WorldWideScience

Sample records for antigen helicase motor

  1. On helicases and other motor proteins.

    Science.gov (United States)

    Enemark, Eric J; Joshua-Tor, Leemor

    2008-04-01

    Helicases are molecular machines that utilize energy derived from ATP hydrolysis to move along nucleic acids and to separate base-paired nucleotides. The movement of the helicase can also be described as a stationary helicase that pumps nucleic acid. Recent structural data for the hexameric E1 helicase of papillomavirus in complex with single-stranded DNA and MgADP has provided a detailed atomic and mechanistic picture of its ATP-driven DNA translocation. The structural and mechanistic features of this helicase are compared with the hexameric helicase prototypes T7gp4 and SV40 T-antigen. The ATP-binding site architectures of these proteins are structurally similar to the sites of other prototypical ATP-driven motors such as F1-ATPase, suggesting related roles for the individual site residues in the ATPase activity. PMID:18329872

  2. Helicases as molecular motors: An insight

    Science.gov (United States)

    Tuteja, Narendra; Tuteja, Renu

    2006-12-01

    Helicases are one of the smallest motors of biological system, which harness the chemical free energy of ATP hydrolysis to catalyze the opening of energetically stable duplex nucleic acids and thereby are involved in almost all aspect of nucleic acid metabolism including replication, repair, recombination, transcription, translation, and ribosome biogenesis. Basically, they break the hydrogen bonding between the duplex helix and translocate unidirectionally along the bound strand. Mostly all the helicases contain some conserved signature motifs, which act as an engine to power the unwinding. After the discovery of the first prokaryotic DNA helicase from Escherichia coli bacteria in 1976 and the first eukaryotic one from the lily plant in 1978, many more (>100) have been isolated. All the helicases share some common properties, including nucleic acid binding, NTP hydrolysis and unwinding of the duplex. Many helicases have been crystallized and their structures have revealed an underlying common structural fold for their function. The defects in helicases gene have also been reported to be responsible for variety of human genetic disorders, which can lead to cancer, premature aging or mental retardation. Recently, a new role of a helicase in abiotic stress signaling in plant has been discovered. Overall, helicases act as essential molecular tools for cellular machinery and help in maintaining the integrity of genome. Here an overview of helicases has been covered which includes history, biochemical assay, properties, classification, role in human disease and mechanism of unwinding and translocation.

  3. Mechanisms of DNA Motor Proteins (Helicases)

    Science.gov (United States)

    Lohman, Timothy M.

    1996-03-01

    DNA helicases are ubiquitous motor proteins that couple the binding and hydrolysis of NTP to the unwinding of duplex (ds) DNA to form the single stranded (ss) DNA intermediates that are required for replication, recombination and repair. We are studying the DNA unwinding mechanisms catalyzed by two helicases from E. coli: Rep and Helicase II (UvrD) by examining the linkage of DNA binding, protein dimerization and nucleotide binding using both thermodynamic and kinetic approaches. A dimer of the Rep protein is the active form of the helicase; however, the dimer forms only upon binding either ss or ds DNA. There are significant cooperative interactions between the two DNA binding sites on the dimer and nucleotides (ATP, ADP) allosterically control the stabilities of the DNA ligation states of the Rep dimer. Based on these studies we have proposed an "active, rolling" mechanism for the Rep dimer unwinding of duplex DNA. An essential intermediate is a complex, in which ss- and ds-DNA bind simultaneously to each subunit of a Rep dimer. This model predicts that Rep helicase translocation along DNA is coupled to ATP binding, whereas ATP hydrolysis drives unwinding of multiple DNA base pairs for each catalytic event. Rapid chemical quench-flow and stopped-flow fluorescence studies of Rep and UvrD- catalyzed DNA unwinding of a series of non-natural DNA substrates support the "active, rolling" mechanism and rule out a strictly "passive" mechanism of unwinding. Kinetic studies of DNA and nucleotide binding and ATP hydrolysis by wild type and mutant Rep proteins will be discussed that bear on the coupling of ATP binding and hydrolysis to translocation along DNA and DNA unwinding.

  4. On Helicases and other motor proteins

    OpenAIRE

    Enemark, Eric J.; Joshua-Tor, Leemor

    2008-01-01

    Helicases are molecular machines that utilize energy derived from ATP hydrolysis to move along nucleic acids and to separate base-paired nucleotides. The movement of the helicase can also be described as a stationary helicase that pumps nucleic acid. Recent structural data for the hexameric E1 helicase of papillomavirus in complex with single-stranded DNA and MgADP has provided a detailed atomic and mechanistic picture of its ATP-driven DNA translocation. The structural and mechanistic featur...

  5. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen.

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Zhao, R.; Lilyestrom, W.; Gai, D.; Zhang, R.; DeCaprio, J. A.; Fanning, E.; Joachimiak, A.; Szakonyi, G.; Chen, X. S.; Univ. of Colorado Health Science Center; Dana-Farber Cancer Ins.; Vanderbilt Univ.

    2003-05-29

    The oncoprotein large tumour antigen (LTag) is encoded by the DNA tumour virus simian virus 40. LTag transforms cells and induces tumours in animals by altering the functions of tumour suppressors (including pRB and p53) and other key cellular proteins. LTag is also a molecular machine that distorts/melts the replication origin of the viral genome and unwinds duplex DNA. LTag therefore seems to be a functional homologue of the eukaryotic minichromosome maintenance (MCM) complex. Here we present the X-ray structure of a hexameric LTag with DNA helicase activity. The structure identifies the p53-binding surface and reveals the structural basis of hexamerization. The hexamer contains a long, positively charged channel with an unusually large central chamber that binds both single-stranded and double-stranded DNA. The hexamer organizes into two tiers that can potentially rotate relative to each other through connecting alpha-helices to expand/constrict the channel, producing an 'iris' effect that could be used for distorting or melting the origin and unwinding DNA at the replication fork.

  6. The Immunodominant Antigen of an Ultraviolet-induced Regressor Tumor Is Generated by a Somatic Point Mutation in the DEAD Box Helicase p68

    Science.gov (United States)

    Dubey, Purnima; Hendrickson, Ronald C.; Meredith, Stephen C.; Siegel, Christopher T.; Shabanowitz, Jeffrey; Skipper, Jonathan C.A.; Engelhard, Victor H.; Hunt, Donald F.; Schreiber, Hans

    1997-01-01

    The genetic origins of CD8+ T cell–recognized unique antigens to which mice respond when immunized with syngeneic tumor cells are unknown. The ultraviolet light-induced murine tumor 8101 expresses an H-2Kb-restricted immunodominant antigen, A, that induces cytolytic CD8+ T cells in vivo A+ 8101 cells are rejected by naive mice while A− 8101 tumor cells grow. To identify the antigen H-2Kb molecules were immunoprecipitated from A+ 8101 cells and peptides were eluted by acid. The sensitizing peptide was isolated by sequential reverse-phase HPLC and sequenced using microcapillary HPLC-triple quadruple mass spectrometry. The peptide, SNFVFAGI, matched the sequence of the DEAD box protein p68 RNA helicase except for a single amino acid substitution, caused by a single nucleotide change. This mutation was somatic since fibroblasts from the mouse of tumor origin expressed the wild-type sequence. The amino acid substitution created an anchor for binding of the mutant peptide to H-2Kb. Our results are consistent with mutant p68 being responsible for rejection of the tumor. Several functions of p68, which include nucleolar assembly and inhibition of DNA unwinding, may be mediated through its IQ domain, which was altered by the mutation. This is the first description of a somatic tumor–specific mutation in the coding region of a nucleic acid helicase. PMID:9034148

  7. Structural basis of Zika virus helicase in recognizing its substrates.

    Science.gov (United States)

    Tian, Hongliang; Ji, Xiaoyun; Yang, Xiaoyun; Zhang, Zhongxin; Lu, Zuokun; Yang, Kailin; Chen, Cheng; Zhao, Qi; Chi, Heng; Mu, Zhongyu; Xie, Wei; Wang, Zefang; Lou, Huiqiang; Yang, Haitao; Rao, Zihe

    2016-08-01

    The recent explosive outbreak of Zika virus (ZIKV) infection has been reported in South and Central America and the Caribbean. Neonatal microcephaly associated with ZIKV infection has already caused a public health emergency of international concern. No specific vaccines or drugs are currently available to treat ZIKV infection. The ZIKV helicase, which plays a pivotal role in viral RNA replication, is an attractive target for therapy. We determined the crystal structures of ZIKV helicase-ATP-Mn(2+) and ZIKV helicase-RNA. This is the first structure of any flavivirus helicase bound to ATP. Comparisons with related flavivirus helicases have shown that although the critical P-loop in the active site has variable conformations among different species, it adopts an identical mode to recognize ATP/Mn(2+). The structure of ZIKV helicase-RNA has revealed that upon RNA binding, rotations of the motor domains can cause significant conformational changes. Strikingly, although ZIKV and dengue virus (DENV) apo-helicases share conserved residues for RNA binding, their different manners of motor domain rotations result in distinct individual modes for RNA recognition. It suggests that flavivirus helicases could have evolved a conserved engine to convert chemical energy from nucleoside triphosphate to mechanical energy for RNA unwinding, but different motor domain rotations result in variable RNA recognition modes to adapt to individual viral replication. PMID:27430951

  8. A model for DNA helicase mechanism based on a flashing ratchet

    CERN Document Server

    Garai, Ashok; Chowdhury, Debashish

    2007-01-01

    Helicases are molecular motors that consume energy supplied by chemical reactions to unwind double-stranded nucleic acids (like DNA and RNA) and to translocate along one of the single-strands. Motivated by the recent claims, based on experimental observations on the helicase NS3 of hepatitis C virus (HCV), that monomeric helicases are governed by a Brownian ratchet mechanism, here we develope a quantitative model. Our Brownian ratchet model, which is a somewhat new reformulation of the Betterton-J\\"ulicher theory of helicases, is generic two-state model and is applicable to all helicases which follow the Brownian ratchet mechanism. We illustrate the predictive power of the model by calculating some experimentally testable motor properties of a few monomeric helicases. Speficically, we predict the speed of unwinding of the double-stranded DNA and fluctuations around the average drift of the helicase. Our predictions are in excellent quantitative agreement with the corresponding experimental data.

  9. Lessons Learned From UvrD Helicase : Mechanism For Directional Movement

    OpenAIRE

    Yang, Wei

    2010-01-01

    How do molecular motors convert chemical energy to mechanical work? Helicases and nucleic acids offer simple motor systems for extensive biochemical and biophysical analyses. Atomic resolution structures of UvrD-like helicases complexed with DNA in the presence of AMPPNP, ADP·Pi, and Pi reveal several salient points that aid understanding mechano-chemical coupling. Each ATPase cycle causes two motor-domains to rotationally close and open. At a minimum, two motor-track contact points of altern...

  10. Superfamily I helicases as modular components of DNA-processing machines.

    Science.gov (United States)

    Dillingham, Mark S

    2011-04-01

    Helicases are a ubiquitous and abundant group of motor proteins that couple NTP binding and hydrolysis to processive unwinding of nucleic acids. By targeting this activity to a wide range of specific substrates, and by coupling it with other catalytic functionality, helicases fulfil diverse roles in virtually all aspects of nucleic acid metabolism. The present review takes a look back at our efforts to elucidate the molecular mechanisms of UvrD-like DNA helicases. Using these well-studied enzymes as examples, we also discuss how helicases are programmed by interactions with partner proteins to participate in specific cellular functions. PMID:21428912

  11. Abnormal interaction of motor neuropathy-associated mutant HspB8 (Hsp22) forms with the RNA helicase Ddx20 (gemin3)

    NARCIS (Netherlands)

    Sun, Xiankui; Fontaine, Jean-Marc; Hoppe, Adam D.; Carra, Serena; DeGuzman, Cheryl; Martin, Jody L.; Simon, Stephanie; Vicart, Patrick; Welsh, Michael J.; Landry, Jacques; Benndorf, Rainer

    2010-01-01

    A number of missense mutations in the two related small heat shock proteins HspB8 (Hsp22) and HspB1 (Hsp27) have been associated with the inherited motor neuron diseases (MND) distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. HspB8 and HspB1 interact with each other, suggesting tha

  12. Inhibition of RNA Helicases of ssRNA+ Virus Belonging to Flaviviridae, Coronaviridae and Picornaviridae Families

    Directory of Open Access Journals (Sweden)

    Irene Briguglio

    2011-01-01

    Full Text Available Many viral pathogens encode the motor proteins named RNA helicases which display various functions in genome replication. General strategies to design specific and selective drugs targeting helicase for the treatment of viral infections could act via one or more of the following mechanisms: inhibition of the NTPase activity, by interferences with ATP binding and therefore by limiting the energy required for the unwinding and translocation, or by allosteric mechanism and therefore by stabilizing the conformation of the enzyme in low helicase activity state; inhibition of nucleic acids binding to the helicase; inhibition of coupling of ATP hydrolysis to unwinding; inhibition of unwinding by sterically blocking helicase translocation. Recently, by in vitro screening studies, it has been reported that several benzotriazole, imidazole, imidazodiazepine, phenothiazine, quinoline, anthracycline, triphenylmethane, tropolone, pyrrole, acridone, small peptide, and Bananin derivatives are endowed with helicase inhibition of pathogen viruses belonging to Flaviviridae, Coronaviridae, and Picornaviridae families.

  13. RecQ Helicases

    DEFF Research Database (Denmark)

    Larsen, Nicolai Balle; Hickson, Ian D

    2013-01-01

    The RecQ family of DNA helicases is highly conserved throughout -evolution, and is important for the maintenance of genome stability. In humans, five RecQ family members have been identified: BLM, WRN, RECQ4, RECQ1 and RECQ5. Defects in three of these give rise to Bloom's syndrome (BLM), Werner...

  14. The organization and contribution of helicases to RNA splicing.

    Science.gov (United States)

    De, Inessa; Schmitzová, Jana; Pena, Vladimir

    2016-01-01

    Splicing is an essential step of gene expression. It occurs in two consecutive chemical reactions catalyzed by a large protein-RNA complex named the spliceosome. Assembled on the pre-mRNA substrate from five small nuclear proteins, the spliceosome acts as a protein-controlled ribozyme to catalyze the two reactions and finally dissociates into its components, which are re-used for a new round of splicing. Upon following this cyclic pathway, the spliceosome undergoes numerous intermediate stages that differ in composition as well as in their internal RNA-RNA and RNA-protein contacts. The driving forces and control mechanisms of these remodeling processes are provided by specific molecular motors called RNA helicases. While eight spliceosomal helicases are present in all organisms, higher eukaryotes contain five additional ones potentially required to drive a more intricate splicing pathway and link it to an RNA metabolism of increasing complexity. Spliceosomal helicases exhibit a notable structural diversity in their accessory domains and overall architecture, in accordance with the diversity of their task-specific functions. This review summarizes structure-function knowledge about all spliceosomal helicases, including the latter five, which traditionally are treated separately from the conserved ones. The implications of the structural characteristics of helicases for their functions, as well as for their structural communication within the multi-subunits environment of the spliceosome, are pointed out. PMID:26874649

  15. Investigating hexameric helicases: Single-molecule studies of DnaB and T4 gp41

    Science.gov (United States)

    Saleh, Omar; Ribeck, Noah; Berezney, John

    2011-03-01

    Hexameric, ring-shaped motor proteins serve as replicative helicases in many systems. They function by encircling and translocating along ssDNA, denaturing dsDNA in advance of its motion by sterically occluding the complementary strand to the outside of the ring. We investigate the helicase activity of two such motors using single-molecule measurements with magnetic tweezers. First, we measure the activity of the E. coli helicase DnaB complexed with the tau subunit of the Pol III holoenzyme. Tau is known from bulk measurements to stimulate DnaB activity (Kim et al., Cell, 1996); we investigate the means of this stimulation. Second, we measure helicase activity of the T4 phage helicase gp41 in multiple tethered DNA geometries. Previous work on DnaB showed a dependence of helicase activity on DNA geometry (Ribeck et al., Biophys. J., 2010); here, we test gp41 for similar behavior to see whether it is a common characteristic of hexameric helicases.

  16. Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication.

    Science.gov (United States)

    Atkinson, John; Gupta, Milind K; Rudolph, Christian J; Bell, Hazel; Lloyd, Robert G; McGlynn, Peter

    2011-02-01

    Genome duplication requires accessory helicases to displace proteins ahead of advancing replication forks. Escherichia coli contains three helicases, Rep, UvrD and DinG, that might promote replication of protein-bound DNA. One of these helicases, Rep, also interacts with the replicative helicase DnaB. We demonstrate that Rep is the only putative accessory helicase whose absence results in an increased chromosome duplication time. We show also that the interaction between Rep and DnaB is required for Rep to maintain rapid genome duplication. Furthermore, this Rep-DnaB interaction is critical in minimizing the need for both recombinational processing of blocked replication forks and replisome reassembly, indicating that colocalization of Rep and DnaB minimizes stalling and subsequent inactivation of replication forks. These data indicate that E. coli contains only one helicase that acts as an accessory motor at the fork in wild-type cells, that such an activity is critical for the maintenance of rapid genome duplication and that colocalization with the replisome is crucial for this function. Given that the only other characterized accessory motor, Saccharomyces cerevisiae Rrm3p, associates physically with the replisome, our demonstration of the functional importance of such an association indicates that colocalization may be a conserved feature of accessory replicative motors. PMID:20923786

  17. Mitochondrial helicases and mitochondrial genome maintenance

    DEFF Research Database (Denmark)

    de Souza-Pinto, Nadja C; Aamann, Maria Diget; Kulikowicz, Tomasz;

    2010-01-01

    Helicases are essential enzymes that utilize the energy of nucleotide hydrolysis to drive unwinding of nucleic acid duplexes. Helicases play roles in all aspects of DNA metabolism including DNA repair, DNA replication and transcription. The subcellular locations and functions of several helicases...

  18. Close encounters for the first time: Helicase interactions with DNA damage.

    Science.gov (United States)

    Khan, Irfan; Sommers, Joshua A; Brosh, Robert M

    2015-09-01

    DNA helicases are molecular motors that harness the energy of nucleoside triphosphate hydrolysis to unwinding structured DNA molecules that must be resolved during cellular replication, DNA repair, recombination, and transcription. In vivo, DNA helicases are expected to encounter a wide spectrum of covalent DNA modifications to the sugar phosphate backbone or the nitrogenous bases; these modifications can be induced by endogenous biochemical processes or exposure to environmental agents. The frequency of lesion abundance can vary depending on the lesion type. Certain adducts such as oxidative base modifications can be quite numerous, and their effects can be helix-distorting or subtle perturbations to DNA structure. Helicase encounters with specific DNA lesions and more novel forms of DNA damage will be discussed. We will also review the battery of assays that have been used to characterize helicase-catalyzed unwinding of damaged DNA substrates. Characterization of the effects of specific DNA adducts on unwinding by various DNA repair and replication helicases has proven to be insightful for understanding mechanistic and biological aspects of helicase function in cellular DNA metabolism. PMID:26160335

  19. Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress.

    Science.gov (United States)

    Aggarwal, Monika; Sommers, Joshua A; Shoemaker, Robert H; Brosh, Robert M

    2011-01-25

    Modulation of DNA repair proteins by small molecules has attracted great interest. An in vitro helicase activity screen was used to identify molecules that modulate DNA unwinding by Werner syndrome helicase (WRN), mutated in the premature aging disorder Werner syndrome. A small molecule from the National Cancer Institute Diversity Set designated NSC 19630 [1-(propoxymethyl)-maleimide] was identified that inhibited WRN helicase activity but did not affect other DNA helicases [Bloom syndrome (BLM), Fanconi anemia group J (FANCJ), RECQ1, RecQ, UvrD, or DnaB). Exposure of human cells to NSC 19630 dramatically impaired growth and proliferation, induced apoptosis in a WRN-dependent manner, and resulted in elevated γ-H2AX and proliferating cell nuclear antigen (PCNA) foci. NSC 19630 exposure led to delayed S-phase progression, consistent with the accumulation of stalled replication forks, and to DNA damage in a WRN-dependent manner. Exposure to NSC 19630 sensitized cancer cells to the G-quadruplex-binding compound telomestatin or a poly(ADP ribose) polymerase (PARP) inhibitor. Sublethal dosage of NSC 19630 and the chemotherapy drug topotecan acted synergistically to inhibit cell proliferation and induce DNA damage. The use of this WRN helicase inhibitor molecule may provide insight into the importance of WRN-mediated pathway(s) important for DNA repair and the replicational stress response. PMID:21220316

  20. Humanized-VH/VHH that inhibit HCV replication by interfering with the virus helicase activity.

    Science.gov (United States)

    Phalaphol, Aninthita; Thueng-In, Kanyarat; Thanongsaksrikul, Jeeraphong; Poungpair, Ornnuthchar; Bangphoomi, Kunan; Sookrung, Nitat; Srimanote, Potjanee; Chaicumpa, Wanpen

    2013-12-01

    NS3 helicase is a pivotal enzyme involved in the early and late phases of hepatitis C virus (HCV) replication. The primary sequence and tertiary structure of this virus enzyme differ from human helicase to a certain extent; thus this virus protein has potential as a novel anti-HCV target. In this study, recombinant C-terminal NS3 protein of HCV genotype 3a with endowed helicase activity was produced and used as antigen by selecting VH/V(H)H display phage clones from an established humanized-camel single domain antibody library that bound specifically to HCV helicase. The VH/V(H)H derived from phage transfected Escherichia coli clones were linked molecularly to a cell penetrating peptide, i.e., penetratin (PEN). The cell penetrable VH/V(H)H (transbodies) could reduce the amounts of the HCV RNA released into the cell culture fluid and inside Huh7 cells infected with pJFH1 replicon with a greater effect on the former compared to the latter. Regions and residues of the helicase bound by the transbodies were determined by phage mimotope searching and multiple alignments as well as homology modeling and molecular docking. The epitope of one transbody (PEN-V(H)H9) encompassed residues 588RLKPTLHGPTPLLYRLGA605 of the domain 3 necessary for helicase activity while another transbody (PEN-VH59) interacted with the areas covering the phenylalanine loop and arginine clamp of the domain 2 which are important for the proper folding of the enzyme as well as nucleic acid substrate binding. Although the molecular mechanisms of the prototypic transbodies on NS3 helicase need further investigation, these transbodies have high potential as novel, safe and mutation tolerable anti-HCV agents.

  1. Lessons learned from UvrD helicase: mechanism for directional movement.

    Science.gov (United States)

    Yang, Wei

    2010-01-01

    How do molecular motors convert chemical energy to mechanical work? Helicases and nucleic acids offer simple motor systems for extensive biochemical and biophysical analyses. Atomic resolution structures of UvrD-like helicases complexed with DNA in the presence of AMPPNP, ADP.Pi, and Pi reveal several salient points that aid our understanding of mechanochemical coupling. Each ATPase cycle causes two motor domains to rotationally close and open. At a minimum, two motor-track contact points of alternating tight and loose attachment convert domain rotations to unidirectional movement. A motor is poised for action only when fully in contact with its track and, if applicable, working against a load. The orientation of domain rotation relative to the track determines whether the movement is linear, spiral, or circular. Motors powered by ATPases likely deliver each power stroke in two parts, before and after ATP hydrolysis. Implications of these findings for analyzing hexameric helicase, F(1)F(0) ATPase, and kinesin are discussed. PMID:20192763

  2. DNA Helicases in NER, BER, and MMR.

    Science.gov (United States)

    Kuper, Jochen; Kisker, Caroline

    2013-01-01

    Different DNA repair mechanisms have evolved to protect our genome from modifications caused by endogenous and exogenous agents, thus maintaining the integrity of the DNA. Helicases often play a central role in these repair pathways and have shown to be essential for diverse tasks within these mechanisms. In prokaryotic nucleotide excision repair (NER) for example the two helicases UvrB and UvrD assume vastly different functions. While UvrB is intimately involved in damage verification and acts as an anchor for the other prokaryotic NER proteins UvrA and UvrC, UvrD is required to resolve the post-incision complex leading to the release of UvrC and the incised ssDNA fragment. For the XPD helicase in eukaryotic NER a similar function in analogy to UvrB has been proposed, whereas XPB the second helicase uses only its ATPase activity during eukaryotic NER. In prokaryotic mismatch repair (MMR) UvrD again plays a central role. The different tasks of this protein in the different repair pathways highlight the importance of regulative protein-protein interactions to fine-tune its helicase activity. In other DNA repair pathways the role of the helicases involved is sometimes not as well characterized, and no helicase has so far been described to assume the function of UvrD in eukaryotic MMR. RecQ helicases and FancJ interact with eukaryotic MMR proteins but their involvement in this repair pathway is unclear. Lastly, long-patch base excision repair is linked to the WRN helicase and many proteins within this pathway interact with the helicase leading to increased activity of the interacting proteins as observed for pol β and FEN-1 or the helicase itself is negatively regulated through the interaction with APE-1. However, compared to the precise functions described for the helicases in the other DNA repair mechanisms the role of WRN in BER remains speculative and requires further analysis. PMID:23161013

  3. Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases

    Science.gov (United States)

    Pinto, Cosimo; Kasaciunaite, Kristina; Seidel, Ralf; Cejka, Petr

    2016-01-01

    Human DNA2 (hDNA2) contains both a helicase and a nuclease domain within the same polypeptide. The nuclease of hDNA2 is involved in a variety of DNA metabolic processes. Little is known about the role of the hDNA2 helicase. Using bulk and single-molecule approaches, we show that hDNA2 is a processive helicase capable of unwinding kilobases of dsDNA in length. The nuclease activity prevents the engagement of the helicase by competing for the same substrate, hence prominent DNA unwinding by hDNA2 alone can only be observed using the nuclease-deficient variant. We show that the helicase of hDNA2 functionally integrates with BLM or WRN helicases to promote dsDNA degradation by forming a heterodimeric molecular machine. This collectively suggests that the hDNA2 motor promotes the enzyme's capacity to degrade dsDNA in conjunction with BLM or WRN and thus promote the repair of broken DNA. DOI: http://dx.doi.org/10.7554/eLife.18574.001 PMID:27612385

  4. Special Methods collection on DNA helicases.

    Science.gov (United States)

    Brosh, Robert M

    2016-10-01

    In this special Methods collection on DNA helicases, I have solicited articles from leading experts in the field with a priority to gather a defined series of papers on highly relevant topics that encompass biological, biochemical, and biophysical aspects of helicase function. The experimental approaches described provide an opportunity for both new and more experienced scientists to use the information for the design of their own investigations. The reader will find detailed methods for single-molecule studies, novel biochemical experiments, genetic analyses, and cell biological assays in a variety of systems with an emphasis placed on state-of-the-art techniques to measure helicase function. Contributing authors were strongly encouraged to provide a carefully constructed description of the methods employed so that others might use this information in a manner that will be useful for their own particular application and helicase of interest. This special issue of Methods dedicated to DNA helicases offers readers a treasure chest of unique experimental approaches and protocols focused on rapidly developing techniques that are useful for studying both in vivo and in vitro aspects of helicase function. PMID:27565743

  5. Nucleotide and partner-protein control of bacterial replicative helicase structure and function.

    Science.gov (United States)

    Strycharska, Melania S; Arias-Palomo, Ernesto; Lyubimov, Artem Y; Erzberger, Jan P; O'Shea, Valerie L; Bustamante, Carlos J; Berger, James M

    2013-12-26

    Cellular replication forks are powered by ring-shaped, hexameric helicases that encircle and unwind DNA. To better understand the molecular mechanisms and control of these enzymes, we used multiple methods to investigate the bacterial replicative helicase, DnaB. A 3.3 Å crystal structure of Aquifex aeolicus DnaB, complexed with nucleotide, reveals a newly discovered conformational state for this motor protein. Electron microscopy and small angle X-ray scattering studies confirm the state seen crystallographically, showing that the DnaB ATPase domains and an associated N-terminal collar transition between two physical states in a nucleotide-dependent manner. Mutant helicases locked in either collar state are active but display different capacities to support critical activities such as duplex translocation and primase-dependent RNA synthesis. Our findings establish the DnaB collar as an autoregulatory hub that controls the ability of the helicase to transition between different functional states in response to both nucleotide and replication initiation/elongation factors. PMID:24373746

  6. Purification and crystallization of Kokobera virus helicase

    International Nuclear Information System (INIS)

    Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method and exhibit a diffraction limit of 2.3 Å. Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. The flavivirus genus is characterized by a positive-sense single-stranded RNA genome. The unique open reading frame of the viral RNA is transcribed and translated as a single polyprotein which is post-translationally cleaved to yield three structural and seven nonstructural proteins, one of which is the NS3 gene that encodes a C-terminal helicase domain consisting of 431 amino acids. Helicase inhibitors are potential antiviral drugs as the helicase is essential to viral replication. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P3121 (or P3221), with unit-cell parameters a = 88.6, c = 138.6 Å, and exhibit a diffraction limit of 2.3 Å

  7. Purification and crystallization of Kokobera virus helicase

    Energy Technology Data Exchange (ETDEWEB)

    De Colibus, Luigi; Speroni, Silvia [Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Coutard, Bruno [Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Université Aix-Marseille I et II, ESIL, Campus de Luminy, 13288 Marseille CEDEX 09 (France); Forrester, Naomi L.; Gould, Ernest [Centre for Ecology and Hydrology (formerly Institute of Virology), Mansfield Road, Oxford OX1 3SR (United Kingdom); Canard, Bruno [Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Université Aix-Marseille I et II, ESIL, Campus de Luminy, 13288 Marseille CEDEX 09 (France); Mattevi, Andrea, E-mail: mattevi@ipvgen.unipv.it [Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia (Italy)

    2007-03-01

    Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method and exhibit a diffraction limit of 2.3 Å. Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. The flavivirus genus is characterized by a positive-sense single-stranded RNA genome. The unique open reading frame of the viral RNA is transcribed and translated as a single polyprotein which is post-translationally cleaved to yield three structural and seven nonstructural proteins, one of which is the NS3 gene that encodes a C-terminal helicase domain consisting of 431 amino acids. Helicase inhibitors are potential antiviral drugs as the helicase is essential to viral replication. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P3{sub 1}21 (or P3{sub 2}21), with unit-cell parameters a = 88.6, c = 138.6 Å, and exhibit a diffraction limit of 2.3 Å.

  8. Characterization of a thermostable UvrD helicase and its participation in helicase dependent amplification

    OpenAIRE

    AN, LIXIN; Tang, Wen; Ranalli, Tamara A.; Kim, Hyun-Jin; Wytiaz, Jamie; Kong, Huimin

    2005-01-01

    Helicase-Dependent Amplification (HDA) is an isothermal in vitro DNA amplification method based upon the coordinated actions of helicases to separate double-stranded DNA and DNA polymerases to synthesize DNA. Previously, a mesophilic form of HDA (mHDA) utilizing the E. coli UvrD helicase, DNA polymerase I Klenow Fragment, two accessory proteins, MutL and single stranded DNA binding protein (SSB), was developed (1). In an effort to improve the specificity and performance of HDA, we have cloned...

  9. Multiple Functions of Nuclear DNA Helicase Ⅱ (RNA helicase A) in Nucleic Acid Metabolism

    Institute of Scientific and Technical Information of China (English)

    Suisheng ZHANG; Frank GROSSE

    2004-01-01

    Nuclear DNA helicase Ⅱ(NDH Ⅱ),or RNA helicase A(RHA),was initially discovered in mammals by conventional protein purification methods.Molecular cloning identified apparent sequence homologies between NDH Ⅱ and a Drosophila protein named maleless(MLE),the latter being essential for the Drosophila X-chromosome dosage compensation.Increasing amounts of evidence suggest that NDH Ⅱ is involved in multiple aspects of cellular and viral DNA and RNA metabolism.Moreover the functions of NDH Ⅱ may have potential clinical implications related to viral infection,autoimmune diseases,or even tumorigenesis.

  10. Single molecule measurements of DNA helicase activity with magnetic tweezers and t-test based step-finding analysis.

    Science.gov (United States)

    Seol, Yeonee; Strub, Marie-Paule; Neuman, Keir C

    2016-08-01

    Magnetic tweezers is a versatile and easy to implement single-molecule technique that has become increasingly prevalent in the study of nucleic acid based molecular motors. Here, we provide a description of the magnetic tweezers instrument and guidelines for measuring and analyzing DNA helicase activity. Along with experimental methods, we describe a robust method of single-molecule trajectory analysis based on the Student's t-test that accommodates continuous transitions in addition to the discrete transitions assumed in most widely employed analysis routines. To illustrate the single-molecule unwinding assay and the analysis routine, we provide DNA unwinding measurements of Escherichia coli RecQ helicase under a variety of conditions (Na+, ATP, temperature, and DNA substrate geometry). These examples reveal that DNA unwinding measurements under various conditions can aid in elucidating the unwinding mechanism of DNA helicase but also emphasize that environmental effects on DNA helicase activity must be considered in relation to in vivo activity and mechanism. PMID:27131595

  11. Double Strand Break Unwinding and Resection by the Mycobacterial Helicase-Nuclease AdnAB in the Presence of Single Strand DNA-binding Protein (SSB)*

    OpenAIRE

    Unciuleac, Mihaela-Carmen; Shuman, Stewart

    2010-01-01

    Mycobacterial AdnAB is a heterodimeric DNA helicase-nuclease and 3′ to 5′ DNA translocase implicated in the repair of double strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal motor domain and a C-terminal nuclease domain. Inclusion of mycobacterial single strand DNA-binding protein (SSB) in reactions containing linear plasmid dsDNA allowed us to study the AdnAB helicase under conditions in which the unwound single strands are coated by SSB and thereby prevent...

  12. RECQL4 helicase has oncogenic potential in sporadic breast cancers.

    Science.gov (United States)

    Arora, Arvind; Agarwal, Devika; Abdel-Fatah, Tarek Ma; Lu, Huiming; Croteau, Deborah L; Moseley, Paul; Aleskandarany, Mohammed A; Green, Andrew R; Ball, Graham; Rakha, Emad A; Chan, Stephen Yt; Ellis, Ian O; Wang, Lisa L; Zhao, Yongliang; Balajee, Adayabalam S; Bohr, Vilhelm A; Madhusudan, Srinivasan

    2016-03-01

    RECQL4 helicase is a molecular motor that unwinds DNA, a process essential during DNA replication and DNA repair. Germ-line mutations in RECQL4 cause type II Rothmund-Thomson syndrome (RTS), characterized by a premature ageing phenotype and cancer predisposition. RECQL4 is widely considered to be a tumour suppressor, although its role in human breast cancer is largely unknown. As the RECQL4 gene is localized to chromosome 8q24, a site frequently amplified in sporadic breast cancers, we hypothesized that it may play an oncogenic role in breast tumourigenesis. To address this, we analysed large cohorts for gene copy number changes (n = 1977), mRNA expression (n = 1977) and protein level (n = 1902). Breast cancer incidence was also explored in 58 patients with type II RTS. DNA replication dynamics and chemosensitivity was evaluated in RECQL4-depleted breast cancer cells in vitro. Amplification or gain in gene copy number (30.6%), high-level mRNA expression (51%) and high levels of protein (23%) significantly associated with aggressive tumour behaviour, including lymph node positivity, larger tumour size, HER2 overexpression, ER-negativity, triple-negative phenotypes and poor survival. RECQL4 depletion impaired the DNA replication rate and increased chemosensitivity in cultured breast cancer cells. Thus, although recognized as a 'safe guardian of the genome', our data provide compelling evidence that RECQL4 is tumour promoting in established breast cancers. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Stimulation of mouse DNA primase-catalyzed oligoribonucleotide synthesis by mouse DNA helicase B.

    OpenAIRE

    Saitoh, A; S. Tada; Katada, T; Enomoto, T.

    1995-01-01

    Many prokaryotic and viral DNA helicases involved in DNA replication stimulate their cognate DNA primase activity. To assess the stimulation of DNA primase activity by mammalian DNA helicases, we analyzed the synthesis of oligoribonucleotides by mouse DNA polymerase alpha-primase complex on single-stranded circular M13 DNA in the presence of mouse DNA helicase B. DNA helicase B was purified by sequential chromatography through eight columns. When the purified DNA helicase B was applied to a M...

  14. Mechanism of DNA loading by the DNA repair helicase XPD.

    Science.gov (United States)

    Constantinescu-Aruxandei, Diana; Petrovic-Stojanovska, Biljana; Penedo, J Carlos; White, Malcolm F; Naismith, James H

    2016-04-01

    The xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5' to 3' helicase with an essential iron-sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase fromThermoplasma acidophilumhas been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD fromSulfolobus acidocaldiariusthat lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD. PMID:26896802

  15. Essential bacterial helicases that counteract the toxicity of recombination proteins

    OpenAIRE

    Petit, Marie-Agnès; Ehrlich, Dusko

    2002-01-01

    PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previo...

  16. Mutations altering the interplay between GkDnaC helicase and DNA reveal an insight into helicase unwinding.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Lo

    Full Text Available Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA. Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC in complex with single-stranded DNA (ssDNA suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2-4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction.

  17. A rapid assay for the biological evaluation of helicase activity.

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Dimitrios Vlachakis, Andrea Brancale, Colin Berry & Sophia Kossida ### Abstract A new assay for the measurement of helicase enzyme activity was developed for the evaluation of the potency of potential inhibitors. This assay involves the use of a DNA or RNA duplex substrate and recombinant purified helicase. The DNA duplex consists of a pair of oligonucleotides, one of which is biotinylated and the other is digoxygenin (DIG)-labelled, both at their respective 5’ termini. T...

  18. Preliminary crystallographic characterization of an RNA helicase from Kunjin virus

    International Nuclear Information System (INIS)

    The C-terminal 440 amino acids of the NS3 protein from Kunjin virus (Flaviviridae) code for a helicase. The protein has been overexpressed and crystallized. Characterization of the isolated monoclinic crystal form and diffraction data (at 3.0 Å resolution) are presented, together with a preliminary molecular-replacement solution. Kunjin virus is a member of the Flavivirus genus and is an Australian variant of West Nile virus. The C-terminal domain of the Kunjin virus NS3 protein displays helicase activity. The protein is thought to separate daughter and template RNA strands, assisting the initiation of replication by unwinding RNA secondary structure in the 3′ nontranslated region. Expression, purification and preliminary crystallographic characterization of the NS3 helicase domain are reported. It is shown that Kunjin virus helicase may adopt a dimeric assembly in absence of nucleic acids, oligomerization being a means to provide the helicases with multiple nucleic acid-binding capability, facilitating translocation along the RNA strands. Kunjin virus NS3 helicase domain is an attractive model for studying the molecular mechanisms of flavivirus replication, while simultaneously providing a new basis for the rational development of anti-flaviviral compounds

  19. Somatic hypermutation of immunoglobulin genes is independent of the Bloom's syndrome DNA helicase.

    Science.gov (United States)

    Sack, S Z; Liu, Y; German, J; Green, N S

    1998-05-01

    Immunoglobulin gene somatic mutation leads to antibody affinity maturation through the introduction of multiple point mutations in the antigen binding site. No genes have as yet been identified that participate in this process. Bloom's syndrome (BS) is a chromosomal breakage disorder with a mutator phenotype. Most affected individuals exhibit an immunodeficiency of undetermined aetiology. The gene for this disorder, BLM, has recently been identified as a DNA helicase. If this gene were to play a role in immunoglobulin mutation, then people with BS may lack normally mutated antibodies. Since germ-line, non-mutated immunoglobulin genes generally produce low affinity antibodies, impaired helicase activity might be manifested as the immunodeficiency found in BS. Therefore, we asked whether BLM is specifically involved in immunoglobulin hypermutation. Sequences of immunoglobulin variable (V) regions were analysed from small unsorted blood samples obtained from BS individuals and compared with germ-line sequences. BS V regions displayed the normal distribution of mutations, indicating that the defect in BS is not related to the mechanism of somatic mutation. These data strongly argue against BLM being involved in this process. The genetic approach to identifying the genes involved in immunoglobulin mutation will require further studies of DNA repair- and immunodeficient individuals.

