WorldWideScience

Sample records for antigen-presenting cell imprinting

  1. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  2. The Antigen Presenting Cells Instruct Plasma Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Wei eXu

    2014-01-01

    Full Text Available The professional antigen presenting cells (APCs, including many subsets of dendritic cells and macrophages, not only mediate prompt but nonspecific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells, which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only signal 1 (the antigen, but also signal 2 to directly instruct the differentiation process of plasma cells in a T cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  3. The antigen presenting cells instruct plasma cell differentiation.

    Science.gov (United States)

    Xu, Wei; Banchereau, Jacques

    2014-01-06

    The professional antigen presenting cells (APCs), including many subsets of dendritic cells and macrophages, not only mediate prompt but non-specific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells (PCs), which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only "signal 1" (the antigen), but also "signal 2" to directly instruct the differentiation process of PCs in a T-cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching, and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  4. Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs.

    Science.gov (United States)

    Wang, Chao; Sun, Wujin; Ye, Yanqi; Bomba, Hunter N; Gu, Zhen

    2017-01-01

    The immune system protects the body against a wide range of infectious diseases and cancer by leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune cell/organ therapies based on the manipulation, infusion, and implantation of autologous or allogeneic immune cells/organs into patients have been widely tested and have made great progress in clinical applications. Despite these advances, therapy with natural immune cells or lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials and strategies have been applied to develop artificial immune cells and lymphoid organs, which have attracted considerable attentions. In this review, we survey the latest studies on engineering biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also discussed.

  5. Granulocytes: New Members of the Antigen-Presenting Cell Family

    Directory of Open Access Journals (Sweden)

    Ang Lin

    2017-12-01

    Full Text Available Granulocytes, the most abundant types of leukocytes, are the first line of defense against pathogen invasion. However, the plasticity and diversity of granulocytes have been increasingly revealed, especially with regard to their versatile functions in orchestrating adaptive immune responses. A substantial body of recent evidence demonstrates that granulocytes can acquire the function as antigen-presenting cells under pathological or inflammatory conditions. In addition, they can acquire surface expression of MHC class II and costimulatory molecules as well as T cell stimulatory behavior when cultured with selected cytokines. The classic view of granulocytes as terminally differentiated, short-lived phagocytes is therefore changing to phenotypically and functionally heterogeneous cells that are engaged in cross-talk with other leukocyte populations and provide an additional link between innate and adaptive immunity. In this brief review, we summarize the current knowledge on the antigen-presenting capacity of granulocyte subsets (neutrophils, eosinophils, and basophils. Underlying mechanisms, relevant physiological significance and potential controversies are also discussed.

  6. Modulation of antigen presenting cell functions during chronic HPV infection

    Directory of Open Access Journals (Sweden)

    Abate Assefa Bashaw

    2017-12-01

    Full Text Available High-risk human papillomaviruses (HR-HPV infect basal keratinocytes, where in some individuals they evade host immune responses and persist. Persistent HR-HPV infection of the cervix causes precancerous neoplasia that can eventuate in cervical cancer. Dendritic cells (DCs are efficient in priming/cross-priming antigen-specific T cells and generating antiviral and antitumor cytotoxic CD8+ T cells. However, HR-HPV have adopted various immunosuppressive strategies, with modulation of DC function crucial to escape from the host adaptive immune response. HPV E6 and E7 oncoproteins alter recruitment and localization of epidermal DCs, while soluble regulatory factors derived from HPV-induced hyperplastic epithelium change DC development and influence initiation of specific cellular immune responses. This review focuses on current evidence for HR-HPV manipulation of antigen presentation in dendritic cells and escape from host immunity.

  7. Effective antigen presentation to helper T cells by human eosinophils.

    Science.gov (United States)

    Farhan, Ruhaifah K; Vickers, Mark A; Ghaemmaghami, Amir M; Hall, Andrew M; Barker, Robert N; Walsh, Garry M

    2016-12-01

    Although eosinophils are inflammatory cells, there is increasing attention on their immunomodulatory roles. For example, murine eosinophils can present antigen to CD4 + T helper (Th) cells, but it remains unclear whether human eosinophils also have this ability. This study determined whether human eosinophils present a range of antigens, including allergens, to activate Th cells, and characterized their expression of MHC class II and co-stimulatory molecules required for effective presentation. Human peripheral blood eosinophils purified from non-allergic donors were pulsed with the antigens house dust mite extract (HDM), Timothy Grass extract (TG) or Mycobacterium tuberculosis purified protein derivative (PPD), before co-culture with autologous CD4 + Th cells. Proliferative and cytokine responses were measured, with eosinophil expression of HLA-DR/DP/DQ and the co-stimulatory molecules CD40, CD80 and CD86 determined by flow cytometry. Eosinophils pulsed with HDM, TG or PPD drove Th cell proliferation, with the response strength dependent on antigen concentration. The cytokine responses varied with donor and antigen, and were not biased towards any particular Th subset, often including combinations of pro- and anti-inflammatory cytokines. Eosinophils up-regulated surface expression of HLA-DR/DP/DQ, CD80, CD86 and CD40 in culture, increases that were sustained over 5 days when incubated with antigens, including HDM, or the major allergens it contains, Der p I or Der p II. Human eosinophils can, therefore, act as effective antigen-presenting cells to stimulate varied Th cell responses against a panel of antigens including HDM, TG or PPD, an ability that may help to determine the development of allergic disease. © 2016 John Wiley & Sons Ltd.

  8. Single cell biochemistry to visualize antigen presentation and drug resistance

    NARCIS (Netherlands)

    Griekspoor, Alexander Christiaan

    2006-01-01

    Many cellular processes are studied by biochemical techniques. Usually, this involves experiments where large number of cells are lysed, protein content is subsequently isolated and studied using antibodies to detect changes in protein levels, post-translational modifications, pairing with partner

  9. Antigen presentation by resting B cells. Radiosensitivity of the antigen-presentation function and two distinct pathways of T cell activation

    International Nuclear Information System (INIS)

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1984-01-01

    In this report we have examined the ability of small resting B cells to act as antigen-presenting cells (APC) to antigen-specific MHC-restricted T cells as assessed by either T cell proliferation or T cell-dependent B cell stimulation. We found that 10 of 14 in vitro antigen-specific MHC-restricted T cell clones and lines and three of four T cell hybridomas could be induced to either proliferate or secrete IL-2 in the presence of lightly irradiated (1,000 rads) purified B cells and the appropriate foreign antigen. All T cell lines and hybridomas were stimulated to proliferate or make IL-2 by macrophage- and dendritic cell-enriched populations and all T cells tested except one hybridoma caused B cell activation when stimulated with B cells as APC. Furthermore, lightly irradiated, highly purified syngeneic B cells were as potent a source of APC for inducing B cell activation as were low density dendritic and macrophage-enriched cells. Lymph node T cells freshly taken from antigen-primed animals were also found to proliferate when cultured with purified B cells and the appropriate antigen. This APC function was easily measured when the cells were irradiated with 1,000 rads, but was greatly diminished or absent when they were irradiated with 3,300 rads. In addition, this radiosensitivity allowed us to easily distinguish B cell antigen presentation from presentation by the dendritic cell and macrophage, as the latter was resistant to 3,300 rads. Finally, one T cell clone that failed to proliferate when B cells were used as APC was able to recruit allogeneic B cells to proliferate in the presence of syngeneic B cells and the appropriate antigen. This result suggests that there are at least two distinct pathways of activation in T cells, one that leads to T cell proliferation and one that leads to the secretion of B cell recruitment factor(s)

  10. Skewing to the LFA-3 adhesion pathway by influenza infection of antigen-presenting cells

    NARCIS (Netherlands)

    van Kemenade, F. J.; Kuijpers, K. C.; de Waal-Malefijt, R.; van Lier, R. A.; Miedema, F.

    1993-01-01

    The effect of influenza (FLU) infection on heterotypic conjugate formation between antigen-presenting cells and T lymphocytes has been studied with FLU-specific T cell clones and FLU-infected B-lymphoblastoid cells (B-LCL). Conjugate formation between FLU-infected B-LCL (FLU+ B-LCL) and T cells was

  11. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines

    Directory of Open Access Journals (Sweden)

    Cleo Goyvaerts

    2015-01-01

    Full Text Available In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  12. Impact of aging on antigen presentation cell function of dendritic cells.

    Science.gov (United States)

    Wong, Christine; Goldstein, Daniel R

    2013-08-01

    Older people exhibit increased mortality to infections and cancer as compared to younger people, indicating that aging impairs immunity. Dendritic cells (DCs) are key for bridging the innate and adaptive arms of the immune system by priming antigen specific T cells. Discerning how aging impacts DC function to initiate adaptive immune responses is of great biomedical importance as this could lead to the development of novel therapeutics to enhance immunity with aging. This review details reports indicating that aging impairs the antigen presenting function of DCs but highlights other studies indicating preserved DC function with aging. How aging impacts antigen presentation by DCs is complex and without a clear unifying biological underpinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    Science.gov (United States)

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  14. ImmunoChip Study Implicates Antigen Presentation to T Cells in Narcolepsy

    DEFF Research Database (Denmark)

    Faraco, Juliette; Lin, Ling; Kornum, Birgitte Rahbek

    2013-01-01

    receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells...

  15. The perivascular phagocyte of the mouse pineal gland: An antigen-presenting cell

    DEFF Research Database (Denmark)

    Møller, Morten; Rath, Martin F; Klein, David C

    2006-01-01

    The perivascular space of the rat pineal gland is known to contain phagocytic cells that are immunoreactive for leukocyte antigens, and thus they appear to belong to the macrophage/microglial cell line. These cells also contain MHC class II proteins. We investigated this cell type in the pineal g...... for MHC class II protein and for CD68, a marker of monocytes/phagocytes. This study verifies that perivascular phagocytes with antigen-presenting properties are present in the mouse pineal gland....

  16. Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells

    DEFF Research Database (Denmark)

    Kirkin, Alexei F.; Dzhandzhugazyan, Karine N.; Guldberg, Per

    2018-01-01

    In cancer cells, cancer/testis (CT) antigens become epigenetically derepressed through DNA demethylation and constitute attractive targets for cancer immunotherapy. Here we report that activated CD4+ T helper cells treated with a DNA-demethylating agent express a broad repertoire of endogenous CT...... antigens and can be used as antigen-presenting cells to generate autologous cytotoxic T lymphocytes (CTLs) and natural killer cells. In vitro, activated CTLs induce HLA-restricted lysis of tumor cells of different histological types, as well as cells expressing single CT antigens. In a phase 1 trial of 25...... patients with recurrent glioblastoma multiforme, cytotoxic lymphocytes homed to the tumor, with tumor regression ongoing in three patients for 14, 22, and 27 months, respectively. No treatment-related adverse effects were observed. This proof-of-principle study shows that tumor-reactive effector cells can...

  17. Antigen presentation and MHC class II expression by human esophageal epithelial cells: role in eosinophilic esophagitis.

    Science.gov (United States)

    Mulder, Daniel J; Pooni, Aman; Mak, Nanette; Hurlbut, David J; Basta, Sameh; Justinich, Christopher J

    2011-02-01

    Professional antigen-presenting cells (APCs) play a crucial role in initiating immune responses. Under pathological conditions, epithelial cells at mucosal surfaces act as nonprofessional APCs, thereby regulating immune responses at the site of exposure. Epithelial cells in the esophagus may contribute to the pathogenesis of eosinophilic esophagitis (EoE) by presenting antigens on the major histocompatibility complex (MHC) class II. Our goal was to demonstrate the ability of esophageal epithelial cells to process and present antigens on the MHC class II system and to investigate the contribution of epithelial cell antigen presentation to EoE. Immunohistochemistry detected HLA-DR, CD80, and CD86 expression and enzyme-linked immunosorbent assay detected interferon-γ (IFNγ) in esophageal biopsies. Antigen presentation was studied using the human esophageal epithelial cell line HET-1A by reverse transcriptase-PCR, flow cytometry, and confocal microscopy. T helper cell lymphocyte proliferation was assessed by flow cytometry and IL-2 secretion. IFNγ and MHC class II were increased in mucosa of patients with EoE. IFNγ increased mRNA of HLA-DP, HLA-DQ, HLA-DR, and CIITA in HET-1A cells. HET-1A engulfed cell debris and processed ovalbumin. HET-1A cells expressed HLA-DR after IFNγ treatment. HET-1A stimulated T helper cell activation. In this study, we demonstrated the ability of esophageal epithelial cells to act as nonprofessional APCs in the presence of IFNγ. Esophageal epithelial cell antigen presentation may contribute to the pathophysiology of eosinophilic esophagitis. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  19. Antigen presenting cells costimulatory signaling during pre-implantation pregnancy 

    Directory of Open Access Journals (Sweden)

    Anna Sławek

    2012-09-01

    Full Text Available  Success of pregnancy depends on many factors. Three phenomena inducing immune tolerance against semi-allogeneic conceptus may play a crucial role in the pre-implantation period of pregnancy: influence of sex hormones in sex cycle, presence of oocyte or embryo and the presence of semen in the female reproductive tract. On the other hand dendritic cells are the most effective antigen-presenting cells in regulation of immune phenomena and also are considered as potent participants in inducing immune tolerance in the pregnancy. They communicate with T cells in cell contact-dependent manner or via cytokines. During cell-cell contacts, costimulatory molecules play a key role and their expression is often dependent on cytokines milieu. Both costimulatory molecules and cytokines influence generation of T regulatory cells. Interactions of these molecules are closely related. In this paper we would like to pay attention to the importance of antigen presenting cells costimulatory potency in immune regulation during a pre-implantation period of pregnancy.

  20. A population dynamics analysis of the interaction between adaptive regulatory T cells and antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    David Fouchet

    Full Text Available BACKGROUND: Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks that can be accomplished by a network. METHODOLOGY AND PRINCIPAL FINDINGS: We used a mathematical model to describe a interaction network of adaptive regulatory T cells, in which mature precursor T cells may differentiate into either adaptive regulatory T cells or effector T cells, depending on the activation state of the cell by which the antigen was presented. Using an equilibrium analysis of the mathematical model we show that, for some parameters, the network has two stable equilibrium states: one in which effector T cells are strongly regulated by regulatory T cells and another in which effector T cells are not regulated because the regulatory T cell population is vanishingly small. We then simulate different types of perturbations, such as the introduction of an antigen into a virgin system, and look at the state into which the system falls. We find that whether or not the interaction network switches from the regulated (tolerant state to the unregulated state depends on the strength of the antigenic stimulus and the state from which the network has been perturbed. CONCLUSION/SIGNIFICANCE: Our findings suggest that the interaction network studied in this paper plays an essential part in generating and maintaining tolerance against allergens and self-antigens.

  1. Activation of professional antigen presenting cells by acharan sulfate isolated from giant African snail, Achatina fulica.

    Science.gov (United States)

    Kim, Hyun-Sun; Lee, Young-Hee; Lee, Young-Ran; Im, Sun-A; Lee, Jae-Kwon; Kim, Yeong Shik; Sim, Joon-Soo; Choi, Hyung Seok; Lee, Chong-Kil

    2007-07-01

    Acharan sulfate isolated from the giant African snail, Achatina fulica, has been reported to have antitumor activity in vivo. In an effort to determine the mechanisms of its antitumor activity, we examined the effects of acharan sulfate on professional antigen presenting cells (APCs). Acharan sulfate increased the phagocytic activity, the production of cytokines such as TNF-alpha and IL-1beta, and the release of nitric oxide on a macrophage cell line, Raw 264.7 cells. In addition, acharan sulfate induced phenotypic and functional maturation of immature dendritic cells (DCs). Immature DCs cultured with acharan sulfate expressed higher levels of class II MHC molecules and major co-stimulatory molecules such as B7-1, B7-2, and CD40. Functional maturation of immature DCs cultured in the presence of acharan sulfate was confirmed by the increased allostimulatory capacity and IL-12 production. These results suggest that the antitumor activity of acharan sulfate is partly due to the activation of professional antigen presenting cells.

  2. Activation of nickel-specific CD4+ T lymphocytes in the absence of professional antigen-presenting cells.

    Science.gov (United States)

    Nasorri, Francesca; Sebastiani, Silvia; Mariani, Valentina; De Pità, Ornella; Puddu, Pietro; Girolomoni, Giampiero; Cavani, Andrea

    2002-01-01

    Allergic contact dermatitis ensues from exaggerated T cell responses to haptens. Dendritic cells are required for the initiation of hapten sensitization, but they may not be necessary for disease expression. Here we investigated the antigen-presenting cell requirement of nickel-specific CD4+ lymphocytes isolated from the blood of six allergic individuals. A significant proportion (42 out of 121; 35%) of the T cell clones proliferated in vitro to nickel also in the absence of professional antigen-presenting cells, suggesting a direct T-T hapten presentation. Antigen-presenting-cell-independent T cells showed a predominant T helper 1 phenotype. Nickel recognition by these T cells was major histocompatibility complex class II restricted, not influenced by CD28 triggering, independent from their state of activation, and did not require processing. The capacity of this T cell subset to be directly stimulated by nickel was not due to unique antigen-presenting properties, as both antigen-presenting-cell-dependent and antigen-presenting-cell-independent clones displayed comparable levels of HLA-DR, CD80, and CD86, and were equally capable of presenting nickel to antigen-presenting-cell-independent clones. In contrast, neither T cell types activated antigen-presenting-cell-dependent T lymphocytes. T-T presentation induced T cell receptor downregulation, CD25, CD80, CD86, and HLA-DR upregulation, and interferon-gamma release, although to a lesser extent compared to those induced by dendritic cell-T presentation. Following T-T presentation, the clones did not undergo unresponsiveness and maintained the capacity to respond to dendritic cells pulsed with antigen. In aggregate, our data suggest that antigen-presenting-cell-independent T cell activation can effectively amplify hapten- specific immune responses.

  3. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Botros B. Shenoda

    2016-01-01

    Full Text Available Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages.

  4. Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming.

    Science.gov (United States)

    Zupančič, Eva; Curato, Caterina; Paisana, Maria; Rodrigues, Catarina; Porat, Ziv; Viana, Ana S; Afonso, Carlos A M; Pinto, João; Gaspar, Rogério; Moreira, João N; Satchi-Fainaro, Ronit; Jung, Steffen; Florindo, Helena F

    2017-07-28

    Vaccination is a promising strategy to trigger and boost immune responses against cancer or infectious disease. We have designed, synthesized and characterized aliphatic-polyester (poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to investigate how the nature of protein association (adsorbed versus entrapped) and polymer/surfactant concentrations impact on the generation and modulation of antigen-specific immune responses. The ability of the NP formulations to target dendritic cells (DC), be internalized and activate the T cells was characterized and optimized in vitro and in vivo using markers of DC activation and co-stimulatory molecules. Ovalbumin (OVA) was used as a model antigen in combination with the engraftment of CD4 + and CD8 + T cells, carrying a transgenic OVA-responding T cell receptor (TCR), to trace and characterize the activation of antigen-specific CD4 + and CD8 + lymph node T cells upon NP vaccination. Accordingly, the phenotype and frequency of immune cell stimulation induced by the NP loaded with OVA, isolated or in combination with synthetic unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) motifs, were characterized. DC-NP interactions increased with incubation time, presenting internalization values between 50 and 60% and 30-40%, in vitro and in vivo, respectively. Interestingly, animal immunization with antigen-adsorbed NP up-regulated major histocompatibility complex (MHC) class II (MHCII), while NP entrapping the antigen up-regulated MHCI, suggesting a more efficient cross-presentation. On the other hand, rather surprisingly, the surfactant used in the NP formulation had a major impact on the activation of antigen presenting cells (APC). In fact, DC collected from lymph nodes of animals immunized with NP prepared using poly(vinil alcohol) (PVA), as a surfactant, expressed significantly higher levels of CD86, MHCI and MHCII. In addition, those NP prepared with PVA and co-entrapping OVA and the toll

  5. ImmunoChip study implicates antigen presentation to T cells in narcolepsy.

    Directory of Open Access Journals (Sweden)

    Juliette Faraco

    Full Text Available Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip. Three loci located outside the Human Leukocyte Antigen (HLA region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@, variants in two additional narcolepsy loci, Cathepsin H (CTSH and Tumor necrosis factor (ligand superfamily member 4 (TNFSF4, also called OX40L, attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.

  6. Comparison of microglia and infiltrating CD11c+ cells as antigen presenting cells for T cell proliferation and cytokine response

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Løbner, Morten; Cédile, Oriane

    2014-01-01

    BACKGROUND: Tissue-resident antigen-presenting cells (APC) exert a major influence on the local immune environment. Microglia are resident myeloid cells in the central nervous system (CNS), deriving from early post-embryonic precursors, distinct from adult hematopoietic lineages. Dendritic cells...... (DC) and macrophages infiltrate the CNS during experimental autoimmune encephalomyelitis (EAE). Microglia are not considered to be as effective APC as DC or macrophages. METHODS: In this work we compared the antigen presenting capacity of CD11c+ and CD11c- microglia subsets with infiltrating CD11c......+ APC, which include DC. The microglial subpopulations (CD11c- CD45dim CD11b+ and CD11c+ CD45dim CD11b+) as well as infiltrating CD11c+ CD45high cells were sorted from CNS of C57BL/6 mice with EAE. Sorted cells were characterised by flow cytometry for surface phenotype and by quantitative real-time PCR...

  7. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells.

    Science.gov (United States)

    den Haan, Joke M M; Arens, Ramon; van Zelm, Menno C

    2014-12-01

    The adaptive immune system consists of T and B cells that express clonally distributed antigen receptors. To achieve functional adaptive immune responses, antigen-specific T cell populations are stimulated by professional antigen-presenting cells like dendritic cells (DCs), which provide crucial stimulatory signals for efficient expansion and development of effector functions. Antigen-specific B cells receive costimulatory signals from helper T cells to stimulate affinity maturation and isotype switching. Here we elaborate on the interactions between DCs, T cells and B cells, and on the important signals for efficient induction of adaptive immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability

    International Nuclear Information System (INIS)

    Rivera, Julie A.; McGuire, Travis C.

    2005-01-01

    To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV WSU5 infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixtures of CD8+ and CD4+ cells as detected with 51 Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection

  9. Engineering tolerance using biomaterials to target and control antigen presenting cells.

    Science.gov (United States)

    Tostanoski, Lisa H; Gosselin, Emily A; Jewell, Christopher M

    2016-05-01

    Autoimmune diseases occur when cells of the adaptive immune system incorrectly recognize and attack "self" tissues. Importantly, the proliferation and differentiation of these cells is triggered and controlled by interactions with antigen presenting cells (APCs), such as dendritic cells. Thus, modulating the signals transduced by APCs (e.g., cytokines, costimulatory surface proteins) has emerged as a promising strategy to promote tolerance for diseases such as multiple sclerosis, type 1 diabetes, and lupus. However, many approaches have been hindered by non-specific activity of immunosuppressive or immunoregulatory cues, following systemic administration of soluble factors via traditional injections routes (e.g., subcutaneous, intravenous). Biomaterials offer a unique opportunity to control the delivery of tolerogenic signals in vivo via properties such as controlled particle size, tunable release kinetics, and co-delivery of multiple classes of cargo. In this review, we highlight recent reports that exploit these properties of biomaterials to target APCs and promote tolerance via three strategies, i) passive or active targeting of particulate carriers to APCs, ii) biomaterial-mediated control over antigen localization and processing, and iii) targeted delivery of encapsulated or adsorbed immunomodulatory signals. These reports represent exciting advances toward the goal of more effective therapies for autoimmune diseases, without the broad suppressive effects associated with current clinically-approved therapies.

  10. A sub-population of circulating porcine gammadelta T cells can act as professional antigen presenting cells.

    Science.gov (United States)

    Takamatsu, H-H; Denyer, M S; Wileman, T E

    2002-09-10

    A sub-population of circulating porcine gammadelta T cells express cell surface antigens associated with antigen presenting cells (APCs), and are able to take up soluble antigen very effectively. Functional antigen presentation by gammadelta T cells to memory helper T cells was studied by inbred pig lymphocytes immunised with ovalbumin (OVA). After removing all conventional APCs from the peripheral blood of immunised pigs, the remaining lymphocytes still proliferated when stimulated with OVA. When gammadelta T cells were further depleted, OVA specific proliferation was abolished, but reconstitution with gammadelta T cells restored proliferation. The proliferation was blocked by monoclonal antibodies (mAb) against MHC class II or CD4, and by pre-treatment of gammadelta T cells with chloroquine. These results indicate that a sub-population of circulating porcine gammadelta T cells act as APCs and present antigen via MHC class II.

  11. Generation of competent bone marrow-derived antigen presenting cells from the deer mouse (Peromyscus maniculatus

    Directory of Open Access Journals (Sweden)

    Farrell Regina M

    2004-09-01

    Full Text Available Abstract Background Human infections with Sin Nombre virus (SNV and related New World hantaviruses often lead to hantavirus cardiopulmonary syndrome (HCPS, a sometimes fatal illness. Lungs of patients who die from HCPS exhibit cytokine-producing mononuclear infiltrates and pronounced pulmonary inflammation. Deer mice (Peromyscus maniculatus are the principal natural hosts of SNV, in which the virus establishes life-long persistence without conspicuous pathology. Little is known about the mechanisms SNV employs to evade the immune response of deer mice, and experimental examination of this question has been difficult because of a lack of methodologies for examining such responses during infection. One such deficiency is our inability to characterize T cell responses because susceptible syngeneic deer mice are not available. Results To solve this problem, we have developed an in vitro method of expanding and generating competent antigen presenting cells (APC from deer mouse bone marrow using commercially-available house mouse (Mus musculus granulocyte-macrophage colony stimulating factor. These cells are capable of processing and presenting soluble protein to antigen-specific autologous helper T cells in vitro. Inclusion of antigen-specific deer mouse antibody augments T cell stimulation, presumably through Fc receptor-mediated endocytosis. Conclusions The use of these APC has allowed us to dramatically expand deer mouse helper T cells in culture and should permit extensive characterization of T cell epitopes. Considering the evolutionary divergence between deer mice and house mice, it is probable that this method will be useful to other investigators using unconventional models of rodent-borne diseases.

  12. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes

    Directory of Open Access Journals (Sweden)

    Coukos George

    2011-08-01

    Full Text Available Abstract Background Development of a standardized platform for the rapid expansion of tumor-infiltrating lymphocytes (TILs with anti-tumor function from patients with limited TIL numbers or tumor tissues challenges their clinical application. Methods To facilitate adoptive immunotherapy, we applied genetically-engineered K562 cell-based artificial antigen presenting cells (aAPCs for the direct and rapid expansion of TILs isolated from primary cancer specimens. Results TILs outgrown in IL-2 undergo rapid, CD28-independent expansion in response to aAPC stimulation that requires provision of exogenous IL-2 cytokine support. aAPCs induce numerical expansion of TILs that is statistically similar to an established rapid expansion method at a 100-fold lower feeder cell to TIL ratio, and greater than those achievable using anti-CD3/CD28 activation beads or extended IL-2 culture. aAPC-expanded TILs undergo numerical expansion of tumor antigen-specific cells, remain amenable to secondary aAPC-based expansion, and have low CD4/CD8 ratios and FOXP3+ CD4+ cell frequencies. TILs can also be expanded directly from fresh enzyme-digested tumor specimens when pulsed with aAPCs. These "young" TILs are tumor-reactive, positively skewed in CD8+ lymphocyte composition, CD28 and CD27 expression, and contain fewer FOXP3+ T cells compared to parallel IL-2 cultures. Conclusion Genetically-enhanced aAPCs represent a standardized, "off-the-shelf" platform for the direct ex vivo expansion of TILs of suitable number, phenotype and function for use in adoptive immunotherapy.

  13. Interaction of Cowpea Mosaic Virus (CPMV) Nanoparticles with Antigen Presenting Cells In Vitro and In Vivo

    Science.gov (United States)

    Rae, Chris S.; Manchester, Marianne

    2009-01-01

    Background Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized. Methodology The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer's patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured. Conclusions We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer's patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer's patch. PMID:19956734

  14. A novel approach for reliable detection of cathepsin S activities in mouse antigen presenting cells.

    Science.gov (United States)

    Steimle, Alex; Kalbacher, Hubert; Maurer, Andreas; Beifuss, Brigitte; Bender, Annika; Schäfer, Andrea; Müller, Ricarda; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2016-05-01

    Cathepsin S (CTSS) is a eukaryotic protease mostly expressed in professional antigen presenting cells (APCs). Since CTSS activity regulation plays a role in the pathogenesis of various autoimmune diseases like multiple sclerosis, atherosclerosis, Sjögren's syndrome and psoriasis as well as in cancer progression, there is an ongoing interest in the reliable detection of cathepsin S activity. Various applications have been invented for specific detection of this enzyme. However, most of them have only been shown to be suitable for human samples, do not deliver quantitative results or the experimental procedure requires technical equipment that is not commonly available in a standard laboratory. We have tested a fluorogen substrate, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2, that has been described to specifically detect CTSS activities in human APCs for its potential use for mouse samples. We have modified the protocol and thereby offer a cheap, easy, reproducible and quick activity assay to detect CTSS activities in mouse APCs. Since most of basic research on CTSS is performed in mice, this method closes a gap and offers a possibility for reliable and quantitative CTSS activity detection that can be performed in almost every laboratory. Copyright © 2016. Published by Elsevier B.V.

  15. Despite disorganized synapse structure, Th2 cells maintain directional delivery of CD40L to antigen-presenting B cells.

    Science.gov (United States)

    Gardell, Jennifer L; Parker, David C

    2017-01-01

    Upon recognition of peptide displayed on MHC molecules, Th1 and Th2 cells form distinct immunological synapse structures. Th1 cells have a bull's eye synapse structure with TCR/ MHC-peptide interactions occurring central to a ring of adhesion molecules, while Th2 cells have a multifocal synapse with small clusters of TCR/MHC interactions throughout the area of T cell/antigen-presenting cell interaction. In this study, we investigated whether this structural difference in the immunological synapse affects delivery of T cell help. The immunological synapse is thought to ensure antigen-specific delivery of cytolytic granules and killing of target cells by NK cells and cytolytic T cells. In helper T cells, it has been proposed that the immunological synapse may direct delivery of other effector molecules including cytokines. CD40 ligand (CD40L) is a membrane-bound cytokine essential for antigen-specific T cell help for B cells in the antibody response. We incubated Th1 and Th2 cells overnight with a mixture of antigen-presenting and bystander B cells, and the delivery of CD40L to B cells and subsequent B cell responses were compared. Despite distinct immunological synapse structures, Th1 and Th2 cell do not differ in their ability to deliver CD40L and T cell help in an antigen-specific fashion, or in their susceptibility to inhibition of help by a blocking anti-CD40L antibody.

  16. Interleukin production by neonatal spleen cells during and as a result of antigen presentation: The effect of ultraviolet light

    International Nuclear Information System (INIS)

    Levin, D.; Gershon, H.

    1989-01-01

    Antigen presentation by neonatal murine spleen cells and the production of lymphokines and interleukins involved in the stimulation of a T-helper-2 (TH2) cell line (D10-G4.1) were studied as were the effects of ultra violet (UV)-irradiation on this system. Neonatal spleen cells are less capable than adult cells of performing the initial steps of the immune response required for antigen dependent activation of TH2 cells. These steps include soluble antigen processing and presentation and as a result reduced production of IL-4 and IL-1-Inducer Factor (IL-1-IF) by the T-helper cells and reduced production of IL-1 and IL-2 by the antigen presenting cell population. Spontaneous membrane IL-1 activity is low in the neonate, however, when exposed to IL-1-IF they can express adult levels. Ultraviolet (UV) irradiation of the antigen presenting population has a damaging effect on all the above mentioned processes. Antigen processing and presentation, induction of D10 IL-4 production and proliferation, and IL-2 production demonstrate two different age related patterns of UV-irradiation induced damage: a dose dependent inhibition when adult cells are irradiated and an inverse effect in which low doses of irradiation were more inhibitory than higher doses when neonatal cells are irradiated. However, the secretion and membrane expression of IL-1 by both age groups are directly and totally inhibited by the range of UV-irradiation doses used and cannot be reinduced with a supplement of a crude IL-1-IF. While the capacity to produced IL-1 is totally destroyed by UV-irradiation, the ability to produce IL-2 remains intact and remains responsive to an IL-2-Inducer activity during proper antigen presentation. The low responses of neonatal antigen presenting spleen cell populations and the damaging effect of UV on both neonatal and adult responses are not due to the induction of suppressor factors

  17. Minimum information about tolerogenic antigen-presenting cells (MITAP) : a first step towards reproducibility and standardisation of cellular therapies

    NARCIS (Netherlands)

    Lord, Phillip; Aguillon, Juan C; Anderson, Amy E; Appel, Silke; Benitez-Ribas, Daniel; Ten Brinke, Anja; Broere, Femke; Cools, Nathalie; Cuturi, Maria Cristina; Diboll, Julie; Geissler, Edward K; Giannoukakis, Nick; Gregori, Silvia; van Ham, S Marieke; Lattimer, Staci; Marshall, Lindsay; Harry, Rachel A; Hutchinson, James A; Isaacs, John D; Joosten, Irma; van Kooten, Cees; Lopez Diaz de Cerio, Ascension; Nikolic, Tatjana; Oral, Haluk Barbaros; Sofronic-Milosavljevic, Ljiljana; Ritter, Thomas; Riquelme, Paloma; Thomson, Angus W; Trucco, Massimo; Vives-Pi, Marta; Martinez-Caceres, Eva M; Hilkens, Catharien M U

    2016-01-01

    Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making

  18. Probiotic metabolites from Bacillus coagulans GanedenBC30TM support maturation of antigen-presenting cells in vitro

    Science.gov (United States)

    Benson, Kathleen F; Redman, Kimberlee A; Carter, Steve G; Keller, David; Farmer, Sean; Endres, John R; Jensen, Gitte S

    2012-01-01

    AIM: To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells. METHODS: Ganeden Bacillus coagulans 30 (GBC30) bacterial cultures in log phase were used to isolate the secreted metabolite (MET) fraction. A second fraction was made to generate a crude cell-wall-enriched fraction, by centrifugation and lysis, followed by washing. A preparation of MET was subjected to size exclusion centrifugation, generating three fractions: < 3 kDa, 3-30 kDa, and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell (PBMC) as a source of antigen-presenting mononuclear phagocytes. The maturation status of mononuclear phagocytes was evaluated by staining with monoclonal antibodies towards CD14, CD16, CD80 and CD86 and analyzed by flow cytometry. RESULTS: Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes. The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory cells, and this property was associated with the high molecular weight metabolite fraction. Changes were also seen for the dendritic cell maturation markers CD80 and CD86. On CD14dim cells, an increase in both CD80 and CD86 expression was seen, in contrast to a selective increase in CD86 expression on CD14bright cells. The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation. The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells. CONCLUSION: The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells, important for immunological decision-making. PMID:22563167

  19. Direct stimulation of T cells by membrane vesicles from antigen-presenting cells

    Czech Academy of Sciences Publication Activity Database

    Kovář, Marek; Boyman, O.; Shen, X.; Hwang, I.; Kohler, R.; Sprent, J.

    2006-01-01

    Roč. 103, č. 31 (2006), s. 11671-11676 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z50200510 Keywords : immunotherapy * t cell priming * tumors Subject RIV: EE - Microbiology, Virology Impact factor: 9.643, year: 2006

  20. Loss of Proliferation and Antigen Presentation Activity following Internalization of Polydispersed Carbon Nanotubes by Primary Lung Epithelial Cells

    Science.gov (United States)

    Kumari, Mandavi; Sachar, Sumedha; Saxena, Rajiv K.

    2012-01-01

    Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs) and primary lung epithelial (PLE) cells were studied. Peritoneal macrophages (PMs, known phagocytic cells) were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells. PMID:22384094

  1. Repopulated antigen presenting cells induced an imbalanced differentiation of the helper T cells in whole body gamma irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Ran; Jo, Sung Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Paik, Sang Kee [Chungnam National University, Taejon (Korea, Republic of)

    2004-07-01

    Therapeutic irradiation of cancer patients, although it may be protected by several antioxidant agents against free radicals, often induces chronic sequelae such as inflammation (allergic inflammation). This is a limiting factor for radiotherapy. Following radiotherapy, the inflammation or injury can occur in any organ with a high radiosensitivity such as the lung, bladder, kidney, liver, stomach and intestine. The mechanism by which ionizing radiation initiates inflammation is, however, poorly understood. In recent studies, it was suggested that a factor for irradiation-induced inflammation might be the over production of IL-4 that enhances fibroblast proliferation and collagen synthesis. During the early stages after irradiation, type 2 of the helper T cells might be the major source of IL-4, and later on there seems to be an activation of the other IL-4 producing cell types, e.q. macrophages or mast cells. This is interesting because inflammation is classically seen to be dominated by Th1 cells secreting IFN-{gamma}. In the previous study, we were interested in the enhancement of the IL-4 and the IgE production during the development of immune cells after {gamma}-irradiation. We were able to deduce that IL-4 production was increased because of the shifted differentiation of the naive Th cells by the repopulated antigen presenting cells after irradiation. The aim of the present study was to precisely define whether antigen-presenting cells (APCs) of whole body irradiation-treated mice could influence the shifted differentiation of the Th cells. This view can be demonstrated by confirming that the shifted functional status of the Th cells is induced by the altered function of the repopulated macrophages after whole body irradiation (WBI)

  2. Corruption of dendritic cell antigen presentation during acute GVHD leads to regulatory T-cell failure and chronic GVHD.

    Science.gov (United States)

    Leveque-El Mouttie, Lucie; Koyama, Motoko; Le Texier, Laetitia; Markey, Kate A; Cheong, Melody; Kuns, Rachel D; Lineburg, Katie E; Teal, Bianca E; Alexander, Kylie A; Clouston, Andrew D; Blazar, Bruce R; Hill, Geoffrey R; MacDonald, Kelli P A

    2016-08-11

    Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD. © 2016 by The American Society of Hematology.

  3. Bone marrow-derived thymic antigen-presenting cells determine self-recognition of Ia-restricted T lymphocytes

    International Nuclear Information System (INIS)

    Longo, D.L.; Kruisbeek, A.M.; Davis, M.L.; Matis, L.A.

    1985-01-01

    The authors previously have demonstrated that in radiation-induced bone marrow chimeras, T-cell self-Ia restriction specificity appeared to correlate with the phenotype of the bone marrow-derived antigen-presenting (or dendritic) cell in the thymus during T-cell development. However, these correlations were necessarily indirect because of the difficulty in assaying thymic function directly by adult thymus transplant, which has in the past been uniformly unsuccessful. They now report success in obtaining functional T cells from nude mice grafted with adult thymuses reduced in size by treatment of the thymus donor with anti-thymocyte globulin and cortisone. When (B10 Scn X B10.D2)F1 nude mice (I-Ab,d) are given parental B10.D2 (I-Ad) thymus grafts subcutaneously, their T cells are restricted to antigen recognition in association with I-Ad gene products but not I-Ab gene products. Furthermore, thymuses from (B10 X B10.D2)F1 (I-Ab,d)----B10 (I-Ab) chimeras transplanted 6 months or longer after radiation (a time at which antigen-presenting cell function is of donor bone marrow phenotype) into (B10 X B10.D2)F1 nude mice generate T cells restricted to antigen recognition in association with both I-Ad and I-Ab gene products. Thymuses from totally allogeneic bone marrow chimeras appear to generate T cells of bone marrow donor and thymic host restriction specificity. Thus, when thymus donors are radiation-induced bone marrow chimeras, the T-cell I-region restriction of the nude mice recipients is determined at least in part by the phenotype of the bone marrow-derived thymic antigen presenting cells or dendritic cells in the chimeric thymus

  4. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy.

    Directory of Open Access Journals (Sweden)

    Deanna M Schmitt

    Full Text Available Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS, does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.

  5. Interferon-β Suppresses Murine Th1 Cell Function in the Absence of Antigen-Presenting Cells

    Science.gov (United States)

    Boivin, Nicolas; Baillargeon, Joanie; Doss, Prenitha Mercy Ignatius Arokia; Roy, Andrée-Pascale; Rangachari, Manu

    2015-01-01

    Interferon (IFN)-β is a front-line therapy for the treatment of the relapsing-remitting form of multiple sclerosis. However, its immunosuppressive mechanism of function remains incompletely understood. While it has been proposed that IFN-β suppresses the function of inflammatory myelin antigen-reactive T cells by promoting the release of immunomodulatory cytokines such as IL-27 from antigen-presenting cells (APCs), its direct effects on inflammatory CD4+ Th1 cells are less clear. Here, we establish that IFN-β inhibits mouse IFN-γ+ Th1 cell function in the absence of APCs. CD4+ T cells express the type I interferon receptor, and IFN-β can suppress Th1 cell proliferation under APC-free stimulation conditions. IFN-β-treated myelin antigen-specific Th1 cells are impaired in their ability to induce severe experimental autoimmune encephalomyelitis (EAE) upon transfer to lymphocyte-deficient Rag1-/- mice. Polarized Th1 cells downregulate IFN-γ and IL-2, and upregulate the negative regulatory receptor Tim-3, when treated with IFN-β in the absence of APCs. Further, IFN-β treatment of Th1 cells upregulates phosphorylation of Stat1, and downregulates phosphorylation of Stat4. Our data indicate that IFN-γ-producing Th1 cells are directly responsive to IFN-β and point to a novel mechanism of IFN-β-mediated T cell suppression that is independent of APC-derived signals. PMID:25885435

  6. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites.

    Directory of Open Access Journals (Sweden)

    Ian A Cockburn

    2010-05-01

    Full Text Available Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization--a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen.

  7. Protein-scaffold Directed Nanoscale Assembly of T Cell Ligands: Artificial Antigen Presentation with Defined Valency, Density and Ratio.

    Science.gov (United States)

    Smith, Mason R; Tolbert, Stephanie V; Wen, Fei

    2018-05-07

    Tuning antigen presentation to T cells is a critical step in investigating key aspects of T cell activation. However, existing technologies have limited ability to control the spatial and stoichiometric organization of T cell ligands on 3D surfaces. Here, we developed an artificial antigen presentation platform based on protein-scaffold directed assembly that allows fine control over the spatial and stoichiometric organization of T cell ligands on a 3D yeast-cell surface. Using this system, we observed that the T cell activation threshold on a 3D surface is independent of peptide-major histocompatibility complex (pMHC) valency, but instead determined by the overall pMHC surface density. When intercellular adhesion molecule 1 (ICAM-1) was co-assembled with pMHC, it enhanced antigen recognition sensitivity by 6-fold. Further, T cells responded with different magnitudes to varying ratios of pMHC and ICAM-1 and exhibited a maximum response at a ratio of 15% pMHC and 85% ICAM-1, introducing an additional parameter for tuning T cell activation. This protein-scaffold directed assembly technology is readily transferrable to acellular surfaces for translational research as well as large-scale T-cell manufacturing.

  8. Deletion of Batf3-dependent antigen-presenting cells does not affect atherosclerotic lesion formation in mice.

    Directory of Open Access Journals (Sweden)

    Jesus Gil-Pulido

    Full Text Available Atherosclerosis is the main underlying cause for cardiovascular events such as myocardial infarction and stroke and its development might be influenced by immune cells. Dendritic cells (DCs bridge innate and adaptive immune responses by presenting antigens to T cells and releasing a variety of cytokines. Several subsets of DCs can be discriminated that engage specific transcriptional pathways for their development. Basic leucine zipper transcription factor ATF-like 3 (Batf3 is required for the development of classical CD8α+ and CD103+ DCs. By crossing mice deficient in Batf3 with atherosclerosis-prone low density lipoprotein receptor (Ldlr-/--deficient mice we here aimed to further address the contribution of Batf3-dependent CD8α+ and CD103+ antigen-presenting cells to atherosclerosis. We demonstrate that deficiency in Batf3 entailed mild effects on the immune response in the spleen but did not alter atherosclerotic lesion formation in the aorta or aortic root, nor affected plaque phenotype in low density lipoprotein receptor-deficient mice fed a high fat diet. We thus provide evidence that Batf3-dependent antigen-presenting cells do not have a prominent role in atherosclerosis.

  9. Robust and Accurate Discrimination of Self/Non-Self Antigen Presentations by Regulatory T Cell Suppression

    OpenAIRE

    Furusawa, Chikara; Yamaguchi, Tomoyuki

    2016-01-01

    The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self ...

  10. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.

    Science.gov (United States)

    Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J

    2018-02-21

    Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.

  11. B lymphocytes as natural antigen-presenting cells (APC) of their own Ig receptor determinants

    International Nuclear Information System (INIS)

    Yurin, V.L.; Rudensky, A.Yu.; Rabinovich, O.R.; Kulakova, O.G.; Bobreneva, R.A.

    1986-01-01

    The authors use Igk-lb allotype-specific rat T cell proliferation(Pr) in vitro as a model of natural Ig determinants B cell presentation in Ig-specific T-B cell interactions. As shown before Igk-lb-specific responsiveness of AUG(RT-l/sup c/, Igk-la) and WAG (RT-l, Igk-la) rats is controlled by dominant Ir gene, linked to RT-l/sup c/. Only IgG(Igk-lb)-pulsed splenic APC of AUG(responder) but not WAG(non-responder) origin induce specific F 1 (WAGxAUG) T cell Pr. The same restriction was observed if purified B cells from Igk-l congeneic AUG-lb and WAG-lb rats were used as APC. B cell presentation was found to be sensitive to high irradiation dose(2000 rad). Anti-RT-l monoclonal antibody inhibition studies suggested RT-lB(I-A) molecule as a main restricting element of Igk-lb T cell recognition. B cell and splenic APC presentation of Igk-lb allotype was not inhibited by poly- and monoclonal anti-Igk-lb antibodies. Allelic exclusion of Igk-lb presentation by B cells from heterozygous F 1 (WAG-lbx AUG) rats was demonstrated by panning with antiallotypic reagents. Important, that irradiated anti-Igk-lb T cells induce specific Pr of normal Igk-lb-positive B cells. The data demonstrate MHC-restricted B cell presentation of their own receptor determinants, distinct from serologically-defined epitopes. T cell recognition of these determinants induce specific Pr of Ig-recognizing T cells and Ig-presenting B lymphocytes

  12. Clinical-scale elutriation as a means of enriching antigen-presenting cells and manipulating alloreactivity.

    Science.gov (United States)

    Micklethwaite, Kenneth P; Garvin, Frances M; Kariotis, Melina R; Yee, Leng L; Hansen, Anna M; Antonenas, Vicki; Sartor, Mary M; Turtle, Cameron J; Gottlieb, David J

    2009-01-01

    Clinical-scale elutriation using the Elutra(c) has been shown to enrich monocytes reliably for immunotherapy protocols. Until now, a detailed assessment of the four (F1-F4) non-monocyte fractions derived from this process has not been performed. Using fluorescence-activated cell sorting (FACS), we performed phenotypic analyses to investigate the possible enrichment of T, B, natural killer (NK) and dendritic cells (DC) or their subsets in one or more Elutra fractions. Blood DC were enriched up to 10-fold in some fractions (F3 and F4) compared with the pre-elutriation apheresis product. This increased the number of DC that could be isolated from a given cell number by immunomagnetic separation. It was also found that CD62L(-) effector memory CD4(+) T cells were enriched in later fractions. In four of five cases tested, cells from F3 demonstrated decreased alloreactive proliferation in a mixed lymphocyte reaction compared with cells from the apheresis product. B cells were enriched in F1 compared with the apheresis product. In addition to providing enrichment of monocytes for the generation of DC, the Elutra enriches cell subsets that may be incorporated into and enhance existing immunotherapy and stem cell transplantation protocols.

  13. Antigen-presenting cells in human cutaneous leishmaniasis due to Leishmania major

    DEFF Research Database (Denmark)

    ElHassan, A M; Gaafar, A; Theander, T G

    1995-01-01

    keratinocytes and endothelial cells also showed these characteristics, they may also act as APC. By examining tissue samples from skin lesions and draining lymph nodes it was possible to follow the probable route of trafficking of various inflammatory cells between the skin lesion and lymph nodes. Leishmania...

  14. Robust and Accurate Discrimination of Self/Non-Self Antigen Presentations by Regulatory T Cell Suppression.

    Directory of Open Access Journals (Sweden)

    Chikara Furusawa

    Full Text Available The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self and non-self antigens, even when there is a significant overlap between the affinity distribution of T cells to self and non-self antigens. Here, the number of regulatory T cells in the system acts as a global variable controlling the T cell population dynamics. The present study provides a basis for the development of a quantitative theory for self and non-self discrimination in the immune system and a possible strategy for its experimental verification.

  15. Robust and Accurate Discrimination of Self/Non-Self Antigen Presentations by Regulatory T Cell Suppression.

    Science.gov (United States)

    Furusawa, Chikara; Yamaguchi, Tomoyuki

    The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self and non-self antigens, even when there is a significant overlap between the affinity distribution of T cells to self and non-self antigens. Here, the number of regulatory T cells in the system acts as a global variable controlling the T cell population dynamics. The present study provides a basis for the development of a quantitative theory for self and non-self discrimination in the immune system and a possible strategy for its experimental verification.

  16. Defects in Antigen-Presenting Cells in the BB-DP Rat Model of Diabetes

    NARCIS (Netherlands)

    V. Sommandas (Vinod)

    2008-01-01

    textabstractType-1 diabetes is the result of a T cell mediated immune response against the insulin-producing β cells in the islet of Langerhans. In humans, until now, the disease is only clearly detectable at the onset of the disease. Therefore studies to identify initial factors involved in

  17. Microdomains in the membrane landscape shape antigen-presenting cell function

    NARCIS (Netherlands)

    Zuidscherwoude, M.; Winde, C.M. de; Cambi, A.; Spriel, A.B. van

    2014-01-01

    The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for

  18. Pityriasis rosea (Gibert): abnormal distribution pattern of antigen presenting cells in situ

    NARCIS (Netherlands)

    Bos, J. D.; Huisman, P. M.; Krieg, S. R.; Faber, W. R.

    1985-01-01

    Pityriasis rosea is a skin disease which is obscure in its etiology and pathogenesis. We studied its immunopathology by immunophenotyping the inflammatory cells in situ using monoclonal antibodies that define leukocyte subsets. Findings as to T-cells and their major subsets did not reveal

  19. The effect of interferons and viral proteins on antigen-presenting cells in chronic hepatitis B

    NARCIS (Netherlands)

    A. Boltjes (Arjan)

    2014-01-01

    markdownabstract__Abstract__ The innate immune system forms the so-called first line of defense against invading pathogens like viruses. Innate immune cells include phagocytes like monocytes, macrophages and dendritic cells (DC). Phagocytes sample their environments, binding and taking up viral

  20. Human Invariant Natural Killer T Cells Respond to Antigen-Presenting Cells Exposed to Lipids from Olea europaea Pollen.

    Science.gov (United States)

    Abos Gracia, Beatriz; López Relaño, Juan; Revilla, Ana; Castro, Lourdes; Villalba, Mayte; Martín Adrados, Beatriz; Regueiro, Jose Ramon; Fernández-Malavé, Edgar; Martínez Naves, Eduardo; Gómez Del Moral, Manuel

    2017-01-01

    Allergic sensitization might be influenced by the lipids present in allergens, which can be recognized by natural killer T (NKT) cells on antigen-presenting cells (APCs). The aim of this study was to analyze the effect of olive pollen lipids in human APCs, including monocytes as well as monocyte-derived macrophages (Mϕ) and dendritic cells (DCs). Lipids were extracted from olive (Olea europaea) pollen grains. Invariant (i)NKT cells, monocytes, Mϕ, and DCs were obtained from buffy coats of healthy blood donors, and their cell phenotype was determined by flow cytometry. iNKT cytotoxicity was measured using a lactate dehydrogenase assay. Gene expression of CD1A and CD1D was performed by RT-PCR, and the production of IL-6, IL-10, IL-12, and TNF-α cytokines by monocytes, Mϕ, and DCs was measured by ELISA. Our results showed that monocytes and monocyte-derived Mϕ treated with olive pollen lipids strongly activate iNKT cells. We observed several phenotypic modifications in the APCs upon exposure to pollen-derived lipids. Both Mϕ and monocytes treated with olive pollen lipids showed an increase in CD1D gene expression, whereas upregulation of cell surface CD1d protein occurred only in Mϕ. Furthermore, DCs differentiated in the presence of human serum enhance their surface CD1d expression when exposed to olive pollen lipids. Finally, olive pollen lipids were able to stimulate the production of IL-6 but downregulated the production of lipopolysaccharide- induced IL-10 by Mϕ. Olive pollen lipids alter the phenotype of monocytes, Mϕ, and DCs, resulting in the activation of NKT cells, which have the potential to influence allergic immune responses. © 2017 S. Karger AG, Basel.

  1. Comparing Proteolytic Fingerprints of Antigen-Presenting Cells during Allergen Processing.

    Science.gov (United States)

    Hofer, Heidi; Weidinger, Tamara; Briza, Peter; Asam, Claudia; Wolf, Martin; Twaroch, Teresa E; Stolz, Frank; Neubauer, Angela; Dall, Elfriede; Hammerl, Peter; Jacquet, Alain; Wallner, Michael

    2017-06-08

    Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates.

  2. Microdomains in the membrane landscape shape antigen-presenting cell function.

    Science.gov (United States)

    Zuidscherwoude, Malou; de Winde, Charlotte M; Cambi, Alessandra; van Spriel, Annemiek B

    2014-02-01

    The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for coupling to components of intracellular signaling cascades. In the last two decades, specialized membrane microdomains, including lipid rafts and TEMs, have been identified. These domains are preformed structures ("physical entities") that compartmentalize proteins, lipids, and signaling molecules into multimolecular assemblies. In APCs, different microdomains containing immunoreceptors (MHC proteins, PRRs, integrins, among others) have been reported that are imperative for efficient pathogen recognition, the formation of the immunological synapse, and subsequent T cell activation. In addition, recent work has demonstrated that tetraspanin microdomains and lipid rafts are involved in BCR signaling and B cell activation. Research into the molecular mechanisms underlying membrane domain formation is fundamental to a comprehensive understanding of membrane-proximal signaling and APC function. This review will also discuss the advances in the microscopy field for the visualization of the plasma membrane, as well as the recent progress in targeting microdomains as novel, therapeutic approach for infectious and malignant diseases.

