michael G.; Margulies, David H. (NIH); (Hebrew)

    2017-10-12

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.

  17. Selective induction of cell-mediated immunity and protection of rhesus macaques from chronic SHIVKU2 infection by prophylactic vaccination with a conserved HIV-1 envelope peptide-cocktail

    International Nuclear Information System (INIS)

    Nehete, Pramod N.; Nehete, Bharti P.; Hill, Lori; Manuri, Pallavi R.; Baladandayuthapani, Veerabhadran; Feng Lei; Simmons, Johnny; Sastry, K. Jagannadha

    2008-01-01

    Infection of Indian-origin rhesus macaques by the simian human immunodeficiency virus (SHIV) is considered to be a suitable preclinical model for directly testing efficacy of vaccine candidates based on the HIV-1 envelope. We used this model for prophylactic vaccination with a peptide-cocktail comprised of highly conserved HIV-1 envelope sequences immunogenic/antigenic in macaques and humans. Separate groups of macaques were immunized with the peptide-cocktail by intravenous and subcutaneous routes using autologous dendritic cells (DC) and Freund's adjuvant, respectively. The vaccine elicited antigen specific IFN-γ-producing cells and T-cell proliferation, but not HIV-neutralizing antibodies. The vaccinated animals also exhibited efficient cross-clade cytolytic activity against target cells expressing envelope proteins corresponding to HIV-1 strains representative of multiple clades that increased after intravenous challenge with pathogenic SHIV KU2 . Virus-neutralizing antibodies were either undetectable or present only transiently at low levels in the control as well as vaccinated monkeys after infection. Significant control of plasma viremia leading to undetectable levels was achieved in majority of vaccinated monkeys compared to mock-vaccinated controls. Monkeys vaccinated with the peptide-cocktail using autologous DC, compared to Freund's adjuvant, and the mock-vaccinated animals, showed significantly higher IFN-γ production, higher levels of vaccine-specific IFN-γ producing CD4 + cells and significant control of plasma viremia. These results support DC-based vaccine delivery and the utility of the conserved HIV-1 envelope peptide-cocktail, capable of priming strong cell-mediated immunity, for potential inclusion in HIV vaccination strategies

  18. Vaccination with poly(IC:LC and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Shikhar Mehrotra

    2017-04-01

    Full Text Available Abstract Background Dendritic cells (DCs enhance the quality of anti-tumor immune response in patients with cancer. Thus, we posit that DC-based immunotherapy, in conjunction with toll-like receptor (TLR-3 agonist poly-ICLC, is a promising approach for harnessing immunity against metastatic or locally advanced unresectable pancreatic cancer (PC. Methods We generated autologous DCs from the peripheral blood of HLA-A2+ patients with PC. DCs were pulsed with three distinct A2-restricted peptides: 1 human telomerase reverse transcriptase (hTERT, TERT572Y, 2 carcinoembryonic antigen (CEA; Cap1-6D, and 3 survivin (SRV.A2. Patients received four intradermal injections of 1 × 107 peptide-pulsed DC vaccines every 2 weeks (Day 0, 14, 28, and 42. Concurrently, patients received intramuscular administration of Poly-ICLC at 30 μg/Kg on vaccination days (i.e., day 0, 14, 28, and 42, as well as on days 3, 17, 21, 31, 37, and 45. Our key objective was to assess safety and feasibility. The effect of DC vaccination on immune response was measured at each DC injection time point by enumerating the phenotype and function of patient T cells. Results Twelve patients underwent apheresis: nine patients with metastatic disease, and three patients with locally advanced unresectable disease. Vaccines were successfully manufactured from all individuals. We found that this treatment was well-tolerated, with the most common symptoms being fatigue and/or self-limiting flu-like symptoms. Among the eight patients who underwent imaging on day 56, four patients experienced stable disease while four patients had disease progression. The median overall survival was 7.7 months. One patient survived for 28 months post leukapheresis. MHC class I –tetramer analysis before and after vaccination revealed effective generation of antigen-specific T cells in three patients with stable disease. Conclusion Vaccination with peptide-pulsed DCs in combination with poly-ICLC is safe and

  19. Structural Basis For Antigenic Peptide Precursor Processing by the Endoplasmic Reticulum Aminopeptidase ERAP1

    Energy Technology Data Exchange (ETDEWEB)

    T Nguyen; S Chang; I Evnouchidou; I York; C Zikos; K Rock; A Goldberg; E Stratikos; L Stern

    2011-12-31

    ERAP1 trims antigen precursors to fit into MHC class I proteins. To fulfill this function, ERAP1 has unique substrate preferences, trimming long peptides but sparing shorter ones. To identify the structural basis for ERAP1's unusual properties, we determined the X-ray crystal structure of human ERAP1 bound to bestatin. The structure reveals an open conformation with a large interior compartment. An extended groove originating from the enzyme's catalytic center can accommodate long peptides and has features that explain ERAP1's broad specificity for antigenic peptide precursors. Structural and biochemical analyses suggest a mechanism for ERAP1's length-dependent trimming activity, whereby binding of long rather than short substrates induces a conformational change with reorientation of a key catalytic residue toward the active site. ERAP1's unique structural elements suggest how a generic aminopeptidase structure has been adapted for the specialized function of trimming antigenic precursors.

  20. Real-time PCR analysis of genes encoding tumor antigens in esophageal tumors and a cancer vaccine

    DEFF Research Database (Denmark)

    Weinert, Brian T; Krishnadath, Kausilia K; Milano, Francesca

    2009-01-01

    Tumor antigens are the primary target of therapeutic cancer vaccines. We set out to define and compare the expression pattern of tumor antigen genes in esophagus carcinoma biopsies and in an allogeneic tumor lysate-based cancer vaccine, MelCancerVac. Cells used for vaccine production were treated...... with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) to determine whether this treatment could improve the profile of tumor antigen genes expressed in these cells. In addition, the presence of MAGE-A tumor antigen protein was evaluated in the purified tumor cell lysate used...

  1. Co-expression of tumor antigen and interleukin-2 from an adenoviral vector augments the efficiency of therapeutic tumor vaccination

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech; Steffensen, Maria Abildgaard; Nørgaard Nielsen, Karen

    2014-01-01

    We have previously shown that for the majority of antigens, adenoviral vaccines expressing the target antigen fused to the MHC associated invariant chain (Ii) induce an accelerated, augmented, and prolonged transgene-specific CD8+ T-cell response. Here we describe a new adenoviral vaccine vector...... prolonged tumor control in vaccinated wild type (WT) mice. The improved tumor control required antigen-specific cells, since no tumor control was observed, unless the melanoma cells expressed the vaccine targeted antigen. We also tested our new vaccine in immunodeficient (CD80/86 deficient) mice. Following...... approach where the target antigen fused to Ii is expressed from the adenoviral E1 region and IL-2 is expressed from the E3 region. Immunization of mice with this new vector construct resulted in an augmented primary effector CD8+ T-cell response. Furthermore, in a melanoma model we observed significantly...

  2. Genes encoding homologous antigens in taeniid cestode parasites: Implications for development of recombinant vaccines produced in Escherichia coli.

    Science.gov (United States)

    Gauci, Charles; Lightowlers, Marshall W

    2013-01-01

    Recombinant vaccine antigens are being evaluated for their ability to protect livestock animals against cysticercosis and related parasitic infections. Practical use of some of these vaccines is expected to reduce parasite transmission, leading to a reduction in the incidence of neurocysticercosis and hydatid disease in humans. We recently showed that an antigen (TSOL16), expressed in Escherichia coli, confers high levels of protection against Taenia solium cysticercosis in pigs, which provides a strategy for control of T. solium parasite transmission. Here, we discuss the characteristics of this antigen that may affect the utility of TSOL16 and related antigens for development as recombinant vaccines. We also report that genes encoding antigens closely related to TSOL16 from T. solium also occur in other related species of parasites. These highly homologous antigens have the potential to be used as vaccines and may provide protection against related species of Taenia that cause infection in other hosts.

  3. Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis.

    Science.gov (United States)

    Duthie, Malcolm S; Reed, Steven G

    2017-07-01

    From experimental models and the analyses of patients, it is well documented that antigen-specific T cells are critical for protection against Leishmania infection. Effective vaccines require both targeting to the pathogen and an immune stimulant to induce maturation of appropriate immune responses. While a great number of antigens have been examined as vaccine candidates against various Leishmania species, few have advanced to human or canine clinical trials. With emphasis on antigen expression, in this minireview we discuss some of the vaccine platforms that are currently being explored for the development of Leishmania vaccines. It is clear that the vaccine platform of choice can have a significant impact upon the level of protection induced by particular antigens, and we provide and highlight some examples for which the vaccine system used has impacted the protective efficacy imparted. Copyright © 2017 American Society for Microbiology.

  4. Bivalent mucosal peptide vaccines administered using the LCP carrier system stimulate protective immune responses against Streptococcus pyogenes infection.

    Science.gov (United States)

    Schulze, Kai; Ebensen, Thomas; Chandrudu, Saranya; Skwarczynski, Mariusz; Toth, Istvan; Olive, Colleen; Guzman, Carlos A

    2017-11-01

    Despite the broad knowledge about the pathogenicity of Streptococcus pyogenes there is still a controversy about the correlate of protection in GAS infections. We aimed in further improving the immune responses stimulated against GAS comparing different vaccine formulations including bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) and BPPCysMPEG, a derivative of the macrophage-activating lipopeptide (MALP-2), as adjuvants, respectively, to be administered with and without the universal T helper cell epitope P25 along with the optimized B cell epitope J14 of the M protein and B and T cell epitopes of SfbI. Lipopeptide based nano carrier systems (LCP) were used for efficient antigen delivery across the mucosal barrier. The stimulated immune responses were efficient in protecting mice against a respiratory challenge with a lethal dose of a heterologous S. pyogenes strain. Moreover, combination of the LCP based peptide vaccine with c-di-AMP allowed reduction of antigen dose at the same time maintaining vaccine efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Use of Liposomes to Shape Epitope Structure and Modulate Immunogenic Responses of Peptide Vaccines Against HIV MPER.

    Science.gov (United States)

    Apellániz, Beatriz; Nieva, José L

    2015-01-01

    Peptide vaccines have been shown effective in preventing animal infection in some instances, and various formulations are under evaluation for their potential clinical use in humans. In the case of the Human Immunodeficiency Virus type-1 (HIV-1) infection, viral escape from immune surveillance restricts relevant neutralizing humoral responses to a handful of sites of vulnerability on the envelope glycoprotein. The membrane-proximal external region (MPER) on the gp41 transmembrane subunit has been identified as the only linear B-epitope that embodies an HIV vulnerability site. Thus, focusing humoral responses to MPER by peptide-based immunogens is a pursued goal in HIV vaccine development. The location of this sequence in the vicinity of the membrane interface, its composition (rich in aromatic residues), and the requirement of long-hydrophobic heavy-chain third complementarity-determining region loops for antibody-mediated neutralization suggests that in addition to the specific amino acid composition, antigenicity and immunogenicity of MPER can be modulated by membrane lipids. In this chapter, we give an overview of applications of lipid vesicles (liposomes) to the development of MPER-targeting vaccines, both as type-B adjuvants and epitope structure-shaping devices. © 2015 Elsevier Inc. All rights reserved.

  6. Opsonic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens.

    Directory of Open Access Journals (Sweden)

    Clarissa Pozzi

    Full Text Available Staphylococcus aureus is a major cause of nosocomial and community-acquired infections for which a vaccine is greatly desired. Antigens found on the S. aureus outer surface include the capsular polysaccharides (CP of serotype 5 (CP5 or 8 (CP8 and/or a second antigen, a β-(1→6-polymer of N-acetyl-D-glucosamine (PNAG. Antibodies specific for either CP or PNAG antigens have excellent in vitro opsonic killing activity (OPKA, but when mixed together have potent interference in OPKA and murine protection. To ascertain if this interference could be abrogated by using a synthetic non-acetylated oligosaccharide fragment of PNAG, 9GlcNH(2, in place of chemically partially deacetylated PNAG, three conjugate vaccines consisting of 9GlcNH(2 conjugated to a non-toxic mutant of alpha-hemolysin (Hla H35L, CP5 conjugated to clumping factor B (ClfB, or CP8 conjugated to iron-surface determinant B (IsdB were used separately to immunize rabbits. Opsonic antibodies mediating killing of multiple S. aureus strains were elicited for all three vaccines and showed carbohydrate antigen-specific reductions in the tissue bacterial burdens in animal models of S. aureus skin abscesses, pneumonia, and nasal colonization. Carrier-protein specific immunity was also shown to be effective in reducing bacterial levels in infected lungs and in nasal colonization. However, use of synthetic 9GlcNH(2 to induce antibody to PNAG did not overcome the interference in OPKA engendered when these were combined with antibody to either CP5 or CP8. Whereas each individual vaccine showed efficacy, combining antisera to CP antigens and PNAG still abrogated individual OPKA activities, indicating difficulty in achieving a multi-valent vaccine targeting both the CP and PNAG antigens.

  7. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Akira Yano

    2015-01-01

    Full Text Available The reduction of brain amyloid beta (Aβ peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer’s disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ40, and Aβ42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  8. Transcription factor Fos-related antigen 1 is an effective target for a breast cancer vaccine

    Science.gov (United States)

    Luo, Yunping; Zhou, He; Mizutani, Masato; Mizutani, Noriko; Reisfeld, Ralph A.; Xiang, Rong

    2003-07-01

    Protection against breast cancer was achieved with a DNA vaccine against murine transcription factor Fos-related antigen 1, which is overexpressed in aggressively proliferating D2F2 murine breast carcinoma. Growth of primary s.c. tumor and dissemination of pulmonary metastases was markedly suppressed by this oral DNA vaccine, carried by attenuated Salmonella typhimurium, encoding murine Fos-related antigen 1, fused with mutant polyubiquitin, and cotransformed with secretory murine IL-18. The life span of 60% of vaccinated mice was tripled in the absence of detectable tumor growth after lethal tumor cell challenge. Immunological mechanisms involved activation of T, natural killer, and dendritic cells, as indicated by up-regulation of their activation markers and costimulatory molecules. Markedly increased specific target cell lysis was mediated by both MHC class I-restricted CD8+ T cells and natural killer cells isolated from splenocytes of vaccinated mice, including a significant release of proinflammatory cytokines IFN- and IL-2. Importantly, fluorescence analysis of fibroblast growth factor 2 and tumor cell-induced vessel growth in Matrigel plugs demonstrated marked suppression of angiogenesis only in vaccinated animals. Taken together, this multifunctional DNA vaccine proved effective in protecting against growth and metastases of breast cancer by combining the action of immune effector cells with suppression of tumor angiogenesis. vaccine | tumor | metastases | antiangiogenesis

  9. Vaccination with peptides of Mycobacterium avium subsp. paratuberculosis (MAP) reduces MAP burden of infected goats

    DEFF Research Database (Denmark)

    Melvang, Heidi Mikkelsen; Hassan, Sufia Butt; Thakur, Aneesh

    Mycobacterium avium subsp. paratuberculosis (Map) is the cause of paratuberculosis, a chronic enteritis of ruminants that is widespread worldwide. We investigated the effect of post-exposure vaccination with Map specific peptides in a goat model aiming at developing a Map vaccine that will neither...

  10. MALARIA VACCINE: MYTH OR REALITY?

    African Journals Online (AJOL)

    Femi Olaleye

    first synthetic vaccine (Spf 66) made up in part by the CSP- 1. Human vaccine trials are also reported to have been successful. (Amador et. al., 1992). Erythrocyte Stage Antigens SPF 66. This is the first synthetically produced malaria vaccine. It is made up of a combination of three peptides (35.1, 55.1 and 83.1) whose ...

  11. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy.

    Science.gov (United States)

    Schmitt, Deanna M; O'Dee, Dawn M; Horzempa, Joseph; Carlson, Paul E; Russo, Brian C; Bales, Jacqueline M; Brown, Matthew J; Nau, Gerard J

    2012-01-01

    Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.

  12. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy.

    Directory of Open Access Journals (Sweden)

    Deanna M Schmitt

    Full Text Available Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS, does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.

  13. Modulation of the major histocompatibility complex class II-associated peptide repertoire by human histocompatibility leukocyte antigen (HLA)-DO

    NARCIS (Netherlands)

    van Ham, M.; van Lith, M.; Lillemeier, B.; Tjin, E.; Grüneberg, U.; Rahman, D.; Pastoors, L.; van Meijgaarden, K.; Roucard, C.; Trowsdale, J.; Ottenhoff, T.; Pappin, D.; Neefjes, J.

    2000-01-01

    Antigen presentation by major histocompatibility complex class II molecules is essential for antibody production and T cell activation. For most class II alleles, peptide binding depends on the catalytic action of human histocompatibility leukocyte antigens (HLA)-DM. HLA-DO is selectively expressed

  14. Human histocompatibility leukocyte antigen (HLA)-DM edits peptides presented by HLA-DR according to their ligand binding motifs

    NARCIS (Netherlands)

    van Ham, S. M.; Grüneberg, U.; Malcherek, G.; Bröker, I.; Melms, A.; Trowsdale, J.

    1996-01-01

    Human histocompatibility leukocyte antigen (HLA)-DM is a facilitator of antigen presentation via major histocompatibility complex (MHC) class II molecules. In the absence of HLA-DM, MHC class II molecules do not present natural peptides, but tend to remain associated with class II-associated

  15. Australian contingency plans for emergency animal disease control: the role of antigen/vaccine banks.

    Science.gov (United States)

    Tweddle, N E

    2004-01-01

    Vaccination is an important element of contingency plans for many animal diseases. The decision whether or not to use vaccine is complex, and must consider epidemiological, economic and social issues. Vaccines are rarely available in a country for emergency animal diseases unless a low pathogenicity strain of the agent is present or it is localised in carrier hosts. High quality commercial vaccine from overseas is often the preferred source of vaccine in an emergency, although less reliable sources may be used with additional safeguards. Alternatively, master seeds may be imported or developed for production within the country For contingency planning, diseases may be ranked according to the expected role of vaccine in the disease eradication strategy, with diseases for which vaccine is part of the initial response strategy receiving highest priority for action. A range of preparedness options is available, ranging from identifying producers of vaccine, obtaining permits for import and use from regulatory authorities, to establishing vaccine or antigen banks. Countries need to consider their individual situations and develop strategies to address the diseases of significance to them.

  16. Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea.

    Science.gov (United States)

    Zielke, Ryszard A; Wierzbicki, Igor H; Baarda, Benjamin I; Gafken, Philip R; Soge, Olusegun O; Holmes, King K; Jerse, Ann E; Unemo, Magnus; Sikora, Aleksandra E

    2016-07-01

    Expanding efforts to develop preventive gonorrhea vaccines is critical because of the dire possibility of untreatable gonococcal infections. Reverse vaccinology, which includes genome and proteome mining, has proven very successful in the discovery of vaccine candidates against many pathogenic bacteria. However, progress with this approach for a gonorrhea vaccine remains in its infancy. Accordingly, we applied a comprehensive proteomic platform-isobaric tagging for absolute quantification coupled with two-dimensional liquid chromatography and mass spectrometry-to identify potential gonococcal vaccine antigens. Our previous analyses focused on cell envelopes and naturally released membrane vesicles derived from four different Neisseria gonorrhoeae strains. Here, we extended these studies to identify cell envelope proteins of N. gonorrhoeae that are ubiquitously expressed and specifically induced by physiologically relevant environmental stimuli: oxygen availability, iron deprivation, and the presence of human serum. Together, these studies enabled the identification of numerous potential gonorrhea vaccine targets. Initial characterization of five novel vaccine candidate antigens that were ubiquitously expressed under these different growth conditions demonstrated that homologs of BamA (NGO1801), LptD (NGO1715), and TamA (NGO1956), and two uncharacterized proteins, NGO2054 and NGO2139, were surface exposed, secreted via naturally released membrane vesicles, and elicited bactericidal antibodies that cross-reacted with a panel of temporally and geographically diverse isolates. In addition, analysis of polymorphisms at the nucleotide and amino acid levels showed that these vaccine candidates are highly conserved among N. gonorrhoeae strains. Finally, depletion of BamA caused a loss of N. gonorrhoeae viability, suggesting it may be an essential target. Together, our data strongly support the use of proteomics-driven discovery of potential vaccine targets as a sound

  17. GM-CSF Production Allows the Identification of Immunoprevalent Antigens Recognized by Human CD4+ T Cells Following Smallpox Vaccination

    Science.gov (United States)

    Judkowski, Valeria; Bunying, Alcinette; Ge, Feng; Appel, Jon R.; Law, Kingyee; Sharma, Atima; Raja- Gabaglia, Claudia; Norori, Patricia; Santos, Radleigh G.; Giulianotti, Marc A.; Slifka, Mark K.; Douek, Daniel C.; Graham, Barney S.; Pinilla, Clemencia

    2011-01-01

    The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a “T cell–driven” methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens. PMID:21931646

  18. GM-CSF production allows the identification of immunoprevalent antigens recognized by human CD4+ T cells following smallpox vaccination.

    Directory of Open Access Journals (Sweden)

    Valeria Judkowski

    Full Text Available The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a "T cell-driven" methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens.

  19. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    Science.gov (United States)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  20. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    Science.gov (United States)

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  1. A viral vaccine encoding PSA induces antigen spreading to a common set of self proteins in prostate cancer patients

    Science.gov (United States)

    Nesslinger, Nancy J.; Ng, Alvin; Tsang, Kwong-Yok; Ferrara, Theresa; Schlom, Jeff; Gulley, James L.; Nelson, Brad H.

    2010-01-01

    Purpose We previously reported a randomized phase II clinical trial combining a poxvirus-based vaccine encoding PSA with radiotherapy in patients with localized prostate cancer. Here we investigate whether vaccination against PSA induced immune responses to additional tumor-associated antigens and how this influenced clinical outcome. Experimental Design Pre- and post-treatment serum samples from patients treated with vaccine + external beam radiation therapy (EBRT) versus EBRT alone were evaluated by Western blot and serological screening of a prostate cancer cDNA expression library (SEREX) to assess the development of treatment-associated autoantibody responses. Results Western blotting revealed treatment-associated autoantibody responses in 15/33 (45.5%) patients treated with vaccine + EBRT versus 1/8 (12.5%) treated with EBRT alone. SEREX screening identified 18 antigens, which were assembled on an antigen array with 16 previously identified antigens. Antigen array screening revealed that seven of 33 patients (21.2%) treated with vaccine + EBRT demonstrated a vaccine-associated autoantibody response to four ubiquitously expressed self antigens: DIRC2, NDUFS1, MRFAP1 and MATN2. These responses were not seen in patients treated with EBRT alone, or other control groups. Patients with autoantibody responses to this panel of antigens had a trend towards decreased biochemical-free survival. Conclusions Vaccine + EBRT induced antigen spreading in a large proportion of patients. A subset of patients developed autoantibodies to a panel of four self antigens and showed a trend toward inferior outcomes. Thus, cancer vaccines directed against tumor-specific antigens can trigger autoantibody responses to self proteins, which may influence the efficacy of vaccination. PMID:20562209

  2. Co-Administration of Lipid Nanoparticles and Sub-Unit Vaccine Antigens Is Required for Increase in Antigen-Specific Immune Responses in Mice

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Thoryk

    2016-12-01

    Full Text Available A vast body of evidence suggests that nanoparticles function as potent immune-modulatory agents. We have previously shown that Merck proprietary Lipid NanoParticles (LNPs markedly boost B-cell and T-cell responses to sub-unit vaccine antigens in mice. To further evaluate the specifics of vaccine delivery and dosing regimens in vivo, we performed immunogenicity studies in BALB/c and C57BL/6 mice using two model antigens, Hepatitis B Surface Antigen (HBsAg and Ovalbumin (OVA, respectively. To assess the requirement for co-administration of antigen and LNP for the elicitation of immune responses, we evaluated immune responses after administering antigen and LNP to separate limbs, or administering antigen and LNP to the same limb but separated by 24 h. We also evaluated formulations combining antigen, LNP, and aluminum-based adjuvant amorphous aluminum hydroxylphosphate sulfate (MAA to look for synergistic adjuvant effects. Analyses of antigen-specific B-cell and T-cell responses from immunized mice revealed that the LNPs and antigens must be co-administered—both at the same time and in the same location—in order to boost antigen-specific immune responses. Mixing of antigen with MAA prior to formulation with LNP did not impact the generation of antigen-specific B-cell responses, but drastically reduced the ability of LNPs to boost antigen-specific T-cell responses. Overall, our data demonstrate that the administration of LNPs and vaccine antigen together enables their immune-stimulatory properties.

  3. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  4. A lipidated peptide of Mycobacterium tuberculosis resuscitates the protective efficacy of BCG vaccine by evoking memory T cell immunity.

    Science.gov (United States)

    Rai, Pradeep K; Chodisetti, Sathi Babu; Zeng, Weiguang; Nadeem, Sajid; Maurya, Sudeep K; Pahari, Susanta; Janmeja, Ashok K; Jackson, David C; Agrewala, Javed N

    2017-10-06

    The current BCG vaccine induces only short-term protection against Mycobacterium tuberculosis (Mtb), suggesting its failure to generate long-lasting memory T cells. Previously, we have demonstrated that a self-adjuvanting peptide of Mtb (L91), successfully generated enduring memory Th1 cells. Consequently, we investigated if L91 was able to recuperate BCG potency in perpetuating the generation of memory T cells and protection against Mtb infected mice. In the present study, we evaluated the potency of a self adjuvanting Mtb peptide vaccine L91 in invigorating BCG immune response against Mtb in mice. Female BALB/c mice were immunized with BCG. Later, they were boosted twice with L91 or an antigenically irrelevant lipidated influenza virus hemagglutinin peptide (LH). Further, PBMCs obtained from BCG vaccinated healthy subjects were cultured in vitro with L91. T cell responses were determined by surface markers and intracellular cytokine staining. Secretion of cytokines was estimated in the culture supernatants (SNs) by ELISA. Compared to the BCG-vaccinated controls, L91 booster significantly enhanced the percentage of memory Th1 cells and Th17 cells and reduced the mycobacterial burden in BCG primed and L91-boosted (BCG-L91) group, even after 229 days of BCG vaccination. Further, substantial augmentation in the central (CD44 hi CD62L hi CD127 hi ) and effector memory (CD44 hi CD62L lo CD127 lo ) CD4 T cells was detected. Furthermore, greater frequency of polyfunctional Th1 cells (IFN-γ + TNF-α + ) and Th17 cells (IFN-γ + IL-17A + ) was observed. Importantly, BCG-L91 successfully prevented CD4 T cells from exhaustion by decreasing the expression of PD-1 and Tim-3. Additionally, augmentation in the frequency of Th1 cells, Th17 cells and memory CD4 T cells was observed in the PBMCs of the BCG-vaccinated healthy individuals following in vitro stimulation with L91. Our study demonstrated that L91 robustly reinvigorate BCG potency to invoke enduring protection against

  5. The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development

    DEFF Research Database (Denmark)

    Hviid, Lars

    2010-01-01

    that development of PfEMP1-based vaccines to protect specifically against severe malaria syndromes-in particular PAM-is feasible. This review summarizes the evidence that VSAs are important targets of NAI, discusses why VSA-based vaccines might be feasible despite the extensive intra- and interclonal variation...... of VSAs, and how vaccines based on this type of antigens fit into the current global strategy to reduce, eliminate and eventually eradicate the burden of malaria.......There is substantial immuno-epidemiological evidence that the parasite-encoded, so-called variant surface antigens (VSAs), such as PfEMP1 on the surface of infected erythrocytes (IEs) are important-in some cases probably decisive determinants of clinical outcome of P. falciparum malaria...

  6. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn

    2007-01-01

    Many novel vaccine strategies rely on recombinant viral vectors for antigen delivery, and adenovirus vectors have emerged among the most potent of these. In this report, we have compared the immune response induced through priming with adenovirus vector-encoded full-length viral protein...... to that elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin...... in the absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T...

  7. Successful vaccination against Boophilus microplus and Babesia bovis using recombinat antigens

    Directory of Open Access Journals (Sweden)

    P. Willadsen

    1992-01-01

    Full Text Available Current methods for the control of the cattle tick Boophils microplus and the agent of bovine babesiosis, Babesia bovis are unsatisfactory. Effective immunological control of both parasites would have great advantages. However, naturally acquired immunity to the tick is generally unable to prevent serious production losses. A vaccine against the tick, based on a novel form of immunization, is being developed. A protective antigen has been isolated from the tick, characterized and produced as an effective, recombinant protein. A vaccine incorporating this antigen is currently undergoing field trials. In the Australian situation, improved tick control will probably increase endemic instability with respect to B. bovis. Fortunately, a trivalent, recombinant B. bovis vaccine has also been developed. This too is now undergoing pre-registration field trials.

  8. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    Science.gov (United States)

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...

  9. Positive correlation between Aeromonas salmonicida vaccine antigen concentration and protection in vaccinated rainbow trout Oncorhynchus mykiss evaluated by a tail fin infection model

    DEFF Research Database (Denmark)

    Marana, M. H.; Skov, J.; Chettri, Jiwan Kumar

    2017-01-01

    Rainbow trout, Oncorhynchus mykiss (Walbaum), are able to raise a protective immune response against Aeromonas salmonicida subsp. salmonicida (AS) following injection vaccination with commercial vaccines containing formalin-killed bacteria, but the protection is often suboptimal under Danish...... mariculture conditions. We elucidated whether protection can be improved by increasing the concentration of antigen (formalin-killed bacteria) in the vaccine. Rainbow trout juveniles were vaccinated by intraperitoneal (i.p.) injection with a bacterin of Aeromonas salmonicida subsp. salmonicida strain 090710...

  10. Genetic distribution of noncapsular meningococcal group B vaccine antigens in Neisseria lactamica.

    Science.gov (United States)

    Lucidarme, Jay; Gilchrist, Stefanie; Newbold, Lynne S; Gray, Stephen J; Kaczmarski, Edward B; Richardson, Lynne; Bennett, Julia S; Maiden, Martin C J; Findlow, Jamie; Borrow, Ray

    2013-09-01

    The poor immunogenicity of the meningococcal serogroup B (MenB) capsule has led to the development of vaccines targeting subcapsular antigens, in particular the immunodominant and diverse outer membrane porin, PorA. These vaccines are largely strain specific; however, they offer limited protection against the diverse MenB-associated diseases observed in many industrialized nations. To broaden the scope of its protection, the multicomponent vaccine (4CMenB) incorporates a PorA-containing outer membrane vesicle (OMV) alongside relatively conserved recombinant protein components, including factor H-binding protein (fHbp), Neisseria adhesin A (NadA), and neisserial heparin-binding antigen (NHBA). The expression of PorA is unique to meningococci (Neisseria meningitidis); however, many subcapsular antigens are shared with nonpathogenic members of the genus Neisseria that also inhabit the nasopharynx. These organisms may elicit cross-protective immunity against meningococci and/or occupy a niche that might otherwise accommodate pathogens. The potential for 4CMenB responses to impact such species (and vice versa) was investigated by determining the genetic distribution of the primary 4CMenB antigens among diverse members of the common childhood commensal, Neisseria lactamica. All the isolates possessed nhba but were devoid of fhbp and nadA. The nhba alleles were mainly distinct from but closely related to those observed among a representative panel of invasive MenB isolates from the same broad geographic region. We made similar findings for the immunogenic typing antigen, FetA, which constitutes a major part of the 4CMenB OMV. Thus, 4CMenB vaccine responses may impact or be impacted by nasopharyngeal carriage of commensal neisseriae. This highlights an area for further research and surveillance should the vaccine be routinely implemented.