  20. Sub-angstrom single-molecule measurements of motor proteins using a nanopore

    Science.gov (United States)

    Derrington, Ian M; Craig, Jonathan M; Stava, Eric; Laszlo, Andrew H; Ross, Brian C; Brinkerhoff, Henry; Nova, Ian C; Doering, Kenji; Tickman, Benjamin I; Ronaghi, Mostafa; Mandell, Jeffrey G; Gunderson, Kevin L; Gundlach, Jens H

    2016-01-01

    Present techniques for measuring the motion of single motor proteins, such as FRET and optical tweezers, are limited to a resolution of ~300 pm. We use ion current modulation through the protein nanopore MspA to observe translocation of helicase Hel308 on DNA with up to ~40 picometer sensitivity. This approach should be applicable to any protein that translocates on DNA or RNA, including helicases, polymerases, recombinases and DNA repair enzymes. PMID:26414351

  1. Subangstrom single-molecule measurements of motor proteins using a nanopore.

    Science.gov (United States)

    Derrington, Ian M; Craig, Jonathan M; Stava, Eric; Laszlo, Andrew H; Ross, Brian C; Brinkerhoff, Henry; Nova, Ian C; Doering, Kenji; Tickman, Benjamin I; Ronaghi, Mostafa; Mandell, Jeffrey G; Gunderson, Kevin L; Gundlach, Jens H

    2015-10-01

    Techniques for measuring the motion of single motor proteins, such as FRET and optical tweezers, are limited to a resolution of ∼300 pm. We use ion current modulation through the protein nanopore MspA to observe translocation of helicase Hel308 on DNA with up to ∼40 pm sensitivity. This approach should be applicable to any protein that translocates on DNA or RNA, including helicases, polymerases, recombinases and DNA repair enzymes. PMID:26414351

  2. Translocation step size and mechanism of the RecBC DNA helicase.

    Science.gov (United States)

    Bianco, P R; Kowalczykowski, S C

    2000-05-18

    DNA helicases are ubiquitous enzymes that unwind double-stranded DNA. They are a diverse group of proteins that move in a linear fashion along a one-dimensional polymer lattice--DNA--by using a mechanism that couples nucleoside triphosphate hydrolysis to both translocation and double-stranded DNA unwinding to produce separate strands of DNA. The RecBC enzyme is a processive DNA helicase that functions in homologous recombination in Escherichia coli; it unwinds up to 6,250 base pairs per binding event and hydrolyses slightly more than one ATP molecule per base pair unwound. Here we show, by using a series of gapped oligonucleotide substrates, that this enzyme translocates along only one strand of duplex DNA in the 3'-->5' direction. The translocating enzyme will traverse, or 'step' across, single-stranded DNA gaps in defined steps that are 23 (+/-2) nucleotides in length. This step is much larger than the amount of double-stranded DNA that can be unwound using the free energy derived from hydrolysis of one molecule of ATP, implying that translocation and DNA unwinding are separate events. We propose that the RecBC enzyme both translocates and unwinds by a quantized, two-step, inchworm-like mechanism that may have parallels for translocation by other linear motor proteins. PMID:10830968

  3. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate

    Science.gov (United States)

    Abid Ali, Ferdos; Renault, Ludovic; Gannon, Julian; Gahlon, Hailey L.; Kotecha, Abhay; Zhou, Jin Chuan; Rueda, David; Costa, Alessandro

    2016-02-01

    The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.

  4. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli

    OpenAIRE

    Veaute, Xavier; Delmas, Stéphane; Selva, Marjorie; Jeusset, Josette; Le cam, Eric; Matic, Ivan; Fabre, Francis; Petit, Marie-Agnès

    2004-01-01

    The roles of UvrD and Rep DNA helicases of Escherichia coli are not yet fully understood. In particular, the reason for rep uvrD double mutant lethality remains obscure. We reported earlier that mutations in recF, recO or recR genes suppress the lethality of uvrD rep, and proposed that an essential activity common to UvrD and Rep is either to participate in the removal of toxic recombination intermediates or to favour the proper progression of replication. Here, we show that UvrD, but not Rep...

  5. Cloning and expression of NS3 helicase fragment of hepatitis C virus and the study of its immunoreactivity in HCV infected patients

    Directory of Open Access Journals (Sweden)

    Mahrou Sadri

    2015-02-01

    Full Text Available Objective(s: Hepatitis C is a major cause of liver failure worldwide. Current therapies applied for this disease are not fully effective and produce side effects in most cases. Non-structural protein 3 helicase (NS3 of HCV is one of the key enzymes in viral replication and infection. Therefore, this region is a promising target to design new drugs and therapies against HCV infection. The aim of this study was cloning and expression of HCV NS3 helicase fragment in Escherichia coli BL21 (DE3 using pET102/D-TOPO expression vector and studying immunoreactivity of the expressed antigen in Iranian infected with hepatitis C. Materials and Methods: The viral RNA was extracted from the serum of HCV infected patient. The NS3 helicase region was amplified by RT-PCR. The PCR product was directionally cloned into the expression vector pET102/D-TOPO and transformed into the BL21 strain of E. coli (DE3. The transformed bacteria were then induced by adding 1mM isopropyl-β-D-thiogalactopyranoside (IPTG into the culture medium to enhance the protein expression. SDS-PAGE and western blotting were carried out to identify the protein under investigation, and finally purified recombinant fusion protein was used as the antigen for ELISA method. Results: Theinsertion of theDNA fragment of the NS3 regioninto the expression vectorwas further confirmed by PCR and sequencing. SDS-PAGE analysis showed the successful expression of the recombinant protein of interest. Furthermore, immunoreactivity of fusion NS3 helicase was confirmed by ELISA and western blotting. Conclusion: It seems that this recombinant protein could be a useful source of antigen for future studies on HCV diagnosis and therapy.

  6. A tale of two HSV-1 helicases: roles of phage and animal virus helicases in DNA replication and recombination.

    Science.gov (United States)

    Marintcheva, B; Weller, S K

    2001-01-01

    Helicases play essential roles in many important biological processes such as DNA replication, repair, recombination, transcription, splicing, and translation. Many bacteriophages and plant and animal viruses encode one or more helicases, and these enzymes have been shown to play many roles in their respective viral life cycles. In this review we concentrate primarily on the roles of helicases in DNA replication and recombination with special emphasis on the bacteriophages T4, T7, and A as model systems. We explore comparisons between these model systems and the herpesviruses--primarily herpes simplex virus. Bacteriophage utilize various pathways of recombination-dependent DNA replication during the replication of their genomes. In fact the study of recombination in the phage systems has greatly enhanced our understanding of the importance of recombination in the replication strategies of bacteria, yeast, and higher eukaryotes. The ability to "restart" the replication process after a replication fork has stalled or has become disrupted for other reasons is a critical feature in the replication of all organisms studied. Phage helicases and other recombination proteins play critical roles in the "restart" process. Parallels between DNA replication and recombination in phage and in the herpesviruses is explored. We and others have proposed that recombination plays an important role in the life cycle of the herpesviruses, and in this review, we discuss models for herpes simplex virus type 1 (HSV-1) DNA replication. HSV-1 encodes two helicases. UL9 binds specifically to the origins of replication and is believed to initiate HSV DNA replication by unwinding at the origin; the heterotrimeric helicase-primase complex, encoded by UL5, UL8, and UL52 genes, is believed to unwind duplex viral DNA at replication forks. Structure-function analyses of UL9 and the helicase-primase are discussed with attention to the roles these proteins might play during HSV replication. PMID

  7. A biochemically active MCM-like helicase in Bacillus cereus

    Science.gov (United States)

    Samuels, Martin; Gulati, Gaurav; Shin, Jae-Ho; Opara, Rejoice; McSweeney, Elizabeth; Sekedat, Matt; Long, Stephen; Kelman, Zvi; Jeruzalmi, David

    2009-01-01

    The mini-chromosome maintenance (MCM) proteins serve as the replicative helicases in archaea and eukaryotes. Interestingly, an MCM homolog was identified, by BLAST analysis, within a phage integrated in the bacterium Bacillus cereus (Bc). BcMCM is only related to the AAA region of MCM-helicases; the typical amino-terminus is missing and is replaced by a segment with weak homology to primases. We show that BcMCM displays 3′→5′ helicase and ssDNA-stimulated ATPase activity, properties that arise from its conserved AAA domain. Isolated BcMCM is a monomer in solution but likely forms the functional oligomer in vivo. We found that the BcMCM amino-terminus can bind ssDNA and harbors a zinc atom, both hallmarks of the typical MCM amino-terminus. No BcMCM-catalyzed primase activity could be detected. We propose that the divergent amino-terminus of BcMCM is a paralog of the corresponding region of MCM-helicases. A divergent amino terminus makes BcMCM a useful model for typical MCM-helicases since it accomplishes the same function using an apparently unrelated structure. PMID:19474351

  8. Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses.

    Science.gov (United States)

    Raikwar, Shailendra; Srivastava, Vineet K; Gill, Sarvajeet S; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress conditions. Here, we report the in silico analysis of novel stress inducible promoter of Oryza sativa XPB2 (OsXPB2). The in vivo validation of functionality/activity of OsXPB2 promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. The present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration, or cold) and hormone (Auxin, ABA, or MeJA) induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA, or ABA responsive, respectively. Functional analysis was done by Agrobacterium-mediated transient assay using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present findings suggest that OsXPB2 promoter is a multi-stress inducible promoter and has potential applications in sustainable crop production under abiotic stresses by regulating desirable pattern of gene expression. PMID:26734018

  9. Stimulation of UvrD helicase by UvrAB.

    Science.gov (United States)

    Atkinson, John; Guy, Colin P; Cadman, Chris J; Moolenaar, Geri F; Goosen, Nora; McGlynn, Peter

    2009-04-01

    Helicases play critical roles in all aspects of nucleic acid metabolism by catalyzing the remodeling of DNA and RNA structures. UvrD is an abundant helicase in Escherichia coli with well characterized functions in mismatch and nucleotide excision repair and a possible role in displacement of proteins such as RecA from single-stranded DNA. The mismatch repair protein MutL is known to stimulate UvrD. Here we show that the nucleotide excision repair proteins UvrA and UvrB can together stimulate UvrD-catalyzed unwinding of a range of DNA substrates containing strand discontinuities, including forked DNA substrates. The stimulation is specific for UvrD, as UvrAB failed to stimulate Rep helicase, a UvrD homologue. Moreover, although UvrAB can promote limited strand displacement, stimulation of UvrD did not require the strand displacement function of UvrAB. We conclude that UvrAB, like MutL, modulate UvrD helicase activity. This stimulation likely plays a role in DNA strand and protein displacement by UvrD in nucleotide excision repair. Promotion of UvrD-catalyzed unwinding of nicked duplexes by UvrAB may also explain the need for UvrAB and UvrD in Okazaki fragment processing in cells lacking DNA polymerase I. More generally, these data support the idea that helicase activity is regulated in vivo, with helicases acting as part of multisubunit complexes rather than in isolation. PMID:19208629

  10. Structure of the NS3 helicase from Zika virus.

    Science.gov (United States)

    Jain, Rinku; Coloma, Javier; García-Sastre, Adolfo; Aggarwal, Aneel K

    2016-08-01

    Zika virus has emerged as a pathogen of major health concern. Here, we present a high-resolution (1.62-Å) crystal structure of the RNA helicase from the French Polynesia strain. The structure is similar to that of the RNA helicase from Dengue virus, with variability in the conformations of loops typically involved in binding ATP and RNA. We identify druggable 'hotspots' that are well suited for in silico and/or fragment-based high-throughput drug discovery. PMID:27399257

  11. Double helicase II (uvrD)-helicase IV (helD) deletion mutants are defective in the recombination pathways of Escherichia coli.

    OpenAIRE

    Mendonca, V M; Kaiser-Rogers, K; Matson, S W

    1993-01-01

    The Escherichia coli helD (encoding helicase IV) and uvrD (encoding helicase II) genes have been deleted, independently and in combination, from the chromosome and replaced with genes encoding antibiotic resistance. Each deletion was verified by Southern blots, and the location of each deletion was confirmed by P1-mediated transduction. Cell strains containing the single and double deletions were viable, indicating that helicases II and IV are not essential for viability. Cell strains lacking...

  12. Single-molecule imaging of the oligomer formation of the nonhexameric Escherichia coli UvrD helicase

    OpenAIRE

    Yokota, Hiroaki; Chujo, Yuko Ayabe; Harada, Yoshie

    2013-01-01

    Superfamily I helicases are nonhexameric helicases responsible for the unwinding of nucleic acids. However, whether they unwind DNA in the form of monomers or oligomers remains a controversy. In this study, we addressed this question using direct single-molecule fluorescence visualization of Escherichia coli UvrD, a superfamily I DNA helicase. We performed a photobleaching-step analysis of dye-labeled helicases and determined that the helicase is bound to 18-basepair (bp) double-stranded DNA ...

  13. Selective pharmacological targeting of a DEAD box RNA helicase.

    Directory of Open Access Journals (Sweden)

    Lisa Lindqvist

    Full Text Available RNA helicases represent a large family of proteins implicated in many biological processes including ribosome biogenesis, splicing, translation and mRNA degradation. However, these proteins have little substrate specificity, making inhibition of selected helicases a challenging problem. The prototypical DEAD box RNA helicase, eIF4A, works in conjunction with other translation factors to prepare mRNA templates for ribosome recruitment during translation initiation. Herein, we provide insight into the selectivity of a small molecule inhibitor of eIF4A, hippuristanol. This coral-derived natural product binds to amino acids adjacent to, and overlapping with, two conserved motifs present in the carboxy-terminal domain of eIF4A. Mutagenesis of amino acids within this region allowed us to alter the hippuristanol-sensitivity of eIF4A and undertake structure/function studies. Our results provide an understanding into how selective targeting of RNA helicases for pharmacological intervention can be achieved.

  14. MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity.

    Science.gov (United States)

    Das, Mitali; Singh, Sunita; Pradhan, Satyajit; Narayan, Gopeshwar

    2014-01-01

    As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM) 2-7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the "MCM paradox." Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.

  15. MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity

    Directory of Open Access Journals (Sweden)

    Mitali Das

    2014-01-01

    Full Text Available As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM 2–7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the “MCM paradox.” Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.

  16. Antigen Export Reduces Antigen Presentation and Limits T Cell Control of M. tuberculosis.

    Science.gov (United States)

    Srivastava, Smita; Grace, Patricia S; Ernst, Joel D

    2016-01-13

    Persistence of Mycobacterium tuberculosis results from bacterial strategies that manipulate host adaptive immune responses. Infected dendritic cells (DCs) transport M. tuberculosis to local lymph nodes but activate CD4 T cells poorly, suggesting bacterial manipulation of antigen presentation. However, M. tuberculosis antigens are also exported from infected DCs and taken up and presented by uninfected DCs, possibly overcoming this blockade of antigen presentation by infected cells. Here we show that the first stage of this antigen transfer, antigen export, benefits M. tuberculosis by diverting bacterial proteins from the antigen presentation pathway. Kinesin-2 is required for antigen export and depletion of this microtubule-based motor increases activation of antigen-specific CD4 T cells by infected cells and improves control of intracellular infection. Thus, although antigen transfer enables presentation by bystander cells, it does not compensate for reduced antigen presentation by infected cells and represents a bacterial strategy for CD4 T cell evasion.

  17. Three-dimensional structure of N-terminal domain of DnaB helicase and helicase-primase interactions in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Tara Kashav

    Full Text Available Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD of H. pylori DnaB (HpDnaB helicase at 2.2 A resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria.

  18. DNA repair and replication fork helicases are differentially affected by alkyl phosphotriester lesion.

    Science.gov (United States)

    Suhasini, Avvaru N; Sommers, Joshua A; Yu, Stephen; Wu, Yuliang; Xu, Ting; Kelman, Zvi; Kaplan, Daniel L; Brosh, Robert M

    2012-06-01

    DNA helicases are directly responsible for catalytically unwinding duplex DNA in an ATP-dependent and directionally specific manner and play essential roles in cellular nucleic acid metabolism. It has been conventionally thought that DNA helicases are inhibited by bulky covalent DNA adducts in a strand-specific manner. However, the effects of highly stable alkyl phosphotriester (PTE) lesions that are induced by chemical mutagens and refractory to DNA repair have not been previously studied for their effects on helicases. In this study, DNA repair and replication helicases were examined for unwinding a forked duplex DNA substrate harboring a single isopropyl PTE specifically positioned in the helicase-translocating or -nontranslocating strand within the double-stranded region. A comparison of SF2 helicases (RecQ, RECQ1, WRN, BLM, FANCJ, and ChlR1) with a SF1 DNA repair helicase (UvrD) and two replicative helicases (MCM and DnaB) demonstrates unique differences in the effect of the PTE on the DNA unwinding reactions catalyzed by these enzymes. All of the SF2 helicases tested were inhibited by the PTE lesion, whereas UvrD and the replication fork helicases were fully tolerant of the isopropyl backbone modification, irrespective of strand. Sequestration studies demonstrated that RECQ1 helicase was trapped by the PTE lesion only when it resided in the helicase-translocating strand. Our results are discussed in light of the current models for DNA unwinding by helicases that are likely to encounter sugar phosphate backbone damage during biological DNA transactions. PMID:22500020

  19. DNA Structure Specificity Conferred on a Replicative Helicase by Its Loader*

    OpenAIRE

    Gupta, Milind K.; Atkinson, John; McGlynn, Peter

    2009-01-01

    Prokaryotic and eukaryotic replicative helicases can translocate along single-stranded and double-stranded DNA, with the central cavity of these multimeric ring helicases being able to accommodate both forms of DNA. Translocation by such helicases along single-stranded DNA results in the unwinding of forked DNA by steric exclusion and appears critical in unwinding of parental strands at the replication fork, whereas translocation over double-stranded DNA has no well-defined role. We have foun...

  20. Rice SUV3 is a bidirectional helicase that binds both DNA and RNA

    OpenAIRE

    Tuteja, Narendra; Tarique, Mohammed; Tuteja, Renu

    2014-01-01

    Background Helicases play crucial role in almost all the nucleic acid metabolism including replication, repair, recombination, transcription, translation, ribosome biogenesis and splicing and these processes regulate plant growth and development. It is suggested that helicases play essential roles in stabilizing growth in plants under stress because their presence in the stress-induced ORFs has been identified. Moreover in a recent study we have reported that SUV3 helicase from Oryza sativa (...

  1. Human DHX9 helicase unwinds triple-helical DNA structures.

    Science.gov (United States)

    Jain, Aklank; Bacolla, Albino; Chakraborty, Prasun; Grosse, Frank; Vasquez, Karen M

    2010-08-24

    Naturally occurring poly(purine.pyrimidine) rich regions in the human genome are prone to adopting non-canonical DNA structures such as intramolecular triplexes (i.e., H-DNA). Such structure-forming sequences are abundant and can regulate the expression of several disease-linked genes. In addition, the use of triplex-forming oligonucleotides (TFOs) to modulate gene structure and function has potential as an approach to targeted gene therapy. Previously, we found that endogenous H-DNA structures can induce DNA double-strand breaks and promote genomic rearrangements. Herein, we find that the DHX9 helicase co-immunoprecipitates with triplex DNA structures in mammalian cells, suggesting a role in the maintenance of genome stability. We tested this postulate by assessing the helicase activity of purified human DHX9 on various duplex and triplex DNA substrates in vitro. DHX9 displaced the third strand from a specific triplex DNA structure and catalyzed the unwinding with a 3' --> 5' polarity with respect to the displaced third strand. Helicase activity required a 3'-single-stranded overhang on the third strand and was dependent on ATP hydrolysis. The reaction kinetics consisted of a pre-steady-state burst phase followed by a linear, steady-state pseudo-zero-order reaction. In contrast, very little if any helicase activity was detected on blunt triplexes, triplexes with 5'-overhangs, blunt duplexes, duplexes with overhangs, or forked duplex substrates. Thus, triplex structures containing a 3'-overhang represent preferred substrates for DHX9, where it removes the strand with Hoogsteen hydrogen-bonded bases. Our results suggest the involvement of DHX9 in maintaining genome integrity by unwinding mutagenic triplex DNA structures. PMID:20669935

  2. HUMAN DHX9 HELICASE UNWINDS TRIPLE HELICAL DNA STRUCTURES☟

    Science.gov (United States)

    Jain, Aklank; Bacolla, Albino; Chakraborty, Prasun; Grosse, Frank; Vasquez, Karen M.

    2010-01-01

    Naturally occurring poly(purine·pyrimidine) rich regions in the human genome are prone to adopt non-canonical DNA structures such as intramolecular triplexes (i.e. H-DNA). Such structure-forming sequences are abundant and can regulate the expression of several diseases-linked genes. In addition, the use of triplex-forming oligonucleotides (TFOs) to modulate gene structure and function has potential as an approach to targeted gene therapy. Previously, we found that endogenous H-DNA structures can induce DNA double-strand breaks and promote genomic rearrangements. Herein, we find that the DHX9 helicase co-immunoprecipitates with triplex DNA structures in mammalian cells, suggesting a role in the maintenance of genome stability. We tested this postulate by assessing the helicase activity of purified human DHX9 on various duplex and triplex DNA substrates in vitro. DHX9 displaced the third strand from a specific triplex DNA structure and catalyzed the unwinding with a 3′→5′ polarity with respect to the displaced third strand. Helicase activity required a 3′-single-stranded overhang on the third strand and was dependent on ATP hydrolysis. The reaction kinetics consisted of a pre-steady-state burst phase followed by a linear, steady-state pseudo-zero-order-reaction. In contrast, very little, if any helicase activity was detected on blunt triplexes, triplexes with 5′-overhangs, blunt duplexes, duplexes with overhangs, or forked duplex substrates. Thus, triplex structures containing a 3′-overhang represent preferred substrates for DHX9, where it removes the strand with Hoogsteen hydrogen-bonded bases. Our results suggest the involvement of DHX9 in maintaining genome integrity by unwinding mutagenic triplex DNA structures. PMID:20669935

  3. Emerging importance of helicases in plant stress tolerance: characterization of Oryza sativa repair helicase XPB2 promoter and its functional validation in tobacco under multiple stresses

    Directory of Open Access Journals (Sweden)

    Shailendra eRaikwar

    2015-12-01

    Full Text Available Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. DNA hHelicases, the unique molecular motors, are emerged as potentialprospective molecules to engineer stress tolerance in plants and are involved in a variety of DNA nucleic acid metabolismc processes including DNA repair. The DNA repair helicase, OsXPB2 is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress The analysis of promoter sequence from plant genome is important in understanding the gene regulation. Hereconditions. Here, we report the in silico analysis of novel stress inducible promoter of rice Oryza sativa OsXPB2 (OsXPB2. gene is reported. The in vivo validation of functionality/activity of novel stress inducible promoter of rice OsXPB2 gene promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. Our resultsThe present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration or cold and hormone (Auxin, ABA or MeJA induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA or ABA responsive, respectively. Functional analysis was done by Agrobacterium-transient assays using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present

  4. An Essential DnaB Helicase of Bacillus anthracis: Identification, Characterization, and Mechanism of Action▿

    OpenAIRE

    Biswas, Esther E.; Barnes, Marjorie H.; Moir, Donald T.; Biswas, Subhasis B

    2008-01-01

    We have described a novel essential replicative DNA helicase from Bacillus anthracis, the identification of its gene, and the elucidation of its enzymatic characteristics. Anthrax DnaB helicase (DnaBBA) is a 453-amino-acid, 50-kDa polypeptide with ATPase and DNA helicase activities. DnaBBA displayed distinct enzymatic and kinetic properties. DnaBBA has low single-stranded DNA (ssDNA)-dependent ATPase activity but possesses a strong 5′→3′ DNA helicase activity. The stimulation of ATPase activi...

  5. In TFIIH, XPD helicase is exclusively devoted to DNA repair.

    Directory of Open Access Journals (Sweden)

    Jochen Kuper

    2014-09-01

    Full Text Available The eukaryotic XPD helicase is an essential subunit of TFIIH involved in both transcription and nucleotide excision repair (NER. Mutations in human XPD are associated with several inherited diseases such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. We performed a comparative analysis of XPD from Homo sapiens and Chaetomium thermophilum (a closely related thermostable fungal orthologue to decipher the different molecular prerequisites necessary for either transcription or DNA repair. In vitro and in vivo assays demonstrate that mutations in the 4Fe4S cluster domain of XPD abrogate the NER function of TFIIH and do not affect its transcriptional activity. We show that the p44-dependent activation of XPD is promoted by the stimulation of its ATPase activity. Furthermore, we clearly demonstrate that XPD requires DNA binding, ATPase, and helicase activity to function in NER. In contrast, these enzymatic properties are dispensable for transcription initiation. XPD helicase is thus exclusively devoted to NER and merely acts as a structural scaffold to maintain TFIIH integrity during transcription.

  6. The hexameric structure of the human mitochondrial replicative helicase Twinkle

    Science.gov (United States)

    Fernández-Millán, Pablo; Lázaro, Melisa; Cansız-Arda, Şirin; Gerhold, Joachim M.; Rajala, Nina; Schmitz, Claus-A.; Silva-Espiña, Cristina; Gil, David; Bernadó, Pau; Valle, Mikel; Spelbrink, Johannes N.; Solà, Maria

    2015-01-01

    The mitochondrial replicative helicase Twinkle is involved in strand separation at the replication fork of mitochondrial DNA (mtDNA). Twinkle malfunction is associated with rare diseases that include late onset mitochondrial myopathies, neuromuscular disorders and fatal infantile mtDNA depletion syndrome. We examined its 3D structure by electron microscopy (EM) and small angle X-ray scattering (SAXS) and built the corresponding atomic models, which gave insight into the first molecular architecture of a full-length SF4 helicase that includes an N-terminal zinc-binding domain (ZBD), an intermediate RNA polymerase domain (RPD) and a RecA-like hexamerization C-terminal domain (CTD). The EM model of Twinkle reveals a hexameric two-layered ring comprising the ZBDs and RPDs in one layer and the CTDs in another. In the hexamer, contacts in trans with adjacent subunits occur between ZBDs and RPDs, and between RPDs and CTDs. The ZBDs show important structural heterogeneity. In solution, the scattering data are compatible with a mixture of extended hexa- and heptameric models in variable conformations. Overall, our structural data show a complex network of dynamic interactions that reconciles with the structural flexibility required for helicase activity. PMID:25824949

  7. Resolving Holliday junctions with Escherichia coli UvrD helicase.

    Science.gov (United States)

    Carter, Annamarie S; Tahmaseb, Kambiz; Compton, Sarah A; Matson, Steven W

    2012-03-01

    The Escherichia coli UvrD helicase is known to function in the mismatch repair and nucleotide excision repair pathways and has also been suggested to have roles in recombination and replication restart. The primary intermediate DNA structure in these two processes is the Holliday junction. UvrD has been shown to unwind a variety of substrates including partial duplex DNA, nicked DNA, forked DNA structures, blunt duplex DNA and RNA-DNA hybrids. Here, we demonstrate that UvrD also catalyzes the robust unwinding of Holliday junction substrates. To characterize this unwinding reaction we have employed steady-state helicase assays, pre-steady-state rapid quench helicase assays, DNaseI footprinting, and electron microscopy. We conclude that UvrD binds initially to the junction compared with binding one of the blunt ends of the four-way junction to initiate unwinding and resolves the synthetic substrate into two double-stranded fork structures. We suggest that UvrD, along with its mismatch repair partners, MutS and MutL, may utilize its ability to unwind Holliday junctions directly in the prevention of homeologous recombination. UvrD may also be involved in the resolution of stalled replication forks by unwinding the Holliday junction intermediate to allow bypass of the blockage. PMID:22267744

  8. DMPD: Toll-like receptors and RNA helicases: two parallel ways to trigger antiviralresponses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16762830 Toll-like receptors and RNA helicases: two parallel ways to trigger antivi...-like receptors and RNA helicases: two parallel ways to trigger antiviralresponses. PubmedID 16762830 Title ...Toll-like receptors and RNA helicases: two parallel ways to trigger antiviralresp

  9. The HARP domain dictates the annealing helicase activity of HARP/SMARCAL1

    OpenAIRE

    Ghosal, Gargi; Yuan, Jingsong; Chen, Junjie

    2011-01-01

    HARP/SMARCAL1 has a unique annealing helicase activity that is important for the enzyme's function in stabilizing stalled replications forks and facilitating DNA repair. The authors demonstrate here that the conserved tandem HARP domain, and not the SNF2 domain, dictates the annealing helicase activity.

  10. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway.

    NARCIS (Netherlands)

    X.W. Wang (Xin Wei); W. Vermeulen (Wim); J.D. Coursen; M.K. Gibson (Michael); S.E. Lupold; K. Forrester; G. Xu; L. Elmore; H. Yeh; J.H.J. Hoeijmakers (Jan); C.C. Harris

    1996-01-01

    textabstractThe molecular pathway of p53-dependent apoptosis (programmed cell death) is poorly understood. Because p53 binds to the basal transcription-repair complex TFIIH and modulates its DNA helicase activities, we hypothesized that TFIIH DNA helicases XPB and XPD are members of the p53-mediated

  11. Identification of Hydroxyanthraquinones as Novel Inhibitors of Hepatitis C Virus NS3 Helicase

    Directory of Open Access Journals (Sweden)

    Atsushi Furuta

    2015-08-01

    Full Text Available Hepatitis C virus (HCV is an important etiological agent of severe liver diseases, including cirrhosis and hepatocellular carcinoma. The HCV genome encodes nonstructural protein 3 (NS3 helicase, which is a potential anti-HCV drug target because its enzymatic activity is essential for viral replication. Some anthracyclines are known to be NS3 helicase inhibitors and have a hydroxyanthraquinone moiety in their structures; mitoxantrone, a hydroxyanthraquinone analogue, is also known to inhibit NS3 helicase. Therefore, we hypothesized that the hydroxyanthraquinone moiety alone could also inhibit NS3 helicase. Here, we performed a structure–activity relationship study on a series of hydroxyanthraquinones by using a fluorescence-based helicase assay. Hydroxyanthraquinones inhibited NS3 helicase with IC50 values in the micromolar range. The inhibitory activity varied depending on the number and position of the phenolic hydroxyl groups, and among different hydroxyanthraquinones examined, 1,4,5,8-tetrahydroxyanthraquinone strongly inhibited NS3 helicase with an IC50 value of 6 µM. Furthermore, hypericin and sennidin A, which both have two hydroxyanthraquinone-like moieties, were found to exert even stronger inhibition with IC50 values of 3 and 0.8 µM, respectively. These results indicate that the hydroxyanthraquinone moiety can inhibit NS3 helicase and suggest that several key chemical structures are important for the inhibition.

  12. Structural and Functional Analysis of RIG-I Like Helicases -

    OpenAIRE

    Kirchhofer, Axel

    2009-01-01

    The cytosolic helicases RIG-I and MDA5 are primary sensors for viral RNA during infection. Although their overall role as key players in the antiviral response and the induced signaling pathways have been elucidated in great detail over the past years, a structural and functional understanding of virus recognition by these sensors is missing. On the basis of an X-ray structure of RIG-I RD the 5’-triphosphate interaction site could be mapped to a previously identified positively charged groove...

  13. Crystal structure of the Bloom's syndrome helicase indicates a role for the HRDC domain in conformational changes

    DEFF Research Database (Denmark)

    Newman, Joseph A; Savitsky, Pavel; Allerston, Charles K;

    2015-01-01

    Bloom's syndrome helicase (BLM) is a member of the RecQ family of DNA helicases, which play key roles in the maintenance of genome integrity in all organism groups. We describe crystal structures of the BLM helicase domain in complex with DNA and with an antibody fragment, as well as SAXS...... core domains. Comparison with other crystal structures of RecQ helicases permits the definition of structural transitions underlying ATP-driven helicase action, and the identification of a nucleotide-regulated tunnel that may play a role in interactions with complex DNA substrates....

  14. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts.

    Directory of Open Access Journals (Sweden)

    Simona Cugusi

    2016-01-01

    Full Text Available RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi and microRNA (miRNA pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.

  15. Characterization of virus strains resistant to the herpes virus helicase-primase inhibitor ASP2151 (Amenamevir).

    Science.gov (United States)

    Chono, Koji; Katsumata, Kiyomitsu; Kontani, Toru; Shiraki, Kimiyasu; Suzuki, Hiroshi

    2012-08-15

    ASP2151 is an antiherpes agent targeting the helicase-primase complex of herpes simplex virus (HSV)-1, HSV-2, and varicella-zoster virus (VZV). We characterized the ASP2151-resistant HSV-1 and HSV-2 variants or mutants based on findings from sequencing analysis, growth, pathogenicity, and susceptibility testing, identifying several single base-pair substitutions resulting in amino acid changes in the helicase and primase subunit of ASP2151-resistant mutants. Amino acid alterations in the helicase subunit were clustered near helicase motif IV in the UL5 helicase gene of both HSV-1 and HSV-2, while the primase subunit substitution associated with reduced susceptibility, R367H, was found in ASP2151-resistant HSV-1 mutants. However, while susceptibility in the ASP2151-resistant HSV mutants to existing antiherpes agents was equivalent to that in wild-type HSV strains, ASP2151-resistant HSV mutants showed attenuated in vitro growth capability and in vivo pathogenicity compared with the parent strains. Taken together, our present findings demonstrated that important amino acid substitutions associated with reduced susceptibilities of HSV-1 and HSV-2 to ASP2151 exist in both the helicase and primase subunits of the helicase-primase complex, and that mutations in this complex against ASP2151 might confer defects in viral replication and pathogenicity.

  16. Genetically engineered synthetic miniaturized versions of Plasmodium falciparum UvrD helicase are catalytically active.

    Science.gov (United States)

    Ansari, Abulaish; Tarique, Mohammed; Tuteja, Renu

    2014-01-01

    Helicases catalyze unwinding of double stranded nucleic acids in an energy-dependent manner. We have reported characterization of UvrD helicase from Plasmodium falciparum. We reported that the N-terminal and C-terminal fragments of PfUvrD contain characteristic ATPase and DNA helicase activities. Here we report the generation and characterization of a genetically engineered version of PfUvrD and its derivatives. This synthetic UvrD (sUD) contains all the conserved domains of PfUvrD but only the intervening linker sequences are shortened. sUD (∼ 45 kDa) and one of its smallest derivative sUDN1N2 (∼ 22 kDa) contain ATPase and DNA helicase activities. sUD and sUDN1N2 can utilize hydrolysis of all the NTPs and dNTPs, can also unwind blunt end duplex DNA substrate and unwind DNA duplex in 3 to 5 direction only. Some of the properties of sUD are similar to the PfUvrD helicase. Mutagenesis in the conserved motif Ia indicate that the mutants sUDM and sUDN1N2M lose all the enzyme activities, which further confirms that these activities are intrinsic to the synthesized proteins. These studies show that for helicase activity only the conserved domains are essentially required and intervening sequences have almost no role. These observations will aid in understanding the unwinding mechanism by a helicase. PMID:24608129

  17. ATPase activity measurement of DNA replicative helicase from Bacillus stearothermophilus by malachite green method.

    Science.gov (United States)

    Yang, Mu; Wang, Ganggang

    2016-09-15

    The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors. PMID:27372608

  18. Characterisation of Bacillus stearothermophilus PcrA helicase: evidence against an active rolling mechanism.

    OpenAIRE

    Bird, L E; Brannigan, J A; Subramanya, H. S.; Wigley, D. B.

    1998-01-01

    PcrA from Bacillus stearothermophilus is a DNA helicase for which, despite the availability of a crystal structure, there is very little biochemical information. We show that the enzyme has a broad nucleotide specificity, even being able to hydrolyse ethenonucleotides, and is able to couple the hydrolysis to unwinding of DNA substrates. In common with the Escherichia coli helicases Rep and UvrD, PcrA is a 3'-5' helicase but at high protein concentrations it can also displace a substrate with ...

  19. Impact of age-associated cyclopurine lesions on DNA repair helicases.

    Science.gov (United States)

    Khan, Irfan; Suhasini, Avvaru N; Banerjee, Taraswi; Sommers, Joshua A; Kaplan, Daniel L; Kuper, Jochen; Kisker, Caroline; Brosh, Robert M

    2014-01-01

    8,5' cyclopurine deoxynucleosides (cPu) are locally distorting DNA base lesions corrected by nucleotide excision repair (NER) and proposed to play a role in neurodegeneration prevalent in genetically defined Xeroderma pigmentosum (XP) patients. In the current study, purified recombinant helicases from different classifications based on sequence homology were examined for their ability to unwind partial duplex DNA substrates harboring a single site-specific cPu adduct. Superfamily (SF) 2 RecQ helicases (RECQ1, BLM, WRN, RecQ) were inhibited by cPu in the helicase translocating strand, whereas helicases from SF1 (UvrD) and SF4 (DnaB) tolerated cPu in either strand. SF2 Fe-S helicases (FANCJ, DDX11 (ChlR1), DinG, XPD) displayed marked differences in their ability to unwind the cPu DNA substrates. Archaeal Thermoplasma acidophilum XPD (taXPD), homologue to the human XPD helicase involved in NER DNA damage verification, was impeded by cPu in the non-translocating strand, while FANCJ was uniquely inhibited by the cPu in the translocating strand. Sequestration experiments demonstrated that FANCJ became trapped by the translocating strand cPu whereas RECQ1 was not, suggesting the two SF2 helicases interact with the cPu lesion by distinct mechanisms despite strand-specific inhibition for both. Using a protein trap to simulate single-turnover conditions, the rate of FANCJ or RECQ1 helicase activity was reduced 10-fold and 4.5-fold, respectively, by cPu in the translocating strand. In contrast, single-turnover rates of DNA unwinding by DDX11 and UvrD helicases were only modestly affected by the cPu lesion in the translocating strand. The marked difference in effect of the translocating strand cPu on rate of DNA unwinding between DDX11 and FANCJ helicase suggests the two Fe-S cluster helicases unwind damaged DNA by distinct mechanisms. The apparent complexity of helicase encounters with an unusual form of oxidative damage is likely to have important consequences in the

  20. Genetically Engineered Synthetic Miniaturized Versions of Plasmodium falciparum UvrD Helicase Are Catalytically Active

    OpenAIRE

    Abulaish Ansari; Mohammed Tarique; Renu Tuteja

    2014-01-01

    Helicases catalyze unwinding of double stranded nucleic acids in an energy-dependent manner. We have reported characterization of UvrD helicase from Plasmodium falciparum. We reported that the N-terminal and C-terminal fragments of PfUvrD contain characteristic ATPase and DNA helicase activities. Here we report the generation and characterization of a genetically engineered version of PfUvrD and its derivatives. This synthetic UvrD (sUD) contains all the conserved domains of PfUvrD but only t...

  1. Impact of age-associated cyclopurine lesions on DNA repair helicases.

    Directory of Open Access Journals (Sweden)

    Irfan Khan

    Full Text Available 8,5' cyclopurine deoxynucleosides (cPu are locally distorting DNA base lesions corrected by nucleotide excision repair (NER and proposed to play a role in neurodegeneration prevalent in genetically defined Xeroderma pigmentosum (XP patients. In the current study, purified recombinant helicases from different classifications based on sequence homology were examined for their ability to unwind partial duplex DNA substrates harboring a single site-specific cPu adduct. Superfamily (SF 2 RecQ helicases (RECQ1, BLM, WRN, RecQ were inhibited by cPu in the helicase translocating strand, whereas helicases from SF1 (UvrD and SF4 (DnaB tolerated cPu in either strand. SF2 Fe-S helicases (FANCJ, DDX11 (ChlR1, DinG, XPD displayed marked differences in their ability to unwind the cPu DNA substrates. Archaeal Thermoplasma acidophilum XPD (taXPD, homologue to the human XPD helicase involved in NER DNA damage verification, was impeded by cPu in the non-translocating strand, while FANCJ was uniquely inhibited by the cPu in the translocating strand. Sequestration experiments demonstrated that FANCJ became trapped by the translocating strand cPu whereas RECQ1 was not, suggesting the two SF2 helicases interact with the cPu lesion by distinct mechanisms despite strand-specific inhibition for both. Using a protein trap to simulate single-turnover conditions, the rate of FANCJ or RECQ1 helicase activity was reduced 10-fold and 4.5-fold, respectively, by cPu in the translocating strand. In contrast, single-turnover rates of DNA unwinding by DDX11 and UvrD helicases were only modestly affected by the cPu lesion in the translocating strand. The marked difference in effect of the translocating strand cPu on rate of DNA unwinding between DDX11 and FANCJ helicase suggests the two Fe-S cluster helicases unwind damaged DNA by distinct mechanisms. The apparent complexity of helicase encounters with an unusual form of oxidative damage is likely to have important consequences in

  2. DNA replication: polymerase epsilon as a non-catalytic converter of the helicase.

    Science.gov (United States)

    Zegerman, Philip

    2013-04-01

    In eukaryotes DNA polymerase epsilon (ε) synthesises the leading DNA strand during replication. A new study provides insight into how this polymerase also functions independently of its enzyme activity to assemble and activate the replicative helicase. PMID:23578873

  3. Isothermal DNA amplification in vitro: the helicase-dependent amplification system.

    Science.gov (United States)

    Jeong, Yong-Joo; Park, Kkothanahreum; Kim, Dong-Eun

    2009-10-01

    Since the development of polymerase chain reaction, amplification of nucleic acids has emerged as an elemental tool for molecular biology, genomics, and biotechnology. Amplification methods often use temperature cycling to exponentially amplify nucleic acids; however, isothermal amplification methods have also been developed, which do not require heating the double-stranded nucleic acid to dissociate the synthesized products from templates. Among the several methods used for isothermal DNA amplification, the helicase-dependent amplification (HDA) is discussed in this review with an emphasis on the reconstituted DNA replication system. Since DNA helicase can unwind the double-stranded DNA without the need for heating, the HDA system provides a very useful tool to amplify DNA in vitro under isothermal conditions with a simplified reaction scheme. This review describes components and detailed aspects of current HDA systems using Escherichia coli UvrD helicase and T7 bacteriophage gp4 helicase with consideration of the processivity and efficiency of DNA amplification. PMID:19629390

  4. Getting it done at the ends: Pif1 family DNA helicases and telomeres.

    Science.gov (United States)

    Geronimo, Carly L; Zakian, Virginia A

    2016-08-01

    It is widely appreciated that the ends of linear DNA molecules cannot be fully replicated by the conventional replication apparatus. Less well known is that semi-conservative replication of telomeric DNA also presents problems for DNA replication. These problems likely arise from the atypical chromatin structure of telomeres, the GC-richness of telomeric DNA that makes it prone to forming DNA secondary structures, and from RNA-DNA hybrids, formed by transcripts of one or both DNA strands. Given the different aspects of telomeres that complicate their replication, it is not surprising that multiple DNA helicases promote replication of telomeric DNA. This review focuses on one such class of DNA helicases, the Pif1 family of 5'-3' DNA helicases. In budding and fission yeasts, Pif1 family helicases impact both telomerase-mediated and semi-conservative replication of telomeric DNA as well as recombination-mediated telomere lengthening. PMID:27233114

  5. Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops

    DEFF Research Database (Denmark)

    Kusumoto-Matsuo, Rika; Opresko, Patricia L; Ramsden, Dale;

    2010-01-01

    and in vivo interaction at the telomere between WRN and DNA-PKcs, the catalytic subunit of DNA-PK. The results show that DNA-PKcs selectively stimulates WRN helicase but not WRN exonuclease in vitro, affecting that WRN helicase unwinds and promotes the release of the full-length invading strand of a telomere...... D-loop model substrate. In addition, the length of telomeric G-tails decreases in DNA-PKcs knockdown cells, and this phenotype is reversed by overexpression of WRN helicase. These results suggest that WRN and DNA-PKcs may cooperatively prevent G-tail shortening in vivo.......Werner syndrome is an inherited human progeriod syndrome caused by mutations in the gene encoding the Werner Syndrome protein, WRN. It has both 3'-5' DNA helicase and exonuclease activities, and is suggested to have roles in many aspects of DNA metabolism, including DNA repair and telomere...