  3. Bovine lactoferrin counteracts Toll-like receptor mediated activation signals in antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Patrizia Puddu

    Full Text Available Lactoferrin (LF, a key element in mammalian immune system, plays pivotal roles in host defence against infection and excessive inflammation. Its protective effects range from direct antimicrobial activities against a large panel of microbes, including bacteria, viruses, fungi and parasites, to antinflammatory and anticancer activities. In this study, we show that monocyte-derived dendritic cells (MD-DCs generated in the presence of bovine LF (bLF fail to undergo activation by up-modulating CD83, co-stimulatory and major histocompatibility complex molecules, and cytokine/chemokine secretion. Moreover, these cells are weak activators of T cell proliferation and retain antigen uptake activity. Consistent with an impaired maturation, bLF-MD-DC primed T lymphocytes exhibit a functional unresponsiveness characterized by reduced expression of CD154 and impaired expression of IFN-γ and IL-2. The observed imunosuppressive effects correlate with an increased expression of molecules with negative regulatory functions (i.e. immunoglobulin-like transcript 3 and programmed death ligand 1, indoleamine 2,3-dioxygenase, and suppressor of cytokine signaling-3. Interestingly, bLF-MD-DCs produce IL-6 and exhibit constitutive signal transducer and activator of transcription 3 activation. Conversely, bLF exposure of already differentiated MD-DCs completely fails to induce IL-6, and partially inhibits Toll-like receptor (TLR agonist-induced activation. Cell-specific differences in bLF internalization likely account for the distinct response elicited by bLF in monocytes versus immature DCs, providing a mechanistic base for its multiple effects. These results indicate that bLF exerts a potent anti-inflammatory activity by skewing monocyte differentiation into DCs with impaired capacity to undergo activation and to promote Th1 responses. Overall, these bLF-mediated effects may represent a strategy to block excessive DC activation upon TLR-induced inflammation, adding

  4. A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro

    International Nuclear Information System (INIS)

    Han, Hui; Peng, Ji-Run; Chen, Peng-Cheng; Gong, Lei; Qiao, Shi-Shi; Wang, Wen-Zhen; Cui, Zhu-Qingqing; Yu, Xin; Wei, Yu-Hua; Leng, Xi-Sheng

    2011-01-01

    Highlights: → Adoptive immunotherapy depends on relevant numbers of cytolytic T lymphocytes. → An ideal artificial APCs system was successfully prepared in vivo. → Controlled release of IL-2 leads to much more T-cell expansion. → This system is better than general cellular APCs on T-cell expansion. -- Abstract: Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin-biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.

  5. A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hui [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Peng, Ji-Run, E-mail: pengjr@medmail.com.cn [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Chen, Peng-Cheng; Gong, Lei [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Qiao, Shi-Shi [Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052 (China); Wang, Wen-Zhen; Cui, Zhu-Qingqing; Yu, Xin; Wei, Yu-Hua [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Leng, Xi-Sheng, E-mail: lengxs2003@yahoo.com.cn [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China)

    2011-08-05

    Highlights: {yields} Adoptive immunotherapy depends on relevant numbers of cytolytic T lymphocytes. {yields} An ideal artificial APCs system was successfully prepared in vivo. {yields} Controlled release of IL-2 leads to much more T-cell expansion. {yields} This system is better than general cellular APCs on T-cell expansion. -- Abstract: Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin-biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.

  6. Peripheral blood antigen presenting cell responses in otitis-prone and non-otitis-prone infants.

    Science.gov (United States)

    Surendran, Naveen; Nicolosi, Ted; Kaur, Ravinder; Pichichero, Michael E

    2016-01-01

    Stringently defined otitis-prone (sOP) children represent a new classification of the otitis-prone condition. Previous studies showed dysfunction in Ab, B-cell memory and T-cell memory responses. We sought to determine whether there are defects in numbers, phenotype and/or function of professional APC in the peripheral blood of sOP infants. APC phenotypic counts, MHC II expression and intracellular cytokine levels were determined in response to TLR7/8 (R848) stimulation by flow cytometry. Innate immune mRNA expression was measured using RT-PCR and cytokines were measured using Luminex technology. Significant (P otitis-prone (NOP) age-matched infants. No significant differences in APC activation or function were observed. Expression of various TLRs, intracellular signaling molecules and downstream cytokines was also not found to be significantly different between sOP and NOP infants. Higher numbers of APCs in sOP infants suggest the possibility of a persistent mucosal inflammatory status. Transcriptional and cytokine profiles of PBMCs among sOP infants suggest their systemic innate responses are not different compared to NOP infants. © The Author(s) 2015.

  7. Comprehensive Analysis of the Activation and Proliferation Kinetics and Effector Functions of Human Lymphocytes, and Antigen Presentation Capacity of Antigen-Presenting Cells in Xenogeneic Graft-Versus-Host Disease.

    Science.gov (United States)

    Kawasaki, Yasufumi; Sato, Kazuya; Hayakawa, Hiroko; Takayama, Norihito; Nakano, Hirofumi; Ito, Ryoji; Mashima, Kiyomi; Oh, Iekuni; Minakata, Daisuke; Yamasaki, Ryoko; Morita, Kaoru; Ashizawa, Masahiro; Yamamoto, Chihiro; Hatano, Kaoru; Fujiwara, Shin-Ichiro; Ohmine, Ken; Muroi, Kazuo; Kanda, Yoshinobu

    2018-04-17

    Xenogeneic graft-versus-host disease (GVHD) models in highly immunodeficient mice are currently being used worldwide to investigate human immune responses against foreign antigens in vivo. However, the individual roles of CD4 + and CD8 + T cells, and donor/host hematopoietic and nonhematopoietic antigen-presenting cells (APCs) in the induction and development of GVHD have not been fully investigated. In the present study, we comprehensively investigated the immune responses of human T cells and the antigen presentation capacity of donor/host hematopoietic and nonhematopoietic APCs in xenogeneic GVHD models using nonobese diabetic/Shi-scid-IL2rg null mice. CD4 + T cells and, to a lesser extent, CD8 + T cells individually mediated potentially lethal GVHD. In addition to inflammatory cytokine production, CD4 + T cells also supported the activation and proliferation of CD8 + T cells. Using bone marrow chimeras, we demonstrated that host hematopoietic, but not nonhematopoietic, APCs play a critical role in the development of CD4 + T cell-mediated GVHD. During early GVHD, we detected 2 distinct populations in memory CD4 + T cells. One population was highly activated and proliferated in major histocompatibility complex antigen (MHC) +/+ mice but not in MHC -/- mice, indicating alloreactive T cells. The other population showed a less activated and slowly proliferative status regardless of host MHC expression, and was associated with higher susceptibility to apoptosis, indicating nonalloreactive T cells in homeostasis-driven proliferation. These observations are clinically relevant to donor T cell response after allogeneic hematopoietic stem cell transplantation. Our findings provide a better understanding of the immunobiology of humanized mice and support the development of novel options for the prevention and treatment for GVHD. Copyright © 2018. Published by Elsevier Inc.

  8. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru, E-mail: atotuka@mail.ecc.u-tokyo.ac.jp

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  9. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4+ intestinal intraepithelial lymphocytes

    International Nuclear Information System (INIS)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru

    2013-01-01

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4 + IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4 + IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4 + IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4 + IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4 + LPLs and primed splenic CD4 + T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4 + IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo

  10. Neonatal colonisation expands a specific intestinal antigen-presenting cell subset prior to CD4 T-cell expansion, without altering T-cell repertoire.

    Directory of Open Access Journals (Sweden)

    Charlotte F Inman

    Full Text Available Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα(+ antigen-presenting cell subset, whilst SIRPα(-CD11R1(+ antigen-presenting cells (APCs are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα(+ antigen-presenting cells as orchestrators of early-life mucosal immune development.

  11. Selection of restriction specificities of virus-specific cytotoxic T cells in the thymus: no evidence for a crucial role of antigen-presenting cells

    International Nuclear Information System (INIS)

    Zinkernagel, R.M.

    1982-01-01

    The proposal was tested that (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras expressed predominantly P1-restricted T cells because donor derived stem cells were exposed to recipient derived antigen-presenting cells in the thymus. Because P1 recipient-derived antigen-presenting cells are replaced only slowly after 6-8 wk by (P1 X P2) donor-derived antigen-presenting cells in the thymus and because replenished pools of mature T cells may by then prevent substantial numbers of P2-restricted T cells to be generated, a large portion of thymus cells and mature T cells were eliminated using the following treatments of 12-20-wk-old (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras: (a) cortisone plus antilymphocyte serum, (b) Cytoxan, (c) three doses of sublethal irradiation (300 rad) 2d apart, and (d) lethal irradiation (850 rad) and reconstitution with T cell-depleted (P1 X P2) F1 stem cells. 12-20 wk after this second treatment, (P1 X P2) leads to P1 chimeras were infected with vaccinia-virus. Virus-specific cytotoxic T cell reactivity was expressed by chimeric T cells of (P1 X P[2) F1 origin and was restricted predominantly to P1. Virus-specific cytotoxic T cells, therefore, do not seem to be selected to measurable extent by the immigrating donor-derived antigen-presenting cells in the thymus; their selection depends apparently from the recipient-derived radioresistant thymus cells

  12. Changes in antigen-presenting cell function in the spleen and lymph nodes of ultraviolet-irradiated mice

    International Nuclear Information System (INIS)

    Gurish, M.F.; Lynch, D.H.; Daynes, R.A.

    1982-01-01

    It has been previously reported that mice exposed to ultraviolet (UV) radiation exhibit a decrease in splenic antigen-presenting cell (APC) function. The results presented here confirm this observation and further demonstrate that animals exposed daily to UV for extended periods of time (5 weeks instead of 6 days) no longer exhibit this depressed capability. In spite of the depression in splenic APC activity found in 6-day UV-irradiated mice, lymph node APC function from these same animals was elevated compared with that found in the lymph nodes from normal animals. Lymph node APC activity in animals that were splenectomized prior to the UV irradiation, however, was not enhanced over controls. Treatment of animals with a chemical irritant (turpentine) also caused a depression in splenic APC function without modifying lymph node activity. Collectively, our findings suggest that the observed decrease in splenic APC activity, found after the first week of UV exposures, may be attributable to the migration of splenic APC to peripheral lymphoid tissue which drain the site of epidermal inflammation

  13. Human Parvovirus B19 Induced Apoptotic Bodies Contain Altered Self-Antigens that are Phagocytosed by Antigen Presenting Cells

    Science.gov (United States)

    Thammasri, Kanoktip; Rauhamäki, Sanna; Wang, Liping; Filippou, Artemis; Kivovich, Violetta; Marjomäki, Varpu; Naides, Stanley J.; Gilbert, Leona

    2013-01-01

    Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens. PMID:23776709

  14. Recipient dendritic cells, but not B cells, are required antigen-presenting cells for peripheral alloreactive CD8+ T-cell tolerance.

    Science.gov (United States)

    Mollov, J L; Lucas, C L; Haspot, F; Gaspar, J Kurtz C; Guzman, A; Sykes, M

    2010-03-01

    Induction of mixed allogeneic chimerism is a promising approach for achieving donor-specific tolerance, thereby obviating the need for life-long immunosuppression for solid organ allograft acceptance. In mice receiving a low dose (3Gy) of total body irradiation, allogeneic bone marrow transplantation combined with anti-CD154 tolerizes peripheral CD4 and CD8 T cells, allowing achievement of mixed chimerism with specific tolerance to donor. With this approach, peripheral CD8 T-cell tolerance requires recipient MHC class II, CD4 T cells, B cells and DCs. Recipient-type B cells from chimeras that were tolerant to donor still promoted CD8 T-cell tolerance, but their role could not be replaced by donor-type B cells. Using recipients whose B cells or DCs specifically lack MHC class I and/or class II or lack CD80 and CD86, we demonstrate that dendritic cells (DCs) must express CD80/86 and either MHC class I or class II to promote CD8 tolerance. In contrast, B cells, though required, did not need to express MHC class I or class II or CD80/86 to promote CD8 tolerance. Moreover, recipient IDO and IL-10 were not required. Thus, antigen presentation by recipient DCs and not by B cells is critical for peripheral alloreactive CD8 T cell tolerance.

  15. Antigen Presenting Cells and Stromal Cells Trigger Human Natural Killer Lymphocytes to Autoreactivity: Evidence for the Involvement of Natural Cytotoxicity Receptors (NCR and NKG2D

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2006-01-01

    Full Text Available Human natural killer (NK lymphocytes should not damage autologous cells due to the engagement of inhibitory receptor superfamily (IRS members by HLA-I. Nevertheless, NK cells kill self cells expressing low levels or lacking HLA-I, as it may occur during viral infections (missing-self hypothesis. Herein, we show that human NK cells can be activated upon binding with self antigen presenting cells or stromal cells despite the expression of HLA-I. Indeed, NK cells can kill and produce pro-inflammatory and regulating cytokines as IFN-γ, TNF-α and IL10 during interaction with autologous dendritic cells or bone marrow stromal cells or skin fibroblasts. The killing of antigen presenting and stromal cells is dependent on LFA1/ICAM1 interaction. Further, the natural cytotoxicity receptors (NCR NKp30 and NKp46 are responsible for the delivery of lethal hit to DC, whereas NKG2D activating receptor, the ligand of the MHC-related molecule MIC-A and the UL16 binding protein, is involved in stromal cell killing. These findings indicate that different activating receptors are involved in cell to self cell interaction. Finally, NK cells can revert the veto effect of stromal cells on mixed lymphocyte reaction further supporting the idea that NK cells may alter the interaction between T lymphocytes and microenvironment leading to autoreactivity.

  16. Dynamics of antigen presentation to transgene product-specific CD4+ T cells and of Treg induction upon hepatic AAV gene transfer

    Directory of Open Access Journals (Sweden)

    George Q Perrin

    2016-01-01

    Full Text Available The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8 vector expressing cytoplasmic ovalbumin (OVA into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products.

  17. Immunologic effects of whole body ultraviolet (uv) irradiation. II. Defect in splenic adherent cell antigen presentation for stimulation of T cell proliferation

    International Nuclear Information System (INIS)

    Letvin, N.L.; Fox, I.J.; Greene, M.I.; Benacerraf, B.; Germain, R.N.

    1980-01-01

    Ultraviolet (uv) irradiation has been shown to alter many parameters of the immunologic reactivity of mice. The altered responsiveness of uv-irradiated mice, as measured by delayed-type hypersensitivity (DTH) and primary in vitro plaque-forming cell (PFC) responses to T-dependent antigens, has recently been correlated with a functional defect in the splenic adherent cell population of these animals. The present studies describe a model of this altered responsiveness, which allows further clarification of the effects of external uv irradiation on the splenic antigen-presenting cell (APC) in its interactions with T cells

  18. Cholera Toxin Promotes Th17 Cell Differentiation by Modulating Expression of Polarizing Cytokines and the Antigen-Presenting Potential of Dendritic Cells.

    Science.gov (United States)

    Kang, Jung-Ok; Lee, Jee-Boong; Chang, Jun

    2016-01-01

    Cholera toxin (CT), an exotoxin produced by Vibrio cholera, acts as a mucosal adjuvant. In a previous study, we showed that CT skews differentiation of CD4 T cells to IL-17-producing Th17 cells. Here, we found that intranasal administration of CT induced migration of migratory dendritic cell (DC) populations, CD103+ DCs and CD11bhi DCs, to the lung draining mediastinal lymph nodes (medLN). Among those DC subsets, CD11bhi DCs that were relatively immature had a major role in Th17 cell differentiation after administration of CT. CT-treated BMDCs showed reduced expression of MHC class II and CD86, similar to CD11bhi DCs in medLN, and these BMDCs promoted Th17 cell differentiation more potently than other BMDCs expressing higher levels of MHC class II and CD86. By analyzing the expression of activation markers such as CD25 and CD69, proliferation and IL-2 production, we determined that CT-treated BMDCs showed diminished antigen-presenting potential to CD4+ T cells compared with normal BMDCs. We also found that CT-stimulated BMDCs promote activin A expression as well as IL-6 and IL-1β, and activin A had a synergic role with TGF-β1 in CT-mediated Th17 cell differentiation. Taken together, our results suggest that CT-stimulated DCs promote Th17 cell differentiation by not only modulating antigen-presenting potential but also inducing Th polarizing cytokines.

  19. Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts

    Directory of Open Access Journals (Sweden)

    Kennedy Colleen

    2011-12-01

    Full Text Available Abstract Background Lipid rafts present on the plasma membrane play an important role in spatiotemporal regulation of cell signaling. Physical and chemical characterization of lipid raft size and assessment of their composition before, and after cell stimulation will aid in developing a clear understanding of their regulatory role in cell signaling. We have used visual and biochemical methods and approaches for examining individual and lipid raft sub-populations isolated from a mouse CD4+ T cell line in the absence of detergents. Results Detergent-free rafts were analyzed before and after their interaction with antigen presenting cells. We provide evidence that the average diameter of lipid rafts isolated from un-stimulated T cells, in the absence of detergents, is less than 100 nm. Lipid rafts on CD4+ T cell membranes coalesce to form larger structures, after interacting with antigen presenting cells even in the absence of a foreign antigen. Conclusions Findings presented here indicate that lipid raft coalescence occurs during cellular interactions prior to sensing a foreign antigen.

  20. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    Science.gov (United States)

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md.; Bhattacharya, Pradyot; Ali, Nahid

    2016-06-01

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+ cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.

  1. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

    OpenAIRE

    Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; Facchetti, Fabio; Guzman, Carlos A; Manservigi, Roberto; Caruso, Arnaldo

    2007-01-01

    Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generate...

  2. Distinct Gut-Derived Bacteria Differentially Affect Three Types of Antigen-Presenting Cells and Impact on NK- and T-Cell Responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Hansen, Anne Marie Valentin; Frøkiær, Hanne

    Objectives Gut bacteria are assumed essential for development and maintenance of a balanced immune system. Specifically, stimulation of antigen-presenting cells (APCs) by gut bacteria is important for polarisation of the immune response. This experiment was designed to reveal similarities...... and differences between the reaction patterns of three types of human APCs when stimulated with intestinal bacteria. Furthermore, the effect of these APCs on NK-cells and T-cells was examined. Methodology The APCs used in this study were blood monocytes, blood dendritic cells, and dendritic cells differentiated...... from monocytes. Monocyte-derived dendritic cells constitute a commonly used model of dendritic cell function. The APCs were cultured for 18 h with four different gut bacteria: Lactobacillus acidophilus X37, Lactobacillus reuteri DSM 12246, E. coli Nissle 1917 or Bifidobacterium longum Q46. Results...

  3. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells

    Science.gov (United States)

    Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  4. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Lynette Beattie

    2010-03-01

    Full Text Available Kupffer cells (KCs represent the major phagocytic population within the liver and provide an intracellular niche for the survival of a number of important human pathogens. Although KCs have been extensively studied in vitro, little is known of their in vivo response to infection and their capacity to directly interact with antigen-specific CD8(+ T cells. Here, using a combination of approaches including whole mount and thin section confocal microscopy, adoptive cell transfer and intra-vital 2-photon microscopy, we demonstrate that KCs represent the only detectable population of mononuclear phagocytes within granulomas induced by Leishmania donovani infection that are capable of presenting parasite-derived peptide to effector CD8(+ T cells. This restriction of antigen presentation to KCs within the Leishmania granuloma has important implications for the identification of new candidate vaccine antigens and for the design of novel immuno-therapeutic interventions.

  5. Effects of low dose X-ray irradiation on antigen presentation and IL-12 secretion in human dendritic cells in vitro

    International Nuclear Information System (INIS)

    Yan Peng; Jiang Qisheng; Li Fengsheng; He Rui; Wang Cuilan; Li Xiao

    2012-01-01

    Objective: To explore the effects of low dose X-ray irradiation on the ability of antigen presentation and IL-12 secretion in human dendritic cells that had been cultured for different time in vitro. Methods: The human peripheral blood mononuclear cells (PBMC) were collected and differentiated to dendritic cells (DCs) by rhGM-CSF and rhIL-4 treatment in vitro. The DCs were divided into 3 groups, group A: DCs were cultured for 2 d and then irradiated with 0.05, 0.1, 0.2 and 0.5 Gy X-rays; group B: DCs were cultured for 6 d and then irradiated as above; group C:DCs were cultured without irradiation.At 8 d of cell culture, the DCs were applied to activate T cells and CCK-8 was used to detect MLR (mixed lymphocyte reaction), and the antigen presentation ability of DCs was evaluated. MTT assay was also used to test the cell-killing effect of the activated T-cells on A549 cells. IL-12 in the culture medium of DCs was detected by ELISA. Results: After irradiation with 0.2 and 0.5 Gy X-rays, the antigen presentation ability of DCs was decreased in group A (t=2.79 and 3.71, P<0.05), but significantly increased in group B (t=3.60 and 3.11, P<0.05). The ability of the T cell activation was detected and the proliferation of A549 cells was slightly inhibited by the DCs in group A (t=2.89 and 2.91, P<0.05), but was obviously inhibited by the DCs in group B (t=2.91 and 2.82, P<0.05). Meanwhile,the level of IL-12 was dramatically decreased in group A (t=4.44 and 6.93, P<0.05), but was increased in group B (t=3.51 and 4.12, P<0.05). Conclusions: The abilities of antigen presentation and proliferation inhibition of DCs could be down-regulated by low dose (<0.5 Gy) of X-ray irradiation at the early stage of DCs, but was up-regulated at the late stage of DCs culture. (authors)

  6. Expression of cathepsins B, L, S, and D by gastric epithelial cells implicates them as antigen presenting cells in local immune responses.

    Science.gov (United States)

    Barrera, C; Ye, G; Espejo, R; Gunasena, S; Almanza, R; Leary, J; Crowe, S; Ernst, P; Reyes, V E

    2001-10-01

    Helicobacter pylori infection is linked to chronic gastritis, peptic ulcer and gastric carcinoma. During H. pylori infection, class II MHC expression by the gastric epithelium increases, as does the number of local CD4(+) T cells, which appear to be important in the associated pathogenesis. These observations suggested that the epithelium might present antigens to T cells. Thus, we sought to determine whether gastric epithelial cells process antigens to establish their function as local antigen presenting cells (APC). We examined a panel of gastric epithelial cell lines for expression of the antigen processing cathepsins B (CB), L (CL), S (CS), and D (CD). The mRNA for these enzymes were detected by RT-PCR and the enzymes in the gastric epithelial cells were identified by various independent methods. We corroborated the expression of CB and CD on gastric epithelial cells from human biopsy samples. The functions of these proteases were confirmed by assessing their ability to digest ovalbumin, a conventional dietary antigen, and proteins from H. pylori. In summary, multiple lines of evidence suggest gastric epithelial cells process antigens for presentation to CD4(+) T cells. To our knowledge, these are the first studies to document the antigen processing capacity of human gastric epithelial cells.

  7. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Harjeet Singh

    Full Text Available Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28 that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC in the presence of interleukin (IL-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT. We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼10(10 T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion.

  8. The Hsc/Hsp70 co-chaperone network controls antigen aggregation and presentation during maturation of professional antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Nadja Kettern

    Full Text Available The maturation of mouse macrophages and dendritic cells involves the transient deposition of ubiquitylated proteins in the form of dendritic cell aggresome-like induced structures (DALIS. Transient DALIS formation was used here as a paradigm to study how mammalian cells influence the formation and disassembly of protein aggregates through alterations of their proteostasis machinery. Co-chaperones that modulate the interplay of Hsc70 and Hsp70 with the ubiquitin-proteasome system (UPS and the autophagosome-lysosome pathway emerged as key regulators of this process. The chaperone-associated ubiquitin ligase CHIP and the ubiquitin-domain protein BAG-1 are essential for DALIS formation in mouse macrophages and bone-marrow derived dendritic cells (BMDCs. CHIP also cooperates with BAG-3 and the autophagic ubiquitin adaptor p62 in the clearance of DALIS through chaperone-assisted selective autophagy (CASA. On the other hand, the co-chaperone HspBP1 inhibits the activity of CHIP and thereby attenuates antigen sequestration. Through a modulation of DALIS formation CHIP, BAG-1 and HspBP1 alter MHC class I mediated antigen presentation in mouse BMDCs. Our data show that the Hsc/Hsp70 co-chaperone network controls transient protein aggregation during maturation of professional antigen presenting cells and in this way regulates the immune response. Similar mechanisms may modulate the formation of aggresomes and aggresome-like induced structures (ALIS in other mammalian cell types.

  9. B7.1 expression on tumor cells circumvents the need of professional antigen presentation for in vitro propagation of cytotoxic T cell lines.

    Science.gov (United States)

    Iezzi, G; Protti, M P; Rugarli, C; Bellone, M

    1996-01-01

    In vitro propagation of tumor-specific CTLs, to be used for identification of tumor antigens (Ag) and/or adoptive immunotherapy, is hampered by the need of large amounts of professional antigen-presenting cells (APC) used for periodical cycles of restimulation. We evaluated whether RMA T lymphoma cells, stably transfected with the cDNA encoding for the B7.1 costimulatory molecule, provided the activation signals to CD8+ T lymphocytes in the absence of professional APC and CD4+ helper cells. We demonstrate here that long-term CD8+ cell lines can be efficiently propagated in vitro by repeated cycles of stimulation with tumor cells stably expressing B7.1. Professional APC and CD4+ helper cells are not required as far as interleukin 2 is exogenously provided. Furthermore, CD8+ blasts needed both signal 1 (Ag in the contest of the MHC molecule) and signal 2 (interaction of costimulatory molecules) for restimulation. T cell blasts in the presence of signal 1 or 2 only still retained their effector potential but did not undergo clonal expansion. These results are very promising for further applications of specific immunotherapies in humans.

  10. Antigen-presenting cells represent targets for R5 HIV-1 infection in the first trimester pregnancy uterine mucosa.

    Directory of Open Access Journals (Sweden)

    Romain Marlin

    Full Text Available BACKGROUND: During the first trimester of pregnancy, HIV-1 mother-to-child transmission is relatively rare despite the permissivity of placental cells to cell-to-cell HIV-1 infection. The placenta interacts directly with maternal uterine cells (decidual cells but the physiological role of the decidua in the control of HIV-1 transmission and whether decidua could be a source of infected cells is unknown. METHODOLOGY/PRINCIPAL FINDINGS: To answer to this question, decidual mononuclear cells were exposed to HIV-1 in vitro. Decidual cells were shown to be more susceptible to infection by an R5 HIV-1, as compared to an X4 HIV-1. Infected cells were identified by flow cytometry analysis. The results showed that CD14(+ cells were the main targets of HIV-1 infection in the decidua. These infected CD14(+ cells expressed DC-SIGN, CD11b, CD11c, the Fc gamma receptor CD16, CD32 and CD64, classical MHC class-I and class-II and maturation and activation molecules CD83, CD80 and CD86. The permissivity of decidual tissue was also evaluated by histoculture. Decidual tissue was not infected by X4 HIV-1 but was permissive to R5 HIV-1. Different profiles of infection were observed depending on tissue localization. CONCLUSIONS/SIGNIFICANCE: The presence of HIV-1 target cells in the decidua in vitro and the low rate of in utero mother-to-child transmission during the first trimester of pregnancy suggest that a natural control occurs in vivo limiting cell-to-cell infection of the placenta and consequently infection of the fetus.

  11. Rainbow trout CK9, a CCL25-like ancient chemokine that attracts and regulates B cells and macrophages, the main antigen presenting cells in fish.

    Science.gov (United States)

    Aquilino, Carolina; Granja, Aitor G; Castro, Rosario; Wang, Tiehui; Abos, Beatriz; Parra, David; Secombes, Christopher J; Tafalla, Carolina

    2016-04-05

    CK9 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to mammalian CCL25. Although CK9 is known to be transcriptionally regulated in response to inflammation particularly in mucosal tissues, its functionality has never been revealed. In the current work, we have demonstrated that CK9 is chemoattractant for antigen presenting cells (APCs) expressing major histocompatibility complex class II (MHC II) on the cell surface. Among these APCs, CK9 has a strong chemotactic capacity for both B cells (IgM+ and IgT+) and macrophages. Along with its chemotactic capacities, CK9 modulated the MHC II turnover of B lymphocytes and up-regulated the phagocytic capacity of both IgM+ cells and macrophages. Although CK9 had no lymphoproliferative effects, it increased the survival of IgT+ lymphocytes. Furthermore, we have established that the chemoattractant capacity of CK9 is strongly increased after pre-incubation of leukocytes with a T-independent antigen, whereas B cell receptor (BCR) cross-linking strongly abrogated their capacity to migrate to CK9, indicating that CK9 preferentially attracts B cells at the steady state or under BCR-independent stimulation. These results point to CK9 being a key regulator of B lymphocyte trafficking in rainbow trout, able to modulate innate functions of teleost B lymphocytes and macrophages.

  12. Inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers

    International Nuclear Information System (INIS)

    Vink, A.A.; Roza, L.; Moodycliffe, A.M.; Shreedhar, V.

    1997-01-01

    Exposing skin to UVB (280-320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase, which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosomes treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320-400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function

  13. Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells

    NARCIS (Netherlands)

    van Rijt, Leonie S.; Vos, Nanda; Hijdra, Daniëlle; de Vries, Victor C.; Hoogsteden, Henk C.; Lambrecht, Bart N.

    2003-01-01

    Asthma is characterized by infiltration of the airway wall with eosinophils. Although eosinophils are considered to be effector cells, recent studies have reported their ability to activate primed Th2 cells. In this study, we investigated whether eosinophils are capable of presenting Ag to unprimed

  14. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Iris J Gonzalez-Leal

    2014-09-01

    Full Text Available Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb and L (Ctsl play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC and macrophages (BMM from Ctsb-/- and Ctsl-/- mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb-/- BMDC express higher levels of MHC class II molecules than wild-type (WT and Ctsl-/- BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb-/- mice significantly up-regulated the levels of interleukin 12 (IL-12 expression, a key Th1-inducing cytokine. These findings indicate that Ctsb-/- BMDC display more pro-Th1 properties than their WT and Ctsl-/- counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression.

  15. Upregulation of immunoproteasome subunits in myositis indicates active inflammation with involvement of antigen presenting cells, CD8 T-cells and IFNΓ.

    Directory of Open Access Journals (Sweden)

    Khetam Ghannam

    Full Text Available OBJECTIVE: In idiopathic inflammatory myopathies (IIM infiltration of immune cells into muscle and upregulation of MHC-I expression implies increased antigen presentation and involvement of the proteasome system. To decipher the role of immunoproteasomes in myositis, we investigated individual cell types and muscle tissues and focused on possible immune triggers. METHODS: Expression of constitutive (PSMB5, -6, -7 and corresponding immunoproteasomal subunits (PSMB8, -9, -10 was analyzed by real-time RT-PCR in muscle biopsies and sorted peripheral blood cells of patients with IIM, non-inflammatory myopathies (NIM and healthy donors (HD. Protein analysis in muscle biopsies was performed by western blot. Affymetrix HG-U133 platform derived transcriptome data from biopsies of different muscle diseases and from immune cell types as well as monocyte stimulation experiments were used for validation, coregulation and coexpression analyses. RESULTS: Real-time RT-PCR revealed significantly increased expression of immunoproteasomal subunits (PSMB8/-9/-10 in DC, monocytes and CD8+ T-cells in IIM. In muscle biopsies, the immunosubunits were elevated in IIM compared to NIM and exceeded levels of matched blood samples. Proteins of PSMB8 and -9 were found only in IIM but not NIM muscle biopsies. Reanalysis of 78 myositis and 20 healthy muscle transcriptomes confirmed these results and revealed involvement of the antigen processing and presentation pathway. Comparison with reference profiles of sorted immune cells and healthy muscle confirmed upregulation of PSMB8 and -9 in myositis biopsies beyond infiltration related changes. This upregulation correlated highest with STAT1, IRF1 and IFNγ expression. Elevation of T-cell specific transcripts in active IIM muscles was accompanied by increased expression of DC and monocyte marker genes and thus reflects the cell type specific involvement observed in peripheral blood. CONCLUSIONS: Immunoproteasomes seem to indicate

  16. Upregulation of Immunoproteasome Subunits in Myositis Indicates Active Inflammation with Involvement of Antigen Presenting Cells, CD8 T-Cells and IFNγ

    Science.gov (United States)

    Ghannam, Khetam; Martinez-Gamboa, Lorena; Spengler, Lydia; Krause, Sabine; Smiljanovic, Biljana; Bonin, Marc; Bhattarai, Salyan; Grützkau, Andreas; Burmester, Gerd-R.

    2014-01-01

    Objective In idiopathic inflammatory myopathies (IIM) infiltration of immune cells into muscle and upregulation of MHC-I expression implies increased antigen presentation and involvement of the proteasome system. To decipher the role of immunoproteasomes in myositis, we investigated individual cell types and muscle tissues and focused on possible immune triggers. Methods Expression of constitutive (PSMB5, -6, -7) and corresponding immunoproteasomal subunits (PSMB8, -9, -10) was analyzed by real-time RT-PCR in muscle biopsies and sorted peripheral blood cells of patients with IIM, non-inflammatory myopathies (NIM) and healthy donors (HD). Protein analysis in muscle biopsies was performed by western blot. Affymetrix HG-U133 platform derived transcriptome data from biopsies of different muscle diseases and from immune cell types as well as monocyte stimulation experiments were used for validation, coregulation and coexpression analyses. Results Real-time RT-PCR revealed significantly increased expression of immunoproteasomal subunits (PSMB8/-9/-10) in DC, monocytes and CD8+ T-cells in IIM. In muscle biopsies, the immunosubunits were elevated in IIM compared to NIM and exceeded levels of matched blood samples. Proteins of PSMB8 and -9 were found only in IIM but not NIM muscle biopsies. Reanalysis of 78 myositis and 20 healthy muscle transcriptomes confirmed these results and revealed involvement of the antigen processing and presentation pathway. Comparison with reference profiles of sorted immune cells and healthy muscle confirmed upregulation of PSMB8 and -9 in myositis biopsies beyond infiltration related changes. This upregulation correlated highest with STAT1, IRF1 and IFNγ expression. Elevation of T-cell specific transcripts in active IIM muscles was accompanied by increased expression of DC and monocyte marker genes and thus reflects the cell type specific involvement observed in peripheral blood. Conclusions Immunoproteasomes seem to indicate IIM activity and

  17. Freezing and thawing of murine bone marrow-derived dendritic cells does not later their immunophenotype and antigen presentation characteristics

    Czech Academy of Sciences Publication Activity Database

    Mendoza, Luis; Bubeník, Jan; Indrová, Marie; Bieblová, Jana; Vonka, V.; Šímová, Jana

    2002-01-01

    Roč. 48, č. 6 (2002), s. 242-245 ISSN 0015-5500 R&D Projects: GA MZd NC7148; GA ČR GA301/00/0114; GA ČR GA301/01/0985; GA AV ČR IAA7052002; GA AV ČR IAA5052203 Grant - others:Liga proti rakovině(CZ) - Institutional research plan: CEZ:AV0Z5052915 Keywords : dendritic cells * tumour lysate * DC priming Subject RIV: FD - Oncology ; Hematology Impact factor: 0.615, year: 2002

  18. Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Brisebois, Marcel; Tran, Elise

    2003-01-01

    that transgenic mice constitutively expressing the costimulatory ligand B7.2/CD86 on microglia in the central nervous system (CNS) and on related cells in the proximal peripheral nervous tissue spontaneously develop autoimmune demyelinating disease. Disease-affected nervous tissue in transgenic mice showed...... recipients but not into non-transgenic recipients. These data provide evidence that B7/CD28 interactions within the nervous tissue are critical determinants of disease development. Our findings have important implications for understanding the etiology of nervous system autoimmune diseases such as multiple...

  19. EFFECT OF LIPOSOMAL CLODRONATE-DEPENDENT DEPLETION OF PROFESSIONAL ANTIGEN PRESENTING CELLS ON NUMBERS AND PHENOTYPE OF CANINE CD4+CD25+FOXP3+ REGULATORY T CELLS

    Science.gov (United States)

    Weaver, Kriston F.; Stokes, John V.; Gunnoe, Sagen A.; Follows, Joyce S.; Shafer, Lydia; Ammari, Mais G.; Archer, Todd M.; Thomason, John M.; Mackin, Andrew J.; Pinchuk, Lesya M.

    2015-01-01

    Regulatory T cells (Tregs) are known to control autoreactivity during and subsequent to the development of the peripheral immune system. Professional antigen presenting cells (APCs), dendritic cells (DCs) and monocytes, have an important role in inducing Tregs. For the first time, this study evaluated proportions and phenotypes of Tregs in canine peripheral blood depleted of professional APCs, utilizing liposomal clodronate (LC) and multicolor flow cytometry analysis. Our results demonstrate that LC exposure promoted short term decreases followed by significant increases in the proportions or absolute numbers of CD4+CD25+FOXP3+ Tregs in dogs. In general, the LC-dependent Treg fluctuations were similar to the changes in the levels of CD14+ monocytes in Walker hounds. However, the proportions of monocytes showed more dramatic changes compared to the proportions of Tregs that were visually unchanged after LC treatment over the study period. At the same time, absolute Treg numbers showed, similarly to the levels of CD14+ monocytes, significant compensatory gains as well as the recovery during the normalization period. We confirm the previous data that CD4+ T cells with the highest CD25 expression were highly enriched for FOXP3. Furthermore, for the first time, we report that CD4+CD25lowFOXP3+ is the major regulatory T cell subset affected by LC exposure. The increases within the lowest CD25 expressers of CD4+FOXP3+ cells together with compensatory gains in the proportion of CD14+ monocytes during compensatory and normalization periods suggest the possible direct or indirect roles of monocytes in active recruitment and generation of Tregs from naïve CD4+ T cells. PMID:25950023

  20. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

    Science.gov (United States)

    Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; Facchetti, Fabio; Guzman, Carlos A; Manservigi, Roberto; Caruso, Arnaldo

    2007-07-01

    Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generated a strong p17-specific CD4+ T helper response preceding both p17-specific humoral and effector T cell responses. Moreover, we show that T0-p17 infection did not interfere with the endogenous processing of the transgene encoded antigen, since infected APCs were able to evoke a strong recall response in vitro. Our results demonstrate that replication-deficient HSV vectors can be appealing candidates for the development of vaccines able to trigger T helper responses.

  1. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Yu Cong

    2016-05-01

    Full Text Available Humans infected with yellow fever virus (YFV, a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM and dendritic cells (MoDC from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease.

  2. Acquired Protective Immunity in Atlantic Salmon Salmo salar against the Myxozoan Kudoa thyrsites Involves Induction of MHIIβ+ CD83+ Antigen-Presenting Cells.

    Science.gov (United States)

    Braden, Laura M; Rasmussen, Karina J; Purcell, Sara L; Ellis, Lauren; Mahony, Amelia; Cho, Steven; Whyte, Shona K; Jones, Simon R M; Fast, Mark D

    2018-01-01

    The histozoic myxozoan parasite Kudoa thyrsites causes postmortem myoliquefaction and is responsible for economic losses to salmon aquaculture in the Pacific Northwest. Despite its importance, little is known about the host-parasite relationship, including the host response to infection. The present work sought to characterize the immune response in Atlantic salmon during infection, recovery, and reexposure to K. thyrsites After exposure to infective seawater, infected and uninfected smolts were sampled three times over 4,275 degree-days. Histological analysis revealed infection severity decreased over time in exposed fish, while in controls there was no evidence of infection. Following a secondary exposure of all fish, severity of infection in the controls was similar to that measured in exposed fish at the first sampling time but was significantly reduced in reexposed fish, suggesting the acquisition of protective immunity. Using immunohistochemistry, we detected a population of MHIIβ + cells in infected muscle that followed a pattern of abundance concordant with parasite prevalence. Infiltration of these cells into infected myocytes preceded destruction of the plasmodium and dissemination of myxospores. Dual labeling indicated a majority of these cells were CD83 + /MHIIβ + Using reverse transcription-quantitative PCR, we detected significant induction of cellular effectors, including macrophage/dendritic cells ( mhii / cd83 / mcsf ), B cells ( igm / igt ), and cytotoxic T cells ( cd8 / nkl ), in the musculature of infected fish. These data support a role for cellular effectors such as antigen-presenting cells (monocyte/macrophage and dendritic cells) along with B and T cells in the acquired protective immune response of Atlantic salmon against K. thyrsites . Copyright © 2017 American Society for Microbiology.

  3. A novel strategy to improve antigen presentation for active immunotherapy in cancer. Fusion of the human papillomavirus type 16 E7 antigen to a cell penetrating peptide

    International Nuclear Information System (INIS)

    Granadillo, Milaid; Torrens, Isis; Guerra, Maribel

    2012-01-01

    Facilitating the delivery of exogenous antigens to antigen-presenting cells, ensuing processing and presentation via the major histocompatibility complex class I and induction of an effective immune response are fundamental for an effective therapeutic cancer vaccine. In this regard, we propose the use of cell-penetrating peptides fused to a tumor antigen. To demonstrate this concept we designed a fusion protein comprising a novel cell-penetrating and immunostimulatory peptide corresponding to residues 32 to 51 of the Limulus anti-lipopolysaccharide factor protein (LALF 32-51 ) linked to human papillomavirus 16 E7 antigen (LALF 32-51 -E7). In this work, we demonstrated that the immunization with LALF 32-51 -E7 using the TC-1 mouse model induces a potent and long-lasting anti-tumor response supported on an effective E7-specific CD8 +T -cell response. The finding that therapeutic immunization with LALF 32-51 or E7 alone, or an admixture of LALF32-51 and E7, does not induce significant tumor reduction indicates that covalent linkage between LALF 32-51 and E7 is required for the anti-tumor effect. These results support the use of this novel cell-penetrating peptide as an efficient means for delivering therapeutic targets into cellular compartments with the induction of a cytotoxic CD8 +T lymphocyte immune response. This approach is promissory for the treatment of tumors associated with the human papillomavirus 16, which is responsible for the 50% of cervical cancer cases worldwide and other malignancies. Furthermore, protein-based vaccines can circumvent the major histocompatibility complex specificity limitation associated with peptide vaccines providing a greater extent in their application

  4. An Antigen-Presenting and Apoptosis-Inducing Polymer Microparticle Prolongs Alloskin Graft Survival by Selectively and Markedly Depleting Alloreactive CD8+ T Cells

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-06-01

    Full Text Available Selectively depleting the pathogenic T cells is a fundamental strategy for the treatment of allograft rejection and autoimmune disease since it retains the overall immune function of host. The concept of killer artificial antigen-presenting cells (KaAPCs has been developed by co-coupling peptide–major histocompatibility complex (pMHC multimer and anti-Fas monoclonal antibody (mAb onto the polymeric microparticles (MPs to induce the apoptosis of antigen-specific T cells. But little information is available about its in vivo therapeutic potential and mechanism. In this study, polyethylenimine (PEI-coated poly lactic-co-glycolic acid microparticle (PLGA MP was fabricated as a cell-sized scaffold to covalently co-couple H-2Kb-Ig dimer and anti-Fas mAb for the generation of alloantigen-presenting and apoptosis-inducing MPs. Intravenous infusions of the biodegradable KaAPCs prolonged the alloskin graft survival for 43 days in a single MHC-mismatched murine model, depleted the most of H-2Kb-alloreactive CD8+ T cells in peripheral blood, spleen, and alloskin graft in an antigen-specific manner and anti-Fas-dependent fashion. The cell-sized KaAPCs circulated throughout vasculature into liver, kidney, spleen, lymph nodes, lung, and heart, but few ones into local allograft at early stage, with a retention time up to 36 h in vivo. They colocalized with CD8+ T cells in secondary lymphoid organs while few ones contacted with CD4+ T cells, B cells, macrophage, and dendritic cells, or internalized by phagocytes. Importantly, the KaAPC treatment did not significantly impair the native T cell repertoire or non-pathogenic immune cells, did not obviously suppress the overall immune function of host, and did not lead to visible organ toxicity. Our results strongly document the high potential of PLGA MP-based KaAPCs as a novel antigen-specific immunotherapy for allograft rejection and autoimmune disorder. The in vivo mechanism of alloinhibition, tissue

  5. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells

    Directory of Open Access Journals (Sweden)

    Andrea Pecora

    2015-03-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2 was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 µg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

  6. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Science.gov (United States)

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Meningitis Caused by Toscana Virus Is Associated with Strong Antiviral Response in the CNS and Altered Frequency of Blood Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Stefania Varani

    2015-11-01

    Full Text Available Toscana virus (TOSV is a Phlebotomus-transmitted RNA virus and a frequent cause of human meningitis and meningoencephalitis in Southern Europe during the summer season. While evidence for TOSV-related central nervous system (CNS cases is increasing, little is known about the host defenses against TOSV. We evaluated innate immune response to TOSV by analyzing frequency and activation of blood antigen-presenting cells (APCs and cytokine levels in plasma and cerebrospinal fluid (CSF from patients with TOSV neuroinvasive infection and controls. An altered frequency of different blood APC subsets was observed in TOSV-infected patients, with signs of monocytic deactivation. Nevertheless, a proper or even increased responsiveness of toll-like receptor 3 and 7/8 was observed in blood APCs of these patients as compared to healthy controls. Systemic levels of cytokines remained low in TOSV-infected patients, while levels of anti-inflammatory and antiviral mediators were significantly higher in CSF from TOSV-infected patients as compared to patients with other infectious and noninfectious neurological diseases. Thus, the early host response to TOSV appears effective for viral clearance, by proper response to TLR3 and TLR7/8 agonists in peripheral blood and by a strong and selective antiviral and anti-inflammatory response in the CNS.

  8. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses.

    Science.gov (United States)

    Duong, Huu Thuy Trang; Kim, Nak Won; Thambi, Thavasyappan; Giang Phan, V H; Lee, Min Sang; Yin, Yue; Jeong, Ji Hoon; Lee, Doo Sung

    2018-01-10

    Successful delivery of a DNA vaccine to antigen-presenting cells and their subsequent stimulation of CD4 + and CD8 + T cell immunity remains an inefficient process. In general, the delivery of prophylactic vaccines is mainly mired by low transfection efficacy, poor immunogenicity, and safety issues from the materials employed. Currently, several strategies have been exploited to improve immunogenicity, but an effective strategy for safe and pain-free delivery of DNA vaccines is complicated. Herein, we report the rapid delivery of polyplex-based DNA vaccines using microneedle arrays coated with a polyelectrolyte multilayer assembly of charge reversal pH-responsive copolymer and heparin. The charge reversal pH-responsive copolymer, composed of oligo(sulfamethazine)-b-poly(ethylene glycol)-b-poly(amino urethane) (OSM-b-PEG-b-PAEU), was used as a triggering layer in the polyelectrolyte multilayer assembly on microneedles. Charge reversal characteristics of this copolymer, that is, the OSM-b-PEG-b-PAEU copolymer exhibit, positive charge at low pH (pH4.03) and becoming negative charge when exposed to physiological pH conditions (pH7.4), allowing the facile assembly and disassembly of polyelectrolyte multilayers. The electrostatic repulsion between heparin and OSM-b-PEG-b-PAEU charge reversal copolymer triggered the release of DNA vaccines. DNA vaccines laden on microneedles are effectively transfected into RAW 264.7 macrophage cells in vitro. Vaccination of BALB/c mice by DNA vaccine-loaded microneedle arrays coated with a polyelectrolyte multilayer generated antigen-specific robust immune responses. These findings provide potential strategy of charge reversal pH-responsive copolymers coated microneedles for DNA vaccine delivery. Copyright © 2017. Published by Elsevier B.V.

  9. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells.

    Science.gov (United States)

    Rogers, N M; Stephenson, M D; Kitching, A R; Horowitz, J D; Coates, P T H

    2012-05-01

    Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  10. Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure

    International Nuclear Information System (INIS)

    Migliaccio, Christopher T.; Hamilton, Raymond F.; Holian, Andrij

    2005-01-01

    Silica inhalation results in chronic lung inflammation and fibrosis. While the role of the alveolar macrophage (AM) is considered key to the effects of silica on lung pathology, the etiology is not completely understood. Evidence suggests an increase in antigen presenting cell (APC) activity as a contributing factor to this process, as well as potential roles for both AM and interstitial macrophages (IM) in silicosis. In order to study the effects of crystalline silica on the APC activity of pulmonary macrophages, mice were exposed intranasally and changes in pulmonary macrophage populations were assessed using flow cytometry. Following intranasal instillation of silica, a significant increase in the APC activity of AM was observed, as well as a significant increase in a subset of IM expressing classic APC markers (MHC class II, CD11c). In addition, an in vitro system using bone marrow-derived macrophages (BMDM) was generated to assess the effects of silica on the APC activity of macrophages in vitro. Data using BMDM in the in vitro APC assay demonstrated a significant increase in APC activity following silica exposure, but not following exposure to saline or a control particle (TiO 2 ). Using a combination of in vivo and in vitro experiments, the current study describes a significant increase in an interstitial macrophage subset with an APC phenotype, as well as an increase in the APC activity of both AM and BMDM, as a direct result of exposure to crystalline silica. These studies suggest a specific mechanism, macrophage subset activation, by which crystalline silica exposure results in chronic pulmonary inflammation and, eventually, fibrosis

  11. Antigen Presentation Keeps Trending in Immunotherapy Resistance.

    Science.gov (United States)

    Kalbasi, Anusha; Ribas, Antoni

    2018-04-19

    Through a gain-of-function kinome screen, MEX3B was identified as a mediator of resistance to T-cell immunotherapy not previously identified using CRISPR-based screens. MEX3B is a posttranscriptional regulator of HLA-A, validating the critical role of tumor-intrinsic antigen presentation in T-cell immunotherapy and indicating a new putative molecular target. Clin Cancer Res; 24(14); 1-3. ©2018 AACR. See related article by Huang et al., p. xxxx . ©2018 American Association for Cancer Research.

  12. Imprinting.

    Science.gov (United States)

    McCabe, Brian J

    2013-07-01

    Imprinting is a type of learning by which an animal restricts its social preferences to an object after exposure to that object. Filial imprinting occurs shortly after birth or hatching and sexual imprinting, around the onset of sexual maturity; both have sensitive periods. This review is concerned mainly with filial imprinting. Filial imprinting in the domestic chick is an effective experimental system for investigating mechanisms underlying learning and memory. Extensive evidence implicates a restricted part of the chick forebrain, the intermediate and medial mesopallium (IMM), as a memory store for visual imprinting. After imprinting to a visual stimulus, neuronal responsiveness in IMM is specifically biased toward the imprinting stimulus. Both this bias and the strength of imprinting measured behaviorally depend on uninterrupted sleep shortly after training. When learning-related changes in IMM are lateralized they occur predominantly or completely on the left side. Ablation experiments indicate that the left IMM is responsible for long-term storage of information about the imprinting stimulus; the right side is also a store but additionally is necessary for extra storage outside IMM, in a region necessary for flexible use of information acquired through imprinting. Auditory imprinting gives rise to biochemical, neuroanatomical, and electrophysiological changes in the medio-rostral nidopallium/mesopallium, anterior to IMM. Auditory imprinting has not been shown to produce learning-related changes in IMM. Imprinting may be facilitated by predispositions. Similar predispositions for faces and biological motion occur in domestic chicks and human infants. WIREs Cogn Sci 2013, 4:375-390. doi: 10.1002/wcs.1231 For further resources related to this article, please visit the WIREs website. Copyright © 2013 John Wiley & Sons, Ltd.

  13. CD80 and CD86 Costimulatory Molecules Differentially Regulate OT-II CD4+ T Lymphocyte Proliferation and Cytokine Response in Cocultures with Antigen-Presenting Cells Derived from Pregnant and Pseudopregnant Mice

    Directory of Open Access Journals (Sweden)

    Tomasz Maj

    2014-01-01

    Full Text Available Immune phenomena during the preimplantation period of pregnancy are poorly understood. The aim of our study was to assess the capacity for antigen presentation of splenic antigen-presenting cells (APCs derived from pregnant and pseudopregnant mice in in vitro conditions. Therefore, sorted CD11c+ dendritic cells and macrophages F4/80+ and CD11b+ presenting ovalbumin (OVA were cocultured with CD4+ T cells derived from OT-II mice’s (C57BL6/J-Tg(TcraTcrb1100Mjb/J spleen. After 132 hours of cell culture, proliferation of lymphocytes (ELISA-BrdU, activation of these cells (flow cytometry, cytokine profile (ELISA, and influence of costimulatory molecules blocking on these parameters were measured. We did not detect any differences in regulation of Th1/Th2 cytokine balance. CD86 seems to be the main costimulatory molecule involved in the proliferation response but CD80 is the main costimulatory molecule influencing cytokine secretion in pregnant mice. In conclusion, this study showed that CD80 and CD86 costimulatory molecules regulate OT-II CD4+ T lymphocyte proliferation and cytokine response in cocultures with antigen-presenting cells derived from pregnant and pseudopregnant mice. The implications of these changes still remain unclear.

  14. Skewed Helper T-Cell Responses to IL-12 Family Cytokines Produced by Antigen-Presenting Cells and the Genetic Background in Behcet’s Disease

    Directory of Open Access Journals (Sweden)

    Jun Shimizu

    2013-01-01

    Full Text Available Behcet’s disease (BD is a multisystemic inflammatory disease and is characterized by recurrent attacks on eyes, brain, skin, and gut. There is evidence that skewed T-cell responses contributed to its pathophysiology in patients with BD. Recently, we found that Th17 cells, a new helper T (Th cell subset, were increased in patients with BD, and both Th type 1 (Th1 and Th17 cell differentiation signaling pathways were overactivated. Several researches revealed that genetic polymorphisms in Th1/Th17 cell differentiation signaling pathways were associated with the onset of BD. Here, we summarize current findings on the Th cell subsets, their contribution to the pathogenesis of BD and the genetic backgrounds, especially in view of IL-12 family cytokine production and pattern recognition receptors of macrophages/monocytes.

  15. The Immunomodulator VacA Promotes Immune Tolerance and Persistent Helicobacter pylori Infection through Its Activities on T-Cells and Antigen-Presenting Cells

    OpenAIRE

    Djekic, Aleksandra; M?ller, Anne

    2016-01-01

    VacA is a pore-forming toxin that has long been known to induce vacuolization in gastric epithelial cells and to be linked to gastric disorders caused by H. pylori infection. Its role as a major colonization and persistence determinant of H. pylori is less well-understood. The purpose of this review is to discuss the various target cell types of VacA and its mechanism of action; specifically, we focus on the evidence showing that VacA targets myeloid cells and T-cells to directly and indirect...