  11. Synthetic Peptide Ligands of the Antigen Binding Receptor Induce Programmed Cell Death in a Human B-Cell Lymphoma

    Science.gov (United States)

    Renschler, Markus F.; Bhatt, Ramesh R.; Dower, William J.; Levy, Ronald

    1994-04-01

    Peptide ligands for the antigen binding site of the surface immunoglobulin receptor of a human B-cell lymphoma cell line were identified with the use of filamentous phage libraries displaying random 8- and 12-amino acid peptides. Corresponding synthetic peptides bound specifically to the antigen binding site of this immunoglobulin receptor and blocked the binding of an anti-idiotype antibody. The ligands, when conjugated to form dimers or tetramers, induced cell death by apoptosis in vitro with an IC50 between 40 and 200 nM. This effect was associated with specific stimulation of intracellular protein tyrosine phosphorylation.

  12. Multivalent nanomaterials: learning from vaccines and progressing to antigen-specific immunotherapies.

    Science.gov (United States)

    Hartwell, Brittany L; Antunez, Lorena; Sullivan, Bradley P; Thati, Sharadvi; Sestak, Joshua O; Berkland, Cory

    2015-02-01

    Continued development of multivalent nanomaterials has provided opportunities for the advancement of antigen-specific immunotherapies. New insights emerge when considering the backdrop of vaccine design, which has long employed multivalent presentation of antigen to more strongly engage and enhance an immunogenic response. Additionally, vaccines traditionally codeliver antigen with adjuvant to amplify a robust antigen-specific response. Multivalent nanomaterials have since evolved for applications where immune tolerance is desired, such as autoimmune diseases or allergies. In particular, soluble, linear polymers may be tailored to direct antigen-specific immunogenicity or tolerance by modulating polymer length, ligand valency (number), and ligand density, in addition to incorporating secondary signals. Codelivery of a secondary signal may direct, amplify, or suppress the response to a given antigen. Although the ability of multivalent nanomaterials to enact an immune response through molecular mechanisms has been established, a transport mechanism for biodistribution must also be considered. Both mechanisms are influenced by ligand display and other physical properties of the nanomaterial. This review highlights multivalent ligand display on linear polymers, the complex interplay of physical parameters in multivalent design, and the ability to direct the immune response by molecular and transport mechanisms. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Cancer testis antigen and immunotherapy

    Directory of Open Access Journals (Sweden)

    Krishnadas DK

    2013-04-01

    Full Text Available Deepa Kolaseri Krishnadas, Fanqi Bai, Kenneth G Lucas Department of Pediatrics, Division of Hematology/Oncology, University of Louisville, KY, USA Abstract: The identification of cancer testis (CT antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1, melanoma antigen family A, 3 (MAGE-A3, and New York esophageal squamous cell carcinoma-1 (NY-ESO-1 in various malignancies, and presents our current understanding of CT antigen based immunotherapy. Keywords: cancer testis antigens, immunotherapy, vaccine

  14. Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I

    DEFF Research Database (Denmark)

    Cuesta, Àngel M; Suárez, Eduardo; Larsen, Martin

    2006-01-01

    Although DNA-based cancer vaccines have been successfully tested in mouse models, a major drawback of cancer vaccination still remains, namely that tumour antigens are weak and fail to generate a vigorous immune response in tumour-bearing patients. Genetic technology offers strategies for promoting...... immune pathways by adding immune-activating genes to the tumour antigen sequence. In this work, we converted a model non-immunogenic antigen into a vaccine by fusing it to domain I of the filamentous bacteriophage coat protein III gene. Vaccination with a DNA construct encoding the domain I fusion...... generated antigen-specific T helper 1-type cellular immune responses. These results demonstrate that the incorporation of protein III into a DNA vaccine formulation can modulate the gene-mediated immune response and may thus provide a strategy for improving its therapeutic effect....

  15. Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Maurizio Chiriva-Internati

    Full Text Available Sperm protein (Sp17 is an attractive target for ovarian cancer (OC vaccines because of its over-expression in primary as well as in metastatic lesions, at all stages of the disease. Our studies suggest that a Sp17-based vaccine can induce an enduring defense against OC development in C57BL/6 mice with ID8 cells, following prophylactic and therapeutic treatments. This is the first time that a mouse counterpart of a cancer testis antigen (Sp17 was shown to be expressed in an OC mouse model, and that vaccination against this antigen significantly controlled tumor growth. Our study shows that the CpG-adjuvated Sp17 vaccine overcomes the issue of immunologic tolerance, the major barrier to the development of effective immunotherapy for OC. Furthermore, this study provides a better understanding of OC biology by showing that Th-17 cells activation and contemporary immunosuppressive T-reg cells inhibition is required for vaccine efficacy. Taken together, these results indicate that prophylactic and therapeutic vaccinations can induce long-standing protection against OC and delay tumor growth, suggesting that this strategy may provide additional treatments of human OC and the prevention of disease onset in women with a family history of OC.

  16. Phase I clinical trial of the vaccination for the patients with metastatic melanoma using gp100-derived epitope peptide restricted to HLA-A*2402

    Directory of Open Access Journals (Sweden)

    Baba Toshiyuki

    2010-09-01

    Full Text Available Abstract Background The tumor associated antigen (TAA gp100 was one of the first identified and has been used in clinical trials to treat melanoma patients. However, the gp100 epitope peptide restricted to HLA-A*2402 has not been extensively examined clinically due to the ethnic variations. Since it is the most common HLA Class I allele in the Japanese population, we performed a phase I clinical trial of cancer vaccination using the HLA-A*2402 gp100 peptide to treat patients with metastatic melanoma. Methods The phase I clinical protocol to test a HLA-A*2402 gp100 peptide-based cancer vaccine was designed to evaluate safety as the primary endpoint and was approved by The University of Tokyo Institutional Review Board. Information related to the immunologic and antitumor responses were also collected as secondary endpoints. Patients that were HLA-A*2402 positive with stage IV melanoma were enrolled according to the criteria set by the protocol and immunized with a vaccine consisting of epitope peptide (VYFFLPDHL, gp100-in4 emulsified with incomplete Freund's adjuvant (IFA for the total of 4 times with two week intervals. Prior to each vaccination, peripheral blood mononuclear cells (PBMCs were separated from the blood and stored at -80°C. The stored PBMCs were thawed and examined for the frequency of the peptide specific T lymphocytes by IFN-γ- ELISPOT and MHC-Dextramer assays. Results No related adverse events greater than grade I were observed in the six patients enrolled in this study. No clinical responses were observed in the enrolled patients although vitiligo was observed after the vaccination in two patients. Promotion of peptide specific immune responses was observed in four patients with ELISPOT assay. Furthermore, a significant increase of CD8+ gp100-in4+ CTLs was observed in all patients using the MHC-Dextramer assay. Cytotoxic T lymphocytes (CTLs clones specific to gp100-in4 were successfully established from the PBMC of some

  17. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G

    2002-01-01

    Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited......) in particular, to provide robust evidence of a causal link between the two in order to allow efficient and evidence-based identification of candidate antigens for malaria vaccine development....... to statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM...

  18. Antibody recognition of cathepsin L1-derived peptides in Fasciola hepatica-infected and/or vaccinated cattle and identification of protective linear B-cell epitopes.

    Science.gov (United States)

    Garza-Cuartero, Laura; Geurden, Thomas; Mahan, Suman M; Hardham, John M; Dalton, John P; Mulcahy, Grace

    2018-02-08

    Fasciola hepatica infection causes important economic losses in livestock and food industries around the world. In the Republic of Ireland F. hepatica infection has an 76% prevalence in cattle. Due to the increase of anti-helminthic resistance, a vaccine-based approach to control of Fasciolosis is urgently needed. A recombinant version of the cysteine protease cathepsin L1 (rmFhCL1) from F. hepatica has been a vaccine candidate for many years. We have found that vaccination of cattle with this immunodominant antigen has provided protection against infection in some experimental trials, but not in others. Differential epitope recognition between animals could be a source of variable levels of vaccine protection. Therefore, we have characterised for first time linear B-cell epitopes recognised within the FhCL1 protein using sera from F. hepatica-infected and/or vaccinated cattle from two independent trials. Results showed that all F. hepatica infected animals recognised the region 19-31 of FhCL1, which is situated in the N-terminal part of the pro-peptide. Vaccinated animals that showed fluke burden reduction elicited antibodies that bound to the regions 120-137, 145-155, 161-171 of FhCL1, which were not recognised by non-protected animals. This data, together with the high production of specific IgG2 in animals showing vaccine efficacy, suggest important targets for vaccine development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Liposomes containing NY‑ESO‑1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines.

    Science.gov (United States)

    Cruz, Luis J; Rueda, Felix; Simón, Lorena; Cordobilla, Begoña; Albericio, Fernando; Domingo, Joan C

    2014-04-01

    To improve the immunological response against tumors, a vaccine based on nanoliposomes targeted to the Fcg-receptor was developed to enhance the immunogenicity of tumor-associated antigens (TAAs). Using human dendritic cells in vitro, a fragment of the TAA NY-ESO-1 combined with a T-helper peptide from the tetanus toxoid encapsulated in nanoliposomes was evaluated. In addition, peptides Palm-IL-1 and MAP-IFN-g were coadministered as adjuvants to enhance the immunological response. Coadministration of Palm-IL-1 or MAP-IFN-g peptide adjuvants and the hybrid NY-ESO-1-tetanus toxoid (soluble or encapsulated in nanoliposomes without targeting) increased immunogenicity. However, the most potent immunological response was obtained when the peptide adjuvants were encapsulated in liposomes targeted to human dendritic cells via the Fc receptor. This targeted vaccine strategy is a promising tool to activate and deliver antigens to dendritic cells, thus improving immunotherapeutic response in situations in which the immune system is frequently compromised, as in advanced cancers.

  20. Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients.

    Science.gov (United States)

    Oostvogels, R; Kneppers, E; Minnema, M C; Doorn, R C; Franssen, L E; Aarts, T; Emmelot, M E; Spierings, E; Slaper-Cortenbach, I; Westinga, K; Goulmy, E; Lokhorst, H M; Mutis, T

    2017-02-01

    Donor lymphocyte infusions (DLI) can induce durable remissions in multiple myeloma (MM) patients, but this occurs rather infrequently. As the graft-versus-tumor (GvT) effect of DLI depends on the presence of host-dendritic cells (DCs), we tested in a phase I/II trial whether the efficacy of DLI could be improved by simultaneous vaccination with host-DCs. We also analyzed the possibility of further improving the GvT effect by loading the DCs with peptides of mismatched hematopoietic cell-specific minor histocompatibility antigens (mHags). Fifteen MM patients not responding to a first DLI were included. Eleven patients could be treated with a second equivalent dose DLI combined with DC vaccinations, generated from host monocytes (moDC). For four patients, the DC products did not meet the quality criteria. In four of the treated patients the DCs were loaded with host mHag peptides. Toxicity was limited and no acute GvHD occurred. Most patients developed objective anti-host T-cell responses and in one patient a distinct mHag-specific T-cell response accompanied a temporary clinical response. These findings confirm that DLI combined with host-DC vaccination, either unloaded or loaded with mHag peptides, is feasible, safe and capable of inducing host-specific T-cell responses. The limited clinical effects may be improved by developing more immunogenic DC products or by combining this therapy with immune potentiating modalities like checkpoint inhibitors.

  1. Elucidating the mechanisms of protein antigen adsorption to the CAF/NAF liposomal vaccine adjuvant systems

    DEFF Research Database (Denmark)

    Hamborg, Mette; Rose, Fabrice; Jorgensen, Lene

    2014-01-01

    is generally known about how antigens and adjuvants interact at the molecular level. The aim of this study was to elucidate the mechanisms of interactions between the equally sized, but oppositely charged model protein antigens α-lactalbumin and lysozyme, and i) the clinically tested cationic liposomal......The reverse vaccinology approach has recently resulted in the identification of promising protein antigens, which in combination with appropriate adjuvants can stimulate customized, protective immune responses. Although antigen adsorption to adjuvants influences vaccine efficacy and safety, little...... interaction with the zwitterionic liposomes. In contrast, the net cationic lysozyme showed very little interaction with either types of liposome. Adsorption of α-lactalbumin altered its tertiary structure, affected lipid membrane packing below and above the phase transition temperature, and neutralized...

  2. A vaccine prepared from the 22 nm particles of surface hepatitis B antigen (HBsAg)

    International Nuclear Information System (INIS)

    Karelin, V.P.; Babaeva, E.E.; Gubenko, E.F.; Kaulen, D.K.; Zhdanov, V.M.

    1980-01-01

    A method for obtaining a subunit inactivated vaccine preparation from the 22-nm particles of HBsAg is proposed. For inactivation of the residual infectious hepatitis B virus (HBV) the preparations were successively treated with 1% sodium dodecyl sulfate (SDS) and nucleases. In addition, thermal denaturation and ultraviolet irradiation of HBV DNA were used. As a control the biologic activity of a reference virus (SV40) was tested after the same treatment. The effectiveness of DNA inactivation was monitored by adding 3H-thymidine labeled reference virus to the vaccine preparations. The purified and inactivated HBsAg was adsorbed on Al2O3. Antigenicity was calculated on the basis of the determination of antibody in guinea pigs immunized with various doses of the vaccine, and the release of 125 I- HBsAg from blood and kidneys in immunized and control mice was analyzed. Possible methods of inactivation and control of HBV vaccine is discussed

  3. Mapping the antigenic structure of porcine parvovirus at the level of peptides

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Langeveld, Jan; Bøtner, Anette

    1998-01-01

    The antigenic structure of the capsid proteins of porcine parvovirus (PPV) was investigated. A total of nine linear epitopes were identified by Pepscan using porcine or rabbit anti-PPV antisera. No sites were identified with a panel of neutralising monoclonal antibodies (MAbs). All epitopes were...... located in the region corresponding to the major capsid protein VP2. Based on this information, and on analogy to other autonomous parvoviruses, 24 different peptides were synthesised, coupled to keyhole limpet haemocyanin (KLH) and used to immunise rabbits. Most antisera were able to bind viral protein...

  4. Applying the Concept of Peptide Uniqueness to Anti-Polio Vaccination.

    Science.gov (United States)

    Kanduc, Darja; Fasano, Candida; Capone, Giovanni; Pesce Delfino, Antonella; Calabrò, Michele; Polimeno, Lorenzo

    2015-01-01

    Although rare, adverse events may associate with anti-poliovirus vaccination thus possibly hampering global polio eradication worldwide. To design peptide-based anti-polio vaccines exempt from potential cross-reactivity risks and possibly able to reduce rare potential adverse events such as the postvaccine paralytic poliomyelitis due to the tendency of the poliovirus genome to mutate. Proteins from poliovirus type 1, strain Mahoney, were analyzed for amino acid sequence identity to the human proteome at the pentapeptide level, searching for sequences that (1) have zero percent of identity to human proteins, (2) are potentially endowed with an immunologic potential, and (3) are highly conserved among poliovirus strains. Sequence analyses produced a set of consensus epitopic peptides potentially able to generate specific anti-polio immune responses exempt from cross-reactivity with the human host. Peptide sequences unique to poliovirus proteins and conserved among polio strains might help formulate a specific and universal anti-polio vaccine able to react with multiple viral strains and exempt from the burden of possible cross-reactions with human proteins. As an additional advantage, using a peptide-based vaccine instead of current anti-polio DNA vaccines would eliminate the rare post-polio poliomyelitis cases and other disabling symptoms that may appear following vaccination.

  5. Applying the Concept of Peptide Uniqueness to Anti-Polio Vaccination

    Directory of Open Access Journals (Sweden)

    Darja Kanduc

    2015-01-01

    Full Text Available Background. Although rare, adverse events may associate with anti-poliovirus vaccination thus possibly hampering global polio eradication worldwide. Objective. To design peptide-based anti-polio vaccines exempt from potential cross-reactivity risks and possibly able to reduce rare potential adverse events such as the postvaccine paralytic poliomyelitis due to the tendency of the poliovirus genome to mutate. Methods. Proteins from poliovirus type 1, strain Mahoney, were analyzed for amino acid sequence identity to the human proteome at the pentapeptide level, searching for sequences that (1 have zero percent of identity to human proteins, (2 are potentially endowed with an immunologic potential, and (3 are highly conserved among poliovirus strains. Results. Sequence analyses produced a set of consensus epitopic peptides potentially able to generate specific anti-polio immune responses exempt from cross-reactivity with the human host. Conclusion. Peptide sequences unique to poliovirus proteins and conserved among polio strains might help formulate a specific and universal anti-polio vaccine able to react with multiple viral strains and exempt from the burden of possible cross-reactions with human proteins. As an additional advantage, using a peptide-based vaccine instead of current anti-polio DNA vaccines would eliminate the rare post-polio poliomyelitis cases and other disabling symptoms that may appear following vaccination.

  6. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design

    International Nuclear Information System (INIS)

    Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik; Hsu, Catherine; Schneemann, Anette; Manchester, Marianne; Olson, Mark; Reddy, Vijay

    2009-01-01

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NΔ52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.

  7. Identification of DLD, by immunoproteomic analysis and evaluation as a potential vaccine antigen against three Vibrio species in Epinephelus coioides.

    Science.gov (United States)

    Pang, Huanying; Chen, Liming; Hoare, Rowena; Huang, Yucong; ZaoheWu; Jian, Jichang

    2016-02-24

    Vibrio spp. represent a serious threat to the culture of Epinephelus coioides (Orange-spotted Grouper) in Southeast Asia. In this study we used two-dimensional electrophoresis (2-DE) and Western blotting to identify common immunogenic proteins of Vibrio alginolyticus, Vibrio harveyi and Vibrio parahaemolyticus. Membranes were probed with orange-spotted grouper anti-V. alginolyticus sera and accordingly 60, 58 and 48 immunogenic protein spots were detected. By matching analysis for the three Western blotting membranes, 6 cross immunogenic spots for the three Vibrio species were identified. They were Outer membrane protein W (OmpW), dihydrolipoamide dehydrogenase (DLD), succinate dehydrogenase flavoprotein subunit(SDHA), elongation factor Ts(Ts), peptide ABC transporter periplasmic peptide-binding protein and phosphoenolpyruvate carboxykinase(PEPCK). One of the proteins, DLD, was used to evaluate the cross protective function for E. coioides with a bacterial immunization and challenge method. The relative percent survival rate of E. coioides against V. alginolyticus, V. harveyi and V. parahaemolyticus was 90%, 86% and 80%, respectively. This work may provide potential cross protective vaccine candidate antigens for three Vibrio species, and DLD may be considered as an effective cross-protective immunogen against three Vibrio species. Copyright © 2016. Published by Elsevier Ltd.

  8. [Evaluation of synthetic peptide vaccines against foot-and-mouth disease type A].

    Science.gov (United States)

    Tang, Hua; Liu, Xinsheng; Fang, Yuzhen; Jiang, Shoutian; Pan, Li; Lv, Jianliang; Zhang, Zhongwang; Zhou, Peng; Zhang, Yongguang; Wang, Yonglu

    2013-06-04

    We developed a synthetic vaccine against foot-and-mouth disease type A. We studied two peptide-based vaccines containing residues 131 to 159 of VP1, 20 to 35 of VP4, 21 to 35 of 3A and 29 to 42 of 3B of the AF/72 strain of foot-and-mouth disease virus (FMDV) coupled with a CpG oligodeoxynucleotide (5'-TCGCGAACGTTCGCCCGATCGTCGGTA-3') in guinea pigs. We assayed the FMDV-specific IgG level, serum neutralizing antibody titer, splenic lymphocytes proliferative capacity and peripheral blood T lymphocyte CD4-CD8 subsets distribution. The data show that high dose did not ensure a good immunity. In our study, 8% (4/5) of peptide 364-2.5-inoculated guinea pigs (2.5 microg of peptide 364 per animal) were protected against AF/72 strain challenge, while the protection ratio from other peptide-immunized groups was lower except the inactivated vaccine-inoculated group which showed a full protection. Our results also indicated that the stimulatory ability of CD4+ T lymphocyte response played a key role in evaluating effective FMDV vaccine. The highest percentage of CD4+ T lymphocyte was 36.6% appeared in inactivated vaccine-immunized guinea pigs, the second was 33.7% in peptide 364-2.5-vaccinated group, whereas the remaining ranged from 18.1% to 27.7%. There was no obvious relation between CD8+ T cells and anti-FMDV infection; our data showed that the CD4/CD8 ratio was not always appropriate for assessing the immune system status. In general, we not only designed an effective vaccine against FMDV type A, but also discovered some useful information of humoral and cellular responses induced by foot-and-mouth disease vaccines.

  9. A TLR9 agonist enhances the anti-tumor immunity of peptide and lipopeptide vaccines via different mechanisms.

    Science.gov (United States)

    Song, Ying-Chyi; Liu, Shih-Jen

    2015-07-28

    The toll-like receptor 9 (TLR9) agonists CpG oligodeoxynucleotides (CpG ODNs) have been recognized as promising adjuvants for vaccines against infectious diseases and cancer. However, the role of TLR9 signaling in the regulation of antigen uptake and presentation is not well understood. Therefore, to investigate the effects of TLR9 signaling, this study used synthetic peptides (IDG) and lipopeptides (lipoIDG), which are internalized by dendritic cells (DCs) via endocytosis-dependent and endocytosis-independent pathways, respectively. Our data demonstrated that the internalization of lipoIDG and IDG by bone marrow-derived dendritic cells (BMDCs) was not enhanced in the presence of CpG ODNs; however, CpG ODNs prolonged the co-localization of IDG with CpG ODNs in early endosomes. Surprisingly, CpG ODNs enhanced CD8(+) T cell responses, and the anti-tumor effects of IDG immunization were stronger than those of lipoIDG immunization. LipoIDG admixed with CpG ODNs induced low levels of CD8(+) T cells and partially inhibit tumor growth. Our findings suggest that CpG ODNs increase the retention of antigens in early endosomes, which is important for eliciting anti-tumor immunity. These results will facilitate the application of CpG adjuvants in the design of different vaccines.

  10. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge

    Science.gov (United States)

    Deliyannis, Georgia; Boyle, Jefferey S.; Brady, Jamie L.; Brown, Lorena E.; Lew, Andrew M.

    2000-06-01

    Improving the immunological potency, particularly the Ab response, is a serious hurdle for the protective efficacy and hence broad application of DNA vaccines. We examined the immunogenicity and protective efficacy of a hemagglutinin-based influenza DNA vaccine that was targeted to antigen-presenting cells (APCs) by fusion to CTLA4. The targeted vaccine was shown to induce an accelerated and increased Ab response (as compared with those receiving the nontargeted control) that was predominated by IgG1 and recognized conformationally dependent viral epitopes. Moreover, mice receiving the APC-targeted DNA vaccine had significantly reduced viral titers (100-fold) after a nonlethal virus challenge. The increased protective efficacy was most likely because of increased Ab responses, as cytotoxic T lymphocyte responses were not enhanced. Targeting was demonstrated by direct binding studies of CTLA4 fusion proteins to the cognate ligand (B7; expressed on APCs in vivo). In addition, a targeted protein was detected at 4-fold higher levels in draining lymph nodes within 2-24 h of administration. Therefore, this study demonstrates that targeting DNA-encoded antigen to APCs results in enhanced immunity and strongly suggests that this approach may be useful in improving the protective efficacy of DNA vaccines.

  11. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis.

    Science.gov (United States)

    Xin, Hong

    2016-01-04

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems.

    Science.gov (United States)

    Brun, Alejandro; Albina, Emmanuel; Barret, Tom; Chapman, David A G; Czub, Markus; Dixon, Linda K; Keil, Günther M; Klonjkowski, Bernard; Le Potier, Marie-Frédérique; Libeau, Geneviève; Ortego, Javier; Richardson, Jennifer; Takamatsu, Haru-H

    2008-12-02

    The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.

  13. Production of a DNA Vaccine Specific for the 64 kDa Protective Antigen of Erysipelothrix rhusiopathiae

    National Research Council Canada - National Science Library

    Middlebrooks, Bobby L

    2007-01-01

    The gene for the protective antigen of E. rhusiopathiae will be inserted into a eukaryotic vector both for the production of a DNA vaccine and for large scale production of the recombinant protein (in vitro...

  14. Antigen sparing and enhanced protection using a novel rOv-ASP-1 adjuvant in aqueous formulation with influenza vaccines.

    Science.gov (United States)

    Jiang, Jiu; Fisher, Erin M; Hensley, Scott E; Lustigman, Sara; Murasko, Donna M; Shen, Hao

    2014-05-13

    Influenza is one of the most common infectious diseases endangering the health of humans, especially young children and the elderly. Although vaccination is the most effective means of protection against influenza, frequent mutations in viral surface antigens, low protective efficacy of the influenza vaccine in the elderly, slow production process and the potential of vaccine supply shortage during a pandemic are significant limitations of current vaccines. Adjuvants have been used to enhance the efficacy of a variety of vaccines; however, no adjuvant is included in current influenza vaccines approved in the United States. In this study, we found that a novel adjuvant, rOv-ASP-1, co-administrated with inactivated influenza vaccine using an aqueous formulation, substantially improved the influenza-specific antibody response and protection against lethal infection in a mouse model. rOv-ASP-1 enhanced the magnitude of the specific antibody response after immunization with low doses of influenza vaccine, allowing antigen-sparring by 10-fold. The rOv-ASP-1 formulated vaccine induced a more rapid response and a stronger Th1-associated antibody response compared to vaccine alone and to the vaccine formulated with the adjuvant alum. Importantly, rOv-ASP-1 significantly enhanced cross-reactive antibody responses and protection against challenge with an antigenically distinct strain. These results demonstrate that rOv-ASP-1 is an effective adjuvant that: (1) accelerates and enhances the specific antibody response induced by influenza vaccine; (2) allows for antigen sparing; and (3) augments a Th1-biased and cross-reactive antibody response that confers protection against an antigenically distinct strain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Directory of Open Access Journals (Sweden)

    David Dauvillée

    2010-12-01

    Full Text Available Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS, the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii.We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species.This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that

  16. [Antigen differences of genetic variants Abent+ and Abent- poliovirus vaccine strain of III type].

    Science.gov (United States)

    Shyrobokov, V P; Kostenko, I H; Nikolaienko, I V

    2003-01-01

    Hybridomes--producers of monoclonal antibodies (MAB) were obtained able to differentiate the variants Abent+ and Abent- poliovirus vaccine strain in the virus neutralizing reaction. Using the obtained panel the changes of the epitope structure of capsid proteins of poliovirus variants (dissociants) were found which appeared during reproduction in cell culture. It proves the fact that there exist essential antigenic differences of superficial virion's proteins, which appear during the process of dissociation.

  17. Indoleamine 2,3-dioxygenase and survivin peptide vaccine combined with temozolomide in metastatic melanoma

    DEFF Research Database (Denmark)

    Nitschke, Nikolaj Juul; Bjoern, Jon; Iversen, Trine Zeeberg

    2017-01-01

    BACKGROUND: Indoleamine 2,3-dioxygenase (IDO) and survivin have been identified as potential targets for cancer vaccination. In this phase II study a vaccine using the peptides Sur1M2 and IDO5 was combined with the chemotherapy temozolomide (TMZ) for treatment of metastatic melanoma patients....... The aim was to simultaneously target several immune inhibiting mechanisms and the highly malignant cells expressing survivin. METHODS: HLA-A2 positive patients with advanced malignant melanoma were treated biweekly with 150 mg/m2 TMZ daily for 7 days followed by subcutaneous vaccination with 250 µg...... of each peptide in 500 µL Montanide solution at day 8. Granulocyte-macrophage colony-stimulating factor was used as an adjuvant and topical imiquimod was applied prior to vaccination. Treatment was continued until disease progression. Clinical response was evaluated by PET-CT and immunological outcome...

  18. Doubly Phosphorylated Peptide Vaccines to Protect Transgenic P301S Mice against Alzheimer’s Disease Like Tau Aggregation

    Directory of Open Access Journals (Sweden)

    Monique Richter

    2014-07-01

    Full Text Available Intracellular neurofibrillary tangles and extracellular senile plaques are potential targets for active and passive immunotherapies. In this study we used the transgenic mouse model P301S for active immunizations with peptide vaccines composed of a double phosphorylated tau neoepitope (pSer202/pThr205, pThr212/pSer214, pThr231/pSer235 and an immunomodulatory T cell epitope from the tetanus toxin or tuberculosis antigen Ag85B. Importantly, the designed vaccine combining Alzheimer’s disease (AD specific B cell epitopes with foreign (bacterial T cell epitopes induced fast immune responses with high IgG1 titers after prophylactic immunization that subsequently decreased over the observation period. The effectiveness of the immunization was surveyed by evaluating the animal behavior, as well as the pathology in the brain by biochemical and histochemical techniques. Immunized mice clearly lived longer with reduced paralysis than placebo-treated mice. Additionally, they performed significantly better in rotarod and beam walk tests at the age of 20 weeks, indicating that the disease development was slowed down. Forty-eight weeks old vaccinated mice passed the beam walk test significantly better than control animals, which together with the increased survival rates undoubtedly prove the treatment effect. In conclusion, the data provide strong evidence that active immune therapies can reduce toxic effects of deposits formed in AD.

  19. MHC class II-derived peptides can bind to class II molecules, including self molecules, and prevent antigen presentation

    DEFF Research Database (Denmark)

    Rosloniec, E F; Vitez, L J; Buus, S

    1990-01-01

    the alpha k-3 peptide binds slightly less well. These combined data, suggesting that class II-derived peptides can bind to MHC class II molecules, including the autologous molecule from which they are derived, have important implications for the molecular basis of alloreactivity and autoreactivity. Further...... found in the first and third polymorphic regions (PMR) of the A alpha k chain (alpha k-1 and alpha k-3) were capable of inhibiting the presentation of three different HEL-derived peptide antigens to their appropriate T cells. In addition, the alpha k-1 peptide inhibited the presentation of the OVA(323......-339) immunodominant peptide to the I-Ad-restricted T cell hybridomas specific for it. Prepulsing experiments demonstrated that the PMR peptides were interacting with the APC and not with the T cell hybridomas. These observations were confirmed and extended by the demonstration that the alpha k-1 and alpha k-3...

  20. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype.

    Science.gov (United States)

    Demento, Stacey L; Cui, Weiguo; Criscione, Jason M; Stern, Eric; Tulipan, Jacob; Kaech, Susan M; Fahmy, Tarek M

    2012-06-01

    Particulate vaccines are emerging promising technologies for the creation of tunable prophylactics against a wide variety of conditions. Vesicular and solid biodegradable polymer platforms, exemplified by liposomes and polyesters, respectively, are two of the most ubiquitous platforms in vaccine delivery studies. Here we directly compared the efficacy of each in a long-term immunization study and in protection against a model bacterial antigen. Immunization with poly(lactide-co-glycolide) (PLGA) nanoparticles elicited prolonged antibody titers compared to liposomes and alum. The magnitude of the cellular immune response was also highest in mice vaccinated with PLGA, which also showed a higher frequency of effector-like memory T cell phenotype, leading to an effective clearance of intracellular bacteria. The difference in performance of these two common particulate platforms is shown not to be due to material differences but appears to be connected to the kinetics of antigen delivery. Thus, this study highlights the importance of sustained antigen release mediated by particulate platforms and its role in the long-term appearance of effector memory cellular response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Structure-based design of chimeric antigens for multivalent protein vaccines.