  6. Nucleolin inhibits G4 oligonucleotide unwinding by Werner helicase.

    Directory of Open Access Journals (Sweden)

    Fred E Indig

    Full Text Available BACKGROUND: The Werner protein (WRNp, a member of the RecQ helicase family, is strongly associated with the nucleolus, as is nucleolin (NCL, an important nucleolar constituent protein. Both WRNp and NCL respond to the effects of DNA damaging agents. Therefore, we have investigated if these nuclear proteins interact and if this interaction has a possible functional significance in DNA damage repair. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that WRNp interacts with the RNA-binding protein, NCL, based on immunoprecipitation, immunofluorescent co-localization in live and fixed cells, and direct binding of purified WRNp to nucleolin. We also map the binding region to the C-terminal domains of both proteins. Furthermore, treatment of U2OS cells with 15 µM of the Topoisomerase I inhibitor, camptothecin, causes the dissociation of the nucleolin-Werner complex in the nucleolus, followed by partial re-association in the nucleoplasm. Other DNA damaging agents, such as hydroxyurea, Mitomycin C, and aphidicolin do not have these effects. Nucleolin or its C-terminal fragment affected the helicase, but not the exonuclease activity of WRNp, by inhibiting WRN unwinding of G4 tetraplex DNA structures, as seen in activity assays and electrophoretic mobility shift assays (EMSA. CONCLUSIONS/SIGNIFICANCE: These data suggest that nucleolin may regulate G4 DNA unwinding by WRNp, possibly in response to certain DNA damaging agents. We postulate that the NCL-WRNp complex may contain an inactive form of WRNp, which is released from the nucleolus upon DNA damage. Then, when required, WRNp is released from inhibition and can participate in the DNA repair processes.

  7. XPD Helicase Structures And Activities: Insights Into the Cancer And Aging Phenotypes From XPD Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.; Fuss, J.O.; Cheng, Q.J.; Arvai, A.S.; Hammel, M.; Roberts, V.A.; Cooper, P.K.; Tainer, J.A.

    2009-05-18

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  8. The UvrD303 hyper-helicase exhibits increased processivity.

    Science.gov (United States)

    Meiners, Matthew J; Tahmaseb, Kambiz; Matson, Steven W

    2014-06-13

    DNA helicases use energy derived from nucleoside 5'-triphosphate hydrolysis to catalyze the separation of double-stranded DNA into single-stranded intermediates for replication, recombination, and repair. Escherichia coli helicase II (UvrD) functions in methyl-directed mismatch repair, nucleotide excision repair, and homologous recombination. A previously discovered 2-amino acid substitution of residues 403 and 404 (both Asp → Ala) in the 2B subdomain of UvrD (uvrD303) confers an antimutator and UV-sensitive phenotype on cells expressing this allele. The purified protein exhibits a "hyper-helicase" unwinding activity in vitro. Using rapid quench, pre-steady state kinetic experiments we show the increased helicase activity of UvrD303 is due to an increase in the processivity of the unwinding reaction. We suggest that this mutation in the 2B subdomain results in a weakened interaction with the 1B subdomain, allowing the helicase to adopt a more open conformation. This is consistent with the idea that the 2B subdomain may have an autoregulatory role. The UvrD303 mutation may enable the helicase to unwind DNA via a "strand displacement" mechanism, which is similar to the mechanism used to processively translocate along single-stranded DNA, and the increased unwinding processivity may contribute directly to the antimutator phenotype. PMID:24798324

  9. XPD Helicase Structures and Activities: Insights into the Cancer and Aging Phenotypes from XPD Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Tainer, John; Fan, Li; Fuss, Jill O.; Cheng, Quen J.; Arvai, Andrew S.; Hammel, Michal; Roberts, Victoria A.; Cooper, Priscilla K.; Tainer, John A.

    2008-06-02

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  10. UvrD Helicase Unwinds DNA One Base Pair At A Time By A Two-Part Power Stroke

    OpenAIRE

    Lee, Jae Young; Yang, Wei

    2006-01-01

    Helicases use the energy derived from nucleoside triphosphate hydrolysis to unwind double helices in essentially every metabolic pathway involving nucleic acids. Earlier crystal structures have suggested that DNA helicases translocate along a single-stranded DNA in an inchworm fashion. We report here a series of crystal structures of the UvrD helicase complexed with DNA and ATP hydrolysis intermediates. These structures reveal that ATP binding alone leads to unwinding of 1 base pair by direct...

  11. The Pif1 family helicase Pfh1 facilitates telomere replication and has an RPA-dependent role during telomere lengthening

    OpenAIRE

    McDonald, Karin R.; Sabouri, Nasim; Webb, Christopher J.; Zakian, Virginia A.

    2014-01-01

    Pif1 family helicases are evolutionary conserved 5′ to 3′ DNA helicases. Pfh1, the sole S. pombe Pif1 family DNA helicase, is essential for maintenance of both nuclear and mitochondrial DNAs. Here we show that its nuclear functions include roles in telomere replication and telomerase action. Pfh1 promoted semi-conservative replication through telomeric DNA, as replication forks moved more slowly through telomeres when Pfh1 levels were reduced. Unlike other organisms, S. pombe cells overexpres...

  12. Introduction of Pea DNA Helicase 45 Into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability And Upregulation Of Stress-responsive Genes Leads To Abiotic Stress Tolerance.

    Science.gov (United States)

    Augustine, Sruthy Maria; Ashwin Narayan, J; Syamaladevi, Divya P; Appunu, C; Chakravarthi, M; Ravichandran, V; Tuteja, Narendra; Subramonian, N

    2015-05-01

    DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into the commercial sugarcane variety Co 86032 through Agrobacterium-mediated transformation, and the transgenics were screened for tolerance to soil moisture stress and salinity. The transgene integration was confirmed through polymerase chain reaction, and the V 0 transgenic events showed significantly higher cell membrane thermostability under normal irrigated conditions. The V 1 transgenic events were screened for tolerance to soil moisture stress and exhibited significantly higher cell membrane thermostability, transgene expression, relative water content, gas exchange parameters, chlorophyll content, and photosynthetic efficiency under soil moisture stress compared to wild-type (WT). The overexpression of PDH45 transgenic sugarcane also led to the upregulation of DREB2-induced downstream stress-related genes. The transgenic events demonstrated higher germination ability and better chlorophyll retention than WT under salinity stress. Our results suggest the possibility for development of increased abiotic stress tolerant sugarcane cultivars through overexpression of PDH45 gene. Perhaps this is the first report, which provides evidence for increased drought and salinity tolerance in sugarcane through overexpression of PDH45.

  13. Genetically engineered synthetic miniaturized versions of Plasmodium falciparum UvrD helicase are catalytically active.

    Directory of Open Access Journals (Sweden)

    Abulaish Ansari

    Full Text Available Helicases catalyze unwinding of double stranded nucleic acids in an energy-dependent manner. We have reported characterization of UvrD helicase from Plasmodium falciparum. We reported that the N-terminal and C-terminal fragments of PfUvrD contain characteristic ATPase and DNA helicase activities. Here we report the generation and characterization of a genetically engineered version of PfUvrD and its derivatives. This synthetic UvrD (sUD contains all the conserved domains of PfUvrD but only the intervening linker sequences are shortened. sUD (∼ 45 kDa and one of its smallest derivative sUDN1N2 (∼ 22 kDa contain ATPase and DNA helicase activities. sUD and sUDN1N2 can utilize hydrolysis of all the NTPs and dNTPs, can also unwind blunt end duplex DNA substrate and unwind DNA duplex in 3 to 5 direction only. Some of the properties of sUD are similar to the PfUvrD helicase. Mutagenesis in the conserved motif Ia indicate that the mutants sUDM and sUDN1N2M lose all the enzyme activities, which further confirms that these activities are intrinsic to the synthesized proteins. These studies show that for helicase activity only the conserved domains are essentially required and intervening sequences have almost no role. These observations will aid in understanding the unwinding mechanism by a helicase.

  14. RNA helicase SACY-1 is required for longevity caused by various genetic perturbations in Caenorhabditis elegans.

    Science.gov (United States)

    Seo, Mihwa; Park, Sangsoon; Nam, Hong Gil; Lee, Seung-Jae V

    2016-07-17

    RNA helicases, which unwind RNAs, are essential for RNA metabolism and homeostasis. However, the roles of RNA helicases in specific physiological processes remain poorly understood. We recently reported that an RNA helicase, HEL-1, promotes long lifespan conferred by reduced insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) in Caenorhabditis elegans. We also showed that HEL-1 induces the expression of longevity genes by physically interacting with Forkhead box O (FOXO) transcription factor. Thus, the HEL-1 RNA helicase appears to regulate lifespan by specifically activating FOXO in IIS. In the current study, we report another longevity-promoting RNA helicase, Suppressor of ACY-4 sterility 1 (SACY-1). SACY-1 contributed to the longevity of daf-2/insulin/IGF-1 receptor mutants. Unlike HEL-1, SACY-1 was also required for the longevity due to mutations in genes involved in non-IIS pathways. Thus, SACY-1 appears to function as a general longevity factor for various signaling pathways, which is different from the specific function of HEL-1. PMID:27153157

  15. The C-terminal domain of the Bloom syndrome DNA helicase is essential for genomic stability

    Directory of Open Access Journals (Sweden)

    Noonan James P

    2001-07-01

    Full Text Available Abstract Background Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of variable lengths. The BLM DNA helicase has been shown to localize to the ND10 (nuclear domain 10 or PML (promyelocytic leukemia nuclear bodies, where it associates with TOPIIIα, and to the nucleolus. Results This report demonstrates that the N-terminal domain of BLM is responsible for localization of the protein to the nuclear bodies, while the C-terminal domain directs the protein to the nucleolus. Deletions of the N-terminal domain of BLM have little effect on sister chromatid exchange frequency and chromosome stability as compared to helicase and C-terminal mutations which can increase SCE frequency and chromosome abnormalities. Conclusion The helicase activity and the C-terminal domain of BLM are critical for maintaining genomic stability as measured by the sister chromatid exchange assay. The localization of BLM into the nucleolus by the C-terminal domain appears to be more important to genomic stability than localization in the nuclear bodies.

  16. Identification of Pif1 helicases with novel accessory domains in various amoebae.

    Science.gov (United States)

    Harman, Ashley; Manna, Sam

    2016-10-01

    Pif1 helicases are a conserved family of eukaryotic proteins involved in the maintenance of both nuclear and mitochondrial DNA. These enzymes possess a number of known and putative functions, which facilitate overall genome integrity. Here we have identified multiple subtypes of Pif1 proteins in various pathogenic and non-pathogenic amoeboid species which possess additional domains not present in other Pif1 helicases. These helicases each possess one of five different accessory domains, which have roles in ubiquitination, origin of DNA replication recognition or single-stranded nucleic acid binding activity. Using a robust phylogenetic approach we examined each Pif1 class, which revealed that gene duplication, fusion and horizontal gene transfer events have all contributed to the evolution of these enzymes. This study has identified the first collection of Pif1 helicases to contain additional domains, which likely confer novel enzymatic activity, or improve existing functionality. Furthermore, the potential functions of these helicases may shed further light on the overall role the Pif1 family plays in genome maintenance. PMID:27421564

  17. Regulation of DEAH/RHA Helicases by G-Patch Proteins

    Directory of Open Access Journals (Sweden)

    Julien Robert-Paganin

    2015-01-01

    Full Text Available RNA helicases from the DEAH/RHA family are present in all the processes of RNA metabolism. The function of two helicases from this family, Prp2 and Prp43, is regulated by protein partners containing a G-patch domain. The G-patch is a glycine-rich domain discovered by sequence alignment, involved in protein-protein and protein-nucleic acid interaction. Although it has been shown to stimulate the helicase’s enzymatic activities, the precise role of the G-patch domain remains unclear. The role of G-patch proteins in the regulation of Prp43 activity has been studied in the two biological processes in which it is involved: splicing and ribosome biogenesis. Depending on the pathway, the activity of Prp43 is modulated by different G-patch proteins. A particular feature of the structure of DEAH/RHA helicases revealed by the Prp43 structure is the OB-fold domain in C-terminal part. The OB-fold has been shown to be a platform responsible for the interaction with G-patch proteins and RNA. Though there is still no structural data on the G-patch domain, in the current model, the interaction between the helicase, the G-patch protein, and RNA leads to a cooperative binding of RNA and conformational changes of the helicase.

  18. Single-molecule imaging reveals a common mechanism shared by G-quadruplex–resolving helicases

    Science.gov (United States)

    Tippana, Ramreddy; Hwang, Helen; Opresko, Patricia L.; Bohr, Vilhelm A.; Myong, Sua

    2016-01-01

    G-quadruplex (GQ) is a four stranded DNA secondary structure that arises from a guanine rich sequence. Stable formation of GQ in genomic DNA can be counteracted by the resolving activity of specialized helicases including RNA helicase AU (associated with AU rich elements) (RHAU) (G4 resolvase 1), Bloom helicase (BLM), and Werner helicase (WRN). However, their substrate specificity and the mechanism involved in GQ unfolding remain uncertain. Here, we report that RHAU, BLM, and WRN exhibit distinct GQ conformation specificity, but use a common mechanism of repetitive unfolding that leads to disrupting GQ structure multiple times in succession. Such unfolding activity of RHAU leads to efficient annealing exclusively within the same DNA molecule. The same resolving activity is sufficient to dislodge a stably bound GQ ligand, including BRACO-19, NMM, and Phen-DC3. Our study demonstrates a plausible biological scheme where different helicases are delegated to resolve specific GQ structures by using a common repetitive unfolding mechanism that provides a robust resolving power. PMID:27407146

  19. Functional analysis of helicase and three tandem HRDC domains of RecQ in Deinococcus radiodurans

    Institute of Scientific and Technical Information of China (English)

    HUANG Li-fen; HUA Xiao-ting; LU Hui-ming; GAO Guan-jun; TIAN Bing; SHEN Bing-hui; HUA Yue-jin

    2006-01-01

    RecQ is a highly conserved helicase necessary for maintaining genome stability in all organisms. Genome comparison showed that a homologue of RecQ in Deinococcus radiodurans designated as DR1289 is a member of RecQ family with unusual domain arrangement: a helicase domain, an RecQ C-terminal domain, and surprisingly three HRDC domain repeats, whose function, however, remains obscure currently. Using an insertion deletion, we discovered that the DRRecQ mutation causes an increase in gamma radiation, hydroxyurea and mitomycine C and UV sensitivity. Using the shuttle plasmid pRADK, we complemented various domains of the D. Radiodurans RecQ (DRRecQ) to the mutant in vivo. Results suggested that both the helicase and helicase-and-Rnase-D-C-terminal (HRDC) domains are essential for complementing several phenotypes. The complementation and biochemical function of DRRecQ variants with different domains truncated in vitro suggested that both the helicase and three HRDC domains are necessary for RecQ functions in D. Radiodurans, while three HRDC domains have a synergistic effect on the whole function. Our finding leads to the hypothesis that the RecF recombination pathway is likely a primary path of double strand break repair in this well-known radioresistant organism.

  20. DMPD: Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immuneresponse. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17667934 Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate imm...g) (.svg) (.html) (.csml) Show Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune...response. PubmedID 17667934 Title Toll-like receptors, RIG-I-like RNA helicases and the anti

  1. Structure of a helicase–helicase loader complex reveals insights into the mechanism of bacterial primosome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Eliason, William K.; Steitz, Thomas A.

    2013-09-19

    During the assembly of the bacterial loader-dependent primosome, helicase loader proteins bind to the hexameric helicase ring, deliver it onto the oriC DNA and then dissociate from the complex. Here, to provide a better understanding of this key process, we report the crystal structure of the ~570-kDa prepriming complex between the Bacillus subtilis loader protein and the Bacillus stearothermophilus helicase, as well as the helicase-binding domain of primase with a molar ratio of 6:6:3 at 7.5 Å resolution. The overall architecture of the complex exhibits a three-layered ring conformation. Moreover, the structure combined with the proposed model suggests that the shift from the ‘open-ring’ to the ‘open-spiral’ and then the ‘closed-spiral’ state of the helicase ring due to the binding of single-stranded DNA may be the cause of the loader release.

  2. A human PMS2 homologue from Aquifex aeolicus stimulates an ATP-dependent DNA helicase.

    Science.gov (United States)

    Mauris, Jerome; Evans, Thomas C

    2010-04-01

    Mismatch repair in Escherichia coli involves a number of proteins including MutL and UvrD. Eukaryotes also possess MutL homologues; however, no UvrD helicase homologues have been identified. The hyperthermophilic bacterium Aquifex aeolicus has a MutL protein (Aae MutL) that possesses a latent endonuclease activity similar to eukaryotic, but different from E. coli, MutL proteins. By sequence homology Aq793 is a member of the PcrA/UvrD/Rep helicase subfamily. We expressed Aae MutL and the putative A. aeolicus DNA helicase (Aq793) proteins in E. coli. Using synthetic oligonucleotide substrates, we observed that lower concentrations of Aq793 were required to unwind double-stranded DNA that had a 3'-poly(dT) overhang as compared with double-stranded DNA with a 5'-poly(dT) or lacking a poly(dT) tail. This unwinding activity was stimulated by adding Aae MutL with maximal stimulation observed at an approximately 1.5:1 (MutL:Aq793) stoichiometric ratio. The enhancement of Aq793 helicase activity did not require the Aae MutL protein to retain endonuclease activity. Furthermore, the C-terminal 123 amino acid residues of Aae MutL were sufficient to stimulate Aq793 helicase activity, albeit at a significantly reduced efficacy. To the best of our knowledge this is the first time a human PMS2 homologue has been demonstrated to stimulate a PcrA/UvrD/Rep subfamily helicase, and this finding may further our understanding of the evolution of the mismatch repair pathway. PMID:20129926

  3. The C-terminal domain of the Bloom syndrome DNA helicase is essential for genomic stability

    OpenAIRE

    Noonan James P; Yankiwski Victor; Neff Norma F

    2001-01-01

    Abstract Background Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of ...

  4. A Human PMS2 Homologue from Aquifex aeolicus Stimulates an ATP-dependent DNA Helicase

    OpenAIRE

    Mauris, Jerome; Evans, Thomas C., Jr.

    2010-01-01

    Mismatch repair in Escherichia coli involves a number of proteins including MutL and UvrD. Eukaryotes also possess MutL homologues; however, no UvrD helicase homologues have been identified. The hyperthermophilic bacterium Aquifex aeolicus has a MutL protein (Aae MutL) that possesses a latent endonuclease activity similar to eukaryotic, but different from E. coli, MutL proteins. By sequence homology Aq793 is a member of the PcrA/UvrD/Rep helicase subfamily. We expressed Aae MutL and the putat...

  5. Escherichia coli helicase II (UvrD) protein initiates DNA unwinding at nicks and blunt ends.

    OpenAIRE

    Runyon, G T; Bear, D G; Lohman, T M

    1990-01-01

    The Escherichia coli uvrD gene product, helicase II, is required for both methyl-directed mismatch and uvrABC excision repair and is believed to function by unwinding duplex DNA. Initiation of unwinding may occur specifically at either a mismatch or a nick, although no direct evidence for this has previously been reported. It has recently been shown that helicase II can unwind fully duplex linear and nicked circular DNA with lengths of at least approximately 2700 base pairs in vitro; hence, a...

  6. Stimulation of UvrD Helicase by UvrAB*S⃞

    OpenAIRE

    Atkinson, John; Guy, Colin P.; Cadman, Chris J.; Moolenaar, Geri F.; Goosen, Nora; McGlynn, Peter

    2009-01-01

    Helicases play critical roles in all aspects of nucleic acid metabolism by catalyzing the remodeling of DNA and RNA structures. UvrD is an abundant helicase in Escherichia coli with well characterized functions in mismatch and nucleotide excision repair and a possible role in displacement of proteins such as RecA from single-stranded DNA. The mismatch repair protein MutL is known to stimulate UvrD. Here we show that the nucleotide excision repair proteins UvrA and UvrB...

  7. Motor neglect.

    OpenAIRE

    Laplane, D.; Degos, J D

    1983-01-01

    Motor neglect is characterised by an underutilisation of one side, without defects of strength, reflexes or sensibility. Twenty cases of frontal, parietal and thalamic lesions causing motor neglect, but all without sensory neglect, are reported. It is proposed that the cerebral structures involved in motor neglect are the same as those for sensory neglect and for the preparation of movement. As in sensory neglect, the multiplicity of the structures concerned suggests that this interconnection...

  8. Probing the ATP-induced conformational flexibility of the PcrA helicase protein using molecular dynamics simulation.

    Science.gov (United States)

    Mhashal, Anil R; Choudhury, Chandan Kumar; Roy, Sudip

    2016-03-01

    Helicases are enzymes that unwind double-stranded DNA (dsDNA) into its single-stranded components. It is important to understand the binding and unbinding of ATP from the active sites of helicases, as this knowledge can be used to elucidate the functionality of helicases during the unwinding of dsDNA. In this work, we investigated the unbinding of ATP and its effect on the active-site residues of the helicase PcrA using molecular dynamic simulations. To mimic the unbinding process of ATP from the active site of the helicase, we simulated the application of an external force that pulls ATP from the active site and computed the free-energy change during this process. We estimated an energy cost of ~85 kJ/mol for the transformation of the helicase from the ATP-bound state (1QHH) to the ATP-free state (1PJR). Unbinding led to conformational changes in the residues of the protein at the active site. Some of the residues at the ATP-binding site were significantly reoriented when the ATP was pulled. We observed a clear competition between reorientation of the residues and energy stabilization by hydrogen bonds between the ATP and active-site residues. We also checked the flexibility of the PcrA protein using a principal component analysis of domain motion. We found that the ATP-free state of the helicase is more flexible than the ATP-bound state. PMID:26860503

  9. Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps

    Directory of Open Access Journals (Sweden)

    Manjula Pandey

    2014-03-01

    Full Text Available By simultaneously measuring DNA synthesis and dNTP hydrolysis, we show that T7 DNA polymerase and T7 gp4 helicase move in sync during leading-strand synthesis, taking one-nucleotide steps and hydrolyzing one dNTP per base-pair unwound/copied. The cooperative catalysis enables the helicase and polymerase to move at a uniformly fast rate without guanine:cytosine (GC dependency or idling with futile NTP hydrolysis. We show that the helicase and polymerase are located close to the replication fork junction. This architecture enables the polymerase to use its strand-displacement synthesis to increase the unwinding rate, whereas the helicase aids this process by translocating along single-stranded DNA and trapping the unwound bases. Thus, in contrast to the helicase-only unwinding model, our results suggest a model in which the helicase and polymerase are moving in one-nucleotide steps, DNA synthesis drives fork unwinding, and a role of the helicase is to trap the unwound bases and prevent DNA reannealing.

  10. RNA helicase HEL-1 promotes longevity by specifically activating DAF-16/FOXO transcription factor signaling in Caenorhabditis elegans.

    Science.gov (United States)

    Seo, Mihwa; Seo, Keunhee; Hwang, Wooseon; Koo, Hee Jung; Hahm, Jeong-Hoon; Yang, Jae-Seong; Han, Seong Kyu; Hwang, Daehee; Kim, Sanguk; Jang, Sung Key; Lee, Yoontae; Nam, Hong Gil; Lee, Seung-Jae V

    2015-08-01

    The homeostatic maintenance of the genomic DNA is crucial for regulating aging processes. However, the role of RNA homeostasis in aging processes remains unknown. RNA helicases are a large family of enzymes that regulate the biogenesis and homeostasis of RNA. However, the functional significance of RNA helicases in aging has not been explored. Here, we report that a large fraction of RNA helicases regulate the lifespan of Caenorhabditis elegans. In particular, we show that a DEAD-box RNA helicase, helicase 1 (HEL-1), promotes longevity by specifically activating the DAF-16/forkhead box O (FOXO) transcription factor signaling pathway. We find that HEL-1 is required for the longevity conferred by reduced insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) and is sufficient for extending lifespan. We further show that the expression of HEL-1 in the intestine and neurons contributes to longevity. HEL-1 enhances the induction of a large fraction of DAF-16 target genes. Thus, the RNA helicase HEL-1 appears to promote longevity in response to decreased IIS as a transcription coregulator of DAF-16. Because HEL-1 and IIS are evolutionarily well conserved, a similar mechanism for longevity regulation via an RNA helicase-dependent regulation of FOXO signaling may operate in mammals, including humans.

  11. Histocompatibility antigen test

    Science.gov (United States)

    ... more common in certain autoimmune diseases . For example, HLA-B27 antigen is found in many people (but not ... More Ankylosing spondylitis Autoimmune disorders Bone marrow transplant HLA-B27 antigen Kidney transplant Reactive arthritis Update Date 2/ ...

  12. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD.

    Directory of Open Access Journals (Sweden)

    Stefanie C Wolski

    2008-06-01

    Full Text Available DNA damage recognition by the nucleotide excision repair pathway requires an initial step identifying helical distortions in the DNA and a proofreading step verifying the presence of a lesion. This proofreading step is accomplished in eukaryotes by the TFIIH complex. The critical damage recognition component of TFIIH is the XPD protein, a DNA helicase that unwinds DNA and identifies the damage. Here, we describe the crystal structure of an archaeal XPD protein with high sequence identity to the human XPD protein that reveals how the structural helicase framework is combined with additional elements for strand separation and DNA scanning. Two RecA-like helicase domains are complemented by a 4Fe4S cluster domain, which has been implicated in damage recognition, and an alpha-helical domain. The first helicase domain together with the helical and 4Fe4S-cluster-containing domains form a central hole with a diameter sufficient in size to allow passage of a single stranded DNA. Based on our results, we suggest a model of how DNA is bound to the XPD protein, and can rationalize several of the mutations in the human XPD gene that lead to one of three severe diseases, xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy.

  13. Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome

    DEFF Research Database (Denmark)

    Suhasini, Avvaru N; Rawtani, Nina A; Wu, Yuliang;

    2011-01-01

    Bloom's syndrome (BS) and Fanconi anemia (FA) are autosomal recessive disorders characterized by cancer and chromosomal instability. BS and FA group J arise from mutations in the BLM and FANCJ genes, respectively, which encode DNA helicases. In this work, FANCJ and BLM were found to interact...

  14. UvrD2 is essential in Mycobacterium tuberculosis, but its helicase activity is not required.

    Science.gov (United States)

    Williams, Alan; Güthlein, Carolin; Beresford, Nicola; Böttger, Erik C; Springer, Burkhard; Davis, Elaine O

    2011-09-01

    UvrD is an SF1 family helicase involved in DNA repair that is widely conserved in bacteria. Mycobacterium tuberculosis has two annotated UvrD homologues; here we investigate the role of UvrD2. The uvrD2 gene at its native locus could be knocked out only in the presence of a second copy of the gene, demonstrating that uvrD2 is essential. Analysis of the putative protein domain structure of UvrD2 shows a distinctive domain architecture, with an extended C terminus containing an HRDC domain normally found in SF2 family helicases and a linking domain carrying a tetracysteine motif. Truncated constructs lacking the C-terminal domains of UvrD2 were able to compensate for the loss of the chromosomal copy, showing that these C-terminal domains are not essential. Although UvrD2 is a functional helicase, a mutant form of the protein lacking helicase activity was able to permit deletion of uvrD2 at its native locus. However, a mutant protein unable to hydrolyze ATP or translocate along DNA was not able to compensate for lack of the wild-type protein. Therefore, we concluded that the essential role played by UvrD2 is unlikely to involve its DNA unwinding activity and is more likely to involve DNA translocation and, possibly, protein displacement. PMID:21725019

  15. Selective Bypass of a Lagging Strand Roadblock by the Eukaryotic Replicative DNA Helicase

    NARCIS (Netherlands)

    Fu, Yu V.; Yardimci, Hasan; Long, David T.; Ho, The Vinh; Guainazzi, Angelo; Bermudez, Vladimir P.; Hurwitz, Jerard; Oijen, Antoine van; Schärer, Orlando D.; Walter, Johannes C.

    2011-01-01

    The eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were

  16. FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells

    DEFF Research Database (Denmark)

    Simandlova, Jitka; Zagelbaum, Jennifer; Payne, Miranda J;

    2013-01-01

    filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under...

  17. Metabolic and Phenotypic Differences between Mice Producing a Werner Syndrome Helicase Mutant Protein and Wrn Null Mice.

    Directory of Open Access Journals (Sweden)

    Lucie Aumailley

    Full Text Available Werner syndrome (WS is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter mean life span. In contrast, mice lacking the entire Wrn protein (i.e. Wrn null mice do not exhibit a premature aging phenotype. In this study, we used a targeted mass spectrometry-based metabolomic approach to identify serum metabolites that are differentially altered in young Wrn helicase mutant and Wrn null mice. An antibody-based quantification of 43 serum cytokines and markers of cardiovascular disease risk complemented this study. We found that Wrn helicase mutants exhibited elevated and decreased levels, respectively, of the anti-inflammatory cytokine IL-10 and the pro-inflammatory cytokine IL-18. Wrn helicase mutants also exhibited an increase in serum hydroxyproline and plasminogen activator inhibitor-1, markers of extracellular matrix remodeling of the vascular system and inflammation in aging. We also observed an abnormal increase in the ratio of very long chain to short chain lysophosphatidylcholines in the Wrn helicase mutants underlying a peroxisome perturbation in these mice. Remarkably, the Wrn mutant helicase protein was mislocalized to the endoplasmic reticulum and the peroxisomal fractions in liver tissues. Additional analyses with mouse embryonic fibroblasts indicated a severe defect of the autophagy flux in cells derived from Wrn helicase mutants compared to wild type and Wrn null animals. These results indicate that the deleterious effects of the helicase-deficient Wrn protein are mediated by the dysfunction of several cellular organelles.

  18. Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast.

    Science.gov (United States)

    Barhoumi, Mourad; Tanner, N K; Banroques, Josette; Linder, Patrick; Guizani, Ikram

    2006-11-01

    LeIF, a Leishmania protein similar to the eukaryotic initiation factor eIF4A, which is a prototype of the DEAD box protein family, was originally described as a Th1-type natural adjuvant and as an antigen that induces an IL12-mediated Th1 response in the peripheral blood mononuclear cells of leishmaniasis patients. This study aims to characterize this protein by comparative biochemical and genetic analysis with eIF4A in order to assess its potential as a target for drug development. We show that a His-tagged, recombinant, LeIF protein of Leishmania infantum, which was purified from Escherichia coli, is both an RNA-dependent ATPase and an ATP-dependent RNA helicase in vitro, as described previously for other members of the DEAD box helicase protein family. In vivo experiments show that the LeIF gene cannot complement the deletion of the essential TIF1 and TIF2 genes in the yeast Saccharomyces cerevisiae that encode eIF4A. In contrast, expression of LeIF inhibits yeast growth when endogenous eIF4A is expressed off only one of its two encoding genes. Furthermore, in vitro binding assays show that LeIF interacts with yeast eIF4G. These results show an unproductive interaction of LeIF with translation initiation factors in yeast. Furthermore, the 25 amino terminal residues were shown to enhance the ability of LeIF to interfere with the translation machinery in yeast. PMID:17087726

  19. Mutations in the consensus helicase domains of the Werner syndrome gene

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chang-En; Oshima, Junko; Wijsman, E.M. [Univ. of Washington, Seattle, WA (United States)] [and others

    1997-02-01

    Werner syndrome (WS) is an autosomal recessive disease with a complex phenotype that is suggestive of accelerated aging. WS is caused by mutations in a gene, WRN, that encodes a predicted 1,432-amino-acid protein with homology to DNA and RNA helicases. Previous work identified four WS mutations in the 3{prime} end of the gene, which resulted in predicted truncated protein products of 1,060-1,247 amino acids but did not disrupt the helicase domain region (amino acids 569-859). Here, additional WS subjects were screened for mutations, and the intron-exon structure of the gene was determined. A total of 35 exons were defined, with the coding sequences beginning in the second exon. Five new WS mutations were identified: two nonsense mutations at codons 369 and 889; a mutation at a splice-junction site, resulting in a predicted truncated protein of 760 amino acids; a 1-bp deletion causing a frameshift; and a predicted truncated protein of 391 amino acids. Another deletion is >15 kb of genomic DNA, including exons 19-23; the predicted protein is 1,186 amino acids long. Four of these new mutations either partially disrupt the helicase domain region or result in predicted protein products completely missing the helicase region. These results confirm that mutations in the WRN gene are responsible for WS. Also, the location of the mutations indicates that the presence or absence of the helicase domain does not influence the WS phenotype and suggests that WS is the result of complete loss of function of the WRN gene product. 63 refs., 1 fig., 5 tabs.

  20. Motor homopolar

    OpenAIRE

    2007-01-01

    Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...

  1. Rotations of the 2B Sub-domain of E. coli UvrD Helicase/Translocase Coupled to Nucleotide and DNA Binding

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Haifeng; Korolev, Sergey; Niedziela-Majka, Anita; Maluf, Nasib K.; Gauss, George H.; Myong, Sua; Ha, Taekjip; Waksman, Gabriel; Lohman, Timothy M. (UIUC); (St. Louis-MED); (WU-MED); (UCL)

    2011-11-02

    Escherichia coli UvrD is a superfamily 1 DNA helicase and single-stranded DNA (ssDNA) translocase that functions in DNA repair and plasmid replication and as an anti-recombinase by removing RecA protein from ssDNA. UvrD couples ATP binding and hydrolysis to unwind double-stranded DNA and translocate along ssDNA with 3'-to-5' directionality. Although a UvrD monomer is able to translocate along ssDNA rapidly and processively, DNA helicase activity in vitro requires a minimum of a UvrD dimer. Previous crystal structures of UvrD bound to a ssDNA/duplex DNA junction show that its 2B sub-domain exists in a 'closed' state and interacts with the duplex DNA. Here, we report a crystal structure of an apo form of UvrD in which the 2B sub-domain is in an 'open' state that differs by an {approx} 160{sup o} rotation of the 2B sub-domain. To study the rotational conformational states of the 2B sub-domain in various ligation states, we constructed a series of double-cysteine UvrD mutants and labeled them with fluorophores such that rotation of the 2B sub-domain results in changes in fluorescence resonance energy transfer. These studies show that the open and closed forms can interconvert in solution, with low salt favoring the closed conformation and high salt favoring the open conformation in the absence of DNA. Binding of UvrD to DNA and ATP binding and hydrolysis also affect the rotational conformational state of the 2B sub-domain, suggesting that 2B sub-domain rotation is coupled to the function of this nucleic acid motor enzyme.

  2. Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding.

    Science.gov (United States)

    Jia, Haifeng; Korolev, Sergey; Niedziela-Majka, Anita; Maluf, Nasib K; Gauss, George H; Myong, Sua; Ha, Taekjip; Waksman, Gabriel; Lohman, Timothy M

    2011-08-19

    Escherichia coli UvrD is a superfamily 1 DNA helicase and single-stranded DNA (ssDNA) translocase that functions in DNA repair and plasmid replication and as an anti-recombinase by removing RecA protein from ssDNA. UvrD couples ATP binding and hydrolysis to unwind double-stranded DNA and translocate along ssDNA with 3'-to-5' directionality. Although a UvrD monomer is able to translocate along ssDNA rapidly and processively, DNA helicase activity in vitro requires a minimum of a UvrD dimer. Previous crystal structures of UvrD bound to a ssDNA/duplex DNA junction show that its 2B sub-domain exists in a "closed" state and interacts with the duplex DNA. Here, we report a crystal structure of an apo form of UvrD in which the 2B sub-domain is in an "open" state that differs by an ∼160° rotation of the 2B sub-domain. To study the rotational conformational states of the 2B sub-domain in various ligation states, we constructed a series of double-cysteine UvrD mutants and labeled them with fluorophores such that rotation of the 2B sub-domain results in changes in fluorescence resonance energy transfer. These studies show that the open and closed forms can interconvert in solution, with low salt favoring the closed conformation and high salt favoring the open conformation in the absence of DNA. Binding of UvrD to DNA and ATP binding and hydrolysis also affect the rotational conformational state of the 2B sub-domain, suggesting that 2B sub-domain rotation is coupled to the function of this nucleic acid motor enzyme. PMID:21704638

  3. Application of stepping motor

    International Nuclear Information System (INIS)

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  4. Merkel cell polyomavirus large T antigen has growth-promoting and inhibitory activities.

    Science.gov (United States)

    Cheng, Jingwei; Rozenblatt-Rosen, Orit; Paulson, Kelly G; Nghiem, Paul; DeCaprio, James A

    2013-06-01

    Merkel cell carcinoma (MCC) is a rare and aggressive form of skin cancer. In at least 80% of all MCC, Merkel cell polyomavirus (MCPyV) DNA has undergone clonal integration into the host cell genome, and most tumors express the MCPyV large and small T antigens. In all cases of MCC reported to date, the integrated MCPyV genome has undergone mutations in the large T antigen. These mutations result in expression of a truncated large T antigen that retains the Rb binding or LXCXE motif but deletes the DNA binding and helicase domains. However, the transforming functions of full-length and truncated MCPyV large T antigen are unknown. We compared the transforming activities of full-length, truncated, and alternatively spliced 57kT forms of MCPyV large T antigen. MCPyV large T antigen could bind to Rb but was unable to bind to p53. Furthermore, MCPyV-truncated large T antigen was more effective than full-length and 57kT large T antigen in promoting the growth of human and mouse fibroblasts. In contrast, expression of the MCPyV large T antigen C-terminal 100 residues could inhibit the growth of several different cell types. These data imply that the deletion of the C terminus of MCPyV large T antigen found in MCC serves not only to disrupt viral replication but also results in the loss of a distinct growth-inhibitory function intrinsic to this region. PMID:23514892

  5. Single-molecule FRET and linear dichroism studies of DNA breathing and helicase binding at replication fork junctions

    OpenAIRE

    Phelps, Carey; Lee, Wonbae; Jose, Davis; von Hippel, Peter H.; Marcus, Andrew H.

    2013-01-01

    Unique single-molecule fluorescence techniques were used to monitor DNA “breathing” at and near the junctions of model DNA replication forks on biologically relevant microsecond-to-millisecond time scales. Experiments performed in the absence and presence of helicase complexes addressed the role of these fluctuations in helicase function during DNA replication. These studies simultaneously monitored single-molecule Förster resonance energy transfer and single-molecule fluorescence linear dich...