  16. Autoreactive T cells in MRL/Mpr-lpr/lpr mice. Characterization of the lymphokines produced and analysis of antigen-presenting cells required

    International Nuclear Information System (INIS)

    Weston, K.M.; Ju, S.T.; Lu, C.Y.; Sy, M.S.

    1988-01-01

    Lymph node cells from 4-wk-old MRL/Mp-lpr/lpr mice, but not from MRL/Mp-+/+ mice, when cultured in vitro for 5 to 7 days, will spontaneously proliferate and produce IL-2. We examined the expression of several cell surface Ag on lymph node cells from MRL/Mp-lpr/lpr mice before and after in vitro culture. There is an increase in the expression of Thy-1, L3T4, IL-2R, T cell activating protein, T cell receptor, and T3 complex on the surface of cultured cells. Cultured cells produced IL-3, IFN-gamma, and small but detectable amounts of IL-1 in addition to IL-2. Gamma irradiation of APC from young MRL/Mp-lpr/lpr mice or treatment of APC with a mAb (J11D) and C, completely abrogated their stimulatory capacity. These experiments suggest that B cells are the predominant APC responsible in the activation of autoreactive T cells in MRL/Mp-lpr/lpr mice. Lymph node cells from C57BL/6-lpr/lpr or C3H-lpr/lpr mice were unable to spontaneously proliferate or produce IL-2. Lymph node cells from (MRL/Mp-lpr/lpr x C57BL/6-lpr/lpr) F1 mice or (C3H-lpr/lpr x MRL/Mp-lpr/lpr) F1 mice did proliferate and produced IL-2 after in vitro culture. Using T cells from these F1 animals and APC from each parental haplotype, we found that APC from MRL/Mp-lpr/lpr mice induced more proliferation and greater amounts of IL-2, when compared to APC from F1 animals. APC from C57BL6-lpr/lpr mice or C3H-lpr/lpr were unable to induce spontaneous proliferation and IL-2 production. Therefore, B cells from MRL/Mp-lpr/lpr mice appear to possess unique features that enable them to activate autoreactive T cells more effectively than B cells from other mice bearing the lpr/lpr gene

  17. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion.

    Directory of Open Access Journals (Sweden)

    Hyun Sik Jang

    Full Text Available Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner.

  18. Modulation of interferon-γ synthesis by the effects of lignin-like enzymatically polymerized polyphenols on antigen-presenting cell activation and the subsequent cell-to-cell interactions.

    Science.gov (United States)

    Yamanaka, Daisuke; Motoi, Masuro; Ishibashi, Ken-ichi; Miura, Noriko N; Adachi, Yoshiyuki; Ohno, Naohito

    2013-12-15

    Lignin-like polymerized polyphenols strongly activate lymphocytes and induce cytokine synthesis. We aimed to characterise the mechanisms of action of polymerized polyphenols on immunomodulating functions. We compared the reactivity of leukocytes from various organs to that of polymerized polyphenols. Splenocytes and resident peritoneal cavity cells (PCCs) responded to polymerized polyphenols and released several cytokines, whereas thymocytes and bone-marrow cells showed no response. Next, we eliminated antigen-presenting cells (APCs) from splenocytes to study their involvement in cytokine synthesis. We found that APC-negative splenocytes showed significantly reduced cytokine production induced by polymerized polyphenols. Additionally, adequate interferon-γ (IFN-γ) induction by polymerized polyphenols was mediated by the coexistence of APCs and T cells because the addition of T cells to PCCs increased IFN-γ production. Furthermore, inhibition of the T cell-APC interaction using neutralising antibodies significantly decreased cytokine production. Thus, cytokine induction by polymerized polyphenols was mediated by the interaction between APCs and T cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Shape recognition of microbial cells by colloidal cell imprints

    NARCIS (Netherlands)

    Borovicka, J.; Stoyanov, S.D.; Paunov, V.N.

    2013-01-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called "colloid antibodies", were fabricated by partial fragmentation of silica shells obtained by templating

  20. Ultraviolet light-induced suppression of antigen presentation

    International Nuclear Information System (INIS)

    Spellman, C.W.; Tomasi, T.B.

    1983-01-01

    Ultraviolet (UV) light irradiation of animals results in the development of specific T suppressor cells that inhibit antitumor immune responses. It is thought that suppression may arise as a consequence of altered antigen presentation by UV-irradiated epidermal cells. This hypothesis is based on evidence demonstrating that specific lymphoid tissues from UV-irradiated hosts exhibit impaired antigen-presenting function and that animals cannot be contact sensitized when antigens are applied to a UV-irradiated skin site. Langerhans cells of the skin are likely candidates as targets of UV-induced defects in antigen presentation as they bear Fc and C3b receptors, express Ia antigens, are of bone marrow origin, and are capable of presenting antigen in vitro. We speculate on the possible clinical usefulness of UV-induced tolerance to specific antigens such as those encountered in monoclonal antibody therapy and tissue transplantation

  1. Calcipotriol inhibits the proliferation of hyperproliferative CD29 positive keratinocytes in psoriatic epidermis in the absence of an effect on the function and number of antigen-presenting cells

    DEFF Research Database (Denmark)

    Jensen, A.M.; Llado, Minna Fyhn Lykke; Skov, L.

    1998-01-01

    The aim of this study was to elucidate some of the possible mechanisms of action of the vitamin D analogue calcipotriol in vivo. Calcipotriol is finding increasing use in the treatment of psoriasis, but the primary target cell in vivo has not yet been identified. We treated psoriatic patients...... psoriatic and normal skin, calcipotriol treatment did not alter the capacity of epidermal antigen-presenting cells to stimulate the proliferation of autologous T cells, either in the absence or in the presence of exogenous antigen. Epidermal cell suspensions were analysed further by staining...... for infiltrating leucocytes (CD45+) and Langerhans cells (CD1a+). Flow cytometric analysis showed that calcipotriol did not alter the number of CD45+ cells or Langerhans cells in psoriatic skin. These results indicate that calcipotriol does not alter either the number of the function of epidermal antigen...

  2. Intersection of autophagy with pathways of antigen presentation.

    Science.gov (United States)

    Patterson, Natalie L; Mintern, Justine D

    2012-12-01

    Traditionally, macroautophagy (autophagy) is viewed as a pathway of cell survival. Autophagy ensures the elimination of damaged or unwanted cytosolic components and provides a source of cellular nutrients during periods of stress. Interestingly, autophagy can also directly intersect with, and impact, other major pathways of cellular function. Here, we will review the contribution of autophagy to pathways of antigen presentation. The autophagy machinery acts to modulate both MHCI and MHCII antigen presentation. As such autophagy is an important participant in pathways that elicit host cell immunity and the elimination of infectious pathogens.

  3. Bcl-xL regulates CD1d-mediated antigen presentation to NKT cells by altering CD1d trafficking through the endocytic pathway.

    Science.gov (United States)

    Subrahmanyam, Priyanka B; Carey, Gregory B; Webb, Tonya J

    2014-09-01

    NKT cells are a unique subset of T cells that recognize glycolipid Ags presented in the context of CD1d molecules. NKT cells mount strong antitumor responses and are a major focus in developing effective cancer immunotherapy. It is known that CD1d molecules are constantly internalized from the cell surface, recycled through the endocytic compartments, and re-expressed on the cell surface. However, little is known about the regulation of CD1d-mediated Ag processing and presentation in B cell lymphoma. Prosurvival factors of the Bcl-2 family, such as Bcl-xL, are often upregulated in B cell lymphomas and are intimately linked to sphingolipid metabolism, as well as the endocytic compartments. We hypothesized that Bcl-xL can regulate CD1d-mediated Ag presentation to NKT cells. We found that overexpression or induction of Bcl-xL led to increased Ag presentation to NKT cells. Conversely, the inhibition or knockdown of Bcl-xL led to decreased NKT cell activation. Furthermore, knockdown of Bcl-xL resulted in the loss of CD1d trafficking to lysosome-associated membrane protein 1(+) compartments. Rab7, a late endosomal protein, was upregulated and CD1d molecules accumulated in the Rab7(+) late endosomal compartment. These results demonstrate that Bcl-xL regulates CD1d-mediated Ag processing and presentation to NKT cells by altering the late endosomal compartment and changing the intracellular localization of CD1d. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Increased antigen presentation but impaired T cells priming after upregulation of interferon-beta induced by lipopolysaccharides is mediated by upregulation of B7H1 and GITRL.

    Directory of Open Access Journals (Sweden)

    Fang Wang

    Full Text Available Dendritic cells are able to present Ag-derived peptides on MHC class I and II molecules and induce T cells priming. Lipopolysaccharides (LPS, an activator of Toll-like 4 receptor (TLR4 signaling, has been demonstrated to facilitate Ag-presentation, up-regulate surface molecules expression but impair T cells priming. In this study, we investigated the effect of LPS on nicotine-enhanced DCs-dependent T cells priming and the mechanisms of LPS orchestrating the immunosuppressive program. We could demonstrate that the treatment with LPS resulted in increased surface molecules expression, enhanced Ag-presentation, up-regulated release of TGF-beta, TNF-alpha, IL-6, and IFN-beta. Concomititantly, the upregulation of IFN-beta in DCs induces the up-regulation of coinhibitory molecules B7H1 and GITRL, which cause an impaired activation of naïve Ag-specific T cells and the induction of T cell tolerance by enhancing B7H1-PD-1 interactions and promoting GITRL-GITL facilitated Treg generation, respectively. These data provide a mechanistic basis for the immunomodulatory action of IFN-beta which might open new possibilities in the development of therapeutic approaches aimed at the control of excessive immune response and persistent infection.

  5. Interleukin-19: a constituent of the regulome that controls antigen presenting cells in the lungs and airway responses to microbial products.

    Directory of Open Access Journals (Sweden)

    Carol Hoffman

    Full Text Available Interleukin (IL-19 has been reported to enhance chronic inflammatory diseases such as asthma but the in vivo mechanism is incompletely understood. Because IL-19 is produced by and regulates cells of the monocyte lineage, our studies focused on in vivo responses of CD11c positive (CD11c+ alveolar macrophages and lung dendritic cells.IL-19-deficient (IL-19-/- mice were studied at baseline (naïve and following intranasal challenge with microbial products, or recombinant cytokines. Naïve IL-19-/- mixed background mice had a decreased percentage of CD11c+ cells in the bronchoalveolar-lavage (BAL due to the deficiency in IL-19 and a trait inherited from the 129-mouse strain. BAL CD11c+ cells from fully backcrossed IL-19-/- BALB/c or C57BL/6 mice expressed significantly less Major Histocompatibility Complex class II (MHCII in response to intranasal administration of lipopolysaccharide, Aspergillus antigen, or IL-13, a pro-allergic cytokine. Neurogenic-locus-notch-homolog-protein-2 (Notch2 expression by lung monocytes, the precursors of BAL CD11c+ cells, was dysregulated: extracellular Notch2 was significantly decreased, transmembrane/intracellular Notch2 was significantly increased in IL-19-/- mice relative to wild type. Instillation of recombinant IL-19 increased extracellular Notch2 expression and dendritic cells cultured from bone marrow cells in the presence of IL-19 showed upregulated extracellular Notch2. The CD205 positive subset among the CD11c+ cells was 3-5-fold decreased in the airways and lungs of naïve IL-19-/- mice relative to wild type. Airway inflammation and histological changes in the lungs were ameliorated in IL-19-/- mice challenged with Aspergillus antigen that induces T lymphocyte-dependent allergic inflammation but not in IL-19-/- mice challenged with lipopolysaccharide or IL-13.Because MHCII is the molecular platform that displays peptides to T lymphocytes and Notch2 determines cell fate decisions, our studies suggest that

  6. Hepatitis B virus induces IL-23 production in antigen presenting cells and causes liver damage via the IL-23/IL-17 axis.

    Directory of Open Access Journals (Sweden)

    Qinghong Wang

    Full Text Available IL-23 regulates myriad processes in the innate and adaptive immune systems, and is a critical mediator of the proinflammatory effects exerted by Th17 cells in many diseases. In this study, we investigated whether and how hepatitis B virus (HBV causes liver damage directly through the IL-23 signaling pathway. In biopsied liver tissues from HBV-infected patients, expression of both IL-23 and IL-23R was remarkably elevated. In vivo observations also indicated that the main sources of IL-23 were myeloid dendritic cells (mDCs and macrophages. Analysis of in vitro differentiated immature DCs and macrophages isolated from healthy donors revealed that the HBV surface antigen (HBsAg efficiently induces IL-23 secretion in a mannose receptor (MR-dependent manner. Culture with an endosomal acidification inhibitor and the dynamin inhibitor showed that, upon binding to the MR, the HBsAg is taken up by mDCs and macrophages through an endocytosis mechanism. In contrast, although the HBV core antigen (HBcAg can also stimulate IL-23 secretion from mDCs, the process was MR- and endocytosis-independent. In addition, IL-23 was shown to be indispensible for HBsAg-stimulated differentiation of naïve CD4(+ T cells into Th17 cells, which were determined to be the primary source of IL-17 in HBV-infected livers. The cognate receptor, IL-17R, was found to exist on the hepatic stellate cells and mDCs, both of which might represent the potential target cells of IL-17 in hepatitis B disease. These data provide novel insights into a yet unrecognized mechanism of HBV-induced hepatitis, by which increases in IL-23 expression, through an MR/endocytosis-dependent or -independent manner, produce liver damage through the IL-23/IL-17 axis.

  7. The neck region of the C-type lectin DC-SIGN regulates its surface spatiotemporal organization and virus-binding capacity on antigen presenting cells

    NARCIS (Netherlands)

    Manzo, C.; Torreno-Pina, J.A.; Joosten, B.; Reinieren-Beeren, I.; Gualda, E.J.; Loza-Alvarez, P.; Figdor, Carl; Garcia Parajo, M.F.; Cambi, A.

    2012-01-01

    The C-type lectin DC-SIGN expressed on dendritic cells (DCs) facilitates capture and internalization of a plethora of different pathogens. Although it is known that DC-SIGN organizes in nanoclusters at the surface of DCs, the molecular mechanisms responsible for this well defined nanopatterning and

  8. The Neck Region of the C-type Lectin DC-SIGN Regulates Its Surface Spatiotemporal Organization and Virus-binding Capacity on Antigen-presenting Cells

    NARCIS (Netherlands)

    Manzo, C.; Torreno-Pina, J.A.; Joosten, B.; Reinieren-Beeren, I.; Gualda, E.J.; Loza-Alvarez, P.; Figdor, C.G.; Garcia-Parajo, M.F.; Cambi, A.

    2012-01-01

    The C-type lectin DC-SIGN expressed on dendritic cells (DCs) facilitates capture and internalization of a plethora of different pathogens. Although it is known that DC-SIGN organizes in nanoclusters at the surface of DCs, the molecular mechanisms responsible for this well defined nanopatterning and

  9. Effect of BSA Antigen Sensitization during the Acute Phase of Influenza A Viral Infection on CD11c+ Pulmonary Antigen Presenting Cells

    Directory of Open Access Journals (Sweden)

    Fumitaka Sato

    2009-01-01

    Conclusions: BSA antigen sensitization during the acute phase of influenza A viral infection enhanced IL-10 production from naive CD4+ T cell interaction with CD11c+ pulmonary APCs. The IL-10 secretion evoked Th2 responses in the lungs with downregulation of Th1 responses and was important for the eosinophil recruitment into the lungs after BSA antigen challenge.

  10. Additional file 4: of MHC class II expression and potential antigen-presenting cells in the retina during experimental autoimmune uveitis

    OpenAIRE

    Lipski, Deborah; Dewispelaere, RÊmi; Foucart, Vincent; Caspers, Laure; Defrance, Matthieu; Bruyns, Catherine; Willermain, François

    2017-01-01

    Figure S4. MHC class II expression in the retina during classical EAU. Three weeks after immunization, eye cryosections were prepared and stained for MHC class II (green) and IBA1 (red) or endoglin (magenta) detection. Cell nuclei were stained with Hoechst (blue). Each picture was chosen as representative of an experiment conducted on six or more animals. A. MHC class II and IBA1 expression. B. MHC class II and endoglin expression. (PPTX 7276 kb)

  11. The systems biology of MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra

    2012-01-01

    Major histocompatibility class II molecules (MHC class II) are one of the key regulators of adaptive immunity because of their specific expression by professional antigen presenting cells (APC). They present peptides derived from endocytosed material to T helper lymphocytes. Consequently, MHC class

  12. A Neoglycoconjugate Containing the Human Milk Sugar LNFPIII Drives Anti-Inflammatory Activation of Antigen Presenting Cells in a CD14 Dependent Pathway.

    Directory of Open Access Journals (Sweden)

    Smanla Tundup

    Full Text Available The milk pentasaccharide LNFPIII has therapeutic action for metabolic and autoimmune diseases and prolongs transplant survival in mice when presented as a neoglycoconjugate. Within LNFPIII is the Lewisx trisaccharide, expressed by many helminth parasites. In humans, LNFPIII is found in human milk and also known as stage-specific embryonic antigen-1. LNFPIII-NGC drives alternative activation of macrophages and dendritic cells via NFκB activation in a TLR4 dependent mechanism. However, the connection between LNFPIII-NGC activation of APCs, TLR4 signaling and subsequent MAP kinase signaling leading to anti-inflammatory activation of APCs remains unknown. In this study we determined that the innate receptor CD14 was essential for LNFPIII-NGC induction of both ERK and NFkB activation in APCs. Induction of ERK activation by LNFPIII-NGC was completely dependent on CD14/TLR4-Ras-Raf1/TPL2-MEK axis in bone marrow derived dendritic cells (BMDCs. In addition, LNFPIII-NGC preferentially induced the production of Th2 "favoring" chemokines CCL22 and matrix metalloprotease protein-9 in a CD14 dependent manner in BMDCs. In contrast, LNFPIII-NGC induces significantly lower levels of Th1 "favoring" chemokines, MIP1α, MIP1β and MIP-2 compared to levels in LPS stimulated cells. Interestingly, NGC of the identical human milk sugar LNnT, minus the alpha 1-3 linked fucose, failed to activate APCs via TLR4/MD2/CD14 receptor complex, suggesting that the alpha 1-3 linked fucose in LNFPIII and not on LNnT, is required for this process. Using specific chemical inhibitors of the MAPK pathway, we found that LNFPIII-NGC induction of CCL22, MMP9 and IL-10 production was dependent on ERK activation. Over all, this study suggests that LNFPIII-NGC utilizes CD14/TLR4-MAPK (ERK axis in modulating APC activation to produce anti-inflammatory chemokines and cytokines in a manner distinct from that seen for the pro-inflammatory PAMP LPS. These pathways may explain the in vivo

  13. Native IgG2a(b) is barely antigenic to major histocompatibility complex class II-restricted T cells owing to inefficient internalization by professional antigen-presenting cells.

    Science.gov (United States)

    Bartnes, K; Hannestad, K

    2000-04-01

    Peptide epitopes derived from immunoglobulin variable regions represent tumour-specific antigens on B-cell neoplasms and can be recognized by syngeneic, major histocompatibility complex (MHC) class II-restricted T cells. Immunoglobulin peptide/MHC class II complexes may also be involved in autoimmunity and CD4+ T-cell-mediated B-cell regulation. Thus, the IgG2a(b) H-chain allopeptide gamma2a(b) 435-451 presented on I-Ad mimics the epitope implicated in herpes simplex virus-induced autoimmune stromal keratitis and is the target of T helper 1 (Th1) clones that suppress IgG2a(b) production in vivo. We here report that spleen and thymus cells constitutively present the autologous gamma2a(b) epitope to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma as a function of the animal housing conditions (specific pathogen-free or not) and the serum levels of IgG2a(b). Constitutive presentation in the spleen was predominantly performed by dendritic cells. Whereas spleen cells poorly presented native IgG2a(b) to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma, IgG2a(b) in the form of immune complexes were presented > 200-fold more efficiently owing to internalization via low-affinity FcgammaR on macrophages. The antigenicity could also be improved by homotypic aggregation and by targeting IgG2a(b) to complement receptors on the A20 B-cell lymphoma. Mice without detectable IgG2a(b)-containing immune complexes typically exhibited minimal constitutive presentation. Nevertheless, native IgG2a(b) can sensitize antigen-presenting cells in vivo, as mice that were devoid of immune complexes and carried an IgG2a(b)-producing tumour did present constitutively, even at physiological IgG2a(b) serum levels. Whereas the amounts of IgG released from most B-cell lymphomas may be too low to allow spontaneous priming of tumour-specific MHC class II-restricted T cells, administration of tumour immunoglobulin in aggregated form might improve the efficacy of idiotype vaccination.

  14. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells

    Science.gov (United States)

    Harker-Murray, Paul; Porter, Stephen B.; Merkel, Sarah C.; Londer, Aryel; Taylor, Dawn K.; Bina, Megan; Panoskaltsis-Mortari, Angela; Rubinstein, Pablo; Van Rooijen, Nico; Golovina, Tatiana N.; Suhoski, Megan M.; Miller, Jeffrey S.; Wagner, John E.; June, Carl H.; Riley, James L.

    2008-01-01

    Previously, we showed that human umbilical cord blood (UCB) regulatory T cells (Tregs) could be expanded approximately 100-fold using anti-CD3/28 monoclonal antibody (mAb)–coated beads to provide T-cell receptor and costimulatory signals. Because Treg numbers from a single UCB unit are limited, we explored the use of cell-based artificial antigen-presenting cells (aAPCs) preloaded with anti-CD3/28 mAbs to achieve higher levels of Treg expansion. Compared with beads, aAPCs had similar expansion properties while significantly increasing transforming growth factor β (TGF-β) secretion and the potency of Treg suppressor function. aAPCs modified to coexpress OX40L or 4-1BBL expanded UCB Tregs to a significantly greater extent than bead- or nonmodified aAPC cultures, reaching mean expansion levels exceeding 1250-fold. Despite the high expansion and in contrast to studies using other Treg sources, neither OX40 nor 4-1BB signaling of UCB Tregs reduced in vitro suppression. UCB Tregs expanded with 4-1BBL expressing aAPCs had decreased levels of proapoptotic bim. UCB Tregs expanded with nonmodified or modified aAPCs versus beads resulted in higher survival associated with increased Treg persistence in a xeno-geneic graft-versus-host disease lethality model. These data offer a novel approach for UCB Treg expansion using aAPCs, including those coexpressing OX40L or 4-1BBL. PMID:18645038

  15. ONCOLYTIC VIRUS-MEDIATED REVERSAL OF IMPAIRED TUMOR ANTIGEN PRESENTATION

    Directory of Open Access Journals (Sweden)

    Shashi Ashok Gujar

    2014-04-01

    Full Text Available Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T cell activation requires two signals on antigen presenting cells (APCs: antigen presentation through MHC molecules and co-stimulation. In the absence of one or both of these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that overturn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV-based anti-cancer therapy. Here we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell:APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic

  16. Modulation of Th1/Th2 Immune Responses by Killed Propionibacterium acnes and Its Soluble Polysaccharide Fraction in a Type I Hypersensitivity Murine Model: Induction of Different Activation Status of Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Carla Cristina Squaiella-Baptistão

    2015-01-01

    Full Text Available Propionibacterium acnes (P. acnes is a gram-positive anaerobic bacillus present in normal human skin microbiota, which exerts important immunomodulatory effects, when used as heat- or phenol-killed suspensions. We previously demonstrated that heat-killed P. acnes or its soluble polysaccharide (PS, extracted from the bacterium cell wall, suppressed or potentiated the Th2 response to ovalbumin (OVA in an immediate hypersensitivity model, depending on the treatment protocol. Herein, we investigated the mechanisms responsible for these effects, using the same model and focusing on the activation status of antigen-presenting cells (APCs. We verified that higher numbers of APCs expressing costimulatory molecules and higher expression levels of these molecules are probably related to potentiation of the Th2 response to OVA induced by P. acnes or PS, while higher expression of toll-like receptors (TLRs seems to be related to Th2 suppression. In vitro cytokines production in cocultures of dendritic cells and T lymphocytes indicated that P. acnes and PS seem to perform their effects by acting directly on APCs. Our data suggest that P. acnes and PS directly act on APCs, modulating the expression of costimulatory molecules and TLRs, and these differently activated APCs drive distinct T helper patterns to OVA in our model.

  17. Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo.

    Science.gov (United States)

    Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen

    2018-01-01

    Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP-/-) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty

  18. Recombinant Nonstructural 3 Protein, rNS3, of Hepatitis C Virus Along With Recombinant GP96 Induce IL-12, TNFα and α5integrin Expression in Antigen Presenting Cells

    Science.gov (United States)

    Hajizadeh, Mohammad Reza; Mokarram, Pooneh; Kamali sarvestani, Eskandar; Bolhassani, Azam; Mostafavi Pour, Zohreh

    2013-01-01

    Background Hepatitis C virus (HCV) infection is the main cause of chronic liver disease and to date there has been no vaccine development to prevent this infection. Among non-structural HCV proteins, NS3 protein is an excellent goal for a therapeutic vaccine, due to its large size and less variation in conserved regions. The immunogenic properties of heat shock proteins (HSPs) for instance GP96 have prompted investigations into their function as strong adjuvant to improve innate and adaptive immunity. Objectives The aim of this study was to examine additive effects of recombinant GP96 (rGP96) fragments accompanied by rNS3 on expression levels of α5integrin and pro-inflammatory cytokines, IL-12 and TNFα, in Antigen Presenting Cells (APCs). Materials and Methods Recombinant viral proteins (rNS3 and rRGD-NS3), N-terminal and C-terminal fragments of GP96 were produced and purified from E. coli in order to treat the cells; mouse spleen Dendritic Cells (DCs) and THP-1 macrophages. Results Our results showed that rNT-GP96 alone significantly increases the expression level of IL-12, TNFα and α5integrin in THP-1 macrophages and DCs, while IL-12 and TNFα expression levels were unaffected by either rNS3 or rRGD-NS3. Interestingly, the co-addition of these recombinant proteins with rNT-GP96 increased IL-12, TNFα and α5integrin expression. Pearson Correlation showed a direct association between α5integrin with IL-12 and TNF-α expression. Conclusions we have highlighted the role of rNS3 plus rNT-GP96 mediated by α5integrin in producing IL-12 and TNFα. It can be suggested that rNT-GP96 could enhance immunity characteristic of rNS3 protein via production of pro-inflammatory cytokines. PMID:24032046

  19. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients.

    Science.gov (United States)

    Morse, Michael A; Chapman, Robert; Powderly, John; Blackwell, Kimberly; Keler, Tibor; Green, Jennifer; Riggs, Renee; He, Li-Zhen; Ramakrishna, Venky; Vitale, Laura; Zhao, Biwei; Butler, Stephen A; Hobeika, Amy; Osada, Takuya; Davis, Thomas; Clay, Timothy; Lyerly, H Kim

    2011-07-15

    The use of tumor-derived proteins as cancer vaccines is complicated by tolerance to these self-antigens. Tolerance may be broken by immunization with activated, autologous, ex vivo generated and antigen-loaded, antigen-presenting cells (APC); however, targeting tumor antigen directly to APC in vivo would be a less complicated strategy. We wished to test whether targeted delivery of an otherwise poorly immunogenic, soluble antigen to APC through their mannose receptors (MR) would induce clinically relevant immunity. Two phase I studies were conducted with CDX-1307, a vaccine composed of human chorionic gonadotropin beta-chain (hCG-β) fused to an MR-specific monoclonal antibody, administered either locally (intradermally) or systemically (intravenously) in patients with advanced epithelial malignancies. An initial dose escalation of single-agent CDX-1307 was followed by additional cohorts of CDX-1307 combined with granulocyte-macrophage colony-stimulating factor (GM-CSF) and the Toll-like receptor (TLR) 3 agonist polyinosinic-polycytidylic acid (poly-ICLC) and TLR7/8 agonist resiquimod to activate the APC. CDX-1307 induced consistent humoral and T-cell responses to hCG-β when coadministered with TLR agonists. Greater immune responses and clinical benefit, including the longest duration of stable disease, were observed with immunization combined with local TLR agonists. Immune responses were induced equally efficiently in patients with elevated and nonelevated levels of serum hCG-β. Antibodies within the serum of vaccinated participants had tumor suppressive function in vitro. Toxicity consisted chiefly of mild injection site reactions. APC targeting and activation induce adaptive immunity against poorly immunogenic self-antigens which has implications for enhancing the efficacy of cancer immunotherapy.

  20. An engineered cell-imprinted substrate directs osteogenic differentiation in stem cells

    DEFF Research Database (Denmark)

    Kamguyan, Khorshid; Katbab, Ali Asghar; Mahmoudi, Morteza

    2018-01-01

    A cell-imprinted poly(dimethylsiloxane)/hydroxyapatite nanocomposite substrate was fabricated to engage topographical, mechanical, and chemical signals to stimulate and boost stem cell osteogenic differentiation. The physicochemical properties of the fabricated substrates, with nanoscale resolution...

  1. Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.

    Science.gov (United States)

    Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun

    2015-09-01

    TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Cultural relativism: maintenance of genomic imprints in pluripotent stem cell culture systems.

    Science.gov (United States)

    Greenberg, Maxim Vc; Bourc'his, Déborah

    2015-04-01

    Pluripotent stem cells (PSCs) in culture have become a widely used model for studying events occurring during mammalian development; they also present an exciting avenue for therapeutics. However, compared to their in vivo counterparts, cultured PSC derivatives have unique properties, and it is well established that their epigenome is sensitive to medium composition. Here we review the specific effects on genomic imprints in various PSC types and culture systems. Imprinted gene regulation is developmentally important, and imprinting defects have been associated with several human diseases. Therefore, imprint abnormalities in PSCs may have considerable consequences for downstream applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Imprint lithography provides topographical nanocues to guide cell growth in primary cortical cell culture

    NARCIS (Netherlands)

    Xie, S.; Luttge, R.

    2014-01-01

    In this paper, we describe a technology platform to study the effect of nanocues on the cell growth direction in primary cortical cell culture. Topographical cues to cells are provided using nanoscale features created by Jet and Flash Imprint Lithography, coated with polyethylenimine. We

  4. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response

    International Nuclear Information System (INIS)

    Chandra, Subhash; Kaur, Manpreet; Midha, Shuchi; Bhatnagar, Rakesh; Banerjee-Bhatnagar, Nirupama

    2006-01-01

    We report the ability of N-terminal fragment of lethal factor of Bacillus anthracis to deliver genetically fused ESAT-6 (early secretory antigen target), a potent T cell antigen of Mycobacterium tuberculosis, into cytosol to elicit Cytotoxic T lymphocyte (CTL) response. In vitro Th1 cytokines data and CTL assay proved that efficient delivery of LFn.ESAT-6 occurs in cytosol, in the presence of protective antigen (PA), and leads to generation of effective CTL response. Since CTL response is essential for protection against intracellular pathogens and, it is well known that only single T cell epitope or single antigenic protein is not sufficient to elicit protective CTL response due to variation or polymorphism in MHC-I alleles among the individuals, we suggest that as a fusion protein LFn can be used to deliver multiepitopes of T cells or multiproteins which can generate effective CTLs against intracellular pathogens like M. tuberculosis. It can be used to enhance the protective efficacy of BCG vaccine

  5. Cell and Tissue Imaging with Molecularly Imprinted Polymers.

    Science.gov (United States)

    Panagiotopoulou, Maria; Kunath, Stephanie; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-01-01

    Advanced tools for cell imaging are of particular interest as they can detect, localize and quantify molecular targets like abnormal glycosylation sites that are biomarkers of cancer and infection. Targeting these biomarkers is often challenging due to a lack of receptor materials. Molecularly imprinted polymers (MIPs) are promising artificial receptors; they can be tailored to bind targets specifically, be labeled easily, and are physically and chemically stable. Herein, we demonstrate the application of MIPs as artificial antibodies for selective labeling and imaging of cellular targets, on the example of hyaluronan and sialylation moieties on fixated human skin cells and tissues. Thus, fluorescently labeled MIP nanoparticles templated with glucuronic acid (MIPGlcA) and N-acetylneuraminic acid (MIPNANA) are respectively applied. Two different fluorescent probes are used: (1) MIPGlcA particles, ~400 nm in size are labeled with the dye rhodamine that target the extracellular hyaluronan on cells and tissue specimens and (2) MIP-coated InP/ZnS quantum dots (QDs) of two different colors, ~125 nm in size that target the extracellular and intracellular hyaluronan and sialylation sites. Green and red emitting QDs are functionalized with MIPGlcA and MIPNANA respectively, enabling multiplexed cell imaging. This is a general approach that can also be adapted to other target molecules on and in cells.

  6. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    Directory of Open Access Journals (Sweden)

    Taguchi Hiroaki

    2011-08-01

    Full Text Available Abstract Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens, carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1 the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2 synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.

  7. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells

    Science.gov (United States)

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. The imprinting marks are protected from global demethylation taking place during pre-implantation development before being reset in primordial germ cells. However, it...

  8. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra; van den Hoorn, Tineke; Jongsma, Marlieke L. M.; Bakker, Mark J.; Hengeveld, Rutger; Janssen, Lennert; Cresswell, Peter; Egan, David A.; van Ham, Marieke; ten Brinke, Anja; Ovaa, Huib; Beijersbergen, Roderick L.; Kuijl, Coenraad; Neefjes, Jacques

    2011-01-01

    MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and

  9. Identification of a peptide binding protein that plays a role in antigen presentation

    International Nuclear Information System (INIS)

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-01-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from [ 35 S]methionine-labeled cells, appears as two discrete bands of ≅72 and 74 kDa after NaDodSO 4 /PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation

  10. ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Riso, Vincenzo; Cammisa, Marco; Kukreja, Harpreet

    2016-01-01

    ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi......-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS...... the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet...

  11. Development of Artificial Antigen Presenting Cells for Prostate Cancer Immunotherapy

    National Research Council Canada - National Science Library

    Schneck, Jonathan P; Oelke, Mathias

    2007-01-01

    While adoptive immunotherapy holds promise as a treatment for cancer, development of adoptive immunotherapy has been impeded by the lack of a reproducible and economically viable method for generating...

  12. Genome Imprinting

    Indian Academy of Sciences (India)

    the cell nucleus (mitochondrial and chloroplast genomes), and. (3) traits governed ... tively good embryonic development but very poor development of membranes and ... Human homologies for the type of situation described above are naturally ..... imprint; (b) New modifications of the paternal genome in germ cells of each ...

  13. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    International Nuclear Information System (INIS)

    Araújo, E.S.S. de; Vasques, L.R.; Stabellini, R.; Krepischi, A.C.V.; Pereira, L.V.

    2014-01-01

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A

  14. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, E.S.S. de [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Vasques, L.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Stabellini, R.; Krepischi, A.C.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Pereira, L.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-10-17

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A.

  15. Resistance to checkpoint blockade therapy through inactivation of antigen presentation.

    Science.gov (United States)

    Sade-Feldman, Moshe; Jiao, Yunxin J; Chen, Jonathan H; Rooney, Michael S; Barzily-Rokni, Michal; Eliane, Jean-Pierre; Bjorgaard, Stacey L; Hammond, Marc R; Vitzthum, Hans; Blackmon, Shauna M; Frederick, Dennie T; Hazar-Rethinam, Mehlika; Nadres, Brandon A; Van Seventer, Emily E; Shukla, Sachet A; Yizhak, Keren; Ray, John P; Rosebrock, Daniel; Livitz, Dimitri; Adalsteinsson, Viktor; Getz, Gad; Duncan, Lyn M; Li, Bo; Corcoran, Ryan B; Lawrence, Donald P; Stemmer-Rachamimov, Anat; Boland, Genevieve M; Landau, Dan A; Flaherty, Keith T; Sullivan, Ryan J; Hacohen, Nir

    2017-10-26

    Treatment with immune checkpoint blockade (CPB) therapies often leads to prolonged responses in patients with metastatic melanoma, but the common mechanisms of primary and acquired resistance to these agents remain incompletely characterized and have yet to be validated in large cohorts. By analyzing longitudinal tumor biopsies from 17 metastatic melanoma patients treated with CPB therapies, we observed point mutations, deletions or loss of heterozygosity (LOH) in beta-2-microglobulin (B2M), an essential component of MHC class I antigen presentation, in 29.4% of patients with progressing disease. In two independent cohorts of melanoma patients treated with anti-CTLA4 and anti-PD1, respectively, we find that B2M LOH is enriched threefold in non-responders (~30%) compared to responders (~10%) and associated with poorer overall survival. Loss of both copies of B2M is found only in non-responders. B2M loss is likely a common mechanism of resistance to therapies targeting CTLA4 or PD1.

  16. Isolation of a peptide binding protein and its role in antigen presentation

    International Nuclear Information System (INIS)

    Lakey, E.; Pierce, S.K.; Margoliash, E.

    1986-01-01

    A mouse T cell hybrid, TPc9.1, recognizes pigeon cytochrome c (Pc) as processed and presented by histocompatible antigen presenting cells (APC). When paraformaldehyde fixed APC are employed, only a peptide fragment of Pc, Pc 81-104, and not the native Pc, is capable of stimulating TPc9.1 cells. Pc 81-104 appears to associate tightly with the APC surface since paraformaldehyde fixed APC which have been incubated with Pc 81-104 remain stimulatory following extensive washing. When APC are surface labeled with 125 I, solubilized and affinity purified on Pc 81-104-Sepharose 4B columns, two predominant polypeptides of approximately 72 and 74 kd are isolated. Little or no immunoglobulin, Class I or Class II proteins are obtained under these conditions. Antisera from rabbits immunized with the affinity purified material, but not preimmune sera, block the activation of TPc 9.1 cells by Pc as well as Pc 81-104 when presented by live APC. Furthermore, these antisera are even more effective in blocking the activation of TPc9.1 cells by either APC which had been pulsed with Pc and then paraformaldehyde fixed, or by Pc 81-104 when added to paraformaldehyde fixed APC, suggesting that these antisera were not affecting antigen processing. Thus, these peptide binding proteins may play a role in antigen presentation, and they are being further characterized

  17. Effect of cold nerve allograft preservation on antigen presentation and rejection

    Science.gov (United States)

    Ray, Wilson Z.; Kale, Santosh S.; Kasukurthi, Rahul; Papp, Esther M.; Johnson, Philip J.; Santosa, Katherine B.; Yan, Ying; Hunter, Daniel A.; Mackinnon, Susan E.; Tung, Thomas H.

    2010-01-01

    Object Nerve allotransplantation provides a temporary scaffold for host nerve regeneration and allows for the reconstruction of significant segmental nerve injuries. The need for systemic the current clinical utilization of nerve allografts, although this need is reduced by the practice of cold nerve allograft preservation. Activation of T cells in response to alloantigen presentation occurs in the context of donor antigen presenting cells (direct pathway) or host antigen-presenting cells (indirect pathway). The relative role of each pathway in eliciting an alloimmune response and its potential for rejection of the nerve allograft model has not previously been investigated. The objective of this investigation was to study the effect of progressive periods of cold nerve allograft preservation on antigen presentation and the alloimmune response. Methods The authors used wild type C57Bl/6 (B6), BALB/c, and major histocompatibility Class II–deficient (MHC−/−) C57Bl/6 mice as both nerve allograft recipients and donors. A nonvascularized nerve allograft was used to reconstruct a 1-cm sciatic nerve gap. Progressive cold preservation of donor nerve allografts was used. Quantitative assessment was made after 3 weeks using nerve histomorphometry. Results The donor-recipient combination lacking a functional direct pathway (BALB/c host with MHC−/− graft) rejected nerve allografts as vigorously as wild-type animals. Without an intact indirect pathway (MHC−/− host with BALB/c graft), axonal regeneration was improved (p < 0.052). One week of cold allograft preservation did not improve regeneration to any significant degree in any of the donor-recipient preservation did improve regeneration significantly (p < 0.05) for all combinations compared with wild-type animals without pretreatment. However, only in the presence of an intact indirect pathway (no direct pathway) did 4 weeks of cold preservation improve regeneration significantly compared with 1 week and no

  18. Deletion of the Imprinted Gene Grb10 Promotes Hematopoietic Stem Cell Self-Renewal and Regeneration.

    Science.gov (United States)

    Yan, Xiao; Himburg, Heather A; Pohl, Katherine; Quarmyne, Mamle; Tran, Evelyn; Zhang, Yurun; Fang, Tiancheng; Kan, Jenny; Chao, Nelson J; Zhao, Liman; Doan, Phuong L; Chute, John P

    2016-11-01

    Imprinted genes are differentially expressed by adult stem cells, but their functions in regulating adult stem cell fate are incompletely understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an imprinted gene, regulates hematopoietic stem cell (HSC) self-renewal and regeneration. Deletion of the maternal allele of Grb10 in mice (Grb10 m/+ mice) substantially increased HSC long-term repopulating capacity, as compared to that of Grb10 +/+ mice. After total body irradiation (TBI), Grb10 m/+ mice demonstrated accelerated HSC regeneration and hematopoietic reconstitution, as compared to Grb10 +/+ mice. Grb10-deficient HSCs displayed increased proliferation after competitive transplantation or TBI, commensurate with upregulation of CDK4 and Cyclin E. Furthermore, the enhanced HSC regeneration observed in Grb10-deficient mice was dependent on activation of the Akt/mTORC1 pathway. This study reveals a function for the imprinted gene Grb10 in regulating HSC self-renewal and regeneration and suggests that the inhibition of Grb10 can promote hematopoietic regeneration in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Antigen presentation by hapten-specific B lymphocytes. II. Specificity and properties of antigen-presenting B lymphocytes, and function of immunoglobulin receptors

    International Nuclear Information System (INIS)

    Abbas, A.K.; Haber, S.; Rock, K.L.

    1985-01-01

    Studies were designed to examine the ability of hapten-binding murine B lymphocytes to present hapten-protein conjugates to protein antigen-specific, Ia-restricted T cell hybridomas. BALB/c B cells specific for TNP or FITC presented hapten-modified proteins (TNP-G1 phi, TNP-OVA, or FITC-OVA) to the relevant T cell hybridomas at concentrations below 0.1 microgram/ml. Effective presentation of the same antigens by B lymphocyte-depleted splenocytes, and of unmodified proteins by either hapten-binding B cells or Ig spleen cells, required about 10(3)-to 10(4)-fold higher concentrations of antigen. The use of two different haptens and two carrier proteins showed that this extremely efficient presentation of antigen was highly specific, with hapten specificity being a property of the B cells and carrier specificity of the responding T cells. The presentation of hapten-proteins by hapten-binding B lymphocytes was radiosensitive and was not affected by the depletion of plastic-adherent cells, suggesting that conventional APCs (macrophages or dendritic cells) are not required in this phenomenon. Antigen-pulsing and antibody-blocking experiments showed that this hapten-specific antigen presentation required initial binding of antigen to surface Ig receptors. Moreover, linked recognition of hapten and carrier determinants was required, but these recognition events could be temporally separated. Finally, an antigen-processing step was found to be necessary, and this step was disrupted by ionizing radiation. These data suggest a role for B cell surface Ig in providing a specific high-affinity receptor to allow efficient uptake or focusing of antigen for its subsequent processing and presentation to T lymphocytes

  20. Unusual antigen presentation offers new insight into HIV vaccine design.

    Science.gov (United States)

    McMichael, Andrew J; Picker, Louis J

    2017-06-01

    Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Superior light trapping in thin film silicon solar cells through nano imprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Schropp, R.E.I.; Pex, P.P.A.C.

    2013-10-15

    ECN and partners have developed a fabrication process based on nanoimprint lithography (NIL) of textures for light trapping in thin film solar cells such as thin-film silicon, OPV, CIGS and CdTe. The process can be applied in roll-to-roll mode when using a foil substrate or in roll-to-plate mode when using a glass substrate. The lacquer also serves as an electrically insulating layer for cells if steel foil is used as substrate, to enable monolithic series interconnection. In this paper we will show the superior light trapping in thin film silicon solar cells made on steel foil with nanotextured back contacts. We have made single junction a-Si and {mu}c-Si and a-Si/{mu}c-Si tandem cells, where we applied several types of nano-imprints with random and periodic structures. We will show that the nano-imprinted back contact enables more than 30% increase of current in comparison with non-textured back contacts and that optimized periodic textures outperform state-of-the-art random textures. For a-Si cells we obtained Jsc of 18 mA/cm{sup 2} and for {mu}c-Si cells more than 24 mA/cm{sup 2}. Tandem cells with a total Si absorber layer thickness of only 1350 nm have an initial efficiency of 11%.

  2. Loss of insulin-like growth factor II imprinting is a hallmark associated with enhanced chemo/radiotherapy resistance in cancer stem cells.

    Science.gov (United States)

    Zhao, Xin; Liu, Xiaoliang; Wang, Guanjun; Wen, Xue; Zhang, Xiaoying; Hoffman, Andrew R; Li, Wei; Hu, Ji-Fan; Cui, Jiuwei

    2016-08-09

    Insulin-like growth factor II (IGF2) is maternally imprinted in most tissues, but the epigenetic regulation of the gene in cancer stem cells (CSCs) has not been defined. To study the epigenetic mechanisms underlying self-renewal, we isolated CSCs and non-CSCs from colon cancer (HT29, HRT18, HCT116), hepatoma (Hep3B), breast cancer (MCF7) and prostate cancer (ASPC) cell lines. In HT29 and HRT18 cells that show loss of IGF2 imprinting (LOI), IGF2 was biallelically expressed in the isolated CSCs. Surprisingly, we also found loss of IGF2 imprinting in CSCs derived from cell lines HCT116 and ASPC that overall demonstrate maintenance of IGF2 imprinting. Using chromatin conformation capture (3C), we found that intrachromosomal looping between the IGF2 promoters and the imprinting control region (ICR) was abrogated in CSCs, in parallel with loss of IGF2 imprinting in these CSCs. Loss of imprinting led to increased IGF2 expression in CSCs, which have a higher rate of colony formation and greater resistance to chemotherapy and radiotherapy in vitro. These studies demonstrate that IGF2 LOI is a common feature in CSCs, even when the stem cells are derived from a cell line in which the general population of cells maintain IGF2 imprinting. This finding suggests that aberrant IGF2 imprinting may be an intrinsic epigenetic control mechanism that enhances stemness, self-renewal and chemo/radiotherapy resistance in cancer stem cells.

  3. Nano imprint lithography of textures for light trapping in thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Notta, J.B.; Pex, P.P.A.C. [ECN-Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands); Schipper, W.; Wilde, R. [Nanoptics GmbH, Innungsstrasse 5, 21244 Buchholz (Germany)

    2012-09-15

    Nano Imprint Lithography (NIL) is a versatile and commercially viable technology for fabrication of structures for light trapping in solar cells. We demonstrate the applicability of NIL in thin film silicon solar cells in substrate configuration, where NIL is used to fabricate a textured rear contact of the solar cells. We applied random structures, based on the natural texture of SnO:F grown by APCVD, and designed 2D periodic structures and show that for single junction {mu}c-Si cells these textured rear contacts lead to an increase of Jsc of more than 40 % in comparison to cells with flat rear contacts. Cells on optimized periodic textures showed higher fill factors which can be attributed to reduced microcrack formation, leading to less shunting in comparison to cells on random textures.

  4. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    Science.gov (United States)

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Role of interleukin-1 in antigen presentation by normal articular chondrocytes

    International Nuclear Information System (INIS)

    Tiku, M.L.; Liu, S.; Tiku, K.

    1986-01-01

    Recently the authors have described that normal articular chondrocytes of rabbits present antigen to immune T cells. In the present study the authors investigated the role of interleukin-1 (IL-1) on antigen presentation by chondrocytes. For these experiments the antigen pulsed chondroyctes were either untreated or fixed with paraformaldehyde and then co-cultured with immune T cells. T cell proliferation was measured by 3 H-thymidine incorporation. Pulsed non-fixed chondrocytes presented antigen, as expected, but pulsed and fixed cells failed to present antigen to T cells. The 3 H-TdR incorporation was partially restored by addition of purified human IL-1. Next, IL-1 activity was measured in primary chondrocyte culture supernatants stimulated with or without lipopolysaccharide (LPS) in comitogen thymocyte assay. No activity was detected in chondrocyte supernatants. Propagated chondrocyte culture supernatants also lacked IL-1 activity when stimulated with LPS in the presence of increasing concentration of indomethacin. On the other hand the authors observed that chondrocyte culture supernatants in a dose dependent manner inhibited human IL-1 induced 3 H-TdR incorporation of murine thymocytes. This suggested that these cells may produce an inhibitor of IL-1 and IL-1 production by chondrocytes may be essential for T cell proliferation by these cells. Inability to detect IL-1 in chondrocyte supernatants may be due to the presence of an inhibitor to IL-1. These findings may help in elucidating the immunological mechanisms in situations where chondrocytes and T cell interact, such as in arthritis

  6. Formation of Nano scale Bio imprints of Muscle Cells Using UV-Cured Spin-Coated Polymers

    International Nuclear Information System (INIS)

    Samsuri, F.; Alkaisi, M.M.; Mitchell, J.S.; Evans, J.J.

    2009-01-01

    We report a nano scale replication method suitable for biological specimens that has potential in single cell studies and in formation of 3D biocompatible scaffolds. Earlier studies using a heat-curable polydimethylsiloxane (PDMS) or a UV-curable elastomer introduced Bio imprint replication to facilitate cell imaging. However, the replicating conditions for thermal polymerization are known to cause cell dehydration during curing. In this study, a UV-cured methacrylate copolymer was developed for use in creating replicas of living cells and was tested on rat muscle cells. Bio imprints of muscle cells were formed by spin coating under UV irradiation. The polymer replicas were then separated from the muscle cells and were analyzed under an Atomic Force Microscope (AFM), in tapping mode, because it has low tip-sample forces and thus will not destroy the fine structures of the imprint. The new polymer is biocompatible with higher replication resolution and has a faster curing process than other types of silicon-based organic polymers such as PDMS. High resolution images of the muscle cell imprints showed the micro-and nano structures of the muscle cells, including cellular fibers and structures within the cell membranes. The AFM is able to image features at nano scale resolution with the potential for recognizing abnormalities on cell membranes at early stages of disease progression.

  7. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner

    2013-09-01

    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  8. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.; Morozov, Giora I.; Mage, Michael G.; Margulies, David H. (NIH); (Hebrew)

    2017-10-12

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.

  9. Peptide imprinted receptors for the determination of the small cell lung cancer associated biomarker progastrin releasing peptide

    DEFF Research Database (Denmark)

    Qader, A. A.; Urraca, J.; Torsetnes, S. B.

    2014-01-01

    Peptide imprinted polymers were developed for detection of progastrin releasing peptide (ProGRP); a low abundant blood based biomarker for small cell lung cancer. The polymers targeted the proteotypic nona-peptide sequence NLLGLIEAK and were used for selective enrichment of the proteotypic peptide...... prior to LCMS based quantification. Peptide imprinted polymers with the best affinity characteristics were first identified from a 96-polymer combinatorial library. The effects of functional monomers, crosslinker, porogen, and template on adsorption capacity and selectivity for NLLGLIEAK were...

  10. [Neurobiology of imprinting].

    Science.gov (United States)

    Ohki-Hamazaki, Hiroko

    2012-06-01

    Imprinting is an example of learning and memory acquisition in infancy. In the case of precocial birds, such as geese, ducks, and chickens, the baby birds learn the characteristics of the first moving object that they see within a critical period, and they imprint on it and follow it around. We analyzed the neural basis of this behavior in order to understand the neural mechanism of learning and memory in infancy. Information pertaining to a visual imprinting stimulus is recognized and processed in the visual Wulst, a region that corresponds to the mammalian visual cortex. It is then transmitted to the posterior region of the telencephalon, followed by the core region of the hyperpallium densocellulare (HDCo), periventricular region of the hyperpallium densocellulare (HDPe), and finally, the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. Memory is stored in the IMM. After imprint training, plastic changes are observed in the visual Wulst as well as in the neurons of this circuit. HDCo cells, located at the center of this circuit, express N-methyl-D-aspartate (NMDA) receptors containing the NMDA receptor (NR) 2B subunit; the expression of this receptor increased after the imprint training. Inhibition of this receptor in the cells of the HDCo region leads to failure of imprinting and inactivation of this circuit. Thus, NMDA receptors bearing the NR2B subunit play a critical role in plastic changes in this circuit and in induction of imprinting.

  11. β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells.

    Science.gov (United States)

    Keerthivasan, Shilpa; Aghajani, Katayoun; Dose, Marei; Molinero, Luciana; Khan, Mohammad W; Venkateswaran, Vysak; Weber, Christopher; Emmanuel, Akinola Olumide; Sun, Tianjao; Bentrem, David J; Mulcahy, Mary; Keshavarzian, Ali; Ramos, Elena M; Blatner, Nichole; Khazaie, Khashayarsha; Gounari, Fotini

    2014-02-26

    The density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of T helper 17 (T(H)17) cells and inflammation predict poor outcome, whereas infiltration by T regulatory cells (Tregs) that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial. We recently reported that Tregs in colon cancer patients can become proinflammatory and tumor-promoting. These properties were directly linked with their expression of RORγt (retinoic acid-related orphan receptor-γt), the signature transcription factor of T(H)17 cells. We report that Wnt/β-catenin signaling in T cells promotes expression of RORγt. Expression of β-catenin was elevated in T cells, including Tregs, of patients with colon cancer. Genetically engineered activation of β-catenin in mouse T cells resulted in enhanced chromatin accessibility in the proximity of T cell factor-1 (Tcf-1) binding sites genome-wide, induced expression of T(H)17 signature genes including RORγt, and promoted T(H)17-mediated inflammation. Strikingly, the mice had inflammation of small intestine and colon and developed lesions indistinguishable from colitis-induced cancer. Activation of β-catenin only in Tregs was sufficient to produce inflammation and initiate cancer. On the basis of these findings, we conclude that activation of Wnt/β-catenin signaling in effector T cells and/or Tregs is causatively linked with the imprinting of proinflammatory properties and the promotion of colon cancer.

  12. Imprint cytology of clear cell sarcoma-like tumor of the gastrointestinal tract in the small intestine: A case report.