    Science.gov (United States)

    Hollingshead, S; Jongerius, I; Exley, R M; Johnson, S; Lea, S M; Tang, C M

    2018-03-13

    There is an urgent need to develop vaccines against pathogenic bacteria. However, this is often hindered by antigenic diversity and difficulties encountered manufacturing membrane proteins. Here we show how to use structure-based design to develop chimeric antigens (ChAs) for subunit vaccines. ChAs are generated against serogroup B Neisseria meningitidis (MenB), the predominant cause of meningococcal disease in wealthy countries. MenB ChAs exploit factor H binding protein (fHbp) as a molecular scaffold to display the immunogenic VR2 epitope from the integral membrane protein PorA. Structural analyses demonstrate fHbp is correctly folded and the PorA VR2 epitope adopts an immunogenic conformation. In mice, immunisation with ChAs generates fHbp and PorA antibodies that recognise the antigens expressed by clinical MenB isolates; these antibody responses correlate with protection against meningococcal disease. Application of ChAs is therefore a potentially powerful approach to develop multivalent subunit vaccines, which can be tailored to circumvent pathogen diversity.

  2. Construction of two Listeria ivanovii attenuated strains expressing Mycobacterium tuberculosis antigens for TB vaccine purposes.

    Science.gov (United States)

    Lin, Qingqing; Zhou, Mengying; Xu, Zongkai; Khanniche, Asma; Shen, Hao; Wang, Chuan

    2015-02-20

    Bacillus Calmette-Guerin (BCG) has failed in complete control of tuberculosis (TB), thus, novel tuberculosis vaccines are urgently needed. We have constructed several TB vaccine candidates, which are characterized by the use of Listeria ivanovii (LI) strain as an antigen delivery vector. Two L. ivanovii attenuated recombinant strains L. ivanovii△actAplcB-Rv0129c and L. ivanovii△actAplcB-Rv3875 were successfully screened. Results from genome PCR and sequencing showed that the Mycobacterium tuberculosis antigen gene cassette coding for Ag85C or ESAT-6 protein respectively had been integrated into LI genome downstream of mpl gene. Western blot confirmed the secretion of Ag85C or ESAT-6 protein from the recombinant LI strains. These two recombinant strains showed similar growth curves as wide type strain in vitro. In vivo, they transiently propagated in mice spleen and liver, and induced specific CD8(+) IFN-γ secretion. Therefore, in this paper, two novel LI attenuated strains expressing specific TB antigens were successfully constructed. The promising growth characteristics in mice immune system and the capability of induction of IFN-γ secretion make them of potential interest for development of TB vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. IgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice.

    Science.gov (United States)

    Kao, Daniela; Lux, Anja; Schaffert, Anja; Lang, Roland; Altmann, Friedrich; Nimmerjahn, Falk

    2017-12-01

    Immunoglobulin G (IgG) glycosylation can modulate antibody effector functions. Depending on the precise composition of the sugar moiety attached to individual IgG glycovariants either pro- or anti-inflammatory effector pathways can be initiated via differential binding to type I or type II Fc-receptors. However, an in depth understanding of how individual IgG subclasses are glycosylated during the steady state and how their glycosylation pattern changes during vaccination is missing. To monitor IgG subclass glycosylation during the steady state and upon vaccination of mice with different T-cell dependent and independent antigens, tryptic digests of serum, and antigen-specific IgG preparations were analyzed by reversed phase-liquid chromatography-mass spectrometry. We show that there is a remarkable difference with respect to how individual IgG subclasses are glycosylated during the steady state. More importantly, upon T-cell dependent and independent vaccinations, individual antigen-specific IgG subclasses reacted differently with respect to changes in individual glycoforms, suggesting that the IgG subclass itself is a major determinant of restricting or allowing alterations in specific IgG glycovariants. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identification and characterization of HLA-A24-specific XBP1, CD138 (Syndecan-1) and CS1 (SLAMF7) peptides inducing antigens-specific memory cytotoxic T lymphocytes targeting multiple myeloma.

    Science.gov (United States)

    Bae, J; Hideshima, T; Zhang, G L; Zhou, J; Keskin, D B; Munshi, N C; Anderson, K C

    2018-03-01

    X-box binding protein 1 (XBP1), CD138 (Syndecan-1) and CS1 (SLAMF7) are highly expressed antigens in cancers including multiple myeloma (MM). Here, we identify and characterize immunogenic HLA-A24 peptides derived from these antigens for potential vaccination therapy of HLA-A24+ patients with MM. The identified immunogenic HLA-A24-specific XBP1 unspliced (UN) 185-193 (I S P W I L A V L), XBP1 spliced (SP) 223-231 (V Y P E G P S S L), CD138 265-273 (I F A V C L V G F) and CS1 240-248 (L F V L G L F L W) peptides induced antigen-specific CTL with anti-MM activity in an HLA-A24 restricted manner. Furthermore, a cocktail containing the four HLA-A24 peptides evoked MM-specific CTL with distinct phenotypic profiles (CD28, CD40L, 41BB, CD38, CD69) and anti-tumor activities, evidenced by perforin upregulation, CD107a degranulation (cytotoxicity) and Th1-type cytokines (IFN-γ/IL-2/TNF-α) production in response to HLA-A24 + MM cells. The multipeptide-specific CTL included antigen-specific memory CD8 + T cells expressing both T-cell activation (CD38, CD69) and immune checkpoints antigens (CTLA, PD-1, LAG-3, TIM-3). These results provide the framework for a multipeptide vaccination therapy to induce tumor-specific CTL in HLA-A24-positive patients with myeloma and other cancers expressing these antigens.

  5. A Molecular Basis for the Presentation of Phosphorylated Peptides by HLA-B Antigens*

    Science.gov (United States)

    Alpízar, Adán; Marino, Fabio; Ramos-Fernández, Antonio; Lombardía, Manuel; Jeko, Anita; Pazos, Florencio

    2017-01-01

    As aberrant protein phosphorylation is a hallmark of tumor cells, the display of tumor-specific phosphopeptides by Human Leukocyte Antigen (HLA) class I molecules can be exploited in the treatment of cancer by T-cell-based immunotherapy. Yet, the characterization and prediction of HLA-I phospholigands is challenging as the molecular determinants of the presentation of such post-translationally modified peptides are not fully understood. Here, we employed a peptidomic workflow to identify 256 unique phosphorylated ligands associated with HLA-B*40, -B*27, -B*39, or -B*07. Remarkably, these phosphopeptides showed similar molecular features. Besides the specific anchor motifs imposed by the binding groove of each allotype, the predominance of phosphorylation at peptide position 4 (P4) became strikingly evident, as was the enrichment of basic residues at P1. To determine the structural basis of this observation, we carried out a series of peptide binding assays and solved the crystal structures of HLA-B*40 in complex with a phosphorylated ligand or its nonphosphorylated counterpart. Overall, our data provide a clear explanation to the common motif found in the phosphopeptidomes associated to different HLA-B molecules. The high prevalence of phosphorylation at P4 is dictated by the presence of the conserved residue Arg62 in the heavy chain, a structural feature shared by most HLA-B alleles. In contrast, the preference for basic residues at P1 is allotype-dependent and might be linked to the structure of the A pocket. This molecular understanding of the presentation of phosphopeptides by HLA-B molecules provides a base for the improved prediction and identification of phosphorylated neo-antigens, as potentially used for cancer immunotherapy. PMID:27920218

  6. Calcium Binding by Ro 60 Multiple Antigenic Peptides on PVDF Membrane.

    Science.gov (United States)

    Kurien, Biji T; Bachmann, Michael P

    2015-01-01

    Antibodies directed against ribonucleoprotein (RNP) particles are observed in systemic lupus erythematosus. Ro RNP particle is one such target. It is composed of a 60 kDa protein (Ro 60 or SS-A) that is non-covalently associated with at least one of the four short uridine-rich RNAs (the hY RNAs). Previously, we showed that multiple antigenic peptides (MAPs) made from the sequence of the Ro 60 autoantigen could be used, using double-immunodiffusion studies, enzyme-linked immunosorbant assay, affinity chromatography, and surface plasmon resonance, to show intramolecular and intermolecular protein-protein interaction within the Ro 60 RNP particle. We also observed that calcium is important in mediating this interaction. We hypothesized, therefore, that 60 kDa Ro is a calcium-binding protein. To investigate this, we electrophoresed 60 kDa Ro MAPs, transferred them to PVDF membrane, and assayed calcium binding using the Quin-2 system. Several Ro 60 MAPs were found to bind calcium using this assay, as well as bovine serum albumin, another calcium-binding protein. However, a MAP constructed from the Sm autoantigen did not bind to calcium. These data, along with our observation regarding the involvement of calcium in protein-protein interaction occurring between Ro 60 antigen and Ro 60 MAPs, makes us propose that Ro 60 antigen is a calcium-binding protein.

  7. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    International Nuclear Information System (INIS)

    Kim, Sun Young; Song, Kyung-A; Kieff, Elliott; Kang, Myung-Soo

    2012-01-01

    Highlights: ► Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. ► A small molecule and a peptide as EBNA1 dimerization inhibitors identified. ► Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. ► Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)’s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459–607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-Jκ binding to the Jκ site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560–574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated with EBNA1 in vitro, and repressed EBNA1-dependent transcription in vivo. Collectively, this study describes two

  8. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Young; Song, Kyung-A [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kieff, Elliott [Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Kang, Myung-Soo, E-mail: mkang@skku.edu [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. Black-Right-Pointing-Pointer A small molecule and a peptide as EBNA1 dimerization inhibitors identified. Black-Right-Pointing-Pointer Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. Black-Right-Pointing-Pointer Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)'s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459-607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-J{kappa} binding to the J{kappa} site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560-574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated

  9. Structures of MART-126/27-35Peptide/HLA-A2 Complexes Reveal a Remarkable Disconnect between Antigen Structural Homology and T Cell Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Borbulevych, Oleg Y; Insaidoo, Francis K; Baxter, Tiffany K; Powell, Jr., Daniel J.; Johnson, Laura A; Restifo, Nicholas P; Baker, Brian M [NIH; (Notre)

    2008-09-17

    Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning amino acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26-35 decamer, although only the 27-35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26-35 and 27-35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-1{sub 26/27-35}-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27-35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone.

  10. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains.

    Science.gov (United States)

    Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo

    2007-10-10

    A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.

  11. Studies on associations of antinuclear antibodies with antibodies to an uveitogenic peptide of retinal S antigen in children with uveitis.

    Science.gov (United States)

    Rosenberg, A M; Hauta, S A; Prokopchuk, P A; Romanchuk, K G

    1996-02-01

    To determine if, in children with uveitis, antinuclear antibodies (ANA) are associated with antibodies to an uveitogenic peptide of a soluble retinal antigen and to the homologous nuclear antigen, histone 3 (H3). ANA occur in most children with juvenile rheumatoid arthritis (JRA) and associated uveitis. An uveitogenic segment of retinal soluble antigen (S antigen peptide) is homologous with a similarly uveitogenic peptide of H3. We investigated a possible association between ANA positivity, antibodies to H3, and antibodies to the uveitogenic S antigen peptide. The sera of 31 children with uveitis (20 of whom had associated JRA) were tested for the presence of ANA by indirect immunofluorescence. Antibodies to H3 and to an uveitogenic peptide of S antigen (an 18 mer segment having the amino acid sequence DTNLASSTIIKEGIDKTV) were measured by enzyme immunoassay. 19 of 20 children (95%) with JRA and associated uveitis and none of 11 with uveitis not associated with JRA had positive tests for ANA (X2 = 14.97; p < 0.00001). 16 of 19 ANA positive sera from subjects with JRA (84%) displayed reactivity with the chromosomal regions of metaphase cells. 9 of 20 patients with JRA with uveitis (45%) and 2 of 11 patients (18%) with uveitis not associated with JRA had antibodies to H3. Two uveitic patients with JRA (10%) and 2 non-JRA patients with uveitis (18%) reacted with S antigen peptide. Antibodies to H3 occurred significantly more frequently in children with uveitis than in all adult control subjects (X2 = 12.98; p = 0.003) and in adults with uveitis (X2 = 5.62; p = 0.022). Humoral immune responses to the uveitogenic peptide of S antigen and the homologous H3 antigen appear not to be uniquely important in the immunopathology of uveitis associated with JRA. Antibodies to isolated H3 do not exclusively account for ANA positivity in the uveitic patient with JRA. A unique immunopathogenic mechanism for the development of uveitis associated with JRA is suggested by the

  12. T-cell responses against Malaria: Effect of parasite antigen diversity and relevance for vaccine development.

    Science.gov (United States)

    Nlinwe, Omarine Nfor; Kusi, Kwadwo Asamoah; Adu, Bright; Sedegah, Martha

    2018-03-21

    The on-going agenda for global malaria elimination will require the development of additional disease control and prevention measures since currently available tools are showing signs of inadequacy. Malaria vaccines are seen as one such important addition to the control arsenal since vaccines have proven to be highly effective public health tools against important human diseases. Both cell-mediated and antibody responses are generally believed to be important for malaria parasite control, although the exact targets of T and B cell responses against malaria have not been clearly defined. However, our current understanding of the immune response to malaria suggests that T cell responses against multiple antigenic targets may potentially be key for the development of a highly efficacious malaria vaccine. This review takes a comprehensive look at the available literature on T cell-mediated immunity against all human stages of the malaria parasite and the effect of antigen diversity on these responses. The implications of these interrelationships for the development of an effective vaccine for malaria are also highlighted. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A Preventive Approach to Impetigo of Treaty Indians Using Staphylococcus Polyvalent Somatic Antigen Vaccine

    Science.gov (United States)

    Dillenberg, H.; Waldron, M. P. D.

    1963-01-01

    In a controlled study, Greenberg's staphylococcal polyvalent somatic antigen vaccine was administered to 190 Indian volunteers of a reserve in Saskatchewan in an attempt to reduce the incidence of impetigo. An intradermal skin test dose of 0.1 ml. was given initially. Reactors were forthwith placed in a separate category, otherwise this test injection was followed by intramuscular injection of 0.25 ml. of the vaccine, repeated a second time after six weeks. One hundred and sixty-nine controls received “placebo vaccine”. Four months later the number of cases of impetigo in the vaccinated group had been reduced from 55 to 16. There was no reduction in the control group. The preventive effect waned after five months. The results of this field trial are considered encouraging. PMID:14052980

  14. [VLP vaccines and effects of HIV-1 Env protein modifications on their antigenic properties].

    Science.gov (United States)

    Vzorov, A N; Compans, R W

    2016-01-01

    An ideal protective HIV-1 vaccine can elicit broadly neutralizing antibodies, capable of preventing HIV transmission. The strategies of designing vaccines include generation of soluble recombinant proteins which mimic the native Env complex and are able to enhance the immunogenicity of gp120. Recent data indicate that the cytoplasmic tail (CT) of the Env protein has multiple functions, which can affect the early steps of infection, as well as viral assembly and antigenic properties. Modifications in the CT can be used to induce conformational changes in functional regions of gp120 and to stabilize the trimeric structure, avoiding immune misdirection and induction of non-neutralizing antibody responses. Env-trimers with modified CTs in virus-like particles (VLPs) are able to induce antibodies with broad spectrum neutralizing activity and high avidity and have the potential for developing an effective vaccine against HIV.

  15. A Brief Review of Computer-Assisted Approaches to Rational Design of Peptide Vaccines

    Directory of Open Access Journals (Sweden)

    Ashesh Nandy

    2016-05-01

    Full Text Available The growing incidences of new viral diseases and increasingly frequent viral epidemics have strained therapeutic and preventive measures; the high mutability of viral genes puts additional strains on developmental efforts. Given the high cost and time requirements for new drugs development, vaccines remain as a viable alternative, but there too traditional techniques of live-attenuated or inactivated vaccines have the danger of allergenic reactions and others. Peptide vaccines have, over the last several years, begun to be looked on as more appropriate alternatives, which are economically affordable, require less time for development and hold the promise of multi-valent dosages. The developments in bioinformatics, proteomics, immunogenomics, structural biology and other sciences have spurred the growth of vaccinomics where computer assisted approaches serve to identify suitable peptide targets for eventual development of vaccines. In this mini-review we give a brief overview of some of the recent trends in computer assisted vaccine development with emphasis on the primary selection procedures of probable peptide candidates for vaccine development.

  16. Induction of partial protection against infection with Toxoplasma gondii genotype II by DNA vaccination with recombinant chimeric tachyzoite antigens

    DEFF Research Database (Denmark)

    Rosenberg, Carina Agerbo; De Craeye, S.; Jongert, E.

    2009-01-01

    complications. Although several strategies have been suggested for making a vaccine, none is currently available. Here, we investigate the protection conferred by DNA vaccination with two constructs, pcEC2 (MIC2-MIC3-SAG1) and pcEC3 (GRA3-GRA7-M2AP), encoding chimeric proteins containing multiple antigenic...

  17. Identifying protective Streptococcus pyogenes vaccine antigens recognized by both B and T cells in human adults and children

    DEFF Research Database (Denmark)

    Mortensen, Rasmus; Nissen, Thomas Nørrelykke; Fredslund, Sine

    2016-01-01

    No commercial vaccine exists against Group A streptococci (GAS; Streptococcus pyogenes) and only little is known about anti-GAS protective immunity. In our effort to discover new protective vaccine candidates, we selected 21 antigens based on an in silico evaluation. These were all well...

  18. Evaluation of antigens stability of tobacco seeds as edible vaccine against VTEC strains

    Directory of Open Access Journals (Sweden)

    Luciana Rossi

    2015-11-01

    Full Text Available Plants have represent a promising alternative for biopharmaceutical proteins (Ma et al., 2003; Rossi et al., 2014. Many plant based edible vaccines have been shown to be effective in inducing local immune responses (Rossi et al., 2013. Edible vaccines can activate both mucosal and systemic immunity, as they come in contact with the digestive tract lining. This dual effect would provide first-line defense against pathogens invading through the mucosa. The antigens are released in the intestines are taken up by M cells that are present over the Payer’s patches (in the ileum and the gut associated lymphoid tissue (GALT. Edible vaccines represent an important worldwide goal for the prevention of the enteric diseases, also in livestock. In particular, the enteric infections are a significant clinical problem in pigs. Verocytotoxic Escherichia (E. coli strains are responsible for serious enterotoxaemia that causes important economic losses in the pig industry. The production of a vaccine for oral administration of transgenic seeds could be a practical and efficient system to prevent the infection and to reduce the antibiotic use. This study was focused on tobacco plants, previously transformed by agroinfection for the seed-specific expression of antigenic proteins (F18 adhesive fimbriae and the B subunit of the Vt2e toxin as model of edible vaccines against verocytotoxic E. coli strains. The dietary administration of transgenic tobacco seeds promotes a significant increase in the number of mucosal IgA-producing cells of the tunica propria in both small and large intestine in mice (Rossi et al., 2013. A protective effect of oral administration of transgenic tobacco seeds was also observed against verocytotoxic Escherichia coli infection in piglets (Rossi et al., 2014. The aim of this study was to assess the seed-expression stability, that is a important requirement in the vaccine production, of F 18 and Vt2e-B heterologous genes into the progeny of

  19. Approach to discover T- and B-cell antigens of intracellular pathogens applied to the design of Chlamydia trachomatis vaccines

    Science.gov (United States)

    Finco, Oretta; Frigimelica, Elisabetta; Buricchi, Francesca; Petracca, Roberto; Galli, Giuliano; Faenzi, Elisa; Meoni, Eva; Bonci, Alessandra; Agnusdei, Mauro; Nardelli, Filomena; Bartolini, Erika; Scarselli, Maria; Caproni, Elena; Laera, Donatello; Zedda, Luisanna; Skibinski, David; Giovinazzi, Serena; Bastone, Riccardo; Ianni, Elvira; Cevenini, Roberto; Grandi, Guido; Grifantini, Renata

    2011-01-01

    Natural immunity against obligate and/or facultative intracellular pathogens is usually mediated by both humoral and cellular immunity. The identification of those antigens stimulating both arms of the immune system is instrumental for vaccine discovery. Although high-throughput technologies have been applied for the discovery of antibody-inducing antigens, few examples of their application for T-cell antigens have been reported. We describe how the compilation of the immunome, here defined as the pool of immunogenic antigens inducing T- and B-cell responses in vivo, can lead to vaccine candidates against Chlamydia trachomatis. We selected 120 C. trachomatis proteins and assessed their immunogenicity using two parallel high-throughput approaches. Protein arrays were generated and screened with sera from C. trachomatis-infected patients to identify antibody-inducing antigens. Splenocytes from C. trachomatis-infected mice were stimulated with 79 proteins, and the frequency of antigen-specific CD4+/IFN-γ+ T cells was analyzed by flow cytometry. We identified 21 antibody-inducing antigens, 16 CD4+/IFN-γ+–inducing antigens, and five antigens eliciting both types of responses. Assessment of their protective activity in a mouse model of Chlamydia muridarum lung infection led to the identification of seven antigens conferring partial protection when administered with LTK63/CpG adjuvant. Protection was largely the result of cellular immunity as assessed by CD4+ T-cell depletion. The seven antigens provided robust additive protection when combined in four-antigen combinations. This study paves the way for the development of an effective anti-Chlamydia vaccine and provides a general approach for the discovery of vaccines against other intracellular pathogens. PMID:21628568

  20. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant Mycoplasma hyopneumoniae antigen vaccines

    Directory of Open Access Journals (Sweden)

    Veridiana Gomes Virginio

    2017-01-01

    Full Text Available The adjuvant potential of two mesoporous silica nanoparticles (MSNs, SBa-15 and SBa-16, was assessed in combination with a recombinant HSP70 surface polypeptide domain from Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia (PEP. The recombinant antigen (HSP70212-600, previously shown as immunogenic in formulation with classic adjuvants, was used to immunize BALB/c mice in combination with SBa-15 or SBa-16 MSNs, and the effects obtained with these formulations were compared to those obtained with alum, the adjuvant traditionally used in anti-PEP bacterins. The HSP70212-600 + SBa-15 vaccine elicited a strong humoral immune response, with high serum total IgG levels, comparable to those obtained using HSP70212-600 + alum. The HSP70212-600 + SBa-16 vaccine elicited a moderate humoral immune response, with lower levels of total IgG. The cellular immune response was assessed by the detection of IFN-γ, IL-4 and IL-10 in splenocyte culture supernatants. The HSP70212-600 + SBa-15 vaccine increased IFN-γ, IL-4 and IL-10 levels, while no stimulation was detected with the HSP70212-600 + SBa-16 vaccine. The HSP70212-600 + SBa-15 vaccine induced a mixed Th1/Th2-type response, with an additional IL-10 mediated anti-inflammatory effect, both of relevance for an anti-PEP vaccine. Alum adjuvant controls stimulated an unspecific cellular immune response, with similar levels of cytokines detected in mice immunized either with HSP70212-600 + alum or with the adjuvant alone. The better humoral and cellular immune responses elicited in mice indicated that SBa-15 has adjuvant potential, and can be considered as an alternative to the use of alum in veterinary vaccines. The use of SBa-15 with HSP70212-600 is also promising as a potential anti-PEP subunit vaccine formulation.

  1. [Immune response of melanoma antigen gene-3 modified dendritic cell vaccines in gastric carcinoma].

    Science.gov (United States)

    He, Song-bing; Wang, Liang; Zhang, Yan-yun

    2009-05-01

    To investigate the anti-gastric carcinoma immunological efficacy of dendritic cells (DC) precursors, that were mobilized into the peripheral blood by injection of macrophage inflammation protein-1 alpha (MIP-1 alpha), and induced by DC vaccine expressing melanoma antigen gene-3 (MAGE-3) ex vivo and in vivo. 615 mice were injected with MIP-1 alpha via the tail vein. Freshly isolated B220(-) CD11c+ cells were cultured with cytokines and assayed by phenotype analysis and mixed lymphocyte reaction (MLR). For adenoviral (Ad)-mediated gene transduction, cultured B220(-) CD11c+ cells were incubated with Ad-melanoma antigen gene-3. MIP-1 alpha-mobilized B220(-) CD11c+ cells pulsed MFC cells tumor lysate were used as positive control. The stimulated DC vaccination-induced T lymphocytes, and the killing effect of the T cells on gastric carcinoma cells were assayed by MTT. INF-gamma production was determined with the INF-gamma ELISA kit. To establish the solid tumor model, groups of 615 mice were injected with MFC cells subcutaneously into the abdominal wall. MIP-1 alpha-mobilized DC vaccines expressing MAGE-3 gene were used to immunize the mice after the challenge of MFC cells, then the tumor size and the survival of mice were examined to detect the therapeutic effect of DC vaccines. B220(-) CD11c+ cells increased obviously after MIP-1 alpha injection, and freshly isolated B220(-) CD11c+ cells cultured with mGM-CSF, IL-4, and mTNF-alpha were phenotypically identical to typical DC, gained the capacity to stimulate allogeneic T cells. These MIP-1 alpha-mobilized DCs were transduced with Ad-MAGE-3, which were prepared for DC vaccines expressing tumor antigen. T lymphocytes stimulated with DC-transduced with Ad-MAGE-3 showed specific killing effect on gastric carcinoma cells and produced high levels of INF-gamma [(1460.00 +/- 16.82) pg/ml]. Five days after the MFC cells challenge, the mice were subsequently injected with DC vaccines. The tumor size of the experimental group was

  2. Antigen processing of glycoconjugate vaccines; the polysaccharide portion of the pneumococcal CRM(197) conjugate vaccine co-localizes with MHC II on the antigen processing cell surface.

    Science.gov (United States)

    Lai, Zengzu; Schreiber, John R

    2009-05-21

    Pneumococcal (Pn) polysaccharides (PS) are T-independent (TI) antigens and do not induce immunological memory or antibodies in infants. Conjugation of PnPS to the carrier protein CRM(197) induces PS-specific antibody in infants, and memory similar to T-dependent (Td) antigens. Conjugates have improved immunogenicity via antigen processing and presentation of carrier protein with MHC II and recruitment of T cell help, but the fate of the PS attached to the carrier is unknown. To determine the location of the PS component of PnPS-CRM(197) in the APC, we separately labeled PS and protein and tracked their location. The PS of types 14-CRM(197) and 19F-CRM(197) was specifically labeled by Alexa Fluor 594 hydrazide (red). The CRM(197) was separately labeled red in a reaction that did not label PS. Labeled antigens were incubated with APC which were fixed, permeabilized and incubated with anti-MHC II antibody labeled green by Alexa Fluor 488, followed by confocal microscopy. Labeled CRM(197) was presented on APC surface and co-localized with MHC II (yellow). Labeled unconjugated 14 or 19F PS did not go to the APC surface, but PS labeled 14-CRM(197) and 19F-CRM(197) was internalized and co-localized with MHC II. Monoclonal antibody to type 14 PS bound to intracellular type 14 PS and PS-CRM(197). Brefeldin A and chloroquine blocked both CRM(197) and PS labeled 14-CRM(197) and 19F-CRM(197) from co-localizing with MHC II. These data suggest that the PS component of the CRM(197) glycoconjugate enters the endosome, travels with CRM(197) peptides to the APC surface and co-localizes with MHC II.

  3. TSOL18 Vaccine Antigen of Taenia solium: Development of Monoclonal Antibodies and Field Testing of the Vaccine in Cameroon

    Directory of Open Access Journals (Sweden)

    Assana, E.

    2010-01-01

    Full Text Available Chapter 1 reviews the literature about the immunological aspects of taeniid cestode infections and the existing vaccines against Taenia solium cysticercosis in pigs. One of the most promising vaccines is TSOL18, a protein that has been identified in the oncosphere of Taenia solium and expressed as a recombinant molecule in E. coli. Repeated experimental trials have shown that this vaccine is able to protect up to 100% of the immunised pigs against a challenge infection with T. solium. Antibodies raised by the vaccine are capable of killing the parasite in in vitro cultures and it is believed that antibody and complement mediated killing of invading parasites is the major protective immune mechanism induced by vaccination with TSOL18. The identification of the villages with a high risk of T. solium infection, which could subsequently be used in the vaccine trial, is reported in chapter 2. A survey was conducted in 150 households owning 1756 pigs in the rural areas of Mayo-Danay division in the far north region of Cameroon. A questionnaire survey was carried out to collect information on the pig farming system and to identify potential risk factors for T. solium cysticercosis infection in pigs. Blood samples were collected from 398 pigs with the aim of estimating the sero-prevalence of Taenia solium cysticercosis. The results showed that 90.7% of the pigs were free roaming during the dry season and that 42.7% of households keeping pigs in the rural areas had no latrine facility. Seventy six percent of the interviewed pig owners affirmed that the members of the household used open field defecation. ELISA for antigen and antibody detection showed an apparent prevalence of porcine cysticercosis of 24.6% and 32.2%, respectively. A Bayesian approach using the conditional dependence between the two diagnostic tests indicated that the true sero-prevalence of cysticercosis in Mayo-Danay was 26.6%. Binary logistic regression analysis indicated that the

  4. Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses: Consequences for vaccine strain selection.

    Science.gov (United States)

    Peeters, Ben; Reemers, Sylvia; Dortmans, Jos; de Vries, Erik; de Jong, Mart; van de Zande, Saskia; Rottier, Peter J M; de Haan, Cornelis A M

    2017-03-01

    Highly pathogenic H5N1 avian influenza A viruses display a remarkable genetic and antigenic diversity. We examined to what extent genetic distances between several H5N1 viruses from different clades correlate with antigenic differences and vaccine performance. H5-specific antisera were generated, and cross-reactivity and antigenic distances between 12 different viruses were determined. In general, antigenic distances increased proportional to genetic distances although notable exceptions were observed. Antigenic distances correlated better with genetic variation in 27 selected, antigenically-relevant H5 residues, than in the complete HA1 domain. Variation in these selected residues could accurately predict the antigenic distances for a novel H5N8 virus. Protection provided by vaccines against heterologous H5N1 challenge viruses indicated that cross-protection also correlates better with genetic variation in the selected antigenically-relevant residues than in complete HA1. When time is limited, variation at these selected residues may be used to accurately predict antigenic distance and vaccine performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A potential role for epigenetic modulatory drugs in the enhancement of cancer/germ-line antigen vaccine efficacy.

    Science.gov (United States)

    Karpf, Adam R

    2006-01-01

    The discovery of epigenetic silencing as a key mechanism of tumor suppressor gene inactivation in human cancer has led to great interest in utilizing epigenetic modulatory drugs as cancer therapeutics. It is less appreciated that medically important tumor-associated antigens, particularly the Cancer Testis or Cancer/Germ-line family of antigens (CG antigens), which are being actively tested as cancer vaccine targets, are epigenetically activated in many human cancers. However, a major limitation to the therapeutic value of CG antigen-directed vaccines is the limited and heterogeneous expression of CG antigens in tumors. Recent work has begun to dissect the specific epigenetic mechanisms controlling differential expression of CG antigen genes in human cancers. From a clinical perspective, convincing data indicate that epigenetic modulatory agents, including DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, robustly promote the expression of CG antigens, as well as class I major histocompatibility complex (MHC I) and other immune costimulatory molecules, in tumors. Importantly, the effects of these agents on CG antigen gene expression often show marked specificity for tumor cells as compared to normal cells. Taken together, these data encourage clinical evaluation of combination therapies involving epigenetic modulatory drugs and CG antigen-directed tumor vaccines for the treatment of human malignancies.