  6. The Conserved C-Terminus of the PcrA/UvrD Helicase Interacts Directly with RNA Polymerase

    OpenAIRE

    Gwynn, Emma J.; Smith, Abigail J.; Guy, Colin P.; Savery, Nigel J; Peter McGlynn; Dillingham, Mark S.

    2013-01-01

    UvrD-like helicases play diverse roles in DNA replication, repair and recombination pathways. An emerging body of evidence suggests that their different cellular functions are directed by interactions with partner proteins that target unwinding activity to appropriate substrates. Recent studies in E. coli have shown that UvrD can act as an accessory replicative helicase that resolves conflicts between the replisome and transcription complexes, but the mechanism is not understood. Here we show...

  7. Knockout and functional analysis of two DExD/H-box family helicase genes in Sulfolobus islandicus REY15A.

    Science.gov (United States)

    Song, Xueguo; Huang, Qihong; Ni, Jinfeng; Yu, Yang; Shen, Yulong

    2016-07-01

    DExD/H-box helicases represent the largest family of helicases. They belong to superfamily 2 helicases and participate in nucleotide metabolism, ribosome biogenesis, and nucleocytoplasmic transport. The biochemical properties and structures of some DExD/H-box helicases in the archaea have been documented, but many of them have not been characterized; and reports on in vivo functional analyses are limited. In this study, we attempted gene knockout of 8 putative DExD/H-box helicases in Sulfolobus islandicus REY15A and obtained two deletion mutants, SiRe_0681 and SiRe_1605. We determined that ΔSiRe_0681 grew faster than wild type cells in the presence of methyl methanesulfonate (MMS). Flow cytometry analysis showed that this strain had fewer G1/S phase cells than the wild type, and the genes coding for cell division proteins were up-regulated. The stain ΔSiRe_1605 was more sensitive to MMS than the wild type cell, and many nucleotide metabolism and DNA repair enzymes were found to be down-regulated. Intriguingly, deletion of either gene led to silencing simultaneously of over 80 genes located at a specific region. This study provides a novel insight into the in vivo functions of predicted DExD/H-box family helicases in the archaea. PMID:27290726

  8. DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byungchan, E-mail: bbccahn@mail.ulsan.ac.kr [Department of Life Sciences, University of Ulsan, Ulsan (Korea, Republic of); Bohr, Vilhelm A. [Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, Baltimore, MD (United States)

    2011-08-12

    Highlights: {yields} In this study, we investigated the effect of a DNA secondary structure on the two WRN activities. {yields} We found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. {yields} These results imply that WRN helicase and exonuclease activities can act independently. -- Abstract: Werner syndrome (WS) is an autosomal recessive premature aging disorder characterized by aging-related phenotypes and genomic instability. WS is caused by mutations in a gene encoding a nuclear protein, Werner syndrome protein (WRN), a member of the RecQ helicase family, that interestingly possesses both helicase and exonuclease activities. Previous studies have shown that the two activities act in concert on a single substrate. We investigated the effect of a DNA secondary structure on the two WRN activities and found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. These results imply that WRN helicase and exonuclease activities can act independently, and we propose that the uncoordinated action may be relevant to the in vivo activity of WRN.

  9. Simultaneous measurement of DNA motor protein conformation and activity with combined optical trap and single-molecule fluorescence

    Science.gov (United States)

    Chemla, Yann

    2013-03-01

    We present single-molecule measurements of Superfamily 1 UvrD helicase DNA unwinding that reveal directly how helicase stoichiometry and conformation regulate motor activity. Using a new instrument that combines high resolution optical tweezers with single-molecule fluorescence microscopy, we record DNA unwinding activity with base pair-scale resolution (via optical tweezers) simultaneously with helicase stoichiometry and conformation (via fluorescence). Quantifying the fluorescence signal from labeled UvrD, we observe that pairs of UvrD molecules are required for long distance unwinding but that individual molecules exhibit limited, non-processive unwinding activity. UvrD is also known to exhibit two different conformations, `closed' and `open', based on the orientation of its 2B regulatory domain. The function of these conformations has remained elusive. Measuring the fluorescence of FRET labeled proteins, we detect directly the conformation of the 2B domain of individual UvrD molecules during unwinding activity. We observe that UvrD is in the `closed' conformation during DNA unwinding but surprisingly switches to the `open' conformation upon reversal of helicase direction, i.e. when UvrD switches strands and translocates on the opposing strand with the DNA junction rezipping behind it. We hypothesize that the 2B domain acts as a conformational switch that controls DNA unwinding vs. re-annealing. Work supported by NSF (PHY-082261, Center for the Physics of Living Cells) and NIH (R21 RR025341A)

  10. DNA helicases in recombination and repair: construction of a delta uvrD delta helD delta recQ mutant deficient in recombination and repair.

    OpenAIRE

    Mendonca, V M; Klepin, H D; Matson, S W

    1995-01-01

    DNA helicases play pivotal roles in homologous recombination and recombinational DNA repair. They are involved in both the generation of recombinogenic single-stranded DNA ends and branch migration of synapsed Holliday junctions. Escherichia coli helicases II (uvrD), IV (helD), and RecQ (recQ) have all been implicated in the presynaptic stage of recombination in the RecF pathway. To probe for functional redundancy among these helicases, mutant strains containing single, double, and triple del...

  11. RecQ Helicase-catalyzed DNA Unwinding Detected by Fluorescence Resonance Energy Transfer

    Institute of Scientific and Technical Information of China (English)

    Xing-Dong ZHANG; Shuo-Xing DOU; Ping XIE; Peng-Ye WANG; Xu Guang XI

    2005-01-01

    A fluorometric assay was used to study the DNA unwinding kinetics induced by Escherichia coli RecQ helicase. This assay was based on fluorescence resonance energy transfer and carried out on stopped-flow, in which DNA unwinding was monitored by fluorescence emission enhancement of fluorescein resulting from helicase-catalyzed DNA unwinding. By this method, we determined the DNA unwinding rate of RecQ at different enzyme concentrations. We also studied the dependences of DNA unwinding magnitude and rate on magnesium ion concentration. We showed that this method could be used to determine the polarity of DNA unwinding. This assay should greatly facilitate further study of the mechanism for RecQcatalyzed DNA unwinding.

  12. The role of RecQ helicases in non-homologous end-joining

    DEFF Research Database (Denmark)

    Keijzers, Guido; Maynard, Scott; Shamanna, Raghavendra A;

    2014-01-01

    Abstract DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double......-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA...... termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V...

  13. Crystal Structure of Deinococcus radiodurans RecQ Helicase Catalytic Core Domain: The Interdomain Flexibility

    Directory of Open Access Journals (Sweden)

    Sheng-Chia Chen

    2014-01-01

    Full Text Available RecQ DNA helicases are key enzymes in the maintenance of genome integrity, and they have functions in DNA replication, recombination, and repair. In contrast to most RecQs, RecQ from Deinococcus radiodurans (DrRecQ possesses an unusual domain architecture that is crucial for its remarkable ability to repair DNA. Here, we determined the crystal structures of the DrRecQ helicase catalytic core and its ADP-bound form, revealing interdomain flexibility in its first RecA-like and winged-helix (WH domains. Additionally, the WH domain of DrRecQ is positioned in a different orientation from that of the E. coli RecQ (EcRecQ. These results suggest that the orientation of the protein during DNA-binding is significantly different when comparing DrRecQ and EcRecQ.

  14. The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation.

    Science.gov (United States)

    Absmeier, Eva; Wollenhaupt, Jan; Mozaffari-Jovin, Sina; Becke, Christian; Lee, Chung-Tien; Preussner, Marco; Heyd, Florian; Urlaub, Henning; Lührmann, Reinhard; Santos, Karine F; Wahl, Markus C

    2015-12-15

    The Brr2 helicase provides the key remodeling activity for spliceosome catalytic activation, during which it disrupts the U4/U6 di-snRNP (small nuclear RNA protein), and its activity has to be tightly regulated. Brr2 exhibits an unusual architecture, including an ∼ 500-residue N-terminal region, whose functions and molecular mechanisms are presently unknown, followed by a tandem array of structurally similar helicase units (cassettes), only the first of which is catalytically active. Here, we show by crystal structure analysis of full-length Brr2 in complex with a regulatory Jab1/MPN domain of the Prp8 protein and by cross-linking/mass spectrometry of isolated Brr2 that the Brr2 N-terminal region encompasses two folded domains and adjacent linear elements that clamp and interconnect the helicase cassettes. Stepwise N-terminal truncations led to yeast growth and splicing defects, reduced Brr2 association with U4/U6•U5 tri-snRNPs, and increased ATP-dependent disruption of the tri-snRNP, yielding U4/U6 di-snRNP and U5 snRNP. Trends in the RNA-binding, ATPase, and helicase activities of the Brr2 truncation variants are fully rationalized by the crystal structure, demonstrating that the N-terminal region autoinhibits Brr2 via substrate competition and conformational clamping. Our results reveal molecular mechanisms that prevent premature and unproductive tri-snRNP disruption and suggest novel principles of Brr2-dependent splicing regulation. PMID:26637280

  15. Nucleoside triphosphatase and RNA helicase activities associated with GB virus B nonstructural protein 3.

    Science.gov (United States)

    Zhong, W; Ingravallo, P; Wright-Minogue, J; Skelton, A; Uss, A S; Chase, R; Yao, N; Lau, J Y; Hong, Z

    1999-09-01

    GB virus B (GBV-B) is a positive-stranded RNA virus that belongs to the Flaviviridae family. This virus is closely related to hepatitis C virus (HCV) and causes acute hepatitis in tamarins (Saguinus species). Nonstructural protein 3 (NS3) of GBV-B contains sequence motifs predictive of three enzymatic activities: serine protease, nucleoside triphosphatase (NTPase), and RNA helicase. The N-terminal serine protease has been characterized and shown to share similar substrate specificity with the HCV NS3 protease. In this report, a full-length GBV-B NS3 protein was expressed in Escherichia coli and purified to homogeneity. This recombinant protein was shown to possess polynucleotide-stimulated NTPase and double-stranded RNA (dsRNA) unwinding activities. Both activities were abolished by a single amino acid substitution, from the Lys (K) residue in the conserved walker motif A (or Ia) "AXXXXGK(210)S" to an Ala (A), confirming that they are intrinsic to GBV-B NS3. Kinetic parameters (K(m) and k(cat)) for hydrolysis of various NTPs or dNTPs were obtained. The dsRNA unwinding activity depends on the presence of divalent metal ions and ATP and requires an RNA duplex substrate with 3' unpaired regions (RNAs with 5' unpaired regions only or with blunt ends are not suitable substrates for this enzyme). This indicates that GBV-B NS3 RNA helicase unwinds dsRNA in the 3' to 5' direction. Direct interaction of the GBV-B NS3 protein with a single-stranded RNA was established using a gel-based RNA bandshift assay. Finally, a homology model of GBV-B NS3 RNA helicase domain based on the 3-dimensional structure of the HCV NS3 helicase that shows a great similarity in overall structure and surface charge distribution between the two proteins was proposed. PMID:10497107

  16. A Co-Opted DEAD-Box RNA helicase enhances tombusvirus plus-strand synthesis.

    Directory of Open Access Journals (Sweden)

    Nikolay Kovalev

    2012-02-01

    Full Text Available Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. In this paper, we show that an essential translation factor, Ded1p DEAD-box RNA helicase of yeast, directly affects replication of Tomato bushy stunt virus (TBSV. To separate the role of Ded1p in viral protein translation from its putative replication function, we utilized a cell-free TBSV replication assay and recombinant Ded1p. The in vitro data show that Ded1p plays a role in enhancing plus-strand synthesis by the viral replicase. We also find that Ded1p is a component of the tombusvirus replicase complex and Ded1p binds to the 3'-end of the viral minus-stranded RNA. The data obtained with wt and ATPase deficient Ded1p mutants support the model that Ded1p unwinds local structures at the 3'-end of the TBSV (-RNA, rendering the RNA compatible for initiation of (+-strand synthesis. Interestingly, we find that Ded1p and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, which is another host factor for TBSV, play non-overlapping functions to enhance (+-strand synthesis. Altogether, the two host factors enhance TBSV replication synergistically by interacting with the viral (-RNA and the replication proteins. In addition, we have developed an in vitro assay for Flock house virus (FHV, a small RNA virus of insects, that also demonstrated positive effect on FHV replicase activity by the added Ded1p helicase. Thus, two small RNA viruses, which do not code for their own helicases, seems to recruit a host RNA helicase to aid their replication in infected cells.

  17. Evolution of the DEAD box helicase family in chicken: chickens have no DHX9 ortholog.

    Science.gov (United States)

    Sato, Haruko; Oshiumi, Hiroyuki; Takaki, Hiromi; Hikono, Hirokazu; Seya, Tsukasa

    2015-10-01

    Viral RNA represents a pattern molecule that can be recognized by RNA sensors in innate immunity. Humans and mice possess cytoplasmic DNA/RNA sensors for detecting viral replication. There are a number of DEAD (Asp-Glu-Ala-Asp; DExD/H) box-type helicases in mammals, among which retinoic acid-inducible gene 1 (RIG-I) and melanoma differentiation-associated protein 5 (MDA50) are indispensable for RNA sensing; however, they are functionally supported by a number of sensors that directly bind viral RNA or replicative RNA intermediates to convey signals to RIG-I and MDA5. Some DEAD box helicase members recognize DNA irrespective of the origin. These sensors transmit IFN-inducing signals through adaptors, including mitochondrial antiviral signaling. Viral double-stranded RNAs are reportedly sensed by the helicases DDX1, DDX21, DHX36, DHX9, DDX3, DDX41, LGP2 and DDX60, in addition to RIG-I and MDA5, and induce type I IFNs, thereby blocking viral replication. Humans and mice have all nucleic acid sensors listed here. In the RNA sensing system in chicken, it was found in the present study that most DEAD box helicases are conserved; however, DHX9 is genetically deficient in addition to reported RIG-I. Based on the current genome databases, similar DHX9 deficiency was observed in ducks and several other bird species. Because chicken, but not duck, was found to be deficient in RIG-I, the RNA-sensing system of chicken lacks RIG-I and DHX9 and is thus more fragile than that of duck or mammal. DHX9 may generally compensate for the function of RIG-I and deficiency of DHX9 possibly participates in exacerbations of viral infection such as influenza in chickens.

  18. A Burkholderia pseudomallei Toxin Inhibits Helicase Activity of Translation Factor eIF4A

    OpenAIRE

    Cruz, Abimael; Hautbergue, Guillaume M.; Artymiuk, Peter J.; Baker, Patrick J.; Bokori-Brown, Monika; Chang, Chung-Te; Dickman, Mark J.; Essex-Lopresti, Angela; Harding, Sarah V.; Mahadi, Nor Muhammad; Marshall, Laura E.; Mobbs, George W.; Mohamed, Rahmah; Nathan, Sheila; Ngugi, Sarah A.

    2011-01-01

    The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei reveals a similarity to E. coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of Gln339 of the translation initiation factor eIF4A, abolishing its helicase activity and inh...

  19. Functional characterization of UvrD helicases from Haemophilus influenzae and Helicobacter pylori.

    Science.gov (United States)

    Sharma, Ruchika; Rao, Desirazu N

    2012-06-01

    Haemophilus influenzae and Helicobacter pylori are major bacterial pathogens that face high levels of genotoxic stress within their host. UvrD, a ubiquitous bacterial helicase that plays important roles in multiple DNA metabolic pathways, is essential for genome stability and might, therefore, be crucial in bacterial physiology and pathogenesis. In this study, the functional characterization of UvrD helicase from Haemophilus influenzae and Helicobacter pylori is reported. UvrD from Haemophilus influenzae (HiUvrD) and Helicobacter pylori (HpUvrD) exhibit strong single-stranded DNA-specific ATPase and 3'-5' helicase activities. Mutation of highly conserved arginine (R288) in HiUvrD and glutamate (E206) in HpUvrD abrogated their activities. Both the proteins were able to bind and unwind a variety of DNA structures including duplexes with strand discontinuities and branches, three- and four-way junctions that underpin their role in DNA replication, repair and recombination. HiUvrD required a minimum of 12 nucleotides, whereas HpUvrD preferred 20 or more nucleotides of 3'-single-stranded DNA tail for efficient unwinding of duplex DNA. Interestingly, HpUvrD was able to hydrolyze and utilize GTP for its helicase activity although not as effectively as ATP, which has not been reported to date for UvrD characterized from other organisms. HiUvrD and HpUvrD were found to exist predominantly as monomers in solution together with multimeric forms. Noticeably, deletion of distal C-terminal 48 amino acid residues disrupted the oligomerization of HiUvrD, whereas deletion of 63 amino acids from C-terminus of HpUvrD had no effect on its oligomerization. This study presents the characteristic features and comparative analysis of Haemophilus influenzae and Helicobacter pylori UvrD, and constitutes the basis for understanding the role of UvrD in the biology and virulence of these pathogens. PMID:22500516

  20. UvrD Helicase Suppresses Recombination and DNA Damage-Induced Deletions†

    OpenAIRE

    Kang, Josephine; Martin J Blaser

    2006-01-01

    UvrD, a highly conserved helicase involved in mismatch repair, nucleotide excision repair (NER), and recombinational repair, plays a critical role in maintaining genomic stability and facilitating DNA lesion repair in many prokaryotic species. In this report, we focus on the UvrD homolog in Helicobacter pylori, a genetically diverse organism that lacks many known DNA repair proteins, including those involved in mismatch repair and recombinational repair, and that is noted for high levels of i...

  1. The Pif1 Helicase, a Negative Regulator of Telomerase, Acts Preferentially at Long Telomeres

    OpenAIRE

    Jane A Phillips; Angela Chan; Katrin Paeschke; Zakian, Virginia A.

    2015-01-01

    Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determ...

  2. Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase

    OpenAIRE

    Cohen, Haim; Sinclair, David A.

    2001-01-01

    The Saccharomyces cerevisiae SGS1 gene encodes a RecQ-like DNA helicase, human homologues of which are implicated in the genetic instability disorders, Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), and Werner syndrome (WS). Telomerase-negative yeast cells can recover from senescence via two recombinational telomere elongation pathways. The “type I” pathway generates telomeres with large blocks of telomeric and subtelomeric sequences and short terminal repea...

  3. The roles of WRN and BLM RecQ helicases in the Alternative Lengthening of Telomeres

    OpenAIRE

    Mendez-Bermudez, Aaron; Hidalgo-Bravo, Alberto; Cotton, Victoria E.; Gravani, Athanasia; Jeyapalan, Jennie N.; Royle, Nicola J.

    2012-01-01

    Approximately 10% of all cancers, but a higher proportion of sarcomas, use the recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. Two RecQ helicase genes, BLM and WRN, play important roles in homologous recombination repair and they have been implicated in telomeric recombination activity, but their precise roles in ALT are unclear. Using analysis of sequence variation present in human telomeres, we found that a WRN– ALT+ cell line lacks the class of complex...

  4. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.

    Science.gov (United States)

    Gong, Bei; Shin, Minsang; Sun, Jiali; Jung, Che-Hun; Bolt, Edward L; van der Oost, John; Kim, Jeong-Sun

    2014-11-18

    Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a "Cascade" ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called "interference." After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.

  5. Structural mechanisms of human RecQ helicases WRN and BLM

    Directory of Open Access Journals (Sweden)

    Ken eKitano

    2014-10-01

    Full Text Available The RecQ family DNA helicases WRN (Werner syndrome protein and BLM (Bloom syndrome protein play a key role in protecting the genome against deleterious changes. In humans, mutations in these proteins lead to rare genetic diseases associated with cancer predisposition and accelerated aging. WRN and BLM are distinguished from other helicases by possessing signature tandem domains toward the C terminus, referred to as the RecQ C-terminal (RQC and helicase-and-ribonuclease D-C-terminal (HRDC domains. Although the precise function of the HRDC domain remains unclear, the previous crystal structure of a WRN RQC-DNA complex visualized a central role for the RQC domain in recognizing, binding and unwinding DNA at branch points. In particular, a prominent hairpin structure (the β-wing within the RQC winged-helix motif acts as a scalpel to induce the unpairing of a Watson-Crick base pair at the DNA duplex terminus. A similar RQC-DNA interaction was also observed in the recent crystal structure of a BLM-DNA complex. I review the latest structures of WRN and BLM, and then provide a docking simulation of BLM with a Holliday junction. The model offers an explanation for the efficient branch migration activity of the RecQ family toward recombination and repair intermediates.

  6. Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain.

    Directory of Open Access Journals (Sweden)

    Yoomi Choi

    Full Text Available Cucumber mosaic virus (CMV is a destructive pathogen affecting Capsicum annuum (pepper production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase. Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum 'Bukang' cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP. Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection.

  7. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases

    Directory of Open Access Journals (Sweden)

    Sudha Sharma

    2011-01-01

    Full Text Available In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.

  8. Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase.

    Science.gov (United States)

    Byrd, Chelsea M; Grosenbach, Douglas W; Berhanu, Aklile; Dai, Dongcheng; Jones, Kevin F; Cardwell, Kara B; Schneider, Christine; Yang, Guang; Tyavanagimatt, Shanthakumar; Harver, Chris; Wineinger, Kristin A; Page, Jessica; Stavale, Eric; Stone, Melialani A; Fuller, Kathleen P; Lovejoy, Candace; Leeds, Janet M; Hruby, Dennis E; Jordan, Robert

    2013-04-01

    Dengue virus (DENV) is the predominant mosquito-borne viral pathogen that infects humans with an estimated 50 to 100 million infections per year worldwide. Over the past 50 years, the incidence of dengue disease has increased dramatically and the virus is now endemic in more than 100 countries. Moreover, multiple serotypes of DENV are now found in the same geographic region, increasing the likelihood of more severe forms of disease. Despite extensive research, there are still no approved vaccines or therapeutics commercially available to treat DENV infection. Here we report the results of a high-throughput screen of a chemical compound library using a whole-virus assay that identified a novel small-molecule inhibitor of DENV, ST-610, that potently and selectively inhibits all four serotypes of DENV replication in vitro. Sequence analysis of drug-resistant virus isolates has identified a single point mutation, A263T, in the NS3 helicase domain that confers resistance to this compound. ST-610 inhibits DENV NS3 helicase RNA unwinding activity in a molecular-beacon-based helicase assay but does not inhibit nucleoside triphosphatase activity based on a malachite green ATPase assay. ST-610 is nonmutagenic, is well tolerated (nontoxic) in mice, and has shown efficacy in a sublethal murine model of DENV infection with the ability to significantly reduce viremia and viral load compared to vehicle controls.

  9. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone.

    Directory of Open Access Journals (Sweden)

    Hongjie Xia

    2015-07-01

    Full Text Available RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71, which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3'-to-5' unwinds RNA helices in an adenosine triphosphate (ATP-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16, another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings

  10. Significance of monoclonal antibodies against the conserved epitopes within non-structural protein 3 helicase of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Yixin Bian

    Full Text Available Nonstructural protein 3 (NS3 of hepatitis C virus (HCV, codes for protease and helicase carrying NTPase enzymatic activities, plays a crucial role in viral replication and an ideal target for diagnosis, antiviral therapy and vaccine development. In this study, monoclonal antibodies (mAbs to NS3 helicase were characterized by epitope mapping and biological function test. A total of 29 monoclonal antibodies were produced to the truncated NS3 helicase of HCV-1b (T1b-rNS3, aa1192-1459. Six mAbs recognized 8/29 16mer peptides, which contributed to identify 5 linear and 1 discontinuous putative epitope sequences. Seven mAbs reacted with HCV-2a JFH-1 infected Huh-7.5.1 cells by immunofluorescent staining, of which 2E12 and 3E5 strongly bound to the exposed linear epitope (1231PTGSGKSTK(1239 (EP05 or core motif (1373IPFYGKAI(1380 (EP21, respectively. Five other mAbs recognized semi-conformational or conformational epitopes of HCV helicase. MAb 2E12 binds to epitope EP05 at the ATP binding site of motif I in domain 1, while mAb 3E5 reacts with epitope EP21 close to helicase nucleotide binding region of domain 2. Epitope EP05 is totally conserved and EP21 highly conserved across HCV genotypes. These two epitope peptides reacted strongly with 59-79% chronic and weakly with 30-58% resolved HCV infected blood donors, suggesting that these epitopes were dominant in HCV infection. MAb 2E12 inhibited 50% of unwinding activity of NS3 helicase in vitro. Novel monoclonal antibodies recognize highly conserved epitopes at crucial functional sites within NS3 helicase, which may become important antibodies for diagnosis and antiviral therapy in chronic HCV infection.

  11. Molecular modeling and pharmacophore elucidation study of the Classical Swine Fever virus helicase as a promising pharmacological target

    Directory of Open Access Journals (Sweden)

    Dimitrios Vlachakis

    2013-06-01

    Full Text Available The Classical Swine Fever virus (CSFV is a major pathogen of livestock and belongs to the flaviviridae viral family. Even though there aren’t any verified zoonosis cases yet, the outcomes of CSFV epidemics have been devastating to local communities. In an effort to shed light to the molecular mechanisms underlying the structural and drug design potential of the viral helicase, the three dimensional structure of CSFV helicase has been modeled using conventional homology modeling techniques and the crystal structure of the Hepatitis C virus (HCV as a template. The established structure of the CSFV helicase has been in silico evaluated for its viability using a repertoire of in silico tools. The ultimate goal of this study is to introduce the 3D conformation of the CSFV helicase as a reliable structure that may be used as the designing platform for de novo, structure-based drug design experiments. In this direction using the modeled structure of CSVF helicase, a 3D pharmacophore was designed. The pharmacophore comprises of a series of key characteristics that molecular inhibitors must satisfy in order to achieve maximum predicted affinity for the given enzyme. Overall, invaluable insights and conclusions are drawn from this structural study of the CSFV helicase, which may provide the scientific community with the founding plinth in the fight against CSFV infections through the perspective of the CSFV helicase as a potential pharmacological target. Notably, to date no antiviral agent is available against the CSFV nor is expected soon. Subsequently, there is urgent need for new modern and state-of-the-art antiviral strategies to be developed.

  12. THE MOTOR

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    MOTOR is the first assignment that students at Unit 1a of the School of Architecture are introduced to. The purpose of the assignment is to shake up the students and their preconceptions of what architec- ture is. This is done by introducing them to a working method that al- lows them to develop...

  13. Motor Magnates

    Institute of Scientific and Technical Information of China (English)

    ISABEL DING

    2008-01-01

    @@ The automotive industry is often seen as a man's world. Wang Fengying (王风英) begs to differ. The 38-year-old has presided over Great Wall Motors (长城汽车), the leading pick-up truck and Sport Utility Vehicle(SUV) manufacturer in China for the past five years.

  14. Motor radiculopathy

    OpenAIRE

    Khan, Afsha; Camilleri, Jeremy

    2012-01-01

    A 48-year-old immunosuppressed woman presented to a rheumatology follow-up clinic after suffering from herpes zoster infection. She had manifestations of foot drop 3 months after the initial infection. She was diagnosed with motor radiculopathy following herpes zoster infection that was effectively managed by physiotherapy and amitriptyline.

  15. Kinetic mechanism of DNA translocation by the RSC molecular motor.

    Science.gov (United States)

    Eastlund, Allen; Malik, Shuja Shafi; Fischer, Christopher J

    2013-04-15

    ATP-dependent nucleosome repositioning by chromatin remodeling enzymes requires the translocation of these enzymes along the nucleosomal DNA. Using a fluorescence stopped-flow assay we monitored DNA translocation by a minimal RSC motor and through global analysis of these time courses we have determined that this motor has a macroscopic translocation rate of 2.9 bp/s with a step size of 1.24 bp. From the complementary quantitative analysis of the associated time courses of ATP consumption during DNA translocation we have determined that this motor has an efficiency of 3.0 ATP/bp, which is slightly less that the efficiency observed for several genetically related DNA helicases and which likely results from random pausing by the motor during translocation. Nevertheless, this motor is able to exert enough force during translocation to displace streptavidin from biotinylated DNA. Taken together these results are the necessary first step for quantifying both the role of DNA translocation in nucleosome repositioning by RSC and the efficiency at which RSC couples ATP binding and hydrolysis to nucleosome repositioning.

  16. Advanced Motors

    Energy Technology Data Exchange (ETDEWEB)

    Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

    2012-12-14

    Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, “Motors and Generators for the 21st Century”. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to

  17. Substrate specific stimulation of NEIL1 by WRN but not the other human RecQ helicases

    DEFF Research Database (Denmark)

    Popuri, Venkateswarlu; Croteau, Deborah L; Bohr, Vilhelm A

    2010-01-01

    NEIL1, the mammalian homolog of Escherichia coli endonuclease VIII, is a DNA glycosylase that repairs ring-fragmented purines, saturated pyrimidines and several oxidative lesions like 5-hydroxyuracil, 5-hydroxycytosine, etc. Previous studies from our laboratory have shown that Werner Syndrome...... protein (WRN), one of the five human RecQ helicases, stimulates NEIL1 DNA glycosylase activity on oxidative DNA lesions. The goal of this study was to extend this observation and analyze the interaction between NEIL1 and all five human RecQ helicases. The DNA substrate specificity of the interaction...... between WRN and NEIL1 was also analyzed. The results indicate that WRN is the only human RecQ helicase that stimulates NEIL1 DNA glycosylase activity, and that this stimulation requires a double-stranded DNA substrate....

  18. Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding

    Directory of Open Access Journals (Sweden)

    Brewster Aaron S

    2010-08-01

    Full Text Available Abstract Background The mini-chromosome maintenance protein (MCM complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7, the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM, six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket. Results In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp. We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity. Conclusions These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.

  19. Modulation of UvrD helicase activity by covalent DNA-protein cross-links.

    Science.gov (United States)

    Kumari, Anuradha; Minko, Irina G; Smith, Rebecca L; Lloyd, R Stephen; McCullough, Amanda K

    2010-07-01

    UvrD (DNA helicase II) has been implicated in DNA replication, DNA recombination, nucleotide excision repair, and methyl-directed mismatch repair. The enzymatic function of UvrD is to translocate along a DNA strand in a 3' to 5' direction and unwind duplex DNA utilizing a DNA-dependent ATPase activity. In addition, UvrD interacts with many other proteins involved in the above processes and is hypothesized to facilitate protein turnover, thus promoting further DNA processing. Although UvrD interactions with proteins bound to DNA have significant biological implications, the effects of covalent DNA-protein cross-links on UvrD helicase activity have not been characterized. Herein, we demonstrate that UvrD-catalyzed strand separation was inhibited on a DNA strand to which a 16-kDa protein was covalently bound. Our sequestration studies suggest that the inhibition of UvrD activity is most likely due to a translocation block and not helicase sequestration on the cross-link-containing DNA substrate. In contrast, no inhibition of UvrD-catalyzed strand separation was apparent when the protein was linked to the complementary strand. The latter result is surprising given the earlier observations that the DNA in this covalent complex is severely bent ( approximately 70 degrees ), with both DNA strands making multiple contacts with the cross-linked protein. In addition, UvrD was shown to be required for replication of plasmid DNAs containing covalent DNA-protein complexes. Combined, these data suggest a critical role for UvrD in the processing of DNA-protein cross-links. PMID:20444702

  20. Functional interaction between Smad, CREB binding protein, and p68 RNA helicase

    International Nuclear Information System (INIS)

    The transforming growth factors β control a diversity of biological processes including cellular proliferation, differentiation, apoptosis, and extracellular matrix production, and are critical effectors of embryonic patterning and development, including that of the orofacial region. TGFβ superfamily members signal through specific cell surface receptors that phosphorylate the cytoplasmic Smad proteins, resulting in their translocation to the nucleus and interaction with promoters of TGFβ-responsive genes. Subsequent alterations in transcription are cell type-specific and dependent on recruitment to the Smad/transcription factor complex of coactivators, such as CBP and p300, or corepressors, such as c-ski and SnoN. Since the affinity of Smads for DNA is generally low, additional accessory proteins that facilitate Smad/DNA binding are required, and are often cell- and tissue-specific. In order to identify novel Smad 3 binding proteins in developing orofacial tissue, a yeast two hybrid assay was employed in which the MH2 domain of Smad 3 was used to screen an expression library derived from mouse embryonic orofacial tissue. The RNA helicase, p68, was identified as a unique Smad binding protein, and the specificity of the interaction was confirmed through various in vitro and in vivo assays. Co-expression of Smad 3 and a CBP-Gal4 DNA binding domain fusion protein in a Gal4-luciferase reporter assay resulted in increased TGFβ-stimulated reporter gene transcription. Moreover, co-expression of p68 RNA helicase along with Smad 3 and CBP-Gal4 resulted in synergistic activation of Gal4-luciferase reporter expression. Collectively, these data indicate that the RNA helicase, p68, can directly interact with Smad 3 resulting in formation of a transcriptionally active ternary complex containing Smad 3, p68, and CBP. This offers a means of enhancing TGFβ-mediated cellular responses in developing orofacial tissue

  1. The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces

    OpenAIRE

    Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire; Thibessard, Annabelle; Leblond, Pierre

    2014-01-01

    Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only pu...

  2. Dissection of the functional domains of an archaeal holliday junction helicase

    DEFF Research Database (Denmark)

    Hong, Ye; Chu, Mingzhu; Li, Yansheng;

    2012-01-01

    Helicases and nucleases form complexes that play very important roles in DNA repair pathways some of which interact with each other at Holliday junctions. In this study, we present in vitro and in vivo analysis of Hjm and its interaction with Hjc in Sulfolobus. In vitro studies employed Hjm from...... propagation assay, suggesting that Hjm/Hjc mediated resolution of stalled replication forks is of crucial importance in archaea. A tentative pathway with which Hjm/Hjc interaction could have occurred at stalled replication forks is discussed....

  3. Modulation of UvrD Helicase Activity by Covalent DNA-Protein Cross-links*

    OpenAIRE

    Kumari, Anuradha; Minko, Irina G.; Smith, Rebecca L.; Lloyd, R. Stephen; McCullough, Amanda K.

    2010-01-01

    UvrD (DNA helicase II) has been implicated in DNA replication, DNA recombination, nucleotide excision repair, and methyl-directed mismatch repair. The enzymatic function of UvrD is to translocate along a DNA strand in a 3′ to 5′ direction and unwind duplex DNA utilizing a DNA-dependent ATPase activity. In addition, UvrD interacts with many other proteins involved in the above processes and is hypothesized to facilitate protein turnover, thus promoting further DNA processing. Although UvrD int...

  4. Identification and Characterization of Escherichia coli DNA Helicase II Mutants That Exhibit Increased Unwinding Efficiency

    OpenAIRE

    Zhang, Gang; Deng, Enxin; Baugh, Larry; Kushner, Sidney R.

    1998-01-01

    Using a combination of both ethyl methanesulfonate and site-directed mutagenesis, we have identified a region in DNA helicase II (UvrD) from Escherichia coli that is required for biological function but lies outside of any of the seven conserved motifs (T. C. Hodgman, Nature 333:22–23, 1988) associated with the superfamily of proteins of which it is a member. Located between amino acids 403 and 409, alterations in the amino acid sequence DDAAFER lead to both temperature-sensitive and dominant...

  5. The DNA repair helicase UvrD is essential for replication fork reversal in replication mutants

    OpenAIRE

    Flores, Maria Jose; Bidnenko, Vladimir; Michel, Bénédicte

    2004-01-01

    Replication forks arrested by inactivation of the main Escherichia coli DNA polymerase (polymerase III) are reversed by the annealing of newly synthesized leading- and lagging-strand ends. Reversed forks are reset by the action of RecBC on the DNA double-strand end, and in the absence of RecBC chromosomes are linearized by the Holliday junction resolvase RuvABC. We report here that the UvrD helicase is essential for RuvABC-dependent chromosome linearization in E. coli polymerase III mutants, ...

  6. Characterization of the Mycobacterial NER System Reveals Novel Functions of the uvrD1 Helicase

    OpenAIRE

    Guthlein, C.; Wanner, R M; Sander, P; Davis, E O; Bosshard, M.; Jiricny, J; Bottger, E. C.; Springer, B.

    2008-01-01

    In this study, we investigated the role of the nucleotide excision repair (NER) pathway in mycobacterial DNA repair. Mycobacterium smegmatis lacking the NER excinuclease component uvrB or the helicase uvrD1 gene and a double knockout lacking both genes were constructed, and their sensitivities to a series of DNA-damaging agents were analyzed. As anticipated, the mycobacterial NER system was shown to be involved in the processing of bulky DNA adducts and interstrand cross-links. In addition, i...

  7. Characterization of the Helicase Activity and Substrate Specificity of Mycobacterium tuberculosis UvrD▿

    OpenAIRE

    Curti, Elena; Smerdon, Stephen J; Davis, Elaine O.

    2006-01-01

    UvrD is a helicase that is widely conserved in gram-negative bacteria. A uvrD homologue was identified in Mycobacterium tuberculosis on the basis of the homology of its encoded protein with Escherichia coli UvrD, with which it shares 39% amino acid identity, distributed throughout the protein. The gene was cloned, and a histidine-tagged form of the protein was expressed and purified to homogeneity. The purified protein had in vitro ATPase activity that was dependent upon the presence of DNA. ...

  8. Characterisation of the mycobacterial NER system reveals novel functions of uvrD1 helicase

    OpenAIRE

    Güthlein, C; Wanner, R M; Sander, P; Davis, E O; Bosshard, M.; Jiricny, J; Böttger, E C; Springer, B.

    2009-01-01

    In this study, we investigated the role of the nucleotide excision repair (NER) pathway in mycobacterial DNA repair. Mycobacterium smegmatis lacking the NER excinuclease component uvrB, the helicase uvrD1 and a double knock-out lacking both proteins were constructed and their sensitivity to a series of DNA damaging agents wa analysed. As anticipated, the mycobacterial NER system was shown to be involved in the processing of bulky DNA adducts and inter-strand cross-links. In addition, it coul...

  9. Characterization of DNA helicase II from a uvrD252 mutant of Escherichia coli.

    OpenAIRE

    Washburn, B K; Kushner, S R

    1993-01-01

    The loss of DNA helicase II (UvrD) in Escherichia coli results in sensitivity to UV light and increased levels of spontaneous mutagenesis. While the effects of various uvrD alleles have been analyzed in vivo, the proteins produced by these alleles have not been examined in any detail. We have cloned one of these alleles, uvrD252, and determined the site of the mutation conferring the phenotype. In addition, the protein it encodes has been purified to homogeneity and characterized in vitro. Th...

  10. The UvrD helicase and its modulation by the mismatch repair protein MutL

    OpenAIRE

    Matson, Steven W.; Robertson, Adam B.

    2006-01-01

    UvrD is a superfamily I DNA helicase with well documented roles in excision repair and methyl-directed mismatch repair (MMR) in addition to poorly understood roles in replication and recombination. The MutL protein is a homodimeric DNA-stimulated ATPase that plays a central role in MMR in Escherichia coli. This protein has been characterized as the master regulator of mismatch repair since it interacts with and modulates the activity of several other proteins involved in the mismatch repair p...

  11. Antipairing and strand transferase activities of E. coli helicase II (UvrD).

    OpenAIRE

    Morel, P; Hejna, J A; Ehrlich, S D; Cassuto, E

    1993-01-01

    The product of the uvrD gene of Escherichia coli, UvrD (helicase II), is known to be involved in methyl-directed mismatch repair, transposon excision and uvrABC excision repair. In conjugational crosses, various uvrD mutants have been reported to result in higher, lower or unaffected recombination frequencies. In an attempt to clarify the role of UvrD in recombination, we have studied in vitro its effects on two key reactions driven by RecA, homologous pairing and strand exchange. We show her...

  12. Human RecQL4 helicase plays critical roles in prostate carcinogenesis

    DEFF Research Database (Denmark)

    Su, Yanrong; Meador, Jarah A; Calaf, Gloria M;

    2010-01-01

    Prostate cancer is the second leading cause of cancer-associated deaths among men in the western countries. Here, we report that human RecQL4 helicase, which is implicated in the pathogenesis of a subset of cancer-prone Rothmund-Thomson syndrome, is highly elevated in metastatic prostate cancer c...... for prostate cancer promotion. Observation of a direct interaction of retinoblastoma (Rb) and E2F1 proteins with RecQL4 promoter suggests that Rb-E2F1 pathway may regulate RecQL4 expression. Collectively, our study shows that RecQL4 is an essential factor for prostate carcinogenesis....