    Science.gov (United States)

    Kato, Takashi; Ichihara, Shin; Gotoda, Hiroko; Muraoka, Shunji; Kubo, Terufumi; Sugita, Shintaro; Hasegawa, Tadashi

    2017-12-01

    Clear cell sarcoma-like tumor of the gastrointestinal tract (CCSLGT) is an extremely rare malignant neoplasm in the digestive tract. Its cytomorphologic features have never previously been reported. Here, we describe a case of CCSLGT, including its cytologic examination findings. A 47-year-old woman presented with a mass in the small intestine, which was resected and sent for imprint cytology. Imprint smears revealed tumor cells with light eosinophilic or clear cytoplasm in a necrotic background. Many of the tumor cells were arranged in a perivascular growth with a pseudopapillary formation, and there were some non-neoplastic osteoclast-like giant cells. Histological examination revealed solid nests and a pseudopapillary pattern of the tumor cells with clear or pale eosinophilic cytoplasm and large nuclei with small nucleoli. Immunohistochemistry showed positive for vimentin, S-100, and SOX-10, and negative for SMA, c-KIT, cytokeratin, HMB-45, and MelanA. The EWSR1 gene split signal was detected by reverse transcriptase fluorescence in situ hybridization, and EWSR1-CREB1 gene fusion was indicated by reverse transcriptase polymerase chain reaction analysis. From these findings, we diagnosed the tumor as CCSLGT. To best of our knowledge, this is the first description of the imprint cytology features of CCSLGT. © 2017 Wiley Periodicals, Inc.

  13. The Role of Multiscale Protein Dynamics in Antigen Presentation and T Lymphocyte Recognition

    Directory of Open Access Journals (Sweden)

    R. Charlotte Eccleston

    2017-07-01

    Full Text Available T lymphocytes are stimulated when they recognize short peptides bound to class I proteins of the major histocompatibility complex (MHC protein, as peptide–MHC complexes. Due to the diversity in T-cell receptor (TCR molecules together with both the peptides and MHC proteins they bind to, it has been difficult to design vaccines and treatments based on these interactions. Machine learning has made some progress in trying to predict the immunogenicity of peptide sequences in the context of specific MHC class I alleles but, as such approaches cannot integrate temporal information and lack explanatory power, their scope will always be limited. Here, we advocate a mechanistic description of antigen presentation and TCR activation which is explanatory, predictive, and quantitative, drawing on modeling approaches that collectively span several length and time scales, being capable of furnishing reliable biological descriptions that are difficult for experimentalists to provide. It is a form of multiscale systems biology. We propose the use of chemical rate equations to describe the time evolution of the foreign and host proteins to explain how the original proteins end up being presented on the cell surface as peptide fragments, while we invoke molecular dynamics to describe the key binding processes on the molecular level, including those of peptide–MHC complexes with TCRs which lie at the heart of the immune response. On each level, complementary methods based on machine learning are available, and we discuss the relationship between these divergent approaches. The pursuit of predictive mechanistic modeling approaches requires experimentalists to adapt their work so as to acquire, store, and expose data that can be used to verify and validate such models.

  14. Methylation and Transcripts Expression at the Imprinted GNAS Locus in Human Embryonic and Induced Pluripotent Stem Cells and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Virginie Grybek

    2014-09-01

    Full Text Available Data from the literature indicate that genomic imprint marks are disturbed in human pluripotent stem cells (PSCs. GNAS is an imprinted locus that produces one biallelic (Gsα and four monoallelic (NESP55, GNAS-AS1, XLsα, and A/B transcripts due to differential methylation of their promoters (DMR. To document imprinting at the GNAS locus in PSCs, we studied GNAS locus DMR methylation and transcript (NESP55, XLsα, and A/B expression in human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs derived from two human fibroblasts and their progenies. Results showed that (1 methylation at the GNAS locus DMRs is DMR and cell line specific, (2 changes in allelic transcript expression can be independent of a change in allele-specific DNA methylation, and (3 interestingly, methylation at A/B DMR is correlated with A/B transcript expression. These results indicate that these models are valuable to study the mechanisms controlling GNAS methylation, factors involved in transcript expression, and possibly mechanisms involved in the pathophysiology of pseudohypoparathyroidism type 1B.

  15. Effect of nano-imprinting on open-circuit voltage of organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Emah, J.B.; Curry, R.J.; Silva, S.R.P. [Surrey Univ., Guildford (United Kingdom). Advanced Technology Inst.

    2010-07-01

    The open-circuit voltage (V{sub oc}) of solar cells with non-Ohmic contacts are determined by the work function difference of the electrodes. For Ohmic contacts the V{sub oc} is governed by the LUMO and HOMO levels of the acceptor and donor, respectively, which pin the Fermi levels of the cathode and anode. We present a case where the V{sub oc} of a single layer device using poly (3-hexylthiopene-2,5-diyl) (P3HT) as the photoactive material between a nanoimprinted poly poly (3,4-ethylenedioxythiophene) poly (styrene sulfonate)(PEDOT:PSS) and Al electrode decreases due to patterning. The reverse is shown to be the case when [6,6]-phenyl-C{sub 61}-butyric acid ester (PCBM) is introduced to form a bulk heterojunction (BHJ). In both scenarios, there is an increase in the short-circuit current, attributed to an extended optical path length within the photoactive layer and enhanced charge extraction through the increased surface area. The patterned BHJ devices show a 28% and 40% increase in the power conversion efficiency when imprinted with 727 nm and 340 nm periodic patterns respectively. ATR-FTIR investigations of the interfacial PEDOT:PSS film following patterning reveals the presence of PDMS residue which is supported by consideration of the effect on single layer P3HT and P3HT:PCBM blend device performance. UPS measurements demonstrate a reduction in the work function of the interfacial PEDOT:OSS layer by {proportional_to}0.5 eV following nanoimprinting which may originate from chemical modification by the PDMS residue or interfacial dipole formation. XPS spectrum of the imprinted PEDOT:PSS also shows a chemical shift in the 0(1s) core-level towards higher binding energy signifying interaction of the PDMS stamp residue with the PSS dominated surface of PEDOT:PSS. This led to significant improvement in the V{sub oc} and ultimately, the PCE. (orig.)

  16. Imprinting disorders

    DEFF Research Database (Denmark)

    Eggermann, Thomas; Perez de Nanclares, Guiomar; Maher, Eamonn R

    2015-01-01

    Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA...... sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical...

  17. Variable methylation of the imprinted gene, SNRPN, supports a relationship between intracranial germ cell tumours and neural stem cells.

    Science.gov (United States)

    Lee, Shih-Han; Appleby, Vanessa; Jeyapalan, Jennie N; Palmer, Roger D; Nicholson, James C; Sottile, Virginie; Gao, Erning; Coleman, Nicholas; Scotting, Paul J

    2011-02-01

    Germ cell tumours (GCTs) are a diverse group of neoplasms all of which are generally believed to arise from germ cell progenitors (PGCs). Even those that form in the nervous system are likewise believed to be PGC-derived, despite being found a great distance from the normal location of germ cells. The primary evidence in favour of this model for the origins of intracranial GCTs is that they share molecular features with other GCTs. Those features include shared gene expression and a lack of methylation of imprinted genes, including SNRPN. Contrary to this model, we have proposed that endogenous neural stem cells of the brain are a more likely origin for these tumours. We show here that the lack of methylation of SNRPN that has previously been taken to indicate an origin for GCTs from PGCs is also seen in neural stem cells of mice and humans. We believe that, in the light of these and other recent observations, endogenous neural precursors of the brain are a more plausible origin for intracranial GCTs than are misplaced PGCs.

  18. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

    Science.gov (United States)

    Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S

    2015-03-01

    Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell

  19. Papaya ringspot virus coat protein gene for antigen presentation Escherichia coli

    Czech Academy of Sciences Publication Activity Database

    Chatchen, S.; Juříček, Miloslav; Rueda, P.; Kertbundit, Sunee

    2006-01-01

    Roč. 39, č. 1 (2006), s. 16-21 ISSN 1225-8687 Grant - others:Thai Research Fund(TH) BT-B-06-PG-14-4503 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : antigen presentation * canine parvo virus * epitope * papaya ringspot virus Subject RIV: EF - Botanics Impact factor: 1.465, year: 2006 http://www.jbmb.or.kr/view_article.php3?cont=jbmb&kid=174&mid=3&pid=3

  20. Activated NKT cells imprint NK-cell differentiation, functionality and education.

    Science.gov (United States)

    Riese, Peggy; Trittel, Stephanie; May, Tobias; Cicin-Sain, Luka; Chambers, Benedict J; Guzmán, Carlos A

    2015-06-01

    NK cells represent a vital component of the innate immune system. The recent discoveries demonstrating that the functionality of NK cells depends on their differentiation and education status underscore their potential as targets for immune intervention. However, to exploit their full potential, a detailed understanding of the cellular interactions involved in these processes is required. In this regard, the cross-talk between NKT cells and NK cells needs to be better understood. Our results provide strong evidence for NKT cell-induced effects on key biological features of NK cells. NKT-cell activation results in the generation of highly active CD27(high) NK cells with improved functionality. In this context, degranulation activity and IFNγ production were mainly detected in the educated subset. In a mCMV infection model, we also demonstrated that NKT-cell stimulation induced the generation of highly functional educated and uneducated NK cells, crucial players in viral control. Thus, our findings reveal new fundamental aspects of the NKT-NK cell axis that provide important hints for the manipulation of NK cells in clinical settings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Identification of immunogenic hot spots within plum pox potyvirus capsid protein for efficient antigen presentation.

    Science.gov (United States)

    Fernández-Fernández, M Rosario; Martínez-Torrecuadrada, Jorge L; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-12-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-gamma, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence.

  2. Large area flexible polymer solar cells with high efficiency enabled by imprinted Ag grid and modified buffer layer

    International Nuclear Information System (INIS)

    Lu, Shudi; Lin, Jie; Liu, Kong; Yue, Shizhong; Ren, Kuankuan; Tan, Furui; Wang, Zhijie; Jin, Peng; Qu, Shengchun; Wang, Zhanguo

    2017-01-01

    To take a full advantage of polymer semiconductors on realization of large-area flexible photovoltaic devices, herein, we fabricate polymer solar cells on the basis of polyethylene terephthalate (PET) with imprinted Ag grid as transparent electrode. The key fabrication procedure is the adoption of a modified PEDOT:PSS (PH1000) solution for spin-coating the buffer layer to form a compact contact with the substrate. In comparison with the devices with intrinsic PEDOT:PSS buffer layer, the advanced devices present a much higher efficiency of 6.51%, even in a large device area of 2.25 cm"2. Subsequent characterizations reveal that such devices show an impressive performance stability as the bending angle is enlarged to 180° and bending time is up to 1000 cycles. Not only providing a general methodology to construct high efficient and flexible polymer solar cells, this paper also involves deep insights on device working mechanism in bending conditions.

  3. Collective Genetic Interaction Effects and the Role of Antigen Presenting Cells in Autoimmune Diseases

    Science.gov (United States)

    2017-01-12

    anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Data Availability Statement: Data used...Schulman BA, Alexander WS, Nicola NA, Martin HM, Hilton DJ. The SOCS box: a tale of destruction and degradation. Trends Biochem Sci. 2002; 27(5):235–41

  4. SILICA AND PM1648 MODIFY HUMAN ALVEOLAR MACROPHAGE ANTIGEN PRESENTING CELL ACTIVITY IN VITRO. (R826782)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. Molecular Imprinting of Macromolecules for Sensor Applications.

    Science.gov (United States)

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-04-19

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.

  6. Pattern imprinting in CMOS static RAMs from Co-60 irradiation

    International Nuclear Information System (INIS)

    Schott, J.T.; Zugich, M.H.

    1987-01-01

    Total dose irradiation of various CMOS SRAMs is shown to imprint the pattern stored in the memory during irradiation. This imprinted pattern is the preferred state of the memory at subsequent power-up. Imprinting can occur at dose levels significantly below the failure level of the devices and is consistent with the bias dependent radiation induced threshold shifts of the individual transistors of the memory cells. However, before total imprinting occurs, other unusual imprinting phenomena can occur, such as a reverse imprinting effect seen in SOS memories, which is probably related to the bias dependence of back-channel leakage

  7. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    Energy Technology Data Exchange (ETDEWEB)

    Menachery, Vineet D.; Schafer, Alexandra; Burnum-Johnson, Kristin E.; Mitchell, Hugh D.; Eisfeld-Fenney, Amie J.; Walters, Kevin B.; Nicora, Carrie D.; Purvine, Samuel O.; Casey, Cameron P.; Monroe, Matthew E.; Weitz, Karl K.; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.; Gralinski, Lisa; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; Sims, Amy C.; Kawaoka, Yoshihiro; Baric, Ralph

    2018-01-16

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigen presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.

  8. Neural basis of imprinting behavior in chicks.

    Science.gov (United States)

    Nakamori, Tomoharu; Maekawa, Fumihiko; Sato, Katsushige; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2013-01-01

    Newly hatched chicks memorize the characteristics of the first moving object they encounter, and subsequently show a preference for it. This "imprinting" behavior is an example of infant learning and is elicited by visual and/or auditory cues. Visual information of imprinting stimuli in chicks is first processed in the visual Wulst (VW), a telencephalic area corresponding to the mammalian visual cortex, congregates in the core region of the hyperpallium densocellulare (HDCo) cells, and transmitted to the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. The imprinting memory is stored in the IMM, and activities of IMM neurons are altered by imprinting. Imprinting also induces functional and structural plastic changes of neurons in the circuit that links the VW and the IMM. Of these neurons, the activity of the HDCo cells is strongly influenced by imprinting. Expression and modulation of NR2B subunit-containing N-methyl-D-aspartate (NMDA) receptors in the HDCo cells are crucial for plastic changes in this circuit as well as the process of visual imprinting. Thus, elucidation of cellular and molecular mechanisms underlying the plastic changes that occurred in the HDCo cells may provide useful knowledge about infant learning. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  9. Transcriptional profiling of PBMCs unravels B cell mediated immunopathogenic imprints of HCV vasculitis.

    Science.gov (United States)

    Comstock, Emily; Kim, Cheol-Woo; Murphy, Alison; Emmanuel, Benjamin; Zhang, Xi; Sneller, Michael; Poonia, Bhawna; Kottilil, Shyamasundaran

    2017-01-01

    B cell depletion therapy using rituximab has been shown to be effective in achieving remission in patients with HCV-mixed cryoglobulinemic (MC) vasculitis. Previously, we have demonstrated abnormalities in peripheral immune cells involving neutrophils, chemotaxis, and innate immune activation among patients with HCV-MC vasculitis when compared to HCV patients without vasculitis. In this study, we evaluated the effect of B cell depletion therapy on transcriptional profiles of peripheral blood mononuclear cells before and after riruximab therapy, in order to unravel the pathogenic mechanism involved in HCV-MC vasculitis induced by abnormal B cell proliferation. DNA microarray analysis was performed using RNA from PBMCs from seven patients with HCV-MC vasculitis and seven normal volunteers. DNA was hybridized to Affymetrix U133A chips. After normalization, differentially expressed gene list with treatment was generated using partitional clustering. RT-PCR, flow cytometry, and enzyme immunoassay (EIA) was used to validate DNA microarray findings. Differentially expressed genes included B cells and non-B cell genes. Validation of genes using purified cell subsets demonstrated distinct effect of B cell depletion therapy on non-B cells, such as monocytes, T cells, and NK cells. Notably, B lymphocyte stimulator (BLyS) levels were persistently elevated in patients who subsequently relapsed. In conclusion, pathogenesis of HCV-MC vasculitis is mediated by abnormal proliferation of B cells, driven by BLyS, leading to significant effects on non-B cells in mediating symptomatology. Future therapeutics using a combination approach of B cell depletion and proliferation may be desired to achieve long-term remission.

  10. Organic extract of diesel exhaust particles stimulates expression of Ia and costimulatory molecules associated with antigen presentation in rat peripheral blood monocytes but not in alveolar macrophages

    International Nuclear Information System (INIS)

    Koike, Eiko; Kobayashi, Takahiro

    2005-01-01

    We hypothesized that diesel exhaust particles (DEP) induce the activation of antigen-presenting cells (APC) in lung. The present study was designed to clarify the following about DEP: (1) whether it affects the expression of Ia and B7 molecules in alveolar macrophages (AM) as a mature cell or in peripheral blood monocytes (PBM) as an immature cell (2) if it affects the antigen-presenting (AP) activity of PBM (3) what component of DEP is responsible for the effects, and (4) whether the effect of DEP is related to oxidative stress. DEP was extracted with methylene chloride. Cells were exposed to whole DEP, organic extract, or residual particles for 24 h. Cell-surface molecules were measured by flow cytometry. AP activity was assessed by antigen-specific T cell proliferation. Whole DEP or organic extract significantly increased the expression of Ia and B7 molecules on PBM but not on AM. No significant effect of residual particles was observed. A low concentration of organic extract also increased the AP activity of PBM. When the induction of an antioxidative enzyme was assessed, heme oxygenase-1 protein was found to be significantly increased by exposure to whole DEP, and the organic extract was more effective than the residual particles. Furthermore, the organic extract-induced expression of Ia antigen on PBM was reduced by the addition of an antioxidative agent. These results suggest that DEP may act on immature APC and enhance their AP activity and that the action contributing to oxidative stress may be mediated by organic compounds of DEP

  11. In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle

    Directory of Open Access Journals (Sweden)

    Goff Alan K

    2009-02-01

    Full Text Available Abstract Background Embryo in vitro manipulations during early development are thought to increase mortality by altering the epigenetic regulation of some imprinted genes. Using a bovine interspecies model with a single nucleotide polymorphism, we assessed the imprinting status of the small nuclear ribonucleoprotein polypeptide N (SNRPN gene in bovine embryos produced by artificial insemination (AI, in vitro culture (IVF and somatic cell nuclear transfer (SCNT and correlated allelic expression with the DNA methylation patterns of a differentially methylated region (DMR located on the SNRPN promoter. Results In the AI group, SNRPN maternal expression is silenced at day 17 and 40 of development and a third of the alleles analyzed are methylated in the DMR. In the IVF group, maternal transcripts were identified at day 17 but methylation levels were similar to the AI group. However, day-40 fetuses in the IVF group showed significantly less methylation when compared to the AI group and SNRPN expression was mostly paternal in all fetal tissues studied, except in placenta. Finally, the SCNT group presented severe loss of DMR methylation in both day-17 embryos and 40 fetuses and biallelic expression was observed in all stages and tissues analyzed. Conclusion Together these results suggest that artificial reproductive techniques, such as prolonged in vitro culture and SCNT, lead to abnormal reprogramming of imprinting of SNRPN gene by altering methylation levels at this locus.

  12. IMPRINT Analysis of an Unmanned Air System Geospatial Information Process

    National Research Council Canada - National Science Library

    Hunn, Bruce P; Schweitzer, Kristin M; Cahir, John A; Finch, Mary M

    2008-01-01

    ... intelligence, geospatial analysis cell. The Improved Performance Research Integration Tool (IMPRINT) modeling program was used to understand this process and to assess crew workload during several test scenarios...

  13. Contribution of enhanced engagement of antigen presentation machinery to the clinical immunogenicity of a human interleukin (IL)-21 receptor-blocking therapeutic antibody.

    Science.gov (United States)

    Xue, L; Hickling, T; Song, R; Nowak, J; Rup, B

    2016-01-01

    Reliable risk assessment for biotherapeutics requires accurate evaluation of risk factors associated with immunogenicity. Immunogenicity risk assessment tools were developed and applied to investigate the immunogenicity of a fully human therapeutic monoclonal antibody, ATR-107 [anti-interleukin (IL)-21 receptor] that elicited anti-drug antibodies (ADA) in 76% of healthy subjects in a Phase 1 study. Because the ATR-107 target is expressed on dendritic cells (DCs), the immunogenicity risk related to engagement with DC and antigen presentation pathways was studied. Despite the presence of IL-21R on DCs, ATR-107 did not bind to the DCs more extensively than the control therapeutic antibody (PF-1) that had elicited low clinical ADA incidence. However, ATR-107, but not the control therapeutic antibody, was translocated to the DC late endosomes, co-localized with intracellular antigen-D related (HLA-DR) molecules and presented a dominant T cell epitope overlapping the complementarity determining region 2 (CDR2) of the light chain. ATR-107 induced increased DC activation exemplified by up-regulation of DC surface expression of CD86, CD274 (PD-L1) and CD40, increased expansion of activated DC populations expressing CD86(hi), CD40(hi), CD83(hi), programmed death ligand 1 (PD-L1)(hi), HLA-DR(hi) or CCR7(hi), as well as elevated secretion of tumour necrosis factor (TNF)-α by DCs. DCs exposed to ATR-107 stimulated an autologous T cell proliferative response in human donor cells, in concert with the detection of immunoglobulin (Ig)G-type anti-ATR-107 antibody response in clinical samples. Collectively, the enhanced engagement of antigen presentation machinery by ATR-107 was suggested. The approaches and findings described in this study may be relevant to identifying lower immunogenicity risk targets and therapeutic molecules. © 2015 British Society for Immunology.

  14. Antigen-presenting properties of gingival fibroblasts in chronic adult periodontitis

    NARCIS (Netherlands)

    Wassenaar, A.; Snijders, A.; Abraham-Inpijn, L.; Kapsenberg, M. L.; Kievits, F.

    1997-01-01

    Chronic periodontitis is characterized by dense infiltrations of T lymphocytes in the connective tissue, which consists mainly of gingival fibroblasts. It is becoming increasingly clear that T lymphocytes and gingival fibroblasts are capable of influencing each other. For example, the T cell

  15. Optimization of imprintable nanostructured a-Si solar cells: FDTD study.

    Science.gov (United States)

    Fisker, Christian; Pedersen, Thomas Garm

    2013-03-11

    We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50 nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.

  16. Curcumin Suppresses In Vitro Proliferation and Invasion of Human Prostate Cancer Stem Cells by Modulating DLK1-DIO3 Imprinted Gene Cluster MicroRNAs.

    Science.gov (United States)

    Zhang, Hu; Zheng, Jiajia; Shen, Hongliang; Huang, Yongyi; Liu, Te; Xi, Hao; Chen, Chuan

    2018-01-01

    Curcumin can suppress human prostate cancer (HuPCa) cell proliferation and invasion. However, it is not known whether curcumin can inhibit HuPCa stem cell (HuPCaSC) proliferation and invasion. We used methyl thiazolyl tetrazolium and Transwell assays to examine the proliferation and invasion of the HuPCaSC lines DU145 and 22Rv1 following curcumin or dimethyl sulfoxide (control) treatment. The microRNA (miRNA) expression levels in the DLK1-DIO3 imprinted genomic region in the cells and in tumor tissues from patients with PCa were examined using microarray and quantitative PCR. The median inhibitory concentration of curcumin for HuPCa cells significantly inhibited HuPCaSC proliferation and invasion in vitro. The miR-770-5p and miR-1247 expression levels in the DLK1-DIO3 imprinted gene cluster were significantly different between the curcumin-treated and control HuPCaSCs. Overexpression of these positive miRNAs significantly increased the inhibition rates of miR-770-5p- and miR-1247-transfected HuPCaSCs compared to the control miR-Mut-transfected HuPCaSCs. Lastly, low-tumor grade PCa tissues had higher miR-770-5p and miR-1247 expression levels than high-grade tumor tissues. Curcumin can suppress HuPCaSC proliferation and invasion in vitro by modulating specific miRNAs in the DLK1-DIO3 imprinted gene cluster.

  17. New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation.

    Science.gov (United States)

    Landais, Elise; Romagnoli, Pablo A; Corper, Adam L; Shires, John; Altman, John D; Wilson, Ian A; Garcia, K Christopher; Teyton, Luc

    2009-12-15

    Direct identification and isolation of Ag-specific T cells became possible with the development of MHC tetramers, based on fluorescent avidins displaying biotinylated peptide-MHC complexes. This approach, extensively used for MHC class I-restricted T cells, has met very limited success with class II peptide-MHC complex tetramers (pMHCT-2) for the detection of CD4(+)-specific T cells. In addition, a very large number of these reagents, although capable of specifically activating T cells after being coated on solid support, is still unable to stain. To try to understand this puzzle and design usable tetramers, we examined each parameter critical for the production of pMHCT-2 using the I-A(d)-OVA system as a model. Through this process, the geometry of peptide-MHC display by avidin tetramers was examined, as well as the stability of rMHC molecules. However, we discovered that the most important factor limiting the reactivity of pMHCT-2 was the display of peptides. Indeed, long peptides, as presented by MHC class II molecules, can be bound to I-A/HLA-DQ molecules in more than one register, as suggested by structural studies. This mode of anchorless peptide binding allows the selection of a broader repertoire on single peptides and should favor anti-infectious immune responses. Thus, beyond the technical improvements that we propose, the redesign of pMHCT-2 will give us the tools to evaluate the real size of the CD4 T cell repertoire and help us in the production and testing of new vaccines.

  18. Amorphous silicon solar cells on nano-imprinted commodity paper without sacrificing efficiency

    NARCIS (Netherlands)

    Werf, van der C.H.M.; Budel, T.; Dorenkamper, M.S.; Zhang, D.; Soppe, W.; de Neve, H.; Schropp, R.E.I.

    2015-01-01

    Paper is a cheap substrate which is in principle compatible with the process temperature applied in the plasma enhanced chemical vapour deposition (PECVD) and hot wire CVD (HWCVD) of thin film silicon solar cells. The main drawback of paper for this application is the porosity due to its fibre like

  19. Loss of imprinting and loss of heterozygosity on 11p15.5 in head and neck squamous cell carcinomas

    DEFF Research Database (Denmark)

    Rainho, C A; Kowalski, L P; Rogatto, S R

    2001-01-01

    BACKGROUND: IGF2 and H19 are reciprocal imprinted genes with paternal and maternal monoallelic expression, respectively. This is interesting, because IGF2 is known as a growth factor, and H19 encodes a RNA with putative tumor suppressor action. Furthermore, IGF2 and H19 are linked genes located...

  20. Mapping the HLA ligandome of Colorectal Cancer Reveals an Imprint of Malignant Cell Transformation.

    Science.gov (United States)

    Löffler, Markus W; Kowalewski, Daniel J; Backert, Linus; Bernhardt, Jörg; Adam, Patrick; Schuster, Heiko; Dengler, Florian; Backes, Daniel; Kopp, Hans-Georg; Beckert, Stefan; Wagner, Silvia; Königsrainer, Ingmar; Kohlbacher, Oliver; Kanz, Lothar; Königsrainer, Alfred; Rammensee, Hans-Georg; Stevanovic, Stefan; Haen, Sebastian P

    2018-05-22

    Immune cell infiltrates have proven highly relevant for colorectal carcinoma (CRC) prognosis, making CRC a promising candidate for immunotherapy. Since tumors interact with the immune system via HLA-presented peptide ligands, exact knowledge of the peptidome constitution is fundamental for understanding this relationship. Here we comprehensively describe the naturally presented HLA-ligandome of CRC and corresponding non-malignant colon (NMC) tissue. Mass spectrometry identified 35,367 and 28,132 HLA-class I ligands on CRC and NMC, attributable to 7,684 and 6,312 distinct source proteins, respectively. Cancer-exclusive peptides were assessed on source protein level using Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein analysis through evolutionary relationships (PANTHER), revealing pathognomonic CRC-associated pathways including Wnt, TGF-β, PI3K, p53, and RTK-RAS. Relative quantitation of peptide presentation on paired CRC and NMC tissue further identified source proteins from cancer- and infection-associated pathways to be over-represented merely within the CRC ligandome. From the pool of tumor-exclusive peptides, a selected HLA-ligand subset was assessed for immunogenicity, with the majority exhibiting an existing T cell repertoire. Overall, these data show that the HLA-ligandome reflects cancer-associated pathways implicated in CRC oncogenesis, suggesting that alterations in tumor cell metabolism could result in cancer-specific, albeit not mutation-derived tumor-antigens. Hence, a defined pool of unique tumor peptides, attributable to complex cellular alterations that are exclusive to malignant cells might comprise promising candidates for immunotherapeutic applications. Copyright ©2018, American Association for Cancer Research.

  1. The hemochromatosis protein HFE 20 years later: An emerging role in antigen presentation and in the immune system.

    Science.gov (United States)

    Reuben, Alexandre; Chung, Jacqueline W; Lapointe, Réjean; Santos, Manuela M

    2017-09-01

    Since its discovery, the hemochromatosis protein HFE has been primarily defined by its role in iron metabolism and homeostasis, and its involvement in the genetic disease termed hereditary hemochromatosis (HH). While HH patients are typically afflicted by dysregulated iron levels, many are also affected by several immune defects and increased incidence of autoimmune diseases that have thereby implicated HFE in the immune response. Growing evidence has supported an immunological role for HFE with recent studies describing HFE specifically as it relates to MHC I antigen presentation. Here, we present a comprehensive overview of the relationship between iron metabolism, HFE, and the immune system to better understand the origin and cause of immune defects in HH patients. We further describe the role of HFE in MHC I antigen presentation and its potential to impair autoimmune responses in homeostatic conditions, a mechanism which may be exploited by tumors to evade immune surveillance. Overall, this increased understanding of the role of HFE in the immune response sets the stage for better treatment and management of HH and other iron-related diseases, as well as of the immune defects related to this condition. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  2. Congenital imprinting disorders

    DEFF Research Database (Denmark)

    Eggermann, Thomas; Netchine, Irène; Temple, I Karen

    2015-01-01

    Imprinting disorders (IDs) are a group of eight rare but probably underdiagnosed congenital diseases affecting growth, development and metabolism. They are caused by similar molecular changes affecting regulation, dosage or the genomic sequence of imprinted genes. Each ID is characterised...... by specific clinical features, and, as each appeared to be associated with specific imprinting defects, they have been widely regarded as separate entities. However, they share clinical characteristics and can show overlapping molecular alterations. Nevertheless, IDs are usually studied separately despite...... EUCID.net (European network of congenital imprinting disorders) now aims to promote better clinical care and scientific investigation of imprinting disorders by establishing a concerted multidisciplinary alliance of clinicians, researchers, patients and families. By encompassing all IDs and establishing...

  3. Imprinting and recalling cortical ensembles.

    Science.gov (United States)

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.

  4. Imprinting of CCR9 on CD4 T cells requires IL-4 signaling on mesenteric lymph node dendritic cells.

    Science.gov (United States)

    Elgueta, Raul; Sepulveda, Fernando E; Vilches, Felipe; Vargas, Leonardo; Mora, J Rodrigo; Bono, Maria Rosa; Rosemblatt, Mario

    2008-05-15

    It has recently been shown that IL-4 can educate dendritic cells (DC) to differentially affect T cell effector activity. In this study, we show that IL-4 can also act upon DC to instruct naive T cells to express the gut-associated homing receptor CCR9. Thus, effector T cells generated after coculture with mesenteric lymph node (MLN)-DC show a higher expression of CCR9 when activated in the presence of IL-4. In contrast, IL-4 had no effect on CCR9 expression when naive T cells were polyclonally activated in the absence of MLN-DC, suggesting that the effect of IL-4 on CCR9 expression passed through DC. Indeed, T cells activated by MLN-DC from IL-4Ralpha(-/-) mice showed a much lower CCR9 expression and a greatly reduced migration to the small intestine than T cells activated by wild-type MLN-DC even in the presence of IL-4. Consistent with the finding that the vitamin A metabolite retinoic acid (RA) induces gut-homing molecules on T cells, we further demonstrate that IL-4 up-regulated retinaldehyde dehydrogenase 2 mRNA on MLN-DC, a critical enzyme involved in the synthesis of RA. Moreover, LE135, a RA receptor antagonist, blocked the increased expression of CCR9 driven by IL-4-treated MLN-DC. Thus, besides the direct effect of RA on T cell gut tropism, our results show that the induction of a gut-homing phenotype on CD4(+) T cells is also influenced by the effect of IL-4 on gut-associated DC.

  5. Role of imprint/exfoliative cytology in ulcerated skin neoplasms.

    Science.gov (United States)

    Ramakrishnaiah, Vishnu Prasad Nelamangala; Babu, Ravindra; Pai, Dinker; Verma, Surendra Kumar

    2013-12-01

    Imprint cytology is a method of studying cells by taking an imprint from the cut surface of a wedge biopsy specimen or from the resected margins of a surgical specimen. It is rapid, simple and fairly accurate. Exfoliative cytology is an offshoot from the imprint cytology where in cells obtained from the surface of ulcers, either by scrape or brush, are analyzed for the presence of malignant cells. We undertook this study to see the role of imprint/exfoliative cytology in the diagnosis of ulcerated skin neoplasm and to check the adequacy of resected margins intra-operatively. This was a prospective investigative study conducted from September 2003 to July 2005. All patients presenting to surgical clinic with ulcerated skin and soft tissue tumours were included in the study. A wedge biopsy obtained from the ulcer and imprint smears were taken from the cut surface. Exfoliative cytology was analyzed from the surface smears. Wedge biopsy specimen was sent for histopathological (HPE) examination. The cytology and HPE were analyzed by a separate pathologist. Imprint cytology was also used to check the adequacy of resected margins in case of wide excision. This was compared with final HPE. Total of 107 patients was included in the present study and 474 imprint smears were done, with an average of 4.43 slides per lesion. Out of 59 wide excision samples, 132 imprint smears were prepared for assessing resected margins accounting for an average of 2.24 slides per each excised lesion. On combining imprint cytology with exfoliative cytology the overall sensitivity, specificity and positive predictive value were 90.38 %, 100 % and 90.38 % respectively. Only one out of 59 cases had a positive resected margin which was not picked by imprint cytology. Imprint cytology can be used for rapid and accurate diagnosis of various skin malignancies. It can also be used to check the adequacy of the resected margin intraoperatively.

  6. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens.

    Science.gov (United States)

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-05-01

    Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFP tg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium . SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC) TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey’ to cancerogenesis

    Directory of Open Access Journals (Sweden)

    Mariusz Z. Ratajczak

    2012-07-01

    Full Text Available The insulin-like growth factor-2 (Igf2-H19 locus encodes important paternally imprinted genes that govern normal embryonic development. While Igf-2 encodes IGF2, which is an autocrine/paracrine mitogen,  transcription of H19 gives rise to non-coding mRNA that is a precursor of several microRNAs (miRNAs that negatively affect cell proliferation. The proper imprinting of a differentially methylated region (DMR within this locus, with methylation of the paternal chromosome and a lack of methylation on the maternal chromosome, regulates expression of both of these genes so that Igf2 is transcribed only from the paternal chromosome and H19 only from the maternal chromosome. There is growing evidence that this ‘Yin-Yang’ locus regulates embryonic development. Furthermore, recent evidence indicates that erasure of imprinting (hypomethylation of the Igf2-H19 locus on both chromosomes, which leads to downregulation of Igf2 and upregulation of H19 expression, plays an important role in regulating quiescence of pluripotent stem cells in adult organisms, and may be involved in the regulation of lifespan. In contrast, hypermethylation of this locus on both chromosomes (loss of imprinting results in Igf2 overexpression and is observed in several malignancies. In this review, we will discuss the biological consequences of changes in Igf2-H19 expression.

  8. Migration of human antigen-presenting cells in a human skin graft onto nude mice model after contact sensitization

    NARCIS (Netherlands)

    Hoefakker, S.; Balk, H.P.; Boersma, W.J.A.; Joost, T. van; Notten, W.R.F.; Claassen, E.

    1995-01-01

    Fluorescent contact chemical allergens provoke sensitization after application on both syngeneic and allogeneic skin grafts in mice. We attempted to determine whether the functional activity in a contact sensitization response of human skin graft was affected at the level of antigen uptake and

  9. Fatal Attraction: Interactions between antigen-presenting cells and islets of Langerhans in the pathogenesis of autoimmune diabetes

    NARCIS (Netherlands)

    J.G.M. Rosmalen (Judith)

    2000-01-01

    textabstractThe onset of diabetes mellitus is characterized by various symptoms, all the result of a disturbed glucose metabolism. The main symptoms are thirst and an excessive production of urine. The disturbed glucose metabolism underlying these symptoms is due to an absolute deficiency of insulin

  10. A role for the immediate early gene product c-fos in imprinting T cells with short-term memory for signal summation.

    Directory of Open Access Journals (Sweden)

    Carolyn E Clark

    Full Text Available T cells often make sequential contacts with multiple DCs in the lymph nodes and are likely to be equipped with mechanisms that allow them to sum up the successive signals received. We found that a period of stimulation as short as two hours could imprint on a T cell a "biochemical memory" of that activation signal that persisted for several hours. This was evidenced by more rapid induction of activation markers and earlier commitment to proliferation upon subsequent stimulation, even when that secondary stimulation occurred hours later. Upregulation of the immediate early gene product c-fos, a component of the AP-1 transcription factor, was maximal by 1-2 hours of stimulation, and protein levels remained elevated for several hours after stimulus withdrawal. Moreover, phosphorylated forms of c-fos that are stable and transcriptionally active persisted for a least a day. Upon brief antigenic stimulation in vivo, we also observed a rapid upregulation of c-fos that could be boosted by subsequent stimulation. Accumulation of phosphorylated c-fos may therefore serve as a biochemical fingerprint of previous suboptimal stimulation, leaving the T cell poised to rapidly resume its activation program upon its next encounter with an antigen-bearing DC.

  11. Molecularly Imprinted Membranes

    Science.gov (United States)

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  12. Epigenetic status of H19/IGF2 and SNRPN imprinted genes in aborted and successfully derived embryonic stem cell lines in non-human primates

    Directory of Open Access Journals (Sweden)

    Florence Wianny

    2016-05-01

    Full Text Available The imprinted genes of primate embryonic stem cells (ESCs often show altered DNA methylation. It is unknown whether these alterations emerge while deriving the ESCs. Here we studied the methylation patterns of two differentially methylated regions (DMRs, SNRPN and H19/IGF2 DMRs, during the derivation of monkey ESCs. We show that the SNRPN DMR is characteristically methylated at maternal alleles, whereas the H19/IGF2 DMR is globally highly methylated, with unusual methylation on the maternal alleles. These methylation patterns remain stable from the early stages of ESC derivation to late passages of monkey ESCs and following differentiation. Importantly, the methylation status of H19/IGF2 DMR and the expression levels of IGF2, H19, and DNMT3B mRNAs in early embryo-derived cells were correlated with their capacity to generate genuine ESC lines. Thus, we propose that these markers could be useful to predict the outcomes of establishing an ESC line in primates.

  13. Fluorescent molecularly imprinted polymers as plastic antibodies for selective labeling and imaging of hyaluronan and sialic acid on fixed and living cells.

    Science.gov (United States)

    Panagiotopoulou, Maria; Kunath, Stephanie; Medina-Rangel, Paulina Ximena; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-02-15

    Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Evidence for a Peripheral Olfactory Memory in Imprinted Salmon

    Science.gov (United States)

    Nevitt, Gabrielle A.; Dittman, Andrew H.; Quinn, Thomas P.; Moody, William J., Jr.

    1994-05-01

    The remarkable homing ability of salmon relies on olfactory cues, but its cellular basis is unknown. To test the role of peripheral olfactory receptors in odorant memory retention, we imprinted coho salmon (Oncorhynchus kisutch) to micromolar concentrations of phenyl ethyl alcohol during parr-smolt transformation. The following year, we measured phenyl ethyl alcohol responses in the peripheral receptor cells using patch clamp. Cells from imprinted fish showed increased sensitivity to phenyl ethyl alcohol compared either to cells from naive fish or to sensitivity to another behaviorally important odorant (L-serine). Field experiments verified an increased behavioral preference for phenyl ethyl alcohol by imprinted salmon as adults. Thus, some component of the imprinted olfactory homestream memory appears to be retained peripherally.

  15. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    Science.gov (United States)

    Paliwal, Anupam; Temkin, Alexis M; Kerkel, Kristi; Yale, Alexander; Yotova, Iveta; Drost, Natalia; Lax, Simon; Nhan-Chang, Chia-Ling; Powell, Charles; Borczuk, Alain; Aviv, Abraham; Wapner, Ronald; Chen, Xiaowei; Nagy, Peter L; Schork, Nicholas; Do, Catherine; Torkamani, Ali; Tycko, Benjamin

    2013-08-01

    Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM.

  16. Imprinted Expression of SNRPN in Human Preimplantation Embryos

    OpenAIRE

    Huntriss, John; Daniels, Robert; Bolton, Virginia; Monk, Marilyn

    1998-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurogenetic disorders arising from a loss of expression of imprinted genes within the human chromosome region 15q11-q13. Recent evidence suggests that the SNRPN gene, which is defective in PWS, plays a central role in the imprinting-center regulation of the PWS/AS region. To increase our understanding of the regulation of expression of this imprinted gene, we have developed single-cell-sensitive procedures for...

  17. Effect of gamma radiation on resting B lymphocytes. II. Functional characterization of the antigen-presentation defect

    International Nuclear Information System (INIS)

    Ashwell, J.D.; Jenkins, M.K.; Schwartz, R.H.

    1988-01-01

    The effect of radiation on three discrete Ag-presentation functions in resting B cells was examined: 1) Ag uptake and processing, 2) expression of processed Ag in the context of functional class II molecules, and 3) provision of necessary co-stimulatory, or second, signals. Analysis of radiation's effect on B cell presentation of intact vs fragmented Ag or its effect on presentation by Ag-pulsed B cells indicated that damage to Ag uptake and processing could not account for the bulk of the radiation-induced Ag-presentation defect. Experiments with phosphatidylinositol hydrolysis as an indirect measure of TCR occupancy suggested that irradiation caused a fairly rapid (within 1 to 2 h) decrease in the ability of the B cell APC to display a stimulatory combination of Ag and class II molecule. Ag dose-response analyses demonstrated that when presenting a fragment of the Ag pigeon cytochrome c to a T cell clone, 3000 rad-treated B cell APC were able to stimulate approximately 50% as much phosphatidylinositol turnover as unirradiated B cells. It was also found that, in contrast to their inability to initiate T cell proliferation, and similarly to chemically cross-linked splenocytes, heavily irradiated resting B cells plus Ag induced a state of Ag hyporesponsiveness in T cell clones. This effect on T cells had the same Ag- and MHC-specificity as did receptor occupancy required for proliferation, indicating that heavily irradiated resting B cells bear functional class II molecules. Co-culture of T cells with allogeneic B cells and syngeneic heavily irradiated B cells or chemically cross-linked splenic APC plus Ag resulted in T cell proliferation and interfered with the induction of the hyporesponsive state. This co-stimulatory function was radiosensitive in resting allogeneic B cells

  18. Mass Spectrometry Reveals Changes in MHC I Antigen Presentation After Lentivector Expression of a Gene Regulation System

    Directory of Open Access Journals (Sweden)

    Roland Vogel

    2013-01-01

    Full Text Available The rapamycin-inducible gene regulation system was designed to minimize immune reactions in man and may thus be suited for gene therapy. We assessed whether this system indeed induces no immune responses. The protein components of the regulation system were produced in the human cell lines HEK 293T, D407, and HER 911 following lentiviral transfer of the corresponding genes. Stable cell lines were established, and the peptides presented by major histocompatibility complex class I (MHC I molecules on transduced and wild-type (wt cells were compared by differential mass spectrometry. In all cell lines examined, expression of the transgenes resulted in prominent changes in the repertoire of MHC I-presented self-peptides. No MHC I ligands originating from the transgenic proteins were detected. In vitro analysis of immunogenicity revealed that transduced D407 cells displayed slightly higher capacity than wt controls to promote proliferation of cytotoxic T cells. These results indicate that therapeutic manipulations within the genome of target cells may affect pathways involved in the processing of peptide antigens and their presentation by MHC I. This makes the genomic modifications visible to the immune system which may recognize these events and respond. Ultimately, the findings call attention to a possible immune risk.

  19. Topological imprint for periodic orbits

    International Nuclear Information System (INIS)

    Martín, Jesús San; Moscoso, Ma José; Gómez, A González

    2012-01-01

    The more self-crossing points an orbit has the more complex it is. We introduce the topological imprint to characterize crossing points and focus on the period-doubling cascade. The period-doubling cascade topological imprint determines the topological imprint for orbits in chaotic bands. In addition, there is a closer link between this concept and the braids studied by Lettelier et al (2000 J. Phys. A: Math. Gen. 33 1809–25). (paper)

  20. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein.

    Science.gov (United States)

    Lorente, Elena; Barriga, Alejandro; García-Arriaza, Juan; Lemonnier, François A; Esteban, Mariano; López, Daniel

    2017-10-01

    The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.

  1. MHC class II-derived peptides can bind to class II molecules, including self molecules, and prevent antigen presentation

    DEFF Research Database (Denmark)

    Rosloniec, E F; Vitez, L J; Buus, S

    1990-01-01

    the alpha k-3 peptide binds slightly less well. These combined data, suggesting that class II-derived peptides can bind to MHC class II molecules, including the autologous molecule from which they are derived, have important implications for the molecular basis of alloreactivity and autoreactivity. Further...... found in the first and third polymorphic regions (PMR) of the A alpha k chain (alpha k-1 and alpha k-3) were capable of inhibiting the presentation of three different HEL-derived peptide antigens to their appropriate T cells. In addition, the alpha k-1 peptide inhibited the presentation of the OVA(323......-339) immunodominant peptide to the I-Ad-restricted T cell hybridomas specific for it. Prepulsing experiments demonstrated that the PMR peptides were interacting with the APC and not with the T cell hybridomas. These observations were confirmed and extended by the demonstration that the alpha k-1 and alpha k-3...

  2. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    Science.gov (United States)

    Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng

    2013-01-01

    Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972

  3. Tolerance induction to cytoplasmic beta-galactosidase by hepatic AAV gene transfer: implications for antigen presentation and immunotoxicity.

    Directory of Open Access Journals (Sweden)

    Ashley T Martino

    2009-08-01

    Full Text Available Hepatic gene transfer, in particular using adeno-associated viral (AAV vectors, has been shown to induce immune tolerance to several protein antigens. This approach has been exploited in animal models of inherited protein deficiency for systemic delivery of therapeutic proteins. Adequate levels of transgene expression in hepatocytes induce a suppressive T cell response, thereby promoting immune tolerance. This study addresses the question of whether AAV gene transfer can induce tolerance to a cytoplasmic protein.AAV-2 vector-mediated hepatic gene transfer for expression of cytoplasmic beta-galactosidase (beta-gal was performed in immune competent mice, followed by a secondary beta-gal gene transfer with E1/E3-deleted adenoviral Ad-LacZ vector to provoke a severe immunotoxic response. Transgene expression from the AAV-2 vector in approximately 2% of hepatocytes almost completely protected from inflammatory T cell responses against beta-gal, eliminated antibody formation, and significantly reduced adenovirus-induced hepatotoxicity. Consequently, approximately 10% of hepatocytes continued to express beta-gal 45 days after secondary Ad-LacZ gene transfer, a time point when control mice had lost all Ad-LacZ derived expression. Suppression of inflammatory T cell infiltration in the liver and liver damage was linked to specific transgene expression and was not seen for secondary gene transfer with Ad-GFP. A combination of adoptive transfer studies and flow cytometric analyses demonstrated induction of Treg that actively suppressed CD8(+ T cell responses to beta-gal and that was amplified in liver and spleen upon secondary Ad-LacZ gene transfer.These data demonstrate that tolerance induction by hepatic AAV gene transfer does not require systemic delivery of the transgene product and that expression of a cytoplasmic neo-antigen in few hepatocytes can induce Treg and provide long-term suppression of inflammatory responses and immunotoxicity.

  4. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    Science.gov (United States)

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  5. Recent Advances in Imprinting Disorders

    DEFF Research Database (Denmark)

    Soellner, L; Begemann, M; Mackay, D J G

    2017-01-01

    Imprinting disorders (ImpDis) are a group of currently 12 congenital diseases with common underlying (epi)genetic etiologies and overlapping clinical features affecting growth, development and metabolism. In the last years it has emerged that ImpDis are characterized by the same types of mutations...... and epimutations, i.e. uniparental disomies, copy number variations, epimutations, and point mutations. Each ImpDis is associated with a specific imprinted locus, but the same imprinted region can be involved in different ImpDis. Additionally, even the same aberrant methylation patterns are observed in different...

  6. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    Directory of Open Access Journals (Sweden)

    Anupam Paliwal

    2013-08-01

    Full Text Available Allele-specific DNA methylation (ASM is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons, one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs, each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS peaks near CTCF binding sites with ASM.

  7. DNA methylation patterns of imprinting centers for H19, SNRPN, and KCNQ1OT1 in single-cell clones of human amniotic fluid mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Hsiu-Huei Peng

    2012-09-01

    Conclusion: In conclusion, human amniotic fluid mesenchymal stem cells contain a unique epigenetic signature during in vitro cell culture. H19 and KCNQ1OT1 possessed a substantial degree of hypermethylation status, and variable DNA methylation patterns of SNRPN was observed during in vitro cell culture of human amniotic fluid mesenchymal stem cells. Our results urge further understanding of epigenetic status of human amniotic fluid mesenchymal stem cells before it is applied in cell replacement therapy.

  8. Programmable imprint lithography template

    Science.gov (United States)

    Cardinale, Gregory F [Oakland, CA; Talin, Albert A [Livermore, CA

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  9. Biological imprinting: Some genetic considerations

    African Journals Online (AJOL)

    Mohammad Saad Zaghloul Salem

    2014-06-21

    Jun 21, 2014 ... Role of chromatin in imprinting . .... flict theory in placental mammals assumes that paternal alleles in pregnancy ... The theory also postulates that maternal alleles, on ..... postulating contributory roles of mitDNA in mediation of.

  10. Elevated expression of brain-derived neurotrophic factor facilitates visual imprinting in chicks.

    Science.gov (United States)

    Suzuki, Keiko; Maekawa, Fumihiko; Suzuki, Shingo; Nakamori, Tomoharu; Sugiyama, Hayato; Kanamatsu, Tomoyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2012-12-01

    With the aim of elucidating the neural mechanisms of early learning, we studied the role of brain-derived neurotrophic factor (BDNF) in visual imprinting in birds. The telencephalic neural circuit connecting the visual Wulst and intermediate medial mesopallium is critical for imprinting, and the core region of the hyperpallium densocellulare (HDCo), situated at the center of this circuit, has a key role in regulating the activity of the circuit. We found that the number of BDNF mRNA-positive cells in the HDCo was elevated during the critical period, particularly at its onset, on the day of hatching (P0). After imprinting training on P1, BDNF mRNA-positive cells in the HDCo increased in number, and tyrosine phosphorylation of TrkB was observed. BDNF infusion into the HDCo at P1 induced imprinting, even with a weak training protocol that does not normally induce imprinting. In contrast, K252a, an antagonist of Trk, inhibited imprinting. Injection of BDNF at P7, after the critical period, did not elicit imprinting. These results suggest that BDNF promotes the induction of imprinting through TrkB exclusively during the critical period. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  11. RIP2 Is a Critical Regulator for NLRs Signaling and MHC Antigen Presentation but Not for MAPK and PI3K/Akt Pathways.

    Science.gov (United States)

    Wu, Xiao Man; Chen, Wen Qin; Hu, Yi Wei; Cao, Lu; Nie, Pin; Chang, Ming Xian

    2018-01-01

    RIP2 is an adaptor protein which is essential for the activation of NF-κB and NOD1- and NOD2-dependent signaling. Although NOD-RIP2 axis conservatively existed in the teleost, the function of RIP2 was only reported in zebrafish, goldfish, and rainbow trout in vitro . Very little is known about the role and mechanisms of piscine NOD-RIP2 axis in vivo . Our previous study showed the protective role of zebrafish NOD1 in larval survival through CD44a-mediated activation of PI3K-Akt signaling. In this study, we examined whether RIP2 was required for larval survival with or without pathogen infection, and determined the signaling pathways modulated by RIP2. Based on our previous report and the present study, our data demonstrated that NOD1-RIP2 axis was important for larval survival in the early ontogenesis. Similar to NOD1, RIP2 deficiency significantly affected immune system processes. The significantly enriched pathways were mainly involved in immune system, such as "Antigen processing and presentation" and "NOD-like receptor signaling pathway" and so on. Furthermore, both transcriptome analysis and qRT-PCR revealed that RIP2 was a critical regulator for expression of NLRs (NOD-like receptors) and those genes involved in MHC antigen presentation. Different from NOD1, the present study showed that NOD1, but not RIP2 deficiency significantly impaired protein levels of MAPK pathways. Although RIP2 deficiency also significantly impaired the expression of CD44a, the downstream signaling of CD44a-Lck-PI3K-Akt pathway remained unchanged. Collectively, our works highlight the similarity and discrepancy of NOD1 and RIP2 in the regulation of immune signaling pathways in the zebrafish early ontogenesis, and confirm the crucial role of RIP2 in NLRs signaling and MHC antigen presentation, but not for MAPK and PI3K/Akt pathways.

  12. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment.

    Science.gov (United States)

    Gao, Yingli; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2016-08-01

    Antigen uptake is a critical process for activation of the immune system, and therefore the ability to enhance antigen uptake is a primary consideration in the development of an immersion vaccination of fish. In the present work, flounders (Paralichthys olivaceus) were immersed in three hyperosmotic solutions with 40, 50 and 60‰ salinities, then transferred into seawater of normal salinity (i.e. 30‰) containing formalin-inactivated Edwardsiella tarda for 30 min. The antigen uptake in vaccinated flounder was determined using an absolute quantitative PCR (qPCR). The results showed significantly higher antigen uptake in the tissues of flounders immersed in solutions with 50‰ and 60‰ salinity compared to the control group directly immersed in vaccine (DI) (P immersed in the 50‰ salinity solution, whereas there was no significant difference in antigen uptake between the 40‰ salinity group and the DI group (P > 0.05). A rapid and significant increase in antigen uptake was detected in the mucosal-associated tissues including the gill, skin and intestine (P immersion, which was significantly higher than the levels of uptake measured in the other tissues (P immersion (hpi). The expression profiles of four antigen presentation-related immune genes (MHC Iα, MHC IIα, CD4-1 and CD8α) were investigated after immersion. These four genes showed a significantly stronger response in the immersed flounders exposed to 50‰ salinity compared with the DI group (P immersion, notably 50‰ salinity significantly enhanced antigen uptake and the expression of selected genes associated with antigen presentation, providing evidence for an enhanced immune activation of the fish's immune response by the hyperosmotic immersion treatment prior to vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Antigen-presenting cells exposed to Lactobacillus acidophilus NCFM, Bifidobacterium bifidum BI-98, and BI-504 reduce regulatory T cell activity

    DEFF Research Database (Denmark)

    Schmidt, Esben Gjerløff Wedebye; Claesson, Mogens Helweg; Jensen, Simon Skjøde

    2010-01-01

    BACKGROUND:: The effect in vitro of six different probiotic strains including Lactobacillus acidophilus NCFM, Lactobacillus salivarius Ls-33, Lactobacillus paracasei subsp. paracasei YS8866441, Lactobacillus plantarum Lp-115, Bifidobacterium bifidum BI-504 and BI-98 was studied on splenic...