  6. A recombinant multi-antigen vaccine with broad protection potential against avian pathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Angelica Van Goor

    Full Text Available Chickens are a major source of protein worldwide, yet infectious diseases continue to threaten the poultry industry. Avian pathogenic Escherichia coli (APEC, a subgroup of extraintestinal pathogenic E. coli (ExPEC, causes colibacillosis in chickens resulting in economic loss because of treatment, condemnation of products, and death. In this study, we evaluated a recombinant antigens (rAg vaccine combining common ExPEC surface proteins EtsC, OmpA, OmpT, and TraT for broad protective potential against APEC infections in chickens. The specific objectives were to evaluate antibody (serum and cytokines (lymphoid organs responses to vaccination; in vitro bactericidal ability of serum and splenocytes against multiple APEC serotypes; and in vivo protection against APEC challenge in chickens. Groups of four-day old chickens (N = 10 were vaccinated twice (two-week interval subcutaneously with rAgs alone or in combination and CpG adjuvant or PBS (control. IgY antibody in the serum and mRNA expression of IL-1β, IL-6, IL-18, IFN-γ, IL-4, IFN-β, and IL-8 in bursa, spleen, and thymus were measured using ELISA and RT-qPCR, respectively. Serum and splenocytes were tested for their bactericidal ability in vitro against multiple APEC isolates. Vaccinated and non-vaccinated chickens were challenged with 108 CFU of APEC-O2 via air sac at 31 days post first vaccination. Vaccine protection was determined by the decrease of bacterial loads in blood and organs (lung, heart, spleen, and liver, as well as gross colibacillosis lesion scores in air sac, heart, and liver. Vaccination significantly (P < 0.05 elicited IgY against specific antigens, induced immune related mRNA expression in the spleen and bursa, reduced in vitro growth of multiple APEC serotypes, and decreased bacterial loads in the heart and spleen, and gross lesion scores of the air sac, heart and liver in chickens. The vaccine reported may be used to provide broad protection against APEC strains

  7. A recombinant multi-antigen vaccine with broad protection potential against avian pathogenic Escherichia coli.

    Science.gov (United States)

    Van Goor, Angelica; Stromberg, Zachary R; Mellata, Melha

    2017-01-01

    Chickens are a major source of protein worldwide, yet infectious diseases continue to threaten the poultry industry. Avian pathogenic Escherichia coli (APEC), a subgroup of extraintestinal pathogenic E. coli (ExPEC), causes colibacillosis in chickens resulting in economic loss because of treatment, condemnation of products, and death. In this study, we evaluated a recombinant antigens (rAg) vaccine combining common ExPEC surface proteins EtsC, OmpA, OmpT, and TraT for broad protective potential against APEC infections in chickens. The specific objectives were to evaluate antibody (serum) and cytokines (lymphoid organs) responses to vaccination; in vitro bactericidal ability of serum and splenocytes against multiple APEC serotypes; and in vivo protection against APEC challenge in chickens. Groups of four-day old chickens (N = 10) were vaccinated twice (two-week interval) subcutaneously with rAgs alone or in combination and CpG adjuvant or PBS (control). IgY antibody in the serum and mRNA expression of IL-1β, IL-6, IL-18, IFN-γ, IL-4, IFN-β, and IL-8 in bursa, spleen, and thymus were measured using ELISA and RT-qPCR, respectively. Serum and splenocytes were tested for their bactericidal ability in vitro against multiple APEC isolates. Vaccinated and non-vaccinated chickens were challenged with 108 CFU of APEC-O2 via air sac at 31 days post first vaccination. Vaccine protection was determined by the decrease of bacterial loads in blood and organs (lung, heart, spleen, and liver), as well as gross colibacillosis lesion scores in air sac, heart, and liver. Vaccination significantly (P < 0.05) elicited IgY against specific antigens, induced immune related mRNA expression in the spleen and bursa, reduced in vitro growth of multiple APEC serotypes, and decreased bacterial loads in the heart and spleen, and gross lesion scores of the air sac, heart and liver in chickens. The vaccine reported may be used to provide broad protection against APEC strains, increasing animal

  8. Comparative testing of six antigen-based malaria vaccine candidates directed toward merozoite-stage Plasmodium falciparum

    DEFF Research Database (Denmark)

    Arnot, David E; Cavanagh, David R; Remarque, Edmond J

    2008-01-01

    Immunogenicity testing of Plasmodium falciparum antigens being considered as malaria vaccine candidates was undertaken in rabbits. The antigens compared were recombinant baculovirus MSP-1(19) and five Pichia pastoris candidates, including two versions of MSP-1(19), AMA-1 (domains I and II), AMA-1......G concentrations. The two P. pastoris-produced MSP-1(19)-induced IgGs conferred the lowest growth inhibition. Comparative analysis of immunogenicity of vaccine antigens can be used to prioritize candidates before moving to expensive GMP production and clinical testing. The assays used have given discriminating...

  9. Immune responses to oral vaccination with Salmonella-delivered avian pathogenic Escherichia coli antigens and protective efficacy against colibacillosis.

    Science.gov (United States)

    Lee, John Hwa; Chaudhari, Atul A; Oh, In Gyoung; Eo, Seong Kug; Park, Sang-Youel; Jawale, Chetan V

    2015-07-01

    In this study, the immune responses to and protective efficacy of a live attenuated Salmonella-delivered vaccine candidate secreting the papA, papG, iutA, and clpG antigens of Escherichia coli were evaluated against infection with avian pathogenic E. coli (APEC) in layer chickens. Primary vaccination was done at age 7 d and booster vaccination at age 5 wk. The levels of intestinal secretory immunoglobulin A specific to the 4 antigens were significantly higher in the vaccinated group than in the control group. A potent lymphocyte-proliferation response and increased levels of interferon-γ, interleukin-2, and interleukin-6 in the plasma and in culture supernatants of antigen-stimulated lymphocytes from the vaccinated group suggested significant induction of the cell-mediated immune response in this group compared with the control group. Upon challenge with a virulent APEC strain at 8 wk of age, the vaccinated group had no deaths, whereas the control group had a 15% mortality rate. In addition, the morbidity rate was significantly higher in the control group (55%) than in the vaccinated group (15%). Thus, giving primary and booster vaccination with the Salmonella-delivered APEC vaccine candidate significantly elevated both mucosal and cellular immune responses, which protected the chickens against colibacillosis.

  10. Construction of an enantiopure bivalent nicotine vaccine using synthetic peptides.

    Directory of Open Access Journals (Sweden)

    David F Zeigler

    Full Text Available Clinical outcomes of anti-nicotine vaccines may be improved through enhancements in serum antibody affinity and concentration. Two strategies were explored to improve vaccine efficacy in outbred mice: the use of enantiopure haptens and formulation of a bivalent vaccine. Vaccines incorporating natural (- nicotine haptens improved relative antibody affinities >10-fold over (+ haptens, stimulated a two-fold boost in nicotine serum binding capacity, and following injection with 3 cigarette equivalents of nicotine, prevented a larger proportion of nicotine (>85% from reaching the brain. The activity of a bivalent vaccine containing (- 3'AmNic and (- 1'SNic haptens was then compared to dose-matched monovalent groups. It was confirmed that antisera generated by these structurally distinct haptens have minimal cross-reactivity and stimulate different B cell populations. Equivalent antibody affinities were detected between the three groups, but the bivalent group showed two-fold higher titers and an additive increase in nicotine serum binding capacity as compared to the monovalent groups. Mice immunized with the bivalent formulation also performed better in a nicotine challenge experiment, and prevented >85% of a nicotine dose equivalent to 12 cigarettes from reaching the brain. Overall, enantiopure conjugate vaccines appear to improve serum antibody affinity, while multivalent formulations increase total antibody concentration. These findings may help improve the performance of future clinical candidate vaccines.

  11. Intranasal Vaccination against Cutaneous Leishmaniasis with a Particulated Leishmanial Antigen or DNA Encoding LACK

    Science.gov (United States)

    Pinto, Eduardo Fonseca; Pinheiro, Roberta Olmo; Rayol, Alice; Larraga, Vicente; Rossi-Bergmann, Bartira

    2004-01-01

    We have previously demonstrated that oral delivery of a disease-promoting particulated antigen of Leishmania amazonensis (LaAg) partially protects mice against cutaneous leishmaniasis. In the present work, we sought to optimize a mucosal vaccine by using the intranasal route for delivery of different antigen preparations, including (i) LaAg, (ii) soluble recombinant p36/LACK leishmanial antigen (LACK), and (iii) plasmid DNA encoding LACK (LACK DNA). BALB/c mice that received two intranasal doses of 10 μg of LaAg and were challenged 1 week postvaccination with L. amazonensis developed delayed but effective control of lesion growth. A diminished parasite burden was accompanied by enhancement of both gamma interferon (IFN-γ) and interleukin-10 levels in the lesion-draining lymph nodes. The vaccine efficacy improved with time. At 4 months postvaccination, when a strong parasite-specific TH1-type response was present in vivo, the infection was controlled for at least 5 months after challenge. In contrast to the particulated LaAg, soluble LACK (10 μg/dose) had no effect. Interestingly, LACK DNA (30 μg/dose), but not empty DNA, promoted rapid and durable protective immunity. Parasite growth was effectively controlled, and at 5 months after challenge LACK-reactive cells in both the mucosal and lesion-draining lymph nodes produced high levels of IFN-γ. These results demonstrate for the first time the feasibility of using the intranasal route for long-lived memory vaccination against cutaneous leishmaniasis with adjuvant-free crude antigens or DNA. PMID:15271911

  12. Adequate antigen availability: a key issue for novel approaches to tumor vaccination and tumor immunotherapy.

    Science.gov (United States)

    Accolla, Roberto S; Tosi, Giovanna

    2013-03-01

    A crucial parameter for activation of the anti-tumor immune response is an adequate antigen availability (AAA) defined here as the optimal tumor antigen dose and related antigen processing and MHC-II-restricted presentation necessary to efficiently trigger tumor-specific TH cells. We will discuss two distinct experimental systems: a) a preventive anti-tumor vaccination system; b) a therapy-induced anti-tumor vaccination approach. In the first case tumor cells are rendered constitutively MHC-II+ by transfecting them with the MHC-II transcriptional activator CIITA. Here AAA is generated by the function of tumor's newly expressed MHC-II molecules to present tumor-associated antigens to tumor-specific TH cells. In the second case, AAA is generated by treating established tumors with neovasculature-targeted TNFα. In conjuction with Melphalan, targeted TNFα delivery produces extensive areas of tumor necrosis that generate AAA capable of optimally activate tumor-specific TH cells which in turn activate CTL immune effectors. In both experimental systems tumor rejection and persistent and long-lived TH cell anti-tumor memory, responsible of defending the animals from subsequent challenges with tumor cells, are achieved. Based on these and other investigators' results we propose that AAA is a key element for triggering adaptive immune functions resulting in subversion from a pro-tumor to an anti-tumor microenvironment, tumor rejection and acquisition of anti-tumor immune memory. Hypotheses of neuro-immune networks involved in these approaches are discussed. These considerations are important also for the comprehension of how chemotherapy and/or radiation therapies may help to block and/or to eradicate the tumor and for the construction of suitable anti-tumor vaccine strategies.

  13. Enhanced protective efficacy of a chimeric form of the schistosomiasis vaccine antigen Sm-TSP-2.

    Directory of Open Access Journals (Sweden)

    Mark S Pearson

    Full Text Available The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1 and IgG(3 from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1, suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic.

  14. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts.

    Science.gov (United States)

    Arlen, Philip A; Singleton, Michael; Adamovicz, Jeffrey J; Ding, Yi; Davoodi-Semiromi, Abdolreza; Daniell, Henry

    2008-08-01

    The chloroplast bioreactor is an alternative to fermentation-based systems for production of vaccine antigens and biopharmaceuticals. We report here expression of the plague F1-V fusion antigen in chloroplasts. Site-specific transgene integration and homoplasmy were confirmed by PCR and Southern blotting. Mature leaves showed the highest level of transgene expression on the third day of continuous illumination, with a maximum level of 14.8% of the total soluble protein. Swiss Webster mice were primed with adjuvant-containing subcutaneous (s.c.) doses of F1-V and then boosted with either adjuvanted s.c. doses (s.c. F1-V mice) or unadjuvanted oral doses (oral F1-V mice). Oral F1-V mice had higher prechallenge serum immunoglobulin G1 (IgG1) titers than s.c. F1-V mice. The corresponding serum levels of antigen-specific IgG2a and IgA were 2 and 3 orders of magnitude lower, respectively. After vaccination, mice were exposed to an inhaled dose of 1.02 x 10(6) CFU of aerosolized Yersinia pestis CO92 (50% lethal dose, 6.8 x 10(4) CFU). All control animals died within 3 days. F1-V given s.c. (with adjuvant) protected 33% of the immunized mice, while 88% of the oral F1-V mice survived aerosolized Y. pestis challenge. A comparison of splenic Y. pestis CFU counts showed that there was a 7- to 10-log reduction in the mean bacterial burden in survivors. Taken together, these data indicate that oral booster doses effectively elicit protective immune responses in vivo. In addition, this is the first report of a plant-derived oral vaccine that protected animals from live Y. pestis challenge, bringing the likelihood of lower-cost vaccines closer to reality.

  15. Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions.

    Science.gov (United States)

    Kim, S B; Seo, I S; Khan, M A; Ki, K S; Lee, W S; Lee, H J; Shin, H S; Kim, H S

    2007-09-01

    This study evaluated the influence of various enzymes on the hydrolysis of whey protein concentrate (WPC) to reduce its antigenic fractions and to quantify the peptides having iron-binding ability in its hydrolysates. Heated (for 10 min at 100 degrees C) WPC (2% protein solution) was incubated with 2% each of Alcalase, Flavourzyme, papain, and trypsin for 30, 60, 90, 120, 150, 180, and 240 min at 50 degrees C. The highest hydrolysis of WPC was observed after 240 min of incubation with Alcalase (12.4%), followed by Flavourzyme (12.0%), trypsin (10.4%), and papain (8.53%). The nonprotein nitrogen contents of WPC hydrolysate followed the hydrolytic pattern of whey. The major antigenic fractions (beta-lactoglobulin) in WPC were degraded within 60 min of its incubation with Alcalase, Flavourzyme, or papain. Chromatograms of enzymatic hydrolysates of heated WPC also indicated complete degradation of beta-lactoglobulin, alpha-lactalbumin, and BSA. The highest iron solubility was noticed in hydrolysates derived with Alcalase (95%), followed by those produced with trypsin (90%), papain (87%), and Flavourzyme (81%). Eluted fraction 1 (F-1) and fraction 2 (F-2) were the respective peaks for the 0.25 and 0.5 M NaCl chromatographic step gradient for analysis of hydrolysates. Iron-binding ability was noticeably higher in F-1 than in F-2 of all hydrolysates of WPC. The highest iron contents in F-1 were observed in WPC hydrolysates derived with Alcalase (0.2 mg/kg), followed by hydrolysates derived with Flavourzyme (0.14 mg/kg), trypsin (0.14 mg/kg), and papain (0.08 mg/kg). Iron concentrations in the F-2 fraction of all enzymatic hydrolysates of WPC were low and ranged from 0.03 to 0.05 mg/kg. Fraction 1 may describe a new class of iron chelates based on the reaction of FeSO4 x 7 H2O with a mixture of peptides obtained by the enzymatic hydrolysis of WPC. The chromatogram of Alcalase F-1 indicated numerous small peaks of shorter wavelengths, which probably indicated a variety of

  16. Deletion of fusion peptide or destabilization of fusion core of HIV gp41 enhances antigenicity and immunogenicity of 4E10 epitope

    International Nuclear Information System (INIS)

    Li Jing; Chen Xi; Jiang Shibo; Chen Yinghua

    2008-01-01

    The human monoclonal antibody 4E10 against the membrane-proximal external region (MPER) of HIV-1 gp41 demonstrates broad neutralizing activity across various strains, and makes its epitope an attractive target for HIV-1 vaccine development. Although the contiguous epitope of 4E10 has been identified, attempts to re-elicit 4E10-like antibodies have failed, possibly due to the lack of proper conformation of the 4E10 epitope. Here we used pIg-tail expression system to construct a panel of eukaryotic cell-surface expression plasmids encoding the extracellular domain of gp41 with deletion of fusion peptide and/or introduction of L568P mutation that may disrupt the gp41 six-helix bundle core conformation as DNA vaccines for immunization of mice. We found that these changes resulted in significant increase of the antigenicity and immunogenicity of 4E10 epitope. This information is thus useful for rational design of vaccines targeting the HIV-1 gp41 MPER

  17. Conservation analysis of dengue virust-cell epitope-based vaccine candidates using peptide block entropy

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Zhang, Guang Lan; Keskin, Derin B.

    2011-01-01

    Broad coverage of the pathogen population is particularly important when designing CD8+ T-cell epitope vaccines against viral pathogens. Traditional approaches are based on combinations of highly conserved T-cell epitopes. Peptide block entropy analysis is a novel approach for assembling sets of ...

  18. Combinatorial synthetic peptide vaccine strategy protects against hypervirulent CovR/S mutant streptococci

    DEFF Research Database (Denmark)

    Pandey, Manisha; Mortensen, Rasmus; Calcutt, Ainslie

    2016-01-01

    ), and it would be to the organism's advantage if the host did not induce a strong Ab response against it. However, S2 conjugated to diphtheria toxoid is highly immunogenic and induces Abs that recognize and neutralize SpyCEP. Hence, we describe a two-component peptide vaccine that induces Abs (anti-S2...

  19. Mechanistic studies on long peptide-based vaccines for the use in cancer therapy

    NARCIS (Netherlands)

    Bijker, Martijn Sander

    2007-01-01

    Synthetic peptide vaccines aiming at the induction of a protective CD8+ T-cell response against infectious or malignant diseases are widely used in the clinic but, despite their success in animal models, they do not yet live up to their promise in humans. This thesis assesses the development of

  20. Preparation of polypeptides comprising multiple TAA peptides.

    Science.gov (United States)

    Ni, Bing; Jia, Zhengcai; Wu, Yuzhang

    2014-01-01

    Polypeptides consisting of multiple tumor-associated antigen epitopes (multiepitope peptides) are commonly used as therapeutic peptide cancer vaccines in experimental studies and clinical trials. These methods include polypeptides composed of multiple major histocompatibility complex (MHC) class I-restricted cytotoxic T cell (CTL) epitopes and those containing multiple CTL epitopes and one T helper (Th) epitope. This chapter describes a complete set of methods for preparing multiepitope peptides and branched multiple antigen peptides (MAPs), including sequence design, peptide synthesis, purification, preservation, and the preparation of polypeptide solutions.

  1. Non-immunogenicity of overlapping gag peptides pulsed on autologous cells after vaccination of HIV infected individuals.

    Directory of Open Access Journals (Sweden)

    Henrik N Kløverpris

    Full Text Available HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping Gag peptides on autologous lymphocytes (OPAL has proven immunogenic and effective in reducing viral loads in multiple pigtail macaque studies, warranting clinical evaluation.We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach 'OPAL-HIV-Gag(c'. This vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous reinfusion. Patients with undetectable HIV viral loads (<50 copies/ml plasma on HAART received four administrations at week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups: 12 mg (n = 6, 24 mg (n = 7, 48 mg (n = 2 or matching placebo (n = 8 with 18 immunologically evaluable. T-cell immunogenicity was assessed by IFNγ ELIspot and intracellular cytokine staining (ICS.The OPAL-HIV-Gag(c peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c, 1/6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked, transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours in OPAL-HIV-Gag(c but not in placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P<0.001, compared to post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16.Despite strong immunogenicity observed in

  2. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    OpenAIRE

    Bellier, Bertrand; Sedlik, Christine; Vigneron, James; Torrieri-Dramard, Lea; Pitoiset, Fabien; Denizeau, Jordan; Chesneau, Caroline; de la Rochere, Philippe; Lantz, Olivier; Thery, Clotilde

    2014-01-01

    The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs) to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccine...

  3. Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07

    NARCIS (Netherlands)

    Marino, Fabio; Mommen, Geert P M; Jeko, Anita; Meiring, Hugo D; van Gaans-van den Brink, Jacqueline A M; Scheltema, Richard A; van Els, Cécile A C M; Heck, Albert J R

    Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA

  4. Characterization of murine B-cell epitopes on the Mycobacterium leprae proline-rich antigen by use of synthetic peptides

    NARCIS (Netherlands)

    Klatser, P. R.; de Wit, M. Y.; Kolk, A. H.; Hartskeerl, R. A.

    1991-01-01

    Using synthetic peptides representing overlapping sequences of the 100-amino-acid-long N-terminal region of the proline-rich antigen of Mycobacterium leprae (PRA), we have mapped the epitopes in the primary structure of PRA recognized by four monoclonal antibodies. The M. leprae-specific monoclonal

  5. EBV-transformed lymphoblastoid cell lines as vaccines against cancer testis antigen-positive tumors.

    Science.gov (United States)

    Neumann, Frank; Kaddu-Mulindwa, Dominic; Widmann, Thomas; Preuss, Klaus-Dieter; Held, Gerhard; Zwick, Carsten; Roemer, Klaus; Pfreundschuh, Michael; Kubuschok, Boris

    2013-07-01

    EBV-transformed lymphoblastoid cell lines (LCL) are potent antigen-presenting cells. To investigate their potential use as cancer testis antigen (CTA) vaccines, we studied the expression of 12 cancer testis (CT) genes in 20 LCL by RT-PCR. The most frequently expressed CT genes were SSX4 (50 %), followed by GAGE (45 %), SSX1 (40 %), MAGE-A3 and SSX2 (25 %), SCP1, HOM-TES-85, MAGE-C1, and MAGE-C2 (15 %). NY-ESO-1 and MAGE-A4 were found in 1/20 LCL and BORIS was not detected at all. Fifteen of 20 LCL expressed at least one antigen, 9 LCL expressed ≥2 CT genes, and 7 of the 20 LCL expressed ≥4 CT genes. The expression of CT genes did not correlate with the length of in vitro culture, telomerase activity, aneuploidy, or proliferation state. While spontaneous expression of CT genes determined by real-time PCR and Western blot was rather weak in most LCL, treatment with DNA methyltransferase 1 inhibitor alone or in combination with histone deacetylase inhibitors increased CTA expression considerably thus enabling LCL to induce CTA-specific T cell responses. The stability of the CT gene expression over prolonged culture periods makes LCL attractive candidates for CT vaccines both in hematological neoplasias and solid tumors.

  6. In silico identification and characterization of common epitope-based peptide vaccine for Nipah and Hendra viruses.

    Science.gov (United States)

    Saha, Chayan Kumar; Mahbub Hasan, Md; Saddam Hossain, Md; Asraful Jahan, Md; Azad, Abul Kalam

    2017-06-01

    To explore a common B- and T-cell epitope-based vaccine that can elicit an immune response against encephalitis causing genus Henipaviruses, Hendra virus (HeV) and Nipah virus (NiV). Membrane proteins F, G and M of HeV and NiV were retrieved from the protein database and subjected to different bioinformatics tools to predict antigenic B-cell epitopes. Best B-cell epitopes were then analyzed to predict their T-cell antigenic potentiality. Antigenic B- and T-cell epitopes that shared maximum identity with HeV and NiV were selected. Stability of the selected epitopes was predicted. Finally, the selected epitopes were subjected to molecular docking simulation with HLA-DR to confirm their antigenic potentiality in silico. One epitope from G proteins, one from M proteins and none from F proteins were selected based on their antigenic potentiality. The epitope from the G proteins was stable whereas that from M was unstable. The M-epitope was made stable by adding flanking dipeptides. The 15-mer G-epitope (VDPLRVQWRNNSVIS) showed at least 66% identity with all NiV and HeV G protein sequences, while the 15-mer M-epitope (GKLEFRRNNAIAFKG) with the dipeptide flanking residues showed 73% identity with all NiV and HeV M protein sequences available in the database. Molecular docking simulation with most frequent MHC class-II (MHC II) and class-I (MHC I) molecules showed that these epitopes could bind within HLA binding grooves to elicit an immune response. Data in our present study revealed the notion that the epitopes from G and M proteins might be the target for peptide-based subunit vaccine design against HeV and NiV. However, the biochemical analysis is necessary to experimentally validate the interaction of epitopes individually with the MHC molecules through elucidation of immunity induction. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  7. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines

    Science.gov (United States)

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-Ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel (`nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination.

  8. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2016-12-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  9. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2017-02-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of pMHC formation or TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  10. HA03 as an Iranian Candidate Concealed Antigen for Vaccination against Hyalomma anatolicum anatolicum: Comparative Structural and In silico Studies

    Directory of Open Access Journals (Sweden)

    Mohammadi, A.

    2013-12-01

    Full Text Available In the last decades researchers had focused on developing a vaccine against tick based on protective antigen. Recombinant vaccines based on concealed antigen from Boophilus microplus have been developed in Australia and Cuba by the name of TICKGARD and GAVAC (De La Fuente and Kocan, 2006. Further studies on this antigen have shown some extent of protection against other species (De Vos et al., 2001. In Iran most important species is Hyalomma anatolicum and limited information about its control are available. This paper reports structural and polymorphic analysis of HA03 as an Iranian candidate concealed antigen of H. a. anatolicum deposited in Gen-Bank .(Aghaeipour et al. GQ228820. The comparison between this antigen and other mid gut concealed antigen that their characteristics are available in GenBank showed there are high rate of similarity between them. The HA03 amino acid sequence had a homology of around 89%, 64%, 56% with HA98, BM86, BM95 respectively. Potential of MHC class I and II binding region indicated a considerable variation between BM86 antigen and its efficiency against Iranian H. a. anatolicum. In addition, predicted major of hydrophobisity and similarity in N-glycosylation besides large amount of cystein and seven EGF like regions presented in protein structure revealed that value of HA03 as a new protective antigen and the necessity of the development, BM86 homolog of H. a. anatolicum HA03 based recombinant vaccine.

  11. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens.

    Science.gov (United States)

    Fan, Yuchen; Sahdev, Preety; Ochyl, Lukasz J; Akerberg, Jonathan; Moon, James J

    2015-06-28

    Here we report the development of a new cationic liposome-hyaluronic acid (HA) hybrid nanoparticle (NP) system and present our characterization of these NPs as an intranasal vaccine platform using a model antigen and F1-V, a candidate recombinant antigen for Yersinia pestis, the causative agent of plague. Incubation of cationic liposomes composed of DOTAP and DOPE with anionic HA biopolymer led to efficient ionic complexation and formation of homogenous liposome-polymer hybrid NPs, as evidenced by fluorescence resonance energy transfer, dynamic light scattering, and nanoparticle tracking analyses. Incorporation of cationic liposomes with thiolated HA allowed for facile surface decoration of NPs with thiol-PEG, resulting in the formation of DOTAP/HA core-PEG shell nanostructures. These NPs, termed DOTAP-HA NPs, exhibited improved colloidal stability and prolonged antigen release. In addition, cytotoxicity associated with DOTAP liposomes (LC50~0.2mg/ml) was significantly reduced by at least 20-fold with DOTAP-HA NPs (LC50>4mg/ml), as measured with bone marrow derived dendritic cells (BMDCs). Furthermore, NPs co-loaded with ovalbumin (OVA) and a molecular adjuvant, monophosphoryl lipid A (MPLA) promoted BMDC maturation and upregulation of co-stimulatory markers, including CD40, CD86, and MHC-II, and C57BL/6 mice vaccinated with NPs via intranasal route generated robust OVA-specific CD8(+) T cell and antibody responses. Importantly, intranasal vaccination with NPs co-loaded with F1-V and MPLA induced potent humoral immune responses with 11-, 23-, and 15-fold increases in F1-V-specific total IgG, IgG1, and IgG2c titers in immune sera by day 77, respectively, and induced balanced Th1/Th2 humoral immune responses, whereas mice immunized with the equivalent doses of soluble F1-V vaccine failed to achieve sero-conversion. Overall, these results suggest that liposome-polymer hybrid NPs may serve as a promising vaccine delivery platform for intranasal vaccination against Y

  12. Antigenic differentiation of classical swine fever vaccinal strain PAV-250 from other strains, including field strains from Mexico.

    Science.gov (United States)

    Mendoza, Susana; Correa-Giron, Pablo; Aguilera, Edgar; Colmenares, Germán; Torres, Oscar; Cruz, Tonatiuh; Romero, Andres; Hernandez-Baumgarten, Eliseo; Ciprián, Abel

    2007-10-10

    Twenty-nine classical swine fever virus (CSFv) strains were grown in the PK15 or SK6 cell lines. Antigenic differentiation studies were performed using monoclonal antibodies (McAbs), produced at Lelystad (CDI-DLO), The Netherlands. The monoclonals which were classified numerically as monoclonals 2-13. Epitope map patterns that resulted from the reactivity with McAbs were found to be unrelated to the pathogenicity of the viruses studied. Antigenic determinants were recognized by McAbs 5 and 8, were not detected in some Mexican strains; however, sites for McAb 6 were absent in all strains. The PAV-250 vaccine strain was recognized by all MAbs, except by MAb 6. Furthermore, the Chinese C-S vaccine strain was found to be very similar to the GPE(-) vaccine. None of the studied Mexican vaccines or field strains was found to be similar to the PAV-250 vaccine strain.

  13. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Jensen, Benjamin Anderschou Holbech; Ragonnaud, Emeline

    2015-01-01

    challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association...... by vaccination. In addition, our findings suggest that prior adenoviral vaccination is not likely to negatively impact the long-term and protective immune response induced and maintained by a vaccine-attenuated chronic viral infection.......In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes...

  14. Activation of monocytic cells by immunostimulatory lipids conjugated to peptide antigens.

    Science.gov (United States)

    Galdiero, Stefania; Vitiello, Mariateresa; Finamore, Emiliana; Mansi, Rosalba; Galdiero, Marilena; Morelli, Giancarlo; Tesauro, Diego

    2012-10-30

    Bacterial derived lipoproteins constitute potent macrophage activators in vivo and are effective stimuli, enhancing the immune response especially with respect to low or non-immunogenic compounds. In the present study we have prepared branched lipopeptide constructs in which different (B- and T-cell) epitopes of Herpes simplex virus type 1, derived from glycoproteins B (gB) and D (gD), are linked to a synthetic lipid core. The ability of the lipid core peptide (LCP) constructs (LCP-gB and LCP-gD) to induce cytokine expression and activate the mitogen-activated protein kinase cascade has been evaluated and compared with the behaviour of the isolated epitopes and the lipid core. In this respect, the use of LCP technology coupled with the use of three different gB or gD peptide epitopes in the same branched constructs could represent an interesting approach in order to obtain efficient delivery systems in the development of a synthetic multiepitopic vaccine for the prevention of viral infections.

  15. Analysis of HLA-A24-restricted peptides of carcinoembryonic antigen using a novel structure-based peptide-HLA docking algorithm.

    Science.gov (United States)

    Nakamura, Yoji; Tai, Sachiko; Oshita, Chie; Iizuka, Akira; Ashizawa, Tadashi; Saito, Shuji; Yamaguchi, Shigeki; Kondo, Haruhiko; Yamaguchi, Ken; Akiyama, Yasuto

    2011-04-01

    Carcinoembryonic antigen (CEA) is a very common tumor marker because many types of solid cancer usually produce a variety of CEA and a highly sensitive measuring kit has been developed. However, immunological responses associated with CEA have not been fully characterized, and specifically a weak immunogenicity of CEA protein as a tumor antigen is reported in human leukocyte antigen (HLA)-A24-restricted CEA peptide-based cancer immunotherapy. These observations demonstrated that immunogenic and potent HLA-A24-restricted CTL epitope peptides derived from CEA protein are seemingly difficult to predict using a conventional bioinformatics approach based on primary amino acid sequence. In the present study, we developed an in silico docking simulation assay system of binding affinity between HLA-A24 protein and A24-restricted peptides using two software packages, AutoDock and MODELLER, and a crystal structure of HLA-A24 protein obtained from the Protein Data Bank. We compared the current assay system with HLA-peptide binding predictions of the bioinformatics and molecular analysis section (BIMAS) in terms of the prediction capability using MHC stabilization and peptide-stimulated CTL induction assays for CEA and other HLA-A24 peptides. The MHC stabilization score was inversely correlated with the affinity calculated in the docking simulation alone (r = -0.589, P = 0.015), not with BIMAS score or the IFN-γ production index. On the other hand, BIMAS was not significantly correlated with any other parameters. These results suggested that our in silico assay system has potential advantages in efficiency of epitope prediction over BIMAS and ease of use for bioinformaticians. © 2011 Japanese Cancer Association.