  13. Role of SUV3 Helicase in Maintaining Mitochondrial Homeostasis in Human Cells*

    OpenAIRE

    Khidr, Lily; Wu, Guikai; Davila, Antonio; Procaccio, Vincent; Wallace, Douglas,; Lee, Wen-Hwa

    2008-01-01

    In yeast mitochondria, RNA degradation takes place through the coordinated activities of ySuv3 helicase and yDss1 exoribonuclease (mtEXO), whereas in bacteria, RNA is degraded via RNaseE, RhlB, PNPase, and enolase. Yeast lacking the Suv3 component of the mtEXO form petits and undergo a toxic accumulation of omega intron RNAs. Mammalian mitochondria resemble their prokaryotic origins by harboring a polyadenylation-dependent RNA degradation mechanism, but whether SUV3 pa...

  14. ATP–stimulated DNA–mediated Redox Signaling by XPD, a DNA Repair and Transcription Helicase

    OpenAIRE

    Mui, Timothy P.; Fuss, Jill O.; Ishida, Justin P.; Tainer, John A.; Barton, Jacqueline K.

    2011-01-01

    Using DNA-modified electrodes, we show DNA-mediated signaling by XPD, a helicase that contains a [4Fe-4S] cluster and is critical for nucleotide excision repair and transcription. The DNA-mediated redox signal resembles that of base excision repair proteins, with a DNA-bound redox potential of ~80 mV versus NHE. Significantly, this signal increases with ATP hydrolysis. Moreover, the redox signal is substrate-dependent, reports on the DNA conformational changes associated with enzymatic functi...

  15. Construction and analysis of deletions in the structural gene (uvrD) for DNA helicase II of Escherichia coli.

    OpenAIRE

    Washburn, B K; Kushner, S R

    1991-01-01

    DNA helicase II, the product of the uvrD gene, has been implicated in DNA repair, replication, and recombination. Because the phenotypes of individual uvrD alleles vary significantly, we constructed deletion-insertion mutations in the uvrD gene to determine the phenotype of cells lacking DNA helicase II. Deletion mutants completely lacking the protein, as well as one which contains a truncated protein retaining the ATP-binding site, remained viable. However, they were sensitive to UV light an...

  16. Suppression of Recj Exonuclease Mutants of Escherichia Coli by Alterations in DNA Helicases II (Uvrd) and IV (Held)

    OpenAIRE

    Lovett, S T; Sutera-Jr., V. A.

    1995-01-01

    The recJ gene encodes a single-strand DNA-specific exonuclease involved in homologous recombination. We have isolated a pseudorevertant strain in which recJ mutant phenotypes were alleviated. Suppression of recJ was due to at least three mutations, two of which we have identified as alterations in DNA helicase genes. A recessive amber mutation, ``uvrD517(am),'' at codon 503 of the gene encoding helicase II was sufficient to suppress recJ partially. The uvrD517(am) mutation does not eliminate ...

  17. The human Suv3 helicase interacts with replication protein A and flap endonuclease 1 in the nucleus

    OpenAIRE

    Venø, Susanne T.; Kulikowicz, Tomasz; Pestana, Cezar; Stepien, Piotr P.; Stevnsner, Tinna; Vilhelm A Bohr

    2011-01-01

    The hSuv3 (human Suv3) helicase has been shown to be a major player in mitochondrial RNA surveillance and decay, but its physiological role might go beyond this functional niche. hSuv3 has been found to interact with BLM (Bloom’s syndrome protein) and WRN (Werner’s syndrome protein), members of the RecQ helicase family involved in multiple DNA metabolic processes, and in protection and stabilization of the genome. In the present study, we have addressed the possible role of hSuv3 in genome ma...

  18. Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance

    OpenAIRE

    Szczesny, Roman J; Borowski, Lukasz S.; Brzezniak, Lien K.; Dmochowska, Aleksandra; Gewartowski, Kamil; Bartnik, Ewa; Stepien, Piotr P.

    2009-01-01

    The mechanism of human mitochondrial RNA turnover and surveillance is still a matter of debate. We have obtained a cellular model for studying the role of hSuv3p helicase in human mitochondria. Expression of a dominant-negative mutant of the hSUV3 gene which encodes a protein with no ATPase or helicase activity results in perturbations of mtRNA metabolism and enables to study the processing and degradation intermediates which otherwise are difficult to detect because of their short half-lives...

  19. Physical and functional interactions between Werner syndrome helicase and mismatch-repair initiation factors

    DEFF Research Database (Denmark)

    Saydam, Nurten; Kanagaraj, Radhakrishnan; Dietschy, Tobias;

    2007-01-01

    is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSalpha), MSH2/MSH3 (MutSbeta) and MLH1/PMS2 (MutLalpha) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSalpha and MutSbeta can strongly...... stimulate the helicase activity of WRN specifically on forked DNA structures with a 3'-single-stranded arm. The stimulatory effect of MutSalpha on WRN-mediated unwinding is enhanced by a G/T mismatch in the DNA duplex ahead of the fork. The MutLalpha protein known to bind to the MutS alpha......-heteroduplex complexes has no effect on WRN-mediated DNA unwinding stimulated by MutSalpha, nor does it affect DNA unwinding by WRN alone. Our data are consistent with results of genetic experiments in yeast suggesting that MMR factors act in conjunction with a RecQ-type helicase to reject recombination between...

  20. CTXφ Replication Depends on the Histone-Like HU Protein and the UvrD Helicase.

    Directory of Open Access Journals (Sweden)

    Eriel Martínez

    2015-05-01

    Full Text Available The Vibrio cholerae bacterium is the agent of cholera. The capacity to produce the cholera toxin, which is responsible for the deadly diarrhea associated with cholera epidemics, is encoded in the genome of a filamentous phage, CTXφ. Rolling-circle replication (RCR is central to the life cycle of CTXφ because amplification of the phage genome permits its efficient integration into the genome and its packaging into new viral particles. A single phage-encoded HUH endonuclease initiates RCR of the proto-typical filamentous phages of enterobacteriaceae by introducing a nick at a specific position of the double stranded DNA form of the phage genome. The rest of the process is driven by host factors that are either essential or crucial for the replication of the host genome, such as the Rep SF1 helicase. In contrast, we show here that the histone-like HU protein of V. cholerae is necessary for the introduction of a nick by the HUH endonuclease of CTXφ. We further show that CTXφ RCR depends on a SF1 helicase normally implicated in DNA repair, UvrD, rather than Rep. In addition to CTXφ, we show that VGJφ, a representative member of a second family of vibrio integrative filamentous phages, requires UvrD and HU for RCR while TLCφ, a satellite phage, depends on Rep and is independent from HU.

  1. CTXφ Replication Depends on the Histone-Like HU Protein and the UvrD Helicase.

    Science.gov (United States)

    Martínez, Eriel; Paly, Evelyne; Barre, François-Xavier

    2015-05-01

    The Vibrio cholerae bacterium is the agent of cholera. The capacity to produce the cholera toxin, which is responsible for the deadly diarrhea associated with cholera epidemics, is encoded in the genome of a filamentous phage, CTXφ. Rolling-circle replication (RCR) is central to the life cycle of CTXφ because amplification of the phage genome permits its efficient integration into the genome and its packaging into new viral particles. A single phage-encoded HUH endonuclease initiates RCR of the proto-typical filamentous phages of enterobacteriaceae by introducing a nick at a specific position of the double stranded DNA form of the phage genome. The rest of the process is driven by host factors that are either essential or crucial for the replication of the host genome, such as the Rep SF1 helicase. In contrast, we show here that the histone-like HU protein of V. cholerae is necessary for the introduction of a nick by the HUH endonuclease of CTXφ. We further show that CTXφ RCR depends on a SF1 helicase normally implicated in DNA repair, UvrD, rather than Rep. In addition to CTXφ, we show that VGJφ, a representative member of a second family of vibrio integrative filamentous phages, requires UvrD and HU for RCR while TLCφ, a satellite phage, depends on Rep and is independent from HU. PMID:25992634

  2. Analysis of DNA repair helicase UvrD from Arabidopsis thaliana and Oryza sativa.

    Science.gov (United States)

    Tuteja, Renu; Tuteja, Narendra

    2013-10-01

    Mismatch repair (MMR) proteins play important roles in maintaining genome stability in all the organisms. Studies of MMR genes in plants have identified several homologs of the Escherichia coli genes. Crop yield is directly related to genome stability, which is crucially required for optimal plant growth and development. Numerous genotoxic stresses such as UV light, radiations, pollutants and heavy metals cause DNA damage leading to genome instability, which can interfere with the plant growth and crop productivity. But the efficient repair mechanisms can help to overcome the deleterious effects of the damage. Therefore it is important to study the genes involved in various repair pathways in the plants in greater detail. UvrD helicase is a component of MMR complex and plays an essential role in the DNA repair by providing the unwinding function. In the present manuscript we present an in silico analysis of UvrD helicase from two plant species (Arabidopsis and rice). The Arabidopsis thaliana and Oryza sativa UvrD are 1149 (~129 kDa) and 1165 amino-acids (~130 kDa) proteins, respectively. These proteins contain all the conserved domains and are larger than the E. coli UvrD because they contain a longer N-terminal extension. In order to decipher the role of plant UvrD in various stresses it will be important to study the biochemical and functional properties of this enzyme. PMID:23974358

  3. RecA-promoted, RecFOR-independent progressive disassembly of replisomes stalled by helicase inactivation.

    Science.gov (United States)

    Lia, Giuseppe; Rigato, Annafrancesca; Long, Emilie; Chagneau, Carine; Le Masson, Marie; Allemand, Jean-François; Michel, Bénédicte

    2013-02-01

    In all organisms, replication impairment is a recognized source of genomic instability, raising an increasing interest in the fate of inactivated replication forks. We used Escherichia coli strains with a temperature-inactivated replicative helicase (DnaB) and in vivo single-molecule microscopy to quantify the detailed molecular processing of stalled replication forks. After helicase inactivation, RecA binds to blocked replication forks and is essential for the rapid release of hPol III. The entire holoenzyme is disrupted little by little, with some components lost in few minutes, while others are stable in 70% of cells for at least 1 hr. Although replisome dissociation is delayed in a recA mutant, it is not affected by RecF or RecO inactivation. RecFOR are required for full RecA filaments formation, and we propose that polymerase clearance can be catalyzed by short, RecFOR-independent RecA filaments. Our results identify a function for the universally conserved, central recombination protein RecA. PMID:23260658

  4. EM structure of a helicase-loader complex depicting a 6:2 binding sub-stoichiometry from Geobacillus kaustophilus HTA426.

    Science.gov (United States)

    Lin, Yen-Chen; Naveen, Vankadari; Hsiao, Chwan-Deng

    2016-04-22

    During DNA replication, bacterial helicase is recruited as a complex in association with loader proteins to unwind the parental duplex. Previous structural studies have reported saturated 6:6 helicase-loader complexes with different conformations. However, structural information on the sub-stoichiometric conformations of these previously-documented helicase-loader complexes remains elusive. Here, with the aid of single particle electron-microscopy (EM) image reconstruction, we present the Geobacillus kaustophilus HTA426 helicase-loader (DnaC-DnaI) complex with a 6:2 binding stoichiometry in the presence of ATPγS. In the 19 Å resolution EM map, the undistorted and unopened helicase ring holds a robust loader density above the C-terminal RecA-like domain. Meanwhile, the path of the central DNA binding channel appears to be obstructed by the reconstructed loader density, implying its potential role as a checkpoint conformation to prevent the loading of immature complex onto DNA. Our data also reveals that the bound nucleotides and the consequently induced conformational changes in the helicase hexamer are essential for active association with loader proteins. These observations provide fundamental insights into the formation of the helicase-loader complex in bacteria that regulates the DNA replication process.

  5. THE MOTOR

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    MOTOR is the first assignment that students at Unit 1a of the School of Architecture are introduced to. The purpose of the assignment is to shake up the students and their preconceptions of what architec- ture is. This is done by introducing them to a working method that al- lows them to develop...... architecture that resides beyond their own imag- inative capabilities. In other words the core aim of the assignment is to equip students with an understand- ing that architecture can be devel- oped through a predetermined ge- neric process and that through this process opportunities exist to devel- op...... something original and genuine that decisively challenges the limits of the field of architecture. This un- derstanding is important if students are to avoid mimicking an existing world of imagery in architecture or fragments of it. The point of departure for the MO- TOR assignment is that a car engine...

  6. Motor Neuron Diseases

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS Motor Neuron Diseases Fact Sheet See a list of all ... can I get more information? What are motor neuron diseases? The motor neuron diseases (MNDs) are a ...

  7. The T4 Phage SF1B Helicase Dda Is Structurally Optimized to Perform DNA Strand Separation

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiaoping; Byrd, Alicia K.; Yun, Mi-Kyung; Pemble IV, Charles W.; Harrison, David; Yeruva, Laxmi; Dahl, Christopher; Kreuzer, Kenneth N.; Raney, Kevin D.; White, Stephen W. (Duke); (SJCH); (Arkansas)

    2012-10-16

    Helicases move on DNA via an ATP binding and hydrolysis mechanism coordinated by well-characterized helicase motifs. However, the translocation along single-stranded DNA (ssDNA) and the strand separation of double-stranded (dsDNA) may be loosely or tightly coupled. Dda is a phage T4 SF1B helicase with sequence homology to the Pif1 family of helicases that tightly couples translocation to strand separation. The crystal structure of the Dda-ssDNA binary complex reveals a domain referred to as the pin that was previously thought to remain static during strand separation. The pin contains a conserved phenylalanine that mediates a transient base-stacking interaction that is absolutely required for separation of dsDNA. The pin is secured at its tip by protein-protein interactions through an extended SH3 domain thereby creating a rigid strut. The conserved interface between the pin and the SH3 domain provides the mechanism for tight coupling of translocation to strand separation.

  8. Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding

    DEFF Research Database (Denmark)

    Rossi, Marie L; Ghosh, Avik K; Kulikowicz, Tomasz;

    2010-01-01

    provide the first evidence that human RecQ4's unwinding is independent of strand annealing, and that it does not require the presence of excess ssDNA. Moreover, we demonstrate that a point mutation of the conserved lysine in the Walker A motif abolished helicase activity, implying that not the N...

  9. The interdomain linker of AAV-2 Rep68 is an integral part of its oligomerization domain: role of a conserved SF3 helicase residue in oligomerization.

    Directory of Open Access Journals (Sweden)

    Francisco Zarate-Perez

    Full Text Available The four Rep proteins of adeno-associated virus (AAV orchestrate all aspects of its viral life cycle, including transcription regulation, DNA replication, virus assembly, and site-specific integration of the viral genome into the human chromosome 19. All Rep proteins share a central SF3 superfamily helicase domain. In other SF3 members this domain is sufficient to induce oligomerization. However, the helicase domain in AAV Rep proteins (i.e. Rep40/Rep52 as shown by its monomeric characteristic, is not able to mediate stable oligomerization. This observation led us to hypothesize the existence of an as yet undefined structural determinant that regulates Rep oligomerization. In this document, we described a detailed structural comparison between the helicase domains of AAV-2 Rep proteins and those of the other SF3 members. This analysis shows a major structural difference residing in the small oligomerization sub-domain (OD of Rep helicase domain. In addition, secondary structure prediction of the linker connecting the helicase domain to the origin-binding domain (OBD indicates the potential to form α-helices. We demonstrate that mutant Rep40 constructs containing different lengths of the linker are able to form dimers, and in the presence of ATP/ADP, larger oligomers. We further identified an aromatic linker residue (Y224 that is critical for oligomerization, establishing it as a conserved signature motif in SF3 helicases. Mutation of this residue critically affects oligomerization as well as completely abolishes the ability to produce infectious virus. Taken together, our data support a model where the linker residues preceding the helicase domain fold into an α-helix that becomes an integral part of the helicase domain and is critical for the oligomerization and function of Rep68/78 proteins through cooperative interaction with the OBD and helicase domains.

  10. RecF recombination pathway in Escherichia coli cells lacking RecQ, UvrD and HelD helicases.

    Science.gov (United States)

    Buljubašić, Maja; Repar, Jelena; Zahradka, Ksenija; Dermić, Damir; Zahradka, Davor

    2012-04-01

    In recBCD sbcB sbcC(D) mutants of Escherichia coli homologous recombination proceeds via RecF pathway, which is thought to require RecQ, UvrD and HelD helicases at its initial stage. It was previously suggested that depletion of all three helicases totally abolishes the RecF pathway. The present study (re)examines the roles of these helicases in transductional recombination, and in recombinational repair of UV-induced DNA damage in the RecF pathway. The study has employed the ΔrecBCD ΔsbcB sbcC201 and ΔrecBCD sbcB15 sbcC201 strains, carrying combinations of mutations in recQ, uvrD, and helD genes. We show that in ΔrecBCD ΔsbcB sbcC201 strains, recombination requires exclusively the RecQ helicase. In ΔrecBCD sbcB15 sbcC201 strains, RecQ may be partially substituted by UvrD helicase. The HelD helicase is dispensable for recombination in both backgrounds. Our results also suggest that significant portion of recombination events in the RecF pathway is independent of RecQ, UvrD and HelD. These events are initiated either by RecJ nuclease alone or by RecJ nuclease associated with an unknown helicase. Inactivation of exonuclease VII by a xseA mutation further decreases the requirement for helicase activity in the RecF pathway. We suggest that elimination of nucleases acting on 3' single-strand DNA ends reduces the necessity for helicases in initiation of recombination. PMID:22342069

  11. A Region Near the C-Terminal End of Escherichia coli DNA Helicase II Is Required for Single-Stranded DNA Binding

    OpenAIRE

    MECHANIC, LEAH E.; Latta, Marcy E.; Matson, Steven W.

    1999-01-01

    The role of the C terminus of Escherichia coli DNA helicase II (UvrD), a region outside the conserved helicase motifs, was investigated by using three mutants: UvrDΔ107C (deletion of the last 107 C-terminal amino acids), UvrDΔ102C, and UvrDΔ40C. This region, which lacks sequence similarity with other helicases, may function to tailor UvrD for its specific in vivo roles. Genetic complementation assays demonstrated that mutant proteins UvrDΔ107C and UvrDΔ102C failed to substitute for the wild-t...

  12. Plasmodium falciparum UvrD Helicase Translocates in 3′ to 5′ Direction, Colocalizes with MLH and Modulates Its Activity through Physical Interaction

    OpenAIRE

    Moaz Ahmad; Abulaish Ansari; Mohammed Tarique; Akash Tripathi Satsangi; Renu Tuteja

    2012-01-01

    Malaria is a global disease and a major health problem. The control of malaria is a daunting task due to the increasing drug resistance. Therefore, there is an urgent need to identify and characterize novel parasite specific drug targets. In the present study we report the biochemical characterization of parasite specific UvrD helicase from Plasmodium falciparum. The N-terminal fragment (PfUDN) containing UvrD helicase domain, which consists of helicase motifs Q, Ia-Id, II, III and most of mo...

  13. A Comparative Study of G-Quadruplex Unfolding and DNA Reeling Activities of Human RECQ5 Helicase.

    Science.gov (United States)

    Budhathoki, Jagat B; Maleki, Parastoo; Roy, William A; Janscak, Pavel; Yodh, Jaya G; Balci, Hamza

    2016-06-21

    RECQ5 is one of five members of the RecQ family of helicases in humans, which include RECQ1, Bloom (BLM), Werner (WRN), RECQ4, and RECQ5. Both WRN and BLM have been shown to resolve G-quadruplex (GQ) structures. Deficiencies in unfolding GQ are known to result in DNA breaks and genomic instability, which are prominent in Werner and Bloom syndromes. RECQ5 is significant in suppressing sister chromatid exchanges during homologous recombination but its GQ unfolding activity are not known. We performed single-molecule studies under different salt (50-150 mM KCl or NaCl) and ATP concentrations on different GQ constructs including human telomeric GQ (with different overhangs and polarities) and GQ formed by thrombin-binding aptamer to investigate this activity. These studies demonstrated a RECQ5-mediated GQ unfolding activity that was an order of magnitude weaker than BLM and WRN. On the other hand, BLM and RECQ5 demonstrated similar single-stranded DNA (ssDNA) reeling activities that were not coupled to GQ unfolding. These results demonstrate overlap in function between these RecQ helicases; however, the relatively weak GQ destabilization activity of RECQ5 compared to BLM and WRN suggests that RECQ5 is not primarily associated with GQ destabilization, but could substitute for the more efficient helicases under conditions where their activity is compromised. In addition, these results implicate a more general role for helicase-promoted ssDNA reeling activity such as removal of proteins at the replication fork, whereas the association of ssDNA reeling with GQ destabilization is more helicase-specific. PMID:27332117

  14. RECQL5 has unique strand annealing properties relative to the other human RecQ helicase proteins.

    Science.gov (United States)

    Khadka, Prabhat; Croteau, Deborah L; Bohr, Vilhelm A

    2016-01-01

    The RecQ helicases play important roles in genome maintenance and DNA metabolism (replication, recombination, repair, and transcription). Five different homologs are present in humans, three of which are implicated in accelerated aging genetic disorders: Rothmund Thomson (RECQL4), Werner (WRN), and Bloom (BLM) syndromes. While the DNA helicase activities of the 5 human RecQ helicases have been extensively characterized, much less is known about their DNA double strand annealing activities. Strand annealing is an important integral enzymatic activity in DNA metabolism, including DNA repair. Here, we have characterized the strand annealing activities of all five human RecQ helicase proteins and compared them. Interestingly, the relative strand annealing activities of the five RecQ proteins are not directly (inversely) related to their helicase activities. RECQL5 possesses relatively strong annealing activity on long or small duplexed substrates compared to the other RecQs. Additionally, the strand annealing activity of RECQL5 is not inhibited by the presence of ATP, unlike the other RecQs. We also show that RECQL5 efficiently catalyzes annealing of RNA to DNA in vitro in the presence or absence of ATP, revealing a possible new function for RECQL5. Additionally, we investigate how different known RecQ interacting proteins, RPA, Ku, FEN1 and RAD51, regulate their strand annealing activity. Collectively, we find that the human RecQ proteins possess differential DNA double strand annealing activities and we speculate on their individual roles in DNA repair. This insight is important in view of the many cellular DNA metabolic actions of the RecQ proteins and elucidates their unique functions in the cell.

  15. The DEAD/DEAH box helicase, DDX11, is essential for the survival of advanced melanomas

    Directory of Open Access Journals (Sweden)

    Bhattacharya Chitralekha

    2012-11-01

    Full Text Available Abstract Background Despite continuous efforts to identify genes that are pivotal regulators of advanced melanoma and closely related to it, to determine which of these genes have to be blocked in their function to keep this highly aggressive disease in check, it is far from clear which molecular pathway(s and specific genes therein, is the Achilles’ heel of primary and metastatic melanoma. In this report, we present data, which document that the DEAD-box helicase DDX11, which is required for sister chromatid cohesion, is a crucial gatekeeper for melanoma cell survival. Methods Performing immunohistochemistry and immunoblot analysis, we determined expression of DDX11 in melanoma tissues and cell lines. Following transfection of melanoma cells with a DDX11-specific siRNA, we conducted a qPCR analysis to determine downregulation of DDX11 in the transfected melanoma cells. In subsequent studies, which focused upon an analysis of fluorescently labeled as well as Giesma-stained chromosome spreads, a proliferation analysis and apoptosis assays, we determined the impact of suppressing DDX11 expression on melanoma cells representing advanced melanoma. Result The findings of the study presented herein document that DDX11 is upregulated with progression from noninvasive to invasive melanoma, and that it is expressed at high levels in advanced melanoma. Furthermore, and equally important, we demonstrate that blocking the expression of DDX11 leads not only to inhibition of melanoma cell proliferation and severe defects in chromosome segregation, but also drives melanoma cells rapidly into massive apoptosis. Conclusion To date, little is known as to whether helicases play a role in melanoma development and specifically, in the progression from early to advanced melanoma. In this report, we show that the helicase DDX11 is expressed at high levels in primary and metastatic melanoma, and that interfering with its expression leads to severe chromosome

  16. Murine antigen-induced arthritis.

    NARCIS (Netherlands)

    Berg, W.B. van den; Joosten, L.A.B.; Lent, P.L.E.M. van

    2007-01-01

    Antigen induced arthritis is a unilateral T-cell driven model caused by direct injection of an antigen into the knee joint of a FCA preimmunized animal. The chronicity is determined by antigen retention in avascular structures of the joint through charge mediated binding or antibody mediated trappin

  17. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H. [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Jiao, Jing [Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); You, Jianxin, E-mail: jianyou@mail.med.upenn.edu [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2014-07-08

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells.

  18. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  19. Acquisition of full-length viral helicase domains by insect retrotransposon-encoded polypeptides

    Directory of Open Access Journals (Sweden)

    Ekaterina eLazareva

    2015-12-01

    Full Text Available Recent metagenomic studies in insects identified many sequences unexpectedly closely related to plant virus genes. Here we describe a new example of this kind, insect R1 LINEs with an additional C-terminal domain in their open reading frame 2. This domain is similar to NTPase/helicase (SF1H domains, which are found in replicative proteins encoded by plant viruses of the genus Tobamovirus. We hypothesize that the SF1H domain could be acquired by LINEs, directly or indirectly, upon insect feeding on virus-infected plants. Possible functions of this domain in LINE transposition and involvement in LINEs counteraction the silencing-based cell defense against retrotransposons are discussed.

  20. Three Conformational Snapshots of the Hepatitis Virus NS3 Helicase Reveal a Ratchet Translocation Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gu, M.; Rice, C

    2010-01-01

    A virally encoded superfamily-2 (SF2) helicase (NS3h) is essential for the replication of hepatitis C virus, a leading cause of liver disease worldwide. Efforts to elucidate the function of NS3h and to develop inhibitors against it, however, have been hampered by limited understanding of its molecular mechanism. Here we show x-ray crystal structures for a set of NS3h complexes, including ground-state and transition-state ternary complexes captured with ATP mimics (ADP {center_dot} BeF{sub 3} and ADP {center_dot} AlF{sub 4}{sup -}). These structures provide, for the first time, three conformational snapshots demonstrating the molecular basis of action for a SF2 helicase. Upon nucleotide binding, overall domain rotation along with structural transitions in motif V and the bound DNA leads to the release of one base from the substrate base-stacking row and the loss of several interactions between NS3h and the 3{prime} DNA segment. As nucleotide hydrolysis proceeds into the transition state, stretching of a 'spring' helix and another overall conformational change couples rearrangement of the (d)NTPase active site to additional hydrogen-bonding between NS3h and DNA. Together with biochemistry, these results demonstrate a 'ratchet' mechanism involved in the unidirectional translocation and define the step size of NS3h as one base per nucleotide hydrolysis cycle. These findings suggest feasible strategies for developing specific inhibitors to block the action of this attractive, yet largely unexplored drug target.

  1. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity.

    Science.gov (United States)

    Ledoux, Sarah; Guthrie, Christine

    2016-06-01

    Brr2 is an RNA-dependent ATPase required to unwind the U4/U6 snRNA duplex during spliceosome assembly. Mutations within the ratchet helix of the Brr2 RNA binding channel result in a form of degenerative human blindness known as retinitis pigmentosa (RP). The biochemical consequences of these mutations on Brr2's RNA binding, helicase, and ATPase activity have not yet been characterized. Therefore, we identified the largest construct of Brr2 that is soluble in vitro, which truncates the first 247 amino acids of the N terminus (Δ247-Brr2), to characterize the effects of the RP mutations on Brr2 activity. The Δ247-Brr2 RP mutants exhibit a gradient of severity of weakened RNA binding, reduced helicase activity, and reduced ATPase activity compared with wild type Δ247-Brr2. The globular C-terminal Jab1/Mpn1-like domain of Prp8 increases the ability of Δ247-Brr2 to bind the U4/U6 snRNA duplex at high pH and increases Δ247-Brr2's RNA-dependent ATPase activity and the extent of RNA unwinding. However, this domain of Prp8 does not differentially affect the Δ247-Brr2 RP mutants compared with the wild type Δ247-Brr2. When stimulated by Prp8, wild type Δ247-Brr2 is able to unwind long stable duplexes in vitro, and even the RP mutants capable of binding RNA with tight affinity are incapable of fully unwinding short duplex RNAs. Our data suggest that the RP mutations within the ratchet helix impair Brr2 translocation through RNA helices. PMID:27072132

  2. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase.

    Science.gov (United States)

    Fuss, Jill O; Tainer, John A

    2011-07-15

    Helicases must unwind DNA at the right place and time to maintain genomic integrity or gene expression. Biologically critical XPB and XPD helicases are key members of the human TFIIH complex; they anchor CAK kinase (cyclinH, MAT1, CDK7) to TFIIH and open DNA for transcription and for repair of duplex distorting damage by nucleotide excision repair (NER). NER is initiated by arrested RNA polymerase or damage recognition by XPC-RAD23B with or without DDB1/DDB2. XP helicases, named for their role in the extreme sun-mediated skin cancer predisposition xeroderma pigmentosum (XP), are then recruited to asymmetrically unwind dsDNA flanking the damage. XPB and XPD genetic defects can also cause premature aging with profound neurological defects without increased cancers: Cockayne syndrome (CS) and trichothiodystrophy (TTD). XP helicase patient phenotypes cannot be predicted from the mutation position along the linear gene sequence and adjacent mutations can cause different diseases. Here we consider the structural biology of DNA damage recognition by XPC-RAD23B, DDB1/DDB2, RNAPII, and ATL, and of helix unwinding by the XPB and XPD helicases plus the bacterial repair helicases UvrB and UvrD in complex with DNA. We then propose unified models for TFIIH assembly and roles in NER. Collective crystal structures with NMR and electron microscopy results reveal functional motifs, domains, and architectural elements that contribute to biological activities: damaged DNA binding, translocation, unwinding, and ATP driven changes plus TFIIH assembly and signaling. Coupled with mapping of patient mutations, these combined structural analyses provide a framework for integrating and unifying the rich biochemical and cellular information that has accumulated over forty years of study. This integration resolves puzzles regarding XP helicase functions and suggests that XP helicase positions and activities within TFIIH detect and verify damage, select the damaged strand for incision, and

  3. Plasmodium falciparum UvrD helicase translocates in 3' to 5' direction, colocalizes with MLH and modulates its activity through physical interaction.

    Science.gov (United States)

    Ahmad, Moaz; Ansari, Abulaish; Tarique, Mohammed; Satsangi, Akash Tripathi; Tuteja, Renu

    2012-01-01

    Malaria is a global disease and a major health problem. The control of malaria is a daunting task due to the increasing drug resistance. Therefore, there is an urgent need to identify and characterize novel parasite specific drug targets. In the present study we report the biochemical characterization of parasite specific UvrD helicase from Plasmodium falciparum. The N-terminal fragment (PfUDN) containing UvrD helicase domain, which consists of helicase motifs Q, Ia-Id, II, III and most of motif IV, and the C-terminal fragment (PfUDC1) containing UvrD helicase C terminal domain, consisting of remaining part of motif IV and motifs IVa-IVc and 161 amino acids of intervening sequence between motif IV and V, possess ssDNA-dependent ATPase and DNA helicase activities in vitro. Using immunodepletion assays we show that the ATPase and helicase activities are attributable to PfUDN and PfUDC1 proteins. The helicase activity can utilize the hydrolysis of all the nucleotide and deoxynucleotide triphosphates and the direction of unwinding is 3' to 5'. The endogenous P. falciparum UvrD contains the characteristic DNA helicase activity. PfUDN interacts with PfMLH (P. falciparum MutL homologue) and modulates the endonuclease activity of PfMLH and PfMLH positively regulates the unwinding activity of PfUDN. We show that PfUvrD is expressed in the nucleus distinctly in the schizont stages of the intraerythrocytic development of the parasite and it colocalizes with PfMLH. These studies will make an important contribution in understanding the nucleic acid transaction in the malaria parasite. PMID:23185322

  4. Plasmodium falciparum UvrD helicase translocates in 3' to 5' direction, colocalizes with MLH and modulates its activity through physical interaction.

    Directory of Open Access Journals (Sweden)

    Moaz Ahmad

    Full Text Available Malaria is a global disease and a major health problem. The control of malaria is a daunting task due to the increasing drug resistance. Therefore, there is an urgent need to identify and characterize novel parasite specific drug targets. In the present study we report the biochemical characterization of parasite specific UvrD helicase from Plasmodium falciparum. The N-terminal fragment (PfUDN containing UvrD helicase domain, which consists of helicase motifs Q, Ia-Id, II, III and most of motif IV, and the C-terminal fragment (PfUDC1 containing UvrD helicase C terminal domain, consisting of remaining part of motif IV and motifs IVa-IVc and 161 amino acids of intervening sequence between motif IV and V, possess ssDNA-dependent ATPase and DNA helicase activities in vitro. Using immunodepletion assays we show that the ATPase and helicase activities are attributable to PfUDN and PfUDC1 proteins. The helicase activity can utilize the hydrolysis of all the nucleotide and deoxynucleotide triphosphates and the direction of unwinding is 3' to 5'. The endogenous P. falciparum UvrD contains the characteristic DNA helicase activity. PfUDN interacts with PfMLH (P. falciparum MutL homologue and modulates the endonuclease activity of PfMLH and PfMLH positively regulates the unwinding activity of PfUDN. We show that PfUvrD is expressed in the nucleus distinctly in the schizont stages of the intraerythrocytic development of the parasite and it colocalizes with PfMLH. These studies will make an important contribution in understanding the nucleic acid transaction in the malaria parasite.

  5. Motor Priming in Neurorehabilitation

    OpenAIRE

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2015-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few ...

  6. Identification and Biochemical Characterization of Halisulfate 3 and Suvanine as Novel Inhibitors of Hepatitis C Virus NS3 Helicase from a Marine Sponge

    Directory of Open Access Journals (Sweden)

    Atsushi Furuta

    2014-01-01

    Full Text Available Hepatitis C virus (HCV is an important etiological agent that is responsible for the development of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV nonstructural protein 3 (NS3 helicase is a possible target for novel drug development due to its essential role in viral replication. In this study, we identified halisulfate 3 (hal3 and suvanine as novel NS3 helicase inhibitors, with IC50 values of 4 and 3 µM, respectively, from a marine sponge by screening extracts of marine organisms. Both hal3 and suvanine inhibited the ATPase, RNA binding, and serine protease activities of NS3 helicase with IC50 values of 8, 8, and 14 µM, and 7, 3, and 34 µM, respectively. However, the dengue virus (DENV NS3 helicase, which shares a catalytic core (consisting mainly of ATPase and RNA binding sites with HCV NS3 helicase, was not inhibited by hal3 and suvanine, even at concentrations of 100 µM. Therefore, we conclude that hal3 and suvanine specifically inhibit HCV NS3 helicase via an interaction with an allosteric site in NS3 rather than binding to the catalytic core. This led to the inhibition of all NS3 activities, presumably by inducing conformational changes.

  7. Carcino-Embryonic Antigen

    International Nuclear Information System (INIS)

    Tumour marker analysis has increased our understanding of the presence of tumours in the body. Carcino-embryonic antigen, CEA, is one of the best studied tumour markers and has proved an ideal diagnostic adjuvant. It has helped in quantifying the amount of disease present in a patient and thence to make accurate prognosis on the various diagnosed ailments. At UCH, it is observed that there is an increase in cancer related ailments and therefore the need for early diagnosis is more compelling in our environment to mitigate future cost of managing advanced manifestation

  8. Electric motor handbook

    CERN Document Server

    Chalmers, B J

    2013-01-01

    Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit

  9. Directed flux motor

    Science.gov (United States)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  10. Substrate specific stimulation of NEIL1 by WRN but not the other human RecQ helicases

    OpenAIRE

    Popuri, Venkateswarlu; Croteau, Deborah L.; Bohr, Vilhelm A.

    2010-01-01

    NEIL1, the mammalian homolog of Escherichia coli endonuclease VIII, is a DNA glycosylase that repairs ring-fragmented purines, saturated pyrimidines and several oxidative lesions like 5-hydroxyuracil, 5-hydroxycytosine etc. Previous studies from our laboratory have shown that Werner Syndrome protein (WRN), one of the five human RecQ helicases, stimulates NEIL1 DNA glycosylase activity on oxidative DNA lesions. The goal of this study was to extend this observation and analyze the interaction b...

  11. Essential and distinct roles of the F-box and helicase domains of Fbh1 in DNA damage repair

    Directory of Open Access Journals (Sweden)

    Shinagawa Hideo

    2008-03-01

    Full Text Available Abstract Background DNA double-strand breaks (DSBs are induced by exogenous insults such as ionizing radiation and chemical exposure, and they can also arise as a consequence of stalled or collapsed DNA replication forks. Failure to repair DSBs can lead to genomic instability or cell death and cancer in higher eukaryotes. The Schizosaccharomyces pombe fbh1 gene encodes an F-box DNA helicase previously described to play a role in the Rhp51 (an orthologue of S. cerevisiae RAD51-dependent recombinational repair of DSBs. Fbh1 fused to GFP localizes to discrete nuclear foci following DNA damage. Results To determine the functional roles of the highly conserved F-box and helicase domains, we have characterized fbh1 mutants carrying specific mutations in these domains. We show that the F-box mutation fbh1-fb disturbs the nuclear localization of Fbh1, conferring an fbh1 null-like phenotype. Moreover, nuclear foci do not form in fbh1-fb cells with DNA damage even if Fbh1-fb is targeted to the nucleus by fusion to a nuclear localization signal sequence. In contrast, the helicase mutation fbh1-hl causes the accumulation of Fbh1 foci irrespective of the presence of DNA damage and confers damage sensitivity greater than that conferred by the null allele. Additional mutation of the F-box alleviates the hypermorphic phenotype of the fbh1-hl mutant. Conclusion These results suggest that the F-box and DNA helicase domains play indispensable but distinct roles in Fbh1 function. Assembly of the SCFFbh1 complex is required for both the nuclear localization and DNA damage-induced focus formation of Fbh1 and is therefore prerequisite for the Fbh1 recombination function.

  12. Requirement for RNA Helicase CsdA for Growth of Yersinia pseudotuberculosis IP32953 at Low Temperatures

    OpenAIRE

    Palonen, Eveliina; Lindström, Miia; Somervuo, Panu; Johansson, Per; Björkroth, Johanna; Korkeala, Hannu

    2012-01-01

    The expression of csdA, encoding an RNA helicase, was induced at 3°C in Yersinia pseudotuberculosis. The role of CsdA in Y. pseudotuberculosis under cold conditions was confirmed by impaired growth of insertional csdA mutants at 3°C. The results suggest that CsdA is crucial for Y. pseudotuberculosis survival in the chilled food chain.

  13. Conserved motifs II to VI of DNA helicase II from Escherichia coli are all required for biological activity.

    OpenAIRE

    Zhang, G.; Deng, E; Baugh, L R; Hamilton, C. M.; Maples, V F; Kushner, S R

    1997-01-01

    There are seven conserved motifs (IA, IB, and II to VI) in DNA helicase II of Escherichia coli that have high homology among a large family of proteins involved in DNA metabolism. To address the functional importance of motifs II to VI, we employed site-directed mutagenesis to replace the charged amino acid residues in each motif with alanines. Cells carrying these mutant alleles exhibited higher UV and methyl methanesulfonate sensitivity, increased rates of spontaneous mutagenesis, and eleva...