  14. Human antigen-presenting cells respond differently to gut-derived probiotic bacteria but mediate similar strain-dependent NK and T cell activation

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Ferlazzo, Guido

    2007-01-01

    The intestinal microbiota is essential for homeostasis of the local and systemic immune system, and particularly strains of lactic acid bacteria and Escherichia coli have been shown to have balancing effects on inflammatory conditions such as allergy and inflammatory bowel disease. However, in vi...

  15. Endosperm imprinting: a child custody battle?

    Science.gov (United States)

    Becraft, Philip W

    2012-02-07

    Endosperm gene imprinting has long been speculated to control nutrient allocation to seeds. For the first time, an imprinted gene directly involved in this process has been identified. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Foster parenting, human imprinting and conventional handling ...

    African Journals Online (AJOL)

    p2492989

    Foster parenting, human imprinting and conventional handling affects survival and early .... bird may subsequently direct its sexual attention to those humans on whom it was imprinted (Bubier et al., ..... The mind through chicks' eyes: memory,.

  17. 77 FR 25082 - Picture Permit Imprint Indicia

    Science.gov (United States)

    2012-04-27

    ... POSTAL SERVICE 39 CFR Part 111 Picture Permit Imprint Indicia AGENCY: Postal Service\\TM\\. ACTION... Service, Domestic Mail Manual (DMM[supreg]) 604.5 to add picture permit imprint indicia standards allowing...: The use of picture permit imprint indicia is designed to improve the effectiveness of a mailpiece by...

  18. Glucose metabolism, islet architecture, and genetic homogeneity in imprinting of [Ca2+](i and insulin rhythms in mouse islets.

    Directory of Open Access Journals (Sweden)

    Craig S Nunemaker

    2009-12-01

    Full Text Available We reported previously that islets isolated from individual, outbred Swiss-Webster mice displayed oscillations in intracellular calcium ([Ca2+](i that varied little between islets of a single mouse but considerably between mice, a phenomenon we termed "islet imprinting." We have now confirmed and extended these findings in several respects. First, imprinting occurs in both inbred (C57BL/6J as well as outbred mouse strains (Swiss-Webster; CD1. Second, imprinting was observed in NAD(PH oscillations, indicating a metabolic component. Further, short-term exposure to a glucose-free solution, which transiently silenced [Ca2+](i oscillations, reset the oscillatory patterns to a higher frequency. This suggests a key role for glucose metabolism in maintaining imprinting, as transiently suppressing the oscillations with diazoxide, a K(ATP-channel opener that blocks [Ca2+](i influx downstream of glucose metabolism, did not change the imprinted patterns. Third, imprinting was not as readily observed at the level of single beta cells, as the [Ca2+](i oscillations of single cells isolated from imprinted islets exhibited highly variable, and typically slower [Ca2+](i oscillations. Lastly, to test whether the imprinted [Ca2+](i patterns were of functional significance, a novel microchip platform was used to monitor insulin release from multiple islets in real time. Insulin release patterns correlated closely with [Ca2+](i oscillations and showed significant mouse-to-mouse differences, indicating imprinting. These results indicate that islet imprinting is a general feature of islets and is likely to be of physiological significance. While islet imprinting did not depend on the genetic background of the mice, glucose metabolism and intact islet architecture may be important for the imprinting phenomenon.

  19. Familiarity interferes with filial imprinting

    NARCIS (Netherlands)

    vanKampen, HS; deVos, GJ

    1996-01-01

    The present study was performed to investigate whether and how pre-exposure to an object affects subsequent filial imprinting to that object. In Experiment 1 junglefowl chicks (Gallus gallus spadiceus) were first exposed to either a red object alone (control group), or a red and a yellow object

  20. Imprinted Polymers in Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  1. Delivery of Large Heterologous Polypeptides across the Cytoplasmic Membrane of Antigen-Presenting Cells by the Bordetella RTX Hemolysin Moiety Lacking the Adenylyl Cyclase Domain

    Czech Academy of Sciences Publication Activity Database

    Holubová, Jana; Kamanová, Jana; Jelínek, J.; Tomala, Jakub; Mašín, Jiří; Kosová, Martina; Staněk, Ondřej; Bumba, Ladislav; Michálek, J.; Kovář, Marek; Šebo, Peter

    2012-01-01

    Roč. 80, č. 3 (2012), s. 1181-1192 ISSN 0019-9567 R&D Projects: GA AV ČR IAA500200914; GA ČR(CZ) GAP207/11/0717; GA ČR GAP301/11/0325; GA MŠk 1M0506; GA MŠk 2B06161 Institutional research plan: CEZ:AV0Z50200510 Keywords : MHC CLASS-I * ESCHERICHIA-COLI * PRESENTATION PATHWAY Subject RIV: EE - Microbiology, Virology Impact factor: 4.074, year: 2012

  2. Comparative potency of different UV sources in reducing the density and antigen-presenting capacity of Langerhans cells in C3H mice

    NARCIS (Netherlands)

    Pierik, F.H.

    1994-01-01

    Although broadband UV.B irradiation has been shown to induce selective immunosuppression in a variety of experimental systems, the wavelength dependence of the immunornodulation and the initial events in the skin remain unclear. In the present study three UV lamps werc used at suberythermal doses on

  3. Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes

    Czech Academy of Sciences Publication Activity Database

    Vlková, Veronika; Štěpánek, Ivan; Hrušková, Veronika; Šenigl, Filip; Mayerová, Veronika; Šrámek, Martin; Šímová, Jana; Bieblová, Jana; Indrová, Marie; Hejhal, Tomáš; Dérian, N.; Klatzmann, D.; Six, A.; Reiniš, Milan

    2014-01-01

    Roč. 5, č. 16 (2014), s. 6923-35 ISSN 1949-2553 R&D Projects: GA ČR GAP301/10/2174; GA MZd NT14461 EU Projects: European Commission(XE) 18933 - CLINIGENE Grant - others:French state funds within the Investissements d’Avenir program(FR) ANR-11-IDEX-0004-02 Institutional support: RVO:68378050 Keywords : IFNγ signalling pathway * DNA demethylation * tumour Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.359, year: 2014

  4. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Yu Xue-Feng; Cui Jiang-Wei; Guo Qi; Ren Di-Yuan; Cong Zhong-Chao; Zhou Hang

    2014-01-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device. (condensed matter: structural, mechanical, and thermal properties)

  5. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    Science.gov (United States)

    Zheng, Qi-Wen; Yu, Xue-Feng; Cui, Jiang-Wei; Guo, Qi; Ren, Di-Yuan; Cong, Zhong-Chao; Zhou, Hang

    2014-10-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device.

  6. Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development.

    Science.gov (United States)

    Bourc'his, Déborah; Proudhon, Charlotte

    2008-01-30

    Genomic imprinting refers to the functional non-equivalence of parental genomes in mammals that results from the parent-of-origin allelic expression of a subset of genes. Parent-specific expression is dependent on the germ line acquisition of DNA methylation marks at imprinting control regions (ICRs), coordinated by the DNA-methyltransferase homolog DNMT3L. We discuss here how the gender-specific stages of DNMT3L expression may have influenced the various sexually dimorphic aspects of genomic imprinting: (1) the differential developmental timing of methylation establishment at paternally and maternally imprinted genes in each parental germ line, (2) the differential dependence on DNMT3L of parental methylation imprint establishment, (3) the unequal duration of paternal versus maternal methylation imprints during germ cell development, (4) the biased distribution of methylation-dependent ICRs towards the maternal genome, (5) the different genomic organization of paternal versus maternal ICRs, and finally (6) the overwhelming contribution of maternal germ line imprints to development compared to their paternal counterparts.

  7. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Lisa Smeester

    2014-06-01

    Full Text Available Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR, some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  8. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E.; Nye, Monica D.; Hoyo, Cathrine; Murphy, Susan K.; Fry, Rebecca C.

    2014-01-01

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, and lead. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology. PMID:24921406

  9. Imprinted genes and the environment: links to the toxic metals arsenic, cadmium, lead and mercury.

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E; Nye, Monica D; Hoyo, Cathrine; Murphy, Susan K; Fry, Rebecca C

    2014-06-11

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  10. Does imprint cytology improve the accuracy of transrectal prostate needle biopsy?

    Science.gov (United States)

    Sayar, Hamide; Bulut, Burak Besir; Bahar, Abdulkadir Yasir; Bahar, Mustafa Remzi; Seringec, Nurten; Resim, Sefa; Çıralık, Harun

    2015-02-01

    To evaluate the accuracy of imprint cytology of core needle biopsy specimens in the diagnosis of prostate cancer. Between December 24, 2011 and May 9, 2013, patients with an abnormal DRE and/or serum PSA level of >2.5 ng/mL underwent transrectal prostate needle biopsy. Samples with positive imprint cytology but negative initial histologic exam underwent repeat sectioning and histological examination. 1,262 transrectal prostate needle biopsy specimens were evaluated from 100 patients. Malignant imprint cytology was found in 236 specimens (18.7%), 197 (15.6%) of which were confirmed by histologic examination, giving an initial 3.1% (n = 39) rate of discrepant results by imprint cytology. Upon repeat sectioning and histologic examination of these 39 biopsy samples, 14 (1.1% of the original specimens) were then diagnosed as malignant, 3 (0.2%) as atypical small acinar proliferation (ASAP), and 5 (0.4%) as high-grade prostatic intraepithelial neoplasia (HGPIN). Overall, 964 (76.4%) specimens were negative for malignancy by imprint cytology. Seven (0.6%) specimens were benign by cytology but malignant cells were found on histological evaluation. On imprint cytology examination, nonmalignant but abnormal findings were seen in 62 specimens (4.9%). These were all due to benign processes. After reexamination, the accuracy, sensitivity, specificity, positive predictive value, negative predictive value, false-positive rate, false-negative rate of imprint preparations were 98.1, 96.9, 98.4, 92.8, 99.3, 1.6, 3.1%, respectively. Imprint cytology is valuable tool for evaluating TRUS-guided core needle biopsy specimens from the prostate. Use of imprint cytology in combination with histopathology increases diagnostic accuracy when compared with histopathologic assessment alone. © 2014 Wiley Periodicals, Inc.

  11. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes.

    Science.gov (United States)

    Yu, Jong-Su; Kim, Inyoung; Kim, Jung-Su; Jo, Jeongdai; Larsen-Olsen, Thue T; Søndergaard, Roar R; Hösel, Markus; Angmo, Dechan; Jørgensen, Mikkel; Krebs, Frederik C

    2012-09-28

    Semitransparent front electrodes for polymer solar cells, that are printable and roll-to-roll processable under ambient conditions using different approaches, are explored in this report. The excellent smoothness of indium-tin-oxide (ITO) electrodes has traditionally been believed to be difficult to achieve using printed front grids, as surface topographies accumulate when processing subsequent layers, leading to shunts between the top and bottom printed metallic electrodes. Here we demonstrate how aqueous nanoparticle based silver inks can be employed as printed front electrodes using several different roll-to-roll techniques. We thus compare hexagonal silver grids prepared using either roll-to-roll inkjet or roll-to-roll flexographic printing. Both inkjet and flexo grids present a raised topography and were found to perform differently due to only the conductivity of the obtained silver grid. The raised topographies were compared with a roll-to-roll thermally imprinted grid that was filled with silver in a roll-to-roll process, thus presenting an embedded topography. The embedded grid and the flexo grid were found to perform equally well, with the flexographic technique currently presenting the fastest processing and the lowest silver use, whereas the embedded grid presents the maximally achievable optical transparency and conductivity. Polymer solar cells were prepared in the same step, using roll-to-roll slot-die coating of zinc oxide as the electron transport layer, poly-3-hexylthiophene:phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) as the active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the top electrode, along with a flat bed screen printed silver grid. The power conversion efficiency (PCE) obtained for large area devices (6 cm(2)) was 1.84%, 0.79% and 1.72%, respectively, for thermally imprinted, inkjet and flexographic silver grids, tested outside under the real sun. Central to all three approaches was that they

  12. Verification of epigenetic inheritance in a unicellular model system: multigenerational effects of hormonal imprinting.

    Science.gov (United States)

    Kőhidai, László; Lajkó, Eszter; Pállinger, Eva; Csaba, György

    2012-10-01

    The unicellular Tetrahymena has receptors for hormones of higher vertebrates, produces these hormones, and their signal pathways are similar. The first encounter with a hormone in higher dose provokes the phenomenon of hormonal imprinting, by which the reaction of the cell is quantitatively modified. This modification is transmitted to the progeny generations. The duration of the single imprinter effect of two representative signal molecules, insulin and 5-HT (5-hydroxytryptamine), in two concentrations (10(-6) and 10(-15) M) were studied. The effects of imprinting were followed in 5 physiological indices: (i) insulin binding, (ii) 5-HT synthesis, (iii) swimming behaviour, (iv) cell growth and (v) chemotaxis in progeny generations 500 and 1000. The result of each index was different from the non-imprinted control functions, growth rate, swimming behaviour and chemotactic activity to insulin being enhanced, while others, e.g. synthesis and chemotactic responsiveness of 5-HT and the binding of insulin were reduced. This means that a function-specific heritable epigenetic change during imprinting occurs, and generally a single encounter with a femtomolar hormone concentration is enough for provoking durable and heritable imprinting in Tetrahymena. The experiments demonstrate the possibility of epigenetic effects at a unicellular level and call attention to the possibility that the character of unicellular organisms has changed through to the present day due to an enormous amount of non-physiological imprinter substances in their environment. The results - together with results obtained earlier in mammals - point to the validity of epigenetic imprinting effects throughout the animal world.

  13. Designing Fingers in Simulation based on Imprints

    DEFF Research Database (Denmark)

    Wolniakowski, Adam; Krüger, Norbert; Werner, Andrzej

    process of doing so. This method takes root in the idea of using the imprint to produce the finger geometry. We furthermore provide a verification of our newly introduced imprinting method and a comparison to the previously introduced parametrized geometry method. This verification is done through a set...

  14. Imprinting disorders after assisted reproductive technologies

    DEFF Research Database (Denmark)

    Lidegaard, Øjvind; Pinborg, Anja; Andersen, Anders Nyboe

    2006-01-01

    To assess the evidence of an increased risk of imprinting diseases in children born after use of assisted reproductive technologies.......To assess the evidence of an increased risk of imprinting diseases in children born after use of assisted reproductive technologies....

  15. Designing Fingers in Simulation based on Imprints

    DEFF Research Database (Denmark)

    Wiuf Schwartz, Lukas Christoffer Malte; Wolniakowski, Adam; Werner, Andrzej

    2017-01-01

    process of doing so. This method takes root in the idea of using the imprint to produce the finger geometry. We furthermore provide a verification of our newly introduced imprinting method and a comparison to the previously introduced parametrized geometry method. This verification is done through a set...

  16. Review: Biological imprinting: Some genetic considerations | Saad ...

    African Journals Online (AJOL)

    ... as for interpretation of possible mechanisms implicated in its occurrence. Keywords: Genetic imprinting; Mutations; Re-sense mutation; Epigenetic alterations; DNA methylation/demethylation; Parthenogenesis; Position-effect variegation; Post-fertilization genomic imprinting; microRNA; Chromatin modifications; Pyknons ...

  17. Molecularly Imprinted Nanomaterials for Sensor Applications

    Science.gov (United States)

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  18. Composite vascular repair grafts via micro-imprinting and electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuanyuan, E-mail: yuanyuan-liu@shu.edu.cn; Hu, Qingxi, E-mail: huqingxi@shu.edu.cn [Rapid Manufacturing Engineering Center, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai 200072 (China); Xiang, Ke, E-mail: xiangke@shu.edu.cn; Chen, Haiping, E-mail: 519673062@qq.com; Li, Yu, E-mail: liyu@hpu.edu.cn [Rapid Manufacturing Engineering Center, Shanghai University, Shanghai 200444 (China)

    2015-04-15

    Composite vascular grafts formed by micro-imprinting and electrospinning exhibited improved mechanical properties relative to those formed by electrospinning alone. The three-layered composite grafts mimic the three-layered structure of natural blood vessels. The middle layer is made by micro-imprinting poly-p-dioxanone (PPDO), while the inner and outer layers are electrospun mixtures of chitosan and polyvinyl alcohol. The graft morphology is characterized with scanning electron microscopy. For constant graft thicknesses, the PPDO increases the mechanical strength. Cells cultivated on the vascular grafts adhere and proliferate better because of the natural, biological chitosan in the inner and outer layers. Overall, the composite scaffolds could be good candidates for blood vessel repair.

  19. Identification and resolution of artifacts in the interpretation of imprinted gene expression.

    Science.gov (United States)

    Proudhon, Charlotte; Bourc'his, Déborah

    2010-12-01

    Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression.

  20. The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β.

    Directory of Open Access Journals (Sweden)

    Anouk K Gloudemans

    Full Text Available It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA, and how T cell-dependent (TD or -independent (TI pathways might be involved. Mucosal dendritic cells (DCs are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL, B cell activating factor (BAFF, Retinoic Acid (RA, TGF-β or nitric oxide (NO. We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.

  1. The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β.

    Science.gov (United States)

    Gloudemans, Anouk K; Plantinga, Maud; Guilliams, Martin; Willart, Monique A; Ozir-Fazalalikhan, Arifa; van der Ham, Alwin; Boon, Louis; Harris, Nicola L; Hammad, Hamida; Hoogsteden, Henk C; Yazdanbakhsh, Maria; Hendriks, Rudi W; Lambrecht, Bart N; Smits, Hermelijn H

    2013-01-01

    It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-β or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.

  2. Gametophyte differentiation and imprinting control in plants: Crosstalk between RBR and chromatin.

    Science.gov (United States)

    Johnston, Amal J; Gruissem, Wilhelm

    2009-01-01

    The Retinoblastoma (pRb) pathway has been implicated as a convergent regulatory unit in the control of cell cycle and disease. We have shown that a crosstalk between RETINOBLASTOMA RELATED (RBR), the Arabidopsis homologue of pRb, and the genes encoding proteins of the chromatin complexes involved in DNA or histone methylation, controls gametophytic and post-fertilization differentiation events and a subset of imprinting effects. We describe here a plausible model that incorporates several components of the plant Retinoblastoma pathway, thus offering a novel paradigm that merges the traditional cell cycle and the chromatin components in the control of cell differentiation and imprinting.

  3. 21 CFR 206.10 - Code imprint required.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Code imprint required. 206.10 Section 206.10 Food...: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required... imprint that, in conjunction with the product's size, shape, and color, permits the unique identification...

  4. The Ia.2 Epitope Defines a Subset of Lipid Raft Resident MHC Class II Molecules Crucial to Effective Antigen Presentation1

    Science.gov (United States)

    Busman-Sahay, Kathleen; Sargent, Elizabeth; Harton, Jonathan A.; Drake, James R.

    2016-01-01

    Previous work has established that binding of the 11-5.2 anti-I-Ak mAb, which recognizes the Ia.2 epitope on I-Ak class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-Ak mAb that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-Ak molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2 bearing subset of I-Ak class II molecules is critically necessary for effective B cell–T cell interactions especially at low antigen doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-Ak class II molecules possessing a β chain-tethered HEL peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2 negative tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous antigen to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II confomer vital to the initiation of MHC class II restricted B cell–T cell interactions. PMID:21543648

  5. Molecularly Imprinted Polymer Synthesis Using RAFT Polymerisation

    International Nuclear Information System (INIS)

    Cormack, P.A.G.; Faizatul Shimal Mehamod; Faizatul Shimal Mehamod

    2013-01-01

    In this paper, the synthesis and characterisation of caffeine-imprinted polymers are described. The polymers were prepared in monolithic form via both reversible addition-fragmentation chain-transfer (RAFT) polymerisation and conventional free radical polymerisation, using methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and crosslinking agent, respectively. The potential benefits in applying RAFT polymerisation techniques towards the synthesis of molecularly imprinted polymers (MIPs) are explored and elucidated. The pore structures of the polymers produced were characterised by nitrogen sorption porosimetry and the molecular recognition properties of representative products were evaluated in high-performance liquid chromatography (HPLC) mode. Molecular imprinting effects were confirmed by analysing the relative retentions of analytes on imprinted and non-imprinted HPLC stationary phases. It was found that a caffeine-imprinted polymer synthesised by RAFT polymerisation was superior to a polymer prepared using a conventional synthetic approach; the imprinting factor and column efficiency were found to be higher for the former material. (author)

  6. Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue

    Directory of Open Access Journals (Sweden)

    Woodfine Kathryn

    2011-01-01

    Full Text Available Abstract Background Genes subject to genomic imprinting are mono-allelically expressed in a parent-of-origin dependent manner. Each imprinted locus has at least one differentially methylated region (DMR which has allele specific DNA methylation and contributes to imprinted gene expression. Once DMRs are established, they are potentially able to withstand normal genome reprogramming events that occur during cell differentiation and germ-line DMRs are stably maintained throughout development. These DMRs, in addition to being either maternally or paternally methylated, have differences in whether methylation was acquired in the germ-line or post fertilization and are present in a variety of genomic locations with different Cytosine-phosphate guanine (CpG densities and CTCF binding capacities. We therefore examined the stability of maintenance of DNA methylation imprints and determined the normal baseline DNA methylation levels in several adult tissues for all imprinted genes. In order to do this, we first developed and validated 50 highly specific, quantitative DNA methylation pyrosequencing assays for the known DMRs associated with human imprinted genes. Results Remarkable stability of the DNA methylation imprint was observed in all germ-line DMRs and paternally methylated somatic DMRs (which maintained average methylation levels of between 35% - 65% in all somatic tissues, independent of gene expression. Maternally methylated somatic DMRs were found to have more variation with tissue specific methylation patterns. Most DMRs, however, showed some intra-individual variability for DNA methylation levels in peripheral blood, suggesting that more than one DMR needs to be examined in order to get an overall impression of the epigenetic stability in a tissue. The plasticity of DNA methylation at imprinted genes was examined in a panel of normal and cancer cell lines. All cell lines showed changes in DNA methylation, especially at the paternal germ

  7. Ferroelectric capacitor with reduced imprint

    Science.gov (United States)

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  8. Molecularly Imprinted Polymer Technology: A Powerful, Generic ...

    African Journals Online (AJOL)

    Molecularly Imprinted Polymer Technology: A Powerful, Generic, Facile and Cost Effective Alternative for Enantio-recognition and Separation: A Glance at Advances and Applications. ... Tanzania Journal of Science. Journal Home · ABOUT ...

  9. The role of imprinted genes in humans

    OpenAIRE

    Ishida, Miho; Moore, Gudrun E.

    2013-01-01

    Detailed comprehensive molecular analysis using families and multiple matched tissues is essential to determine whether imprinted genes have a functional role in humans. See research article: http://genomebiology.com/2011/12/3/R25

  10. Cosmological imprints of pre-inflationary particles

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, Anastasia; Itzhaki, Nissan; Kovetz, Ely D., E-mail: anastasia.fialkov@gmail.com, E-mail: nitzhaki@post.tau.ac.il, E-mail: elykovetz@gmail.com [Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2010-02-01

    We study some of the cosmological imprints of pre-inflationary particles. We show that each such particle provides a seed for a spherically symmetric cosmic defect. The profile of this cosmic defect is fixed and its magnitude is linear in a single parameter that is determined by the mass of the pre-inflationary particle. We study the CMB and peculiar velocity imprints of this cosmic defect and suggest that it could explain some of the large scale cosmological anomalies.

  11. Cosmological imprints of pre-inflationary particles

    International Nuclear Information System (INIS)

    Fialkov, Anastasia; Itzhaki, Nissan; Kovetz, Ely D.

    2010-01-01

    We study some of the cosmological imprints of pre-inflationary particles. We show that each such particle provides a seed for a spherically symmetric cosmic defect. The profile of this cosmic defect is fixed and its magnitude is linear in a single parameter that is determined by the mass of the pre-inflationary particle. We study the CMB and peculiar velocity imprints of this cosmic defect and suggest that it could explain some of the large scale cosmological anomalies

  12. Gas Sensors Based on Molecular Imprinting Technology

    OpenAIRE

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-01-01

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological mac...

  13. Molecularly Imprinted Polymers: Present and Future Prospective

    Directory of Open Access Journals (Sweden)

    Giuseppe Vasapollo

    2011-09-01

    Full Text Available Molecular Imprinting Technology (MIT is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs, the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.

  14. Disturbed Placental Imprinting in Preeclampsia Leads to Altered Expression of DLX5, a Human-Specific Early Trophoblast Marker.

    Science.gov (United States)

    Zadora, Julianna; Singh, Manvendra; Herse, Florian; Przybyl, Lukasz; Haase, Nadine; Golic, Michaela; Yung, Hong Wa; Huppertz, Berthold; Cartwright, Judith E; Whitley, Guy; Johnsen, Guro M; Levi, Giovanni; Isbruch, Annette; Schulz, Herbert; Luft, Friedrich C; Müller, Dominik N; Staff, Anne Cathrine; Hurst, Laurence D; Dechend, Ralf; Izsvák, Zsuzsanna

    2017-11-07

    Preeclampsia is a complex and common human-specific pregnancy syndrome associated with placental pathology. The human specificity provides both intellectual and methodological challenges, lacking a robust model system. Given the role of imprinted genes in human placentation and the vulnerability of imprinted genes to loss of imprinting changes, there has been extensive speculation, but no robust evidence, that imprinted genes are involved in preeclampsia. Our study aims to investigate whether disturbed imprinting contributes to preeclampsia. We first aimed to confirm that preeclampsia is a disease of the placenta by generating and analyzing genome-wide molecular data on well-characterized patient material. We performed high-throughput transcriptome analyses of multiple placenta samples from healthy controls and patients with preeclampsia. Next, we identified differentially expressed genes in preeclamptic placentas and intersected them with the list of human imprinted genes. We used bioinformatics/statistical analyses to confirm association between imprinting and preeclampsia and to predict biological processes affected in preeclampsia. Validation included epigenetic and cellular assays. In terms of human specificity, we established an in vitro invasion-differentiation trophoblast model. Our comparative phylogenetic analysis involved single-cell transcriptome data of human, macaque, and mouse preimplantation embryogenesis. We found disturbed placental imprinting in preeclampsia and revealed potential candidates, including GATA3 and DLX5 , with poorly explored imprinted status and no prior association with preeclampsia. As a result of loss of imprinting, DLX5 was upregulated in 69% of preeclamptic placentas. Levels of DLX5 correlated with classic preeclampsia markers. DLX5 is expressed in human but not in murine trophoblast. The DLX5 high phenotype resulted in reduced proliferation, increased metabolism, and endoplasmic reticulum stress-response activation in

  15. The 2.5 Å Structure of CD1c in Complex with a Mycobacterial Lipid Reveals an Open Groove Ideally Suited for Diverse Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Louise; Li, Nan-Sheng; Hawk, Andrew J.; Garzón, Diana; Zhang, Tejia; Fox, Lisa M.; Kazen, Allison R.; Shah, Sneha; Haddadian, Esmael J.; Gumperz, Jenny E.; Saghatelian, Alan; Faraldo-Gómez, José D.; Meredith, Stephen C.; Piccirilli, Joseph A.; Adams, Erin J. (Harvard); (UC); (MXPL-G); (UW-MED)

    2011-08-24

    CD1 molecules function to present lipid-based antigens to T cells. Here we present the crystal structure of CD1c at 2.5 {angstrom} resolution, in complex with the pathogenic Mycobacterium tuberculosis antigen mannosyl-{beta}1-phosphomycoketide (MPM). CD1c accommodated MPM's methylated alkyl chain exclusively in the A pocket, aided by a unique exit portal underneath the {alpha}1 helix. Most striking was an open F pocket architecture lacking the closed cavity structure of other CD1 molecules, reminiscent of peptide binding grooves of classical major histocompatibility complex molecules. This feature, combined with tryptophan-fluorescence quenching during loading of a dodecameric lipopeptide antigen, provides a compelling model by which both the lipid and peptide moieties of the lipopeptide are involved in CD1c presentation of lipopeptides.

  16. Molecular Imprinting Techniques Used for the Preparation of Biosensors

    Directory of Open Access Journals (Sweden)

    Gizem Ertürk

    2017-02-01

    Full Text Available Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications.

  17. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Parhamifar, Ladan; Lange, Marina Krarup

    2015-01-01

    oxygen species (ROS). The differences in metabolic and redox imprints were further reflected in the transfection performance of the polycations, but co-treatment with the GSH precursor N-acetyl-cysteine (NAC) counteracted redox dysregulation and increased the number of viable transfected cells...

  18. Imprint cytology: A boon in tissue diagnosis

    Directory of Open Access Journals (Sweden)

    Charusheela Rajesh Gore

    2017-01-01

    Full Text Available Background: The technique of imprint cytology has provided great impetus to cytodiagnosis due to its simplicity, cost effectiveness, rapid results. It plays a significant role in the rapid diagnosis of the lesions. Objectives: To analyze the sensitivity and specificity of imprint cytology and thereby to evaluate its diagnostic utility. Materials and Methods: The prospective study was carried out in a tertiary care hospital. It included 105 cases. Both benign and malignant lesions from different organ systems were included in the study. Various techniques like touch imprints scrape cytology and squash preparations were used according to the nature of tissue sample. The cytodiagnosis was correlated with histopathological (HP diagnosis to evaluate the sensitivity and specificity of imprint cytology. Results: Maximum lesions were of central nervous system (25.7% followed by breast, head, and neck. Imprint cytology diagnosis had sensitivity of 95.5% with 100% specificity for detection of benign and malignant lesions. Overall accuracy of detecting type of lesion was 98.1%. Total discordance with HP diagnosis was found in 1.9% of cases. Conclusion: The use of smear technique in intraoperative diagnosis provides a rapid and efficient means of pathological assessment which in experienced hand, is capable of obtaining a high degree of accuracy. Its use is highly recommended routinely.

  19. Causal imprinting in causal structure learning.

    Science.gov (United States)

    Taylor, Eric G; Ahn, Woo-Kyoung

    2012-11-01

    Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures "causal imprinting." Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Cross–dressers turn on T cells

    OpenAIRE

    YEWDELL, JONATHAN W.; DOLAN, BRIAN P.

    2011-01-01

    Memory T cells remember viruses from previous infections, providing immunity by facilitating the killing of infected cells. For this, they exploit cross-dressing, the transfer of antigens between antigen-presenting cells.

  1. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  2. Epigenetic Mechanisms of Genomic Imprinting: Common Themes in the Regulation of Imprinted Regions in Mammals, Plants, and Insects

    Directory of Open Access Journals (Sweden)

    William A. MacDonald

    2012-01-01

    Full Text Available Genomic imprinting is a form of epigenetic inheritance whereby the regulation of a gene or chromosomal region is dependent on the sex of the transmitting parent. During gametogenesis, imprinted regions of DNA are differentially marked in accordance to the sex of the parent, resulting in parent-specific expression. While mice are the primary research model used to study genomic imprinting, imprinted regions have been described in a broad variety of organisms, including other mammals, plants, and insects. Each of these organisms employs multiple, interrelated, epigenetic mechanisms to maintain parent-specific expression. While imprinted genes and imprint control regions are often species and locus-specific, the same suites of epigenetic mechanisms are often used to achieve imprinted expression. This review examines some examples of the epigenetic mechanisms responsible for genomic imprinting in mammals, plants, and insects.

  3. Opposing roles for RhoH GTPase during T-cell migration and activation

    DEFF Research Database (Denmark)

    Baker, Christina M; Comrie, William A; Hyun, Young-Min

    2012-01-01

    T cells spend the majority of their time perusing lymphoid organs in search of cognate antigen presented by antigen presenting cells (APCs) and then quickly recirculate through the bloodstream to another lymph node. Therefore, regulation of a T-cell response is dependent upon the ability of cells...

  4. Metal films with imprinted nanostructures by template stripping

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Pors, Anders; Dreier, Jes

    We present a novel template stripping procedure for fabricating metal films with imprinted nanostructures. The basic idea is to deposit a gold film onto a nano-structured substrate and subsequently strip the film from the substrate surface thereby revealing imprinted nanostructures in the film...... result is a thin gold film with imprinted nano-cavities....

  5. Using IMPRINT to Guide Experimental Design with Simulated Task Environments

    Science.gov (United States)

    2015-06-18

    USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN OF SIMULATED TASK ENVIRONMENTS THESIS Gregory...ENG-MS-15-J-052 USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN WITH SIMULATED TASK ENVIRONMENTS THESIS Presented to the Faculty Department...Civilian, USAF June 2015 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-J-052 USING IMPRINT

  6. Producing superfluid circulation states using phase imprinting

    Science.gov (United States)

    Kumar, Avinash; Dubessy, Romain; Badr, Thomas; De Rossi, Camilla; de Goër de Herve, Mathieu; Longchambon, Laurent; Perrin, Hélène

    2018-04-01

    We propose a method to prepare states of given quantized circulation in annular Bose-Einstein condensates (BEC) confined in a ring trap using the method of phase imprinting without relying on a two-photon angular momentum transfer. The desired phase profile is imprinted on the atomic wave function using a short light pulse with a tailored intensity pattern generated with a spatial light modulator. We demonstrate the realization of "helicoidal" intensity profiles suitable for this purpose. Due to the diffraction limit, the theoretical steplike intensity profile is not achievable in practice. We investigate the effect of imprinting an intensity profile smoothed by a finite optical resolution onto the annular BEC with a numerical simulation of the time-dependent Gross-Pitaevskii equation. This allows us to optimize the intensity pattern for a given target circulation to compensate for the limited resolution.

  7. Gas Sensors Based on Molecular Imprinting Technology.

    Science.gov (United States)

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-07-04

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.

  8. Molecularly Imprinted Microrods via Mesophase Polymerization

    Directory of Open Access Journals (Sweden)

    Ortensia Ilaria Parisi

    2017-12-01

    Full Text Available The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs with a rod-like geometry via “mesophase polymerization”. The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS, water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  9. Molecularly Imprinted Microrods via Mesophase Polymerization.

    Science.gov (United States)

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  10. Derivation of hybrid ES cell lines from two different strains of mice

    Directory of Open Access Journals (Sweden)

    Ho-Tak Lau

    2016-03-01

    Full Text Available Parental origin-dependent expression of the imprinted genes is essential for mammalian development. Zfp57 maintains genomic imprinting in mouse embryos and ES cells. To examine the allelic expression patterns of the imprinted genes in ES cells, we obtained multiple hybrid ES clones that were directly derived from the blastocysts generated from the cross between mice on two different genetic backgrounds. The blastocyst-derived ES clones displayed largely intact DNA methylation imprint at the tested imprinted regions. These hybrid ES clones will be useful for future studies to examine the allelic expression of the imprinted genes in ES cells and their differentiated progeny.

  11. Catalytic silica particles via template-directed molecular imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, M.A.; Kust, P.R.; Deng, G.; Schoen, P.E.; Dordick, J.S.; Clark, D.S.; Gaber, B.P.

    2000-02-22

    The surfaces of silica particle were molecularly imprinted with an {alpha}-chymotrypsin transition-state analogue (TSA) by utilizing the technique of template-directed synthesis of mineralized materials. The resulting catalytic particles hydrolyzed amides in an enantioselective manner. A mixture of a nonionic surfactant and the acylated chymotrysin TSA, with the TSA acting as the headgroup at the surfactant-water interface, was used to form a microemulsion for silica particle formation. Incorporation of amine-, dihydroimidazole-, and carboxylate-terminated trialkoxysilanes into the particles during imprinting resulted in enhancement of the rates of amide hydrolysis. Acylated imprint molecules formed more effective imprints in the presence of the functionalized silanes than nonacylated imprint molecules. Particles surface-imprinted with the chymotrypsin TSA were selective for the trypsin substrate, and particles surface-imprinted with the L-isomer of the enzyme TSA were enantioselective for the D-isomer of the substrate.

  12. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Directory of Open Access Journals (Sweden)

    Rongning Liang

    2018-03-01

    Full Text Available Nowadays, it is still difficult for molecularly imprinted polymers (MIPs to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  13. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Science.gov (United States)

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  14. Separation and purification of hyaluronic acid by glucuronic acid imprinted microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Akdamar, H.Acelya; Sarioezlue, Nalan Yilmaz [Department of Biology, Anadolu University, Eskisehir (Turkey); Ozcan, Ayca Atilir; Ersoez, Arzu [Department of Chemistry, Anadolu University, Eskisehir (Turkey); Denizli, Adil [Department of Chemistry, Hacettepe University, Ankara (Turkey); Say, Ridvan, E-mail: rsay@anadolu.edu.tr [Department of Chemistry, Anadolu University, Eskisehir (Turkey); BIBAM (Plant, Drug and Scientific Researches Center), Anadolu University, Eskisehir (Turkey)

    2009-05-05

    The purification of hyaluronic acid (HA) is relatively significant to use in biomedical applications. The structure of HA is formed by the repetitive units of glucuronic acid and N-acetyl glucosamine. In this study, glucuronic acid-imprinted microbeads have been supplied for the purification of HA from cell culture (Streptococcus equi). Histidine-functional monomer, methacryloylamidohistidine (MAH) was chosen as the metal-complexing monomer. The glucuronic acid-imprinted poly(ethyleneglycoldimethacrylate-MAH-Copper(II)) [p(EDMA-MAH-Cu{sup 2+})] microbeads have been synthesized by typical suspension polymerization procedure. The template glucuronic acid has been removed by employing 5 M methanolic KOH solution. p(EDMA-MAH-Cu{sup 2+}) microbeads have been characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) images and swelling studies. Moreover, HA adsorption experiments have been performed in a batch experimental set-up. Purification of HA from cell culture supernatant has been also investigated by determining the hyaluronidase activity using purified HA as substrate. The glucuronic acid imprinted p(EDMA-MAH-Cu{sup 2+}) particles can be used many times with no significant loss in adsorption capacities. Also, the selectivity of prepared molecular imprinted polymers (MIP) has been examined. Results have showed that MIP particles are 19 times more selective for glucuronic acid than N-acetylglucose amine.

  15. Imprint of Galactic dynamics on Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2006-01-01

    A connection between climate and the Solar system's motion perpendicular to the Galactic plane during the last 200 Myr years is studied. An imprint of galactic dynamics is found in a long-term record of the Earth's climate that is consistent with variations in the Solar system oscillation around...

  16. Foster parenting, human imprinting and conventional handling ...

    African Journals Online (AJOL)

    ... the present study indicates that improvements can be made by adopting alternative approaches. Further studies are needed to ascertain how foster parenting and imprinting may be utilized to optimize chick performance, including the long-term consequences of these practices. Keywords: Parental care, Struthio camelus, ...

  17. Molecular Imprinting Applications in Forensic Science.

    Science.gov (United States)

    Yılmaz, Erkut; Garipcan, Bora; Patra, Hirak K; Uzun, Lokman

    2017-03-28

    Producing molecular imprinting-based materials has received increasing attention due to recognition selectivity, stability, cast effectiveness, and ease of production in various forms for a wide range of applications. The molecular imprinting technique has a variety of applications in the areas of the food industry, environmental monitoring, and medicine for diverse purposes like sample pretreatment, sensing, and separation/purification. A versatile usage, stability and recognition capabilities also make them perfect candidates for use in forensic sciences. Forensic science is a demanding area and there is a growing interest in molecularly imprinted polymers (MIPs) in this field. In this review, recent molecular imprinting applications in the related areas of forensic sciences are discussed while considering the literature of last two decades. Not only direct forensic applications but also studies of possible forensic value were taken into account like illicit drugs, banned sport drugs, effective toxins and chemical warfare agents in a review of over 100 articles. The literature was classified according to targets, material shapes, production strategies, detection method, and instrumentation. We aimed to summarize the current applications of MIPs in forensic science and put forth a projection of their potential uses as promising alternatives for benchmark competitors.

  18. The evolution of imprinting: chromosomal mapping of orthologues of mammalian imprinted domains in monotreme and marsupial mammals

    Directory of Open Access Journals (Sweden)

    Dunham Ian

    2007-09-01

    Full Text Available Abstract Background The evolution of genomic imprinting, the parental-origin specific expression of genes, is the subject of much debate. There are several theories to account for how the mechanism evolved including the hypothesis that it was driven by the evolution of X-inactivation, or that it arose from an ancestrally imprinted chromosome. Results Here we demonstrate that mammalian orthologues of imprinted genes are dispersed amongst autosomes in both monotreme and marsupial karyotypes. Conclusion These data, along with the similar distribution seen in birds, suggest that imprinted genes were not located on an ancestrally imprinted chromosome or associated with a sex chromosome. Our results suggest imprinting evolution was a stepwise, adaptive process, with each gene/cluster independently becoming imprinted as the need arose.

  19. CTCF-dependent chromatin bias constitutes transient epigenetic memory of the mother at the H19-Igf2 imprinting control region in prospermatogonia.

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Lee

    2010-11-01

    Full Text Available Genomic imprints-parental allele-specific DNA methylation marks at the differentially methylated regions (DMRs of imprinted genes-are erased and reestablished in germ cells according to the individual's sex. Imprint establishment at paternally methylated germ line DMRs occurs in fetal male germ cells. In prospermatogonia, the two unmethylated alleles exhibit different rates of de novo methylation at the H19/Igf2 imprinting control region (ICR depending on parental origin. We investigated the nature of this epigenetic memory using bisulfite sequencing and allele-specific ChIP-SNuPE assays. We found that the chromatin composition in fetal germ cells was biased at the ICR between the two alleles with the maternally inherited allele exhibiting more H3K4me3 and less H3K9me3 than the paternally inherited allele. We determined genetically that the chromatin bias, and also the delayed methylation establishment in the maternal allele, depended on functional CTCF insulator binding sites in the ICR. Our data suggest that, in primordial germ cells, maternally inherited allele-specific CTCF binding sets up allele-specific chromatin differences at the ICR. The erasure of these allele-specific chromatin marks is not complete before the process of de novo methylation imprint establishment begins. CTCF-dependent allele-specific chromatin composition imposes a maternal allele-specific delay on de novo methylation imprint establishment at the H19/Igf2 ICR in prospermatogonia.

  20. [Werkgartner's muzzle imprint mark--a literature study].

    Science.gov (United States)

    Geserick, Gunther; Vendura, Klaus; Wirth, Ingo

    2009-01-01

    Since Werkgartner described and correctly interpreted the muzzle imprint mark around the gunshot entrance wound in 1922, this finding has been generally accepted as a sign of a contact shot. In further studies, it could finally be clarified that the muzzle imprint mark is caused by the expansive power of the powder gases with pressure on and abrasion of the skin at the muzzle (weapon imprint). Its shape depends on the firearm, the ammunition and the anatomical conditions, but does not require a bullet. Examinations under a magnifying glass microscope and histological investigations can complete the macroscopic findings. Occasionally, the muzzle imprint mark requires a certain "drying period" in order to become clearly visible. In rare cases, muzzle imprint marks also form on textiles perforated by the projectile. Characteristically shaped muzzled imprint marks can provide clues to the type of the firearm and its position at the time of discharge.

  1. Potential roles for transposable elements in creating imprinted expression.

    Science.gov (United States)

    Anderson, Sarah N; Springer, Nathan M

    2018-04-01

    Changes in gene expression can have profound effects on phenotype. Nature has provided many complex patterns of gene regulation such as imprinting. Imprinted genes exhibit differences in the expression of the maternal and paternal alleles, even though they reside in the same nucleus with access to the same trans-acting factors. Significant attention has been focused on the potential reasons that imprinted expression could be beneficial and stabilized by selection. However, less attention has focused on understanding how imprinted expression might arise or decay. We discuss the evidence for frequent turnover of imprinted expression based on evolutionary analyses in plants and the potential role for transposable elements (TEs) in creating imprinted expression patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    Science.gov (United States)

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  3. Molecularly imprinted nanoparticles with recognition properties towards a laminin H-Tyr-Ile-Gly-Ser-Arg-OH sequence for tissue engineering applications

    International Nuclear Information System (INIS)

    Rosellini, Elisabetta; Barbani, Niccoletta; Giusti, Paolo; Ciardelli, Gianluca; Cristallini, Caterina

    2010-01-01

    Nanotechnology is an emerging field that promises to revolutionize medicine and is increasingly used in tissue engineering applications. Our research group proposed for the first time molecular imprinting as a new nanotechnology for the creation of advanced synthetic support structures for cell adhesion and proliferation. The aim of this work was the synthesis and characterization of molecularly imprinted polymers with recognition properties towards a laminin peptide sequence and their application as functionalization structures in the development of bioactive materials. Nanoparticles with an average diameter of 200 nm were synthesized by precipitation polymerization of methacrylic acid in the presence of the template molecule and trimethylpropane trimethacrylate as the cross-linking agent. The imprinted nanoparticles showed good performance in terms of recognition capacity and selectivity. The cytotoxicity tests showed normal vitality of C2C12 myoblasts cultured in the medium that was put in contact with the imprinted polymers. After the deposition on the polymeric film surface, the imprinted particles maintained their specific recognition and rebinding behaviour, showing an even higher quantitative binding than free nanoparticles. Preliminary in vitro cell culture tests demonstrated the ability of functionalized materials to promote cell adhesion, proliferation and differentiation, suggesting that molecular imprinting can be used as an innovative functionalization technique.

  4. Delivery of CD8+ T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase:delineation of cell invasive structures and permissive insertion sites

    Czech Academy of Sciences Publication Activity Database

    Osička, Radim; Osičková, Adriana; Basar, T.; Guermonprez, P.; Rojas, M.; Leclerc, C.; Šebo, Peter

    2000-01-01

    Roč. 68, č. 1 (2000), s. 247-256 ISSN 0019-9567 R&D Projects: GA ČR GA310/98/0432; GA AV ČR IAA5020907; GA MŠk VS96149; GA MŠk ME 167 Institutional research plan: CEZ:A53/98:Z5-020-9ii Subject RIV: EE - Microbiology, Virology Impact factor: 4.204, year: 2000

  5. Selection of imprinted nanoparticles by affinity chromatography.

    Science.gov (United States)

    Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A

    2009-04-15

    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.

  6. GATM, the human ortholog of the mouse imprinted Gatm gene, escapes genomic imprinting in placenta

    Directory of Open Access Journals (Sweden)

    Toshinobu Miyamoto

    2005-03-01

    Full Text Available The GATM gene encodes L-arginine:glycine amidinotransferase, which catalyzes the conversion of L-arginine into guanidinoacetate, the rate-limiting step in the synthesis of creatine. Since, deficiencies in creatine synthesis and transport lead to certain forms of mental retardation in human, the human GATM gene appears to be involved in brain development. Recently it has been demonstrated that the mouse Gatm is expressed during development and is imprinted with maternal expression in the placenta and yolk sac, but not in embryonic tissues. We investigated the imprinting status of the human GATM by analyzing its expression in four human placentas. GATM was biallelically expressed, thus suggesting that this gene escapes genomic imprinting in placentas, differently from what has been reported in mouse extra-embryonic tissues.

  7. Synthesis of a Molecularly Imprinted Polymer for Dioxin

    Directory of Open Access Journals (Sweden)

    Magda Brattoli

    2006-08-01

    Full Text Available A molecularly imprinted polymer for recognising selectively 2,3,7,8-tetrachlorodibenzodioxin (TCDD was made by a new non-covalent method employing a“dummy” template. The proposed way represents a simplification of a synthetic schemeproposed by Lübke et al.[1] for covalent imprinting. Comparison of extraction yields of thenovel polymer, a non imprinted polymer and an imprinting polymer, prepared by theoriginal procedure demonstrates the binding capacity of the proposed polymer, which is inprinciple applicable to solid phase extraction (SPE of dioxin.

  8. Effectiveness of combined use of imprint cytological and histological examination in CT-guided tissue-core biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Yamagami, Takuji; Yoshimatsu, Rika; Kajiwara, Kenji; Ishikawa, Masaki; Awai, Kazuo [Hiroshima University, Department of Diagnostic Radiology, Institute and Graduate School of Biomedical Sciences, Minami-Ku, Hiroshima (Japan); Matsumoto, Tomohiro; Hasebe, Terumitsu [Tokai University Hachioji Hospital, Tokai University School of Medicine, Department of Radiology, Hachioji, Tokyo (Japan); Kakizawa, Hideaki [Hiroshima University, Department of Diagnostic Radiology, Institute and Graduate School of Biomedical Sciences, Minami-Ku, Hiroshima (Japan); Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Department of Diagnostic Radiology, Naka-Ku, Hiroshima (Japan); Toyoda, Naoyuki [Hiroshima University, Department of Diagnostic Radiology, Institute and Graduate School of Biomedical Sciences, Minami-Ku, Hiroshima (Japan); National Hospital Organisation Kure Medical Centre, Department of Diagnostic Radiology, Kure, Hiroshima (Japan)

    2014-05-15

    This study evaluated the efficacy of the combination of imprint cytology and histology in tissue-core percutaneous biopsy under real-time computed tomography (CT) fluoroscopic guidance. Between October 2009 and June 2013, 156 percutaneous needle biopsies were performed in our institution. Those obtained by tissue-core biopsy underwent both imprint cytological and histological examinations routinely after touch imprint cytology was performed on site to evaluate the samples' sufficiency for cytological and pathological examination. Final diagnosis was confirmed by independent surgical pathology, independent culture results or clinical follow-up. Rates of adequate specimens and precise diagnosis, by combined cytological and histological examination were 100 % (156/156) and 96.2 % (150/156), by cytology 94.4 % (152/156) and 83.3 % (130/156) and by histology 99.3 % (155/156) and 92.3 % (144/156). Precise diagnosis was achieved by combined examinations in 94.7 % (89/94) of thoracic lesions, 97.6 % (40/41) of musculoskeletal lesions, and 100 % (21/21) of abdominal, pelvic and retroperitoneal lesions. In all 104 lesions diagnosed as malignant by CT-guided biopsy and in 30 of 52 diagnosed as benign, specific cell types could be proved by combined examinations. Combined imprint cytology and histology performed after on-site touch imprint cytological evaluation improved the diagnostic ability of CT fluoroscopically guided biopsy. (orig.)

  9. Effectiveness of combined use of imprint cytological and histological examination in CT-guided tissue-core biopsy

    International Nuclear Information System (INIS)

    Yamagami, Takuji; Yoshimatsu, Rika; Kajiwara, Kenji; Ishikawa, Masaki; Awai, Kazuo; Matsumoto, Tomohiro; Hasebe, Terumitsu; Kakizawa, Hideaki; Toyoda, Naoyuki

    2014-01-01

    This study evaluated the efficacy of the combination of imprint cytology and histology in tissue-core percutaneous biopsy under real-time computed tomography (CT) fluoroscopic guidance. Between October 2009 and June 2013, 156 percutaneous needle biopsies were performed in our institution. Those obtained by tissue-core biopsy underwent both imprint cytological and histological examinations routinely after touch imprint cytology was performed on site to evaluate the samples' sufficiency for cytological and pathological examination. Final diagnosis was confirmed by independent surgical pathology, independent culture results or clinical follow-up. Rates of adequate specimens and precise diagnosis, by combined cytological and histological examination were 100 % (156/156) and 96.2 % (150/156), by cytology 94.4 % (152/156) and 83.3 % (130/156) and by histology 99.3 % (155/156) and 92.3 % (144/156). Precise diagnosis was achieved by combined examinations in 94.7 % (89/94) of thoracic lesions, 97.6 % (40/41) of musculoskeletal lesions, and 100 % (21/21) of abdominal, pelvic and retroperitoneal lesions. In all 104 lesions diagnosed as malignant by CT-guided biopsy and in 30 of 52 diagnosed as benign, specific cell types could be proved by combined examinations. Combined imprint cytology and histology performed after on-site touch imprint cytological evaluation improved the diagnostic ability of CT fluoroscopically guided biopsy. (orig.)

  10. A DNMT3A2-HDAC2 Complex Is Essential for Genomic Imprinting and Genome Integrity in Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Pengpeng Ma

    2015-11-01

    Full Text Available Maternal genomic imprints are established during oogenesis. Histone deacetylases (HDACs 1 and 2 are required for oocyte development in mouse, but their role in genomic imprinting is unknown. We find that Hdac1:Hdac2−/− double-mutant growing oocytes exhibit global DNA hypomethylation and fail to establish imprinting marks for Igf2r, Peg3, and Srnpn. Global hypomethylation correlates with increased retrotransposon expression and double-strand DNA breaks. Nuclear-associated DNMT3A2 is reduced in double-mutant oocytes, and injecting these oocytes with Hdac2 partially restores DNMT3A2 nuclear staining. DNMT3A2 co-immunoprecipitates with HDAC2 in mouse embryonic stem cells. Partial loss of nuclear DNMT3A2 and HDAC2 occurs in Sin3a−/− oocytes, which exhibit decreased DNA methylation of imprinting control regions for Igf2r and Srnpn, but not Peg3. These results suggest seminal roles of HDAC1/2 in establishing maternal genomic imprints and maintaining genomic integrity in oocytes mediated in part through a SIN3A complex that interacts with DNMT3A2.

  11. Is Imprint Cytology Useful to Diagnose Malignancy for Brenner Tumors? A Case Series at a Single Institute.

    Science.gov (United States)

    Minato, Junko; Tokunaga, Hideki; Okamoto, Satoshi; Shibuya, Yusuke; Niikura, Hitoshi; Yaegashi, Nobuo

    2017-01-01

    The aim of this study was to investigate cytological features of Brenner tumors according to tumor grade using imprint cytology. Between 2004 and 2015, intraoperative imprint cytology was performed on 8 patients with Brenner tumors suspected to be malignant neoplasmas on gross examination because of their large size and solid part. These consisted of 1 benign, 3 borderline, and 4 malignant tumors. In patients with benign and borderline tumors, naked nucleus-like stromal cells and tumor cells in a sheet-like arrangement were observed against a clear background. The nuclei were round to oval-shaped with finely granular chromatin patterns and small nucleoli. Papillary cell clusters and high nucleus-to-cytoplasm ratios were only observed in 1 borderline case. In cases with malignancy, the background was necrotic. The tumor cells occurred in large papillary clusters. The nuclei showed a high degree of nuclear atypia. Nuclear grooves were present in 6 of our 8 cases and they were scant in the malignant cases. Imprint cytology of Brenner tumors provided no characteristic findings to enable a definitive distinction of benign versus borderline tumors, but it enabled discrimination between malignant and other tumors. Imprint cytology can facilitate intraoperative diagnosis and aid in selecting the appropriate surgical procedure. © 2017 S. Karger AG, Basel.