  16. A virosomal malaria peptide vaccine elicits a long-lasting sporozoite-inhibitory antibody response in a phase 1a clinical trial.

    Directory of Open Access Journals (Sweden)

    Shinji L Okitsu

    2007-12-01

    Full Text Available Peptides delivered on the surface of influenza virosomes have been shown to induce solid humoral immune responses in experimental animals. High titers of peptide-specific antibodies were also induced in a phase 1a clinical trial in volunteers immunized with virosomal formulations of two peptides derived from the circumsporozoite protein (CSP and the apical membrane antigen 1 (AMA-1 of Plasmodium falciparum. The main objective of this study was to perform a detailed immunological and functional analysis of the CSP-specific antibodies elicited in this phase 1a trial.46 healthy malaria-naïve adults were immunized with virosomal formulations of two peptide-phosphatidylethanolamine conjugates, one derived from the NANP repeat region of P. falciparum CSP (designated UK-39 the other from P. falciparum AMA-1 (designated AMA49-C1. The two antigens were delivered in two different concentrations, alone and in combination. One group was immunized with empty virosomes as control. In this report we show a detailed analysis of the antibody response against UK-39. Three vaccinations with a 10 microg dose of UK-39 induced high titers of sporozoite-binding antibodies in all volunteers. This IgG response was affinity maturated and long-lived. Co-administration of UK-39 and AMA49-C1 loaded virosomes did not interfere with the immunogenicity of UK-39. Purified total IgG from UK-39 immunized volunteers inhibited sporozoite migration and invasion of hepatocytes in vitro. Sporozoite inhibition closely correlated with titers measured in immunogenicity assays.Virosomal delivery of a short, conformationally constrained peptide derived from P. falciparum CSP induced a long-lived parasite-inhibitory antibody response in humans. Combination with a second virosomally-formulated peptide derived from P. falciparum AMA-1 did not interfere with the immunogenicity of either peptide, demonstrating the potential of influenza virosomes as a versatile, human-compatible antigen

  17. Prostate-related antigen-derived new peptides having the capacity of inducing prostate cancer-reactive CTLs in HLA-A2+ prostate cancer patients.

    Science.gov (United States)

    Harada, Mamoru; Matsueda, Satoko; Yao, Akihisa; Ogata, Rika; Noguchi, Masanori; Itoh, Kyogo

    2004-09-01

    Prostate-related antigens, including prostate-specific membrane antigen (PSMA) and prostatic acid phosphatase (PAP), can be targets in specific immunotherapy for prostate cancer. In this study, we attempted to newly identify epitope peptides from these 2 antigens, which are immunogenic in human histocompatibility leukocyte antigen (HLA)-A2+ prostate cancer patients. Twenty-nine peptides (PSMA with 15 and PAP with 14) were prepared based on the HLA-A2 binding motif. Based on our previous finding that antigenic peptides recognized by both cellular and humoral immune systems are useful for peptide-based immunotherapy, peptide candidates were screened first by their ability to be recognized by immunoglobulin G (IgG), and then by their ability to induce peptide-specific cytotoxic T lymphocytes (CTLs). As a result, PSMA441-450 and PAP112-120 peptides were found to be frequently recognized by IgG in plasma from prostate cancer patients. These 2 candidates effectively induced HLA-A2-restricted and prostate cancer-reactive CTLs in HLA-A2+ prostate cancer patients with several HLA-A2 subtypes. In addition, their cytotoxicity was mainly dependent on peptide-specific and CD8+ T cells. These results indicate that these PSMA441-450 and PAP112-120 peptides could be promising candidates for peptide-based immunotherapy for HLA-A2(+) prostate cancer.

  18. Monitoring antigenic variations of enterovirus 71: implications for virus surveillance and vaccine development.

    Directory of Open Access Journals (Sweden)

    Min-Yuan Chia

    2014-07-01

    Full Text Available Enterovirus 71 (EV71 causes life-threatening epidemics in Asia and can be phylogenetically classified into three major genogroups (A ∼ C including 11 genotypes (A, B1 ∼ B5, and C1 ∼ C5. Recently, EV71 epidemics occurred cyclically in Taiwan with different genotypes. In recent years, human studies using post-infection sera obtained from children have detected antigenic variations among different EV71 strains. Therefore, surveillance of enterovirus 71 should include phylogenetic and antigenic analysis. Due to limitation of sera available from children with EV71 primary infection, suitable animal models should be developed to generate a panel of antisera for monitoring EV71 antigenic variations. Twelve reference strains representing the 11 EV71 genotypes were grown in rhabdomyosarcoma cells. Infectious EV71 particles were purified and collected to immunize rabbits. The rabbit antisera were then employed to measure neutralizing antibody titers against the 12 reference strains and 5 recent strains. Rabbits immunized with genogroup B and C viruses consistently have a lower neutralizing antibody titers against genogroup A (≧ 8-fold difference and antigenic variations between genogroup B and C viruses can be detected but did not have a clear pattern, which are consistent with previous human studies. Comparison between human and rabbit neutralizing antibody profiles, the results showed that ≧ 8-fold difference in rabbit cross-reactive antibody ratios could be used to screen EV71 isolates for identifying potential antigenic variants. In conclusion, a rabbit model was developed to monitor antigenic variations of EV71, which are critical to select vaccine strains and predict epidemics.

  19. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    Science.gov (United States)

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  20. Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses.

    Directory of Open Access Journals (Sweden)

    Danuta M Skowronski

    Full Text Available Influenza vaccine effectiveness (VE is generally interpreted in the context of vaccine match/mismatch to circulating strains with evolutionary drift in the latter invoked to explain reduced protection. During the 2012-13 season, however, detailed genotypic and phenotypic characterization shows that low VE was instead related to mutations in the egg-adapted H3N2 vaccine strain rather than antigenic drift in circulating viruses.Component-specific VE against medically-attended, PCR-confirmed influenza was estimated in Canada by test-negative case-control design. Influenza A viruses were characterized genotypically by amino acid (AA sequencing of established haemagglutinin (HA antigenic sites and phenotypically through haemagglutination inhibition (HI assay. H3N2 viruses were characterized in relation to the WHO-recommended, cell-passaged vaccine prototype (A/Victoria/361/2011 as well as the egg-adapted strain as per actually used in vaccine production. Among the total of 1501 participants, influenza virus was detected in 652 (43%. Nearly two-thirds of viruses typed/subtyped were A(H3N2 (394/626; 63%; the remainder were A(H1N1pdm09 (79/626; 13%, B/Yamagata (98/626; 16% or B/Victoria (54/626; 9%. Suboptimal VE of 50% (95%CI: 33-63% overall was driven by predominant H3N2 activity for which VE was 41% (95%CI: 17-59%. All H3N2 field isolates were HI-characterized as well-matched to the WHO-recommended A/Victoria/361/2011 prototype whereas all but one were antigenically distinct from the egg-adapted strain as per actually used in vaccine production. The egg-adapted strain was itself antigenically distinct from the WHO-recommended prototype, and bore three AA mutations at antigenic sites B [H156Q, G186V] and D [S219Y]. Conversely, circulating viruses were identical to the WHO-recommended prototype at these positions with other genetic variation that did not affect antigenicity. VE was 59% (95%CI:16-80% against A(H1N1pdm09, 67% (95%CI: 30-85% against B

  1. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2013-02-01

    Full Text Available Abstract While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML and chronic myeloid leukemia (CML, the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.

  2. Cutting edge: HLA-B27 acquires many N-terminal dibasic peptides: coupling cytosolic peptide stability to antigen presentation

    NARCIS (Netherlands)

    Herberts, Carla A.; Neijssen, Joost J.; de Haan, Jolanda; Janssen, Lennert; Drijfhout, Jan Wouter; Reits, Eric A.; Neefjes, Jacques J.

    2006-01-01

    Ag presentation by MHC class I is a highly inefficient process because cytosolic peptidases destroy most peptides after proteasomal generation. Various mechanisms shape the MHC class I peptidome. We define a new one: intracellular peptide stability. Peptides with two N-terminal basic amino acids are

  3. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    Energy Technology Data Exchange (ETDEWEB)

    Witek, Matthew [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Blomain, Erik S.; Magee, Michael S.; Xiang, Bo; Waldman, Scott A. [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Snook, Adam E., E-mail: adam.snook@jefferson.edu [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2014-04-01

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responses were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance

  4. Cross-protective peptide vaccine against influenza A viruses developed in HLA-A*2402 human immunity model.

    Directory of Open Access Journals (Sweden)

    Toru Ichihashi

    Full Text Available BACKGROUND: The virus-specific cytotoxic T lymphocyte (CTL induction is an important target for the development of a broadly protective human influenza vaccine, since most CTL epitopes are found on internal viral proteins and relatively conserved. In this study, the possibility of developing a strain/subtype-independent human influenza vaccine was explored by taking a bioinformatics approach to establish an immunogenic HLA-A24 restricted CTL epitope screening system in HLA-transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-A24 restricted CTL epitope peptides derived from internal proteins of the H5N1 highly pathogenic avian influenza A virus were predicted by CTL epitope peptide prediction programs. Of 35 predicted peptides, six peptides exhibited remarkable cytotoxic activity in vivo. More than half of the mice which were subcutaneously vaccinated with the three most immunogenic and highly conserved epitopes among three different influenza A virus subtypes (H1N1, H3N2 and H5N1 survived lethal influenza virus challenge during both effector and memory CTL phases. Furthermore, mice that were intranasally vaccinated with these peptides remained free of clinical signs after lethal virus challenge during the effector phase. CONCLUSIONS/SIGNIFICANCE: This CTL epitope peptide selection system can be used as an effective tool for the development of a cross-protective human influenza vaccine. Furthermore this vaccine strategy can be applicable to the development of all intracellular pathogens vaccines to induce epitope-specific CTL that effectively eliminate infected cells.

  5. Efficacy of synthetic peptide candidate vaccines against serotype-A foot-and-mouth disease virus in cattle.

    Science.gov (United States)

    Zhang, Zhongwang; Pan, Li; Ding, Yaozhong; Zhou, Peng; Lv, Jianliang; Chen, Haotai; Fang, Yuzhen; Liu, Xinsheng; Chang, Huiyun; Zhang, Jie; Shao, Junjun; Lin, Tong; Zhao, Furong; Zhang, Yongguang; Wang, Yonglu

    2015-02-01

    Foot-and-mouth disease (FMD) remains a major threat to livestock worldwide, especially in developing countries. To improve the efficacy of vaccination against FMD, various types of vaccines have been developed, including synthetic peptide vaccines. We designed three synthetic peptide vaccines, 59 to 87 aa in size, based on immunogenic epitopes in the VP1, 3A, and 3D proteins of the A/HuBWH/CHA/2009 strain of the foot-and-mouth disease virus (FMDV), corresponding to amino acid positions 129 to 169 of VP1, 21 to 35 of 3A, and 346 to 370 of 3D. The efficacies of the vaccines were evaluated in cattle and guinea pigs challenged with serotype-A FMDV. All of the vaccines elicited the production of virus-neutralizing antibodies. The PB peptide, which contained sequences corresponding to positions 129 to 169 of V P1 and 346 to 370 of 3D, demonstrated the highest levels of immunogenicity and immunoprotection against FMDV. Two doses of 50 μg of the synthetic PB peptide vaccine provided 100% protection against FMDV infection in guinea pigs, and a single dose of 100 μg provided 60% protection in cattle. These findings provide empirical data for facilitating the development of synthetic peptide vaccines against FMD.

  6. Immobilization by Surface Conjugation of Cyclic Peptides for Effective Mimicry of the HCV-Envelope E2 Protein as a Strategy toward Synthetic Vaccines.

    Science.gov (United States)

    Meuleman, Theodorus J; Dunlop, James I; Owsianka, Anna M; van de Langemheen, Helmus; Patel, Arvind H; Liskamp, Rob M J

    2018-02-19

    Mimicry of the binding interface of antibody-antigen interactions using peptide-based modulators (i.e., epitope mimics) has promising applications for vaccine design. These epitope mimics can be synthesized in a streamlined and straightforward fashion, thereby allowing for high-throughput analysis. The design of epitope mimics is highly influenced by their spatial configuration and structural conformation. It is widely assumed that for proper mimicry sufficient conformational constraints have to be implemented. This paper describes the synthesis of bromide derivatives functionalized with a flexible TEG linker equipped with a thiol-moiety that could be used to support cyclic or linear peptides. The cyclic and linear epitope mimics were covalently conjugated via the free thiol-moiety on maleimide-activated plate surfaces. The resulting covalent, uniform, and oriented coated surface of cyclic or linear epitope mimics were subjected to an ELISA to investigate the effect of peptide cyclization with respect to mimicry of an antigen-antibody interaction of the HCV E2 glycoprotein. To the best of our knowledge, the benefit of cyclized peptides over linear peptides has been clearly demonstrated here for the first time. Cyclic epitope mimics, and not the linear epitope mimics, demonstrated specificity toward their monoclonal antibodies HC84.1 and V3.2, respectively. The described strategy for the construction of epitope mimics shows potential for high-throughput screening of key binding residues by simply changing the amino acid sequences within synthetic peptides. In this way, leucine-438 has been identified as a key binding residue for binding monoclonal antibody V3.2.

  7. "HIV-peplotion vaccine"--a novel approach to protection against AIDS by transepithelial transport of viral peptides to Langerhans cells for long-term antiviral CTL response. (A review).

    Science.gov (United States)

    Becker, Y

    1996-01-01

    Viral vaccines which stimulate the humoral immune response in humans have been successful in preventing most of the known virus diseases except dengue fever, respiratory syncytial virus infections and HIV-1-related AIDS. Burke [1] raised a concern that anti-HIV-1 antibodies may add a risk factor to immunized individuals infected with HIV-1. An approach to develop HIV-1 vaccines capable of stimulating anti-HIV-1 cytotoxic T cells requires an understanding of the importance of epidermal and epithelial Langerhans cells (LC). These cells are professional antigen-presenting cells which express HLA class I and class II molecules. Epithelial LC are present in a specific layer in the skin, genitalia and gut and may be accessible to viral antigens by local application in a vehicle for transepithelial transport of viral proteins/peptides (designated "HIV-1 Peplotion vaccine"). This approach is supported by the reports that HIV-1 gp160 in ISCOM induced MHC class I CTL response [2], mixing of cationic lipids with viral proteins formed complexes which were delivered to cell cytoplasm and the degraded peptides stimulated CTLs by HLA class I mechanism [3] and viral proteins encapsulated in pH-sensitive liposomes administered to LC induced primary antiviral CTLs [4]. Current studies in our laboratory deal with (a) selection of the vehicle for transepidermal transport of peptides and the conditions for selective uptake by epidermal LC [5]; (b) computer analysis of HIV-1 proteins to detect the putative proteolytic cleavage peptides with amino acid motifs which allow association with different known HLA class I haplotype molecules on LCs and synthetic peptide uptake from "without" by LC. The "HIV-1 Peplotion vaccine", when developed, will be useful for continual stimulation of antiviral CTLs in uninfected individuals and HIV-1 carriers by repetitive application to skin, genitalia and gut. The "Peplotion vaccine" will be applied by vaccinees, will be affordable for all human

  8. H1N1 viral proteome peptide microarray predicts individuals at risk for H1N1 infection and segregates infection versus Pandemrix® vaccination

    Science.gov (United States)

    Ambati, Aditya; Valentini, Davide; Montomoli, Emanuele; Lapini, Guilia; Biuso, Fabrizio; Wenschuh, Holger; Magalhaes, Isabelle; Maeurer, Markus

    2015-01-01

    A high content peptide microarray containing the entire influenza A virus [A/California/08/2009(H1N1)] proteome and haemagglutinin proteins from 12 other influenza A subtypes, including the haemagglutinin from the [A/South Carolina/1/1918(H1N1)] strain, was used to gauge serum IgG epitope signatures before and after Pandemrix® vaccination or H1N1 infection in a Swedish cohort during the pandemic influenza season 2009. A very narrow pattern of pandemic flu-specific IgG epitope recognition was observed in the serum from individuals who later contracted H1N1 infection. Moreover, the pandemic influenza infection generated IgG reactivity to two adjacent epitopes of the neuraminidase protein. The differential serum IgG recognition was focused on haemagglutinin 1 (H1) and restricted to classical antigenic sites (Cb) in both the vaccinated controls and individuals with flu infections. We further identified a novel epitope VEPGDKITFEATGNL on the Ca antigenic site (251–265) of the pandemic flu haemagglutinin, which was exclusively recognized in serum from individuals with previous vaccinations and never in serum from individuals with H1N1 infection (confirmed by RNA PCR analysis from nasal swabs). This epitope was mapped to the receptor-binding domain of the influenza haemagglutinin and could serve as a correlate of immune protection in the context of pandemic flu. The study shows that unbiased epitope mapping using peptide microarray technology leads to the identification of biologically and clinically relevant target structures. Most significantly an H1N1 infection induced a different footprint of IgG epitope recognition patterns compared with the pandemic H1N1 vaccine. PMID:25639813

  9. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.

    Directory of Open Access Journals (Sweden)

    Susan Thrane

    Full Text Available Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP based vaccines (e.g., the licensed human papillomavirus vaccines have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of

  10. Computer aided epitope design as a peptide vaccine component against Lassa virus.

    Science.gov (United States)

    Faisal, Ar-Rafi Md; Imtiaz, Syed Hassan; Zerin, Tasnim; Rahman, Tania; Shekhar, Hossain Uddin

    2017-01-01

    Lassa virus (LASV) is an arena virus causing hemorrhagic fever and it is endemic in several regions of West Africa. The disease-causing virus records high mortality rate in endemic regions due to lack of appropriate treatment and prevention strategies. Therefore, it is of interest to design and develop viable vaccine components against the virus. We used the Lassa virus envelope glyco-proteins as a vaccine target to identify linear peptides as potential epitopes with immunogenic properties by computer aided epitope prediction tools. We report a T-cell epitope 'LLGTFTWTL' and a B-cell epitope 'AELKCFGNTAVAKCNE' with predicted potential immunogenicity for further in vivo and in vitro consideration.

  11. cDNA library construction and isolation of genes for candidate vaccine antigens from Chrysomya bezziana (the Old World Screwworm fly

    Directory of Open Access Journals (Sweden)

    Tony Voucolo

    2000-10-01

    Full Text Available The construction and use of cDNA libraries for the isolation of genes encoding candidate antigens for use in a recombinant vaccine against Chrysomya bezziana is described. RNA was isolated and mRNA purified from first and third instar larvae of Chrysomya bezziana and used in the synthesis of two cDNA libraries in the bacteriophage vector λ ZAP express®. These libraries were screened using Digoxigenin-labeled DNA probes obtained from two independent approaches. First, a homolog approach used probes designed from previously characterized peritrophic membrane genes identified from the related myiasis fly, Lucilia cuprina. Secondly, a de novo approach used amino-terminal and internal peptide sequence information derived from purified Chrysomya bezziana peritrophic membrane proteins to generate DNA probes. Three peritrophic membrane genes were identified and characterized. Chrysomya bezziana peritrophin-48 was identified using the homolog approach and, Chrysomya bezziana peritrophin-15 and Chrysomya bezziana peritrophin-42 were identified using the de novo approach. The identification of these genes as encoding candidate antigens against Chrysomya bezziana has allowed the production of recombinant proteins for use in vaccination trials

  12. Vaccination with DNA encoding an immunodominant myelin basic protein peptide targeted to Fc of immunoglobulin G suppresses experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Lobell, A; Weissert, R; Storch, M K; Svanholm, C; de Graaf, K L; Lassmann, H; Andersson, R; Olsson, T; Wigzell, H

    1998-05-04

    We explore here if vaccination with DNA encoding an autoantigenic peptide can suppress autoimmune disease. For this purpose we used experimental autoimmune encephalomyelitis (EAE), which is an autoaggressive disease in the central nervous system and an animal model for multiple sclerosis. Lewis rats were vaccinated with DNA encoding an encephalitogenic T cell epitope, guinea pig myelin basic protein peptide 68-85 (MBP68-85), before induction of EAE with MBP68-85 in complete Freund's adjuvant. Compared to vaccination with a control DNA construct, the vaccination suppressed clinical and histopathological signs of EAE, and reduced the interferon gamma production after challenge with MBP68-85. Targeting of the gene product to Fc of IgG was essential for this effect. There were no signs of a Th2 cytokine bias. Our data suggest that DNA vaccines encoding autoantigenic peptides may be useful tools in controlling autoimmune disease.

  13. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells.

    Science.gov (United States)

    Kwon, Kwang-Chul; Verma, Dheeraj; Singh, Nameirakpam D; Herzog, Roland; Daniell, Henry

    2013-06-15

    Among 12billion injections administered annually, unsafe delivery leads to >20million infections and >100million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1 diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Vaccination with DNA Encoding an Immunodominant Myelin Basic Protein Peptide Targeted to Fc of Immunoglobulin G Suppresses Experimental Autoimmune Encephalomyelitis

    OpenAIRE

    Lobell, Anna; Weissert, Robert; Storch, Maria K.; Svanholm, Cecilia; de Graaf, Katrien L.; Lassmann, Hans; Andersson, Roland; Olsson, Tomas; Wigzell, Hans

    1998-01-01

    We explore here if vaccination with DNA encoding an autoantigenic peptide can suppress autoimmune disease. For this purpose we used experimental autoimmune encephalomyelitis (EAE), which is an autoaggressive disease in the central nervous system and an animal model for multiple sclerosis. Lewis rats were vaccinated with DNA encoding an encephalitogenic T cell epitope, guinea pig myelin basic protein peptide 68–85 (MBP68–85), before induction of EAE with MBP68–85 in complete Freund's adjuvant....

  15. Overexpression of Protective Antigen as a Novel Approach To Enhance Vaccine Efficacy of Brucella abortus Strain RB51

    OpenAIRE

    Vemulapalli, Ramesh; He, Yongqun; Cravero, Silvio; Sriranganathan, Nammalwar; Boyle, Stephen M.; Schurig, Gerhardt G.

    2000-01-01

    Brucella abortus strain RB51 is an attenuated rough strain that is currently being used as the official live vaccine for bovine brucellosis in the United States and several other countries. We reasoned that overexpression of a protective antigen(s) of B. abortus in strain RB51 should enhance its vaccine efficacy. To test this hypothesis, we overexpressed Cu/Zn superoxide dismutase (SOD) protein of B. abortus in strain RB51. This was accomplished by transforming strain RB51 with a broad-host-r...

  16. Dendritic Cell Cancer Vaccines: From the Bench to the Bedside

    Directory of Open Access Journals (Sweden)

    Tamar Katz

    2014-10-01

    Full Text Available The recognition that the development of cancer is associated with acquired immunodeficiency, mostly against cancer cells themselves, and understanding pathways inducing this immunosuppression, has led to a tremendous development of new immunological approaches, both vaccines and drugs, which overcome this inhibition. Both “passive” (e.g. strategies relying on the administration of specific T cells and “active” vaccines (e.g. peptide-directed or whole-cell vaccines have become attractive immunological approaches, inducing cell death by targeting tumor-associated antigens. Whereas peptide-targeted vaccines are usually directed against a single antigen, whole-cell vaccines (e.g. dendritic cell vaccines are aimed to induce robust responsiveness by targeting several tumor-related antigens simultaneously. The combination of vaccines with new immuno-stimulating agents which target “immunosuppressive checkpoints” (anti-CTLA-4, PD-1, etc. is likely to improve and maintain immune response induced by vaccination.

  17. Classification of human leukocyte antigen (HLA) supertypes

    DEFF Research Database (Denmark)

    Wang, Mingjun; Claesson, Mogens H

    2014-01-01

    Identification of new antigenic peptides, derived from infectious agents or cancer cells, which bind to human leukocyte antigen (HLA) class I and II molecules, is of importance for the development of new effective vaccines capable of activating the cellular arm of the immune response. However......, the barrier to the development of peptide-based vaccines with maximum population coverage is that the restricting HLA genes are extremely polymorphic resulting in a vast diversity of peptide-binding HLA specificities and a low population coverage for any given peptide-HLA specificity. One way to reduce...... this complexity is to group thousands of different HLA molecules into several so-called HLA supertypes: a classification that refers to a group of HLA alleles with largely overlapping peptide binding specificities. In this chapter, we focus on the state-of-the-art classification of HLA supertypes including HLA...

  18. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  19. Impact of the RTS,S malaria vaccine candidate on naturally acquired antibody responses to multiple asexual blood stage antigens.

    Directory of Open Access Journals (Sweden)

    Joseph J Campo

    Full Text Available Partial protective efficacy lasting up to 43 months after vaccination with the RTS,S malaria vaccine has been reported in one cohort (C1 of a Phase IIb trial in Mozambique, but waning efficacy was observed in a smaller contemporaneous cohort (C2. We hypothesized that low dose exposure to asexual stage parasites resulting from partial pre-erythrocytic protection afforded by RTS,S may contribute to long-term vaccine efficacy to clinical disease, which was not observed in C2 due to intense active detection of infection and treatment.Serum collected 6 months post-vaccination was screened for antibodies to asexual blood stage antigens AMA-1, MSP-1(42, EBA-175, DBL-α and variant surface antigens of the R29 laboratory strain (VSA(R29. Effect of IgG on the prospective hazard of clinical malaria was estimated. No difference was observed in antibody levels between RTS,S and control vaccine when all children aged 1-4 years at enrollment in both C1 and C2 were analyzed together, and no effects were observed between cohort and vaccine group. RTS,S-vaccinated children <2 years of age at enrollment had lower levels of IgG for AMA-1 and MSP-1(42 (p<0.01, all antigens, while no differences were observed in children ≥2 years. Lower risk of clinical malaria was associated with high IgG to EBA-175 and VSA(R29 in C2 only (Hazard Ratio [HR]: 0.76, 95% CI 0.66-0.88; HR: 0.75, 95% CI 0.62-0.92, respectively.Vaccination with RTS,S modestly reduces anti-AMA-1 and anti-MSP-1 antibodies in very young children. However, for antigens associated with lower risk of clinical malaria, there were no vaccine group or cohort-specific effects, and age did not influence antibody levels between treatment groups for these antigens. The antigens tested do not explain the difference in protective efficacy in C1 and C2. Other less-characterized antigens or VSA may be important to protection.ClinicalTrials.gov NCT00197041.

  20. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    Directory of Open Access Journals (Sweden)

    James J Moon

    Full Text Available The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide acid (PLGA "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA, was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs. Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  1. Carcinoembryonic antigen (CEA)-based cancer vaccines: recent patents and antitumor effects from experimental models to clinical trials.

    Science.gov (United States)

    Turriziani, Mario; Fantini, Massimo; Benvenuto, Monica; Izzi, Valerio; Masuelli, Laura; Sacchetti, Pamela; Modesti, Andrea; Bei, Roberto

    2012-09-01

    Carcinoembryonic antigen (CEA), a glycosylated protein of MW 180 kDa, is overexpressed in a wide range of human carcinomas, including colorectal, gastric, pancreatic, non-small cell lung and breast carcinomas. Accordingly, CEA is one of several oncofetal antigens that may serve as a target for active anti-cancer specific immunotherapy. Experimental results obtained by employing animal models have supported the design of clinical trials using a CEA-based vaccine for the treatment of different types of human cancers. This review reports findings from experimental models and clinical evidence on the use of a CEA-based vaccine for the treatment of cancer patients. Among the diverse CEA-based cancer vaccines, DCs- and recombinant viruses-based vaccines seem the most valid. However, although vaccination was shown to induce a strong immune response to CEA, resulting in a delay in tumor progression and prolonged survival in some cancer patients, it failed to eradicate the tumor in most cases, owing partly to the negative effect exerted by the tumor microenvironment on immune response. Thus, in order to develop more efficient and effective cancer vaccines, it is necessary to design new clinical trials combining cancer vaccines with chemotherapy, radiotherapy and drugs which target those factors responsible for immunosuppression of immune cells. This review also discusses relevant patents relating to the use of CEA as a cancer vaccine.

  2. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management.

    Directory of Open Access Journals (Sweden)

    Gergana Galabova

    Full Text Available Low Density Lipoprotein (LDL hypercholesterolemia, and its associated cardiovascular diseases, are some of the leading causes of death worldwide. The ability of proprotein convertase subtilisin/kexin 9 (PCSK9 to modulate circulating LDL cholesterol (LDLc concentrations made it a very attractive target for LDLc management. To date, the most advanced approaches for PCSK9 inhibition are monoclonal antibody (mAb therapies. Although shown to lower LDLc significantly, mAbs face functional limitations because of their relatively short in vivo half-lives necessitating frequent administration. Here, we evaluated the long-term efficacy and safety of PCSK9-specific active vaccines in different preclinical models.PCSK9 peptide-based vaccines were successfully selected by our proprietary technology. To test their efficacy, wild-type (wt mice, Ldlr+/- mice, and rats were immunized with highly immunogenic vaccine candidates. Vaccines induced generation of high-affine PCSK9-specific antibodies in all species. Group mean total cholesterol (TC concentration was reduced by up to 30%, and LDLc up to 50% in treated animals. Moreover, the PCSK9 vaccine-induced humoral immune response persisted for up to one year in mice, and reduced cholesterol levels significantly throughout the study. Finally, the vaccines were well tolerated in all species tested.Peptide-based anti-PCSK9 vaccines induce the generation of antibodies that are persistent, high-affine, and functional for up to one year. They are powerful and safe tools for long-term LDLc management, and thus may represent a novel therapeutic approach for the prevention and/or treatment of LDL hypercholesterolemia-related cardiovascular diseases in humans.

  3. Assessment of in vivo anti-tumor activity of human umbilical vein endothelial cell vaccines prepared by various antigen forms.

    Science.gov (United States)

    Zhou, Ling; Si, Chunfeng; Li, Defang; Lu, Meiyu; Zhong, Weilan; Xie, Zeping; Guo, Lin; Zhang, Shumin; Xu, Maolei

    2018-03-01

    Human umbilical vein endothelial cell (HUVEC) vaccine has been proved as an effective whole-cell vaccine, but the modest therapeutic anti-tumor efficiency limits its clinical use. Various antigen forms, including paraformaldehyde-fixed HUVEC, glutaraldehyde-fixed HUVEC, HUVEC lysate and live HUVEC, have been intensively used in HUVEC vaccine preparation, however, the most effective antigen form has not yet been identified. In the present study, these four commonly used antigen forms were used to prepare vaccines named Para-Fixed-EC, Glu-Fixed-EC, Lysate-EC, and Live-EC respectively, and the anti-tumor efficacy of these four vaccines was investigated. Results showed that Live-EC exhibited the most favorable anti-tumor growth and metastasis effects among the four vaccines in both H22 hepatocellular carcinoma and Lewis lung cancer models. High titer anti-HUVEC antibodies were detected in Live-EC immunized mice sera, and the immune sera of Live-EC group could significantly inhibit HUVEC proliferation and tube formation. Moreover, T cells isolated from Live-EC immunized mice exhibited strong cytotoxicity against HUVEC cells, with an increasing IFN-γ and decreasing Treg production in Live-EC immunized mice. Finally, CD31 immunohistochemical analysis of the excised tumors verified a significant reduction in vessel density after Live-EC vaccination, which was in accordance with the anti-tumor efficiency. Taken together, all the results proved that live HUVEC was the most effective antigen form to induce robust HUVEC specific antibody and CTL responses, which could lead to the significant inhibition of tumor growth and metastasis. We hope the present findings would provide a rationale for the further optimization of HUVEC vaccine. Copyright © 2017. Published by Elsevier B.V.