  14. Cancer testis antigen and immunotherapy

    Directory of Open Access Journals (Sweden)

    Krishnadas DK

    2013-04-01

    Full Text Available Deepa Kolaseri Krishnadas, Fanqi Bai, Kenneth G Lucas Department of Pediatrics, Division of Hematology/Oncology, University of Louisville, KY, USA Abstract: The identification of cancer testis (CT antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1, melanoma antigen family A, 3 (MAGE-A3, and New York esophageal squamous cell carcinoma-1 (NY-ESO-1 in various malignancies, and presents our current understanding of CT antigen based immunotherapy. Keywords: cancer testis antigens, immunotherapy, vaccine

  15. Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation

    Science.gov (United States)

    Weston, Andrew; Sommerville, John

    2006-01-01

    The DEAD-box RNA helicase Xp54 is an integral component of the messenger ribonucleoprotein (mRNP) particles of Xenopus oocytes. In oocytes, several abundant proteins bind pre-mRNA transcripts to modulate nuclear export, RNA stability and translational fate. Of these, Xp54, the mRNA-masking protein FRGY2 and its activating protein kinase CK2α, bind to nascent transcripts on chromosome loops, whereas an Xp54-associated factor, RapA/B, binds to the mRNP complex in the cytoplasm. Over-expression, mutation and knockdown experiments indicate that Xp54 functions to change the conformation of mRNP complexes, displacing one subset of proteins to accommodate another. The sequence of Xp54 is highly conserved in a wide spectrum of organisms. Like Xp54, Drosophila Me31B and Caenorhabditis CGH-1 are required for proper meiotic development, apparently by regulating the translational activation of stored mRNPs and also for sorting certain mRNPs into germplasm-containing structures. Studies on yeast Dhh1 and mammalian rck/p54 have revealed a key role for these helicases in mRNA degradation and in earlier remodelling of mRNP for entry into translation, storage or decay pathways. The versatility of Xp54 and related helicases in modulating the metabolism of mRNAs at all stages of their lifetimes marks them out as key regulators of post-transcriptional gene expression. PMID:16769775

  16. Mechanism of Werner DNA helicase: POT1 and RPA stimulates WRN to unwind beyond gaps in the translocating strand.

    Science.gov (United States)

    Ahn, Byungchan; Lee, Jae Wan; Jung, Hana; Beck, Gad; Bohr, Vilhelm A

    2009-01-01

    WRN belongs to the RecQ family of DNA helicases and it plays a role in recombination, replication, telomere maintenance and long-patch base excision repair. Here, we demonstrate that WRN efficiently unwinds DNA substrates containing a 1-nucleotide gap in the translocating DNA strand, but when the gap size is increased to 3-nucleotides unwinding activity significantly declines. In contrast, E. coli UvrD (3'-->5' helicase), which recognizes nicks in DNA to initiate unwinding, does not unwind past a 1-nucleotide gap. This unique ability of WRN to bypass gaps supports its involvement in DNA replication and LP-BER where such gaps can be produced by glycosylases and the apurinic/apyrimidinic endonuclease 1 (APE1). Furthermore, we tested telomere repeat binding factor 2 (TRF2), both variants 1 and 2 of protector of telomeres 1 (POT1v1 and POT1v2) and RPA on telomeric DNA substrates containing much bigger gaps than 3-nucleotides in order to determine whether unwinding could be facilitated through WRN-protein interaction. Interestingly, POT1v1 and RPA are capable of stimulating WRN helicase on gapped DNA and 5'-overhang substrates, respectively. PMID:19262689

  17. Mechanism of Werner DNA helicase: POT1 and RPA stimulates WRN to unwind beyond gaps in the translocating strand.

    Directory of Open Access Journals (Sweden)

    Byungchan Ahn

    Full Text Available WRN belongs to the RecQ family of DNA helicases and it plays a role in recombination, replication, telomere maintenance and long-patch base excision repair. Here, we demonstrate that WRN efficiently unwinds DNA substrates containing a 1-nucleotide gap in the translocating DNA strand, but when the gap size is increased to 3-nucleotides unwinding activity significantly declines. In contrast, E. coli UvrD (3'-->5' helicase, which recognizes nicks in DNA to initiate unwinding, does not unwind past a 1-nucleotide gap. This unique ability of WRN to bypass gaps supports its involvement in DNA replication and LP-BER where such gaps can be produced by glycosylases and the apurinic/apyrimidinic endonuclease 1 (APE1. Furthermore, we tested telomere repeat binding factor 2 (TRF2, both variants 1 and 2 of protector of telomeres 1 (POT1v1 and POT1v2 and RPA on telomeric DNA substrates containing much bigger gaps than 3-nucleotides in order to determine whether unwinding could be facilitated through WRN-protein interaction. Interestingly, POT1v1 and RPA are capable of stimulating WRN helicase on gapped DNA and 5'-overhang substrates, respectively.

  18. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo.

    Science.gov (United States)

    Boubakri, Hasna; de Septenville, Anne Langlois; Viguera, Enrique; Michel, Bénédicte

    2010-01-01

    How living cells deal with head-on collisions of the replication and transcription complexes has been debated for a long time. Even in the widely studied model bacteria Escherichia coli, the enzymes that take care of such collisions are still unknown. We report here that in vivo, the DinG, Rep and UvrD helicases are essential for efficient replication across highly transcribed regions. We show that when rRNA operons (rrn) are inverted to face replication, the viability of the dinG mutant is affected and over-expression of RNase H rescues the growth defect, showing that DinG acts in vivo to remove R-loops. In addition, DinG, Rep and UvrD exert a common function, which requires the presence of two of these three helicases. After replication blockage by an inverted rrn, Rep in conjunction with DinG or UvrD removes RNA polymerase, a task that is fulfilled in its absence by the SOS-induced DinG and UvrD helicases. Finally, Rep and UvrD also act at inverted sequences other than rrn, and promote replication through highly transcribed regions in wild-type E. coli. PMID:19851282

  19. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase.

    Science.gov (United States)

    Gwynn, Emma J; Smith, Abigail J; Guy, Colin P; Savery, Nigel J; McGlynn, Peter; Dillingham, Mark S

    2013-01-01

    UvrD-like helicases play diverse roles in DNA replication, repair and recombination pathways. An emerging body of evidence suggests that their different cellular functions are directed by interactions with partner proteins that target unwinding activity to appropriate substrates. Recent studies in E. coli have shown that UvrD can act as an accessory replicative helicase that resolves conflicts between the replisome and transcription complexes, but the mechanism is not understood. Here we show that the UvrD homologue PcrA interacts physically with B. subtilis RNA polymerase, and that an equivalent interaction is conserved in E. coli where UvrD, but not the closely related helicase Rep, also interacts with RNA polymerase. The PcrA-RNAP interaction is direct and independent of nucleic acids or additional mediator proteins. A disordered but highly conserved C-terminal region of PcrA, which distinguishes PcrA/UvrD from otherwise related enzymes such as Rep, is both necessary and sufficient for interaction with RNA polymerase. PMID:24147116

  20. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase.

    Directory of Open Access Journals (Sweden)

    Emma J Gwynn

    Full Text Available UvrD-like helicases play diverse roles in DNA replication, repair and recombination pathways. An emerging body of evidence suggests that their different cellular functions are directed by interactions with partner proteins that target unwinding activity to appropriate substrates. Recent studies in E. coli have shown that UvrD can act as an accessory replicative helicase that resolves conflicts between the replisome and transcription complexes, but the mechanism is not understood. Here we show that the UvrD homologue PcrA interacts physically with B. subtilis RNA polymerase, and that an equivalent interaction is conserved in E. coli where UvrD, but not the closely related helicase Rep, also interacts with RNA polymerase. The PcrA-RNAP interaction is direct and independent of nucleic acids or additional mediator proteins. A disordered but highly conserved C-terminal region of PcrA, which distinguishes PcrA/UvrD from otherwise related enzymes such as Rep, is both necessary and sufficient for interaction with RNA polymerase.

  1. Host competence and helicase activity differences exhibited by West Nile viral variants expressing NS3-249 amino acid polymorphisms.

    Directory of Open Access Journals (Sweden)

    Stanley A Langevin

    Full Text Available A single helicase amino acid substitution, NS3-T249P, has been shown to increase viremia magnitude/mortality in American crows (AMCRs following West Nile virus (WNV infection. Lineage/intra-lineage geographic variants exhibit consistent amino acid polymorphisms at this locus; however, the majority of WNV isolates associated with recent outbreaks reported worldwide have a proline at the NS3-249 residue. In order to evaluate the impact of NS3-249 variants on avian and mammalian virulence, multiple amino acid substitutions were engineered into a WNV infectious cDNA (NY99; NS3-249P and the resulting viruses inoculated into AMCRs, house sparrows (HOSPs and mice. Differential viremia profiles were observed between mutant viruses in the two bird species; however, the NS3-249P virus produced the highest mean peak viral loads in both avian models. In contrast, this avian modulating virulence determinant had no effect on LD50 or the neurovirulence phenotype in the murine model. Recombinant helicase proteins demonstrated variable helicase and ATPase activities; however, differences did not correlate with avian or murine viremia phenotypes. These in vitro and in vivo data indicate that avian-specific phenotypes are modulated by critical viral-host protein interactions involving the NS3-249 residue that directly influence transmission efficiency and therefore the magnitude of WNV epizootics in nature.

  2. Binding Affinities among DNA Helicase-Primase, DNA Polymerase, and Replication Intermediates in the Replisome of Bacteriophage T7.

    Science.gov (United States)

    Zhang, Huidong; Tang, Yong; Lee, Seung-Joo; Wei, Zeliang; Cao, Jia; Richardson, Charles C

    2016-01-15

    The formation of a replication loop on the lagging strand facilitates coordinated synthesis of the leading- and lagging-DNA strands and provides a mechanism for recycling of the lagging-strand DNA polymerase. As an Okazaki fragment is completed, the loop is released, and a new loop is formed as the synthesis of a new Okazaki fragment is initiated. Loop release requires the dissociation of the complex formed by the interactions among helicase, DNA polymerase, and DNA. The completion of the Okazaki fragment may result in either a nick or a single-stranded DNA region. In the replication system of bacteriophage T7, the dissociation of the polymerase from either DNA region is faster than that observed for the dissociation of the helicase from DNA polymerase, implying that the replication loop is released more likely through the dissociation of the lagging-strand DNA from polymerase, retaining the polymerase at replication fork. Both dissociation of DNA polymerase from DNA and that of helicase from a DNA polymerase · DNA complex are much faster at a nick DNA region than the release from a ssDNA region. These results suggest that the replication loop is released as a result of the nick formed when the lagging-strand DNA polymerase encounters the previously synthesized Okazaki fragment, releasing lagging-strand DNA and retaining DNA polymerase at the replication fork for the synthesis of next Okazaki fragment.

  3. Handbook on linear motor application

    International Nuclear Information System (INIS)

    This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.

  4. Human leucocyte antigens in tympanosclerosis.

    Science.gov (United States)

    Dursun, G; Acar, A; Turgay, M; Calgüner, M

    1997-02-01

    This study was designed to evaluate the association between certain HLA antigens and tympanosclerosis. The serum concentrations of HLA antigens were measured by a microlymphocytotoxicity technique in patients with tympanosclerosis and compared with a healthy control group. The serum levels of HLA-B35 and -DR3 were significantly higher in the patients with tympanosclerosis. This result suggests that certain types of HLA antigens may play an important role as an indicator or mediator in the pathogenesis of tympanosclerosis. PMID:9088683

  5. Chronic motor tic disorder

    Science.gov (United States)

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  6. Fine motor control

    Science.gov (United States)

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  7. Edinburgh Motor Assessment (EMAS)

    OpenAIRE

    Bak, Thomas

    2013-01-01

    Edinburgh Motor Assessment (EMAS) is a brief motor screening test, specifically designed for assessment of patients with dementia, aphasia and other cognitive disorders. It focuses, therefore, on those motor symptoms, which are known to occur in association with these diseases, such as extrapyramidal, amyotrophic, and cerebellar features as well as complex cognitive‐motor phenomena such as apraxia. EMAS has been developed by a team of neurologists and psychiatrists at the ...

  8. CONSOLIDATION OF MOTOR MEMORY

    OpenAIRE

    Krakauer, John W.; Shadmehr, Reza

    2005-01-01

    A question of great recent interest is whether motor memory consolidates in a manner analogous to declarative memories, with the formation of a memory that progresses over time from a fragile state, susceptible to interference by a lesion or a conflicting motor task, to a stabilized state, resistant to such interference. Here, we first review studies that examine the anatomical basis for motor consolidation: evidence implicates cerebellar circuitry for two types of associative motor learning,...

  9. A conserved helicase processivity factor is needed for conjugation and replication of an integrative and conjugative element.

    Directory of Open Access Journals (Sweden)

    Jacob Thomas

    Full Text Available Integrative and conjugative elements (ICEs are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT by the ICE-encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP, encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability.

  10. A conserved helicase processivity factor is needed for conjugation and replication of an integrative and conjugative element.

    Science.gov (United States)

    Thomas, Jacob; Lee, Catherine A; Grossman, Alan D

    2013-01-01

    Integrative and conjugative elements (ICEs) are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT) by the ICE-encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP), encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability. PMID:23326247

  11. Motor Neurons that Multitask

    OpenAIRE

    Goulding, Martyn

    2012-01-01

    Animals use a form of sensory feedback termed proprioception to monitor their body position and modify the motor programs that control movement. In this issue of Neuron, Wen et al. (2012) provide evidence that a subset of motor neurons function as proprioceptors in C. elegans, where B-type motor neurons sense body curvature to control the bending movements that drive forward locomotion.

  12. Quantum motor and future

    CERN Document Server

    Fateev, Evgeny G

    2013-01-01

    In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

  13. Antigen antibody interactions

    CERN Document Server

    DeLisi, Charles

    1976-01-01

    1. 1 Organization of the Immune System One of the most important survival mechanisms of vertebrates is their ability to recognize and respond to the onslaught of pathogenic microbes to which they are conti- ously exposed. The collection of host cells and molecules involved in this recognition­ 12 response function constitutes its immune system. In man, it comprises about 10 cells 20 (lymphocytes) and 10 molecules (immunoglobulins). Its ontogenic development is c- strained by the requirement that it be capable of responding to an almost limitless variety of molecular configurations on foreign substances, while simultaneously remaining inert to those on self components. It has thus evolved to discriminate, with exquisite precision, between molecular patterns. The foreign substances which induce a response, called antigens, are typically large molecules such as proteins and polysaccharides. The portions of these with which immunoglobulins interact are called epitopes or determinants. A typical protein epitope m...

  14. The expanding functions of cellular helicases: the tombusvirus RNA replication enhancer co-opts the plant eIF4AIII-like AtRH2 and the DDX5-like AtRH5 DEAD-box RNA helicases to promote viral asymmetric RNA replication.

    Directory of Open Access Journals (Sweden)

    Nikolay Kovalev

    2014-04-01

    Full Text Available Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. Several of the co-opted host factors bind to the viral RNA, which plays multiple roles, including mRNA function, as an assembly platform for the viral replicase (VRC, template for RNA synthesis, and encapsidation during infection. It is likely that remodeling of the viral RNAs and RNA-protein complexes during the switch from one step to another requires RNA helicases. In this paper, we have discovered a second group of cellular RNA helicases, including the eIF4AIII-like yeast Fal1p and the DDX5-like Dbp3p and the orthologous plant AtRH2 and AtRH5 DEAD box helicases, which are co-opted by tombusviruses. Unlike the previously characterized DDX3-like AtRH20/Ded1p helicases that bind to the 3' terminal promoter region in the viral minus-strand (-RNA, the other class of eIF4AIII-like RNA helicases bind to a different cis-acting element, namely the 5' proximal RIII(- replication enhancer (REN element in the TBSV (-RNA. We show that the binding of AtRH2 and AtRH5 helicases to the TBSV (-RNA could unwind the dsRNA structure within the RIII(- REN. This unique characteristic allows the eIF4AIII-like helicases to perform novel pro-viral functions involving the RIII(- REN in stimulation of plus-strand (+RNA synthesis. We also show that AtRH2 and AtRH5 helicases are components of the tombusvirus VRCs based on co-purification experiments. We propose that eIF4AIII-like helicases destabilize dsRNA replication intermediate within the RIII(- REN that promotes bringing the 5' and 3' terminal (-RNA sequences in close vicinity via long-range RNA-RNA base pairing. This newly formed RNA structure promoted by eIF4AIII helicase together with AtRH20 helicase might facilitate the recycling of the viral replicases for multiple rounds of (+-strand synthesis, thus resulting in asymmetrical viral replication.

  15. Solid propellant motor

    Science.gov (United States)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  16. Motor/generator

    Science.gov (United States)

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  17. Induction motor control design

    CERN Document Server

    Marino, Riccardo; Verrelli, Cristiano M

    2010-01-01

    ""Nonlinear and Adaptive Control Design for Induction Motors"" is a unified exposition of the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible to readers who are not experts in electric motors at the same time as giving a more theoretical control viewpoint to those who are. In order to increase readability, the book concentrates on the induction motor, eschewing the much more complex and less-well-understood control of asynchronous motors. The

  18. Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation.

    Science.gov (United States)

    Deegan, Tom D; Yeeles, Joseph Tp; Diffley, John Fx

    2016-05-01

    The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45-MCM-GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK-dependent manner. Sld3 binds specifically to DDK-phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho-MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK-independent replication. Thus, Sld3 is an essential "reader" of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase. PMID:26912723

  19. Direct imaging of single UvrD helicase dynamics on long single-stranded DNA.

    Science.gov (United States)

    Lee, Kyung Suk; Balci, Hamza; Jia, Haifeng; Lohman, Timothy M; Ha, Taekjip

    2013-01-01

    Fluorescence imaging of single-protein dynamics on DNA has been largely limited to double-stranded DNA or short single-stranded DNA. We have developed a hybrid approach for observing single proteins moving on laterally stretched kilobase-sized ssDNA. Here we probed the single-stranded DNA translocase activity of Escherichia coli UvrD by single fluorophore tracking, while monitoring DNA unwinding activity with optical tweezers to capture the entire sequence of protein binding, single-stranded DNA translocation and multiple pathways of unwinding initiation. The results directly demonstrate that the UvrD monomer is a highly processive single-stranded DNA translocase that is stopped by a double-stranded DNA, whereas two monomers are required to unwind DNA to a detectable degree. The single-stranded DNA translocation rate does not depend on the force applied and displays a remarkable homogeneity, whereas the unwinding rate shows significant heterogeneity. These findings demonstrate that UvrD assembly state regulates its DNA helicase activity with functional implications for its stepping mechanism, and also reveal a previously unappreciated complexity in the active species during unwinding. PMID:23695672

  20. In silico analysis of Plasmodium species specific UvrD helicase.

    Science.gov (United States)

    Tuteja, Renu

    2013-03-01

    Malaria is still a devastating disease caused by the mosquito-transmitted parasite Plasmodium, particularly Plasmodium falciparum. During the last few years the situation has worsened in many ways, mainly due to malarial parasites becoming increasingly resistant to several anti-malarial drugs. Thus there is an urgent need to find alternate ways to control malaria and therefore it is necessary to identify new drug targets and new classes of anti-malarial drugs. A malaria vaccine would be the ultimate weapon to fight this deadly disease but unfortunately despite encouraging advances a vaccine is not likely soon. DNA helicases from the PcrA/UvrD/Rep (PUR) subfamily are important for the survival of the various organisms, mainly pathogenic bacteria. Members from this subfamily can be targeted and inhibited by a variety of synthetic compounds. Using bioinformatics analysis we have shown that UvrD from this subfamily is the only member present in the P. falciparum genome, while PcrA and Rep are absent in the genome. UvrD from the parasite shows no homology to any protein or enzyme from human and thus can be considered as a strong potential drug target. In the present study we report an in silico analysis of this important enzyme from a variety of Plasmodium species. The results suggest that among all the species of Plasmodium, P. falciparum contains the largest UvrD and this enzyme is variable at the sequence and structural level. PMID:23750298

  1. AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms.

    Directory of Open Access Journals (Sweden)

    Chloe Girard

    2015-07-01

    Full Text Available Meiotic crossovers (COs generate genetic diversity and are critical for the correct completion of meiosis in most species. Their occurrence is tightly constrained but the mechanisms underlying this limitation remain poorly understood. Here we identified the conserved AAA-ATPase FIDGETIN-LIKE-1 (FIGL1 as a negative regulator of meiotic CO formation. We show that Arabidopsis FIGL1 limits CO formation genome-wide, that FIGL1 controls dynamics of the two conserved recombinases DMC1 and RAD51 and that FIGL1 hinders the interaction between homologous chromosomes, suggesting that FIGL1 counteracts DMC1/RAD51-mediated inter-homologue strand invasion to limit CO formation. Further, depleting both FIGL1 and the previously identified anti-CO helicase FANCM synergistically increases crossover frequency. Additionally, we showed that the effect of mutating FANCM on recombination is much lower in F1 hybrids contrasting from the phenotype of inbred lines, while figl1 mutation equally increases crossovers in both contexts. This shows that the modes of action of FIGL1 and FANCM are differently affected by genomic contexts. We propose that FIGL1 and FANCM represent two successive barriers to CO formation, one limiting strand invasion, the other disassembling D-loops to promote SDSA, which when both lifted, leads to a large increase of crossovers, without impairing meiotic progression.

  2. New roles of the human Suv3 helicase in genome maintenance

    DEFF Research Database (Denmark)

    Venø, Susanne Trillingsgaard

    During her PhD studies, Susanne Trillingsgaard Venø carried out research into the role of the human Suv3 protein in stabilising the human genome – DNA. Suv3 is a helicase that separates the two strands of the DNA’s double helix. Throughout our lives, the DNA in our cells is constantly exposed...... means that our cells must have some good tools to protect and repair our DNA. Studies on mice have previously shown that a reduced level of the Suv3 protein causes the DNA of the mice to be less stable and more susceptible to damage. In addition, the mice age and die earlier than normal. In connection...... with her PhD project, Susanne Trillingsgaard Venø studied whether the Suv3 protein could be one of the cellular tools that contribute to maintaining DNA. By studying which other proteins the Suv3 works with in the cell, she produced completely new results that show how Suv3 can play a direct role in DNA...

  3. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase.

    Science.gov (United States)

    Chanet, R; Heude, M; Adjiri, A; Maloisel, L; Fabre, F

    1996-09-01

    Suppressors of the methyl methanesulfonate sensitivity of Saccharomyces cerevisiae diploids lacking the Srs2 helicase turned out to contain semidominant mutations in Rad5l, a homolog of the bacterial RecA protein. The nature of these mutations was determined by direct sequencing. The 26 mutations characterized were single base substitutions leading to amino acid replacements at 18 different sites. The great majority of these sites (75%) are conserved in the family of RecA-like proteins, and 10 of them affect sites corresponding to amino acids in RecA that are probably directly involved in ATP reactions, binding, and/or hydrolysis. Six mutations are in domains thought to be involved in interaction between monomers; they may also affect ATP reactions. By themselves, all the alleles confer a rad5l null phenotype. When heterozygous, however, they are, to varying degrees, negative semidominant for radiation sensitivity; presumably the mutant proteins are coassembled with wild-type Rad51 and poison the resulting nucleofilaments or recombination complexes. This negative effect is partially suppressed by an SRS2 deletion, which supports the hypothesis that Srs2 reverses recombination structures that contain either mutated proteins or numerous DNA lesions. PMID:8756636

  4. Remodeling and Control of Homologous Recombination by DNA Helicases and Translocases that Target Recombinases and Synapsis.

    Science.gov (United States)

    Northall, Sarah J; Ivančić-Baće, Ivana; Soultanas, Panos; Bolt, Edward L

    2016-01-01

    Recombinase enzymes catalyse invasion of single-stranded DNA (ssDNA) into homologous duplex DNA forming "Displacement loops" (D-loops), a process called synapsis. This triggers homologous recombination (HR), which can follow several possible paths to underpin DNA repair and restart of blocked and collapsed DNA replication forks. Therefore, synapsis can be a checkpoint for controlling whether or not, how far, and by which pathway, HR proceeds to overcome an obstacle or break in a replication fork. Synapsis can be antagonized by limiting access of a recombinase to ssDNA and by dissociation of D-loops or heteroduplex formed by synapsis. Antagonists include DNA helicases and translocases that are identifiable in eukaryotes, bacteria and archaea, and which target synaptic and pre-synaptic DNA structures thereby controlling HR at early stages. Here we survey these events with emphasis on enabling DNA replication to be resumed from sites of blockage or collapse. We also note how knowledge of anti-recombination activities could be useful to improve efficiency of CRISPR-based genome editing. PMID:27548227

  5. Translational control by the DEAD Box RNA helicase belle regulates ecdysone-triggered transcriptional cascades.

    Directory of Open Access Journals (Sweden)

    Robert J Ihry

    Full Text Available Steroid hormones act, through their respective nuclear receptors, to regulate target gene expression. Despite their critical role in development, physiology, and disease, however, it is still unclear how these systemic cues are refined into tissue-specific responses. We identified a mutation in the evolutionarily conserved DEAD box RNA helicase belle/DDX3 that disrupts a subset of responses to the steroid hormone ecdysone during Drosophila melanogaster metamorphosis. We demonstrate that belle directly regulates translation of E74A, an ets transcription factor and critical component of the ecdysone-induced transcriptional cascade. Although E74A mRNA accumulates to abnormally high levels in belle mutant tissues, no E74A protein is detectable, resulting in misregulation of E74A-dependent ecdysone response genes. The accumulation of E74A mRNA in belle mutant salivary glands is a result of auto-regulation, fulfilling a prediction made by Ashburner nearly 40 years ago. In this model, Ashburner postulates that, in addition to regulating secondary response genes, protein products of primary response genes like E74A also inhibit their own ecdysone-induced transcription. Moreover, although ecdysone-triggered transcription of E74A appears to be ubiquitous during metamorphosis, belle-dependent translation of E74A mRNA is spatially restricted. These results demonstrate that translational control plays a critical, and previously unknown, role in refining transcriptional responses to the steroid hormone ecdysone.

  6. Structural investigations of the Bacillus subtilis SPP1 phage G39P helicase inhibitor loading protein

    CERN Document Server

    Bailey, S

    2002-01-01

    The Bacillus subtilis SPPI phage encoded protein G39P is a loader and inhibitor of the phage G40P replicative helicase involved in the initiation of phage DNA replication. The 2.4A crystal structure of a C-terminal truncated variant of G39P was solved using multiple wavelength anomalous dispersion exploiting the anomalous signal of seleno- methionine substituted protein. Inspection of the electron density maps revealed the asymmetric unit contained three independent G39P monomers, composed of 3 alpha-helices and their connecting loops. However, the model only accounted for the first 67 residues of the protein, as there was no interpretable electron density for residues 68 to 112. A preliminary NMR investigation revealed the C-terminal region of the protein had rapid internal motion and formed no well-defined stable fold that involved immobilized side chains. This is consistent with the X-ray analysis that displayed no electron density for these residues. A detailed comparison of NMR spectra from the C-termina...

  7. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  8. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  9. Neuroplasticity & Motor Learning

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye

    is a measure of our ability to form and store a motor memory of the task. However, the initial memory of the task is labile and may be subject to interference. During and following motor learning plastic changes occur within the central nervous system. On one hand these changes are driven by motor practice......, on the other hand the changes underlie the formation of motor memory and the retention of improved motor performance. During motor learning changes may occur at many different levels within the central nervous system dependent on the type of task and training. Here, we demonstrate different studies from our......Practice of a new motor task is usually associated with an improvement in performance. Indeed, if we stop practicing and return the next day to the same task, we find that our performance has been maintained and may even be better than it was at the start of the first day. This improvement...

  10. [Antigenic response against PPD and antigen 60 in tubercular patients: single antigen versus the combined test].

    Science.gov (United States)

    Máttar, S; Broquetas, J M; Gea, J; Aran, X; el-Banna, N; Sauleda, J; Torres, J M

    1992-05-01

    We analyze serum samples from 70 patients with pulmonary tuberculosis and 50 healthy individuals. The antigenic activity (IgG) against protein purified antigen (PPD) and antigen 60 (A60) from M. tuberculosis. Thirteen patients were also HIV infected, and three patients had AIDS defined by the presence of disseminated tuberculosis. The test using antigen alone showed a 77% sensitivity and 74% specificity when PPD is used. When A60 was used, both values improved (81% sensitivity, 94% specificity). The use of a combined test (PPD and A60) improves the sensitivity (89%) but reduces the specificity (82%). The HIV infected patients showed similar responses to those of other patients. The combined use of different antigens might be useful for diagnosing tuberculosis. PMID:1390996

  11. AdnAB: a new DSB-resecting motor-nuclease from mycobacteria.

    Science.gov (United States)

    Sinha, Krishna Murari; Unciuleac, Mihaela-Carmen; Glickman, Michael S; Shuman, Stewart

    2009-06-15

    The resection of DNA double-strand breaks (DSBs) in bacteria is a motor-driven process performed by a multisubunit helicase-nuclease complex: either an Escherichia coli-type RecBCD enzyme or a Bacillus-type AddAB enzyme. Here we identify mycobacterial AdnAB as the founder of a new family of heterodimeric helicase-nucleases with distinctive properties. The AdnA and AdnB subunits are each composed of an N-terminal UvrD-like motor domain and a C-terminal nuclease module. The AdnAB ATPase is triggered by dsDNA with free ends and the energy of ATP hydrolysis is coupled to DSB end resection by the AdnAB nuclease. The mycobacterial nonhomologous end-joining (NHEJ) protein Ku protects DSBs from resection by AdnAB. We find that AdnAB incises ssDNA by measuring the distance from the free 5' end to dictate the sites of cleavage, which are predominantly 5 or 6 nucleotides (nt) from the 5' end. The "molecular ruler" of AdnAB is regulated by ATP, which elicits an increase in ssDNA cleavage rate and a distal displacement of the cleavage sites 16-17 nt from the 5' terminus. AdnAB is a dual nuclease with a clear division of labor between the subunits. Mutations in the nuclease active site of the AdnB subunit ablate the ATP-inducible cleavages; the corresponding changes in AdnA abolish ATP-independent cleavage. Complete suppression of DSB end resection requires simultaneous mutation of both subunit nucleases. The nuclease-null AdnAB is a helicase that unwinds linear plasmid DNA without degrading the displaced single strands. Mutations of the phosphohydrolase active site of the AdnB subunit ablate DNA-dependent ATPase activity, DSB end resection, and ATP-inducible ssDNA cleavage; the equivalent mutations of the AdnA subunit have comparatively little effect. AdnAB is a novel signature of the Actinomycetales taxon. Mycobacteria are exceptional in that they encode both AdnAB and RecBCD, suggesting the existence of alternative end-resecting motor-nuclease complexes. PMID:19470566

  12. COLONOSCOPY AND CARCINOEMBRYONIC ANTIGEN VARIATIONS

    Directory of Open Access Journals (Sweden)

    Rita G SOUSA

    2014-03-01

    Full Text Available Context Colonoscopy is essential for synchronous and metachronous cancer detection. Carcinoembryonic antigen is a colorectal cancer tumor marker, important as a follow-up tool in patients with previous colorectal cancer. False-positive carcinoembryonic antigen elevation results in multiples exams and in patient anxiety. In literature, there is reference to transient carcinoembryonic antigen increase with colonoscopy. Objective To evaluate the influence of bowel preparation and colonoscopy in carcinoembryonic antigen blood levels. Methods We prospectively studied subjects that underwent routine colonoscopy in our institution. Blood samples were collected (1 before bowel cleaning, (2 before colonoscopy and (3 immediately after colonoscopy. Blood carcinoembryonic antigen levels were determined by “Sandwich” immunoassay. The statistical methods used were the paired t-test and ANOVA. Results Thirty-seven patients (22M/15F were included; age range 28-84 (mean 56 years. Mean carcinoembryonic antigen values were 1.9, 2 and 1.8 for (1, (2 and (3, respectively. An increase in value (2 compared with (1 was observed in 20/37 patients (P = 0.018, mainly in younger patients and in patients requiring more endoluminal interventions. In 29/37 patients, the CEA value decreased from (2 to (3 (P = 1.3x10-7. Conclusions A trend for carcinoembryonic antigen increase after bowel cleaning was observed, especially in younger patients and in patients with more endoluminal interventions, but without clinical meaning.

  13. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  14. HrpA, a DEAH-box RNA helicase, is involved in global gene regulation in the Lyme disease spirochete.

    Directory of Open Access Journals (Sweden)

    Aydan Salman-Dilgimen

    Full Text Available Spirochetes causing Lyme borreliosis are obligate parasites that can only be found in a tick vector or a vertebrate host. The ability to survive in these two disparate environments requires up and downregulation of specific genes by regulatory circuits that remain largely obscure. In this work on the Lyme spirochete, B. burgdorferi, we show that a disruption of the hrpA gene, which encodes a putative RNA helicase, results in a complete loss in the ability of the spirochetes to infect mice by needle inoculation. Studies of protein expression in culture by 2D gels revealed a change in the expression of 33 proteins in hrpA clones relative to the wild-type parent. Quantitative characterization of protein expression by iTRAQ analysis revealed a total of 187 differentially regulated proteins in an hrpA background: 90 downregulated and 97 upregulated. Forty-two of the 90 downregulated and 65 of the 97 upregulated proteins are not regulated under any conditions by the previously reported regulators in B. burgdorferi (bosR, rrp2, rpoN, rpoS or rrp1. Downregulated and upregulated proteins also fell into distinct functional categories. We conclude that HrpA is part of a new and distinct global regulatory pathway in B. burgdorferi gene expression. Because an HrpA orthologue is present in many bacteria, its participation in global regulation in B. burgdorferi may have relevance in other bacterial species where its function remains obscure. We believe this to be the first report of a role for an RNA helicase in a global regulatory pathway in bacteria. This finding is particularly timely with the recent growth of the field of RNA regulation of gene expression and the ability of RNA helicases to modulate RNA structure and function.

  15. Motor Axon Pathfinding

    OpenAIRE

    Bonanomi, Dario; Pfaff, Samuel L

    2010-01-01

    Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connection...

  16. Loss of the BRCA1-interacting helicase BRIP1 results in abnormal mammary acinar morphogenesis.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Daino

    Full Text Available BRIP1 is a DNA helicase that directly interacts with the C-terminal BRCT repeat of the breast cancer susceptibility protein BRCA1 and plays an important role in BRCA1-dependent DNA repair and DNA damage-induced checkpoint control. Recent studies implicate BRIP1 as a moderate/low-penetrance breast cancer susceptibility gene. However, the phenotypic effects of BRIP1 dysfunction and its role in breast cancer tumorigenesis remain unclear. To explore the function of BRIP1 in acinar morphogenesis of mammary epithelial cells, we generated BRIP1-knockdown MCF-10A cells by short hairpin RNA (shRNA-mediated RNA interference and examined its effect in a three-dimensional culture model. Genome-wide gene expression profiling by microarray and quantitative RT-PCR were performed to identify alterations in gene expression in BRIP1-knockdown cells compared with control cells. The microarray data were further investigated using the pathway analysis and Gene Set Enrichment Analysis (GSEA for pathway identification. BRIP1 knockdown in non-malignant MCF-10A mammary epithelial cells by RNA interference induced neoplastic-like changes such as abnormal cell adhesion, increased cell proliferation, large and irregular-shaped acini, invasive growth, and defective lumen formation. Differentially expressed genes, including MCAM, COL8A1, WIPF1, RICH2, PCSK5, GAS1, SATB1, and ELF3, in BRIP1-knockdown cells compared with control cells were categorized into several functional groups, such as cell adhesion, polarity, growth, signal transduction, and developmental process. Signaling-pathway analyses showed dysregulation of multiple cellular signaling pathways, involving LPA receptor, Myc, Wnt, PI3K, PTEN as well as DNA damage response, in BRIP1-knockdown cells. Loss of BRIP1 thus disrupts normal mammary morphogenesis and causes neoplastic-like changes, possibly via dysregulating multiple cellular signaling pathways functioning in the normal development of mammary glands.

  17. Mcm3 replicative helicase mutation impairs neuroblast proliferation and memory in Drosophila.

    Science.gov (United States)

    Blumröder, R; Glunz, A; Dunkelberger, B S; Serway, C N; Berger, C; Mentzel, B; de Belle, J S; Raabe, T

    2016-09-01

    In the developing Drosophila brain, a small number of neural progenitor cells (neuroblasts) generate in a co-ordinated manner a high variety of neuronal cells by integration of temporal, spatial and cell-intrinsic information. In this study, we performed the molecular and phenotypic characterization of a structural brain mutant called small mushroom bodies (smu), which was isolated in a screen for mutants with altered brain structure. Focusing on the mushroom body neuroblast lineages we show that failure of neuroblasts to generate the normal number of mushroom body neurons (Kenyon cells) is the major cause of the smu phenotype. In particular, the premature loss of mushroom body neuroblasts caused a pronounced effect on the number of late-born Kenyon cells. Neuroblasts showed no obvious defects in processes controlling asymmetric cell division, but generated less ganglion mother cells. Cloning of smu uncovered a single amino acid substitution in an evolutionarily conserved protein interaction domain of the Minichromosome maintenance 3 (Mcm3) protein. Mcm3 is part of the multimeric Cdc45/Mcm/GINS (CMG) complex, which functions as a helicase during DNA replication. We propose that at least in the case of mushroom body neuroblasts, timely replication is not only required for continuous proliferation but also for their survival. The absence of Kenyon cells in smu reduced learning and early phases of conditioned olfactory memory. Corresponding to the absence of late-born Kenyon cells projecting to α'/β' and α/β lobes, smu is profoundly defective in later phases of persistent memory.

  18. The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres.

    Science.gov (United States)

    Phillips, Jane A; Chan, Angela; Paeschke, Katrin; Zakian, Virginia A

    2015-04-01

    Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres. PMID:25906395

  19. The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres.

    Directory of Open Access Journals (Sweden)

    Jane A Phillips

    2015-04-01

    Full Text Available Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB. Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX, which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80 -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.

  20. Frequency of Werner helicase 1367 polymorphism and age-related morbidity in an elderly Brazilian population

    Directory of Open Access Journals (Sweden)

    M.A.C. Smith

    2005-07-01

    Full Text Available Werner syndrome (WS is a premature aging disease caused by a mutation in the WRN gene. The gene was identified in 1996 and its product acts as a DNA helicase and exonuclease. Some specific WRN polymorphic variants were associated with increased risk for cardiovascular diseases. The identification of genetic polymorphisms as risk factors for complex diseases affecting older people can improve their prevention, diagnosis and prognosis. We investigated WRN codon 1367 polymorphism in 383 residents in a district of the city of São Paulo, who were enrolled in an Elderly Brazilian Longitudinal Study. Their mean age was 79.70 ± 5.32 years, ranging from 67 to 97. This population was composed of 262 females (68.4% and 121 males (31.6% of European (89.2%, Japanese (3.3%, Middle Eastern (1.81%, and mixed and/or other origins (5.7%. There are no studies concerning this polymorphism in Brazilian population. These subjects were evaluated clinically every two years. The major health problems and morbidities affecting this cohort were cardiovascular diseases (21.7%, hypertension (83.7%, diabetes (63.3%, obesity (41.23%, dementia (8.0%, depression (20.0%, and neoplasia (10.8%. Their prevalence is similar to some urban elderly Brazilian samples. DNA was isolated from blood cells, amplified by PCR and digested with PmaCI. Allele frequencies were 0.788 for the cysteine and 0.211 for the arginine. Genotype distributions were within that expected for the Hardy-Weinberg equilibrium. Female gender was associated with hypertension and obesity. Logistic regression analysis did not detect significant association between the polymorphism and morbidity. These findings confirm those from Europeans and differ from Japanese population.

  1. Pharmacokinetics and Pharmacodynamics of ASP2151, a Helicase-Primase Inhibitor, in a Murine Model of Herpes Simplex Virus Infection

    OpenAIRE

    Katsumata, Kiyomitsu; Chono, Koji; Kato, Kota; Ohtsu, Yoshiaki; Takakura, Shoji; Kontani, Toru; Suzuki, Hiroshi

    2013-01-01

    ASP2151 (amenamevir) is a helicase-primase inhibitor against herpes simplex virus 1 (HSV-1), HSV-2, and varicella zoster virus. Here, to determine and analyze the correlation between the pharmacodynamic (PD) and pharmacokinetic (PK) parameters of ASP2151, we examined the PD profile of ASP2151 using in vitro plaque reduction assay and a murine model of HSV-1 infection. ASP2151 inhibited the in vitro replication of HSV-1 with a mean 50% effective concentration (EC50) of 14 ng/ml. In the cutaneo...

  2. microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Macovei Anca

    2012-10-01

    Full Text Available Abstract Background Rice (Oryza sativa L., one of the most important food crop in the world, is considered to be a salt-sensitive crop. Excess levels of salt adversely affect all the major metabolic activities, including cell wall damage, cytoplasmic lysis and genomic stability. In order to cope with salt stress, plants have evolved high degrees of developmental plasticity, including adaptation via cascades of molecular networks and changes in gene expression profiles. Posttranscriptional regulation, through the activity of microRNAs, also plays an important role in the plant response to salinity conditions. MicroRNAs are small endogenous RNAs that modulate gene expression and are involved in the most essential physiological processes, including plant development and adaptation to environmental changes. Results In the present study, we investigated the expression profiles of osa-MIR414, osa-MIR408 and osa-MIR164e along with their targeted genes, under salinity stress conditions in wild type and transgenic rice plants ectopically expressing the PDH45 (Pea DNA Helicase gene. The present miRNAs were predicted to target the OsABP (ATP-Binding Protein, OsDSHCT (DOB1/SK12/helY-like DEAD-box Helicase and OsDBH (DEAD-Box Helicase genes, included in the DEAD-box helicase family. An in silico characterization of the proteins was performed and the miRNAs predicted targets were validated by RLM-5′RACE. The qRT-PCR analysis showed that the OsABP, OsDBH and OsDSHCT genes were up-regulated in response to 100 and 200 mM NaCl treatments. The present study also highlighted an increased accumulation of the gene transcripts in wild type plants, with the exception of the OsABP mRNA which showed the highest level (15.1-fold change compared to control in the transgenic plants treated with 200 mM NaCl. Salinity treatments also affected the expression of osa-MIR414, osa-MIR164e and osa-MIR408, found to be significantly down-regulated, although the changes in mi

  3. Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper.