  12. Polymorphisms of transporter associated with antigen presentation, tumor necrosis factor-α and interleukin-10 and their implications for protection and susceptibility to severe forms of dengue fever in patients in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Anira N Fernando

    2015-01-01

    Full Text Available Context: To date, a clear understanding of dengue disease pathogenesis remains elusive. Some infected individuals display no symptoms while others develop severe life-threatening forms of the disease. It is widely believed that host genetic factors influence dengue severity. Aims: This study evaluates the relationship between certain polymorphisms and dengue severity in Sri Lankan patients. Settings and Design: Polymorphism studies are carried out on genes for; transporter associated with antigen presentation (TAP, promoter of tumor necrosis factor-α (TNF-α, and promoter of interleukin-10 (IL-10. In other populations, TAP1 (333, TAP2 (379, TNF-α (−308, and IL-10 (−1082, −819, −592 have been associated with dengue and a number of different diseases. Data have not been collected previously for these polymorphisms for dengue patients in Sri Lanka. Materials and Methods: The polymorphisms were typed by amplification refractory mutation system polymerase chain reaction in 107 dengue hemorrhagic fever (DHF patients together with 62 healthy controls. Statistical Analysis Used: Pearson′s Chi-square contingency table analysis with Yates′ correction. Results: Neither the TAP nor the IL-10 polymorphisms considered individually can define dengue disease outcome with regard to severity. However, the genotype combination, IL-10 (−592/−819/−1082 CCA/ATA was significantly associated with development of severe dengue in these patients, suggesting a risk factor to developing DHF. Also, identified is the genotype combination IL-10 (−592/−819/−1082 ATA/ATG which suggested a possibility for protection from DHF. The TNF-α (−308 GG genotype was also significantly associated with severe dengue, suggesting a significant risk factor. Conclusions: The results reported here are specific to the Sri Lankan population. Comparisons with previous reports imply that data may vary from population to population.

  13. Imprinting alterations in sperm may not significantly influence ART outcomes and imprinting patterns in the cord blood of offspring.

    Science.gov (United States)

    Tang, Li; Liu, Zichao; Zhang, Ruopeng; Su, Cunmei; Yang, Wenjuan; Yao, Youlin; Zhao, Shuhua

    2017-01-01

    An increase in imprinting disorders in children conceived though assisted reproductive technologies (ARTs) has been the subject of several reports. The transmission of imprinting errors from the sperm of infertile fathers is believed to be a possible reason for the increased occurrence of these disorders. However, whether the imprinting alterations in sperm affect ART outcomes and the imprinting of offspring is unclear. In the current study, we analyzed the methylation of H19, SNRPN and KCNQ1OT1 by pyrosequencing sperm samples from 97 infertile patients and 31 proven fertile males as well as cord blood samples from 13 infantswho were conceived by infertile parents through intracytoplasmic sperm injection (ICSI) and 30 healthy newborns who were conceived naturally. After four cases were excluded owing to the lack of a sequencing signal, the infertile patients were subgrouped into normal (69 cases) and abnormal (24 cases) imprinting groups according to the reference range set by the control group. Between the groups, there were no significant differences in ART outcomes. Significantly different levels of methylation were detected in H19, but none of the imprinted genes were determined to be outside of the methylation reference range set by the values derived from the naturally conceived controls. Three CpG loci were found to be significantly hypomethylated in the maternally imprinted gene KCNQ1OT1 in two patients from the abnormal imprinting group, none of which were caused by sperm imprinting errors. In addition, the paternal H19 gene exhibited discrepant methylation patterns between the sperm controls and the cord blood controls. Our data suggest that increased imprinting errors in the sperm of infertile patients do not have an obvious influence on ART outcomes or the imprinting of offspring.

  14. Imprinting diseases and IVF: Danish National IVF cohort study

    DEFF Research Database (Denmark)

    Lidegaard, Ojvind; Pinborg, Anja; Andersen, Anders Nyboe

    2005-01-01

    The aim of this study was to compare the frequency of imprinting diseases in children born after IVF with the incidence in naturally conceived children.......The aim of this study was to compare the frequency of imprinting diseases in children born after IVF with the incidence in naturally conceived children....

  15. Characterization of Conserved and Nonconserved Imprinted Genes in Swine

    Science.gov (United States)

    Genomic imprinting results in the silencing of a subset of mammalian alleles due to parent-of-origin inheritance. Due to the nature of their expression patterns they play a critical role in placental and early embryonic development. In order to increase our understanding of imprinted genes specifi...

  16. Synthesis of molecular imprinted beta cyclodextrins oligomers in water

    DEFF Research Database (Denmark)

    Yu, Donghong; Nielsen, Anne Louise; Bach, Lone

    2003-01-01

    compounds in aqueous solution and, therefore, molecular imprinting of cyclodextrins polymers in aqueous solution is of great interest. In this paper, molecular imprinting of beta cyclodextrins has been performed in water by use of diiodobenzene as template and epichlorohydrin as a crosslinker. Inclusion...

  17. Mycotoxin analysis using imprinted materials technology: Recent developments

    Science.gov (United States)

    Molecular imprinting technology is an attractive, cost effective, and robust alternative to address the limitations of highly selective natural receptors, such as antibodies and aptamers. The field of molecular imprinting has seen a recent surge in growth with several commercially available products...

  18. Imprinting can cause a maladaptive preference for infectious conspecifics.

    Science.gov (United States)

    Stephenson, Jessica F; Reynolds, Michael

    2016-04-01

    Recognizing and associating with specific individuals, such as conspecifics or kin, brings many benefits. One mechanism underlying such recognition is imprinting: the long-term memory of cues encountered during development. Typically, juveniles imprint on cues of nearby individuals and may later associate with phenotypes matching their 'recognition template'. However, phenotype matching could lead to maladaptive social decisions if, for instance, individuals imprint on the cues of conspecifics infected with directly transmitted diseases. To investigate the role of imprinting in the sensory ecology of disease transmission, we exposed juvenile guppies,Poecilia reticulata, to the cues of healthy conspecifics, or to those experiencing disease caused by the directly transmitted parasite Gyrodactylus turnbulli In a dichotomous choice test, adult 'disease-imprinted' guppies preferred to associate with the chemical cues of G. turnbulli-infected conspecifics, whereas 'healthy-imprinted' guppies preferred to associate with cues of uninfected conspecifics. These responses were only observed when stimulus fish were in late infection, suggesting imprinted fish responded to cues of disease, but not of infection alone. We discuss how maladaptive imprinting may promote disease transmission in natural populations of a social host. © 2016 The Author(s).

  19. DNA replication: stalling a fork for imprinting and switching

    DEFF Research Database (Denmark)

    Egel, Richard

    2004-01-01

    Mating-type switching in fission yeast has long been known to be directed by a DNA 'imprint'. This imprint has now been firmly characterized as a protected site-specific and strand-specific nick. New work also links the widely conserved Swi1-Swi3 complex to the protection of stalled replication...

  20. Influence of surface-imprinted nanoparticles on trypsin activity.

    Science.gov (United States)

    Guerreiro, António; Poma, Alessandro; Karim, Kal; Moczko, Ewa; Takarada, Jessica; de Vargas-Sansalvador, Isabel Perez; Turner, Nicholas; Piletska, Elena; de Magalhães, Cristiana Schmidt; Glazova, Natalia; Serkova, Anastasia; Omelianova, Aleksandra; Piletsky, Sergey

    2014-09-01

    Here, the modulation of enzyme activity is presented by protein-imprinted nanoparticles produced using a solid-phase approach. Using trypsin as target, binding of the nanoparticles to the enzyme results in its inhibition or in stabilization, depending on the orientation of the immobilized enzyme used during imprinting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    OpenAIRE

    Schweiger, Bianca; Kim, Jungtae; Kim, Young; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueo...

  2. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting.

    Directory of Open Access Journals (Sweden)

    Shunsuke Suzuki

    2007-04-01

    Full Text Available Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10 is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii, but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus, suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5' region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.

  3. Fluorescense Anisotropy Studies of Molecularly Imprinted Polymer Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yin-Chu; Wang, Zheming; Yan, Mingdi; Prahl, Scott A.

    2005-08-03

    Molecularly imprinted polymers (MIPs) are used as recognition elements in biochemical sensors. In a fluorescence-based MIP sensor system, it is difficult to distinguish the analyte fluorescence from the background fluorescence of the polymer itself. We studied steady-state fluorescence anisotropy of anthracene imprinted in a polymer (polyurethane) matrix. Vertically polarized excitation light was incident on MIP films coated on silicon wafers; vertically and horizontally polarized emission was measured. We compared the fluorescence anisotropy of MIPs with imprinted molecules, MIPs with the imprinted molecules extracted, MIPs with rebound molecules, and nonimprinted control polymers (without binding cavities). It is shown that differences in fluorescence anisotropy between the polymers and imprinted fluorescent molecules may provide a means to discriminate the fluorescence of analyte from that of the background polymer.

  4. Computational Design of Molecularly Imprinted Polymers

    Science.gov (United States)

    Subrahmanyam, Sreenath; Piletsky, Sergey A.

    Artificial receptors have been in use for several decades as sensor elements, in affinity separation, and as models for investigation of molecular recognition. Although there have been numerous publications on the use of molecular modeling in characterization of their affinity and selectivity, very few attempts have been made on the application of molecular modeling in computational design of synthetic receptors. This chapter discusses recent successes in the use of computational design for the development of one particular branch of synthetic receptors - molecularly imprinted polymers.

  5. Genomic imprinting of IGF2 in marsupials is methylation dependent

    Directory of Open Access Journals (Sweden)

    Imumorin Ikhide

    2008-05-01

    Full Text Available Abstract Background- Parent-specific methylation of specific CpG residues is critical to imprinting in eutherian mammals, but its importance to imprinting in marsupials and, thus, the evolutionary origins of the imprinting mechanism have been the subject of controversy. This has been particularly true for the imprinted Insulin-like Growth Factor II (IGF2, a key regulator of embryonic growth in vertebrates and a focal point of the selective forces leading to genomic imprinting. The presence of the essential imprinting effector, DNMT3L, in marsupial genomes and the demonstration of a differentially methylated region (DMR in the retrotransposon-derived imprinted gene, PEG10, in tammar wallaby argue for a role for methylation in imprinting, but several studies have found no evidence of parent-specific methylation at other imprinted loci in marsupials. Results- We performed the most extensive search to date for allele-specific patterns of CpG methylation within CpG isochores or CpG enriched segments across a 22 kilobase region surrounding the IGF2 gene in the South American opossum Monodelphis domestica. We identified a previously unknown 5'-untranslated exon for opossum IGF2, which is flanked by sequences defining a putative neonatal promoter, a DMR and an active Matrix Attachment Region (MAR. Demethylation of this DMR in opossum neonatal fibroblasts results in abherrant biallelic expression of IGF2. Conclusion- The demonstration of a DMR and an active MAR in the 5' flank of opossum IGF2 mirrors the regulatory features of the 5' flank of Igf2 in mice. However, demethylation induced activation of the maternal allele of IGF2 in opossum differs from the demethylation induced repression of the paternal Igf2 allele in mice. While it can now be concluded that parent-specific DNA methylation is an epigentic mark common to Marsupialia and Eutheria, the molecular mechanisms of transcriptional silencing at imprinted loci have clearly evolved along independent

  6. Functional mapping imprinted quantitative trait loci underlying developmental characteristics

    Directory of Open Access Journals (Sweden)

    Li Gengxin

    2008-03-01

    Full Text Available Abstract Background Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles depending on their parental origins, has been widely observed in nature. It has been shown recently that the epigenetic modification of an imprinted gene can be detected through a genetic mapping approach. Such an approach is developed based on traditional quantitative trait loci (QTL mapping focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals play an important role in controlling embryonic growth and post-natal development. For a developmental character such as growth, current approach is less efficient in dissecting the dynamic genetic effect of imprinted genes during individual ontology. Results Functional mapping has been emerging as a powerful framework for mapping quantitative trait loci underlying complex traits showing developmental characteristics. To understand the genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the functional mapping approach with genomic imprinting. We demonstrate the approach through mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical behavior of the approach is shown through simulation studies, in which the parameters can be estimated with reasonable precision under different simulation scenarios. The utility of the approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse body weight. Conclusion The functional iQTL mapping approach developed here provides a quantitative and testable framework for assessing the interplay between imprinted genes and a developmental process, and will have important implications for elucidating the genetic architecture of imprinted traits.

  7. The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Rasheva Vanya

    2010-07-01

    Full Text Available Abstract Background CTCF is a versatile zinc finger DNA-binding protein that functions as a highly conserved epigenetic transcriptional regulator. CTCF is known to act as a chromosomal insulator, bind promoter regions, and facilitate long-range chromatin interactions. In mammals, CTCF is active in the regulatory regions of some genes that exhibit genomic imprinting, acting as insulator on only one parental allele to facilitate parent-specific expression. In Drosophila, CTCF acts as a chromatin insulator and is thought to be actively involved in the global organization of the genome. Results To determine whether CTCF regulates imprinting in Drosophila, we generated CTCF mutant alleles and assayed gene expression from the imprinted Dp(1;fLJ9 mini-X chromosome in the presence of reduced CTCF expression. We observed disruption of the maternal imprint when CTCF levels were reduced, but no effect was observed on the paternal imprint. The effect was restricted to maintenance of the imprint and was specific for the Dp(1;fLJ9 mini-X chromosome. Conclusions CTCF in Drosophila functions in maintaining parent-specific expression from an imprinted domain as it does in mammals. We propose that Drosophila CTCF maintains an insulator boundary on the maternal X chromosome, shielding genes from the imprint-induced silencing that occurs on the paternally inherited X chromosome. See commentary: http://www.biomedcentral.com/1741-7007/8/104

  8. Role of intraoperative imprint cytology in diagnosis of suspected ovarian neoplasms.

    Science.gov (United States)

    Dey, Soumit; Misra, Vatsala; Singh, P A; Mishra, Sanjay; Sharma, Nishant

    2010-01-01

    The present study was conducted to assess whether cytology can help in rapid diagnosis of ovarian neoplasms and thus facilitate individualised treatment. A prospective investigation was performed on 30 cases of suspected ovarian neoplasms. Imprint smears were made intraperatively from fresh samples from various representative areas, and stained with Leishman Giemsa for air-dried smears, and with hematoxylin and eosin and Papanicolaou for alcohol-fixed smears. A rapid opinion regarding the benign or malignant nature of the lesion and the type of tumour was given. The overall sensitivity was 96.2%, specificity 75%, positive predictive value 96.3%, and diagnostic accuracy of 83.3%. Characteristic cytological patterns were noted in various epithelial and germ cell tumours. Imprint cytology can be used as an adjunct to histopathology for rapid and early diagnosis in the operation theatre, thus helping better management of patients.

  9. Study on the Imprinting Status of Insulin-Like Growth Factor II (IGF-II Gene in Villus during 6–10 Gestational Weeks

    Directory of Open Access Journals (Sweden)

    Jianhong Chen

    2010-01-01

    Full Text Available Objective. To compare the difference of imprinting status of insulin-like growth factor II (IGF-II gene in villus between normal embryo development group and abnormal embryo development group and to investigate the relationship between karyotype and the imprinting status of IGF-II gene. Methods. A total of 85 pregnant women with singleton pregnancy were divided into two groups: one with abnormal embryo development (n=38 and the other with normal embryo development (n=47. Apa I polymorphism of IGF-II gene in chorionic villus was assayed with reverse transcriptase polymerase chain reaction (RT-PCR and restriction fragment length polymorphism (RFLP. The relationship between chromosomal abnormal karyotype and IGF-II gene imprinting status was analyzed by primary cell culture and G-banding chromosomal karyotype analysis. Results. IGF-II imprinting loss rate was higher in the abnormal embryo development group than the normal embryo development group (44.7% versus 31.6%, but without significant difference (P>.05. The percentage of abnormal chromosomes of chorionic villus in the abnormal embryo development group was 42.5%, in which IGF-II imprinting loss rate reached 64.7%. No abnormal karyotypes were found in the normal embryo development group. However, there was significant difference in IGF-II imprinting loss rate between two groups (P>.05. Conclusion. During weeks 6–10 of gestation, abnormal embryonic development is correlated with chromosomal abnormalities. The imprinting status of IGF-II gene played important roles in embryonic development, and imprinting loss might be related to chromosomal abnormalities.

  10. Molecular mechanisms of memory in imprinting.

    Science.gov (United States)

    Solomonia, Revaz O; McCabe, Brian J

    2015-03-01

    Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-D-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼ 15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  11. Delivery of a MalE CD4+-T-Cell Epitope into the Major Histocompatibility Complex Class II Antigen Presentation Pathway by Bordetella pertussis Adenylate Cyclase ral NPKSupply

    Czech Academy of Sciences Publication Activity Database

    Loucká, Jiřina; Schlecht, G.; Vojtová, Jana; Leclerc, C.; Šebo, Peter

    2002-01-01

    Roč. 70, č. 2 (2002), s. 1002-1005 ISSN 0019-9567 R&D Projects: GA ČR GA310/01/0934; GA AV ČR IAA5020907; GA MŠk ME 167 Grant - others:QLK2-CT(US) 00556 Institutional research plan: CEZ:AV0Z5020903 Keywords : delivery * epitope * complex Subject RIV: EE - Microbiology, Virology Impact factor: 4.039, year: 2002

  12. Neuronal plasticity and multisensory integration in filial imprinting.

    Science.gov (United States)

    Town, Stephen Michael; McCabe, Brian John

    2011-03-10

    Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus.

  13. Neuronal Plasticity and Multisensory Integration in Filial Imprinting

    Science.gov (United States)

    Town, Stephen Michael; McCabe, Brian John

    2011-01-01

    Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus. PMID:21423770

  14. Molecular imprinting-chemiluminescence determination of trimethoprim using trimethoprim-imprinted polymer as recognition material.

    Science.gov (United States)

    He, Yunhua; Lu, Jiuru; Liu, Mei; Du, Jianxiu

    2005-07-01

    A new molecular imprinting-chemiluminescence method for the determination of trimethoprim was developed, in which trimethoprim-imprinted polymer was used as the molecular recognition material and the CL reaction of trimethoprim with potassium permanganate in acidic medium was used as the detection system. The CL intensity responds linearly to the concentration of trimethoprim within the 5.0 x 10(-8)-5.0 x 10(-6) g mL(-1) range (r= 0.9983) with a detection limit of 2 x 10(-8) g mL(-1). The relative standard deviation for the determination of 1.0 x 10(-7) g mL(-1) trimethoprim solutions is 4.8% (n= 9). The method has been applied to the determination of trimethoprim in pharmaceutical preparations and body fluids, and satisfactory results were obtained.

  15. Otx2 expression and implications for olfactory imprinting in the anemonefish, Amphiprion percula

    Directory of Open Access Journals (Sweden)

    Heather D. Veilleux

    2013-07-01

    The otx2 gene encodes a transcription factor (OTX2 essential in the formation of the brain and sensory systems. Specifically, OTX2-positive cells are associated with axons in the olfactory system of mice and otx2 is upregulated in odour-exposed zebrafish, indicating a possible role in olfactory imprinting. In this study, otx2 was used as a candidate gene to investigate the molecular mechanisms of olfactory imprinting to settlement cues in the coral reef anemonefish, Amphiprion percula. The A. percula otx2 (Ap-otx2 gene was elucidated, validated, and its expression tested in settlement-stage A. percula by exposing them to behaviourally relevant olfactory settlement cues in the first 24 hours post-hatching, or daily throughout the larval phase. In-situ hybridisation revealed expression of Ap-otx2 throughout the olfactory epithelium with increased transcript staining in odour-exposed settlement-stage larval fish compared to no-odour controls, in all scenarios. This suggests that Ap-otx2 may be involved in olfactory imprinting to behaviourally relevant settlement odours in A. percula.

  16. Dilatonic imprints on exact gravitational wave signatures

    Science.gov (United States)

    McCarthy, Fiona; KubizÅák, David; Mann, Robert B.

    2018-05-01

    By employing the moduli space approximation, we analytically calculate the gravitational wave signatures emitted upon the merger of two extremally charged dilatonic black holes. We probe several values of the dilatonic coupling constant a , and find significant departures from the Einstein-Maxwell (a =0 ) counterpart studied in [Phys. Rev. D 96, 061501 (2017), 10.1103/PhysRevD.96.061501]. For (low-energy) string theory black holes (a =1 ) there are no coalescence orbits and only a memory effect is observed, whereas for an intermediate value of the coupling (a =1 /√{3 } ) the late-time merger signature becomes exponentially suppressed, compared to the polynomial decay in the a =0 case without a dilaton. Such an imprint shows a clear difference between the case with and without a scalar field (as, for example, predicted by string theory) in black hole mergers.

  17. The origin of the RB1 imprint.

    Directory of Open Access Journals (Sweden)

    Deniz Kanber

    Full Text Available The human RB1 gene is imprinted due to a differentially methylated CpG island in intron 2. This CpG island is part of PPP1R26P1, a truncated retrocopy of PPP1R26, and serves as a promoter for an alternative RB1 transcript. We show here by in silico analyses that the parental PPP1R26 gene is present in the analysed members of Haplorrhini, which comprise Catarrhini (Old World Monkeys, Small apes, Great Apes and Human, Platyrrhini (New World Monkeys and tarsier, and Strepsirrhini (galago. Interestingly, we detected the retrocopy, PPP1R26P1, in all Anthropoidea (Catarrhini and Platyrrhini that we studied but not in tarsier or galago. Additional retrocopies are present in human and chimpanzee on chromosome 22, but their distinct composition indicates that they are the result of independent retrotransposition events. Chimpanzee and marmoset have further retrocopies on chromosome 8 and chromosome 4, respectively. To examine the origin of the RB1 imprint, we compared the methylation patterns of the parental PPP1R26 gene and its retrocopies in different primates (human, chimpanzee, orangutan, rhesus macaque, marmoset and galago. Methylation analysis by deep bisulfite sequencing showed that PPP1R26 is methylated whereas the retrocopy in RB1 intron 2 is differentially methylated in all primates studied. All other retrocopies are fully methylated, except for the additional retrocopy on marmoset chromosome 4, which is also differentially methylated. Using an informative SNP for the methylation analysis in marmoset, we could show that the differential methylation pattern of the retrocopy on chromosome 4 is allele-specific. We conclude that the epigenetic fate of a PPP1R26 retrocopy after integration depends on the DNA sequence and selective forces at the integration site.

  18. Dimensional characterization of biperiodic imprinted structures using optical scatterometry

    KAUST Repository

    Gereige, Issam; Pietroy, David; Eid, Jessica; Gourgon, Cé cile

    2013-01-01

    In this paper, we report on the characterization of biperiodic imprinted structures using a non-destructive optical technique commonly called scatterometry. The nanostructures consist of periodic arrays of square and circular dots which were

  19. [Evolution of genomic imprinting in mammals: what a zoo!].

    Science.gov (United States)

    Proudhon, Charlotte; Bourc'his, Déborah

    2010-05-01

    Genomic imprinting imposes an obligate mode of biparental reproduction in mammals. This phenomenon results from the monoparental expression of a subset of genes. This specific gene regulation mechanism affects viviparous mammals, especially eutherians, but also marsupials to a lesser extent. Oviparous mammals, or monotremes, do not seem to demonstrate monoparental allele expression. This phylogenic confinement suggests that the evolution of the placenta imposed a selective pressure for the emergence of genomic imprinting. This physiological argument is now complemented by recent genomic evidence facilitated by the sequencing of the platypus genome, a rare modern day case of a monotreme. Analysis of the platypus genome in comparison to eutherian genomes shows a chronological and functional coincidence between the appearance of genomic imprinting and transposable element accumulation. The systematic comparative analyses of genomic sequences in different species is essential for the further understanding of genomic imprinting emergence and divergent evolution along mammalian speciation.

  20. Investigating the Incorporation of Personality Constructs into IMPRINT

    National Research Council Canada - National Science Library

    Dickason, David; Sargent, Bob; Bagnall, Tim

    2009-01-01

    ... in the Army, for use in Navy ship acquisitions. The objective of this study was to determine if it was feasible to incorporate non-cognitive attributes such as stress tolerance into IMPRINT for use as human performance moderators...

  1. Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting

    National Research Council Canada - National Science Library

    Low, Tammy K

    2006-01-01

    .... Our research goals consisted of employing olefin metathesis in the synthesis of peptidomimetics, and studying the feasibility of this method in dynamic combinatorial chemistry and molecular imprinting of nerve agents...

  2. Dimensional characterization of biperiodic imprinted structures using optical scatterometry

    KAUST Repository

    Gereige, Issam

    2013-12-01

    In this paper, we report on the characterization of biperiodic imprinted structures using a non-destructive optical technique commonly called scatterometry. The nanostructures consist of periodic arrays of square and circular dots which were imprinted in a thermoplastic polymer by thermal nanoimprint lithography. Optical measurements were performed using spectroscopic ellipsometry in the spectral region of 1.5-4 eV. The geometrical profiles of the imprinted structures were reconstructed using the Rigorous Coupled-Wave Analysis (RCWA) to model the diffraction phenomena by periodic gratings. The technique was also adapted for large scale evaluation of the imprint process. Uniqueness of the solution was examined by analyzing the diffraction of the structure at different experimental conditions, for instance at various angles of incidence. © 2013 Elsevier B.V. All rights reserved.

  3. Highly selective determination of methylmercury with methylmercury-imprinted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yongwen [Department of Chemistry, Shanxi Datong University, Datong 037009 (China)]. E-mail: dtlyw@263.net; Zai Yunhui [School of Chemistry and Chemical Engineering of Lanzhou University, Lanzhou 730000 (China); Chang Xijun [School of Chemistry and Chemical Engineering of Lanzhou University, Lanzhou 730000 (China); Guo Yong [Department of Chemistry, Shanxi Datong University, Datong 037009 (China); Meng Shuangming [Department of Chemistry, Shanxi Datong University, Datong 037009 (China); Feng Feng [Department of Chemistry, Shanxi Datong University, Datong 037009 (China)

    2006-08-11

    Methylmercury-imprinted and non-imprinted polymers were prepared by formation monomer complex of methylmercury with (4-ethenylphenyl)-4-formate-6-phenyl-2,2'-bipyridine and thermally polymerizing with divinylbenzene (crosslinker) in the presence of 2,2'-azobisisobutyronitrile as initiator and subsequently leached with the acidic thiourea solution (1.0 mol L{sup -1} of thiourea and 4.0 mol L{sup -1} of HCl). In the same way, non-imprinted copolymers were prepared without methylmercury chloride added. The separation and preconcentration characteristics of the polymers for methylmercury were investigated by batch and column procedures. The results demonstrated that the methylmercury-imprinted polymers had higher adsorption capacity (170 {mu}mol g{sup -1} of dry microbeads) and good selectivity for methylmercury compared to non-imprinted polymers. The distribution ratio (D) values of the methylmercury-imprinted polymers increased for methylmercury with respect to both D values of Hg(II), Cu(II), Zn(II), Cd(II) and non-imprinted polymers. The relatively selective factor ({alpha} {sub r}) values of CH{sub 3}Hg{sup +}/Hg(II), CH{sub 3}Hg{sup +}/Cu(II), CH{sub 3}Hg{sup +}/Zn(II), and CH{sub 3}Hg{sup +}/Cd(II) are 24.0, 46.7, 50.7, and 40.2, which are greater than 1. The methylmercury-imprinted polymers can be used at least twenty times with recoveries no less than 95%. Based on the packed columns with methylmercury-imprinted polymers, a highly selective solid-phase extraction (SPE) and preconcentration method for methylmercury was developed. The metal ion imprinted polymer solid-phase extraction (MIIP-SPE) preconcentration procedure showed a linear calibration curve within concentration range from 0.093 to 22 {mu}g L{sup -1}. The detection limit and quantification limit were 0.041 and 0.093 {mu}g L{sup -1} (3{sigma}) for cold vapor atomic absorption spectrometry (CVAAS). The relative standard deviation of the 10 replicate determinations was 3.5% for the

  4. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  5. Geometry sensing by dendritic cells dictates spatial organization and PGE(2)-induced dissolution of podosomes.

    NARCIS (Netherlands)

    Dries, K. van den; Helden, S.F.G. van; Riet, J.T. te; Diez-Ahedo, R.; Manzo, C.; Oud, M.M.; Leeuwen, F.N. van; Brock, R.E.; Garcia-Parajo, M.F.; Cambi, A.; Figdor, C.G.

    2012-01-01

    Assembly and disassembly of adhesion structures such as focal adhesions (FAs) and podosomes regulate cell adhesion and differentiation. On antigen-presenting dendritic cells (DCs), acquisition of a migratory and immunostimulatory phenotype depends on podosome dissolution by prostaglandin E(2)

  6. Diagnostic accuracy of touch imprint cytology for head and neck malignancies: a useful intra-operative tool in resource limited countries.

    Science.gov (United States)

    Naveed, Hania; Abid, Mariam; Hashmi, Atif Ali; Edhi, Muhammad Muzammamil; Sheikh, Ahmareen Khalid; Mudassir, Ghazala; Khan, Amir

    2017-01-01

    Intraoperative consultation is an important tool for the evaluation of the upper aerodigestive tract (UAT) malignancies. Although frozen section analysis is a preferred method of intra-operative consultation, however in resource limited countries like Pakistan, this facility is not available in most institutes; therefore, we aimed to evaluate the diagnostic accuracy of touch imprint cytology for UAT malignancies using histopathology of the same tissue as gold standard. The study involved 70 cases of UAT lesions operated during the study period. Intraoperatively, after obtaining the fresh biopsy specimen and prior to placing them in fixative, each specimen was imprinted on 4-6 glass slides, fixed immediately in 95% alcohol and stained with Hematoxylin and Eosin stain. After completion of the cytological procedure, the surgical biopsy specimen was processed. The slides of both touch Imprint cytology and histopathology were examined by two consultant histopathologists. The result of touch imprint cytology showed that touch imprint cytology was diagnostic in 68 cases (97.1%), 55 (78.6%) being malignant, 2 cases (2.9%) were suspicious for malignancy, 11 cases (15.7%) were negative for malignancy while 2 cases (2.9%) were false negative. Amongst the 70 cases, 55 cases (78.6%) were malignant showing squamous cell carcinoma in 49 cases (70%), adenoid cystic carcinoma in 2 cases (2.9%), non-Hodgkin lymphoma 2 cases (2.9%), Mucoepidermoid carcinoma 1 case (1.4%), spindle cell sarcoma in 1 case (1.4%). Two cases (2.9%) were suspicious of malignancy showing atypical squamoid cells on touch imprint cytology, while 13 cases (18.6%) were negative for malignancy, which also included 2 false negative cases. The overall diagnostic accuracy of touch imprint cytology came out to be 96.7% with a sensitivity and specificity of 96 and 100%, respectively while PPV and NPV of touch imprint cytology was found to be 100 and 84%, respectively. Our experience in this study has demonstrated

  7. New molecular imprinted voltammetric sensor for determination of ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Yola, Mehmet Lütfi, E-mail: mehmetyola@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop (Turkey); Gupta, Vinod Kumar, E-mail: vinodfcy@iitr.ac.in [Indian Institute of Technology, Department of Chemistry, Roorkee, Roorkee 247667 (India); Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa); Atar, Necip [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey)

    2016-04-01

    In this report, a novel molecular imprinted voltammetric sensor based on silver nanoparticles (AgNPs) involved in a polyoxometalate (H{sub 3}PW{sub 12}O{sub 40}, POM) functionalized reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) was presented for determination of ochrattoxin A (OCH). The developed surfaces were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. OCH imprinted GCE was prepared via electropolymerization process of 100 mM phenol as monomer in the presence of phosphate buffer solution (pH 6.0) containing 25 mM OCH. The linearity range and the detection limit of the method were calculated as 5.0 × 10{sup −11} − 1.5 × 10{sup −9} M and 1.6 × 10{sup −11} M, respectively. The voltammetric sensor was applied to grape juice and wine samples with good selectivity and recovery. The stability of the voltammetric sensor was also reported. - Highlights: • Ochratoxin A-imprinted electrochemical sensor is developed for the sensitive detection of ochratoxin A • The nanomaterial and ochratoxin A-imprinted surfaces were characterized by several methods • Ochratoxin A-imprinted electrochemical sensor is sensitive and selective in analysis of food • Ochratoxin A-imprinted electrochemical sensor is preferred to the other methods.

  8. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi, E-mail: mehmetyola@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop (Turkey); Eren, Tanju [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey)

    2016-01-30

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H{sub 3}PW{sub 12}O{sub 40}, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10{sup −12}–1.0 × 10{sup −10} M and 2.0 × 10{sup −13} M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  9. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    International Nuclear Information System (INIS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H_3PW_1_2O_4_0, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10"−"1"2–1.0 × 10"−"1"0 M and 2.0 × 10"−"1"3 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  10. New molecular imprinted voltammetric sensor for determination of ochratoxin A

    International Nuclear Information System (INIS)

    Yola, Mehmet Lütfi; Gupta, Vinod Kumar; Atar, Necip

    2016-01-01

    In this report, a novel molecular imprinted voltammetric sensor based on silver nanoparticles (AgNPs) involved in a polyoxometalate (H_3PW_1_2O_4_0, POM) functionalized reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) was presented for determination of ochrattoxin A (OCH). The developed surfaces were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. OCH imprinted GCE was prepared via electropolymerization process of 100 mM phenol as monomer in the presence of phosphate buffer solution (pH 6.0) containing 25 mM OCH. The linearity range and the detection limit of the method were calculated as 5.0 × 10"−"1"1 − 1.5 × 10"−"9 M and 1.6 × 10"−"1"1 M, respectively. The voltammetric sensor was applied to grape juice and wine samples with good selectivity and recovery. The stability of the voltammetric sensor was also reported. - Highlights: • Ochratoxin A-imprinted electrochemical sensor is developed for the sensitive detection of ochratoxin A • The nanomaterial and ochratoxin A-imprinted surfaces were characterized by several methods • Ochratoxin A-imprinted electrochemical sensor is sensitive and selective in analysis of food • Ochratoxin A-imprinted electrochemical sensor is preferred to the other methods

  11. Molecularly Imprinted Polymers: Novel Discovery for Drug Delivery.

    Science.gov (United States)

    Dhanashree, Surve; Priyanka, Mohite; Manisha, Karpe; Vilasrao, Kadam

    2016-01-01

    Molecularly imprinted polymers (MIP) are novel carriers synthesized by imprinting of a template over a polymer. This paper presents the recent application of MIP for diagnostic and therapeutic drug delivery. MIP owing to their 3D polymeric structures and due to bond formation with the template serves as a reservoir of active causing stimuli sensitive, enantioselective, targetted and/or controlled release. The review elaborates about key factors for optimization of MIP, controlled release by MIP for various administration routes various forms like patches, contact lenses, nanowires along with illustrations. To overcome the limitation of organic solvent usage causing increased cost, water compatible MIP and use of supercritical fluid technology for molecular imprinting were developed. Novel methods for developing water compatible MIP like pickering emulsion polymerization, co-precipitation method, cyclodextrin imprinting, surface grafting, controlled/living radical chain polymerization methods are described with illustration in this review. Various protein imprinting methods like bulk, epitope and surface imprinting are described along with illustrations. Further, application of MIP in microdevices as biomimetic sensing element for personalized therapy is elaborated. Although development and application of MIP in drug delivery is still at its infancy, constant efforts of researchers will lead to a novel intelligent drug delivery with commercial value. Efforts should be directed in developing solid oral dosage forms consisting of MIP for therapeutic protein and peptide delivery and targeted release of potent drugs addressing life threatening disease like cancer. Amalgamation of bio-engineering and pharmaceutical techniques can make these future prospects into reality.

  12. Design of molecular imprinted polymers compatible with aqueous environment.

    Science.gov (United States)

    Piletska, Elena V; Guerreiro, Antonio R; Romero-Guerra, Maria; Chianella, Iva; Turner, Anthony P F; Piletsky, Sergey A

    2008-01-21

    The main problem of poor water compatibility of molecularly imprinted polymers (MIPs) was addressed in examples describing design of synthetic receptors with high affinity for drugs of abuse. An extensive potentiometric titration of 10 popular functional monomers and corresponding imprinted and blank polymers was conducted in order to evaluate the subtleties of functional groups ionisation under aqueous conditions. It was found that polymers prepared using 2-trifluoromethacrylic acid (TFMAA) in combination with toluene as porogen possess superior properties which make them suitable for effective template recognition in water. The potential impact of phase separation during polymerisation on formation of high quality imprints has been discussed. Three drugs of abuse such as cocaine, deoxyephedrine and methadone were used as template models in polymer preparation for the practical validation of obtained results. The polymer testing showed that synthesized molecularly imprinted polymers have high affinity and selectivity for corresponding templates in aqueous environment, with imprinting factors of 2.6 for cocaine and 1.4 for methadone and deoxyephedrine. Corresponding blank polymers were unable to differentiate between analytes, suggesting that imprinting phenomenon was responsible for the recognition properties.

  13. Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid.

    Science.gov (United States)

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-02-26

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

  14. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    Directory of Open Access Journals (Sweden)

    Bianca Schweiger

    2015-02-01

    Full Text Available Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP and non-imprinted polymer (NIP layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

  15. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Transcriptome atlas of eight liver cell types uncovers effects of ...

    Indian Academy of Sciences (India)

    2010-12-06

    Dec 6, 2010 ... by autocrine or paracrine systems can reduce antigen present- ing capacity of immune cells, ... polypeptide (GNAQ), glycosylphosphatidylinositol specific phosphorlipase C ...... profiling of prostate cancer. BMC Mol. Biol. 8, 25.

  17. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity

    International Nuclear Information System (INIS)

    Esfandyari-Manesh, Mehdi; Darvishi, Behrad; Ishkuh, Fatemeh Azizi; Shahmoradi, Elnaz; Mohammadi, Ali; Javanbakht, Mehran; Dinarvand, Rassoul; Atyabi, Fatemeh

    2016-01-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC_5_0) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. - Highlights: • MIP-PEG-FA was synthesized as a controlled release carrier for targeting delivery to cancerous cells. • Nanoparticles

  18. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Esfandyari-Manesh, Mehdi [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Darvishi, Behrad [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ishkuh, Fatemeh Azizi [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shahmoradi, Elnaz [Department of Chemical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mohammadi, Ali [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Javanbakht, Mehran [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh, E-mail: atyabifa@tums.ac.ir [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-05-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC{sub 50}) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. - Highlights: • MIP-PEG-FA was synthesized as a controlled release carrier for targeting delivery to cancerous cells. • Nanoparticles

  19. Distinguishing epigenetic marks of developmental and imprinting regulation

    Directory of Open Access Journals (Sweden)

    McEwen Kirsten R

    2010-01-01

    Full Text Available Abstract Background The field of epigenetics is developing rapidly, however we are only beginning to comprehend the complexity of its influence on gene regulation. Using genomic imprinting as a model we examine epigenetic profiles associated with different forms of gene regulation. Imprinting refers to the expression of a gene from only one of the chromosome homologues in a parental-origin-specific manner. This is dependent on heritable germline epigenetic control at a cis-acting imprinting control region that influences local epigenetic states. Epigenetic modifications associated with imprinting regulation can be compared to those associated with the more canonical developmental regulation, important for processes such as differentiation and tissue specificity. Here we test the hypothesis that these two mechanisms are associated with different histone modification enrichment patterns. Results Using high-throughput data extraction with subsequent analysis, we have found that particular histone modifications are more likely to be associated with either imprinting repression or developmental repression of imprinted genes. H3K9me3 and H4K20me3 are together enriched at imprinted genes with differentially methylated promoters and do not show a correlation with developmental regulation. H3K27me3 and H3K4me3, however, are more often associated with developmental regulation. We find that imprinted genes are subject to developmental regulation through bivalency with H3K4me3 and H3K27me3 enrichment on the same allele. Furthermore, a specific tri-mark signature comprising H3K4me3, H3K9me3 and H4K20me3 has been identified at all imprinting control regions. Conclusion A large amount of data is produced from whole-genome expression and epigenetic profiling studies of cellular material. We have shown that such publicly available data can be mined and analysed in order to generate novel findings for categories of genes or regulatory elements. Comparing two

  20. Possible involvement of loss of imprinting in immortalization of human fibroblasts.

    Science.gov (United States)

    Okamura, Kotaro; Ohno, Maki; Tsutsui, Takeki

    2011-04-01

    Disruption of the normal pattern of parental origin-specific gene expression is referred to as loss of imprinting (LOI), which is common in various cancers. To investigate a possible role of LOI in the early stage of human cell transformation, we studied LOI in 18 human fibroblast cell lines immortalized spontaneously, by viral oncogenes, by chemical or physical carcinogens, or by infection with a retrovirus vector encoding the human telomerase catalytic subunit, hTERT cDNA. LOI was observed in all the 18 immortal cell lines. The gene most commonly exhibiting LOI was NDN which displayed LOI in 15 of the 18 cell lines (83%). The other genes exhibiting LOI at high frequencies were PEG3 (50%), MAGE-L2 (61%) and ZNF 127 (50%). Expression of NDN that was lost in the immortal cell lines was restored by treatment with 5-aza-2'-deoxycytidine. The ratio of histone H3 lysine 9 methylation to histone H3 lysine 4 methylation of the chromatin containing the NDN promoter in the immortal WI-38VA13 cells was greater than that in the parental cells, suggesting chromatin structure-mediated regulation of NDN expression. We previously demonstrated that inactivation of the p16INK4a/pRb pathway is necessary for immortalization of human cells. Human fibroblasts in the pre-crisis phase and cells with an extended lifespan that eventually senesce, both of which have the normal p16INK4a/pRb pathway, did not show LOI at any imprinted gene examined. Although it is not clear if LOI plays a causal role in immortalization of human cells or is merely coincidental, these findings indicate a possible involvement of LOI in immortalization of human cells or a common mechanism involved in both processes.

  1. Parental genome dosage imbalance deregulates imprinting in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Pauline E Jullien

    2010-03-01

    Full Text Available In mammals and in plants, parental genome dosage imbalance deregulates embryo growth and might be involved in reproductive isolation between emerging new species. Increased dosage of maternal genomes represses growth while an increased dosage of paternal genomes has the opposite effect. These observations led to the discovery of imprinted genes, which are expressed by a single parental allele. It was further proposed in the frame of the parental conflict theory that parental genome imbalances are directly mirrored by antagonistic regulations of imprinted genes encoding maternal growth inhibitors and paternal growth enhancers. However these hypotheses were never tested directly. Here, we investigated the effect of parental genome imbalance on the expression of Arabidopsis imprinted genes FERTILIZATION INDEPENDENT SEED2 (FIS2 and FLOWERING WAGENINGEN (FWA controlled by DNA methylation, and MEDEA (MEA and PHERES1 (PHE1 controlled by histone methylation. Genome dosage imbalance deregulated the expression of FIS2 and PHE1 in an antagonistic manner. In addition increased dosage of inactive alleles caused a loss of imprinting of FIS2 and MEA. Although FIS2 controls histone methylation, which represses MEA and PHE1 expression, the changes of PHE1 and MEA expression could not be fully accounted for by the corresponding fluctuations of FIS2 expression. Our results show that parental genome dosage imbalance deregulates imprinting using mechanisms, which are independent from known regulators of imprinting. The complexity of the network of regulations between expressed and silenced alleles of imprinted genes activated in response to parental dosage imbalance does not support simple models derived from the parental conflict hypothesis.

  2. Deregulation of an imprinted gene network in prostate cancer.

    Science.gov (United States)

    Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A

    2014-05-01

    Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes.

  3. Molecular scale modeling of polymer imprint nanolithography.

    Science.gov (United States)

    Chandross, Michael; Grest, Gary S

    2012-01-10

    We present the results of large-scale molecular dynamics simulations of two different nanolithographic processes, step-flash imprint lithography (SFIL), and hot embossing. We insert rigid stamps into an entangled bead-spring polymer melt above the glass transition temperature. After equilibration, the polymer is then hardened in one of two ways, depending on the specific process to be modeled. For SFIL, we cross-link the polymer chains by introducing bonds between neighboring beads. To model hot embossing, we instead cool the melt to below the glass transition temperature. We then study the ability of these methods to retain features by removing the stamps, both with a zero-stress removal process in which stamp atoms are instantaneously deleted from the system as well as a more physical process in which the stamp is pulled from the hardened polymer at fixed velocity. We find that it is necessary to coat the stamp with an antifriction coating to achieve clean removal of the stamp. We further find that a high density of cross-links is necessary for good feature retention in the SFIL process. The hot embossing process results in good feature retention at all length scales studied as long as coated, low surface energy stamps are used.

  4. The "silent" imprint of musical training.

    Science.gov (United States)

    Klein, Carina; Liem, Franziskus; Hänggi, Jürgen; Elmer, Stefan; Jäncke, Lutz

    2016-02-01

    Playing a musical instrument at a professional level is a complex multimodal task requiring information integration between different brain regions supporting auditory, somatosensory, motor, and cognitive functions. These kinds of task-specific activations are known to have a profound influence on both the functional and structural architecture of the human brain. However, until now, it is widely unknown whether this specific imprint of musical practice can still be detected during rest when no musical instrument is used. Therefore, we applied high-density electroencephalography and evaluated whole-brain functional connectivity as well as small-world topologies (i.e., node degree) during resting state in a sample of 15 professional musicians and 15 nonmusicians. As expected, musicians demonstrate increased intra- and interhemispheric functional connectivity between those brain regions that are typically involved in music perception and production, such as the auditory, the sensorimotor, and prefrontal cortex as well as Broca's area. In addition, mean connectivity within this specific network was positively related to musical skill and the total number of training hours. Thus, we conclude that musical training distinctively shapes intrinsic functional network characteristics in such a manner that its signature can still be detected during a task-free condition. Hum Brain Mapp 37:536-546, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds.

    NARCIS (Netherlands)

    Mckeown, P.C.; Laouielle-Duprat, S.; Prins, J.C.P.; Wolff, de P.; Schmid, M.W.; Donoghue, M.T.; Fort, A.; Duszynska, D.; Comte, A.; Lao, N.T.; Wennblom, T.J.; Smant, G.; Köhler, C.; Grossniklaus, U.; Spillane, C.

    2011-01-01

    Background: Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized

  6. Highly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2013-09-01

    Full Text Available A fluorescent molecularly imprinted nanosensor was obtained by grafting imprinted polymer onto the surface of multi-wall carbon nanotubes and post-imprinting treatment with fluorescein isothiocyanate (FITC. The fluorescence of lysozyme-imprinted polymer (Lys-MIP was quenched more strongly by Lys than that of nonimprinted polymer (NIP, which indicated that the Lys-MIP could recognize Lys. The resulted imprinted material has the ability to selectively sense a target protein, and an imprinting factor of 3.34 was achieved. The Lys-MIP also showed selective detection for Lys among other proteins such as cytochrome C (Cyt C, hemoglobin (HB and bovine serum albumin (BSA due to the imprinted sites in the Lys-MIP. This approach combines the high selectivity of surface molecular imprinting technology and fluorescence, and converts binding events into detectable signals by monitoring fluorescence spectra. Therefore, it will have further applications for Lys sensing.

  7. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    International Nuclear Information System (INIS)

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-01-01

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent (∼10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT).

  8. Pleomorphic rhabdomyosarcoma arising in the anterior mediastinum: A case report with cytological features of imprint and liquid-based cytology specimens.

    Science.gov (United States)

    Nishijima, Yoshimi; Hirato, Junko; Fukuda, Toshio

    2017-04-01

    We herein report the cytological features of a very rare case of pleomorphic rhabdomyosarcoma arising in the anterior mediastinum on imprint and liquid-based cytology (LBC) specimens. A 58-year-old man had an approximately 10-cm tumor in the anterior mediastinum as shown on computed tomography. Thymectomy with complete resection of the left lung was performed. The fresh cut surface of the tumor was used to prepare imprint and LBC specimens. The imprint specimens showed four types of tumor cells dispersed on a background of hemorrhage, necrosis, and mucus. On the other hand, only two types of tumor cells (spindle-shaped and spiderweb cells) were scattered or present in clusters in the LBC specimens. Immunocytologically, both of these cell types were positive for desmin and myoglobin, negative for pan-keratin and epithelial membrane antigen. Cytological and immunocytological features are useful for the correct diagnosis of pleomorphic rhabdomyosarcoma, and LBC specimens show clearer results than do imprint specimens. Diagn. Cytopathol. 2017;45:333-338. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Molecularly Imprinted Polypyrrole Based Impedimentric Sensor for Theophylline Determination

    International Nuclear Information System (INIS)

    Ratautaite, Vilma; Janssens, Stoffel D.; Haenen, Ken; Nesládek, Milos; Ramanaviciene, Almira; Baleviciute, Ieva; Ramanavicius, Arunas

    2014-01-01

    Highlights: • Sensor based on polypyrrole imprinted by theophylline (MIP) deposited on oxygen terminated boron-doped nanocrystalline diamond was developed. • This structure was applied as impedimetric sensor sensitive for theophylline. • Optimal polymer formation conditions suitable for MIP formation were elaborated. • Some analytical parameters were determined and evaluated. - Abstract: In this study development of impedimetric sensor based on oxygen terminated boron-doped nanocrystalline diamond (B:NCD:O) modified with theophylline imprinted polypyrrole is described. Hydrogen peroxide induced chemical formation of polypyrrole molecularly imprinted by theophylline was applied for the modification of conducting silicon substrate covered by B:NCD:O film. Non-imprinted polypyrrole layer was formed on similar substrate in order to prove efficiency of imprinted polypyrrole. Electrochemical impedance spectroscopy was applied for the evaluation of analyte-induced changes in electrochemical capacitance/resistance. The impact of polymerization duration on the capacitance of impedimetric sensor was estimated. A different impedance behavior was observed at different ratio of polymerized monomer and template molecule in the polymerization media. The influence of ethanol as additive to polymerization media on registered changes in capacitance/resistance was evaluated. Degradation of sensor stored in buffer solution was evaluated

  10. Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine

    Directory of Open Access Journals (Sweden)

    Shah Nasrullah

    2016-09-01

    Full Text Available Two types of composite imprinted membranes, i.e., composite membrane comprised of D-Phe imprinted beads and D-Phe imprinted membrane or DCM and composite membrane comprised of L-Phe imprinted beads and L-Phe imprinted membranes or LCM, were synthesized by phase inversion technique after a uniform dispersion of beads within the polymeric solutions using simple physico-mechanical process. The assemblies of the prepared DCM, LCM and control membranes were employed in ultrafiltration for chiral separation of D, L-Phenylalanine racemate solution. DCM and LCM showed an improved adsorption capacity (0.334 mg g-1 and 0.365 mg g-1 respectively, and adsorption selectivity (2.72 and 2.98 respectively. However, the percent rejection of the template and counter enantiomer were lower than that of control membranes. Compared to control membrane, the DCM and LCM showed inverse permselectivity. These composite membranes having better adsorption and separation ability for Phenylalanine racemate solution will be suitable in the future for various other applications.

  11. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Science.gov (United States)

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  12. [The lymph nodes imprint for the diagnosis of lymphoid neoplasms].

    Science.gov (United States)

    Peniche-Alvarado, Carolina; Ramos-Peñafiel, Christian Omar; Martínez-Murillo, Carlos; Romero-Guadarrama, Mónica; Olarte-Carrillo, Irma; Rozen-Fuller, Etta; Martínez-Tovar, Adolfo; Collazo-Jaloma, Juan; Mendoza-García, Carlos Alberto

    2013-01-01

    lymphoma is the most frequent lymphoid neoplasm in our country. Its diagnosis is based on histopathological findings. The lymph node imprint has been used for more than 40 years. The aim was to establish the sensitivity, specificity, positive predictive value and negative predictive value of lymph node imprint and estimate the inter-observer rate. we did an observational, retrospective, prolective study, based on the lymph node imprint obtained by excisional biopsies over a period of 6 years. the inclusion criteria was met on 199 samples, 27.1 % were considered as reactive (n = 54), 16.1 % Hodgkin lymphoma (n = 32), 40.2 % (n = 80) non-Hodgkin lymphoma and 16.6 % (n = 33) as metastatic carcinoma. Comparing with the final histopathology report, the sensitivity and specificity of lymph node imprint were 88 % (0.81-0.95) and 64 % (0.55-0.73) respectively, the positive predictive value was 67 % (0.59-0.76) and the negative predictive value was 86 % (0.79-0.94). The interobserver kappa index was 0.467. the lymph node imprint remains as a useful tool for the diagnosis of lymphoid neoplasm. The agreement between observers was acceptable.

  13. Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization.

    Science.gov (United States)

    Yang, Guanghui; Liu, Zhenshan; Gao, Lulu; Yu, Kuohai; Feng, Man; Yao, Yingyin; Peng, Huiru; Hu, Zhaorong; Sun, Qixin; Ni, Zhongfu; Xin, Mingming

    2018-01-01

    Genomic imprinting is an epigenetic phenomenon that causes genes to be differentially expressed depending on their parent of origin. To evaluate the evolutionary conservation of genomic imprinting and the effects of ploidy on this process, we investigated parent-of-origin-specific gene expression patterns in the endosperm of diploid ( Aegilops spp), tetraploid, and hexaploid wheat ( Triticum spp) at various stages of development via high-throughput transcriptome sequencing. We identified 91, 135, and 146 maternally or paternally expressed genes (MEGs or PEGs, respectively) in diploid, tetraploid, and hexaploid wheat, respectively, 52.7% of which exhibited dynamic expression patterns at different developmental stages. Gene Ontology enrichment analysis suggested that MEGs and PEGs were involved in metabolic processes and DNA-dependent transcription, respectively. Nearly half of the imprinted genes exhibited conserved expression patterns during wheat hexaploidization. In addition, 40% of the homoeolog pairs originating from whole-genome duplication were consistently maternally or paternally biased in the different subgenomes of hexaploid wheat. Furthermore, imprinted expression was found for 41.2% and 50.0% of homolog pairs that evolved by tandem duplication after genome duplication in tetraploid and hexaploid wheat, respectively. These results suggest that genomic imprinting was evolutionarily conserved between closely related Triticum and Aegilops species and in the face of polyploid hybridization between species in these genera. © 2018 American Society of Plant Biologists. All rights reserved.