  4. Utilizing the Antigen Capsid-Incorporation Strategy for the Development of Adenovirus Serotype 5-Vectored Vaccine Approaches

    OpenAIRE

    Gu, Linlin; Farrow, Anitra L.; Krendelchtchikov, Alexandre; Matthews, Qiana L.

    2015-01-01

    Adenovirus serotype 5 (Ad5) has been extensively modified with traditional transgene methods for the vaccine development. The reduced efficacies of these traditionally modified Ad5 vectors in clinical trials could be primarily correlated with Ad5 pre-existing immunity (PEI) among the majority of the population. To promote Ad5-vectored vaccine development by solving the concern of Ad5 PEI, the innovative Antigen Capsid-Incorporation strategy has been employed. By merit of this strategy, Ad5-ve...

  5. Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles.

    Science.gov (United States)

    Varypataki, Eleni Maria; Silva, Ana Luisa; Barnier-Quer, Christophe; Collin, Nicolas; Ossendorp, Ferry; Jiskoot, Wim

    2016-03-28

    Nanoparticulate formulations for synthetic long peptide (SLP)-cancer vaccines as alternative to clinically used Montanide ISA 51- and squalene-based emulsions are investigated in this study. SLPs were loaded into TLR ligand-adjuvanted cationic liposomes and PLGA nanoparticles (NPs) to potentially induce cell-mediated immune responses. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by dendritic cells (DCs) and subsequent activation of T cells in vitro. Subcutaneous vaccination of mice with the different formulations showed that the SLP-loaded cationic liposomes were the most efficient for the induction of functional antigen-T cells in vivo, followed by PLGA NPs which were as potent as or even more than the Montanide and squalene emulsions. Moreover, after transfer of antigen-specific target cells in immunized mice, liposomes induced the highest in vivo killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate, biodegradable delivery systems promising candidates as delivery platforms for SLP-based immunotherapy of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Brucella abortus RB51 and hot saline extract from Brucella ovis as antigens in a complement fixation test used To detect sheep vaccinated with Brucella abortus RB51.

    Science.gov (United States)

    Adone, R; Ciuchini, F

    2001-01-01

    The efficacy of Brucella abortus RB51 and hot saline extract (HSE) from Brucella ovis as antigens in complement fixation (CF) tests was comparatively evaluated in detecting immune responses of sheep vaccinated with B. abortus strain RB51. For this study, four 5-month-old sheep were vaccinated subcutaneously with 5 x 10(9) CFU of RB51, and two sheep received saline. Serum samples collected at different times after vaccination were tested for the presence of antibodies to RB51 by a CF test with RB51 as antigen, previously deprived of anticomplementary activity, and with HSE antigen, which already used as the official antigen to detect B. ovis-infected sheep. The results showed that vaccinated sheep developed antibodies which reacted weakly against HSE antigen and these antibodies were detectable for 30 days after vaccination. However, antibodies to RB51 could be detected for a longer period after vaccination by using homologous RB51 antigen in CF tests. In fact, high titers were still present at 110 days postvaccination with RB51 antigen. Sera from sheep naturally infected with B. ovis also reacted to RB51 but gave lower titers than those detected by HSE antigen. As expected, all sera from RB51-vaccinated sheep remained negative when tested with standard S-type Brucella standard antigens.

  7. Enhanced expression of HIV and SIV vaccine antigens in the structural gene region of live attenuated rubella viral vectors and their incorporation into virions.

    Science.gov (United States)

    Virnik, Konstantin; Ni, Yisheng; Berkower, Ira

    2013-04-19

    Despite the urgent need for an HIV vaccine, its development has been hindered by virus variability, weak immunogenicity of conserved epitopes, and limited durability of the immune response. For other viruses, difficulties with immunogenicity were overcome by developing live attenuated vaccine strains. However, there is no reliable method of attenuation for HIV, and an attenuated strain would risk reversion to wild type. We have developed rubella viral vectors, based on the live attenuated vaccine strain RA27/3, which are capable of expressing important HIV and SIV vaccine antigens. The rubella vaccine strain has demonstrated safety, immunogenicity, and long lasting protection in millions of children. Rubella vectors combine the growth and immunogenicity of live rubella vaccine with the antigenicity of HIV or SIV inserts. This is the first report showing that live attenuated rubella vectors can stably express HIV and SIV vaccine antigens at an insertion site located within the structural gene region. Unlike the Not I site described previously, the new site accommodates a broader range of vaccine antigens without interfering with essential viral functions. In addition, antigens expressed at the structural site were controlled by the strong subgenomic promoter, resulting in higher levels and longer duration of antigen expression. The inserts were expressed as part of the structural polyprotein, processed to free antigen, and incorporated into rubella virions. The rubella vaccine strain readily infects rhesus macaques, and these animals will be the model of choice for testing vector growth in vivo and immunogenicity. Published by Elsevier Ltd.

  8. Synthesis of antifungal vaccines by conjugation of β-1,2 trimannosides with T-cell peptides and covalent anchoring of neoglycopeptide to tetanus toxoid.

    Science.gov (United States)

    Cartmell, Jonathan; Paszkiewicz, Eugenia; Dziadek, Sebastian; Tam, Pui-Hang; Luu, Thanh; Sarkar, Susmita; Lipinski, Tomasz; Bundle, David R

    2015-02-11

    Selective strategies for the construction of novel three component glycoconjugate vaccines presenting Candida albicans cell wall glycan (β-1,2 mannoside) and polypeptide fragments on a tetanus toxoid carrier are described. The first of two conjugation strategies employed peptides bearing an N-terminal thiopropionyl residue for conjugation to a trisaccharide equipped with an acrylate linker and a C-terminal S-acetyl thioglycolyl moiety for subsequent linking of neoglycopeptide to bromoacetylated tetanus toxoid. Michael addition of acrylate trisaccharides to peptide thiol under mildly basic conditions gave a mixture of N- and C- terminal glyco-peptide thioethers. An adaptation of this strategy coordinated S-acyl protection with anticipated thioester exchange equilibria. This furnished a single chemically defined fully synthetic neoglycopeptide conjugate that could be anchored to a tetanus toxoid carrier and avoids the introduction of exogenous antigenic groups. The second strategy retained the N-terminal thiopropionyl residue but replaced the C-terminal S-acetate functionality with an azido group that allowed efficient, selective formation of neoglycopeptide thioethers and subsequent conjugation of these with propargylated tetanus toxoid, but introduced potentially antigenic triazole linkages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Antigen-specific IgA B memory cell responses to Shigella antigens elicited in volunteers immunized with live attenuated Shigella flexneri 2a oral vaccine candidates

    OpenAIRE

    Simon, J. K.; Maciel, M.; Weld, E.D.; Wahid, R.; Pasetti, M.F.; Picking, W.L.; Kotloff, K. L.; Levine, M. M.; Sztein, M. B.

    2011-01-01

    We studied the induction of antigen-specific IgA memory B cells (BM) in volunteers who received live attenuated Shigella flexneri 2a vaccines. Subjects ingested a single oral dose of 107, 108 or 109 CFU of S. flexneri 2a with deletions in guaBA (CVD 1204) or in guaBA, set and sen (CVD 1208). Antigen-specific serum and stool antibody responses to LPS and Ipa B were measured on days 0, 7, 14, 28 and 42. IgA BM cells specific to LPS, Ipa B and total IgA were assessed on days 0 and 28. We show th...

  10. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza.

    Science.gov (United States)

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne; Grødeland, Gunnveig

    2017-12-01

    Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  11. Antigenic characterization of Moraxella bovis, Moraxella bovoculi and Moraxella ovis strains with potential use in vaccines.

    Science.gov (United States)

    Kowalski, Ananda Paula; Maboni, Grazieli; Gressler, Letícia Trevisan; Espíndola, Julia Pires; Balzan, Cláudia; Tasca, Caiane; Guizzo, João Antônio; Conceição, Fabricio Rochedo; Frandoloso, Rafael; de Vargas, Agueda Castagna

    2017-10-01

    Moraxella bovis is historically known as the primary agent of infectious bovine keratoconjunctivitis (IBK). However, Moraxella bovoculi and Moraxella ovis are also reported to be involved in the pathogenesis of IBK, therefore, these three species should be included in the development of a new vaccine with a broad-spectrum protection against the disease natural challenge. In this study we investigated the antigenic properties of clinical isolates and reference strains of M. bovis, M. bovoculi and M. ovis using a novel in vitro approach for vaccine evaluation based on two techniques, flow cytometry and western blotting (WB). Here, we demonstrated that rabbit antisera produced against reference M. bovis strain and commercial bacterin showed low number of IgG with capacity to recognize a panel of heterologous strains composed by M. bovoculi and M. ovis. On the other hand, the antisera generated against two clinical isolates of M. ovis (Mov2 and Mov3) presented high cross-reactivity levels against all M. ovis and M. bovis strains evaluated. Similarly, the antisera against Mbv3 (clinical isolate of M. bovoculi) had high levels of IgG associated on the surface of all M. bovoculi strains and most of the M. ovis strains analyzed. The WB analysis demonstrated that Moraxella spp. has multiple immunogenic antigens and most of them are shared between the three species. Based on the cross-reactivity analysis and considering the relative number of IgGs associated on the bacterial surface, we suggest that a multivalent vaccine including Mbv3, Mov2 and Mov3 strains may provide a strong and broad protection against all strains involved in IBK outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development.

    Science.gov (United States)

    Zhang, Xiaowei; Hu, Shumin; Du, Xue; Li, Tiejun; Han, Lanlan; Kong, Jian

    2016-12-01

    Carcinoembryonic antigen (CEA) is an attractive target for immunotherapy because it is expressed minimally in normal tissue, but is overexpressed in a wide variety of malignant epithelial tissues. Lactic acid bacteria (LABs), widely used in food processes, are attractive candidates for oral vaccination. Thus, we examined whether LABs could be used as a live vaccine vector to deliver CEA antigen. CEA was cloned into an Escherichia coli/Lactococcus lactis shuttle vector pSEC:LEISS under the control of a nisin promoter. For displaying the CEA on the cell surface of the L. lactis strain, the anchor motif LcsB from the S-layer protein of Lactobacillus crispatus was fused with CEA. Intracellular and cell surface expression of the CEA-LcsB fusion was confirmed by western blot analysis. Significantly higher levels of CEA-specific secretory immunoglobulin A in the sera of mice were observed upon oral administration of strain cultures containing the CEA-LcsB fused protein. In addition, the CEA-LcsB antigen group showed a higher spleen index compared to the CEA antigen alone or negative control, demonstrating that surface-displayed CEA antigen could induce a higher immune response. These results provided the first evidence for displaying CEA antigen on the cell surfaces of LABs as oral vaccines against cancer or infectious diseases. Copyright © 2014. Published by Elsevier B.V.

  13. Integrase Defective Lentiviral Vector as a Vaccine Platform for Delivering Influenza Antigens

    Directory of Open Access Journals (Sweden)

    Alessandra Gallinaro

    2018-02-01

    Full Text Available Viral vectors represent an attractive technology for vaccine delivery. We exploited the integrase defective lentiviral vector (IDLV as a platform for delivering relevant antigens within the context of the ADITEC collaborative research program. In particular, Influenza virus hemagglutinin (HA and nucleoprotein (NP were delivered by IDLVs while H1N1 A/California/7/2009 subunit vaccine (HAp with or without adjuvant was used to compare the immune response in a murine model of immunization. In order to maximize the antibody response against HA, both IDLVs were also pseudotyped with HA (IDLV-HA/HA and IDLV-NP/HA, respectively. Groups of CB6F1 mice were immunized intramuscularly with a single dose of IDLV-NP/HA, IDLV-HA/HA, HAp alone, or with HAp together with the systemic adjuvant MF59. Six months after the vaccine prime all groups were boosted with HAp alone. Cellular and antibody responses to influenza antigens were measured at different time points after the immunizations. Mice immunized with HA-pseudotyped IDLVs showed similar levels of anti-H1N1 IgG over time, evaluated by ELISA, which were comparable to those induced by HAp + MF59 vaccination, but significantly higher than those induced by HAp alone. The boost with HAp alone induced an increase of antibodies in all groups, and the responses were maintained at higher levels up to 18 weeks post-boost. The antibody response was functional and persistent overtime, capable of neutralizing virus infectivity, as evaluated by hemagglutination inhibition and microneutralization assays. Moreover, since neuraminidase (NA-expressing plasmid was included during IDLV preparation, immunization with IDLV-NP/HA and IDLV-HA/HA also induced functional anti-NA antibodies, evaluated by enzyme-linked lectin assay. IFNγ-ELISPOT showed evidence of HA-specific response in IDLV-HA/HA immunized animals and persistent NP-specific CD8+ T cell response in IDLV-NP/HA immunized mice. Taken together our results indicate

  14. CD4+ T-cell Responses Among Adults and Young Children In Response to Streptococcus pneumoniae and Haemophilus influenzae Vaccine Candidate Protein Antigens

    OpenAIRE

    Sharma, Sharad K.; Roumanes, David; Almudevar, Anthony; Mosmann, Tim R.; Pichichero, Michael E.

    2013-01-01

    We characterized cytokine profiles of CD4+ T-helper (h) cells in adults and young children to ascertain if responses occur to next-generation candidate vaccine antigens PspA, PcpA, PhtD, PhtE, Ply, LytB of Streptococcus pneumonia (Spn) and Protein D and OMP26 of non-typeable Haemophilus influenzae (NTHi). Adults had vaccine antigen-specific Th1 - and Th2 cells responsive to all antigens evaluated whereas young children had significant numbers of vaccine antigen-specific CD4+ T cells producing...

  15. Preclinical evaluation of multi antigenic HCV DNA vaccine for the prevention of Hepatitis C virus infection.

    Science.gov (United States)

    Lee, Hyojin; Jeong, Moonsup; Oh, Jooyeon; Cho, Youngran; Shen, Xuefei; Stone, John; Yan, Jian; Rothkopf, Zachary; Khan, Amir S; Cho, Byung Mun; Park, Young K; Weiner, David B; Son, Woo-Chan; Maslow, Joel N

    2017-03-07

    Direct-acting antiviral treatment for hepatitis C virus (HCV) infection is costly and does not protect from re-infection. For human and chimpanzees, recovery from acute HCV infection correlates with host CD4+ and CD8+ T cell responses. DNA plasmids targeting the HCV non-structural antigens NS3, NS4, and NS5, were previously reported to induce robust and sustained T cell responses in mice and primates. These plasmids were combined with a plasmid encoding cytokine IL-28B, together named as VGX-6150. The dose-dependent T cell response and safety of VGX-6150 administered intramuscularly and followed by electroporation was assessed in mice. Immune responses plateaued at 20 μg/dose with IL-28B demonstrating significant immunoadjuvant activity. Mice administered VGX-6150 at 40, 400, and 800 μg given either as a single injection or as 14 injections given bi-weekly over 26 weeks showed no vaccine related changes in any clinical parameter compared to placebo recipients. There was no evidence of VGX-6150 accumulation at the injection site or in any organ 1 month following the 14 th vaccination. Based on these studies, the approximate lethal dose (ALD) exceeds 800 μg/dose and the NOAEL was 800 μg/dose in mouse. In conclusion, VGX-6150 appears safe and a promising preventive vaccine candidate for HCV infection.

  16. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens.

    Science.gov (United States)

    Xu, Jinjun; Zhang, Yan; Tao, Jianping

    2013-04-01

    To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and 100 µg/chick). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with 5×10(4) sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (Pcoccidiosis control.

  17. Generation of rabbit antipeptide antibodies to HLA-class II antigens by the use of synthetic peptides.

    Science.gov (United States)

    Chersi, A; Morganti, M C; Chillemi, F; Houghten, R; Cenciarelli, C

    1988-07-01

    A group of eight synthetic peptides, corresponding in sequence to selected regions of HLA-DQ histocompatibility antigens, was used for rabbit immunization to examine their antigenicity and for localizing exposed regions in the native glycoproteins. Those antibodies were then tested in their ability to recognize the HLA-DQ alloantigens. Seven peptides elicited rabbit antibodies, four of which reacted with human glycoproteins prepared from chronic lymphocytic leukaemia cells. The results indicate that sequence stretches 63 to 79 and probably 82 to 93 of the beta chain correspond to exposed regions in DQw1, DQw2 and DQw3 molecules. However, the specificity of those antipeptide antibodies was low, due to extensive crossreactions with amino acid sequencies of high homology occurring in DQ alloantigens.

  18. Development of a Nucleoprotein-Based Enzyme-Linked Immunosorbent Assay Using a Synthetic Peptide Antigen for Detection of Avian Metapneumovirus Antibodies in Turkey Sera

    Science.gov (United States)

    Alvarez, Rene; Njenga, M. Kariuki; Scott, Melissa; Seal, Bruce S.

    2004-01-01

    Avian metapneumoviruses (aMPV) cause an upper respiratory tract disease with low mortality but high morbidity, primarily in commercial turkeys, that can be exacerbated by secondary infections. There are three types of aMPV, of which type C is found only in the United States. The aMPV nucleoprotein (N) amino acid sequences of serotypes A, B, and C were aligned for comparative analysis. On the basis of the predicted antigenicity of consensus sequences, five aMPV-specific N peptides were synthesized for development of a peptide antigen enzyme-linked immunosorbent assay (aMPV N peptide-based ELISA) to detect aMPV-specific antibodies among turkeys. Sera from naturally and experimentally infected turkeys were used to demonstrate the presence of antibodies reactive to the chemically synthesized aMPV N peptides. Subsequently, aMPV N peptide 1, which had the sequence 10-DLSYKHAILKESQYTIKRDV-29, with variations at only three amino acids among aMPV serotypes, was evaluated as a universal aMPV ELISA antigen. Data obtained with the peptide-based ELISA correlated positively with total aMPV viral antigen-based ELISAs, and the peptide ELISA provided higher optical density readings. The results indicated that aMPV N peptide 1 can be used as a universal ELISA antigen to detect antibodies for all aMPV serotypes. PMID:15013970

  19. Set Theory Applied to the Mathematical Characterization of HLA Class II Binding Peptides

    Directory of Open Access Journals (Sweden)

    Javier Rodríguez Velásquez, MD, esp.1

    2008-04-01

    Full Text Available Antigen presentation contains the molecularbasis for antigenic identification and immuneresponses. The set theory and experimental datawere used in order to develop an union core regionmathematic characterization through the definitionof 8 laws associated to HLA class II binding.The laws were applied to 4 promiscuous peptides,25 natural peptides sequences of core region: 13binding peptides and 12 no binding peptides; and19 synthetic peptides looking to differentiate peptides.Only one peptide was not rightly characterized.This methodology may be used to choose keypeptides in the development of vaccine.

  20. Hepatitis B vaccination coverage and risk factors associated with incomplete vaccination of children born to hepatitis B surface antigen-positive mothers, Denmark, 2006 to 2010.

    Science.gov (United States)

    Kunoee, Asja; Nielsen, Jens; Cowan, Susan

    2016-01-01

    In Denmark, universal screening of pregnant women for hepatitis B has been in place since November 2005, with the first two years as a trial period with enhanced surveillance. It is unknown what the change to universal screening without enhanced surveillance has meant for vaccination coverage among children born to hepatitis B surface antigen (HBsAg)-positive mothers and what risk factors exist for incomplete vaccination. This retrospective cohort study included 699 children of mothers positive for HBsAg. Information on vaccination and risk factors was collected from central registers. In total, 93% (651/699) of the children were vaccinated within 48 hours of birth, with considerable variation between birthplaces. Only 64% (306/475) of the children had received all four vaccinations through their general practitioner (GP) at the age of two years, and 10% (47/475) of the children had received no hepatitis B vaccinations at all. Enhanced surveillance was correlated positively with coverage of birth vaccination but not with coverage at the GP. No or few prenatal examinations were a risk factor for incomplete vaccination at the GP. Maternity wards and GPs are encouraged to revise their vaccination procedures and routines for pregnant women, mothers with chronic HBV infection and their children.

  1. Anti-microbial peptide gene expression during oral vaccination: analysis of a randomized controlled trial.

    Science.gov (United States)

    Simuyandi, M; Kapulu, M; Kelly, P

    2016-11-01

    We have observed previously that micronutrient supplementation ameliorated suppression of α-defensin expression during diarrhoea. However, how interactions between anti-microbial peptide (AMP) expression and diarrhoeal disease are altered by micronutrient supplementation remain unclear. Using oral vaccination as a model of intestinal infection, we measured changes in AMP expression during multiple micronutrient supplementation. In the first part, volunteers underwent duodenal jejunal biopsy before and at 1, 2, 4 or 7 days after administration of one of three live, attenuated oral vaccines against rotavirus, typhoid and enterotoxigenic Escherichia coli. In the second part, participants were randomized to receive a multiple micronutrient supplement or placebo for 6 weeks before undergoing intestinal biopsy, vaccination against typhoid and rebiopsy after 14 days. Expression of human alpha-defensin (HD)5, HD6, hBD1, hBD2 and LL-37 was measured by quantitative reverse transcription-polymerase chain reaction. Taken together, the bacterial vaccines, but not rotavirus vaccine, reduced HD5 expression (P = 0·02, signed-rank test) and reduced LL-37 expression in seven of the eight individuals whose biopsies had expression prevaccination (P = 0·03). hBD2 was not detected. In the controlled trial, HD5 and HD6 expression after vaccination was lower [median ratio 0·5, interquartile range (IQR) = 0·07-2·2 and 0·58, IQR = 0·13-2·3, respectively] than before vaccination. There was no significant effect detected of micronutrient supplementation on expression of HD5, HD6, hBD1 or LL-37. We conclude that live attenuated bacterial vaccines, but not rotavirus vaccine, can reduce intestinal α-defensins, and typhoid vaccine reduced LL-37 expression. We found no evidence that micronutrient supplementation in the short term had any impact on anti-microbial peptide expression. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd

  2. Plant-produced recombinant influenza A vaccines based on the M2e peptide.

    Science.gov (United States)

    Mardanova, Eugenia S; Ravin, Nikolai V

    2018-03-09

    Influenza is a widely distributed infection that almost annually causes seasonal epidemics. The current egg-based platforms for influenza vaccine production are facing a number of challenges and are failing to satisfy the global demand in the case of pandemics due to the long production time. Recombinant vaccines are an alternative that can be quickly produced in high quantities in standard expression systems. Plants may become a promising biofactory for the large-scale production of recombinant proteins due to low cost, scalability, and safety. Plant-based expression systems have been used to produce recombinant vaccines against influenza based on two targets; the major surface antigen hemagglutinin and the transmembrane protein M2. Different forms of recombinant hemagglutinin were successfully expressed in plants, and some plant-produced vaccines based on hemagglutinin were successfully tested in clinical trials. However, these vaccines remain strain specific, while the highly conserved extracellular domain of M2 protein (M2e) could be used for the development of a universal influenza vaccine. In this review, the state of the art in developing plant-produced influenza vaccines based on M2e is presented and placed in perspective. A number of strategies to produce M2e in an immunogenic form in plants have been reported, including its presentation on the surface of plant viruses or virus-like particles formed by capsid proteins, linkage to bacterial flagellin, and targeting to protein bodies. Some M2e-based vaccine candidates were produced at high levels (up to 1 mg/g of fresh plant tissue) and were shown to be capable of stimulating broad-range protective immunity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Polyclonal immune responses to antigens associated with cancer signaling pathways and new strategies to enhance cancer vaccines.

    Science.gov (United States)

    Clay, Timothy M; Osada, Takuya; Hartman, Zachary C; Hobeika, Amy; Devi, Gayathri; Morse, Michael A; Lyerly, H Kim

    2011-04-01

    Aberrant signaling pathways are a hallmark of cancer. A variety of strategies for inhibiting signaling pathways have been developed, but monoclonal antibodies against receptor tyrosine kinases have been among the most successful. A challenge for these therapies is therapeutic unresponsiveness and acquired resistance due to mutations in the receptors, upregulation of alternate growth and survival pathways, or inadequate function of the monoclonal antibodies. Vaccines are able to induce polyclonal responses that can have a multitude of affects against the target molecule. We began to explore therapeutic vaccine development to antigens associated with these signaling pathways. We provide an illustrative example in developing therapeutic cancer vaccines inducing polyclonal adaptive immune responses targeting the ErbB family member HER2. Further, we will discuss new strategies to augment the clinical efficacy of cancer vaccines by enhancing vaccine immunogenicity and reversing the immunosuppressive tumor microenvironment.

  4. Structural and antigenic features of the synthetic SF23 peptide corresponding to the receptor binding fragment of diphtheria toxin.

    Science.gov (United States)

    Khrustaleva, Tatyana Aleksandrovna; Khrustalev, Vladislav Victorovich; Barkovsky, Eugene Victorovich; Kolodkina, Valentina Leonidovna; Astapov, Anatoly Archipovich

    2015-02-01

    The SF23 peptide corresponding to the receptor binding fragment of diphtheria toxin (residues 508-530) has been synthesized. This fragment forming a protruding beta hairpin has been chosen because it is the less mutable B-cell epitope. Affine chromatography and ELISA show that antibodies from the sera of persons infected by toxigenic Corynebacterium diphtheriae and those immunized by diphtheria toxoid are able to bind the synthetic SF23 peptide. There are antibodies recognizing the SF23 peptide in the serum of horses hyperimmunized with diphtheria toxoid. Analysis of circular dichroism spectra show formation of beta hairpin by the peptide. Taken together, the results showed that the structure of the less mutable epitope of C. diphtheriae toxin was reproduced by the short SF23 peptide. Since antibodies against that epitope should block its interactions with cellular receptor (heparin-binding epidermal growth factor), the SF23 peptide can be considered as a promising candidate for synthetic vaccine development. Fluorescence quenching studies showed the existence of chloride and phosphate binding sites on the SF23 molecule. Phosphate containing adjuvants (aluminum hydroxyphosphate or aluminum hydroxyphosphate sulfate) are recommended to increase the SF23 immunogenic properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Improved protection conferred by vaccination with a recombinant vaccinia virus that incorporates a foreign antigen into the extracellular enveloped virion

    International Nuclear Information System (INIS)

    Kwak, Heesun; Mustafa, Waleed; Speirs, Kendra; Abdool, Asha J.; Paterson, Yvonne; Isaacs, Stuart N.

    2004-01-01

    Recombinant poxviruses have shown promise as vaccine vectors. We hypothesized that improved cellular immune responses could be developed to a foreign antigen by incorporating it as part of the extracellular enveloped virion (EEV). We therefore constructed a recombinant vaccinia virus that replaced the cytoplasmic domain of the B5R protein with a test antigen, HIV-1 Gag. Mice immunized with the virus expressing Gag fused to B5R had significantly better primary CD4 T-cell responses than recombinant virus expressing HIV-Gag from the TK-locus. The CD8 T-cell responses were less different between the two groups. Importantly, although we saw differences in the immune response to the test antigen, the vaccinia virus-specific immune responses were similar with both constructs. When groups of vaccinated mice were challenged 30 days later with a recombinant Listeria monocytogenes that expresses HIV-Gag, mice inoculated with the virus that expresses the B5R-Gag fusion protein had lower colony counts of Listeria in the liver and spleen than mice vaccinated with the standard recombinant. Thus, vaccinia virus expressing foreign antigen incorporated into EEV may be a better vaccine strategy than standard recombinant vaccinia virus

  6. Brucella abortus strain RB51 leucine auxotroph as an environmentally safe vaccine for plasmid maintenance and antigen overexpression.

    Science.gov (United States)

    Rajasekaran, Parthiban; Seleem, Mohamed N; Contreras, Andrea; Purwantini, Endang; Schurig, Gerhardt G; Sriranganathan, Nammalwar; Boyle, Stephen M

    2008-11-01

    To avoid potentiating the spread of an antibiotic resistance marker, a plasmid expressing a leuB gene and a heterologous antigen, green fluorescent protein (GFP), was shown to complement a leucine auxotroph of cattle vaccine strain Brucella abortus RB51, which protected CD1 mice from virulent B. abortus 2308 and elicited GFP antibodies.

  7. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria

    NARCIS (Netherlands)

    van Roosmalen, ML; Kanninga, R; El Khattabi, M; Neef, J; Audouy, S; Bosma, T; Kuipers, A; Post, E; Steen, A; Kok, J; Buist, G; Kuipers, OP; Robillard, G; Leenhouts, K

    Mucosal immunization with subunit vaccines requires new types of antigen delivery vehicles and adjuvants for optimal immune responses. We have developed a non-living and non-genetically modified gram-positive bacterial delivery particle (GEM) that has built-in adjuvant activity and a high loading

  8. Phase II Study of HER-2/neu Intracellular Domain Peptide-Based Vaccine Administered to Stage IV HER2 Positive Breast Cancer Patients Receiving Trastuzumab

    National Research Council Canada - National Science Library

    Disis, Mary L

    2006-01-01

    The primary purpose of this grant is to determine the overall survival benefit in Stage IV HER2 positive breast cancer patients vaccinated with a HER2 ICD peptide-based vaccine while receiving maintenance trastuzumab...

  9. Phase II Study of HER-2/neu Intracellular Domain Peptide-Based Vaccine Administered to Stage IV HER2 Positive Breast Cancer Patients Receiving Trastuzumab

    National Research Council Canada - National Science Library

    Disis, Mary L

    2007-01-01

    The primary purpose of this grant is to determine the overall survival benefit in Stage IV HER2 positive breast cancer patients vaccinated with a HER2 ICD peptide-based vaccine while receiving maintenance trastuzumab...

  10. Evaluation of three Brucella soluble antigens used in an indirect Elisa to discriminate S19 vaccinated from naturally infected cattle.

    Science.gov (United States)

    Abalos, P; Daffner, J; Pinochet, L

    2000-01-01

    An O-polysaccharide (O-chain) and a hot-water extracted polysaccharide (PS), both obtained from Brucella abortus 1119-3, and a B. melitensis 16M native hapten (NH) were evaluated by indirect enzyme linked immunosorbent assay (ELISA) on three groups of cattle sera. The sera tested were: (a) 75 sera from cows naturally infected with B. abortus; (b) 130 sera from non-infected and non-vaccinated cattle; and (c) 61 sera from non-infected heifers recently vaccinated with B. abortus Strain 19 (S19). Sensitivity (Se), specificity (Sp) and the capability to discriminate vaccinated cattle (ADV) were determined. Using PS antigen, Se was 100% and the Sp was 97.7%, while the highest Sp was obtained by using the O-chain (99.2% ). For the NH antigen, Se was 94.7% and the Sp was 90.0%. The ADV of the three antigens was approximately 85%. Statistical analysis showed significant differences between O-chain/PS and O-chain/NH antigens. The agreement among antigens determined by kappa coefficient was 0.899 for O-chain/PS, 0.845 for O-chain/NH and 0.795 for PS/NH.

  11. Cancer Antigen Prioritization: A Road Map to Work in Defining Vaccines Against Specific Targets. A Point of View

    International Nuclear Information System (INIS)

    Gomez, Daniel E.; Vázquez, Ana María; Alonso, Daniel F.