    Directory of Open Access Journals (Sweden)

    Won-Hee Kang

    Full Text Available The Cmr1 gene in peppers confers resistance to Cucumber mosaic virus isolate-P0 (CMV-P0. Cmr1 restricts the systemic spread of CMV strain-Fny (CMV-Fny, whereas this gene cannot block the spread of CMV isolate-P1 (CMV-P1 to the upper leaves, resulting in systemic infection. To identify the virulence determinant of CMV-P1, six reassortant viruses and six chimeric viruses derived from CMV-Fny and CMV-P1 cDNA clones were used. Our results demonstrate that the C-terminus of the helicase domain encoded by CMV-P1 RNA1 determines susceptibility to systemic infection, and that the helicase domain contains six different amino acid substitutions between CMV-Fny and CMV-P1(. To identify the key amino acids of the helicase domain determining systemic infection with CMV-P1, we then constructed amino acid substitution mutants. Of the mutants tested, amino acid residues at positions 865, 896, 957, and 980 in the 1a protein sequence of CMV-P1 affected the systemic infection. Virus localization studies with GFP-tagged CMV clones and in situ localization of virus RNA revealed that these four amino acid residues together form the movement determinant for CMV-P1 movement from the epidermal cell layer to mesophyll cell layers. Quantitative real-time PCR revealed that CMV-P1 and a chimeric virus with four amino acid residues of CMV-P1 accumulated more genomic RNA in inoculated leaves than did CMV-Fny, indicating that those four amino acids are also involved in virus replication. These results demonstrate that the C-terminal region of the helicase domain is responsible for systemic infection by controlling virus replication and cell-to-cell movement. Whereas four amino acids are responsible for acquiring virulence in CMV-Fny, six amino acid (positions at 865, 896, 901, 957, 980 and 993 substitutions in CMV-P1 were required for complete loss of virulence in 'Bukang'.

  4. UvrD2 Is Essential in Mycobacterium tuberculosis, but Its Helicase Activity Is Not Required ▿

    OpenAIRE

    Williams, Alan; Güthlein, Carolin; Beresford, Nicola; Böttger, Erik C; Springer, Burkhard; Davis, Elaine O.

    2011-01-01

    UvrD is an SF1 family helicase involved in DNA repair that is widely conserved in bacteria. Mycobacterium tuberculosishas two annotated UvrD homologues; here we investigate the role of UvrD2. The uvrD2gene at its native locus could be knocked out only in the presence of a second copy of the gene, demonstrating that uvrD2is essential. Analysis of the putative protein domain structure of UvrD2 shows a distinctive domain architecture, with an extended C terminus containing an HRDC domain normall...

  5. Escherichia coli rep gene: sequence of the gene, the encoded helicase, and its homology with uvrD.

    OpenAIRE

    Gilchrist, C A; Denhardt, D T

    1987-01-01

    The sequence of a 2.67-kilobase section of the Escherichia coli chromosome that contains the rep gene has been determined. This gene codes for a protein of predicted Mr 72,800, a DNA helicase, which is also a single-stranded DNA-dependent ATPase. The sequenced region contains an open reading frame of the correct length and orientation to encode the Rep protein. A secondary structure for the protein can be formulated from the amino acid sequence. We have compared both the primary and the secon...

  6. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo

    OpenAIRE

    Boubakri, Hasna; de Septenville, Anne Langlois; Viguera, Enrique; Michel, Bénédicte

    2009-01-01

    How living cells deal with head-on collisions of the replication and transcription complexes has been debated for a long time. Even in the widely studied model bacteria Escherichia coli, the enzymes that take care of such collisions are still unknown. We report here that in vivo, the DinG, Rep and UvrD helicases are essential for efficient replication across highly transcribed regions. We show that when rRNA operons (rrn) are inverted to face replication, the viability of the dinG mutant is a...

  7. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  8. Control motor brushless sensorless

    OpenAIRE

    Solchaga Pérez de Lazárraga, Gonzalo

    2015-01-01

    El proyecto consiste en la creación de un circuito capaz de controlar la velocidad de un motor brushless sensorless. Este tipo de motores eléctricos tienen como característica que no tienen escobillas para cambiar la polaridad del bobinado de su interior y tampoco precisan de un sensor que indique que ha realizado una vuelta. Los motores brushless que son controlados por este tipo de circuitos son específicos para aeronaves no tripuladas y requieren un diseño diferente a un motor brushless pe...

  9. Rotations of the 2B Sub-domain of E. coli UvrD Helicase/Translocase Coupled to Nucleotide and DNA Binding

    OpenAIRE

    Jia, Haifeng; Korolev, Sergey; Niedziela-Majka, Anita; Maluf, Nasib K.; Gauss, George H.; Myong, Sua; Ha, Taekjip; Waksman, Gabriel; Lohman, Timothy M.

    2011-01-01

    E. coli UvrD is a superfamily 1 (SF1) DNA helicase and single stranded (ss) DNA translocase that functions in DNA repair, plasmid replication and as an anti-recombinase by removing RecA protein from ssDNA. UvrD couples ATP binding and hydrolysis to unwind double-stranded DNA (dsDNA) and translocate along ssDNA with 3′ to 5′ directionality. Although a UvrD monomer is able to translocate along ssDNA rapidly and processively, DNA helicase activity in vitro requires a minimum of a UvrD dimer. Pre...

  10. NZ51, a ring-expanded nucleoside analog, inhibits motility and viability of breast cancer cells by targeting the RNA helicase DDX3

    OpenAIRE

    Xie, Min; Vesuna, Farhad; Botlagunta, Mahendran; Bol, Guus Martinus; Irving, Ashley; Bergman, Yehudit; Hosmane, Ramachandra S.; Kato, Yoshinori; Winnard, Paul T.; Raman, Venu

    2015-01-01

    DDX3X (DDX3), a human RNA helicase, is over expressed in multiple breast cancer cell lines and its expression levels are directly correlated to cellular aggressiveness. NZ51, a ring-expanded nucleoside analogue (REN) has been reported to inhibit the ATP dependent helicase activity of DDX3. Molecular modeling of NZ51 binding to DDX3 indicated that the 5:7-fused imidazodiazepine ring of NZ51 was incorporated into the ATP binding pocket of DDX3. In this study, we investigated the anticancer prop...

  11. Characterization of recombinant HPV6 and 11 E1 helicases: effect of ATP on the interaction of E1 with E2 and mapping of a minimal helicase domain.

    Science.gov (United States)

    White, P W; Pelletier, A; Brault, K; Titolo, S; Welchner, E; Thauvette, L; Fazekas, M; Cordingley, M G; Archambault, J

    2001-06-22

    To better characterize the enzymatic activities required for human papillomavirus (HPV) DNA replication, the E1 helicases of HPV types 6 and 11 were produced using a baculovirus expression system. The purified wild type proteins and a version of HPV11 E1 lacking the N-terminal 71 amino acids, which was better expressed, were found to be hexameric over a wide range of concentrations and to have helicase and ATPase activities with relatively low values for K(m)(ATP) of 12 microm for HPV6 E1 and 6 microm for HPV11 E1. Interestingly, the value of K(m)(ATP) was increased 7-fold in the presence of the E2 transactivation domain. In turn, ATP was found to perturb the co-operative binding of E1 and E2 to DNA. Mutant and truncated versions of in vitro translated E1 were used to identify a minimal ATPase domain composed of the C-terminal 297 amino acids. This fragment was expressed, purified, and found to be fully active in ATP hydrolysis, single-stranded DNA binding, and unwinding assays, despite lacking the minimal origin-binding domain. PMID:11304544

  12. Organizing motor imageries.

    Science.gov (United States)

    Hanakawa, Takashi

    2016-03-01

    Over the last few decades, motor imagery has attracted the attention of researchers as a prototypical example of 'embodied cognition' and also as a basis for neuro-rehabilitation and brain-machine interfaces. The current definition of motor imagery is widely accepted, but it is important to note that various abilities rather than a single cognitive entity are dealt with under a single term. Here, motor imagery has been characterized based on four factors: (1) motor control, (2) explicitness, (3) sensory modalities, and (4) agency. Sorting out these factors characterizing motor imagery may explain some discrepancies and variability in the findings from previous studies and will help to optimize a study design in accordance with the purpose of each study in the future. PMID:26602980

  13. Susceptibility of herpes simplex virus isolated from genital herpes lesions to ASP2151, a novel helicase-primase inhibitor.

    Science.gov (United States)

    Katsumata, Kiyomitsu; Weinberg, Adriana; Chono, Koji; Takakura, Shoji; Kontani, Toru; Suzuki, Hiroshi

    2012-07-01

    ASP2151 (amenamevir) is a helicase-primase inhibitor against herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus. To evaluate the anti-HSV activity of ASP2151, susceptibility testing was performed on viruses isolated from patients participating in a placebo- and valacyclovir-controlled proof-of-concept phase II study for recurrent genital herpes. A total of 156 HSV strains were isolated prior to the dosing of patients, and no preexisting variants with less susceptibility to ASP2151 or acyclovir (ACV) were detected. ASP2151 inhibited HSV-1 and HSV-2 replication with mean 50% effective concentrations (EC(50)s) of 0.043 and 0.069 μM, whereas ACV exhibited mean EC(50)s of 2.1 and 3.2 μM, respectively. Notably, the susceptibilities of HSV isolates to ASP2151 and ACV were not altered after dosing with the antiviral agents. Taken together, these results demonstrate that ASP2151 inhibits the replication of HSV clinical isolates more potently than ACV, and HSV resistant to this novel helicase-primase inhibitor as well as ACV may not easily emerge in short-term treatment for recurrent genital herpes patients.

  14. Novel missense mutations in a conserved loop between ERCC6 (CSB) helicase motifs V and VI: Insights into Cockayne syndrome.

    Science.gov (United States)

    Wilson, Brian T; Lochan, Anneline; Stark, Zornitza; Sutton, Ruth E

    2016-03-01

    Cockayne syndrome is caused by biallelic ERCC8 (CSA) or ERCC6 (CSB) mutations and is characterized by growth restriction, microcephaly, developmental delay, and premature pathological aging. Typically affected patients also have dermal photosensitivity. Although Cockayne syndrome is considered a DNA repair disorder, patients with UV-sensitive syndrome, with ERCC8 (CSA) or ERCC6 (CSB) mutations have indistinguishable DNA repair defects, but none of the extradermal features of Cockayne syndrome. We report novel missense mutations affecting a conserved loop in the ERCC6 (CSB) protein, associated with the Cockayne syndrome phenotype. Indeed, the amino acid sequence of this loop is more highly conserved than the adjacent helicase motifs V and VI, suggesting that this is a crucial structural component of the SWI/SNF family of proteins, to which ERCC6 (CSB) belongs. These comprise two RecA-like domains, separated by an interdomain linker, which interact through helicase motif VI. As the observed mutations are likely to act through destabilizing the tertiary protein structure, this prompted us to re-evaluate ERCC6 (CSB) mutation data in relation to the structure of SWI/SNF proteins. Our analysis suggests that antimorphic mutations cause Cockayne syndrome and that biallelic interdomain linker deletions produce more severe phenotypes. Based on our observations, we propose that further investigation of the pathogenic mechanisms underlying Cockayne syndrome should focus on the effect of antimorphic rather than null ERCC6 (CSB) mutations. PMID:26749132

  15. CRISPR-Mediated Drug-Target Validation Reveals Selective Pharmacological Inhibition of the RNA Helicase, eIF4A

    Directory of Open Access Journals (Sweden)

    Jennifer Chu

    2016-06-01

    Full Text Available Targeting translation initiation is an emerging anti-neoplastic strategy that capitalizes on de-regulated upstream MAPK and PI3K-mTOR signaling pathways in cancers. A key regulator of translation that controls ribosome recruitment flux is eukaryotic initiation factor (eIF 4F, a hetero-trimeric complex composed of the cap binding protein eIF4E, the scaffolding protein eIF4G, and the RNA helicase eIF4A. Small molecule inhibitors targeting eIF4F display promising anti-neoplastic activity in preclinical settings. Among these are some rocaglate family members that are well tolerated in vivo, deplete eIF4F of its eIF4A helicase subunit, have shown activity as single agents in several xenograft models, and can reverse acquired resistance to MAPK and PI3K-mTOR targeted therapies. Herein, we highlight the power of using genetic complementation approaches and CRISPR/Cas9-mediated editing for drug-target validation ex vivo and in vivo, linking the anti-tumor properties of rocaglates to eIF4A inhibition.

  16. TbPIF5 is a Trypanosoma brucei mitochondrial DNA helicase involved in processing of minicircle Okazaki fragments.

    Directory of Open Access Journals (Sweden)

    Beiyu Liu

    2009-09-01

    Full Text Available Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA, is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5' to 3' DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb, are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.

  17. Structure-based discovery of two antiviral inhibitors targeting the NS3 helicase of Japanese encephalitis virus

    Science.gov (United States)

    Fang, Jin’e; Li, Huan; Kong, Dexin; Cao, Shengbo; Peng, Guiqing; Zhou, Rui; Chen, Huanchun; Song, Yunfeng

    2016-01-01

    Japanese encephalitis virus (JEV) is a flavivirus that threatens more than half of the world’s population. Vaccination can prevent the disease, but no specific antiviral drug is yet available for clinical therapy, and the death rate caused by JEV can reach as high as 60%. The C-terminus of non-structural protein 3 (NS3) of flavivirus encodes helicase and has been identified as a potential drug target. In this study, high throughput molecular docking was employed to identify candidate JEV NS3 helicase inhibitors in a commercial library containing 250,000 compounds. Forty-one compounds were then tested for their ability to inhibit NS3 activity. Two compounds inhibited unwinding activity strongly but had no effect on the ATPase activity of the protein. Western blots, IFA, and plaque reduction assays demonstrated that both compounds inhibited the virus in cell culture. The EC50s of the two compounds were 25.67 and 23.50 μM, respectively. Using simulated docking, the two compounds were shown to bind and block the NS3 RNA unwinding channel, consistent with the results of the enzyme inhibition tests. The atoms participating in intramolecular interaction were identified to facilitate future compound optimization. PMID:27679979

  18. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature.

    Science.gov (United States)

    Liu, Yuelin; Tabata, Daisuke; Imai, Ryozo

    2016-01-01

    DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3), which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C), both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.

  19. MISR Motor Data V003

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the output for the Level 1A Motor data (Suggested Usage: MISR SCF processing needs the MISR motor data samples for the analysis of motor...

  20. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins

    Directory of Open Access Journals (Sweden)

    Rebecca Bish

    2015-07-01

    Full Text Available DDX6 (p54/RCK is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58 of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2 and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2. We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6’s multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6’s interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions

  1. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins.

    Science.gov (United States)

    Bish, Rebecca; Cuevas-Polo, Nerea; Cheng, Zhe; Hambardzumyan, Dolores; Munschauer, Mathias; Landthaler, Markus; Vogel, Christine

    2015-01-01

    DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58) of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2) and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2). We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6's multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6's interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions-many of which are likely

  2. Transcriptomic and Protein Expression Analysis Reveals Clinicopathological Significance of Bloom Syndrome Helicase (BLM) in Breast Cancer.

    Science.gov (United States)

    Arora, Arvind; Abdel-Fatah, Tarek M A; Agarwal, Devika; Doherty, Rachel; Moseley, Paul M; Aleskandarany, Mohammed A; Green, Andrew R; Ball, Graham; Alshareeda, Alaa T; Rakha, Emad A; Chan, Stephen Y T; Ellis, Ian O; Madhusudan, Srinivasan

    2015-04-01

    Bloom syndrome helicase (BLM) has key roles in homologous recombination repair, telomere maintenance, and DNA replication. Germ-line mutations in the BLM gene causes Bloom syndrome, a rare disorder characterized by premature aging and predisposition to multiple cancers, including breast cancer. The clinicopathologic significance of BLM in sporadic breast cancers is unknown. We investigated BLM mRNA expression in the Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1,950) and validated in an external dataset of 2,413 tumors. BLM protein level was evaluated in the Nottingham Tenovus series comprising 1,650 breast tumors. BLM mRNA overexpression was significantly associated with high histologic grade, larger tumor size, estrogen receptor-negative (ER(-)), progesterone receptor-negative (PR(-)), and triple-negative phenotypes (ps < 0.0001). BLM mRNA overexpression was also linked to aggressive molecular phenotypes, including PAM50.Her2 (P < 0.0001), PAM50.Basal (P < 0.0001), and PAM50.LumB (P < 0.0001) and Genufu subtype (ER(+)/Her2(-)/high proliferation; P < 0.0001). PAM50.LumA tumors and Genufu subtype (ER(+)/Her2(-)/low proliferation) were more likely to express low levels of BLM mRNA (ps < 0.0001). Integrative molecular clusters (intClust) intClust.1 (P < 0.0001), intClust.5 (P < 0.0001), intClust.9 (P < 0.0001), and intClust.10 (P < 0.0001) were also more likely in tumors with high BLM mRNA expression. BLM mRNA overexpression was associated with poor breast cancer-specific survival (BCSS; ps < 0.000001). At the protein level, altered subcellular localization with high cytoplasmic BLM and low nuclear BLM was linked to aggressive phenotypes. In multivariate analysis, BLM mRNA and BLM protein levels independently influenced BCSS. This is the first and the largest study to provide evidence that BLM is a promising biomarker in breast cancer. PMID:25673821

  3. Emerging importance of mismatch repair components including UvrD helicase and their cross-talk with the development of drug resistance in malaria parasite.

    Science.gov (United States)

    Ahmad, Moaz; Tuteja, Renu

    2014-12-01

    Human malaria is an important parasitic infection responsible for a significant number of deaths worldwide, particularly in tropical and subtropical regions. The recent scenario has worsened mainly because of the emergence of drug-resistant malaria parasites having the potential to spread across the world. Drug-resistant parasites possess a defective mismatch repair (MMR); therefore, it is essential to explore its mechanism in detail to determine the underlying cause. Recently, artemisinin-resistant parasites have been reported to exhibit nonsynonymous single nucleotide polymorphisms in genes involved in MMR pathways such as MutL homolog (MLH) and UvrD. Plasmodium falciparum MLH is an endonuclease required to restore the defective MMR in drug-resistant W2 strain of P. falciparum. Although the role of helicases in eukaryotic MMR has been questioned, the identification and characterization of the UvrD helicase and their cross-talk with MLH in P. falciparum suggests the possible involvement of UvrD in MMR. A comparative genome-wide analysis revealed the presence of the UvrD helicase in Plasmodium species, while it is absent in human host. Therefore, PfUvrD may emerge as a suitable drug target to control malaria. This review study is focused on recent developments in MMR biochemistry, emerging importance of the UvrD helicase, possibility of its involvement in MMR and the emerging cross-talk between MMR components and drug resistance in malaria parasite. PMID:25771870

  4. Redistribution of demethylated RNA helicase A during foot-and-mouth disease virus infection: role of jumonji C-domain containing protein 6 in RHA demethylation

    Science.gov (United States)

    We previously reported that RNA Helicase A (RHA) re-localized from the nucleus to the cytoplasm in foot-and-mouth disease virus (FMDV) infected cells, coincident with a reduction in methylation of arginine residues in the RHA C-terminus. To further define the mechanism of RHA demethylation in FMDV-...

  5. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    Science.gov (United States)

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.

  6. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    Science.gov (United States)

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins. PMID:27008640

  7. Improve Motor System Efficiency for a Broad Range of Motors with MotorMaster+ International

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-05-01

    Available at no charge, MotorMaster+ International is designed to support motor systems improvement planning at industrial facilities by identifying the most cost-effective choice when deciding to repair or replace older motor models.

  8. [Farmer's lung antigens in Germany].

    Science.gov (United States)

    Sennekamp, J; Joest, M; Sander, I; Engelhart, S; Raulf-Heimsoth, M

    2012-05-01

    Recent studies suggest that besides the long-known farmer's lung antigen sources Saccharopolyspora rectivirgula (Micropolyspora faeni), Thermoactinomyces vulgaris, and Aspergillus fumigatus, additionally the mold Absidia (Lichtheimia) corymbifera as well as the bacteria Erwinia herbicola (Pantoea agglomerans) and Streptomyces albus may cause farmer's lung in Germany. In this study the sera of 64 farmers with a suspicion of farmer's lung were examined for the following further antigens: Wallemia sebi, Cladosporium herbarum, Aspergillus versicolor, and Eurotium amstelodami. Our results indicate that these molds are not frequent causes of farmer's lung in Germany. PMID:22477566

  9. System and method for motor parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  10. Motor Vehicle Safety

    Science.gov (United States)

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  11. Congenital Ocular Motor Apraxia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-06-01

    Full Text Available The clinical and neuroradiological findings, and long-term intellectual prognosis in 10 patients (4 boys and 6 girls with congenital ocular motor apraxia (COMA are reviewed by researchers at Tottori University, Yonago, Japan.

  12. Partial motor status epilepticus

    OpenAIRE

    Gilberto Rebello de Mattos; José C. Rollemberg Filho

    1992-01-01

    We report the case of a young female patient with photosensitive primary epilepsy who presented partial motor status epilepticus provoked by the act of shutting the eyes. Clinical, EEG and neuroimage data are presented and discussed.

  13. Congenital Ocular Motor Apraxia

    OpenAIRE

    J Gordon Millichap

    2007-01-01

    The clinical and neuroradiological findings, and long-term intellectual prognosis in 10 patients (4 boys and 6 girls) with congenital ocular motor apraxia (COMA) are reviewed by researchers at Tottori University, Yonago, Japan.

  14. Nonautistic Motor Stereotypies

    OpenAIRE

    J Gordon Millichap

    2008-01-01

    Clinical features and long-term outcomes of 100 children (62 boys and 35 girls) with motor stereotypies were evaluated by review of records and telephone interviews at Johns Hopkins Hospital, Baltimore, MD.

  15. Heritability of motor control and motor learning

    OpenAIRE

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the...

  16. Development of motor control

    OpenAIRE

    Schellekens, Johannes Maria Hubertus

    1985-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation. The aim of this thesis is to study the role and efficiency of motor control and anticipation processes in the development of children with and without disturbances in the motor system. Chapter I is a general introduction to the subjec...

  17. Congenital ocular motor apraxia

    OpenAIRE

    Carrasquinho, S; Teixeira, S.; Cadete, A; Bernardo, M.; Pêgo, P; Prieto, I.

    2008-01-01

    PURPOSE: Congenital ocular motor apraxia is a rare disease characterized by defective or absent voluntary and optically induced horizontal saccadic movements. Jerky head movements or thrusts on attempted lateral gaze are a compensatory sign. Most affected children have delayed motor and speech development. Cases associated with systemic diseases, neurologic maldevelopment, metabolic deficits, and chromosomal abnormalities have been described. METHODS: Case report and review of the scienti...

  18. Motor neurone disease

    OpenAIRE

    Talbot, K.

    2002-01-01

    Motor neurone disease (MND), or amyotrophic lateral sclerosis (ALS), is a neurodegenerative disorder of unknown aetiology. Progressive motor weakness and bulbar dysfunction lead to premature death, usually from respiratory failure. Confirming the diagnosis may initially be difficult until the full clinical features are manifest. For all forms of the disease there is a significant differential diagnosis to consider, including treatable conditions, and therefore specialist neurological opinion ...

  19. Symmetric Brownian motor

    OpenAIRE

    Gomez-Marin, A.; Sancho, J. M.

    2004-01-01

    In this paper we present a model of a symmetric Brownian motor (SBM) which changes the sign of its velocity when the temperature gradient is inverted. The velocity, external work and efficiency are studied as a function of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when another parameter (a phase shift) is varied. Analytical predictions and results from numerical simulations are performed and agree very well. Generic properties of this type...

  20. Multifocal motor neuropathy

    OpenAIRE

    Thy P Nguyen; Vinay Chaudhry

    2011-01-01

    Multifocal motor neuropathy (MMN) is a unique disorder characterized by slowly progressive, asymmetric, distal and upper limb predominant weakness without significant sensory abnormalities. Electrophysiology is crucial to the diagnosis, revealing the hallmark partial conduction block. MMN is considered immune mediated due to the association with anti-GM1 antibodies and the response to immunomodulatory treatment. It is paramount to recognize MMN from other motor neuronopathies or peripheral ne...

  1. Starter Motor Protection

    OpenAIRE

    Gerhardsson, Daniel

    2010-01-01

    Starter motors are sensitive for overheating. By estimating the temperature and preventing cranking in time, there is an option to avoid the dangerous temperatures. The truck manufacturer Scania CV AB proposed a master thesis that should evaluate the need of an overheating protection for the starter motor. The aim is to evaluate any positive effects of implementing an algorithm that can estimate the brush temperature instead of using the available time constrain, which allows 35 seconds of cr...

  2. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  3. Oncogenic cancer/testis antigens

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    /testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...

  4. Electric vehicle motors and controllers

    Science.gov (United States)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  5. Markov Process of Muscle Motors

    CERN Document Server

    Kondratiev, Yu; Pirogov, S

    2007-01-01

    We study a Markov random process describing a muscle molecular motor behavior. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spend an exponential time depending on the state. The thin filament moves at its velocity proportional to average of all displacements of all motors. We assume that the time which a motor stays at the bound state does not depend on its displacement. Then one can find an exact solution of a non-linear equation appearing in the limit of infinite number of the motors.

  6. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    S V Sharma; M M Nayak; N S Dinesh

    2008-10-01

    Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150 mm square, 20 mm thick and uses SMA wire of 0·4 mm diameter and 125 mm of length in each phase.

  7. Concepts and applications for influenza antigenic cartography

    Science.gov (United States)

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2011-01-01

    Influenza antigenic cartography projects influenza antigens into a two or three dimensional map based on immunological datasets, such as hemagglutination inhibition and microneutralization assays. A robust antigenic cartography can facilitate influenza vaccine strain selection since the antigenic map can simplify data interpretation through intuitive antigenic map. However, antigenic cartography construction is not trivial due to the challenging features embedded in the immunological data, such as data incompleteness, high noises, and low reactors. To overcome these challenges, we developed a computational method, temporal Matrix Completion-Multidimensional Scaling (MC-MDS), by adapting the low rank MC concept from the movie recommendation system in Netflix and the MDS method from geographic cartography construction. The application on H3N2 and 2009 pandemic H1N1 influenza A viruses demonstrates that temporal MC-MDS is effective and efficient in constructing influenza antigenic cartography. The web sever is available at http://sysbio.cvm.msstate.edu/AntigenMap. PMID:21761589

  8. Genome Scale Identification of Treponema pallidum Antigens

    OpenAIRE

    McKevitt, Matthew; Brinkman, Mary Beth; McLoughlin, Melanie; Perez, Carla; Howell, Jerrilyn K.; Weinstock, George M.; Norris, Steven J; Palzkill, Timothy

    2005-01-01

    Antibody responses for 882 of the 1,039 proteins in the proteome of Treponema pallidum were examined. Sera collected from infected rabbits were used to systematically identify 106 antigenic proteins, including 22 previously identified antigens and 84 novel antigens. Additionally, sera collected from rabbits throughout the course of infection demonstrated a progression in the breadth and intensity of humoral immunoreactivity against a representative panel of T. pallidum antigens.

  9. Role of gonadotropin regulated testicular RNA helicase (GRTH/Ddx25 on polysomal associated mRNAs in mouse testis.

    Directory of Open Access Journals (Sweden)

    Chon-Hwa Tsai-Morris

    Full Text Available Gonadotropin Regulated Testicular RNA Helicase (GRTH/Ddx25 is a testis-specific multifunctional RNA helicase and an essential post-transcriptional regulator of spermatogenesis. GRTH transports relevant mRNAs from nucleus to cytoplasmic sites of meiotic and haploid germ cells and associates with actively translating polyribosomes. It is also a negative regulator of steroidogenesis in Leydig cells. To obtain a genome-wide perspective of GRTH regulated genes, in particularly those associated with polyribosomes, microarray differential gene expression analysis was performed using polysome-bound RNA isolated from testes of wild type (WT and GRTH KO mice. 792 genes among the entire mouse genome were found to be polysomal GRTH-linked in WT. Among these 186 were down-regulated and 7 up-regulated genes in GRTH null mice. A similar analysis was performed using total RNA extracted from purified germ cell populations to address GRTH action in individual target cells. The down-regulation of known genes concerned with spermatogenesis at polysomal sites in GRTH KO and their association with GRTH in WT coupled with early findings of minor or unchanged total mRNAs and abolition of their protein expression in KO underscore the relevance of GRTH in translation. Ingenuity pathway analysis predicted association of GRTH bound polysome genes with the ubiquitin-proteasome-heat shock protein signaling network pathway and NFκB/TP53/TGFB1 signaling networks were derived from the differentially expressed gene analysis. This study has revealed known and unexplored factors in the genome and regulatory pathways underlying GRTH action in male reproduction.

  10. period-1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol; Baker, Scott E.; Loros, Jennifer J.; Dunlap, Jay C.

    2015-12-22

    Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member of a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.

  11. A New Type of Motor: Pneumatic Step Motor.

    Science.gov (United States)

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2007-02-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  12. Cryptic single-stranded-DNA binding activities of the phage λ P and Escherichia coli DnaC replication initiation proteins facilitate the transfer of E. coli DnaB helicase onto DNA

    OpenAIRE

    Learn, Brian A.; Um, Soo-Jong; Huang, Li; McMacken, Roger

    1997-01-01

    The bacteriophage λ P and Escherichia coli DnaC proteins are known to recruit the bacterial DnaB replicative helicase to initiator complexes assembled at the phage and bacterial origins, respectively. These specialized nucleoprotein assemblies facilitate the transfer of one or more molecules of DnaB helicase onto the chromosome; the transferred DnaB, in turn, promotes establishment of a processive replication fork apparatus. To learn more about the mechanism of the DnaB transfer reaction, we ...

  13. Antigenic Variation in Plasmodium falciparum.

    Science.gov (United States)

    Petter, Michaela; Duffy, Michael F

    2015-01-01

    Plasmodium falciparum is the protozoan parasite that causes most malaria-associated morbidity and mortality in humans with over 500,000 deaths annually. The disease symptoms are associated with repeated cycles of invasion and asexual multiplication inside red blood cells of the parasite. Partial, non-sterile immunity to P. falciparum malaria develops only after repeated infections and continuous exposure. The successful evasion of the human immune system relies on the large repertoire of antigenically diverse parasite proteins displayed on the red blood cell surface and on the merozoite membrane where they are exposed to the human immune system. Expression switching of these polymorphic proteins between asexual parasite generations provides an efficient mechanism to adapt to the changing environment in the host and to maintain chronic infection. This chapter discusses antigenic diversity and variation in the malaria parasite and our current understanding of the molecular mechanisms that direct the expression of these proteins. PMID:26537377

  14. [HLA antigens in juvenile rheumatoid arthritis].

    Science.gov (United States)

    Rumba, I V; Sochnev, A M; Kukaĭne, E M; Burshteĭn, A M; Benevolenskaia, L I

    1990-01-01

    Antigens of I class HLA system (locus A and B) were investigated in 67 patients of Latvian nationality suffering from juvenile rheumatoid arthritis (JRA). Associations of HLA antigens with juvenile rheumatoid arthritis partially coincided with the ones revealed earlier. Typing established an increased incidence of antigen B27 (p less than 0.01) and gaplotype A2, B40 (p less than 0.01). Antigen B15 possessed a protective action with respect to JRA. Interlocus combinations demonstrated a closer association with the disease than a single antigen. The authors also revealed markers of various clinico-anatomical variants of JRA.

  15. Mismatch correction modulates mutation frequency and pilus phase and antigenic variation in Neisseria gonorrhoeae.

    Science.gov (United States)

    Criss, Alison K; Bonney, Kevin M; Chang, Rhoda A; Duffin, Paul M; LeCuyer, Brian E; Seifert, H Steven

    2010-01-01

    The mismatch correction (MMC) system repairs DNA mismatches and single nucleotide insertions or deletions postreplication. To test the functions of MMC in the obligate human pathogen Neisseria gonorrhoeae, homologues of the core MMC genes mutS and mutL were inactivated in strain FA1090. No mutH homologue was found in the FA1090 genome, suggesting that gonococcal MMC is not methyl directed. MMC mutants were compared to a mutant in uvrD, the helicase that functions with MMC in Escherichia coli. Inactivation of MMC or uvrD increased spontaneous resistance to rifampin and nalidixic acid, and MMC/uvrD double mutants exhibited higher mutation frequencies than any single mutant. Loss of MMC marginally enhanced the transformation efficiency of DNA carrying a single nucleotide mismatch but not that of DNA with a 1-kb insertion. Unlike the exquisite UV sensitivity of the uvrD mutant, inactivating MMC did not affect survival after UV irradiation. MMC and uvrD mutants exhibited increased PilC-dependent pilus phase variation. mutS-deficient gonococci underwent an increased frequency of pilin antigenic variation, whereas uvrD had no effect. Recombination tracts in the mutS pilin variants were longer than in parental gonococci but utilized the same donor pilS loci. These results show that gonococcal MMC repairs mismatches and small insertion/deletions in DNA and also affects the recombination events underlying pilin antigenic variation. The differential effects of MMC and uvrD in gonococci unexpectedly reveal that MMC can function independently of uvrD in this human-specific pathogen. PMID:19854909

  16. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  17. Flood-proof motors

    International Nuclear Information System (INIS)

    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  18. Stable solid-phase Rh antigen.

    Science.gov (United States)

    Yared, M A; Moise, K J; Rodkey, L S

    1997-12-01

    Numerous investigators have attempted to isolate the Rh antigens in a stable, immunologically reactive form since the discovery of the Rh system over 56 years ago. We report here a successful and reproducible approach to solubilizing and adsorbing the human Rh antigen(s) to a solid-phase matrix in an antigenically active form. Similar results were obtained with rabbit A/D/F red blood cell antigens. The antigen preparation was made by dissolution of the red blood cell membrane lipid followed by fragmentation of the residual cytoskeleton in an EDTA solution at low ionic strength. The antigenic activity of the soluble preparations was labile in standard buffers but was stable in zwitterionic buffers for extended periods of time. Further studies showed that the antigenic activity of these preparations was enhanced, as was their affinity for plastic surfaces, in the presence of acidic zwitterionic buffers. Adherence to plastic surfaces at low pH maintained antigenic reactivity and specificity for antibody was retained. The data show that this approach yields a stable form of antigenically active human Rh D antigen that could be used in a red blood cell-free assay for quantitative analysis of Rh D antibody and for Rh D antibody immunoadsorption and purification.

  19. Mechanical design of electric motors

    CERN Document Server

    Tong, Wei

    2014-01-01

    Rapid increases in energy consumption and emphasis on environmental protection have posed challenges for the motor industry, as has the design and manufacture of highly efficient, reliable, cost-effective, energy-saving, quiet, precisely controlled, and long-lasting electric motors.Suitable for motor designers, engineers, and manufacturers, as well as maintenance personnel, undergraduate and graduate students, and academic researchers, Mechanical Design of Electric Motors provides in-depth knowledge of state-of-the-art design methods and developments of electric motors. From motor classificati

  20. Step Motor Control System

    Institute of Scientific and Technical Information of China (English)

    ZhangShuochengt; WangDan; QiaoWeimin; JingLan

    2003-01-01

    All kinds of step motors and servomotors are widely used in CSR control system, such as many vacuum valves control that set on the HIRFL-CSR; all kinds of electric switches and knobs of ECR Ion Source; equipment of CSR Beam Diagnostics and a lot of large equipment like Inside Gun Toroid and Collector Toroid of HIRFL. A typical control system include up to 32 16-I/O Control boards, and each 16-I/O Control board can control 4 motors at the same time (including 8 Limit Switches).

  1. Transformers and motors

    CERN Document Server

    Shultz, George

    1991-01-01

    Transformers and Motors is an in-depth technical reference which was originally written for the National Joint Apprenticeship Training Committee to train apprentice and journeymen electricians. This book provides detailed information for equipment installation and covers equipment maintenance and repair. The book also includes troubleshooting and replacement guidelines, and it contains a minimum of theory and math.In this easy-to-understand, practical sourcebook, you'll discover:* Explanations of the fundamental concepts of transformers and motors* Transformer connections and d

  2. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    Science.gov (United States)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  3. Tuning Multiple Motor Travel Via Single Motor Velocity

    Science.gov (United States)

    Xu, Jing; Shu, Zhanyong; King, Stephen J.; Gross, Steven P.

    2012-01-01

    Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role of single-motor velocity is yet to be explored. Here, we recast a previous theoretical study, and make explicit a potential contribution of velocity to cargo travel. We test this possibility experimentally, and demonstrate a strong negative correlation between single-motor velocity and cargo travel for transport driven by two motors. Our study thus discovers a previously unappreciated role of single-motor velocity in regulating multiple-motor transport. PMID:22672518

  4. A Rad53 Independent Function of Rad9 Becomes Crucial for Genome Maintenance in the Absence of the RecQ Helicase Sgs1

    DEFF Research Database (Denmark)

    Nielsen, Ida; Bentsen, Iben Bach; Andersen, Anni Hangaard;

    2013-01-01

    The conserved family of RecQ DNA helicases consists of caretaker tumour suppressors, that defend genome integrity by acting on several pathways of DNA repair that maintain genome stability. In budding yeast, Sgs1 is the sole RecQ helicase and it has been implicated in checkpoint responses......, replisome stability and dissolution of double Holliday junctions during homologous recombination. In this study we investigate a possible genetic interaction between SGS1 and RAD9 in the cellular response to methyl methane sulphonate (MMS) induced damage and compare this with the genetic interaction between...... SGS1 and RAD24. The Rad9 protein, an adaptor for effector kinase activation, plays well-characterized roles in the DNA damage checkpoint response, whereas Rad24 is characterized as a sensor protein also in the DNA damage checkpoint response. Here we unveil novel insights into the cellular response to...

  5. Tfb6, a previously unidentified subunit of the general transcription factor TFIIH, facilitates dissociation of Ssl2 helicase after transcription initiation

    OpenAIRE

    Murakami, Kenji; Gibbons, Brian J.; Ralph E Davis; Nagai, Shigeki; Liu, Xin; Robinson, Philip J. J.; Wu, Tinghe; Kaplan, Craig D; Kornberg, Roger D.

    2012-01-01

    General transcription factor TFIIH, previously described as a 10-subunit complex, is essential for transcription and DNA repair. An eleventh subunit now identified, termed Tfb6, exhibits 45% sequence similarity to human nuclear mRNA export factor 5. Tfb6 dissociates from TFIIH as a heterodimer with the Ssl2 subunit, a DNA helicase that drives promoter melting for the initiation of transcription. Tfb6 does not, however, dissociate Ssl2 from TFIIH in the context of a fully assembled transcripti...

  6. Bloom’s syndrome helicase and Mus81 are required to induce transient double-strand DNA breaks in response to DNA replication stress

    OpenAIRE

    Shimura, Tsutomu; Torres, Michael J.; Melvenia M Martin; Rao, V. Ashutosh; Pommier, Yves; Katsura, Mari; Miyagawa, Kiyoshi; Aladjem, Mirit I

    2007-01-01

    Perturbed DNA replication either activates a cell cycle checkpoint, which halts DNA replication, or decreases the rate of DNA synthesis without activating a checkpoint. Here we report that at low doses, replication inhibitors did not activate a cell cycle checkpoint, but they did activate a process that required functional Bloom’s syndrome-associated (BLM) helicase, Mus81 nuclease and ATR kinase to induce transient double stranded DNA breaks. The induction of transient DNA breaks was accompan...

  7. Helicobacter pylori AddAB helicase-nuclease and RecA promote recombination-related DNA repair and survival during stomach colonization

    OpenAIRE

    Amundsen, Susan K.; Fero, Jutta; Hansen, Lori M.; Cromie, Gareth A.; Solnick, Jay V.; Smith, Gerald R.; Salama, Nina R.

    2008-01-01

    Helicobacter pylori colonization of the human stomach is characterized by profound disease-causing inflammation. Bacterial proteins that detoxify reactive oxygen species or recognize damaged DNA adducts promote infection, suggesting that H. pylori requires DNA damage-repair for successful in vivo colonization. The molecular mechanisms of repair remain unknown. We identified homologs of the AddAB class of helicase-nuclease enzymes, related to the Escherichia coli RecBCD enzyme, which, with Rec...

  8. The autism-associated gene chromodomain helicase DNA-binding protein 8 (CHD8) regulates noncoding RNAs and autism-related genes

    OpenAIRE

    Wilkinson, B; Grepo, N; Thompson, B. L.; Kim, J.; K. Wang; Evgrafov, O V; Lu, W; Knowles, J A; Campbell, D B

    2015-01-01

    Chromodomain helicase DNA-binding protein 8 (CHD8) was identified as a leading autism spectrum disorder (ASD) candidate gene by whole-exome sequencing and subsequent targeted-sequencing studies. De novo loss-of-function mutations were identified in 12 individuals with ASD and zero controls, accounting for a highly significant association. Small interfering RNA-mediated knockdown of CHD8 in human neural progenitor cells followed by RNA sequencing revealed that CHD8 insufficiency results in alt...