  14. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    Science.gov (United States)

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    Science.gov (United States)

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  17. Molecularly Imprinted Polymers for 5-Fluorouracil Release in Biological Fluids

    Directory of Open Access Journals (Sweden)

    Franco Alhaique

    2007-04-01

    Full Text Available The aim of this work was to investigate the possibility of employing Molecularly Imprinted Polymers (MIPs as a controlled release device for 5-fluorouracil (5-FU in biological fluids, especially gastrointestinal ones, compared to Non Imprinted Polymers (NIPs. MIPs were synthesized using methacrylic acid (MAA as functional monomer and ethylene glycol dimethacrylate (EGDMA as crosslinking agent. The capacity of the polymer to recognize and to bind the template selectively in both organic and aqueous media was evaluated. An in vitro release study was performed both in gastrointestinal and in plasma simulating fluids. The imprinted polymers bound much more 5-Fu than the corresponding non-imprinted ones and showed a controlled/sustained drug release, with MIPs release rate being indeed much more sustained than that obtained from NIPs. These polymers represent a potential valid system for drug delivery and this study indicates that the selective binding characteristic of molecularly imprinted polymers is promising for the preparation of novel controlled release drug dosage form.

  18. Innovative Design and Performance Evaluation of Bionic Imprinting Toothed Wheel.

    Science.gov (United States)

    Zhang, Zhihong; Wang, Xiaoyang; Tong, Jin; Stephen, Carr

    2018-01-01

    A highly efficient soil-burrowing dung beetle possesses an intricate outer contour curve on its foreleg end-tooth. This study was carried out based on evidence that this special outer contour curve has the potential of reducing soil penetration resistance and could enhance soil-burrowing efficiency. A toothed wheel is a typical agricultural implement for soil imprinting, to increase its working efficiency; the approach of the bionic geometrical structure was utilized to optimize the innovative shape of imprinting toothed wheel. Characteristics in the dung beetle's foreleg end-tooth were extracted and studied by the edge detection technique. Then, this special outer contour curve was modeled by a nine-order polynomial function and used for the innovative design of imprinting the tooth's cutting edge. Both the conventional and bionic teeth were manufactured, and traction tests in a soil bin were conducted. Taking required draft force and volume of imprinted microbasin as the evaluating indexes, operating efficiency and quality of different toothed wheels were compared and investigated. Results indicate that compared with the conventional toothed wheel, a bionic toothed wheel possesses a better forward resistance reduction property against soil and, meanwhile, can enhance the quality of soil imprinting by increasing the volume of the created micro-basin.

  19. Polymer Catalysts Imprinted with Metal Ions as Biomimics of Metalloenzymes

    Directory of Open Access Journals (Sweden)

    Joanna Czulak

    2013-01-01

    Full Text Available This work presents the preparation and properties of molecularly imprinted polymers (MIPs with catalytic centers that mimic the active sites of metalloenzymes. The MIP synthesis was based on suspension polymerization of functional monomers (4-vinylpyridine and acrylonitrile with trimethylolpropane trimethacrylate as a crosslinker in the presence of transition metal ions and 4-methoxybenzyl alcohol as a template. Four metal ions have been chosen for imprinting from among the microelements that are the most essential in the native enzymes: Cu2+, Co2+, Mn2+, and Zn2+. To prepare catalysts, the required loading of metal ions was obtained during sorption process. The catalysts imprinted with Cu2+, Co2+, and Zn2+ were successfully used for hydroquinone oxidation in the presence of hydrogen peroxide. The Mn2+-imprinted catalyst showed no activity due to the insufficient metal loading. Cu2+ MIP showed the highest efficiency. In case of Cu- and Co-MIP catalysts, their activity was additionally increased by the use of surface imprinting technique.

  20. Molecular imprinting at walls of silica nanotubes for TNT recognition.

    Science.gov (United States)

    Xie, Chenggen; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Guan, Guijian; Zhang, Zhongping

    2008-01-15

    This paper reports the molecular imprinting at the walls of highly uniform silica nanotubes for the recognition of 2,4,6-trinitrotoluene (TNT). It has been demonstrated that TNT templates were efficiently imprinted into the matrix of silica through the strong acid-base pairing interaction between TNT and 3-aminopropyltriethoxysilane (APTS). TNT-imprinted silica nanotubes were synthesized by the gelation reaction between APTS and tetraethylorthosilicate (TEOS), selectively occurring at the porous walls of APTS-modified alumina membranes. The removal of the original TNT templates leaves the imprinted cavities with covalently anchored amine groups at the cavity walls. A high density of recognition sites with molecular selectivity to the TNT analyte was created at the wall of silica nanotubes. Furthermore, most of these recognition sites are situated at the inside and outside surfaces of tubular walls and in the proximity of the two surfaces due to the ultrathin wall thickness of only 15 nm, providing a better site accessibility and lower mass-transfer resistance. Therefore, greater capacity and faster kinetics of uptaking target species were achieved. The silica nanotube reported herein is an ideal form of material for imprinting various organic or biological molecules toward applications in chemical/biological sensors and bioassay.

  1. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...

  2. The loss of imprinted DNA methylation in mouse blastocysts is inflicted to a similar extent by in vitro follicle culture and ovulation induction.

    Science.gov (United States)

    Saenz-de-Juano, M D; Billooye, K; Smitz, J; Anckaert, E

    2016-06-01

    Does in vitro follicle culture (IFC) have an effect on maintenance of imprinted DNA methylation in preimplantation mouse embryos? We report similar alterations in the methylation pattern of H19 imprinted maternally expressed transcript (H19), small nuclear ribonucleoprotein polypeptide N (Snrpn) and mesoderm specific transcript (Mest) imprinted genes in mouse blastocysts obtained after ovulation induction and IFC. Furthermore, we observed no differences in the gene expression of maternal effect proteins related with imprinting maintenance between superovulated in vivo grown or IFC oocytes. Assisted reproductive technology is associated with adverse post-natal outcomes such as increased risk of premature birth, altered birthweight, congenital anomalies and genomic imprinting syndromes in human and in animal models. Previous studies have shown that ovulation induction allowed normal imprinting establishment in mouse oocytes, but interfered with imprinting maintenance during preimplantation . Normal imprinting establishment was also observed in mouse oocytes derived from a standardized IFC from the early pre-antral follicle stage. The methylation profiles of differentially methylated regions (DMRs) of three key imprinted genes (H19, Snrpn and Mest) were compared at hatched blastocyst stage between embryos obtained from IFC or superovulated oocytes, each subjected to IVF and preimplantation in vitro culture (IVC); in non-manipulated in vivo produced late blastocyst (control) and in in vivo produced 2-cell embryos that were in vitro cultured until the hatched blastocyst stage (to assess the effect of IVC). Two different mice strains (Mus musculus C57BL/6J X CBA/Ca and Mus musculus B6 (CAST7)) were used to discriminate between maternal and paternal alleles of imprinted genes. Additionally, a limiting-dilution bisulfite-sequencing technique was carried out on individual embryos in order to avoid amplification bias. To assess whether IFC and ovulation induction

  3. Determination of fusaric acid in maize using molecularly imprinted SPE clean-up

    Science.gov (United States)

    A new liquid chromatography method to detect fusaric acid in maize is reported based on molecularly imprinted polymer solid phase extraction clean-up (MISPE) using mimic-templated molecularly-imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic s...

  4. Sexual imprinting: what strategies should we expect to see in nature?

    Science.gov (United States)

    Chaffee, Dalton W; Griffin, Hayes; Gilman, R Tucker

    2013-12-01

    Sexual imprinting occurs when juveniles learn mate preferences by observing the phenotypes of other members of their populations, and it is ubiquitous in nature. Imprinting strategies, that is which individuals and phenotypes are observed and how strong preferences become, vary among species. Imprinting can affect trait evolution and the probability of speciation, and different imprinting strategies are expected to have different effects. However, little is known about how and why different imprinting strategies evolve, or which strategies we should expect to see in nature. We used a mathematical model to study how the evolution of sexual imprinting depends on (1) imprinting costs and (2) the sex-specific fitness effects of the phenotype on which individuals imprint. We found that even small fixed costs prevent the evolution of sexual imprinting, but small relative costs do not. When imprinting does evolve, we identified the conditions under which females should evolve to imprint on their fathers, their mothers, or on other members of their populations. Our results provide testable hypotheses for empirical work and help to explain the conditions under which sexual imprinting might evolve to promote speciation. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  5. 21 CFR 330.3 - Imprinting of solid oral dosage form drug products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form drug...

  6. A role for chromatin topology in imprinted domain regulation.

    Science.gov (United States)

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  7. Does genomic imprinting play a role in autoimmunity?

    Science.gov (United States)

    Camprubí, Cristina; Monk, David

    2011-01-01

    In the 19th century Gregor Mendel defined the laws of genetic inheritance by crossing different types of peas. From these results arose his principle of equivalence: the gene will have the same behaviour whether it is inherited from the mother or the father. Today, several key exceptions to this principle are known, for example sex-linked traits and genes in the mitochondrial genome, whose inheritance patterns are referred to as 'non mendelian'. A third, important exception in mammals is that of genomic imprinting, where transcripts are expressed in a monoallelic fashion from only the maternal or the paternal chromosome. In this chapter, we discuss how parent-of-origin effects and genomic imprinting may play a role in autoimmunity and speculate how imprinted miRNAs may influence the expression of many target autoimmune associated genes.

  8. Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers.

    Science.gov (United States)

    Saylan, Yeşeren; Tamahkar, Emel; Denizli, Adil

    2017-11-01

    Here, we developed the lysozyme imprinted bacterial cellulose (Lyz-MIP/BC) nanofibers via the surface imprinting strategy that was designed to recognize lysozyme. This study includes the molecular imprinting method onto the surface of bacterial cellulose nanofibers in the presence of lysozyme by metal ion coordination, as well as further characterizations methods FTIR, SEM and contact angle measurements. The maximum lysozyme adsorption capacity of Lyz-MIP/BC nanofibers was found to be 71 mg/g. The Lyz-MIP/BC nanofibers showed high selectivity for lysozyme towards bovine serum albumin and cytochrome c. Overall, the Lyz-MIP/BC nanofibers hold great potential for lysozyme recognition due to the high binding capacity, significant selectivity and excellent reusability.

  9. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes

    DEFF Research Database (Denmark)

    Yu, Jong-Su; Kim, Inyoung; Kim, Jung-Su

    2012-01-01

    Semitransparent front electrodes for polymer solar cells, that are printable and roll-to-roll processable under ambient conditions using different approaches, are explored in this report. The excellent smoothness of indium-tin-oxide (ITO) electrodes has traditionally been believed to be difficult...

  10. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    NARCIS (Netherlands)

    Meng, L.; Wan, Y.; Sun, Y.; Zhang, Y.; Wang, Z.; Song, Y.; Wang, F.

    2013-01-01

    Background - Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos.

  11. Inspection of imprint lithography patterns for semiconductor and patterned media

    Science.gov (United States)

    Resnick, Douglas J.; Haase, Gaddi; Singh, Lovejeet; Curran, David; Schmid, Gerard M.; Luo, Kang; Brooks, Cindy; Selinidis, Kosta; Fretwell, John; Sreenivasan, S. V.

    2010-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the requirements of cost-effective device production. This work summarizes the results of defect inspections of semiconductor masks, wafers and hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical and e-beam based automated inspection tools. For the semiconductor market, a test mask was designed which included dense features (with half pitches ranging between 32 nm and 48 nm) containing an extensive array of programmed defects. For this work, both e-beam inspection and optical inspection were used to detect both random defects and the programmed defects. Analytical SEMs were then used to review the defects detected by the inspection. Defect trends over the course of many wafers were observed with another test mask using a KLA-T 2132 optical inspection tool. The primary source of defects over 2000 imprints were particle related. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity, scattered light, phase shift, etc. Defects that have been identified in this manner are further characterized according to the morphology

  12. New Results on Plasma Activated Bonding of Imprinted Polymer Features for Bio MEMS Applications

    International Nuclear Information System (INIS)

    Kettner, P; Pelzer, R L; Glinsner, T; Farrens, S; Lee, D

    2006-01-01

    Nanoimprint Lithography is a well-acknowledged low cost, high resolution, large area 3D patterning process for polymers. It includes the most promising methods: high pressure hot embossing (HE) and UV-Nanoimprint Lithography (UV-NIL). Curing of the imprinted structures is either done by cooling down below the glass transition temperature of the thermoplastic polymer in case of HE or by subsequent UV-light exposure and cross-linking in case of UV-NIL. Both techniques allow rapid prototyping for high volume production of fully patterned substrates for a wide range of materials. The advantages of using polymer substrates over common Micro-Electro-Mechanical Systems (MEMS) processing materials like glass, silicon or quartz are: bio-compatible surfaces, easy manufacturability, low cost for high volume production, suitable for use in micro- and nano-fabrication, low conductivity, wide range of optical properties just to name a few. We will present experimental results on HE processes with PMMA as well as UV-NIL imprints in selected UV-curable resists. In the second part of the work we will describe the bonding techniques for packaging of the micro or nano structures. Packaging of the imprinted features is a key technology for a wide variety of field of applications: μ-TAS, biochemistry, micro-mixers, micro-reactors, electrophoresis cells, life science, micro-optical and nano-optical applications (switches) nanofluidics, data storage, etc. for features down to sub-100 nm range. Most bonding techniques for polymer use adhesives as intermediate layers. We will demonstrate a promising technique for dense and very strong bonds using plasma activation of polymers and glass. This bonding technology allows for bonding at low temperatures well below the glass transition temperature of the polymers, which will ensure that the structures are not deformed

  13. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  14. Changes in natural Foxp3(+Treg but not mucosally-imprinted CD62L(negCD38(+Foxp3(+Treg in the circulation of celiac disease patients.

    Directory of Open Access Journals (Sweden)

    Marieke A van Leeuwen

    Full Text Available BACKGROUND: Celiac disease (CD is an intestinal inflammation driven by gluten-reactive CD4(+ T cells. Due to lack of selective markers it has not been determined whether defects in inducible regulatory T cell (Treg differentiation are associated with CD. This is of importance as changes in numbers of induced Treg could be indicative of defects in mucosal tolerance development in CD. Recently, we have shown that, after encounter of retinoic acid during differentiation, circulating gut-imprinted T cells express CD62L(negCD38(+. Using this new phenotype, we now determined whether alterations occur in the frequency of natural CD62L(+Foxp3(+ Treg or mucosally-imprinted CD62L(negCD38(+Foxp3(+ Treg in peripheral blood of CD patients. In particular, we compared pediatric CD, aiming to select for disease at onset, with adult CD. METHODS: Cell surface markers, intracellular Foxp3 and Helios were determined by flow cytometry. Foxp3 expression was also detected by immunohistochemistry in duodenal tissue of CD patients. RESULTS: In children, the percentages of peripheral blood CD4(+Foxp3(+ Treg were comparable between CD patients and healthy age-matched controls. Differentiation between natural and mucosally-imprinted Treg on the basis of CD62L and CD38 did not uncover differences in Foxp3. In adult patients on gluten-free diet and in refractory CD increased percentages of circulating natural CD62L(+Foxp3(+ Treg, but normal mucosally-imprinted CD62L(negCD38(+Foxp3(+ Treg frequencies were observed. CONCLUSIONS: Our data exclude that significant numeric deficiency of mucosally-imprinted or natural Foxp3(+ Treg explains exuberant effector responses in CD. Changes in natural Foxp3(+ Treg occur in a subset of adult patients on a gluten-free diet and in refractory CD patients.

  15. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    International Nuclear Information System (INIS)

    Lu Yan; Yan Changling; Gao Shuyan

    2009-01-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  16. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome.

    Science.gov (United States)

    Greally, John M

    2002-01-08

    To test whether regions undergoing genomic imprinting have unique genomic characteristics, imprinted and nonimprinted human loci were compared for nucleotide and retroelement composition. Maternally and paternally expressed subgroups of imprinted genes were found to differ in terms of guanine and cytosine, CpG, and retroelement content, indicating a segregation into distinct genomic compartments. Imprinted regions have been normally permissive to L1 long interspersed transposable element retroposition during mammalian evolution but universally and significantly lack short interspersed transposable elements (SINEs). The primate-specific Alu SINEs, as well as the more ancient mammalian-wide interspersed repeat SINEs, are found at significantly low densities in imprinted regions. The latter paleogenomic signature indicates that the sequence characteristics of currently imprinted regions existed before the mammalian radiation. Transitions from imprinted to nonimprinted genomic regions in cis are characterized by a sharp inflection in SINE content, demonstrating that this genomic characteristic can help predict the presence and extent of regions undergoing imprinting. During primate evolution, SINE accumulation in imprinted regions occurred at a decreased rate compared with control loci. The constraint on SINE accumulation in imprinted regions may be mediated by an active selection process. This selection could be because of SINEs attracting and spreading methylation, as has been found at other loci. Methylation-induced silencing could lead to deleterious consequences at imprinted loci, where inactivation of one allele is already established, and expression is often essential for embryonic growth and survival.

  17. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yan, E-mail: yanlu2001@sohu.com [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China); Yan Changling; Gao Shuyan [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China)

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  18. Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect

    NARCIS (Netherlands)

    Hammink, R.; Mandal, S.; Eggermont, L.J.; Nooteboom, M.; Willems, P.H.G.M.; Tel, J.; Rowan, A.E.; Figdor, C.G.; Blank, K.G.

    2017-01-01

    Artificial antigen-presenting cells (aAPCs) have recently gained a lot of attention. They efficiently activate T cells and serve as powerful replacements for dendritic cells in cancer immunotherapy. Focusing on a specific class of polymer-based aAPCs, so-called synthetic dendritic cells (sDCs), we

  19. Pending templates imprinted polymers-hypothesis, synthesis, adsorption, and chromatographic properties.

    Science.gov (United States)

    Yang, Chun; Luan, Xinjie; Zhao, Meifeng; Liu, Guofeng; Wang, Jian; Qu, Qishu; Hu, Xiaoya

    2013-05-01

    This is the first time when protein-imprinted polymers are prepared with "pending templates." The polymers were synthesized in the presence of a real sample (chicken egg white), rather than any known commercial proteins. Compared with a simultaneously synthesized nonimprinted control polymer, the polymers show higher adsorption capacity for abundant components (as "pending templates") in the original sample. Chromatography experiments indicated that the columns made of the imprinted polymers could retain abundant species (imprinted) and separate them from those not imprinted. Thus, the sample could be split into dimidiate subfractions with reduced complexities. "Pending template imprinting" suggests a new way to investigate molecular imprinting, especially to dissect, simplify, and analyze complicated samples through a series of polymers just imprinted by the samples per se. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Convergent and divergent evolution of genomic imprinting in the marsupial Monodelphis domestica

    Directory of Open Access Journals (Sweden)

    Das Radhika

    2012-08-01

    Full Text Available Abstract Background Genomic imprinting is an epigenetic phenomenon resulting in parent-of-origin specific monoallelic gene expression. It is postulated to have evolved in placental mammals to modulate intrauterine resource allocation to the offspring. In this study, we determined the imprint status of metatherian orthologues of eutherian imprinted genes. Results L3MBTL and HTR2A were shown to be imprinted in Monodelphis domestica (the gray short-tailed opossum. MEST expressed a monoallelic and a biallelic transcript, as in eutherians. In contrast, IMPACT, COPG2, and PLAGL1 were not imprinted in the opossum. Differentially methylated regions (DMRs involved in regulating imprinting in eutherians were not found at any of the new imprinted loci in the opossum. Interestingly, a novel DMR was identified in intron 11 of the imprinted IGF2R gene, but this was not conserved in eutherians. The promoter regions of the imprinted genes in the opossum were enriched for the activating histone modification H3 Lysine 4 dimethylation. Conclusions The phenomenon of genomic imprinting is conserved in Therians, but the marked difference in the number and location of imprinted genes and DMRs between metatherians and eutherians indicates that imprinting is not fully conserved between the two Therian infra-classes. The identification of a novel DMR at a non-conserved location as well as the first demonstration of histone modifications at imprinted loci in the opossum suggest that genomic imprinting may have evolved in a common ancestor of these two Therian infra-classes with subsequent divergence of regulatory mechanisms in the two lineages.

  1. Preparation and Property Recognition of Nimodipine Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Fei-fei CHEN

    2015-09-01

    Full Text Available Objective: To explore the application of molecular imprinting technique in the separation and detection of nimodipine. Methods: Methacrylic acid as functional monomer, pentaerythritol triacrylate as cross-linking agent were used to prepare molecularly imprinted polymer (MIP with the feature of specific recognition performance on imprinting molecule nimodipine under condition of template molecule nimodipine. The preparation conditions, recognition performance of MIP on nimodipine, different proportions of template molecule and functional monomer, the selectivity to other substrate, and the relationship between adsorption quantity (Q and time were observed. Results: MIP was prepared successfully bynimodipine as template and pentaerythritol triacrylate as cross-linking agent, with the feature of specific recognition performance on nimodipine. The static adsorption distribution coefficient (KD was 0.2264. The equation of Q and the concentration of substrate of template MIP was y = -0.21x+0.2204. Combining capacity of template molecule at the same concentration enhanced with the increasing proportion of functional monomer.Conclusion: Nimodipine MIP based on molecular imprinting technique may become a new approach to chiral separation for nimodipine.

  2. 3D Simulation of Nano-Imprint Lithography

    DEFF Research Database (Denmark)

    Román Marín, José Manuel; Rasmussen, Henrik K.; Hassager, Ole

    2010-01-01

    A proof of concept study of the feasibility of fully three-dimensional (3D) time-dependent simulation of nano-imprint lithography of polymer melt, where the polymer is treated as a structured liquid, has been presented. Considering the flow physics of the polymer as a structured liquid, we have...

  3. Imprinted and injection-molded nano-structured optical surfaces

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik

    2013-01-01

    . In this paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication...

  4. Roll-to-roll UV imprint lithography for flexible electronics

    NARCIS (Netherlands)

    Maury, P.; Turkenburg, D.H.; Stroeks, N.; Giesen, P.; Barbu, I.; Meinders, E.R.; Bremen, A. van; Iosad, N.; Werf, R. van der; Onvlee, H.

    2011-01-01

    We propose a roll-to-roll UV imprint lithography tool as a way to pattern flexible PET foil with µm-resolution. As a way to overcome dimensional instability of the foil and its effect on overlay, a self-align approach was investigated, that permits to make several layers in a single lithography

  5. Pyrogallol-imprinted polymers with methyl methacrylate via precipitation polymerization

    Science.gov (United States)

    Mehamod, Faizatul Shimal; Othman, Nor Amira; Bulat, Ku Halim Ku; Suah, Faiz Bukhari Mohd

    2018-06-01

    Molecular simulation techniques are important to study the understanding of chemical and physical properties of any material. Computational modeling is considered as time reducer in finding the best recipes for Molecularly-Imprinted Polymers (MIPs). In this study, Pyrogallol-imprinted polymers (PIP) and non-imprinted polymers (NIPs) were synthesized via precipitation polymerization using Pyrogallol (Py), methyl methacrylate (MMA), divinylbenzene (DVB) as template, functional monomer and cross-linker, respectively. The recipe was according to the results from computational techniques. The synthesized PIP and NIPs were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and UV-visible spectroscopy (UV-vis). Studies on adsorption isotherm showed that PIP and NIPs follow Scatchard isotherm models. Sorption kinetic study found that PIP and NIPs follow pseudo-second order which indicates the rate-limiting step is the surface adsorption. The imprinting factor of PIP was determined by selectivity study and showed the value of k >1, which proved that PIP was selective toward Pyrogallol compared to NIP.

  6. Imprinting: When Early Life Memories Make Food Smell Bad.

    Science.gov (United States)

    Rayes, Diego; Alkema, Mark J

    2016-05-09

    A recent study has found that pathogen exposure early in the life of the nematode Caenorhabditis elegans leads to a long-lasting aversion that requires distinct sets of neurons for the formation and retrieval of the imprinted memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Prenatal imprinting by environmental toxicants: really an important issue?

    Directory of Open Access Journals (Sweden)

    Karl Ernst v. Mühlendahl

    2015-06-01

    Full Text Available Prenatal imprinting of sexual behaviour and of other traits by environmental toxicants has been one important topic in the ongoing discussions in environmental medicine. This review of the literature shows that, so far, concrete data are sparse and, in part, contradictory.

  8. Generic nano-imprint process for fabrication of nanowire arrays

    NARCIS (Netherlands)

    Pierret, A.; Hocevar, M.; Diedenhofen, S.L.; Algra, R.E.; Vlieg, E.; Timmering, E.C.; Verschuuren, M.A.; Immink, W.G.G.; Verheijen, M.A.; Bakkers, E.P.A.M.

    2010-01-01

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2inch substrates. After lift-off organic residues remain on the surface, which induce the growth of

  9. Surface imprinted beads for the recognition of human serum albumin.

    Science.gov (United States)

    Bonini, Francesca; Piletsky, Sergey; Turner, Anthony P F; Speghini, Adolfo; Bossi, Alessandra

    2007-04-15

    The synthesis of poly-aminophenylboronic acid (ABPA) imprinted beads for the recognition of the protein human serum albumin (HSA) is reported. In order to create homogeneous recognition sites, covalent immobilisation of the template HSA was exploited. The resulting imprinted beads were selective for HSA. The indirect imprinting factor (IF) calculated from supernatant was 1.6 and the direct IF, evaluated from the protein recovered from the beads, was 1.9. The binding capacity was 1.4 mg/g, which is comparable to commercially available affinity materials. The specificity of the HSA recognition was evaluated with competitive experiments, indicating a molar ratio 4.5/1 of competitor was necessary to displace half of the bound HSA. The recognition and binding of the imprinted beads was also tested with a complex sample, human serum and targeted removal of HSA without a loss of the other protein components was demonstrated. The easy preparation protocol of derivatised beads and a good protein recognition properties make the approach an attractive solution to analytical and bio-analytical problems in the field of biotechnology.

  10. Surface engineering: molecularly imprinted affinity membranes by photograft polymerization

    Science.gov (United States)

    Matuschewski, Heike; Sergeyeva, Tatiana A.; Bendig, Juergen; Piletsky, Sergey A.; Ulbricht, Matthies; Schedler, Uwe

    2001-02-01

    Commercial polymer microfiltration membranes were surface-modified with a graft copolymer of a functional monomer and a crosslinker in the presence of a template (triazine-herbicide). As result, membranes covered with a thin layer of imprinted polymer (MIP) selective to the template were obtained. The influence of the polymerization conditions on membrane recognition properties was studied by membranes

  11. Chemical point detection using differential fluorescence from molecularly imprinted polymers

    Science.gov (United States)

    Pestov, Dmitry; Anderson, John E.; Nelson, Jean; Tepper, Gary C.

    2004-12-01

    Fluorescence represents one of the most attractive approaches for chemical sensing due to the abundant light produced by most fluorophores, resulting in excellent detection sensitivity. However, the broad and overlapping emission spectra of target and background species have made it difficult to perform species identification in a field instrument because of the need to perform spectral decomposition and analysis. This paper describes a new chemical sensing strategy based on differential fluorescence measurements from molecularly imprinted polymers, which eliminates the need to perform any spectral analysis. Species identification is accomplished by measuring the differential light output from a pair of polymers-one imprinted to a target species and the other identical, but not imprinted. The imprinted polymer selectively concentrates the target molecule and controls the energy (wavelength) of the emitted fluorescence signal and the differential output eliminates common mode signals associated with non-specific background interference. Because no spectral analysis is required, the sensors can be made extremely small and require very little power. Preliminary performance parameters from a prototype sensor are presented and discussed.

  12. PREPARATION AND CHARACTERIZATION OF MOLECULARLY IMPRINTED ELECTROPOLYMERIZED CARBON ELECTRODES

    Science.gov (United States)

    Molecularly imprinted polymers (MIP) selective for fluorescein, rhodamine or 2,4-dichlorophenoxyacetic acid (2,4-D) were electropolymerized onto graphite electrodes using an aqueous solution equimolar in resorsinol/ortho-phenylenediamine and in the presence of the template mole...

  13. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression.

    Science.gov (United States)

    Zhang, Xun; Gejman, Roger; Mahta, Ali; Zhong, Ying; Rice, Kimberley A; Zhou, Yunli; Cheunsuchon, Pornsuk; Louis, David N; Klibanski, Anne

    2010-03-15

    Meningiomas are common tumors, representing 15% to 25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. The chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore, it has been proposed that an as yet unidentified tumor suppressor is present at this locus. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 which encodes a noncoding RNA with an antiproliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in bromodeoxyuridine incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a noncoding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism.

  14. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans.

    Directory of Open Access Journals (Sweden)

    Johnny Vlaminck

    2016-12-01

    Full Text Available The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential.Pigs were immunized by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies purified from the intestinal mucus or from the supernatant of cultured antibody secreting cells from mesenteric lymph nodes of immune pigs were used to probe L3 extracts to identify antibody targets. This resulted in the recognition of a 12kDa antigen (As12 that is actively shed from infective Ascaris L3. As12 was characterized as a phosphorylcholine-containing glycolipid-like antigen that is highly resistant to different enzymatic and chemical treatments. Vaccinating pigs with an As12 fraction did not induce protective immunity to challenge infection. However, serological analysis using sera or plasma from experimentally infected pigs or naturally infected humans demonstrated that the As12 ELISA was able to detect long-term exposure to Ascaris with a high diagnostic sensitivity (98.4% and 92%, respectively and specificity (95.5% and 90.0% in pigs and humans, respectively.These findings show the presence of a highly stage specific, glycolipid-like component (As12 that is actively secreted by infectious Ascaris larvae and which acts as a major antibody target in infected humans and pigs.

  15. Dynamic telecytologic evaluation of imprint cytology samples from CT-guided lung biopsies: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Prosch, Helmut [Otto Wagner Hospital, Department of Radiology, Vienna (Austria); Medical University of Vienna, Department of Radiology, Vienna (Austria); Medical University of Vienna, Vienna General Hospital, Department of Radiology, Vienna (Austria); Hoffmann, Elisabeth; Schober, Ewald; Mostbeck, Gerhard [Otto Wagner Hospital, Department of Radiology, Vienna (Austria); Bernhardt, Klaus; Schalleschak, Johann [Otto Wagner Hospital, Department of Laboratory Medicine, Vienna (Austria); Rowhani, Marcel [Otto Wagner Hospital, Department of Respiratory and Critical Care Medicine, Vienna (Austria); Weber, Michael [Medical University of Vienna, Department of Radiology, Vienna (Austria)

    2011-09-15

    This study assessed the feasibility of telecytological evaluation of samples from CT-guided lung biopsies using a dynamic telecytological system in which the microscope was operated by personnel from the radiology department at the site of the biopsy and a cytologist off-site diagnosed the biopsy sample. 45 imprint samples from CT-guided biopsies of lung lesions were reviewed by two cytologists using a telecytological microscope (Olympus BX51, Tokyo, Japan). The telecytological microscope was operated by one radiologist and one radiology technician. The cytological samples were classified by a cytologist into four categories: benign, malignant, atypical cells of undetermined significance, and non-diagnostic. The results were compared with those of a previous consensus reading of two independent cytologists (gold standard). When the radiologist was operating the microscope, the diagnostic accuracy was 100% as both cytologists came to the correct diagnosis in all samples. When the technician operated the microscope, two diagnoses of cyotologist 1 differed from the gold standard. Thus, the accuracy for the technician was 95.56%. Telecytological evaluation of imprint samples from CT-guided lung biopsies is feasible because it can be performed with high diagnostic accuracy if personnel from the radiology department operate the microscope. (orig.)

  16. Imprinted X chromosome inactivation: evolution of mechanisms in distantly related mammals

    Directory of Open Access Journals (Sweden)

    Shafagh A. Waters

    2015-03-01

    Full Text Available In females, X chromosome inactivation (XCI ensures transcriptional silencing of one of the two Xs (either in a random or imprinted fashion in somatic cells. Comparing this silencing between species has offered insight into different mechanisms of X inactivation, providing clues into the evolution of this epigenetic process in mammals. Long-noncoding RNAs have emerged as a common theme in XCI of therian mammals (eutherian and marsupial. Eutherian X inactivation is regulated by the noncoding RNA product of XIST, within a cis-acting master control region called the X inactivation center (XIC. Marsupials XCI is XIST independent. Instead, XCI is controlled by the long-noncoding RNA Rsx, which appears to be a functional analog of the eutherian XIST gene, insofar that its transcript coats the inactive X and represses activity of genes in cis. In this review we discuss XCI in eutherians, and contrast imprinted X inactivation in mouse and marsupials. We provide particular focus on the evolution of genomic elements that confer the unique epigenetic features that characterize the inactive X chromosome.

  17. Cytotoxic human CD4(+) T cells

    NARCIS (Netherlands)

    van de Berg, Pablo J.; van Leeuwen, Ester M.; ten Berge, Ineke J.; van Lier, Rene

    2008-01-01

    The induction of adaptive immune responses critically depends on helper signals provided by CD4(+) T cells. These signals not only license antigen presenting cells (APC) to activate naïve CD8(+) T cells leading to the formation of vast numbers of cytotoxic T lymphocytes but also support the

  18. Dendritic cells modified by vitamin D

    DEFF Research Database (Denmark)

    Pedersen, Ayako Wakatsuki; Claesson, Mogens Helweg; Zocca, Mai-Britt

    2011-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells of the immune system, express nuclear receptors for 1,25-dihydroxyvitamin D(3) (VD3) and they are one of its main targets. In the presence of VD3, DCs differentiate into a phenotype that resembles semimature DCs, with reduced T cell ...

  19. FIB and MIP: understanding nanoscale porosity in molecularly imprinted polymers via 3D FIB/SEM tomography.

    Science.gov (United States)

    Neusser, G; Eppler, S; Bowen, J; Allender, C J; Walther, P; Mizaikoff, B; Kranz, C

    2017-10-05

    We present combined focused ion beam/scanning electron beam (FIB/SEM) tomography as innovative method for differentiating and visualizing the distribution and connectivity of pores within molecularly imprinted polymers (MIPs) and non-imprinted control polymers (NIPs). FIB/SEM tomography is used in cell biology for elucidating three-dimensional structures such as organelles, but has not yet been extensively applied for visualizing the heterogeneity of nanoscopic pore networks, interconnectivity, and tortuosity in polymers. To our best knowledge, the present study is the first application of this strategy for analyzing the nanoscale porosity of MIPs. MIPs imprinted for propranolol - and the corresponding NIPs - were investigated establishing FIB/SEM tomography as a viable future strategy complementing conventional isotherm studies. For visualizing and understanding the properties of pore networks in detail, polymer particles were stained with osmium tetroxide (OsO 4 ) vapor, and embedded in epoxy resin. Staining with OsO 4 provides excellent contrast during high-resolution SEM imaging. After optimizing the threshold to discriminate between the stained polymer matrix, and pores filled with epoxy resin, a 3D model of the sampled volume may be established for deriving not only the pore volume and pore surface area, but also to visualize the interconnectivity and tortuosity of the pores within the sampled polymer volume. Detailed studies using different types of cross-linkers and the effect of hydrolysis on the resulting polymer properties have been investigated. In comparison of MIP and NIP, it could be unambiguously shown that the interconnectivity of the visualized pores in MIPs is significantly higher vs. the non-imprinted polymer, and that the pore volume and pore area is 34% and approx. 35% higher within the MIP matrix. This confirms that the templating process not only induces selective binding sites, but indeed also affects the physical properties of such

  20. Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm.

    Science.gov (United States)

    Stouder, Christelle; Paoloni-Giacobino, Ariane

    2010-02-01

    Endocrine-disrupting chemicals (EDCs), among which is the antiandrogen vinclozolin (VCZ), have been reported to affect the male reproductive system. In this study, VCZ was administered to pregnant mice at the time of embryo sex determination, and its possible effects on the differentially methylated domains (DMDs) of two paternally (H19 and Gtl2) and three maternally (Peg1, Snrpn, and Peg3) imprinted genes were tested in the male offspring. The CpGs methylation status within the five gene DMDs was analyzed in the sperm, tail, liver, and skeletal muscle DNAs by pyrosequencing. In the sperm of controls, the percentages of methylated CpGs were close to the theoretical values of 100 and 0% in paternally or maternally imprinted genes respectively. VCZ decreased the percentages of methylated CpGs of H19 and Gtl2 (respective values 83.1 and 91.5%) and increased those of Peg1, Snrpn, and Peg3 (respective values 11.3, 18.3, and 11.2%). The effects of VCZ were transgenerational, but they disappeared gradually from F1 to F3. The mean sperm concentration of the VCZ-administered female offspring was only 56% of that of the controls in the F1 offspring, and it was back to normal values in the F2 and F3 offspring. In the somatic cells of controls, the percentages of methylated CpGs were close to the theoretical value of 50% and, surprisingly, VCZ altered the methylation of Peg3. We propose that the deleterious effects of VCZ on the male reproductive system are mediated by imprinting defects in the sperm. The reported effects of EDCs on human male spermatogenesis might be mediated by analogous imprinting alterations.

  1. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yang, Wenming; Liu, Lukuan; Zhou, Zhiping; Liu, Hong; Xie, Binze; Xu, Wanzhen

    2013-01-01

    A computational simulation method is introduced to simulate the dibenzothiophene-monomer pre-assembly system of molecular imprinted polymers. The interaction type and intensity between dibenzothiophene and monomer are discussed from the binding energy and spatial position distribution. The simulation and analysis results indicate that the amount of the function monomer is not the more the better in preparing molecular imprinted polymers. Based on the above results, a novel dibenzothiophene-imprinted polymers with the favorable specific adsorption effect was prepared by surface imprinting technique combined with atom transfer radical polymerization. This combined technologies are used for preparing a desulfurization adsorbent for the first time. Various measures were selected to characterize the structure and morphology of the prepared adsorbent. The characterization results show that the adsorbent has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance. The adsorption process follows Elovich model by the kinetic analysis and Sips equation by the isothermal analysis. The approach we described will provide another opportunity in the deep desulfurization field.

  2. Influence of Exogenous Factors on Genomic Imprinting. 2. Effect of Bad Habits of Parents on Genomic Imprinting of the Descendants

    Directory of Open Access Journals (Sweden)

    A.E. Abaturov

    2016-09-01

    Full Text Available The article presents research data, which suggest that alcohol abuse and smoking of parents have an adverse effect on fetal development and the health of the child. These factors disrupt the processes of DNA methylation of imprinted genes, causing an increased risk of intrauterine growth retardation, and of pathological abnormalities in fetal neurogenesis.

  3. Polarization imprint effects on the photovoltaic effect in Pb(Zr,Ti)O3 thin films

    Science.gov (United States)

    Tan, Zhengwei; Tian, Junjiang; Fan, Zhen; Lu, Zengxing; Zhang, Luyong; Zheng, Dongfeng; Wang, Yadong; Chen, Deyang; Qin, Minghui; Zeng, Min; Lu, Xubing; Gao, Xingsen; Liu, Jun-Ming

    2018-04-01

    The polarization imprint along with the photovoltaic (PV) effect has been studied in Pt/Pb(Zr0.3Ti0.7)O3/SrRuO3 ferroelectric capacitors. It is shown that the positive DC poling induces the imprint with a downward direction whereas the negative DC poling suppresses the imprint (i.e., rejuvenation). In the polarization up state, the imprinted capacitor exhibits degraded PV properties compared with the rejuvenated one. This may be because the imprint reduces the number of upward domains, thus lowering the driving force for the PV effect. In the polarization down state, however, the rejuvenated capacitor enters the imprinted state spontaneously. This rejuvenation-to-imprint transition can be further aggravated by applying positive voltages and ultraviolet illumination. It is proposed that the domain pinning/depinning, which are associated with the oxygen vacancies and trapped electrons modulated by polarization, voltage, and illumination, may be responsible for the polarization imprint and rejuvenation. Our study therefore sheds light on the correlation between the polarization imprint and the PV effect in the ferroelectrics and also provides some viable suggestions to address the imprint-induced degradation of PV performance.

  4. An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs.

    Directory of Open Access Journals (Sweden)

    Ru Huang

    Full Text Available Imprinted macro non-protein-coding (nc RNAs are cis-repressor transcripts that silence multiple genes in at least three imprinted gene clusters in the mouse genome. Similar macro or long ncRNAs are abundant in the mammalian genome. Here we present the full coding and non-coding transcriptome of two mouse tissues: differentiated ES cells and fetal head using an optimized RNA-Seq strategy. The data produced is highly reproducible in different sequencing locations and is able to detect the full length of imprinted macro ncRNAs such as Airn and Kcnq1ot1, whose length ranges between 80-118 kb. Transcripts show a more uniform read coverage when RNA is fragmented with RNA hydrolysis compared with cDNA fragmentation by shearing. Irrespective of the fragmentation method, all coding and non-coding transcripts longer than 8 kb show a gradual loss of sequencing tags towards the 3' end. Comparisons to published RNA-Seq datasets show that the strategy presented here is more efficient in detecting known functional imprinted macro ncRNAs and also indicate that standardization of RNA preparation protocols would increase the comparability of the transcriptome between different RNA-Seq datasets.

  5. Immunologic glycosphingolipidomics and NKT cell development in mouse thymus

    DEFF Research Database (Denmark)

    Li, Yunsen; Thapa, Prakash; Hawke, David

    2009-01-01

    Invariant NKT cells are a hybrid cell type of Natural Killer cells and T cells, whose development is dependent on thymic positive selection mediated by double positive thymocytes through their recognition of natural ligands presented by CD1d, a nonpolymorphic, non-MHC, MHC-like antigen presenting...

  6. Characterization of the imprinting and expression patterns of ZAG2 in maize endosperm and embryo

    Directory of Open Access Journals (Sweden)

    Chaoxian Liu

    2015-02-01

    Full Text Available ZAG2 has been identified as a maternally expressed imprinted gene in maize endosperm. Our study revealed that paternally inherited ZAG2 alleles were imprinted in maize endosperm and embryo at 14 days after pollination (DAP, and consistently imprinted in endosperm at 10, 12, 16, 18, 20, 22, 24, 26, and 28 DAP in reciprocal crosses between B73 and Mo17. ZAG2 alleles were also imprinted in reciprocal crosses between Zheng 58 and Chang 7-2 and between Huang C and 178. ZAG2 alleles exhibited differential imprinting in hybrids of 178 × Huang C and B73 × Mo17, while in other hybrids ZAG2 alleles exhibited binary imprinting. The tissue-specific expression pattern of ZAG2 showed that ZAG2 was expressed at a high level in immature ears, suggesting that ZAG2 plays important roles in not only kernel but ear development.

  7. Magnetization dynamics of imprinted non-collinear spin textures

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Robert, E-mail: r.streubel@ifw-dresden.de; Kopte, Martin; Makarov, Denys, E-mail: d.makarov@ifw-dresden.de [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Fischer, Peter [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, UC Santa Cruz, Santa Cruz, California 95064 (United States); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz (Germany)

    2015-09-14

    We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.

  8. Ducklings imprint on the relational concept of "same or different".

    Science.gov (United States)

    Martinho, Antone; Kacelnik, Alex

    2016-07-15

    The ability to identify and retain logical relations between stimuli and apply them to novel stimuli is known as relational concept learning. This has been demonstrated in a few animal species after extensive reinforcement training, and it reveals the brain's ability to deal with abstract properties. Here we describe relational concept learning in newborn ducklings without reinforced training. Newly hatched domesticated mallards that were briefly exposed to a pair of objects that were either the same or different in shape or color later preferred to follow pairs of new objects exhibiting the imprinted relation. Thus, even in a seemingly rigid and very rapid form of learning such as filial imprinting, the brain operates with abstract conceptual reasoning, a faculty often assumed to be reserved to highly intelligent organisms. Copyright © 2016, American Association for the Advancement of Science.

  9. Process and device for forming imprints on ceramic tubes

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of the present invention is a process and a device for making imprints on ceramic tubes and these ceramic tubes with imprints. It is known that in uranium enrichment processes by gaseous diffusion, microporous tubes are used to made the diffuser units used for the application of this isotope enrichment process. It is known that these microporous tubes are generally made in two stages. In a first stage, a macroporous ceramic tube called a ''support'' is made. In a second stage, an internal microporous deposit is made which makes it possible to obtain a tube called a ''barrier'' finally having the required porosity to apply the gaseous diffusion enrichment process. The present invention involves the first stage of the manufacturing process of the barriers and, more precisely, a step in the manufacturing process of the supports that makes it possible to improve the efficiency of these barriers

  10. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  11. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Kan Xianwen; Geng Zhirong; Zhao Yao; Wang Zhilin; Zhu Junjie [State Key Laboratory of Coordination Chemistry, MOE Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)], E-mail: wangzl@nju.edu.cn, E-mail: jjzhu@nju.edu.cn

    2009-04-22

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe{sub 3}O{sub 4} nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  12. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    International Nuclear Information System (INIS)

    Kan Xianwen; Geng Zhirong; Zhao Yao; Wang Zhilin; Zhu Junjie

    2009-01-01

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe 3 O 4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  13. Biotin-specific synthetic receptors prepared using molecular imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Piletska, Elena; Piletsky, Sergey; Karim, Kal; Terpetschnig, Ewald; Turner, Anthony

    2004-02-16

    The composition of new molecularly imprinted polymers (MIPs) specific for biotin was optimised using molecular modelling software. Three functional monomers: methacrylic acid (MAA), 2-(trifluoromethyl)acrylic acid (TFAA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPSA), which demonstrated the highest binding scores with biotin, were tested on their ability to generate specific binding sites. The imprinted polymers were photografted to the surface of polystyrene microspheres in water. The affinity of the synthetic 'receptor' sites was evaluated in binding experiments using horseradish peroxidase-labelled biotin. Good correlation was found between the modelling results and the performance of the materials in the template re-binding study. The dissociation constants for all MIPs were 1.4-16.8 nM, which is sufficient for most analytical applications where biotin is used as a label.

  14. Biotin-specific synthetic receptors prepared using molecular imprinting

    International Nuclear Information System (INIS)

    Piletska, Elena; Piletsky, Sergey; Karim, Kal; Terpetschnig, Ewald; Turner, Anthony

    2004-01-01

    The composition of new molecularly imprinted polymers (MIPs) specific for biotin was optimised using molecular modelling software. Three functional monomers: methacrylic acid (MAA), 2-(trifluoromethyl)acrylic acid (TFAA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPSA), which demonstrated the highest binding scores with biotin, were tested on their ability to generate specific binding sites. The imprinted polymers were photografted to the surface of polystyrene microspheres in water. The affinity of the synthetic 'receptor' sites was evaluated in binding experiments using horseradish peroxidase-labelled biotin. Good correlation was found between the modelling results and the performance of the materials in the template re-binding study. The dissociation constants for all MIPs were 1.4-16.8 nM, which is sufficient for most analytical applications where biotin is used as a label

  15. Virtual Screening of Receptor Sites for Molecularly Imprinted Polymers.

    Science.gov (United States)

    Bates, Ferdia; Cela-Pérez, María Concepción; Karim, Kal; Piletsky, Sergey; López-Vilariño, José Manuel

    2016-08-01

    Molecularly Imprinted Polymers (MIPs) are highly advantageous in the field of analytical chemistry. However, interference from secondary molecules can also impede capture of a target by a MIP receptor. This greatly complicates the design process and often requires extensive laboratory screening which is time consuming, costly, and creates substantial waste products. Herein, is presented a new technique for screening of "virtually imprinted receptors" for rebinding of the molecular template as well as secondary structures, correlating the virtual predictions with experimentally acquired data in three case studies. This novel technique is particularly applicable to the evaluation and prediction of MIP receptor specificity and efficiency in complex aqueous systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Experimental demonstration of laser imprint reduction using underdense foams

    International Nuclear Information System (INIS)

    Delorme, B.; Casner, A.; Olazabal-Loumé, M.; Nicolaï, Ph.; Breil, J.; Tikhonchuk, V. T.; Michel, D. T.; Seka, W.; Froula, D. H.; Goncharov, V.; Riazuelo, G.; Borisenko, N.; Orekhov, A.; Fujioka, S.; Sunahara, A.; Grech, M.

    2016-01-01

    Reducing the detrimental effect of the Rayleigh-Taylor (RT) instability on the target performance is a critical challenge. In this purpose, the use of targets coated with low density foams is a promising approach to reduce the laser imprint. This article presents results of ablative RT instability growth measurements, performed on the OMEGA laser facility in direct-drive for plastic foils coated with underdense foams. The laser beam smoothing is explained by the parametric instabilities developing in the foam and reducing the laser imprint on the plastic (CH) foil. The initial perturbation pre-imposed by the means of a specific phase plate was shown to be smoothed using different foam characteristics. Numerical simulations of the laser beam smoothing in the foam and of the RT growth are performed with a suite of paraxial electromagnetic and radiation hydrodynamic codes. They confirmed the foam smoothing effect in the experimental conditions.

  17. Consequences of Morphology on Molecularly Imprinted Polymer-Ligand Recognition

    Directory of Open Access Journals (Sweden)

    Annika M. Rosengren

    2013-01-01

    Full Text Available The relationship between molecularly imprinted polymer (MIP morphology and template-rebinding over a series of warfarin-imprinted methacrylic acid co(ethylene dimethacrylate polymers has been explored. Detailed investigations of the nature of template recognition revealed that an optimal template binding was obtained with polymers possessing a narrow population of pores (~3–4 nm in the mesopore size range. Importantly, the warfarin-polymer rebinding analyses suggest strategies for regulating ligand binding capacity and specificity through variation of the degree of cross-linking, where polymers prepared with a lower degree of cross-linking afford higher capacity though non-specific in character. In contrast, the co-existence of specific and non-specific binding was found in conjunction with higher degrees of cross-linking and resultant meso- and macropore size distributions.

  18. Imprint reduction in rotating heavy ions beam energy deposition

    International Nuclear Information System (INIS)

    Bret, A.; Piriz, A.R.; Tahir, N.A.

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω

  19. Experimental demonstration of laser imprint reduction using underdense foams

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, B.; Casner, A. [CEA, DAM, DIF, F-91297 Arpajon (France); CELIA, University of Bordeaux-CNRS-CEA, F-33400 Talence (France); Olazabal-Loumé, M. [CEA, DAM, CESTA, 15 Avenue des Sablières, F-33114 Le Barp (France); CELIA, University of Bordeaux-CNRS-CEA, F-33400 Talence (France); Nicolaï, Ph.; Breil, J.; Tikhonchuk, V. T. [CELIA, University of Bordeaux-CNRS-CEA, F-33400 Talence (France); Michel, D. T.; Seka, W.; Froula, D. H.; Goncharov, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Riazuelo, G. [CEA, DAM, DIF, F-91297 Arpajon (France); Borisenko, N.; Orekhov, A. [P. N. Lebedev Physical Institute, RAS, 53 Leninskii Prospect, Moscow 119991 (Russian Federation); Fujioka, S.; Sunahara, A. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565 (Japan); Grech, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France)

    2016-04-15

    Reducing the detrimental effect of the Rayleigh-Taylor (RT) instability on the target performance is a critical challenge. In this purpose, the use of targets coated with low density foams is a promising approach to reduce the laser imprint. This article presents results of ablative RT instability growth measurements, performed on the OMEGA laser facility in direct-drive for plastic foils coated with underdense foams. The laser beam smoothing is explained by the parametric instabilities developing in the foam and reducing the laser imprint on the plastic (CH) foil. The initial perturbation pre-imposed by the means of a specific phase plate was shown to be smoothed using different foam characteristics. Numerical simulations of the laser beam smoothing in the foam and of the RT growth are performed with a suite of paraxial electromagnetic and radiation hydrodynamic codes. They confirmed the foam smoothing effect in the experimental conditions.

  20. Preliminary evidence of a neurophysiological basis for individual discrimination in filial imprinting.

    Science.gov (United States)

    Town, Stephen Michael

    2011-12-01

    Filial imprinting involves a predisposition for biologically important stimuli and a learning process directing preferences towards a particular stimulus. Learning underlies discrimination between imprinted and unfamiliar individuals and depends upon the IMM (intermediate and medial mesopallium). Here, IMM neurons responded differentially to familiar and unfamiliar conspecifics following socialization and the neurophysiological effects of social experience differed between hemispheres. Such findings may provide a neurophysiological basis for individual discrimination in imprinting. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection

    Science.gov (United States)

    2015-09-01

    ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for...ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for Chemical...TITLE AND SUBTITLE A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  2. Nano- and Micro-sized Molecularly Imprinted Polymer Particles on Solid Surfaces

    OpenAIRE

    Kamra, Tripta

    2015-01-01

    Molecularly imprinted polymers (MIPs) are artificial receptors made by imprinting template molecules in a polymer matrix followed by their removal through washing to obtain a specific and selective template cavities. This property of the MIPs have made them a very efficient material for diverse applications such as chromatography, purification, drug sensing, etc. Recently, zero-dimensional polymer materials, in the present case molecularly imprinted polymer nanoparticles (MIP nanoparticles), ...

  3. Tunable and stable in time ferroelectric imprint through polarization coupling

    NARCIS (Netherlands)

    Ghosh, Anirban; Koster, Gertjan; Rijnders, Augustinus J.H.M.

    2016-01-01

    Here we demonstrate a method to tune a ferroelectric imprint, which is stable in time, based on the coupling between the non-switchable polarization of ZnO and switchable polarization of PbZrxTi(1−x)O3. SrRuO3/PbZrxTi(1−x)O3/ZnO/SrRuO3 heterostructures were grown with different ZnO thicknesses. It

  4. Molecularly Imprinted Polymer Beads-Synthesis, Evaluation and Applications

    OpenAIRE

    Zhou, Tongchang

    2016-01-01

    Molecularly imprinted polymers (MIPs) are artificial receptors designed for the selective recognition of template molecules. These polymers have been applied in analytical separations, as chemical sensors and in drug delivery system due to their low cost and high stability. In recent years MIP beads, especially those with good selectivity in aqueous solution, have become attractive as they can be potentially used as selective adsorbents for the solid phase extraction (SPE) and chromatographic...