    2012-01-01

    The use of anti-idiotype antibodies as vaccines to stimulate antitumor immunity is a very promising pathway in the therapy of cancer. A good body of work in animal tumor models have demonstrated the efficacy of anti-Id vaccines in preventing tumor growth and curing mice with established tumors. A number of monoclonal anti-Id antibodies that mimic different human tumor-associated antigens (TAAs) have been developed and tested in the clinic, demonstrating interesting. In general terms, the antigen mimicry by anti-Id antibodies has reflected structural homology in the most of the cases, and amino acid sequence homology in a minority of them. The major challenge of immunotherapy using anti-idiotype vaccines is to identify the optimal anti-idiotype antibody that will function as a true surrogate antigen for a TAA system, and ideally will generate both humoral and cellular immune responses. Several clinical studies have shown enhanced patient's survival when receiving anti-Id vaccines, the true demonstration of efficacy of these vaccines will depend upon the results of several randomized Phase III clinical trials that are currently planned or ongoing (Bhattacharya-Chatterjee et al.,).

  12. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity.

    Science.gov (United States)

    John, Shinu; Yuzhakov, Olga; Woods, Angela; Deterling, Jessica; Hassett, Kimberly; Shaw, Christine A; Ciaramella, Giuseppe

    2018-03-14

    A cytomegalovirus (CMV) vaccine that is effective at preventing congenital infection and reducing CMV disease in transplant patients remains a high priority as no approved vaccines exist. While the precise correlates of protection are unknown, neutralizing antibodies and antigen-specific T cells have been implicated in controlling infection. We demonstrate that the immunization of mice and nonhuman primates (NHPs) with lipid nanoparticles (LNP) encapsulating modified mRNA encoding CMV glycoproteins gB and pentameric complex (PC) elicit potent and durable neutralizing antibody titers. Since the protective correlates in pregnant women and transplant recipients may differ, we developed an additional mRNA vaccine expressing the immunodominant CMV T cell antigen pp65. Administration of pp65 vaccine with PC and gB elicited robust multi-antigenic T cell responses in mice. Our data demonstrate that mRNA/LNP is a versatile platform that enables the development of vaccination strategies that could prevent CMV infection and consequent disease in different target populations. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery.

    Science.gov (United States)

    Davoodi-Semiromi, Abdoreza; Schreiber, Melissa; Nalapalli, Samson; Verma, Dheeraj; Singh, Nameirakpam D; Banks, Robert K; Chakrabarti, Debopam; Daniell, Henry

    2010-02-01

    Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce, respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10(+) T cell but not Foxp3(+) regulatory T cells, suppression of interferon-gamma and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity.

  14. Computational redesign of human respiratory syncytial virus epitope as therapeutic peptide vaccines against pediatric pneumonia.

    Science.gov (United States)

    Shi, Xiangxiang; Zheng, Jun; Yan, Tingting

    2018-03-02

    Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. Here, the RSV fusion (F) glycoprotein epitope FFL was redesigned based on its complex crystal structure with motavizumab, an mAb drug in development for the prevention of RSV infections, aiming to obtain therapeutic peptide vaccines with high affinity to induce RSV-specific neutralizing antibodies. Computational modeling and analysis found that only a small region covering the helix-turn-helix (HTH) motif of FFL can directly interact with motavizumab and confer stability and specificity to the complex system, while the rest of the epitope primarily serves as a structural scaffold that stabilizes the HTH conformation of motavizumab-binding site. Molecular dynamics simulations revealed a large flexibility and intrinsic disorder for the isolated linear HTH peptide, which would incur a considerable entropy penalty upon binding to motavizumab. In this respect, the FFL epitope was redesigned by truncation, mutation, and cyclization to derive a number of small cyclic peptide immunogens. We also employed in vitro fluorescence-based assays to demonstrate that the linear epitope peptide has no observable affinity to motavizumab, whereas redesigned versions of the peptide can bind with a moderate or high potency. Graphical abstract Computationally modeled complex structure of RSV F glycoprotein with motavizumab and zoom up of the complex binding site.

  15. Development of hepatitis C virus vaccine using hepatitis B core antigen as immuno-carrier

    Science.gov (United States)

    Chen, Jia-Yu; Li, Fan

    2006-01-01

    AIM: To develop hepatitis C virus (HCV) vaccine using HBcAg as the immuno-carrier to express HCV T epitope and to investigate its immunogenicity in mice. METHODS: We constructed the plasmid pTrc-coreNheI using gene engineering technique, constructed the pcDNA3.1-coreNheI-GFP plasmid with GFP as the reporter gene, and transfected them into Hela cells. The expression of GFP was observed under confocal microscopy and the feasibility of using HBcAg as an immuno-carrier vaccine was studied. pTrc-core gene with a synthetic T epitope antigen gene of HCV (35-44aa) was fused and expressed in the plasmid pTrc-core-HCV (T). For the fusion of the HBcAg-T protein, sucrose, density gradient centrifugation was used, and its molecular weight and purity were analyzed by SDS-PAGE. Then balb/c mice were immunized by the plasmid with the HBcAg (expressed by pTrc-core) protein as control. The tumor regression potential was investigated in mice and evaluated at appropriate time. After three times of immunization, the peripheral blood and spleen of vaccinated mice were collected. HBcAb was detected by ELISA, and nonspecific T lymphocyte proliferation and response of splenocytes were respectively examined by MTT assay. T cell subset of blood and spleen were detected by FACS. RESULTS: GFP was successfully expressed. Tumor regression trial showed that no tumor formation was found in the group receiving immunization, while tumor xenograft progression was not changed in the control group. Strong nonspecific lymphocyte proliferation response was induced. FACS also showed that the ratio of CD8+ T cells in the experimental group was higher than the controls, but the serum HBcAb in experimental group was similar to the control. CONCLUSION: HBcAg can be used as an immuno-carrier of vaccine, the fusion of HBcAg-T protein could induce stronger cellular immune responses and it might be a candidate for therapeutic vaccines specific for HCV. PMID:17203519

  16. Protective vaccination with hepatitis C virus NS3 but not core antigen in a novel mouse challenge model.

    Science.gov (United States)

    El-Gogo, Susanne; Staib, Caroline; Lasarte, Juan José; Sutter, Gerd; Adler, Heiko

    2008-02-01

    Efficient vaccines against hepatitis C virus (HCV) infection are urgently needed. Vaccine development has been hampered by the lack of suitable small animal models to reliably test the protective capacity of immmunization. We used recombinant murine gammaherpesvirus 68 (MHV-68) as a novel challenge virus in mice and tested the efficacy of heterologous candidate human vaccines based on modified vaccinia virus Ankara or adenovirus, both delivering HCV non-structural NS3 or core proteins. Recombinant MHV-68 expressing NS3 (MHV-68-NS3) or core (MHV-68-core) were constructed and characterized in vitro and in vivo. Mice immunized with NS3-specific vector vaccines and challenged with MHV-68-NS3 were infected but showed significantly reduced viral loads in the acute and latent phase of infection. NS3-specific CD8+ T cells were amplified in immunized mice after challenge with MHV-68-NS3. By contrast, we did neither detect a reduction of viral load nor an induction of core-specific CD8+ T cells after core-specific immunization. Our data suggest that the challenge system using recombinant MHV-68 is a highly suitable model to test the immunogenicity and protective capacity of HCV candidate vaccine antigens. Using this system, we demonstrated the usefulness of NS3-specific immunization. By contrast, our analysis rather discarded core as a vaccine antigen.

  17. Identification and evaluation of vaccine candidate antigens from the poultry red mite (Dermanyssus gallinae).

    Science.gov (United States)

    Bartley, Kathryn; Wright, Harry W; Huntley, John F; Manson, Erin D T; Inglis, Neil F; McLean, Kevin; Nath, Mintu; Bartley, Yvonne; Nisbet, Alasdair J

    2015-11-01

    An aqueous extract of the haematophagous poultry ectoparasite, Dermanyssus gallinae, was subfractionated using anion exchange chromatography. Six of these subfractions were used to immunise hens and the blood from these hens was fed, in vitro, to poultry red mites. Mite mortality following these feeds was indicative of protective antigens in two of the subfractions, with the risks of mites dying being 3.1 and 3.7 times higher than in the control group (Pmites on blood from these birds indicated that immunisation with Deg-SRP-1 (serpin), Deg-VIT-1 (vitellogenin), Deg-HGP-1 (hemelipoglycoprotein) or Deg-PUF-1 (a protein of unknown function) resulted in significantly increased risk of mite death (1.7-2.8times higher than in mites fed blood from control hens immunised with adjuvant only, P<0.001). The potential for using these antigens in a recombinant vaccine is discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Heat shock protein HSP60 and the perspective for future using as vaccine antigens

    Directory of Open Access Journals (Sweden)

    Joanna Bajzert

    2015-10-01

    Full Text Available Heat Shock Proteins (HSPs are widely spread in nature, highly conserved proteins, found in all prokaryotic and eukaryotic cells. HSPs have been classified in 10 families, one of them is the HSP60 family. HSP60 function in the cytoplasm as ATP-dependent molecular chaperones by assisting the folding of newly synthesised polypeptides and the assembly of multiprotein complexes. There is a large amount of evidence which demonstrate that HSP60 is expressed on the cell surface. Especially in bacteria the expression on the surface occurs constitutively and increases remarkably during host infection. HSP60 also play an important role in biofilm formation. In the extracellular environment, HSP60 alone or with self or microbial proteins can acts not only as a link between immune cells, but also as a coordinator of the immune system activity. This protein could influence the immune system in a different way because they act as an antigen, a carrier of other functional molecules or as a ligand for receptor. They are able to stimulate both cells of the acquired (naïve, effector, regulatory T lymphocyte, B lymphocyte and the innate (macrophages, monocytes, dendritic cells immune system. HSPs have been reported to be potent activators of the immune system and they are one of the immunodominant bacterial antigens they could be a good candidate for a subunit vaccine or as an adjuvant.

  19. Plant expressed coccidial antigens as potential vaccine candidates in protecting chicken against coccidiosis.

    Science.gov (United States)

    Sathish, Kota; Sriraman, Rajan; Subramanian, B Mohana; Rao, N Hanumantha; Kasa, Balaji; Donikeni, Jagan; Narasu, M Lakshmi; Srinivasan, V A

    2012-06-22

    Coccidiosis is a disease caused by intracellular parasites belonging to the genus Eimeria. In the present study, we transiently expressed two coccidial antigens EtMIC1 and EtMIC2 as poly histidine-tagged fusion proteins in tobacco. We have evaluated the protective efficacy of plant expressed EtMIC1 as monovalent and as well as bi-valent formulation where EtMIC1 and EtMIC2 were used in combination. The protective efficacy of these formulations was evaluated using homologous challenge in chickens. We observed better serum antibody response, weight gain and reduced oocyst shedding in birds immunized with EtMIC1 and EtMIC2 as bivalent formulation compared to monovalent formulation. However, IFN-γ response was not significant in birds immunized with EtMIC1 compared to the birds immunized with EtMIC2. Our results indicate the potential use of these antigens as vaccine candidates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A trivalent subunit antigen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model.

    Science.gov (United States)

    Awasthi, Sita; Hook, Lauren M; Shaw, Carolyn E; Friedman, Harvey M

    2017-12-02

    An estimated 417 million people worldwide ages 15 to 49 are infected with herpes simplex virus type 2 (HSV-2), the most common cause of genital ulcer disease. Some individuals experience frequent recurrences of genital lesions, while others only have subclinical infection, yet all risk transmitting infection to their intimate partners. A vaccine was developed that prevents shingles, which is a recurrent infection caused by varicella-zoster virus (VZV), a closely related member of the Herpesviridae family. The success of the VZV vaccine has stimulated renewed interest in a therapeutic vaccine for genital herpes. We have been evaluating a trivalent subunit antigen vaccine for prevention of genital herpes. Here, we assess the trivalent vaccine as immunotherapy in guinea pigs that were previously infected intravaginally with HSV-2. The trivalent vaccine contains HSV-2 glycoproteins C, D, and E (gC2, gD2, gE2) subunit antigens administered with CpG and alum as adjuvants. We previously demonstrated that antibodies to gD2 neutralize the virus while antibodies to gC2 and gE2 block their immune evasion activities, including evading complement attack and inhibiting activities mediated by the IgG Fc domain, respectively. Here, we demonstrate that the trivalent vaccine significantly boosts ELISA titers and neutralizing antibody titers. The trivalent vaccine reduces the frequency of recurrent genital lesions and vaginal shedding of HSV-2 DNA by approximately 50% and almost totally eliminates vaginal shedding of replication-competent virus, suggesting that the trivalent vaccine is a worthy candidate for immunotherapy of genital herpes.

  1. Assessment of the Plasmodium falciparum Preerythrocytic Antigen UIS3 as a Potential Candidate for a Malaria Vaccine.

    Science.gov (United States)

    Longley, Rhea J; Halbroth, Benedict R; Salman, Ahmed M; Ewer, Katie J; Hodgson, Susanne H; Janse, Chris J; Khan, Shahid M; Hill, Adrian V S; Spencer, Alexandra J

    2017-03-01

    Efforts are under way to improve the efficacy of subunit malaria vaccines through assessments of new adjuvants, vaccination platforms, and antigens. In this study, we further assessed the Plasmodium falciparum antigen upregulated in infective sporozoites 3 (PfUIS3) as a vaccine candidate. PfUIS3 was expressed in the viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) and used to immunize mice in a prime-boost regimen. We previously demonstrated that this regimen could provide partial protection against challenge with chimeric P. berghei parasites expressing PfUIS3. We now show that ChAd63-MVA PfUIS3 can also provide partial cross-species protection against challenge with wild-type P. berghei parasites. We also show that PfUIS3-specific cellular memory responses could be recalled in human volunteers exposed to P. falciparum parasites in a controlled human malaria infection study. When ChAd63-MVA PfUIS3 was coadministered with the vaccine candidate P. falciparum thrombospondin-related adhesion protein (PfTRAP) expressed in the ChAd63-MVA system, there was no significant change in immunogenicity to either vaccine. However, when mice were challenged with double chimeric P. berghei - P. falciparum parasites expressing both PfUIS3 and PfTRAP, vaccine efficacy was improved to 100% sterile protection. This synergistic effect was evident only when the two vaccines were mixed and administered at the same site. We have therefore demonstrated that vaccination with PfUIS3 can induce a consistent delay in patent parasitemia across mouse strains and against chimeric parasites expressing PfUIS3 as well as wild-type P. berghei ; when this vaccine is combined with another partially protective regimen (ChAd63-MVA PfTRAP), complete protection is induced. Copyright © 2017 Longley et al.

  2. Effect of recombinant glutathione S-transferase as vaccine antigen against Rhipicephalus appendiculatus and Rhipicephalus sanguineus infestation.

    Science.gov (United States)

    Sabadin, Gabriela Alves; Parizi, Luís Fernando; Kiio, Irene; Xavier, Marina Amaral; da Silva Matos, Renata; Camargo-Mathias, Maria Izabel; Githaka, Naftaly Wang'ombe; Nene, Vish; da Silva Vaz, Itabajara

    2017-12-04

    The ticks Rhipicephalus appendiculatus and Rhipicephalus sanguineus are the main vectors of Theileria parva and Babesia spp. in cattle and dogs, respectively. Due to their impact in veterinary care and industry, improved methods against R. appendiculatus and R. sanguineus parasitism are under development, including vaccines. We have previously demonstrated the induction of a cross-protective humoral response against Rhipicephalus microplus following vaccination with recombinant glutathione S-transferase from Haemaphysalis longicornis tick (rGST-Hl), suggesting that this protein could control tick infestations. In the present work, we investigated the effect of rGST-Hl vaccine against R. appendiculatus and R. sanguineus infestation in rabbits. In silico analysis revealed that GST from H. longicornis, R. appendiculatus and R. sanguineus have >80% protein sequence similarity, and multiple conserved antigenic sites. After the second vaccine dose, rGST-Hl-immunized rabbits showed elevated antibody levels which persisted until the end of experiment (75 and 60 days for R. appendiculatus and R. sanguineus, respectively). Western blot assays demonstrated cross-reactivity between anti-rGST-Hl antibodies and native R. appendiculatus and R. sanguineus GST extracts from ticks at different life stages. Vaccination with rGST-Hl decreased the number, weight, and fertility of engorged R. appendiculatus adults, leading to an overall vaccine efficacy of 67%. Interestingly, histological analysis of organ morphology showed damage to salivary glands and ovaries of R. appendiculatus adult females fed on vaccinated animals. In contrast, rGST-Hl vaccination did not affect R. appendiculatus nymphs, and it was ineffective against R. sanguineus across the stages of nymph and adult. Taken together, our results show the potential application of rGST-Hl as an antigen in anti-tick vaccine development, however indicating a broad difference in efficacy among tick species. Copyright © 2017 Elsevier

  3. Superior Immunologic and Therapeutic Efficacy of a Xenogeneic Genetic Cancer Vaccine Targeting Carcinoembryonic Human Antigen

    Science.gov (United States)

    Roscilli, Giuseppe; Marra, Emanuele; Luberto, Laura; Mancini, Rita; La Monica, Nicola; Ciliberto, Gennaro

    2015-01-01

    Abstract We have generated a xenogeneic vaccine against human carcinoembryonic antigen (hCEACAM-5 or commonly hCEA) using as immunogen rhesus CEA (rhCEA). RhCEA cDNA was codon-usage optimized (rhCEAopt) and delivered by sequential DNA electro-gene-transfer (DNA-EGT) and adenoviral (Ad) vector. RhCEAopt was capable to break tolerance to CEA in hCEA transgenic mice and immune responses were detected against epitopes distributed over the entire length of the protein. Xenovaccination with rhCEA resulted in the activation of CD4+ T-cell responses in addition to self-reactive CD8+ T-cells, the development of high-titer antibodies against hCEA, and significant antitumor effects upon challenge with hCEA+ tumor cells. The superior activity of rhCEAopt compared with hCEAopt was confirmed in hCEA/HHD double-transgenic mice, where potent CD8+ T-cell responses against specific human HLA A*0201 hCEA epitopes were detected. Our data show that xenogeneic gene-based vaccination with rhCEA is a viable approach to break tolerance against CEA, thus suggesting further development in the clinical setting. PMID:25869226

  4. Regaining tolerance to a self-antigen by the modified vaccination technique.

    Science.gov (United States)

    Barabas, Arpad Zsigmond; Cole, Chad Douglas; Lafreniere, Rene; Weir, Donald Mackay

    2013-10-01

    Autoimmune diseases are initiated and maintained by complex immunopathological processes in environmental and genetic factor predisposed patients. In certain autoimmune diseases, the etiologies and pathogenesis of the conditions are quite well understood; yet in others, controversy surrounds as to why and how auto-injurious processes start. Clinical and laboratory examinations reasonably well define the state of progression/remission of an autoimmune disease and allow treatment according to observed findings. However, none of the presently employed treatment options are specific. In fact, they are all nonspecific in their actions and have undesirable side effects. Over the years, experiments carried out in animals have shed light on the complex immunopathological processes which contribute to disease development and progression. At least one experimental autoimmune kidney disease-which we shall describe-helps to understand how pathogenic autoimmune responses can be terminated specifically, without side effects. Since the new vaccination method-that we call modified vaccination technique-was successfully implemented in an experimental autoimmune disease model called slowly progressive Heymann nephritis for the termination of pathogenic immune responses by a target antigen-specific treatment modality, we shall highlight its use in providing insight to physicians and autoimmunologists for its future implementation in human autoimmune diseases.

  5. Paradoxical effects of IL-12 in leishmaniasis in the presence and absence of vaccinating antigen.

    Science.gov (United States)

    Noormohammadi, A H; Hochrein, H; Curtis, J M; Baldwin, T M; Handman, E

    2001-07-16

    Protective immunity against Leishmania major requires parasite-specific CD4+T helper cells, the development of which is promoted by interleukin 12 (IL-12). In this study we investigated the use of IL-12 DNA to enhance the protective immunity induced by prophylactic vaccination with the L. major Parasite Surface Antigen 2 (PSA-2) DNA. A plasmid was constructed in which the two murine IL-12 subunits p35 and p40 were secreted as a biologically active single chain cytokine. The immunomodulatory effects of this IL-12 DNA were examined by codelivery with PSA-2 DNA in susceptible BALB/c and resistant C3H/He mice and subsequent infection with L. major promastigotes. Surprisingly, administration of IL-12 DNA alone had a protective effect, while coadministration of IL-12 with PSA-2 DNA abrogated protection. This effect of IL-12 DNA was dose dependent and affected by the timing of administration in relation to PSA-2 DNA. The effect of IL-12 on protection was associated with a reduced number of INF-gamma-producing T cells early in infection. A further understanding of this paradoxical effect of IL-12 and possibly other cytokines on protective immunity may be important for their use as adjuvants for Leishmania DNA vaccines.

  6. The characteristics exosporium antigens from different vaccine strains of bacillus antracis

    International Nuclear Information System (INIS)

    Baranova, E.; Biketov, S.; Dunaytsev, I.; Mironova, R.; Dyatlov, I.

    2009-01-01

    To develop of both test-systems for rapid detection and identification of B. anthracis spores and a new subunit vaccine the antigens on the spore surface should be characterized. Exosporium consists of two layers-basal and peripheral and has been form by protein, amino- and neutral polysaccharides, lipids and ash. Number of anthrax exosporium proteins was described and identified: glycoprotein BclA, BclB, alanine racemase, inosine hydrolase, glycosyl hydrolase, superoxid dismutase, ExsF, ExsY, ExsK,CotB,CotY and SoaA. So far no glycosylated proteins other then highly immunogenic glycoproteins BclA, BclB were detected in the B. anthracis spore extract although several exosporium-specific glycoprotein have been described in other members of the B.cereus family- B. thuringiensis and B. cereus. Although EA1 protein originally described as main component of S-layer from vegetative cells he can regular observed in different exosporium preparations and additionally some anti- EA1 monoclonal antibodies able to recognize spore surface. We have revealed that EA1 isolated from spore of Russians strain STI-1contain carbohydrate which determine immunogenicity of this antigen. Because some time ago we have found that exosporium protein's pattern variable among B. anthracis strains we investigated exosporium from spore of different strains of B. anthracis including STI-1, Ames, Stern and others. We have comparative characterized antigens by using Western Blotting, Two-Dimensional electrophoresis and Mass Spec analysis. The results of analysis will be presented and discussed.(author)

  7. Assessment of vaccine-induced CD4 T cell responses to the 119-143 immunodominant region of the tumor-specific antigen NY-ESO-1 using DRB1*0101 tetramers.

    Science.gov (United States)

    Ayyoub, Maha; Pignon, Pascale; Dojcinovic, Danijel; Raimbaud, Isabelle; Old, Lloyd J; Luescher, Immanuel; Valmori, Danila

    2010-09-15

    NY-ESO-1 (ESO), a tumor-specific antigen of the cancer/testis group, is presently viewed as an important model antigen for the development of generic anticancer vaccines. The ESO(119-143) region is immunodominant following immunization with a recombinant ESO vaccine. In this study, we generated DRB1*0101/ESO(119-143) tetramers and used them to assess CD4 T-cell responses in vaccinated patients expressing DRB1*0101 (DR1). We generated tetramers of DRB1*0101 incorporating peptide ESO(119-143) using a previously described strategy. We assessed ESO(119-143)-specific CD4 T cells in peptide-stimulated postvaccine cultures using the tetramers. We isolated DR1/ESO(119-143) tetramer(+) cells by cell sorting and characterized them functionally. We assessed vaccine-induced CD4(+) DR1/ESO(119-143) tetramer(+) T cells ex vivo and characterized them phenotypically. Staining of cultures from vaccinated patients with DR1/ESO(119-143) tetramers identified vaccine-induced CD4 T cells. Tetramer(+) cells isolated by cell sorting were of T(H)1 type and efficiently recognized full-length ESO. We identified ESO(123-137) as the minimal optimal epitope recognized by DR1-restricted ESO-specific CD4 T cells. By assessing DR1/ESO(119-143) tetramer(+) cells using T cell receptor (TCR) β chain variable region (Vβ)-specific antibodies, we identified several frequently used Vβ. Finally, direct ex vivo staining of patients' CD4 T cells with tetramers allowed the direct quantification and phenotyping of vaccine-induced ESO-specific CD4 T cells. The development of DR1/ESO(119-143) tetramers, allowing the direct visualization, isolation, and characterization of ESO-specific CD4 T cells, will be instrumental for the evaluation of spontaneous and vaccine-induced immune responses to this important tumor antigen in DR1-expressing patients. ©2010 AACR.

  8. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    Science.gov (United States)

    Sedlik, Christine; Vigneron, James; Torrieri-Dramard, Lea; Pitoiset, Fabien; Denizeau, Jordan; Chesneau, Caroline; de la Rochere, Philippe; Lantz, Olivier; Thery, Clotilde; Bellier, Bertrand

    2014-01-01

    The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs) to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccines encoding the non-EV-associated antigen. Here, we compared our two approaches to associate the ovalbumin (OVA) antigen to EVs: (a) by fusion to the lipid-binding domain C1C2 of MFGE8(=lactadherin), which is exposed on the surface of secreted membrane vesicles; and (b) by fusion to retroviral Gag capsid protein, which is incorporated inside membrane-enclosed virus-like particles. Plasmids encoding either form of modified OVA were used as DNA-based vaccines (i.e. injected into mice to allow in vivo expression of the antigen associated to EVs). We show that both DNA vaccines induced, with similar efficiency, OVA-specific CD8+ T cells and total IgG antibodies. By contrast, each vaccine preferentially stimulated different isotypes of immunoglobulins, and the OVA-C1C2-encoding vaccine favoured antigen-specific CD4+ T lymphocyte induction as compared to the Gag-OVA vaccine. Nevertheless, both OVA-C1C2 and Gag-OVA vaccines efficiently prevented in vivo outgrowth of OVA-expressing tumours and reduced tumour progression when administered to tumour-bearing mice, although with variable efficacies depending on the tumour models. DNA vaccines encoding EV-associated antigens are thus promising immunotherapy tools in cancer but also potentially other diseases. PMID:25206960

  9. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    Directory of Open Access Journals (Sweden)

    Christine Sedlik

    2014-08-01

    Full Text Available The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccines encoding the non-EV-associated antigen. Here, we compared our two approaches to associate the ovalbumin (OVA antigen to EVs: (a by fusion to the lipid-binding domain C1C2 of MFGE8(=lactadherin, which is exposed on the surface of secreted membrane vesicles; and (b by fusion to retroviral Gag capsid protein, which is incorporated inside membrane-enclosed virus-like particles. Plasmids encoding either form of modified OVA were used as DNA-based vaccines (i.e. injected into mice to allow in vivo expression of the antigen associated to EVs. We show that both DNA vaccines induced, with similar efficiency, OVA-specific CD8+ T cells and total IgG antibodies. By contrast, each vaccine preferentially stimulated different isotypes of immunoglobulins, and the OVA-C1C2-encoding vaccine favoured antigen-specific CD4+ T lymphocyte induction as compared to the Gag-OVA vaccine. Nevertheless, both OVA-C1C2 and Gag-OVA vaccines efficiently prevented in vivo outgrowth of OVA-expressing tumours and reduced tumour progression when administered to tumour-bearing mice, although with variable efficacies depending on the tumour models. DNA vaccines encoding EV-associated antigens are thus promising immunotherapy tools in cancer but also potentially other diseases.

  10. Bacillus subtilis as a tool for vaccine development: from antigen factories to delivery vectors

    Directory of Open Access Journals (Sweden)

    Luís C.S. Ferreira

    2005-03-01

    Full Text Available Bacillus subtilis and some of its close relatives have a long history of industrial and biotechnological applications. Search for antigen expression systems based on recombinant B. subtilis strains sounds attractive both by the extensive genetic knowledge and the lack of an outer membrane, which simplify the secretion and purification of heterologous proteins. More recently, genetically modified B. subtilis spores have been described as indestructible delivery vehicles for vaccine antigens. Nonetheless both production and delivery of antigens by B. subtilis strains face some inherent obstacles, as unstable gene expression and reduced immunogenicity that, otherwise, can be overcome by already available gene technology approaches. In the present review we present the status of B. subtilis-based vaccine research, either as protein factories or delivery vectors, and discuss some alternatives for a better use of genetically modified strains.Bacillus subtilis e alguns de seus parentes mais próximos possuem uma longa história de aplicações industriais e biotecnológicas. A busca de sistemas de expressão de antígenos baseados em linhagens recombinants de B. subtilis mostra-se atrativa em função do conhecimento genético disponível e ausência de uma membrana externa, o que simplifica a secreção e a purificação de proteínas heterólogas. Mais recentemente, esporos geneticamente modificados de B. subtilis foram descritos com veículos indestrutíveis para o transporte de antígenos vacinais. Todavia a produção e o transporte de antígenos por linhagens de B. subtilis encontra obstáculos, como a expressão gênica instável e imunogenicidade reduzida, que podem ser superados com o auxílio de tecnologias genéticas atualmente disponíveis. Apresentamos nesta revisão o estado atual da pesquisa em vacinas baseadas em B. subtilis, empregado tanto como fábrica de proteínas ou veículos, e discute algumas alternativas para o uso mais

  11. A DNA vaccine encoding mutated HPV58 mE6E7-Fc-GPI fusion antigen and GM-CSF and B7.1.

    Science.gov (United States)

    Wang, He; Yu, Jiyun; Li, Li

    2015-01-01

    Persistent infection with high-risk human papillomavirus (HPV) is a predominant cause of cervical cancer, and HPV58 is the third most common virus detected in the patients with cervical cancer in Asia. E6 and E7 are the viral oncogenes which are constitutively expressed in HPV-associated tumor cells and can be used as target antigens for related immunotherapy. In this study, we modified the HPV58 E6 and E7 oncogenes to eliminate their oncogenic potential and constructed a recombinant DNA vaccine that coexpresses the sig-HPV58 mE6E7-Fc-GPI fusion antigen in addition to granulocyte-macrophage colony-stimulating factor (GM-CSF) and B7.1 as molecular adjuvants (PVAX1-HPV58 mE6E7FcGB) for the treatment of HPV58 (+) cancer. PVAX1-HPV58 mE6E7FcGB recombinant DNA vaccine was constructed to express a fusion protein containing a signal peptide, a modified HPV58 mE6E7 gene, and human IgG Fc and glycosylphosphatidylinositol (GPI)-anchoring sequences using the modified DNA vaccine vector PVAX1-IRES-GM/B7.1 that coexpresses GM-CSF, and B7.1. C57BL/6 mice were challenged by HPV58 E6E7-expressing B16-HPV58 E6E7 cells, followed by immunization by PVAX1-HPV58 mE6E7FcGB vaccine on days 7, 14, 21 after tumor challenge. The cellular immune responses in immunized mice were assessed by measuring IFN-γ production in splenocytes upon stimulation by HPV58 E6E7-GST protein and the lysis of B16-HPV58 E6E7 target cells by splenocytes after restimulation with HPV58 E6E7-GST protein. The antitumor efficacy was evaluated by monitoring the growth of the tumor. PVAX1-HPV58 mE6E7FcGB elicited varying levels of IFN-lsgdB58onn T-cell immune responses and lysis of target cell in mice in response to the recombinant antigen HPV58 E6E7-GST. Furthermore, the vaccine also induced antitumor responses in the HPV58 (+) B16-HPV58 E6E7 tumor challenge model as evidenced by delayed tumor development. The recombinant DNA vaccine PVAX1-HPV58 mE6E7FcGB efficiently generates cellular immunity and antitumor efficacy

  12. Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8+and CD4+T-cell responses with multiple specificities including a novel DR7-restricted epitope.