  5. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection

    International Nuclear Information System (INIS)

    Osman, Bilgen; Uzun, Lokman; Beşirli, Necati; Denizli, Adil

    2013-01-01

    In this study, we prepared surface plasmon resonance (SPR) sensor using the molecular imprinting technique for myoglobin detection in human serum. For this purpose, we synthesized myoglobin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tryptophan methyl ester) [poly(HEMA-MATrp)] nanofilm on the surface of SPR sensor. We also synthesized non-imprinted poly(HEMA-MATrp) nanofilm without myoglobin for the control experiments. The SPR sensor was characterized with contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry. We investigated the effectiveness of the sensor using the SPR system. We evaluated the ability of SPR sensor to sense myoglobin with myoglobin solutions (pH 7.4, phosphate buffer) in different concentration range and in the serum taken from a patient with acute myocardial infarction. We found that the Langmuir adsorption model was the most suitable for the sensor system. The detection limit was 87.6 ng/mL. In order to show the selectivity of the SPR sensor, we investigated the competitive detection of myoglobin, lysozyme, cytochrome c and bovine serum albumin. The results showed that the SPR sensor has high selectivity and sensitivity for myoglobin. - Highlights: • Micro-contact imprinted surface plasmon resonance sensor. • Real-time myoglobin detection in the serum taken from a patient with acute myocardial infarction • Reproducible results for consecutive myoglobin solution supplement • LOD and LOQ values of the SPR sensor were determined to be 26.3 and 87.6 ng/mL. • The SPR sensor has potential for myoglobin sensing during acute MI cases

  6. PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles

    OpenAIRE

    Moczko, Ewa; Guerreiro, Antonio; Piletska, Elena; Piletsky, Sergey

    2013-01-01

    Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shel...

  7. Global imprint of historical connectivity on freshwater fish biodiversity

    OpenAIRE

    Dias, M. S.; Oberdorff, Thierry; Hugueny, Bernard; Leprieur, F.; Jézéquel, Céline; Cornu, Jean-François; Brosse, S.; Grenouillet, G.; Tedesco, Pablo

    2014-01-01

    The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo-drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controll...

  8. Phytosterol Recognition via Rationally Designed Molecularly Imprinted Polymers

    Directory of Open Access Journals (Sweden)

    Lachlan J. Schwarz

    2018-02-01

    Full Text Available Molecularly imprinted polymers (MIPs prepared via a semi-covalent imprinting strategy using stigmasteryl methacrylate as a polymerisable template have been evaluated by static binding methods for their ability to selectively capture other valuable phytosterol targets, including campesterol and brassicasterol. Design criteria based on molecular modelling procedures and interaction energy calculations were employed to aid the selection of the co-monomer type, as well as the choice of co-monomer:template ratios for the formation of the pre-polymerisation complex. These novel hybrid semi-covalently imprinted polymers employed N,N′-dimethylacryl-amide (N,N′-DMAAM as the functional co-monomer and displayed specific binding capacities in the range 5.2–5.9 mg sterol/g MIP resin. Their binding attributes and selectivities towards phytosterol compounds were significantly different to the corresponding MIPs prepared via non-covalent procedures or when compared to non-imprinted polymers. Cross-reactivity studies using stigmasterol, ergosterol, cholesterol, campesterol, and brassicasterol as single analytes revealed the importance of the A-ring C-3-β-hydroxyl group and the orientational preferences of the D-ring alkyl chain structures in their interaction in the templated cavity with the N,N′-dimethylamide functional groups of the MIP. Finally, to obtain useful quantities of both campersterol and brassicasterol for these investigations, improved synthetic routes have been developed to permit the conversion of the more abundant, lower cost stigmasterol via a reactive aldehyde intermediate to these other sterols.

  9. Preparation and Characterization of Nonylphenol Magnetic Molecularly Imprinted Polymer

    International Nuclear Information System (INIS)

    Chen, F. Y.; Ba, S. P.; Tang, Y. B.; Wang, X. G.

    2015-01-01

    Nonylphenol (NP) is a toxic xenobiotic compound classified as an endocrine disrupter, which can interface with the hormonal system of numerous organisms, and then cause a series of pathological changes. It is of great significance to remove nonyl phenol from the environment. In this paper, an effective method for the preparation of molecularly imprinted nanoparticles was reported. Firstly, Fe/sub 3/O/sub 4/ at the rate SiO/sub 2/ magnetic carrier material modified by trimethoxysilane was achieved through three-step reaction. After that, the selective magnetic molecularly imprinted polymer sorbent for NP (Fe/sub 3/O/sub 4/ at the rate SiO/sub 2/-MIP) was synthesized by surface molecular imprinting technique, using NP as template, 4-vinyl pyridine(4-Vpy) as functional monomers, ethylene glycol dimethacrylate (EGDMA) as cross linker and azobisisobutyronitrile (AIBN) as initiator. The morphous, composition, structure and performance of polymer adsorbent was characterized by SEM, TEM, FT-IR, XRD, EDS, VSM and nitrogen adsorption-desorption techniques. The results indicated that the polymer adsorbent was successfully prepared. The size of the polymer particle was about 50 nm, the aperture on the surface was 3.71 nm, the BET specific surface area was 61.80 m/sup 2/g and the Langmuir specific surface area was 101.24 m/sup 2/g. The selective adsorption rate for NP of 0.5 mmol/L attained value of 86.5%, and for NP with low concentration (less than 2.0 mg/L), the selective adsorption rate reached more than 90%. The synthesized magnetic molecularly imprinted polymer had higher selective recognition ability towards the template molecule nonylphenol. It has good magnetism and can be rapidly separated after being employed by using adscititious magnetic field. It has potential application value in treatment and enrichment of nonylphenol. (author)

  10. Imprints of spinning particles on primordial cosmological perturbations

    Science.gov (United States)

    Franciolini, Gabriele; Kehagias, Alex; Riotto, Antonio

    2018-02-01

    If there exist higher-spin particles during inflation which are light compared to the Hubble rate, they may leave distinct statistical anisotropic imprints on the correlators involving scalar and graviton fluctuations. We characterise such signatures using the dS/CFT3 correspondence and the operator product expansion techniques. In particular, we obtain generic results for the case of partially massless higher-spin states.

  11. Cesarean section imprints cord blood immune cell distributions

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich; Larsen, Jeppe Madura; Rasmussen, Mette Annelie

    2014-01-01

    Immune programming in early life may affect the risk of developing immune-related diseases later in life. Children born by cesarean section seem to be at higher risk of asthma, allergic rhinitis, and type-1 diabetes. We hypothesized that delivery by cesarean section may affect immune maturation i...

  12. Cholesterol-imprinted macroporous monoliths: Preparation and characterization.

    Science.gov (United States)

    Stepanova, Mariia А; Kinziabulatova, Lilia R; Nikitina, Anna A; Korzhikova-Vlakh, Evgenia G; Tennikova, Tatiana B

    2017-11-01

    The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Imprint lithography: lab curiosity or the real NGL

    Science.gov (United States)

    Resnick, Douglas J.; Dauksher, William J.; Mancini, David P.; Nordquist, Kevin J.; Bailey, Todd C.; Johnson, Stephen C.; Stacey, Nicholas A.; Ekerdt, John G.; Willson, C. Grant; Sreenivasan, S. V.; Schumaker, Norman E.

    2003-06-01

    The escalating cost for Next Generation Lithography (NGL) tools is driven in part by the need for complex sources and optics. The cost for a single NGL tool could exceed $50M in the next few years, a prohibitive number for many companies. As a result, several researchers are looking at low cost alternative methods for printing sub-100 nm features. In the mid-1990s, several resarech groups started investigating different methods for imprinting small features. Many of these methods, although very effective at printing small features across an entire wafer, are limited in their ability to do precise overlay. In 1999, Willson and Sreenivasan discovered that imprinting could be done at low pressures and at room temperatures by using low viscosity UV curable monomers. The technology is typically referred to as Step and Flash Imprint Lithography. The use of a quartz template enabled the photocuring process to occur and also opened up the potential for optical alignment of teh wafer and template. This paper traces the development of nanoimprint lithography and addresses the issues that must be solved if this type of technology is to be applied to high-density silicon integrated circuitry.

  14. Detour behaviour, imprinting and visual lateralization in the domestic chick.

    Science.gov (United States)

    Vallortigara, G; Regolin, L; Pagni, P

    1999-01-01

    Detour behaviour was studied in chicks faced with a vertical-bar barrier behind where an imprinting object (a red ball) was located. Right-eyed chicks took less time to detour the barrier than left-eyed chicks, and binocular chicks showed a bias to detour the barrier on the left side, thus maintaining visual contact with the imprinting object using the lateral field of the right eye, while circling around the barrier. In males, the asymmetries were consistent all along the first two weeks of life, whereas in females they disappeared on days 8 and 11. When tested with a slightly novel version of the original imprinting object (i.e., a ball of a different color), binocular chicks showed a bias to detour the barrier on the right side, thus showing preferential use of the left eye. The same bias occurred when unfamiliar conspecifics were used as goal-objects. Results suggest that cerebral lateralization in birds can directly affect visually-guided motor responses through selective use of the lateral field of vision of the eye contralateral to the hemisphere which has to be put in charge of control of overt behaviour. Copyright 1999 Elsevier Science B.V.

  15. Sexual imprinting on ecologically divergent traits leads to sexual isolation in sticklebacks.

    Science.gov (United States)

    Kozak, Genevieve M; Head, Megan L; Boughman, Janette W

    2011-09-07

    During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such 'magic traits' easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity.

  16. Angular dependence of imprinting levels in laser-target interactions on planar CH foils

    International Nuclear Information System (INIS)

    Smalyuk, V.A.; Goncharov, V.N.; Boehly, T.R.; Delettrez, J.A.; Li, D.Y.; Marozas, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.

    2005-01-01

    Imprinting of laser-beam modulations at various angles of incidence is measured for the first time in planar CH foils. The imprinted target modulations were seeded by special probe beams at a spatial wavelength of 60 μm and subsequently amplified by five drive beams. The measured imprint efficiency decreases by a factor of 3 as the angle of incidence of the probe beam is increased from 20 deg. to 60 deg., as predicted by theoretical modeling. The imprinting is very sensitive to the relative arrival time of the probe and drive beams

  17. Enhanced Absorption in Organic Thin-Films from Imprinted Concave Nanostructures

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Rubahn, Horst-Günter; Madsen, Morten

    2017-01-01

    In this work, a rapid, replicable method for imprinting concave nanostructures to be used as functional light-trapping nanostructures in organic thin-films is presented. Porous anodic alumina templates were fabricated both by anodization of thick Al foils and by anodization of submicrometer thin Al...... patterns and used for imprinting of spin coated photoresist on glass substrates. We have investigated semi-periodic and aperiodic imprinted large concave patterns fabricated from rigid masters after anodization of Al in H3PO4. We show that metal covered imprinted concaves show enhancement in absorption...

  18. Imprinting of Phenylalanine ethyl ester in cyclodextrin polymers in aqueous solution

    DEFF Research Database (Denmark)

    Detcheva, Anna Hr.; Yu, Donghong; Larsen, Kim Lambertsen

    During the last decades there has been a wide interest of developing molecularly imprinted polymers, which selectively can recognize small molecules. Cyclodextrins offer relatively strong binding site of a wide range of small molecules in water and molecular imprinted polymers of these have...... previously been produced with some success. Nevertheless most molecules of interest for molecular imprinting are too samll to accommodate more than one cyclodextrin per molecule and thus limited selectivity may be expected. In order to improve the selectivity of cyclodextrin based molecular imprinted polymer...

  19. Role of imprint cytology in intra operative diagnosis of thyroid lesions.

    Science.gov (United States)

    Anila, K R; Krishna, G

    2014-07-01

    Intra-operative imprint cytology is an important diagnostic modality in the diagnosis of thyroid lesions. A correct intra-operative diagnosis helps eliminate the need for second surgery. To study diagnostic accuracy of imprint cytology and to compare the imprint cytology results with that of the corresponding paraffin section diagnosis in thyroidectomy cases. This is a prospective study of 84 patients who have undergone thyroidectomies over a period of one year at the Department of Surgery, Thiruvananthapuram, Kerala, India. The intraoperative imprint cytology smears were stained by Papanicolaou method. The imprint cytology interpretation was later compared with the paraffin section diagnosis. Of the 84 patients using haematoxylin and eosin stained histopathology sections as the gold standard, the diagnostic sensitivity of imprint cytology was 75% and specificity was 100%. Positive predictive value was 100%. Negative predictive value was 98.74%. Imprint cytology has high sensitivity and specificity in diagnosing lesions of the thyroid. The problems faced were in diagnosing follicular carcinomas and differentiating low grade lymphoma from lymphocytic thyroiditis. Imprint cytology is a simple, reliable diagnostic technique. It has high sensitivity and specificity in intra-operative diagnosis of lesions of thyroid. In spite of the advent of newer diagnostic modalities like frozen sections, imprint cytology still holds its unique position in the current perspective.

  20. [The peculiar morphological features of the imprints of straight and wavy head hair dirtied with blood].

    Science.gov (United States)

    Leonova, E N; Nagornov, M N; Prokhorenko, A S

    2018-01-01

    The objective of the present study was to elucidate the specific morphological features of the imprints of blood-soaked straight and wavy head hair. The contact imprints of straight and wavy head hair dirtied with blood were obtained experimentally. The imprints of straight hair were shown to exhibit the elements in the form of the rectilinear and bow-shaped slightly bent stripes. The imprints of wavy hair were shaped as the arches, waves, circles, and a large number of various small elements, such as dashes and commas.

  1. Evaluation of accuracy of intra operative imprint cytology for detection of breast lesions

    International Nuclear Information System (INIS)

    Mahmood, Z.; Shahbaz, A.; Qureshi, A.; Aziz, N.; Niazi, S.; Qureshi, S.; Bukhari, M.H.

    2010-01-01

    Objective: To determine the accuracy of imprint cytology as an intraoperative diagnostic procedure for breast lesions with histopathological correlation. Materials and Methods: This was a descriptive study on 40 cases of breast lesions comprising of inflammatory, benign and malignant lesions including their margins etc. It was conducted at King Edward Medical University, Lahore in collaboration with all Surgical Departments of Mayo Hospital. Relevant clinical data was recorded in a proforma. Both touch and scrape imprints were prepared from all the lesions and stained with May-Grunwaled Giemsa and Haematoxylin and Eosin stains. The imprints were subsequently compared with histopathology sections. Results: When we used atypical cases as negative both touch and scrape imprints gave sensitivity, specificity, positive predictive value, negative predictive value and accuracy at 100%. However when we used cases with atypia as positive, sensitivity and negative predictive value were 100% with both touch and scrape imprints. Specificity, positive predictive value and accuracy were 71%, 86%, 85.5% respectively with touch imprints and 78%, 89%, 89% respectively with scrape imprints. No diagnostic difference was noted between the results of both stains. All the imprints were well correlated with histopathological diagnosis. Conclusion: Imprint cytology is an accurate and simple intraoperative method for diagnosing breast lesions. It can provide the surgeons with information regarding immediate clinical and surgical interventions. (author)

  2. Selective enrichment and separation of phosphotyrosine peptides by thermosensitive molecularly imprinted polymers.

    Science.gov (United States)

    Yang, Xiaoqing; Xia, Yan

    2016-01-01

    Novel thermosensitive molecularly imprinted polymers were successfully prepared using the epitope imprinting approach in the presence of the mimic template phenylphosphonic acid, the functional monomer vinylphosphonic acid-Ti(4+) , the temperature-sensitive monomer N-isopropylacrylamide and the crosslinker N,N'-methylenebisacrylamide. The ratio of the template/thermosensitive monomers/crosslinker was optimized, and when the ratio was 2:2:1, the prepared thermosensitive molecularly imprinted polymers had the highest imprinting factor. The synthetic thermosensitive molecularly imprinted polymers were characterized by Fourier transform infrared spectroscopy to reveal the combination and elution processes of the template. Then, the adsorption capacity and thermosensitivity was measured. When the temperature was 28°C, the imprinting factor was the highest. The selectivity and adsorption capacity of the thermosensitive molecularly imprinted polymers for phosphotyrosine peptides from a mixture of three tailor-made peptides were measured by high-performance liquid chromatography. The results showed that the thermosensitive molecularly imprinted polymers have good selectivity for phosphotyrosine peptides. Finally, the imprinted hydrogels were applied to specifically adsorb phosphotyrosine peptides from a sample mixture containing phosphotyrosine and a tryptic digest of β-casein, which demonstrated high selectivity. After four rebinding cycles, 78.9% adsorption efficiency was still retained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. From 3D to 2D: a review of the molecular imprinting of proteins.

    Science.gov (United States)

    Turner, Nicholas W; Jeans, Christopher W; Brain, Keith R; Allender, Christopher J; Hlady, Vladimir; Britt, David W

    2006-01-01

    Molecular imprinting is a generic technology that allows for the introduction of sites of specific molecular affinity into otherwise homogeneous polymeric matrices. Commonly this technique has been shown to be effective when targeting small molecules of molecular weight proteins has proven difficult. A number of key inherent problems in protein imprinting have been identified, including permanent entrapment, poor mass transfer, denaturation, and heterogeneity in binding pocket affinity, which have been addressed using a variety of approaches. This review focuses on protein imprinting in its various forms, ranging from conventional bulk techniques to novel thin film and monolayer surface imprinting approaches.

  4. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system

    Directory of Open Access Journals (Sweden)

    Paul Pijush Kumar

    2017-06-01

    Full Text Available In this study, we investigate molecularly imprinted polymers (MIPs, which form a three-dimensional image of the region at and around the active binding sites of pharmaceutically active insulin or are analogous to b cells bound to insulin. This approach was employed to create a welldefined structure within the nanospace cavities that make up functional monomers by cross-linking. The obtained MIPs exhibited a high adsorption capacity for the target insulin, which showed a significantly higher release of insulin in solution at pH 7.4 than at pH 1.2. In vivo studies on diabetic Wistar rats showed that the fast onset within 2 h is similar to subcutaneous injection with a maximum at 4 h, giving an engaged function responsible for the duration of glucose reduction for up to 24 h. These MIPs, prepared as nanosized material, may open a new horizon for oral insulin delivery.

  5. Desorption of 3,3′-diindolylmethane from imprinted particles: An impact of cross-linker structure on binding capacity and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Klejn, Dorota; Luliński, Piotr; Maciejewska, Dorota, E-mail: dorota.maciejewska@wum.edu.pl

    2015-11-01

    Here, seven cross-linkers (six polar diacrylates or dimethacrylates of different lengths between double bonds, and one aromatic-divinylbenzene) were used to examine the impact of the cross-linker on binding capacity and selectivity of 3,3′-diindolylmethane (DIM) imprinted material. DIM participates in the suppression of viability of human ovarian and human breast cancer cell lines, but has low bioavailability. The investigations of novel imprinted polymer matrices for improvement of DIM release could allow to utilize not only a potency of DIM but also similar alkaloids, which are the important compounds with pharmacological activity. The bulk, thermal radical copolymerization of the cross-linkers in the presence of 3,3′-diindolylmethane (the template) and allylamine (the functional monomer) in dimethyl sulfoxide or in carbon tetrachloride (porogens) was carried out. The binding capacities of imprinted and non-imprinted polymers were compared, and two polymers (these were prepared using ethylene glycol dimethacrylate and polyethylene glycol dimethacrylate as the cross-linkers) with the highest selectivity and binding capacity were selected to desorption test. The desorption profile of polymer prepared using polyethylene glycol dimethacrylate as the cross-linker revealed sustained release of 3,3′-diindolylmethane, and this system was selected for further optimization of the cross-linker amounts. The morphology and structure of the selected particles were analyzed using SEM micrographs, {sup 13}C CP/MAS NMR spectroscopy, and BET measurements. The desorption of 3,3′-diindolylmethane from poly(allylamine-co-polyethylene glycol dimethacrylate) particles was in accordance with pseudo-second-order kinetics and the simplified Higuchi model indicated the diffusion controlled release of 3,3′-diindolylmethane. - Graphical abstract: Sustained release of 3,3′-diindolylmethane from cavity in imprinted poly(allylamine-co-polyethylene glycol dimethacrylate

  6. Desorption of 3,3′-diindolylmethane from imprinted particles: An impact of cross-linker structure on binding capacity and selectivity

    International Nuclear Information System (INIS)

    Klejn, Dorota; Luliński, Piotr; Maciejewska, Dorota

    2015-01-01

    Here, seven cross-linkers (six polar diacrylates or dimethacrylates of different lengths between double bonds, and one aromatic-divinylbenzene) were used to examine the impact of the cross-linker on binding capacity and selectivity of 3,3′-diindolylmethane (DIM) imprinted material. DIM participates in the suppression of viability of human ovarian and human breast cancer cell lines, but has low bioavailability. The investigations of novel imprinted polymer matrices for improvement of DIM release could allow to utilize not only a potency of DIM but also similar alkaloids, which are the important compounds with pharmacological activity. The bulk, thermal radical copolymerization of the cross-linkers in the presence of 3,3′-diindolylmethane (the template) and allylamine (the functional monomer) in dimethyl sulfoxide or in carbon tetrachloride (porogens) was carried out. The binding capacities of imprinted and non-imprinted polymers were compared, and two polymers (these were prepared using ethylene glycol dimethacrylate and polyethylene glycol dimethacrylate as the cross-linkers) with the highest selectivity and binding capacity were selected to desorption test. The desorption profile of polymer prepared using polyethylene glycol dimethacrylate as the cross-linker revealed sustained release of 3,3′-diindolylmethane, and this system was selected for further optimization of the cross-linker amounts. The morphology and structure of the selected particles were analyzed using SEM micrographs, 13 C CP/MAS NMR spectroscopy, and BET measurements. The desorption of 3,3′-diindolylmethane from poly(allylamine-co-polyethylene glycol dimethacrylate) particles was in accordance with pseudo-second-order kinetics and the simplified Higuchi model indicated the diffusion controlled release of 3,3′-diindolylmethane. - Graphical abstract: Sustained release of 3,3′-diindolylmethane from cavity in imprinted poly(allylamine-co-polyethylene glycol dimethacrylate). - Highlights:

  7. Adoptive T cell cancer therapy

    Science.gov (United States)

    Dzhandzhugazyan, Karine N.; Guldberg, Per; Kirkin, Alexei F.

    2018-06-01

    Tumour heterogeneity and off-target toxicity are current challenges of cancer immunotherapy. Karine Dzhandzhugazyan, Per Guldberg and Alexei Kirkin discuss how epigenetic induction of tumour antigens in antigen-presenting cells may form the basis for multi-target therapies.

  8. Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation.

    Science.gov (United States)

    Ly, Lundi; Chan, Donovan; Aarabi, Mahmoud; Landry, Mylène; Behan, Nathalie A; MacFarlane, Amanda J; Trasler, Jacquetta

    2017-07-01

    Do paternal exposures to folic acid deficient (FD), and/or folic acid supplemented (FS) diets, throughout germ cell development adversely affect male germ cells and consequently offspring health outcomes? Male mice exposed over their lifetimes to both FD and FS diets showed decreased sperm counts and altered imprinted gene methylation with evidence of transmission of adverse effects to the offspring, including increased postnatal-preweaning mortality and variability in imprinted gene methylation. There is increasing evidence that disruptions in male germ cell epigenetic reprogramming are associated with offspring abnormalities and intergenerational disease. The fetal period is the critical time of DNA methylation pattern acquisition for developing male germ cells and an adequate supply of methyl donors is required. In addition, DNA methylation patterns continue to be remodeled during postnatal spermatogenesis. Previous studies have shown that lifetime (prenatal and postnatal) folic acid deficiency can alter the sperm epigenome and increase the incidence of fetal morphological abnormalities. Female BALB/c mice (F0) were placed on one of four amino-acid defined diets for 4 weeks before pregnancy and throughout pregnancy and lactation: folic acid control (Ctrl; 2 mg/kg), 7-fold folic acid deficient (7FD; 0.3 mg/kg), 10-fold high FS (10FS, 20 mg/kg) or 20-fold high FS (20FS, 40 mg/kg) diets. F1 males were weaned to their respective prenatal diets to allow for diet exposure during all windows of germline epigenetic reprogramming: the erasure, re-establishment and maintenance phases. F0 females were mated with chow-fed males to produce F1 litters whose germ cells were exposed to the diets throughout embryonic development. F1 males were subsequently mated with chow-fed female mice. Two F2 litters, unexposed to the experimental diets, were generated from each F1 male; one litter was collected at embryonic day (E)18.5 and one delivered and followed postnatally. DNA

  9. Predicting the performance of molecularly imprinted polymers: Selective extraction of caffeine by molecularly imprinted solid phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, Keith [School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Magner, Edmond [Materials and Surface Science Institute, Chemical and Environmental Sciences Department, University of Limerick, Limerick (Ireland); Regan, Fiona [School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)]. E-mail: fiona.regan@dcu.ie

    2006-04-27

    A rational design approach was taken to the planning and synthesis of a molecularly imprinted polymer capable of extracting caffeine (the template molecule) from a standard solution of caffeine and further from a food sample containing caffeine. Data from NMR titration experiments in conjunction with a molecular modelling approach was used in predicting the relative ratios of template to functional monomer and furthermore determined both the choice of solvent (porogen) and the amount used for the study. In addition the molecular modelling program yielded information regarding the thermodynamic stability of the pre-polymerisation complex. Post-polymerisation analysis of the polymer itself by analysis of the pore size distribution by BET yielded significant information regarding the nature of the size and distribution of the pores within the polymer matrix. Here is proposed a stepwise procedure for the development and testing of a molecularly imprinted polymer using a well-studied compound-caffeine as a model system. It is shown that both the physical characteristics of a molecularly imprinted polymer (MIP) and the analysis of the pre-polymerisation complex can yield vital information, which can predict how well a given MIP will perform.

  10. Predicting the performance of molecularly imprinted polymers: Selective extraction of caffeine by molecularly imprinted solid phase extraction

    International Nuclear Information System (INIS)

    Farrington, Keith; Magner, Edmond; Regan, Fiona

    2006-01-01

    A rational design approach was taken to the planning and synthesis of a molecularly imprinted polymer capable of extracting caffeine (the template molecule) from a standard solution of caffeine and further from a food sample containing caffeine. Data from NMR titration experiments in conjunction with a molecular modelling approach was used in predicting the relative ratios of template to functional monomer and furthermore determined both the choice of solvent (porogen) and the amount used for the study. In addition the molecular modelling program yielded information regarding the thermodynamic stability of the pre-polymerisation complex. Post-polymerisation analysis of the polymer itself by analysis of the pore size distribution by BET yielded significant information regarding the nature of the size and distribution of the pores within the polymer matrix. Here is proposed a stepwise procedure for the development and testing of a molecularly imprinted polymer using a well-studied compound-caffeine as a model system. It is shown that both the physical characteristics of a molecularly imprinted polymer (MIP) and the analysis of the pre-polymerisation complex can yield vital information, which can predict how well a given MIP will perform

  11. The immunoregulatory role of CD1d-restricted natural killer T cells in disease.

    NARCIS (Netherlands)

    Vliet, van der HJ; Molling, J.W.; Blomberg - van der Flier, von B.M.E.; Nishi, N.; Kolgen, W; Eertwegh, van den A.J.M.; Pinedo, H.M.; Giaccone, G.; Scheper, R.J.

    2004-01-01

    Natural killer T (NKT) cells constitute a T cell subpopulation that shares several characteristics with NK cells. NKT cells are characterized by a narrow T cell antigen receptor (TCR) repertoire, recognize glycolipid antigen in the context of the monomorphic CD1d antigen-presenting molecule, and

  12. Fabrication of Surface Protein-Imprinted Nanoparticles Using a Metal Chelating Monomer via Aqueous Precipitation Polymerization.

    Science.gov (United States)

    Li, Wei; Sun, Yan; Yang, Chongchong; Yan, Xianming; Guo, Hao; Fu, Guoqi

    2015-12-16

    Molecular imprinting is a promising way for constructing artificial protein recognition materials, but it has been challenged by difficulties such as restricted biomacromolecule transfer in the cross-linked polymer networks, and reduced template-monomer interactions that are due to the required aqueous media. Herein, we propose a strategy for imprinting of histidine (His)-exposed proteins by combining previous approaches such as surface imprinting over nanostructures, utilization of metal coordination interactions, and adoption of aqueous precipitation polymerization capable of forming reversible physical crosslinks. With lysozyme as a model template bearing His residues, imprinted polymer nanoshells were grafted over vinyl-modified nanoparticles by aqueous precipitation copolymerization of a Cu(2+) chelating monomer with a temperature-responsive monomer carried out at 37 °C, above the volume phase-transition temperature (VPTT) of the final copolymer. The imprinted nanoshells showed significant temperature sensitivity and the template removal could be facilitated by swelling of the imprinted layers at 4 °C, below the VPTT. The resultant core-shell imprinted nanoparticles exhibited strikingly high rebinding selectivity against a variety of nontemplate proteins. An imprinting factor up to 22.7 was achieved, which is among the best values reported for protein imprinting, and a rather high specific binding capacity of 67.3 mg/g was obtained. Moreover, this approach was successfully extended to preliminary imprinting of hemoglobin, another protein with accessible His. Therefore, it may be a versatile method for fabrication of high-performance surface-imprinted nanoparticles toward His-exposed proteins.

  13. Lactic Acid Bacteria Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    antigen presenting cells and T-cells. Bacteria translocating across the gastrointestinal mucosa are presumed to gain access to NK cell compartments, as consumption of certain strains of lactic acid bacteria has been shown to increase in vivo NK cytotoxic activity. On-going research in our lab aims...

  14. Bioinformatics Tools for the Prediction of T-Cell Epitopes

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2018-01-01

    T-cell responses are activated by specific peptides, called epitopes, presented on the cell surface by MHC molecules. Binding of peptides to the MHC is the most selective step in T-cell antigen presentation and therefore an essential factor in the selection of potential epitopes. Several in-vitro...

  15. Histopathology-like categories based on endometrial imprint cytology in dysfunctional uterine bleeding.

    Science.gov (United States)

    Baxi, Seema N; Panchal, Nirav S

    2015-01-01

    Cytology of the endometrium is an underused technique in diagnostic pathology. It has been used in the past for endometrial hyperplasia and carcinoma. Only few studies have used cytology in the diagnosis of dysfunctional uterine bleeding (DUB). Endometrial imprint cytology has been rarely used except for application of immunocytochemistry in diagnosis of endometrial carcinoma. The present study was conducted to evaluate whether it is possible to assign histopathology-like diagnosis by imprint cytology and also to evaluate its usefulness in the assessment of patients of dysfunctional uterine bleeding of low clinical suspicion. Imprint smears were made from 93 curettage materials during a study of DUB. Blinded analysis of imprint smears was performed by using McKenzie's criteria and some criteria devised for the requirements of this study. Results of cytology were correlated with histopathology. Statistical analysis was carried out by GraphpadInStat Demo. Majority of the patterns classifiable in histopathology could also be classified in this study on imprint cytology. The overall sensitivity and specificity of cytology in the detection of endometrial patterns in DUB patients were 91.23% and 83.87%, respectively, although the sensitivities and specificities differ according to the phase of endometrium. Histopathology-like categories can be assigned on imprint smears in the diagnosis of DUB. Endometrial imprint cytology can be helpful in centers where histopathology laboratories are not available and even in well-established institutes. It is possible to improve the sensitivity and specificity with better imprinting techniques.

  16. Characterization of Conserved and Non-conserved Imprinted Genes in Swine

    Science.gov (United States)

    In order to increase our understanding of the role of imprinted genes in swine reproduction we used two complementary approaches, analysis of imprinting by pyrosequencing, and expression profiling of parthenogenetic fetuses, to carry out a comprehensive analysis of this gene family in swine. Using A...

  17. Double-layer imprint lithography on wafers and foils from the submicrometer to the millimeter scale

    NARCIS (Netherlands)

    Moonen, P.F.; Yakimets, I.; Peter, M.; Meinders, E.R.; Huskens, J.

    2011-01-01

    In this paper, a thermal imprint technique, double-layer nanoimprint lithography (dlNIL), is introduced, allowing complete filling of features in the dimensional range of submicrometer to millimeter. The imprinting and filling quality of dlNIL was studied on Si substrates as a model system and

  18. Effects of imprint training procedure at birth on the reactions of foals at age six months.

    Science.gov (United States)

    Williams, J L; Friend, T H; Collins, M N; Toscano, M J; Sisto-Burt, A; Nevill, C H

    2003-03-01

    While imprint training procedures have been promoted in popular magazines, they have received limited scientific investigation. To determine the effects of a neonatal imprint training procedure on 6-month-old foals and to determine if any one session had a greater effect than others. Foals (n = 131) were divided into the following treatments: no imprint training, imprint training at birth, 12, 24 and 48 h after birth or imprint training only at birth, 12, 24, 48, or 72 h after birth. Foals then received minimal human handling until they were tested at 6 months. During training, time to complete exposure to the stimulus was significant for only 2 of 6 stimuli. Percentage change in baseline heart rate was significant for only 2 of 10 stimuli. These 4 effects were randomly spread across treatments. Neither the number of imprint training sessions (0, 1, or 4) nor the timing of imprint training sessions (none, birth, 12, 24, 48, or 72 h after birth) influenced the foal's behaviour at 6 months of age. In this study, imprint training did not result in better behaved, less reactive foals.

  19. Dispersive solid-phase imprinting of proteins for the production of plastic antibodies

    DEFF Research Database (Denmark)

    Ashley, Jon; Feng, Xiaotong; Halder, Arnab

    2018-01-01

    We describe a novel dispersive solid-phase imprinting technique for the production of nano-sized molecularly imprinted polymers (nanoMIPs) as plastic antibodies. The template was immobilized on in-house synthesized magnetic microspheres instead of conventional glass beads. As a result, high...

  20. Protein imprinting and recognition via forming nanofilms on microbeads surfaces in aqueous media

    International Nuclear Information System (INIS)

    Lu Yan; Yan Changling; Wang Xuejing; Wang Gongke

    2009-01-01

    In this paler, we present a technique of forming nanofilms of poly-3-aminophenylboronic acid (pAPBA) on the surfaces of polystyrene (PS) microbeads for proteins (papain and trypsin) in aqueous. Papain was chosen as a model to study the feasibility of the technique and trypsin as an extension. Obtained core-shell microbeads were characterized using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and BET methods. The results show that pAPBA formed nanofilms (60-100 nm in thickness) on the surfaces of PS microbeads. The specific surface area of the papain-imprinted beads was about 180 m 2 g -1 and its pore size was 31 nm. These imprinted microbeads exhibit high recognition specificity and fast mass transfer kinetics. The specificity of these imprinted beads mainly originates from the spatial effect of imprinted sites. Because the protein-imprinted sites were located at, or close to, the surface, the imprinted beads have good site accessibility toward the template molecules. The facility of the imprinting protocol and the high recognition properties of imprinted microbeads make the approach an attractive solution to problems in the field of biotechnology.

  1. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography

    NARCIS (Netherlands)

    Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index

  2. Magnetic-graphene based molecularly imprinted polymer nanocomposite for the recognition of bovine hemoglobin.

    Science.gov (United States)

    Guo, Junxia; Wang, Yuzhi; Liu, Yanjin; Zhang, Cenjin; Zhou, Yigang

    2015-11-01

    The protein imprinted technique combining surface imprinting and nanomaterials has been an attractive strategy for recognition and rapid separation of proteins. In this work, magnetic-graphene (MG) was chosen as the supporting substrate for the magnetic nanomaterials, which served to absorb the targeting imprinting molecules, bovine hemoglobin (BHb). Acryl amide (AAm) with a high affinity to BHb and N,N'- methylenebisacrylamide (MBA) were selected as the functional monomer and cross-linking agent, respectively. After in-situ polymerization, the proposed magnetic-graphene based molecularly imprinted polymer (MG-MIP) was obtained with a further extraction step of imprinted BHb. Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), raman spectroscopy(RS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) were employed to characterize the resulted MG-MIP. The maximum adsorption capability (Qmax) was determined by Langmuir Isotherm Plots and was 186.73 mg/g for imprinted nanomaterials (MIP) with an imprinting factor of 1.96. The selectivity of MG-MIP was investigated by using several proteins that are different in molecular mass and isoelectric points as the reference. The results showed that the shape memory effect of imprinted cavities, the size of proteins and the charge effect of proteins were the major factors for the selective recognition. The proposed method was also employed to specifically capture BHb from a binary protein mixture. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Optimal synthesis of a Ni(II)-dimethylglyoxime ion-imprinted polymer ...

    African Journals Online (AJOL)

    A Ni(II)-dimethylglyoxime ion-imprinted polymer {Ni(II)-DMG IIP} was optimised by the uniform design experimental ... The bonds formed between the template and the functional monomers in ion- imprinted polymerisation reactions are weaker, non-covalent. (Arshady and Mosbach, 1981; ..... where the polymer did not form.

  4. Polycarbonate as an Elasto-Plastic Material Model for Simulation of the Microstructure Hot Imprint Process

    Directory of Open Access Journals (Sweden)

    Rokas Šakalys

    2013-08-01

    Full Text Available The thermal imprint process of polymer micro-patterning is widely applied in areas such as manufacturing of optical parts, solar energy, bio-mechanical devices and chemical chips. Polycarbonate (PC, as an amorphous polymer, is often used in thermoforming processes because of its good replication characteristics. In order to obtain replicas of the best quality, the imprint parameters (e.g., pressure, temperature, time, etc. must be determined. Therefore finite element model of the hot imprint process of lamellar periodical microstructure into PC has been created using COMSOL Multiphysics. The mathematical model of the hot imprint process includes three steps: heating, imprinting and demolding. The material properties of amorphous PC strongly depend on the imprint temperature and loading pressure. Polycarbonate was modelled as an elasto-plastic material, since it was analyzed below the glass transition temperature. The hot imprint model was solved using the heat transfer and the solid stress-strain application modes with thermal contact problem between the mold and polycarbonate. It was used for the evaluation of temperature and stress distributions in the polycarbonate during the hot imprint process. The quality of the replica, by means of lands filling ratio, was determined as well.

  5. Smart coumarin-tagged imprinted polymers for the rapid detection of tamoxifen.

    Science.gov (United States)

    Ray, Judith V; Mirata, Fosca; Pérollier, Celine; Arotcarena, Michel; Bayoudh, Sami; Resmini, Marina

    2016-03-01

    A signalling molecularly imprinted polymer was synthesised for easy detection of tamoxifen and its metabolites. 6-Vinylcoumarin-4-carboxylic acid (VCC) was synthesised from 4-bromophenol to give a fluorescent monomer, designed to switch off upon binding of tamoxifen. Clomiphene, a chlorinated analogue, was used as the template for the imprinting, and its ability to quench the coumarin fluorescence when used in a 1:1 ratio was demonstrated. Tamoxifen and 4-hydroxytamoxifen were also shown to quench coumarin fluorescence. Imprinted and non-imprinted polymers were synthesised using VCC, methacrylic acid as a backbone monomer and ethylene glycol dimethacrylate as cross-linker, and were ground and sieved to particle sizes ranging between 45 and 25 μm. Rebinding experiments demonstrate that the imprinted polymer shows very strong affinity for both clomiphene and tamoxifen, while the non-imprinted polymer shows negligible rebinding. The fluorescence of the imprinted polymer is quenched by clomiphene, tamoxifen and 4-hydroxytamoxifen. The switch off in fluorescence of the imprinted polymer under these conditions could also be detected under a UV lamp with the naked eye, making this matrix suitable for applications when coupled with a sample preparation system.

  6. New generation ion-imprinted nanocarrier for removal of Cr(VI) from wastewater

    International Nuclear Information System (INIS)

    Uygun, Murat; Feyzioğlu, Esra; Özçalışkan, Emir; Caka, Müşerref; Ergen, Aygen; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    The purpose of this study was to prepare a novel ion-imprinted nanoparticle to remove Cr(VI) ions from waste water. For this, Cr(VI) ions were complexed with 2-methacryloylamido histidine (MAH) and then Cr(VI)-imprinted poly(HEMAH) nanoparticles were synthesized by surfactant-free emulsion polymerization technique. The templates, Cr(VI) ions, were removed from the nanoparticles using 0.1 M of HNO 3 solution. The specific surface area of the Cr(VI)-imprinted poly(HEMAH) nanoparticles was found to be 1,397.85 m 2 /g, and the particle size was calculated as 155.3 nm. These Cr(VI)-imprinted nanoparticles were used for the adsorption/desorption of Cr(VI) ions from its aqueous solutions. The effects of initial Cr(VI) concentration and medium pH on the Cr(VI) adsorption capacity were also studied. The maximum adsorbed amount of Cr(VI) on the imprinted nanoparticles was found to be 3,830.58 mg/g nanoparticle in pH 4.0. In order to investigate the selectivity of the imprinted nanoparticle, adsorption studies were repeated using Cr(III) ions. The selectivity results demonstrated that Cr(VI)-imprinted poly(HEMAH) nanoparticles showed high affinity for the Cr(VI) ions than Cr(III). The Cr(VI)-imprinted nanoparticles were used several times without decreasing their Cr(VI) adsorption capacities

  7. New generation ion-imprinted nanocarrier for removal of Cr(VI) from wastewater

    Science.gov (United States)

    Uygun, Murat; Feyzioğlu, Esra; Özçalışkan, Emir; Caka, Müşerref; Ergen, Aygen; Akgöl, Sinan; Denizli, Adil

    2013-08-01

    The purpose of this study was to prepare a novel ion-imprinted nanoparticle to remove Cr(VI) ions from waste water. For this, Cr(VI) ions were complexed with 2-methacryloylamido histidine (MAH) and then Cr(VI)-imprinted poly(HEMAH) nanoparticles were synthesized by surfactant-free emulsion polymerization technique. The templates, Cr(VI) ions, were removed from the nanoparticles using 0.1 M of HNO3 solution. The specific surface area of the Cr(VI)-imprinted poly(HEMAH) nanoparticles was found to be 1,397.85 m2/g, and the particle size was calculated as 155.3 nm. These Cr(VI)-imprinted nanoparticles were used for the adsorption/desorption of Cr(VI) ions from its aqueous solutions. The effects of initial Cr(VI) concentration and medium pH on the Cr(VI) adsorption capacity were also studied. The maximum adsorbed amount of Cr(VI) on the imprinted nanoparticles was found to be 3,830.58 mg/g nanoparticle in pH 4.0. In order to investigate the selectivity of the imprinted nanoparticle, adsorption studies were repeated using Cr(III) ions. The selectivity results demonstrated that Cr(VI)-imprinted poly(HEMAH) nanoparticles showed high affinity for the Cr(VI) ions than Cr(III). The Cr(VI)-imprinted nanoparticles were used several times without decreasing their Cr(VI) adsorption capacities.

  8. New generation ion-imprinted nanocarrier for removal of Cr(VI) from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Uygun, Murat, E-mail: muygun@adu.edu.tr [Adnan Menderes University, Kocarl Latin-Small-Letter-Dotless-I Vocational and Training School (Turkey); Feyzioglu, Esra; Oezcal Latin-Small-Letter-Dotless-I skan, Emir; Caka, Mueserref; Ergen, Aygen; Akgoel, Sinan [Ege University, Department of Biochemistry, Faculty of Science (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry, Faculty of Science (Turkey)

    2013-08-15

    The purpose of this study was to prepare a novel ion-imprinted nanoparticle to remove Cr(VI) ions from waste water. For this, Cr(VI) ions were complexed with 2-methacryloylamido histidine (MAH) and then Cr(VI)-imprinted poly(HEMAH) nanoparticles were synthesized by surfactant-free emulsion polymerization technique. The templates, Cr(VI) ions, were removed from the nanoparticles using 0.1 M of HNO{sub 3} solution. The specific surface area of the Cr(VI)-imprinted poly(HEMAH) nanoparticles was found to be 1,397.85 m{sup 2}/g, and the particle size was calculated as 155.3 nm. These Cr(VI)-imprinted nanoparticles were used for the adsorption/desorption of Cr(VI) ions from its aqueous solutions. The effects of initial Cr(VI) concentration and medium pH on the Cr(VI) adsorption capacity were also studied. The maximum adsorbed amount of Cr(VI) on the imprinted nanoparticles was found to be 3,830.58 mg/g nanoparticle in pH 4.0. In order to investigate the selectivity of the imprinted nanoparticle, adsorption studies were repeated using Cr(III) ions. The selectivity results demonstrated that Cr(VI)-imprinted poly(HEMAH) nanoparticles showed high affinity for the Cr(VI) ions than Cr(III). The Cr(VI)-imprinted nanoparticles were used several times without decreasing their Cr(VI) adsorption capacities.

  9. Genomic Imprinting and the Expression of Affect in Angelman Syndrome: What's in the Smile?

    Science.gov (United States)

    Oliver, Chris; Horsler, Kate; Berg, Katy; Bellamy, Gail; Dick, Katie; Griffiths, Emily

    2007-01-01

    Background: Kinship theory (or the genomic conflict hypothesis) proposes that the phenotypic effects of genomic imprinting arise from conflict between paternally and maternally inherited alleles. A prediction arising for social behaviour from this theory is that imbalance in this conflict resulting from a deletion of a maternally imprinted gene,…

  10. Characterization of molecularly imprinted polymers using a new polar solvent titration method.

    Science.gov (United States)

    Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D

    2014-07-01

    A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Charged hydrogels for post-loading, release, and molecular imprinting of proteins

    NARCIS (Netherlands)

    Schillemans, J.P.|info:eu-repo/dai/nl/304835137

    2010-01-01

    Molecular imprinting is a technique to create template-shaped cavities in polymer matrices with memory of the template molecules, to be used in molecular recognition. Molecular imprinting of low molecular weight compounds is a well established technique used to create high affinity materials. On the

  12. Optimal synthesis of a Ni(II)-dimethylglyoxime ion-imprinted polymer ...

    African Journals Online (AJOL)

    A Ni(II)-dimethylglyoxime ion-imprinted polymer {Ni(II)-DMG IIP} was optimised by the uniform design experimental method and used to adsorb Ni(II) ions from water, soil and mine tailing samples. This aimed to improve the performance of this ion-imprinted polymer in trapping Ni(II) ions from soil and mine tailing samples ...

  13. Genomic imprinting status of IGF-II and H19 in placentas of fetal ...

    Indian Academy of Sciences (India)

    velop metabolic syndrome later in life, manifesting as obe- ... Venous blood samples were collected from both the parents .... and five families of the group B2 were informative for H19. .... that may have impacts on the imprinting status of imprinted genes ... This work was supported by a grant from National Natural Science.

  14. Short interspersed element (SINE) depletion and long interspersed element (LINE) abundance are not features universally required for imprinting.

    Science.gov (United States)

    Cowley, Michael; de Burca, Anna; McCole, Ruth B; Chahal, Mandeep; Saadat, Ghazal; Oakey, Rebecca J; Schulz, Reiner

    2011-04-20

    Genomic imprinting is a form of gene dosage regulation in which a gene is expressed from only one of the alleles, in a manner dependent on the parent of origin. The mechanisms governing imprinted gene expression have been investigated in detail and have greatly contributed to our understanding of genome regulation in general. Both DNA sequence features, such as CpG islands, and epigenetic features, such as DNA methylation and non-coding RNAs, play important roles in achieving imprinted expression. However, the relative importance of these factors varies depending on the locus in question. Defining the minimal features that are absolutely required for imprinting would help us to understand how imprinting has evolved mechanistically. Imprinted retrogenes are a subset of imprinted loci that are relatively simple in their genomic organisation, being distinct from large imprinting clusters, and have the potential to be used as tools to address this question. Here, we compare the repeat element content of imprinted retrogene loci with non-imprinted controls that have a similar locus organisation. We observe no significant differences that are conserved between mouse and human, suggesting that the paucity of SINEs and relative abundance of LINEs at imprinted loci reported by others is not a sequence feature universally required for imprinting.

  15. Short interspersed element (SINE depletion and long interspersed element (LINE abundance are not features universally required for imprinting.

    Directory of Open Access Journals (Sweden)

    Michael Cowley

    2011-04-01

    Full Text Available Genomic imprinting is a form of gene dosage regulation in which a gene is expressed from only one of the alleles, in a manner dependent on the parent of origin. The mechanisms governing imprinted gene expression have been investigated in detail and have greatly contributed to our understanding of genome regulation in general. Both DNA sequence features, such as CpG islands, and epigenetic features, such as DNA methylation and non-coding RNAs, play important roles in achieving imprinted expression. However, the relative importance of these factors varies depending on the locus in question. Defining the minimal features that are absolutely required for imprinting would help us to understand how imprinting has evolved mechanistically. Imprinted retrogenes are a subset of imprinted loci that are relatively simple in their genomic organisation, being distinct from large imprinting clusters, and have the potential to be used as tools to address this question. Here, we compare the repeat element content of imprinted retrogene loci with non-imprinted controls that have a similar locus organisation. We observe no significant differences that are conserved between mouse and human, suggesting that the paucity of SINEs and relative abundance of LINEs at imprinted loci reported by others is not a sequence feature universally required for imprinting.

  16. Evaluation of Data Retention and Imprint Characteristics of FRAMs Under Environmental Stresses for NASA Applications

    Science.gov (United States)

    Sharma, Asbok K.; Teverovsky, Alexander; Dowdy, Terry W.; Hamilton, Brett

    2002-01-01

    A major reliability issue for all advanced nonvolatile memory (NVM) technology devices including FRAMs is the data retention characteristics over extended period of time, under environmental stresses and exposure to total ionizing dose (TID) radiation effects. For this testing, 256 Kb FRAMs in 28-pin plastic DIPS, rated for industrial grade temperature range of -40 C to +85 C, were procured. These are two-transistor, two-capacitor (2T-2C) design FRAMs. In addition to data retention characteristics, the parts were also evaluated for imprint failures, which are defined as the failure of cells to change from a "preferred" state, where it has been for a significant period of time to an opposite state (e.g., from 1 to 0, or 0 to 1). These 256 K FRAMs were subjected to scanning acoustic microscopy (C-SAM); 1,000 temperature cycles from -65 C to +150 C; high temperature aging at 150 C, 175 C, and 200 C for 1,000 hours; highly accelerated stress test (HAST) for 500 hours; 1,000 hours of operational life test at 125 C; and total ionizing dose radiation testing. As a preconditioning, 10 K read/write cycles were performed on all devices. Interim electrical measurements were performed throughout this characterization, including special imprint testing and final electrical testing. Some failures were observed during high temperature aging test at 200 C, during HAST testing, and during 1,000 hours of operational life at 125 C. The parts passed 10 Krad exposure, but began showing power supply current increases during the dose increment from 10 Krad to 30 Krad, and at 40 Krad severe data retention and parametric failures were observed. Failures from various environmental group testing are currently being analyzed.

  17. Molecular imprinting of caffeine on cellulose/silica composite and its characterization

    Science.gov (United States)

    Gill, Rajinder Singh

    This dissertation presents a study to prepare molecularly imprinted inorganic/organic hybrid composite which not only confirm the higher binding capabilities for the target molecule (template) but also discriminate its structural analogs. Molecularly imprinted Cellulose/Silica composite (MIP) was prepared by using caffeine as the template. Silica derived from TEOS by using sol-gel techniques was deposited on cheap, abundant organic matrix such as cellulose, which can provide a filtering medium while coffee brewing. Removal of the template from the precursor was verified by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Remarkably reduced intensity of -NH2 scissor like mode of caffeine and the presence of traces of "N" by elemental analysis, confirmed the complete removal of caffeine on washing with ethanol. Cellulose to TEOS mass ratio of 2:1 was found to be close to optimal during our analysis. Energy dispersive spectroscopy results leads to an important fact that the deposition of silica was stable even at 373 K. Focus was on the adsorption affinities of caffeine by MIP and was tested by performing relative adsorption of caffeine by MIP and blank (standard) using demountable path length cell in IR. It was observed that MIP showed almost 3-folds higher adsorption capabilities as compared to blank. The initial rate of adsorption of caffeine by MIP is much higher than blank which is one of the desirable feature according the its intended use. The higher adsorption of caffeine by MIP not only depends on the amount of silica deposited but also the available binding sites present on its surface. Selectivity of MIP was also verified by the competitive adsorption of caffeine and its structure analogs such as theophylline. Clearly, MIP showed greater and more rapid binding capabilities for caffeine than theophylline. At short contact times, the binding capability for caffeine is almost 1.8 times greater than the binding capabilities for theophylline.

  18. Lack of T cell dysfunction and programmed cell death in human immunodeficiency virus type 1-infected chimpanzees correlates with absence of monocytotropic variants

    NARCIS (Netherlands)

    Schuitemaker, H.; Meyaard, L.; Kootstra, N. A.; Dubbes, R.; Otto, S. A.; Tersmette, M.; Heeney, J. L.; Miedema, F.

    1993-01-01

    In asymptomatic human immunodeficiency virus (HIV) infection in humans, disturbed T cell functions such as anergy and programmed cell death, thought to result from inappropriate signaling by antigen-presenting cells due to HIV infection, precede increase in virus load, decline in CD4+ T cell

  19. IMMUNOGENICITY OF HUMAN MESENCHYMAL STEM CELLS IN HLA-CLASS I RESTRICTED T CELL RESPONSES AGAINST VIRAL OR TUMOR-ASSOCIATED ANTIGENS

    OpenAIRE

    Morandi, Fabio; Raffaghello, Lizzia; Bianchi, Giovanna; Meloni, Francesca; Salis, Annalisa; Millo, Enrico; Ferrone, Soldano; Barnaba, Vincenzo; Pistoia, Vito

    2008-01-01

    Human mesenchymal stem cells (MSC) are immunosuppressive and poorly immunogenic, but may act as antigen-presenting cells (APC) for CD4+ T cell responses; here we have investigated their ability to serve as APC for in vitro CD8+ T cell responses.

  20. Sb(III)-Imprinted Organic-Inorganic Hybrid Sorbent Prepared by Hydrothermal-Assisted Surface Imprinting Technique for Selective Adsorption of Sb(III)

    Science.gov (United States)

    Zhang, Dan; Zhao, Yue; Xu, Hong-Bo

    2018-03-01

    Sb(III)-imprinted organic-inorganic hybrid sorbent was prepared by hydrothermal-assisted surface imprinting technique and was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy coupled to an energy dispersive spectrometer and N2 adsorption/desorption isotherms. Hydrothermal-assisted process can improve the selectivity of the Sb(III)-imprinted hybrid sorbent for Sb(III) due to stable control of temperature and pressure. The Sb(III)-imprinted hybrid sorbent IIS indicated higher selectivity for Sb(III), had high static adsorption capacity of 37.3 mg g-1 for Sb(III), displayed stable adsorption capacity in pH range from 4 to 8, reached an rapid adsorption equilibrium within 30 min. According to the correlation coefficient ( r 2 > 0.99), the experimental data fitted better the pseudo-second-order kinetic model and Langmuir equilibrium isotherm.