    Science.gov (United States)

    Baumgaertner, P; Costa Nunes, C; Cachot, A; Maby-El Hajjami, H; Cagnon, L; Braun, M; Derré, L; Rivals, J-P; Rimoldi, D; Gnjatic, S; Abed Maillard, S; Marcos Mondéjar, P; Protti, M P; Romano, E; Michielin, O; Romero, P; Speiser, D E; Jandus, C

    2016-01-01

    Long synthetic peptides and CpG-containing oligodeoxynucleotides are promising components for cancer vaccines. In this phase I trial, 19 patients received a mean of 8 (range 1-12) monthly vaccines s.c. composed of the long synthetic NY-ESO-1 79-108 peptide and CpG-B (PF-3512676), emulsified in Montanide ISA-51. In 18/18 evaluable patients, vaccination induced antigen-specific CD8 + and CD4 + T-cell and antibody responses, starting early after initiation of immunotherapy and lasting at least one year. The T-cells responded antigen-specifically, with strong secretion of IFNγ and TNFα, irrespective of patients' HLAs. The most immunogenic regions of the vaccine peptide were NY-ESO-1 89-102 for CD8 + and NY-ESO-1 83-99 for CD4 + T-cells. We discovered a novel and highly immunogenic epitope (HLA-DR7/NY-ESO-1 87-99 ); 7/7 HLA-DR7 + patients generated strong CD4 + T-cell responses, as detected directly ex vivo with fluorescent multimers. Thus, vaccination with the long synthetic NY-ESO-1 79-108 peptide combined with the strong immune adjuvant CpG-B induced integrated, robust and functional CD8 + and CD4 + T-cell responses in melanoma patients, supporting the further development of this immunotherapeutic approach.

  13. The influence of antigen targeting to sub-cellular compartments on the anti-allergic potential of a DNA vaccine.

    Science.gov (United States)

    Weinberger, Esther E; Isakovic, Almedina; Scheiblhofer, Sandra; Ramsauer, Christina; Reiter, Katrin; Hauser-Kronberger, Cornelia; Thalhamer, Josef; Weiss, Richard

    2013-12-09

    Gene vaccines offer attractive rationales for prophylactic as well as therapeutic treatments of type I allergies. DNA and mRNA vaccines have been shown to prevent from allergic sensitization and to counterbalance established allergic immune reactions. Recent advances in gene vaccine manipulation offer additional opportunities for modulation of T helper cell profiles by specific targeting of cellular compartments. DNA vaccines encoding the major birch pollen allergen Bet v 1.0101 were equipped with different leader sequences to shuttle the antigen to lysosomes (LIMP-II), to trigger cellular secretion (hTPA), or to induce proteasomal degradation via forced ubiquitination (ubi). Mice were pre-vaccinated with these constructs and the protective efficacy was tested by subcutaneous Th2-promoting challenges, followed by allergen inhalation. IgG antibody subclass distribution and allergen-specific IgE as well as cytokine profiles from re-stimulated splenocytes and from BALFs were assessed. The cellular composition of BALFs, and lung resistance and compliance were determined. Immunization with all targeting variants protected from allergic sensitization, i.e. IgE induction, airway hyperresponsiveness, lung inflammation, and systemic and local Th2 cytokine expression. Surprisingly, protection did not clearly correlate with the induction of a systemic Th1 cytokine profile, but rather with proliferating CD4+ CD25+ FoxP3+ T regulatory cells in splenocyte cultures. Targeting the allergen to proteasomal or lysosomal degradation severely down-regulated antibody induction after vaccination, while T cell responses remained unaffected. Although secretion of antigen promoted the highest numbers of Th1 cells, this vaccine type was the least efficient in suppressing the establishment of an allergic immune response. This comparative analysis highlights the modulatory effect of antigen targeting on the resulting immune response, with a special emphasis on prophylactic anti-allergy DNA

  14. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    Science.gov (United States)

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-05

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Recombinant Secreted Antigens from Mycoplasma hyopneumoniae Delivered as a Cocktail Vaccine Enhance the Immune Response of Mice

    Science.gov (United States)

    Galli, Vanessa; Simionatto, Simone; Marchioro, Silvana Beutinger; Klabunde, Gustavo Henrique Ferrero; Conceição, Fabricio Rochedo

    2013-01-01

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), which is a respiratory disease responsible for huge economic losses in the pig industry worldwide. The commercially available vaccines provide only partial protection and are expensive. Thus, the development of alternatives for the prophylaxis of EP is critical for improving pig health. The use of multiple antigens in the same immunization may represent a promising alternative. In the present study, seven secreted proteins of M. hyopneumoniae were cloned, expressed in Escherichia coli, and evaluated for antigenicity using serum from naturally and experimentally infected pigs. In addition, the immunogenicity of the seven recombinant proteins delivered individually or in protein cocktail vaccines was evaluated in mice. In Western blot assays and enzyme-linked immunosorbent assays, most of the recombinant proteins evaluated were recognized by convalescent-phase serum from the animals, indicating that they are expressed during the infectious process. The recombinant proteins were also immunogenic, and most induced a mixed IgG1/IgG2a humoral immune response. The use of these proteins in a cocktail vaccine formulation enhanced the immune response compared to their use as antigens delivered individually, providing evidence of the efficacy of the multiple-antigen administration strategy for the induction of an immune response against M. hyopneumoniae. PMID:23803903

  16. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  17. Longitudinal multiparameter single-cell analysis of macaques immunized with pneumococcal protein-conjugated or unconjugated polysaccharide vaccines reveals distinct antigen specific memory B cell repertoires.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    Full Text Available The efficacy of protein-conjugated pneumococcal polysaccharide vaccines has been well characterized for children. The level of protection conferred by unconjugated polysaccharide vaccines remains less clear, particularly for elderly individuals who have had prior antigenic experience through immunization with unconjugated polysaccharide vaccines or natural exposure to Streptococcus pneumoniae.We compared the magnitude, diversity and genetic biases of antigen-specific memory B cells in two groups of adult cynomolgus macaques that were immunized with a 7-valent conjugated vaccine and boosted after five years with either a 13-valent pneumococcal polysaccharide conjugate vaccine (13vPnC or a 23-valent unconjugated pneumococcal polysaccharide vaccine (23vPS using microengraving (a single-cell analysis method and single-cell RT-PCR.Seven days after boosting, the mean frequency of antigen-specific memory B cells was significantly increased in macaques vaccinated with 13vPnC compared to those receiving 23vPS. The 13vPnC-vaccinated macaques also exhibited a more even distribution of antibody specificities to four polysaccharides in the vaccine (PS4, 6B, 14, 23F that were examined. However, single-cell analysis of the antibody variable region sequences from antigen-specific B cells elicited by unconjugated and conjugated vaccines indicated that both the germline gene segments forming the heavy chains and the average lengths of the Complementary Determining Region 3 (CDR3 were similar.Our results confirm that distinctive differences can manifest between antigen-specific memory B cell repertoires in nonhuman primates immunized with conjugated and unconjugated pneumococcal polysaccharide vaccines. The study also supports the notion that the conjugated vaccines have a favorable profile in terms of both the frequency and breadth of the anamnestic response among antigen-specific memory B cells.

  18. Longitudinal multiparameter single-cell analysis of macaques immunized with pneumococcal protein-conjugated or unconjugated polysaccharide vaccines reveals distinct antigen specific memory B cell repertoires.

    Science.gov (United States)

    Jia, Bin; McNeil, Lisa K; Dupont, Christopher D; Tsioris, Konstantinos; Barry, Rachel M; Scully, Ingrid L; Ogunniyi, Adebola O; Gonzalez, Christopher; Pride, Michael W; Gierahn, Todd M; Liberator, Paul A; Jansen, Kathrin U; Love, J Christopher

    2017-01-01

    The efficacy of protein-conjugated pneumococcal polysaccharide vaccines has been well characterized for children. The level of protection conferred by unconjugated polysaccharide vaccines remains less clear, particularly for elderly individuals who have had prior antigenic experience through immunization with unconjugated polysaccharide vaccines or natural exposure to Streptococcus pneumoniae. We compared the magnitude, diversity and genetic biases of antigen-specific memory B cells in two groups of adult cynomolgus macaques that were immunized with a 7-valent conjugated vaccine and boosted after five years with either a 13-valent pneumococcal polysaccharide conjugate vaccine (13vPnC) or a 23-valent unconjugated pneumococcal polysaccharide vaccine (23vPS) using microengraving (a single-cell analysis method) and single-cell RT-PCR. Seven days after boosting, the mean frequency of antigen-specific memory B cells was significantly increased in macaques vaccinated with 13vPnC compared to those receiving 23vPS. The 13vPnC-vaccinated macaques also exhibited a more even distribution of antibody specificities to four polysaccharides in the vaccine (PS4, 6B, 14, 23F) that were examined. However, single-cell analysis of the antibody variable region sequences from antigen-specific B cells elicited by unconjugated and conjugated vaccines indicated that both the germline gene segments forming the heavy chains and the average lengths of the Complementary Determining Region 3 (CDR3) were similar. Our results confirm that distinctive differences can manifest between antigen-specific memory B cell repertoires in nonhuman primates immunized with conjugated and unconjugated pneumococcal polysaccharide vaccines. The study also supports the notion that the conjugated vaccines have a favorable profile in terms of both the frequency and breadth of the anamnestic response among antigen-specific memory B cells.

  19. Live attenuated rubella vectors expressing SIV and HIV vaccine antigens replicate and elicit durable immune responses in rhesus macaques

    Science.gov (United States)

    2013-01-01

    Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge. PMID:24041113

  20. Evaluation of peptide selection approaches for epitope‐based vaccine design

    DEFF Research Database (Denmark)

    Schubert, B.; Lund, Ole; Nielsen, Morten

    2013-01-01

    A major challenge in epitope-based vaccine (EV) design stems from the vast genomic variation of pathogens and the diversity of the host cellular immune system. Several computational approaches have been published to assist the selection of potential T cell epitopes for EV design. So far, no thoro......A major challenge in epitope-based vaccine (EV) design stems from the vast genomic variation of pathogens and the diversity of the host cellular immune system. Several computational approaches have been published to assist the selection of potential T cell epitopes for EV design. So far...... in terms of in silico measurements simulating important vaccine properties like the ability of inducing protection against a multivariant pathogen in a population; the predicted immunogenicity; pathogen, allele, and population coverage; as well as the conservation of selected epitopes. Additionally, we...... evaluate the use of human leukocyte antigen (HLA) supertypes with regards to their applicability for population-spanning vaccine design. The results showed that in terms of induced protection methods that simultaneously aim to optimize pathogen and HLA coverage significantly outperform methods focusing...

  1. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct Clonotype and Epitope Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M.; Robinson, H.; Wang, R.; Kong, W.-P.; Kanekiyo, M.; Akahata, W.; Xu, L.; Matsuo, K.; Natarajan, K.; Asher, T. E.; Price, D. A.; Douek, D. C.; Margulies, D. H.; Nabel, G. J.

    2009-08-15

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.

  2. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8plus T Cell Responses with Distinct Clonotype and Epitope Specificity

    Energy Technology Data Exchange (ETDEWEB)

    M Honda; R Wang; W Kong; M Kanekiyo; Q Akahata; L Xu; K Matsuo; K Natarajan; H Robinson; et al.

    2011-12-31

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.

  3. Antibodies against a class II HLA-peptide complex raised by active immunization of mice with antigen mimicking peptides

    DEFF Research Database (Denmark)

    Dam-Tuxen, R; Riise, Erik Skjold

    2009-01-01

    , have been found in the peripheral blood of MS patients. These autoreactive T cells are believed to play a role in the pathogenesis of MS. In this article, antibodies against the HLA complex DR2b (DRA1*0101/DRB1*1501) in complex with the MBP-derived peptide MBP(85-99) have been generated by immunization...

  4. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    Energy Technology Data Exchange (ETDEWEB)

    Hebishima, Takehisa [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tada, Seiichi [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Takeshima, Shin-nosuke [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Akaike, Toshihiro [Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501 (Japan); Ito, Yoshihiro [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.

  5. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    International Nuclear Information System (INIS)

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke; Akaike, Toshihiro; Ito, Yoshihiro; Aida, Yoko

    2011-01-01

    Highlights: ► To develop effective vaccine, we examined the effects of CO 3 Ap as an antigen carrier. ► OVA contained in CO 3 Ap was taken up by BMDCs more effectively than free OVA. ► OVA-immunized splenocytes was activated by OVA contained in CO 3 Ap effectively. ► OVA contained in CO 3 Ap induced strong OVA-specific immune responses to C57BL/6 mice. ► CO 3 Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO 3 Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO 3 Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO 3 Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO 3 Ap induced the proliferation and antigen-specific production of IFN-γ by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO 3 Ap and OVA-containing alumina salt (Alum), suggesting that CO 3 Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO 3 Ap.

  6. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  7. Structural analysis of peptides capable of binding to more than one Ia antigen

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S

    1989-01-01

    The Ia binding regions were analyzed for three unrelated peptide Ag (sperm whale myoglobin 106-118, influenza hemagglutinin 130-142, and lambda repressor protein 12-26) for which binding to more than one Ia molecule has previously been demonstrated. By determining the binding profile of three...... separate series of truncated synthetic peptides, it was found that in all three cases the different Ia reactivities mapped to largely overlapping regions of the peptides; although, for two of the peptides, the regions involved in binding the different Ia specificities were distinct. Moreover, subtle...... differences were found to dramatically influence some, but not other, Ia reactivities. Using a large panel of synthetic peptides it was found that a significant correlation exists between the capacity of peptides to interact with different alleles of the same molecule (i.e., IAd and IAk), but no correlation...

  8. Anti-idiotypic antibody with potential use as an Eimeria tenella sporozoite antigen surrogate for vaccination of chickens against coccidiosis.

    Science.gov (United States)

    Bhogal, B S; Nollstadt, K H; Karkhanis, Y D; Schmatz, D M; Jacobson, E B

    1988-01-01

    Anti-idiotypic antibodies were raised in rabbits against four monoclonal antibodies with specificity for the surface antigenic determinants of Eimeria tenella sporozoites, the infective stage of the coccidial parasite. Two of the monoclonal antibodies (1073 and 15-1) transferred passive protection in chickens against E. tenella infection. The polyclonal anti-idiotype antibody preparations against protective monoclonal antibodies contained specificities for the paratope-associated idiotypes of these monoclonal antibodies, as assessed by the competitive inhibition of binding of the homologous idiotype-anti-idiotype by the sporozoite antigen. Competitive inhibition of binding of homologous idiotype-anti-idiotype by the parasite antigen was not observed when the anti-idiotype antibody preparations against monoclonal antibodies 1546 and 1096 were tested. The anti-idiotype 1073 and 15-1 antibodies functioned as surrogate antigens in vivo when used for vaccination of young chickens, as evidenced by the induction of partial protective immunity against subsequent challenge infection with virulent parasites and induction of antisporozoite antibodies. These data clearly support the view that anti-idiotypic antibodies raised against the paratope-associated idiotypes can mimic pathogen antigens and therefore can provide a possible alternative approach for the vaccination of chickens against coccidiosis. PMID:3258583

  9. Subunit Vaccines Consisting of Antigens from Dormant and Replicating Bacteria Show Promising Therapeutic Effect against Mycobacterium Bovis BCG Latent Infection.

    Science.gov (United States)

    Li, F; Kang, H; Li, J; Zhang, D; Zhang, Y; Dannenberg, A M; Liu, X; Niu, H; Ma, L; Tang, R; Han, X; Gan, C; Ma, X; Tan, J; Zhu, B

    2017-06-01

    To screen effective antigens as therapeutic subunit vaccines against Mycobacterium latent infection, we did bioinformatics analysis and literature review to identify effective antigens and evaluated the immunogenicity of five antigens highly expressed in dormant bacteria, which included Rv2031c (HspX), Rv2626c (Hrp1), Rv2007c (FdxA), Rv1738 and Rv3130c. Then, several fusion proteins such as Rv2007c-Rv2626c (F6), Rv2031c-Rv1738-Rv1733c (H83), ESAT6-Rv1738-Rv2626c (LT40), ESAT6-Ag85B-MPT64 -Mtb8.4 (EAMM), and EAMM-Rv2626c (LT70) were constructed and their therapeutic effects were evaluated in pulmonary Mycobacterium bovis Bacilli Calmette-Guérin (BCG) - latently infected rabbit or mouse models. The results showed that EAMM and F6 plus H83 had therapeutic effect against BCG latent infection in the rabbit model, respectively, and that the combination of EAMM with F6 plus H83 significantly reduced the bacterial load. In addition, the fusion proteins LT40 and LT70 consisting of multistage antigens showed promising therapeutic effects in the mouse model. We conclude that subunit vaccines consisting of both latency and replicating-associated antigens show promising therapeutic effects in BCG latent infection animal models. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  10. Acanthocheilonema viteae: Vaccination of jirds with irradiation-attenuated stage-3 larvae and with exported larval antigens

    International Nuclear Information System (INIS)

    Lucius, R.; Textor, G.; Kern, A.; Kirsten, C.

    1991-01-01

    Jirds (Meriones unguiculatus) were immunized with irradiated (35 krad) stage-3 larvae (L3) of Acanthocheilonema viteae. The induced resistance against homologous challenge infection and the antibody response of the animals were studied. Immunization with 3, 2, or 1 dose of 50 irradiated L3 induced approximately 90% resistance. Immunization with a single dose of only 5 irradiated L3 resulted in 60.8% protection while immunization with a single dose of 25 L3 induced 94.1% protection. The protection induced with 3 doses of 50 irradiated L3 did not decrease significantly during a period of 6 months. Sera of a proportion, but not all resistant jirds, contained antibodies against the surface of vector derived L3 as defined by IFAT. No surface antigens of microfilariae or adult worms were recognized by the sera. Vaccinated animals had antibody responses against antigens in the inner organs of L3 and in the cuticle and reproductive organs of adult worms as shown by IFAT. Immunoblotting with SDS-PAGE-separated L3 antigens and L3-CSN revealed that all sera contained antibodies against two exported antigens of 205 and 68 kDa, and against a nonexported antigen of 18 kDa. The 205-kDa antigen easily degraded into fragments of 165, 140, 125, and 105 kDa which were recognized by resistant jird sera. Various antigens of adult worms, but relatively few antigens of microfilariae, were also recognized. To test the relevance of exported antigens of L3 to resistance, jirds were immunized with L3-CSN together with a mild adjuvant. This immunization induced 67.7% resistance against challenge infection and sera of the immunized animals recognized the 205- and 68-kDa antigens of L3

  11. Overexpression of Protective Antigen as a Novel Approach To Enhance Vaccine Efficacy of Brucella abortus Strain RB51

    Science.gov (United States)

    Vemulapalli, Ramesh; He, Yongqun; Cravero, Silvio; Sriranganathan, Nammalwar; Boyle, Stephen M.; Schurig, Gerhardt G.

    2000-01-01

    Brucella abortus strain RB51 is an attenuated rough strain that is currently being used as the official live vaccine for bovine brucellosis in the United States and several other countries. We reasoned that overexpression of a protective antigen(s) of B. abortus in strain RB51 should enhance its vaccine efficacy. To test this hypothesis, we overexpressed Cu/Zn superoxide dismutase (SOD) protein of B. abortus in strain RB51. This was accomplished by transforming strain RB51 with a broad-host-range plasmid, pBBR1MCS, containing the sodC gene along with its promoter. Strain RB51 overexpressing SOD (RB51SOD) was tested in BALB/c mice for its ability to protect against challenge infection with virulent strain 2308. Mice vaccinated with RB51SOD, but not RB51, developed antibodies and cell-mediated immune responses to Cu/Zn SOD. Strain RB51SOD vaccinated mice developed significantly (P RB51 alone. The presence of the plasmid alone in strain RB51 did not alter its vaccine efficacy. Also, overexpression of SOD did not alter the attenuation characteristic of strain RB51. PMID:10816475

  12. Poloxamer 407-chitosan grafted thermoresponsive hydrogels achieve synchronous and sustained release of antigen and adjuvant from single-shot vaccines.

    Science.gov (United States)

    Bobbala, Sharan; Gibson, Blake; Gamble, Allan B; McDowell, Arlene; Hook, Sarah

    2018-03-02

    Sustained release vaccine delivery systems may enhance the immunogenicity of subunit vaccines and reduce the need for multiple vaccinations. The aim of this study was to develop a thermoresponsive hydrogel using poloxamer 407-chitosan (CP) grafted copolymer as a delivery system for single-shot sustained release vaccines. The CP copolymer was synthesized using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. The CP copolymer was a free flowing solution at ambient temperature and transformed rapidly into a gel at body temperature. The hydrogels were loaded with vaccine antigen and adjuvants or the vaccine components were encapsulated in poly (lactic-co-glycolic acid) nanoparticles (PLGA-NP) in order to ensure synchronous release. The CP hydrogels were stable for up to 18 days in vitro. Release of both nanoparticles and the individual components was complete, with release of the individual components being modulated by incorporation into nanoparticles. In vivo, a single dose of CP hydrogel vaccine induced strong, long lasting, cellular and humoral responses that could protect against the development of tumors in a murine melanoma model. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Hepatitis B Vaccination Coverage and Prevalence of Hepatitis B Surface Antigen Among Children in French Polynesia, 2014.

    Science.gov (United States)

    Patel, Minal K; Le Calvez, Evelyne; Wannemuehler, Kathleen; Ségalin, Jean-Marc

    2016-06-01

    French Polynesia is considered to be moderately endemic for chronic hepatitis B virus infection, with an estimated 3% of the population having hepatitis B surface antigen (HBsAg). From 1990 to 1992, a 3-dose hepatitis B vaccination series was introduced into the routine infant immunization schedule in French Polynesia, including a birth dose (BD). In 2014, a nationally representative 2-stage cluster survey was undertaken to evaluate the impact of the vaccination program on HBsAg prevalence among school children (∼6 years of age) in Cours Préparatoire (CP). Documented vaccination data were reviewed for all eligible children; children with consent were tested for HBsAg with a rapid point-of-care test. In total, 1,660 students were identified; 1,567 (94%) had vaccination data for review and 1,196 (72%) participated in the serosurvey. Three-dose vaccination coverage was 98%, while timely BD coverage, defined as a dose administered within 24 hours of life, was 89%. Receipt of the second and third doses was often delayed, with 75% and 55% receiving a second and third dose within 1 month of the recommended age, respectively. No children tested positive for HBsAg. French Polynesia's vaccination program has achieved high coverage and an HBsAg seroprevalence of 0% (0-0.5%) among CP school children, but timeliness of vaccination could be improved. © The American Society of Tropical Medicine and Hygiene.

  14. Dengue encephalitis-associated immunopathology in the mouse model: Implications for vaccine developers and antigens inducer of cellular immune response.

    Science.gov (United States)

    Marcos, Ernesto; Lazo, Laura; Gil, Lázaro; Izquierdo, Alienys; Suzarte, Edith; Valdés, Iris; Blanco, Aracelys; Ancizar, Julio; Alba, José Suárez; Pérez, Yusleydis de la C; Cobas, Karen; Romero, Yaremis; Guillén, Gerardo; Guzmán, María G; Hermida, Lisset

    2016-08-01

    Despite the many efforts made by the scientific community in the development of vaccine candidates against dengue virus (DENV), no vaccine has been licensed up to date. Although the immunopathogenesis associated to the disease is a key factor to take into account by vaccine developers, the lack of animal models that reproduce the clinical signs of the disease has hampered the vaccine progress. Non-human primates support viral replication, but they are very expensive and do not show signs of disease. Immunocompromised mice develop viremia and some signs of the disease; however, they are not valuable for vaccine testing. Nowadays, immunocompetent mice are the most used model to evaluate the immunogenicity of vaccine candidates. These animals are resistant to DENV infection; therefore, the intracranial inoculation with neuroadapted virus, which provokes viral encephalitis, represents an alternative to evaluate the protective capacity of vaccine candidates. Previous results have demonstrated the crucial role of cellular immune response in the protection induced by the virus and vaccine candidates in this mouse encephalitis model. However, in the present work we are proposing that the magnitude of the cell-mediated immunity and the inflammatory response generated by the vaccine can modulate the survival rate after viral challenge. We observed that the intracranial challenge of naïve mice with DENV-2 induces the recruitment of immune cells that contribute to the reduction of viral load, but does not increase the survival rate. On the contrary, animals treated with cyclophosphamide, an immunosuppressive drug that affects proliferating lymphocytes, had a higher viral load but a better survival rate than untreated animals. These results suggest that the immune system is playing an immunopathogenic role in this model and the survival rate may not be a suitable endpoint in the evaluation of vaccine candidates based on antigens that induce a strong cellular immune response

  15. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Directory of Open Access Journals (Sweden)

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  16. Proteolytic activity of prostate-specific antigen (PSA) towards protein substrates and effect of peptides stimulating PSA activity.

    Science.gov (United States)

    Mattsson, Johanna M; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu

    2014-01-01

    Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  17. Proteolytic Activity of Prostate-Specific Antigen (PSA) towards Protein Substrates and Effect of Peptides Stimulating PSA Activity

    Science.gov (United States)

    Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu

    2014-01-01

    Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904

  18. A novel peptide-nucleotide dual vaccine of human telomerase reverse transcriptase induces a potent cytotoxic T-cell response in vivo

    International Nuclear Information System (INIS)

    Guo, Hong; Hao, Jia; Wu, Chao; Shi, Yun; Zhao, Xiao-yan; Fang, Dian-chun

    2007-01-01

    Human telomerase reverse transcriptase (hTERT) is highly expressed in over 85% of human cancers, which makes it a broadly applicable molecular target for cancer therapy. Several groups have demonstrated that hTERT can efficiently evoke specific cytotoxic T lymphocytes (CTL) responses for malignant tumors. In the present study, we developed a novel virus-like particulate peptide-nucleotide dual vaccine (PNDV) of hTERT, which was composed of a low-affinity epitope variant with encoding full-length gene in the same virus-size particulate. We verified the formation of PNDV by DNA retarding assay, DNase I protection assay and transmission electron microscopy, and confirmed its immunogenicity and transfection activities in mammalian cells. Furthermore, in vivo immunization of HLA-A2.1 transgenic mice generated efficient IFN-γ secretion and hTERT-specific CTLs which are known to cause selective cell death of telomerase positive gastrointestinal cancer cells. To our knowledge, this represents the first report on collocating a low-affinity epitope variant with a full-length hTERT gene for anti-cancer vaccine design. This novel strategy for vaccine design not only enables enhanced immunity to a universal tumor antigen, but also has the potential to generate CTLs effective in telomerase-positive tumor cells of diverse tissue origins. Therefore, our findings bear significant implications for immunotherapy of human cancers

  19. Immunogenicity of three recombinant hepatitis B vaccines administered to students in three doses containing half the antigen amount routinely used for adult vaccination

    Directory of Open Access Journals (Sweden)

    Baldy José Luís da Silveira

    2004-01-01

    Full Text Available We evaluated the immunogenicity of three recombinant hepatitis B vaccines, one Brazilian (Butang, Instituto Butantan and two Korean vaccines (Euvax-B, LG Chemical Ltd. and Hepavax-Gene, Greencross Vaccine Corp., administered intramuscularly to students aged 17 to 19 years in three 10-µg doses (corresponding to half the amount of antigen routinely used for adult vaccination at intervals of one month between the first and second dose, and of four months between the second and third dose. A total of 316 students non-reactive for any serological marker of hepatitis B virus infection were vaccinated: 77 (24.4% with the Butang vaccine, 71 (22.5% with Euvax-B, 85 (26.9% with Hepavax-Gene and, for comparison, 83 (26.2% with Engerix-B (GlaxoSmithKline, whose efficacy in young adults at the dose used here has been confirmed in previous studies. Similar seroconversion rates (anti-HBs > 10 mIU/mL about one month after application of the third dose were obtained for the Butang, Euvax-B, Hepavax-Gene and Engerix-B vaccines (96.2%, 98.6%, 96.5% and 97.6%, respectively. The frequency of good responders (anti-HBs > 100 mIU/mL was also similar among students receiving the four vaccines (85.8%, 91.6%, 89.4% and 89.2%, respectively. The geometric mean titers (GMT of anti-HBs about one month after the third dose obtained with these vaccines were 727.78 ± 6.46 mIU/mL, 2009.09 ± 7.16 mIU/mL, 1729.82 ± 8.85 mIU/mL and 2070.14 ± 11.69 mIU/mL, respectively. The GMT of anti-HBs induced by the Euvax-B and Engerix-B vaccines were higher than those obtained with the Butang vaccine (p < 0.05; this difference was not significant when comparing the other vaccines two-by-two. No spontaneous adverse effects attributable to the application of any dose of the four vaccines were reported.

  20. A Francisella tularensis Live Vaccine Strain That Improves Stimulation of Antigen-Presenting Cells Does Not Enhance Vaccine Efficacy

    OpenAIRE

    Schmitt, Deanna M.; O'Dee, Dawn M.; Horzempa, Joseph; Carlson, Paul E.; Russo, Brian C.; Bales, Jacqueline M.; Brown, Matthew J.; Nau, Gerard J.

    2012-01-01

    Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited s...

  1. Pregnancy Vaccination with Gold Glyco-Nanoparticles Carrying Listeria monocytogenes Peptides Protects against Listeriosis and Brain- and Cutaneous-Associated Morbidities

    Directory of Open Access Journals (Sweden)

    Ricardo Calderón-Gonzalez

    2016-08-01

    Full Text Available Listeriosis is a fatal infection for fetuses and newborns with two clinical main morbidities in the neonatal period, meningitis and diffused cutaneous lesions. In this study, we vaccinated pregnant females with two gold glyconanoparticles (GNP loaded with two peptides, listeriolysin peptide 91–99 (LLO91–99 or glyceraldehyde-3-phosphate dehydrogenase 1–22 peptide (GAPDH1–22. Neonates born to vaccinated mothers were free of bacteria and healthy, while non-vaccinated mice presented clear brain affections and cutaneous diminishment of melanocytes. Therefore, these nanoparticle vaccines are effective measures to offer pregnant mothers at high risk of listeriosis interesting therapies that cross the placenta.

  2. Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a TH1 type of immune response.

    Science.gov (United States)

    Handman, E; Symons, F M; Baldwin, T M; Curtis, J M; Scheerlinck, J P

    1995-11-01

    Leishmania major promastigote surface antigen-2 complex (PSA-2) comprises a family of three similar but distinct polypeptides. The three PSA-2 polypeptides were purified from cultured promastigotes by a combination of detergent phase separation and monoclonal antibody affinity chromatography. Intraperitoneal vaccination of C3H/He mice with PSA-2 with Corynebacterium parvum as an adjuvant resulted in complete protection from lesion development after challenge infection with virulent L. major. Significant protection was also obtained in the genetically susceptible BALB/cH-2k and BALB/c mice. One of the PSA-2 genes was cloned and expressed in both Escherichia coli and Leishmania mexicana promastigotes. Vaccination with the recombinant PSA-2 purified from E. coli did not confer protection, in contrast to the L. mexicana-derived recombinant PSA-2, which provided excellent protection. CD4+ T cells isolated from the spleens of vaccinated mice produced large amounts of gamma interferon but no detectable interleukin 4 upon stimulation with PSA-2 in vitro. Limiting dilution analysis showed a marked increase in the precursor frequency of PSA-2-specific gamma interferon-secreting CD4+ T cells. No substantial change in precursor frequency was observed for interleukin 4-secret