  9. Intracytoplasmic stable expression of IgG1 antibody targeting NS3 helicase inhibits replication of highly efficient hepatitis C Virus 2a clone

    OpenAIRE

    Clementi Massimo; Burioni Roberto; Liu Gerald; Prabhu Ramesh; Gunduz Feyza; Poat Bret; Hazari Sidhartha; Chandra Partha K; Garry Robert F; Dash Srikanta

    2010-01-01

    Abstract Background Hepatitis C virus (HCV) infection is a major public health problem with more than 170 million cases of chronic infections worldwide. There is no protective vaccine currently available for HCV, therefore the development of novel strategy to prevent chronic infection is important. We reported earlier that a recombinant human antibody clone blocks viral NS3 helicase activity and inhibits replication of HCV 1b virus. This study was performed further to explore the mechanism of...

  10. A novel function for the DEAD-box RNA helicase DDX-23 in primary microRNA processing in Caenorhabditis elegans.

    Science.gov (United States)

    Chu, Yu-De; Chen, Hsin-Kai; Huang, Tao; Chan, Shih-Peng

    2016-01-15

    Primary microRNAs (pri-miRNAs) are cleaved by the nuclear RNase III Drosha to produce hairpin-shaped precursor miRNAs (pre-miRNAs). In humans, this process is known to be facilitated by the DEAD-box helicases p68 (DDX5) and p72 (DDX17). In this study, we performed a candidate-based RNAi screen in C. elegans to identify DEAD/H-box proteins involved in miRNA biogenesis. In a let-7(mg279) sensitized genetic background, knockdown of a homolog of yeast splicing factor Prp28p, DDX-23, or a homolog of human helicases p68 and p72, DDX-17, enhanced let-7 loss-of-function phenotypes, suggesting that these helicases play a role in let-7 processing and/or function. In both ddx-23(RNAi) and ddx-17(RNAi), levels of mature let-7 were decreased while pri-let-7 was found to accumulate, indicating that the helicases likely act at the level of pri-let-7 processing. DDX-23 and DDX-17 were also required for the biogenesis of other known heterochronic miRNAs, including lin-4 and the let-7 family members miR-48, miR-84 and miR-241. Their function was not confined to the heterochronic pathway, however, since they were both necessary for down-regulation of cog-1 by the spatial patterning miRNA, lsy-6. Here, we present a novel function for C. elegans DDX-23 in pri-miRNA processing, and also suggest a conserved role for DDX-17 in this process.

  11. Lumbosacral motor polyneuropathy

    OpenAIRE

    S. A. Malmberg; E. N. Rudenko

    2012-01-01

    The case of lumbosacral motor neuropathy (LSMN) in 15-yers old patient with diabetes mellitus (type I) is presented. Clinical and electromyographical patterns are considered and effectiveness of corticosteroid therapy is estimated. The differential features and taxonomic position of LSMN and chronic inflammatory demyelinating polyneuropathy (CIDP) are discussed. The necessity of some liberalization of CIDP diagnostic criteria is demonstrated.

  12. Aprendizaje y desarrollo motor

    OpenAIRE

    Guillén Guillén, Eva I.

    2006-01-01

    El desarrollo evolutivo general del niño/a en relación con los procesos de maduración motora, procesos de aprendizaje y desarrollo motor. Técnicas de aprendizaje. Técnica de solución de conflictos. Balances musculares.

  13. Motor Incoordination in ADHD

    OpenAIRE

    J Gordon Millichap

    2004-01-01

    The relationship between motor performance, attention deficit, impulsiveness, and hyperactivity in 42 school-aged children with ADHD (36 males, 6 females; mean age 8 years 2 months; range 6-11 years) was studied at National Taiwan University, Taipei, Taiwan.

  14. Thermal Brownian motor

    OpenAIRE

    Meurs, P.; Broeck, C. Van Den

    2005-01-01

    Recently, a thermal Brownian motor was introduced [Van den Broeck, Kawai and Meurs, Phys. Rev. Lett. (2004)], for which an exact microscopic analysis is possible. The purpose of this paper is to review some further properties of this construction, and to discuss in particular specific issues including the relation with macroscopic response and the efficiency at maximum power.

  15. Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes.

    Science.gov (United States)

    Ladomery, M; Wade, E; Sommerville, J

    1997-01-01

    In investigating the composition of stored (maternal) mRNP particles in Xenopus oocytes, attention has focussed primarily on the phosphoproteins pp60/56, which are Y-box proteins involved in a general packaging of mRNA. We now identify a third, abundant, integral component of stored mRNP particles, Xp54, which belongs to the family of DEAD-box RNA helicases. Xp54 was first detected by its ability to photocrosslink ATP. Subsequent sequence analysis identifies Xp54 as a member of a helicase subfamily which includes: human p54, encoded at a chromosomal breakpoint in the B-cell lymphoma cell line, RC-K8; Drosophila ME31B, encoded by a maternally-expressed gene, and Saccharomyces pombe Ste13, cloned by complementation of the sterility mutant ste13. Expression studies reveal that the gene encoding Xp54 is transcribed maximally at early oogenesis: no transcripts are detected in adult tissues, other than ovary. Using a monospecific antibody raised against native Xp54, its presence in mRNP particles is confirmed by immunoblotting fractions bound to oligo(dT)-cellulose and separated by rate sedimentation and buoyant density. On isolating Xp54 from mRNP particles, it is shown to possess an ATP-dependent RNA helicase activity. Possible functions of Xp54 are discussed in relation to the assembly and utilization of mRNP particles. PMID:9023105

  16. DNA unwinding step-size of E. coli RecBCD helicase determined from single turnover chemical quenched-flow kinetic studies.

    Science.gov (United States)

    Lucius, Aaron L; Vindigni, Alessandro; Gregorian, Razmic; Ali, Janid A; Taylor, Andrew F; Smith, Gerald R; Lohman, Timothy M

    2002-11-29

    The mechanism by which Escherichia coli RecBCD DNA helicase unwinds duplex DNA was examined in vitro using pre-steady-state chemical quenched-flow kinetic methods. Single turnover DNA unwinding experiments were performed by addition of ATP to RecBCD that was pre-bound to a series of DNA substrates containing duplex DNA regions ranging from 24 bp to 60 bp. In each case, the time-course for formation of completely unwound DNA displayed a distinct lag phase that increased with duplex length, reflecting the transient formation of partially unwound DNA intermediates during unwinding catalyzed by RecBCD. Quantitative analysis of five independent sets of DNA unwinding time courses indicates that RecBCD unwinds duplex DNA in discrete steps, with an average unwinding "step-size", m=3.9(+/-1.3)bp step(-1), with an average unwinding rate of k(U)=196(+/-77)steps s(-1) (mk(U)=790(+/-23)bps(-1)) at 25.0 degrees C (10mM MgCl(2), 30 mM NaCl (pH 7.0), 5% (v/v) glycerol). However, additional steps, not linked directly to DNA unwinding are also detected. This kinetic DNA unwinding step-size is similar to that determined for the E.coli UvrD helicase, suggesting that these two SF1 superfamily helicases may share similar mechanisms of DNA unwinding. PMID:12445778

  17. Crystal structures of the BsPif1 helicase reveal that a major movement of the 2B SH3 domain is required for DNA unwinding.

    Science.gov (United States)

    Chen, Wei-Fei; Dai, Yang-Xue; Duan, Xiao-Lei; Liu, Na-Nv; Shi, Wei; Li, Na; Li, Ming; Dou, Shou-Xing; Dong, Yu-Hui; Rety, Stephane; Xi, Xu-Guang

    2016-04-01

    Pif1 helicases are ubiquitous members of the SF1B family and are essential for maintaining genome stability. It was speculated that Pif1-specific motifs may fold in specific structures, conferring distinct activities upon it. Here, we report the crystal structures of the Pif1 helicase fromBacteroides sppwith and without adenosine triphosphate (ATP) analog/ssDNA. BsPif1 shares structural similarities with RecD2 and Dda helicases but has specific features in the 1B and 2B domains. The highly conserved Pif1 family specific sequence motif interacts with and constraints a putative pin-loop in domain 1B in a precise conformation. More importantly, we found that the 2B domain which contains a specific extended hairpin undergoes a significant rotation and/or movement upon ATP and DNA binding, which is absolutely required for DNA unwinding. We therefore propose a mechanism for DNA unwinding in which the 2B domain plays a predominant role. The fact that the conformational change regulates Pif1 activity may provide insight into the puzzling observation that Pif1 becomes highly processive during break-induced replication in association with Polδ, while the isolated Pif1 has low processivity. PMID:26809678

  18. Recruitment of Arabidopsis RNA Helicase AtRH9 to the Viral Replication Complex by Viral Replicase to Promote Turnip Mosaic Virus Replication.

    Science.gov (United States)

    Li, Yinzi; Xiong, Ruyi; Bernards, Mark; Wang, Aiming

    2016-01-01

    Positive-sense RNA viruses have a small genome with very limited coding capacity and are highly dependent on host components to fulfill their life cycle. Recent studies have suggested that DEAD-box RNA helicases play vital roles in many aspects of RNA metabolism. To explore the possible role of the RNA helicases in viral infection, we used the Turnip mosaic virus (TuMV)-Arabidopsis pathosystem. The Arabidopsis genome encodes more than 100 putative RNA helicases (AtRH). Over 41 Arabidopsis T-DNA insertion mutants carrying genetic lesions in the corresponding 26 AtRH genes were screened for their requirement in TuMV infection. TuMV infection assays revealed that virus accumulation significantly decreased in the Arabidopsis mutants of three genes, AtRH9, AtRH26, and PRH75. In the present work, AtRH9 was further characterized. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays showed that AtRH9 interacted with the TuMV NIb protein, the viral RNA-dependent RNA polymerase. Moreover, the subcellular distribution of AtRH9 was altered in the virus-infected cells, and AtRH9 was recruited to the viral replication complex. These results suggest that Arabidopsis AtRH9 is an important component of the TuMV replication complex, possibly recruited via its interaction with NIb. PMID:27456972

  19. RNA Packaging Motor: From Structure to Quantum Mechanical Modelling and Sequential-Stochastic Mechanism

    Directory of Open Access Journals (Sweden)

    Jelena Telenius

    2008-01-01

    Full Text Available The bacteriophages of the Cystoviridae family package their single stranded RNA genomic precursors into empty capsid (procapsids using a hexameric packaging ATPase motor (P4. This molecular motor shares sequence and structural similarity with RecA-like hexameric helicases. A concerted structural, mutational and kinetic analysis helped to define the mechanical reaction coordinate, i.e. the conformational changes associated with RNA translocation. The results also allowed us to propose a possible scheme of coupling between ATP hydrolysis and translocation which requires the cooperative action of three consecutive subunits. Here, we first test this model by preparing hexamers with defined proportions of wild type and mutant subunits and measuring their activity. Then, we develop a stochastic kinetic model which accounts for the catalytic cooperativity of the P4 hexamer. Finally, we use the available structural information to construct a quantum-chemical model of the chemical reaction coordinate and obtain a detailed description of the electron density changes during ATP hydrolysis. The model explains the results of the mutational analyses and yields new insights into the role of several conserved residues within the ATP binding pocket. These hypotheses will guide future experimental work.

  20. An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7.

    Directory of Open Access Journals (Sweden)

    Yanmei Xu

    Full Text Available Enterohaemorrhagic Escherichia coli (EHEC O157:H7 is a major cause of zoonotic food- and water-borne intestinal infections worldwide with clinical consequences ranging from mild diarrhoea to hemolytic uraemic syndrome. The genome of EHEC O157:H7 contains many regions of unique DNA that are referred to as O islands including the Shiga toxin prophages and pathogenicity islands encoding key virulence factors. However many of these O islands are of unknown function. In this study, genetic analysis was conducted on OI-172 which is a 44,434 bp genomic island with 27 open reading frames. Comparative genome analysis showed that O1-72 is a composite island with progressive gain of genes since O157:H7 evolved from its ancestral O55:H7. A partial OI-172 island was also found in 2 unrelated E. coli strains and 2 Salmonella strains. OI-172 encodes several putative helicases, one of which (Z5898 is a putative DEAH box RNA helicase. To investigate the function of Z5898, a deletion mutant (EDL933ΔZ5898 was constructed in the O157:H7 strain EDL933. Comparative proteomic analysis of the mutant with the wild-type EDL933 found that flagellin was down-regulated in the Z5898 mutant. Motility assay showed that EDL933ΔZ5898 migrated slower than the wild-type EDL933 and electron microscopy found no surface flagella. Quantitative reverse transcription PCR revealed that the fliC expression of EDL933ΔZ5898 was significantly lower while the expression of its upstream regulator gene, fliA, was not affected. Using a fliA and a fliC promoter - green fluorescent protein fusion contruct, Z5898 was found to affect only the fliC promoter activity. Therefore, Z5898 regulates the flagella based motility by exerting its effect on fliC. We conclude that OI-172 is a motility associated O island and hereby name it the MAO island.

  1. FANCJ helicase uniquely senses oxidative base damage in either strand of duplex DNA and is stimulated by replication protein A to unwind the damaged DNA substrate in a strand-specific manner.

    Science.gov (United States)

    Suhasini, Avvaru N; Sommers, Joshua A; Mason, Aaron C; Voloshin, Oleg N; Camerini-Otero, R Daniel; Wold, Marc S; Brosh, Robert M

    2009-07-01

    FANCJ mutations are genetically linked to the Fanconi anemia complementation group J and predispose individuals to breast cancer. Understanding the role of FANCJ in DNA metabolism and how FANCJ dysfunction leads to tumorigenesis requires mechanistic studies of FANCJ helicase and its protein partners. In this work, we have examined the ability of FANCJ to unwind DNA molecules with specific base damage that can be mutagenic or lethal. FANCJ was inhibited by a single thymine glycol, but not 8-oxoguanine, in either the translocating or nontranslocating strands of the helicase substrate. In contrast, the human RecQ helicases (BLM, RECQ1, and WRN) display strand-specific inhibition of unwinding by the thymine glycol damage, whereas other DNA helicases (DinG, DnaB, and UvrD) are not significantly inhibited by thymine glycol in either strand. In the presence of replication protein A (RPA), but not Escherichia coli single-stranded DNA-binding protein, FANCJ efficiently unwound the DNA substrate harboring the thymine glycol damage in the nontranslocating strand; however, inhibition of FANCJ helicase activity by the translocating strand thymine glycol was not relieved. Strand-specific stimulation of human RECQ1 helicase activity was also observed, and RPA bound with high affinity to single-stranded DNA containing a single thymine glycol. Based on the biochemical studies, we propose a model for the specific functional interaction between RPA and FANCJ on the thymine glycol substrates. These studies are relevant to the roles of RPA, FANCJ, and other DNA helicases in the metabolism of damaged DNA that can interfere with basic cellular processes of DNA metabolism. PMID:19419957

  2. Antigen Incorporation on Cryptosporidium parvum Oocyst Walls

    OpenAIRE

    Entrala Emilio; Sbihi Younes; Sánchez-Moreno Manuel; Mascaró Carmen

    2001-01-01

    Cryptosporidium parvum oocysts are the infective stages responsible for transmission and survival of the organism in the environment. In the present work we show that the oocyst wall, far from being a static structure, is able to incorporate antigens by a mechanism involving vesicle fusion with the wall, and the incorporation of the antigen to the outer oocyst wall. Using immunoelectron microscopy we show that the antigen recognized by a monoclonal antibody used for diagnosis of cryptosporidi...

  3. Histocompatibility antigens in coal miners with pneumoconiosis.

    OpenAIRE

    Soutar, C A; Coutts, I.; Parkes, W R; Dodi, I. A.; Gauld, S; Castro, J E; Turner-Warwick, M

    1983-01-01

    Twenty-five histocompatibility antigens have been measured in 100 coal miners with pneumoconiosis attending a pneumoconiosis medical panel and the results compared with a panel of 200 normal volunteers not exposed to dust. Chest radiographs were read independently by three readers according to the ILO U/C classification. On a combined score, 40 men were thought to have simple pneumoconiosis and 60 men complicated pneumoconiosis. The number of antigens tested and associations between antigens ...

  4. Acute exercise improves motor memory

    DEFF Research Database (Denmark)

    Skriver, Kasper Christen; Roig, Marc; Lundbye-Jensen, Jesper;

    2014-01-01

    We have recently shown that a single bout of acute cardiovascular exercise improves motor skill learning through an optimization of long-term motor memory. Here we expand this previous finding, to explore potential exercise-related biomarkers and their association with measures of motor memory...... practice whereas lactate correlated with better retention 1 hour as well as 24 hours and 7 days after practice. Thus, improvements in motor skill acquisition and retention induced by acute cardiovascular exercise are associated with increased concentrations of biomarkers involved in memory and learning...... processes. More mechanistic studies are required to elucidate the specific role of each biomarker in the formation of motor memory....

  5. Control linear motor with DSP

    International Nuclear Information System (INIS)

    This book consists of control linear motor with DSP, which is composed of two parts. The title of the first part is control Algorithm and software with introduction and tracking controller, drive profile on decision of motion time, floating point DSP and quantization effect, motion override Algorithm and drive profile summary, design of digital controller on design for controller structure and analysis of PID control Loop and Motor turning, design for IIR digital filter and protocol structure for communication wit host. The second part describes control hardware, which mentions Linear motor and Amplifier, motor and power supply, DSP board and interface, control of Micro Linear Stepping Motor and conclusion.

  6. Motor learning by observing.

    Science.gov (United States)

    Mattar, Andrew A G; Gribble, Paul L

    2005-04-01

    Learning complex motor behaviors like riding a bicycle or swinging a golf club is based on acquiring neural representations of the mechanical requirements of movement (e.g., coordinating muscle forces to control the club). Here we provide evidence that mechanisms matching observation and action facilitate motor learning. Subjects who observed a video depicting another person learning to reach in a novel mechanical environment (imposed by a robot arm) performed better when later tested in the same environment than subjects who observed similar movements but no learning; moreover, subjects who observed learning of a different environment performed worse. We show that this effect is not based on conscious strategies but instead depends on the implicit engagement of neural systems for movement planning and control. PMID:15820701

  7. Ironless armature torque motor

    Science.gov (United States)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  8. Understanding social motor coordination.

    Science.gov (United States)

    Schmidt, R C; Fitzpatrick, Paula; Caron, Robert; Mergeche, Joanna

    2011-10-01

    Recently there has been much interest in social coordination of motor movements, or as it is referred to by some researchers, joint action. This paper reviews the cognitive perspective's common coding/mirror neuron theory of joint action, describes some of its limitations and then presents the behavioral dynamics perspective as an alternative way of understanding social motor coordination. In particular, behavioral dynamics' ability to explain the temporal coordination of interacting individuals is detailed. Two experiments are then described that demonstrate how dynamical processes of synchronization are apparent in the coordination underlying everyday joint actions such as martial art exercises, hand-clapping games, and conversations. The import of this evidence is that emergent dynamic patterns such as synchronization are the behavioral order that any neural substrate supporting joint action (e.g., mirror systems) would have to sustain.

  9. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. We differ from other animals in having direct cortical connections to spinal motoneurons, which bypass spinal...... interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands...... and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus...

  10. Lumbosacral motor polyneuropathy

    Directory of Open Access Journals (Sweden)

    S. A. Malmberg

    2012-01-01

    Full Text Available The case of lumbosacral motor neuropathy (LSMN in 15-yers old patient with diabetes mellitus (type I is presented. Clinical and electromyographical patterns are considered and effectiveness of corticosteroid therapy is estimated. The differential features and taxonomic position of LSMN and chronic inflammatory demyelinating polyneuropathy (CIDP are discussed. The necessity of some liberalization of CIDP diagnostic criteria is demonstrated.

  11. 350 KVA motor generators

    CERN Multimedia

    1974-01-01

    Each logic circuit in the central computers consumes only a fraction of a watt: however, the final load constituted by many such circuits plus peripheral equipment is nearly half a million watts. Shown here are two 350 KVA motor generators used to convert 50 Hz mains to 60 Hz (US standard). Flywheels on the M.G. shafts remove power dropouts of up to 0.5 s.

  12. Motor evoked potential polyphasia

    OpenAIRE

    Chowdhury, Fahmida A.; Pawley, Adam D.; Ceronie, Bryan; Nashef, Lina; Robert D C Elwes; Richardson, Mark P

    2015-01-01

    Objective: We compared the motor evoked potential (MEP) phases using transcranial magnetic stimulation in patients with idiopathic generalized epilepsy (IGE), their relatives, and healthy controls, hypothesizing that patients and their unaffected relatives may share a subtle pathophysiologic abnormality. Methods: In a cross-sectional study, we investigated 23 patients with IGE, 34 first-degree relatives, and 30 matched healthy controls. Transcranial magnetic stimulation was performed to produ...

  13. The Modern Motor Industry

    OpenAIRE

    Garel Rhys

    2001-01-01

    The motor industry is experiencing one of its periods of massive change. This involves considerable micro- and macroeconomic effects, reflecting the structure and behaviour of the industry and its scale of operations within an economy. The industry is a highly rivalrous oligopoly, where although there is product differentiation, competition, both price and non-price, is considerable. This impacts upon the nature of vehicle demand, including environmental issues. Supply conditions in the indus...

  14. Motor Fuel Excise Taxes

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  15. Dyspraxia, motor function and visual-motor integration in autism.

    Science.gov (United States)

    Miller, M; Chukoskie, L; Zinni, M; Townsend, J; Trauner, D

    2014-08-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis. PMID:24742861

  16. Characterization of papillomavirus E1 helicase mutants defective for interaction with the SUMO-conjugating enzyme Ubc9

    International Nuclear Information System (INIS)

    The E1 helicase from BPV and HPV16 interacts with Ubc9 to facilitate viral genome replication. We report that HPV11 E1 also interacts with Ubc9 in vitro and in the yeast two-hybrid system. Residues in E1 involved in oligomerization (353-435) were sufficient for binding to Ubc9 in vitro, but the origin-binding and ATPase domains were additionally required in yeast. Nuclear accumulation of BPV E1 was shown previously to depend on its interaction with Ubc9 and sumoylation on lysine 514. In contrast, HPV11 and HPV16 E1 mutants defective for Ubc9 binding remained nuclear even when the SUMO pathway was inhibited. Furthermore, we found that K514 in BPV E1 and the analogous K559 in HPV11 E1 are not essential for nuclear accumulation of E1. These results suggest that the interaction of E1 with Ubc9 is not essential for its nuclear accumulation but, rather, depends on its oligomerization and binding to DNA and ATP.

  17. Structure based modification of Bluetongue virus helicase protein VP6 to produce a viable VP6-truncated BTV

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Eiko [Microbiology and Immunology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe-City 657-8501 (Japan); Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT (United Kingdom); Leon, Esther; Matthews, Steve J. [Division of Molecular Biosciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Roy, Polly, E-mail: polly.roy@lshtm.ac.uk [Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT (United Kingdom)

    2014-09-05

    Highlights: • NMR analysis on BTV VP6 reveals two large loop regions. • The loss of a loop (aa 34–130) does not affect the overall fold of the protein. • A region of VP6 (aa 34–92) is not required for BTV replication. • A region of VP6 (aa 93–130) plays an essential role in the virus replication. - Abstract: Bluetongue virus core protein VP6 is an ATP hydrolysis dependent RNA helicase. However, despite much study, the precise role of VP6 within the viral capsid and its structure remain unclear. To investigate the requirement of VP6 in BTV replication, we initiated a structural and biological study. Multinuclear nuclear magnetic resonance spectra were assigned on his-tagged full-length VP6 (329 amino acid residues) as well as several truncated VP6 variants. The analysis revealed a large structured domain with two large loop regions that exhibit significant conformational exchange. One of the loops (amino acid position 34–130) could be removed without affecting the overall fold of the protein. Moreover, using a BTV reverse genetics system, it was possible to demonstrate that the VP6-truncated BTV was viable in BHK cells in the absence of any helper VP6 protein, suggesting that a large portion of this loop region is not absolutely required for BTV replication.

  18. Mitotic phosphorylation of Bloom helicase at Thr182 is required for its proteasomal degradation and maintenance of chromosomal stability.

    Science.gov (United States)

    Kharat, S S; Tripathi, V; Damodaran, A P; Priyadarshini, R; Chandra, S; Tikoo, S; Nandhakumar, R; Srivastava, V; Priya, S; Hussain, M; Kaur, S; Fishman, J B; Sengupta, S

    2016-02-25

    Mutations in Bloom helicase (BLM) lead to Bloom Syndrome (BS). BS is characterized by multiple clinical manifestations including predisposition to a wide spectrum of cancers. Studies have revealed the mechanism of BLM recruitment after stalled replication and its role during the repair of DNA damage. We now provide evidence that BLM undergoes K48-linked ubiquitylation and subsequent degradation during mitosis due to the E3 ligase, Fbw7α. Fbw7α carries out its function after GSK3β- and CDK2/cyclin A2-dependent phosphorylation events on Thr171 and Ser175 of BLM which lies within a well-defined phosphodegron, a sequence which is conserved in all primates. Phosphorylation on BLM Thr171 and Ser175 depends on prior phosphorylation at Thr182 by Chk1/Chk2. Thr182 phosphorylation not only controls BLM ubiquitylation and degradation during mitosis but is also a determinant for its localization on the ultrafine bridges. Consequently lack of Thr182 phosphorylation leads to multiple manifestations of chromosomal instability including increased levels of DNA damage, lagging chromatin, micronuclei formation, breaks and quadriradials. Hence Thr182 phosphorylation on BLM has two functions-it regulates BLM turnover during mitosis and also helps to maintain the chromosomal stability. PMID:26028025

  19. Structural Studies of RNA Helicases Involved in Eukaryotic Pre-mRNA Splicing, Ribosome Biogenesis, and Translation Initiation

    DEFF Research Database (Denmark)

    He, Yangzi

    and ligates the neighbouring exons to generate mature mRNAs. Prp43 is an RNA helicase of the DEAH/RHA family. In yeast, once mRNAs are released, Prp43 catalyzes the disassembly of spliceosomes. The 18S, 5.8S and 25S rRNAs are transcribed as a single polycistronic transcript—the 35S pre......-rRNA. It is nucleolytically cleaved and chemically modified to generate mature rRNAs, which assemble with ribosomal proteins to form the ribosome. Prp43 is required for the processing of the 18S rRNA. Using X-ray crystallography, I determined a high resolution structure of Prp43 bound to ADP, the first structure of a DEAH......Ribonucleic acids (RNAs) take centre stage in gene expression. In eukaryotes, most RNAs are transcribed as precursors, and these precursors are co- or post-transcriptionally processed and assemble with particular proteins to form ribonucleoproteins (RNPs). Mature RNPs participate in various gene...

  20. Molecular architecture of the recombinant human MCM2-7 helicase in complex with nucleotides and DNA.

    Science.gov (United States)

    Boskovic, Jasminka; Bragado-Nilsson, Elisabeth; Saligram Prabhakar, Bhargrav; Yefimenko, Igor; Martínez-Gago, Jaime; Muñoz, Sergio; Méndez, Juan; Montoya, Guillermo

    2016-09-16

    DNA replication is a key biological process that involves different protein complexes whose assembly is rigorously regulated in a successive order. One of these complexes is a replicative hexameric helicase, the MCM complex, which is essential for the initiation and elongation phases of replication. After the assembly of a double heterohexameric MCM2-7 complex at replication origins in G1, the 2 heterohexamers separate from each other and associate with Cdc45 and GINS proteins in a CMG complex that is capable of unwinding dsDNA during S phase. Here, we have reconstituted and characterized the purified human MCM2-7 (hMCM2-7) hexameric complex by co-expression of its 6 different subunits in insect cells. The conformational variability of the complex has been analyzed by single particle electron microscopy in the presence of different nucleotide analogs and DNA. The interaction with nucleotide stabilizes the complex while DNA introduces conformational changes in the hexamer inducing a cylindrical shape. Our studies suggest that the assembly of GINS and Cdc45 to the hMCM2-7 hexamer would favor conformational changes on the hexamer bound to ssDNA shifting the cylindrical shape of the complex into a right-handed spiral conformation as observed in the CMG complex bound to DNA.

  1. RNA helicase Belle (DDX3) is essential for male germline stem cell maintenance and division in Drosophila.

    Science.gov (United States)

    Kotov, Alexei A; Olenkina, Oxana M; Kibanov, Mikhail V; Olenina, Ludmila V

    2016-06-01

    The present study showed that RNA helicase Belle (DDX3) was required intrinsically for mitotic progression and survival of germline stem cells (GSCs) and spermatogonial cells in the Drosophila melanogaster testes. We found that deficiency of Belle in the male germline resulted in a strong germ cell loss phenotype. Early germ cells are lost through cell death, whereas somatic hub and cyst cell populations are maintained. The observed phenotype is related to that of the human Sertoli Cell-Only Syndrome caused by the loss of DBY (DDX3) expression in the human testes and results in a complete lack of germ cells with preservation of somatic Sertoli cells. We found the hallmarks of mitotic G2 delay in early germ cells of the larval testes of bel mutants. Both mitotic cyclins, A and B, are markedly reduced in the gonads of bel mutants. Transcription levels of cycB and cycA decrease significantly in the testes of hypomorph bel mutants. Overexpression of Cyclin B in the germline partially rescues germ cell survival, mitotic progression and fertility in the bel-RNAi knockdown testes. Taken together, these results suggest that a role of Belle in GSC maintenance and regulation of early germ cell divisions is associated with the expression control of mitotic cyclins. PMID:26876306

  2. Relationship between osteosarcoma and ionizing radiation hypersensitive human B lymphocyte cells lacking RecQL4 helicase

    International Nuclear Information System (INIS)

    Japanese society is now facing a transition period from aging society to super aging society. Concomitant with this situation, it is estimated that number of cancer patients and the requirement of less invasive Radiation Therapy (RT) for cancers will increase. Therefore, understanding of mechanisms without delay on second cancers caused by RT is indispensable. Osteosarcoma, an aggressive bone tumor frequently occurring 5% of cancers in young adult and children, increase statistically after RT for cancers. Although, mutation in p53, Rb and RecQL4 genes statistically relate with osteosarcoma incidence, precise mechanisms of osteosarcoma development by ionizing Radiation (IR) remain to be elucidated. Genome instability is one of the tumor promoting factors and we focused on RecQL4 in RecQ helicase family, which is involved in aging and cancer. We established RecQL4 knock-in human B lymphocyte Nalm-6 cells and found their hypersensitivity to IR, replication fork stall/collapses after IR. In this review, we summarize recently published studies on genetic cancer-predisposing syndrome and possible origins of bone cancers induced by IR. Then, we discuss what and how we address molecular mechanisms on osteosarcoma induced by IR in the future. (author)

  3. ATP-dependent recruitment of export factor Aly/REF onto intronless mRNAs by RNA helicase UAP56.

    Science.gov (United States)

    Taniguchi, Ichiro; Ohno, Mutsuhito

    2008-01-01

    Loading of export factors onto mRNAs is a key step in gene expression. In vertebrates, splicing plays a role in this process. Specific protein complexes, exon junction complex and transcription/export complex, are loaded onto mRNAs in a splicing-dependent manner, and adaptor proteins such as Aly/REF in the complexes in turn recruit mRNA exporter TAP-p15 onto the RNA. By contrast, how export factors are recruited onto intronless mRNAs is largely unknown. We previously showed that Aly/REF is preferentially associated with intronless mRNAs in the nucleus. Here we show that Aly/REF could preferentially bind intronless mRNAs in vitro and that this binding was stimulated by RNA helicase UAP56 in an ATP-dependent manner. Consistently, an ATP binding-deficient UAP56 mutant specifically inhibited mRNA export in Xenopus oocytes. Interestingly, ATP activated the RNA binding activity of UAP56 itself. ATP-bound UAP56 therefore bound to both RNA and Aly/REF, and as a result ATPase activity of UAP56 was cooperatively stimulated. These results are consistent with a model in which ATP-bound UAP56 chaperones Aly/REF onto RNA, ATP is then hydrolyzed, and UAP56 dissociates from RNA for the next round of Aly/REF recruitment. Our finding provides a mechanistic insight into how export factors are recruited onto mRNAs.

  4. RNA helicase Belle (DDX3) is essential for male germline stem cell maintenance and division in Drosophila.

    Science.gov (United States)

    Kotov, Alexei A; Olenkina, Oxana M; Kibanov, Mikhail V; Olenina, Ludmila V

    2016-06-01

    The present study showed that RNA helicase Belle (DDX3) was required intrinsically for mitotic progression and survival of germline stem cells (GSCs) and spermatogonial cells in the Drosophila melanogaster testes. We found that deficiency of Belle in the male germline resulted in a strong germ cell loss phenotype. Early germ cells are lost through cell death, whereas somatic hub and cyst cell populations are maintained. The observed phenotype is related to that of the human Sertoli Cell-Only Syndrome caused by the loss of DBY (DDX3) expression in the human testes and results in a complete lack of germ cells with preservation of somatic Sertoli cells. We found the hallmarks of mitotic G2 delay in early germ cells of the larval testes of bel mutants. Both mitotic cyclins, A and B, are markedly reduced in the gonads of bel mutants. Transcription levels of cycB and cycA decrease significantly in the testes of hypomorph bel mutants. Overexpression of Cyclin B in the germline partially rescues germ cell survival, mitotic progression and fertility in the bel-RNAi knockdown testes. Taken together, these results suggest that a role of Belle in GSC maintenance and regulation of early germ cell divisions is associated with the expression control of mitotic cyclins.

  5. A computational framework for influenza antigenic cartography.

    Directory of Open Access Journals (Sweden)

    Zhipeng Cai

    Full Text Available Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. Antigenic characterization based on hemagglutination inhibition (HI assay is one of the routine procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic correlations among testing antigens (viruses and reference antisera (antibodies. Moreover, antigenic characterization is usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS. In this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with herd immunity effect (such as those from Human influenza viruses, we propose a temporal model to reduce the inherent temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.

  6. A computational framework for influenza antigenic cartography.

    Science.gov (United States)

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2010-10-07

    Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. Antigenic characterization based on hemagglutination inhibition (HI) assay is one of the routine procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic correlations among testing antigens (viruses) and reference antisera (antibodies). Moreover, antigenic characterization is usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS). In this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with herd immunity effect (such as those from Human influenza viruses), we propose a temporal model to reduce the inherent temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.

  7. Segmented motor drive - with multi-phase induction motor

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus

    This PhD project commences in modulation of motor drives, i.e. having the advantage of reducing the number of variants and improves the system reliability at error situations. Four different motor drive topologies with modular construction as common denominator are compared on a general level....... The multi-phase motor is selected for further analysis. The project is limited to examine if increasing the number of phases can improve the characteristics for induction motor drives. In the literature it is demonstrated that torque production in a six-phase motor can be increased, if a 3rd harmonic...... current with 1/6 amplitude is added to the 1st harmonic current. This claim is verified and the optimization of the motor design is extended to, beyond the stator tooth width, also to include the inner diameter of the stator. This means that the lamination sheet is optimized according to two geometrical...

  8. Virosomes for antigen and DNA delivery

    NARCIS (Netherlands)

    Daemen, T; de Mare, A; Bungener, L; de Jonge, J; Huckriede, A; Wilschut, J

    2005-01-01

    Specific targeting and delivery as well as the display of antigens on the surface of professional antigen-presenting cells (APCs) are key issues in the design and development of new-generation vaccines aimed at the induction of both humoral and cell-mediated immunity. Prophylactic vaccination agains

  9. Protein antigen delivery by gene gun-mediated epidermal antigen incorporation (EAI).

    Science.gov (United States)

    Scheiblhofer, Sandra; Ritter, Uwe; Thalhamer, Josef; Weiss, Richard

    2013-01-01

    The gene gun technology can not only be employed for efficient transfer of gene vaccines into upper layers of the skin, but also for application of protein antigens. As a tissue rich in professional antigen presenting cells, the skin represents an attractive target for immunizations. In this chapter we present a method for delivery of the model antigen ovalbumin into the skin of mice termed epidermal antigen incorporation and describe in detail how antigen-specific proliferation in draining lymph nodes can be followed by flow cytometry.

  10. Multimotor Driven Cargos: From Single Motor under Load to the Role of Motor-Motor Coupling.

    Science.gov (United States)

    Peker, Itay; Granek, Rony

    2016-07-01

    Motor proteins constitute an essential part of the cellular machinery. They have been the subject of intensive studies in the past two decades. Yet, when several motors simultaneously carry a single cargo, the effect of motor-motor coupling, such as mutual stalling and jamming, remains unclear. We commence by constructing a general model for single motor motion, which is a product of a derived load-dependent expression and a phenomenological motor specific function. Forming the latter according to recent single molecule measurements for a given load, the model correctly predicts the motor full step-size distribution for all other measured loads. We then use our proposed model to predict transport properties of multimotor complexes, with particular attention to 1-dimensional constructs with variable flexibility, motor density, and number of motors: (i) a chain of motors connected by springs, a recently studied construction of a pair, and (ii) an array of motors all connected by identical springs to a stiff rod, which is essentially a mirror image of standard gliding motility assays. In both systems, and for any number of carrying motors, we find that, while low flexibility results in a strongly damped velocity, increased flexibility renders an almost single motor velocity. Comparing our model based simulations to recent gliding assays we find remarkable qualitative agreement. We also demonstrate consistency with other multimotor motility assays. In all cases, the characteristic spring constant, that controls the crossover behavior between high and low velocity regimes, is found to be the stalling force divided by the mean step size. We conjecture that this characteristic spring constant can serve as a tool for engineering multimotor complexes. PMID:27044876

  11. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  12. Motor Equivalence in Speech Production

    OpenAIRE

    Perrier, Pascal; Fuchs, Susanne

    2015-01-01

    International audience The first section provides a description of the concepts of “motor equivalence” and “degrees of freedom”. It is illustrated with a few examples of motor tasks in general and of speech production tasks in particular. In the second section, the methodology used to investigate experimentally motor equivalence phenomena in speech production is presented. It is mainly based on paradigms that perturb the perception-action loop during on-going speech, either by limiting the...

  13. High-performance motor drives

    OpenAIRE

    Kazmierkowski, Marian P.; García Franquelo, Leopoldo; Rodríguez, José; Pérez, Marcelo; León Galván, José Ignacio

    2011-01-01

    This article reviews the present state and trends in the development of key parts of controlled induction motor drive systems: converter topologies, modulation methods, as well as control and estimation techniques. Two- and multilevel voltage-source converters, current-source converters, and direct converters are described. The main part of all the produced electric energy is used to feed electric motors, and the conversion of electrical power into mechanical power involves motors ranges from...

  14. Motor fuel prices in Turkey

    International Nuclear Information System (INIS)

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  15. Motor cortical plasticity induced by motor learning through mental practice.

    Directory of Open Access Journals (Sweden)

    Laura eAvanzino

    2015-04-01

    Full Text Available Several investigations suggest that actual and mental actions trigger similar neural substrates. Motor learning via physical practice results in long-term potentiation (LTP-like plasticity processes, namely potentiation of M1 and a temporary occlusion of additional LTP-like plasticity. However, whether this neuroplasticity process contributes to improve motor performance through mental practice remains to be determined. Here, we tested skill learning-dependent changes in primary motor cortex (M1 excitability and plasticity by means of transcranial magnetic stimulation in subjects trained to physically execute or mentally perform a sequence of finger opposition movements. Before and after physical practice and motor-imagery practice, M1 excitability was evaluated by measuring the input-output (IO curve of motor evoked potentials. M1 long-term potentiation (LTP and long-term depression (LTD-like plasticity was assessed with paired-associative stimulation (PAS of the median nerve and motor cortex using an interstimulus interval of 25 ms (PAS25 or 10 ms (PAS10, respectively. We found that even if after both practice sessions subjects significantly improved their movement speed, M1 excitability and plasticity were differentially influenced by the two practice sessions. First, we observed an increase in the slope of IO curve after physical but not after motor-imagery practice. Second, there was a reversal of the PAS25 effect from LTP-like plasticity to LTD-like plasticity following physical and motor-imagery practice. Third, LTD-like plasticity (PAS10 protocol increased after physical practice, whilst it was occluded after motor-imagery practice. In conclusion, we demonstrated that motor-imagery practice lead to the development of neuroplasticity, as it affected the PAS25- and PAS10- induced plasticity in M1. These results, expanding the current knowledge on how motor-imagery training shapes M1 plasticity, might have a potential impact in

  16. Overview of Bearingless Induction Motors

    Directory of Open Access Journals (Sweden)

    Xiaodong Sun

    2014-01-01

    Full Text Available Bearingless induction motors combining functions of both torque generation and noncontact magnetic suspension together have attracted more and more attention in the past decades due to their definite advantages of compactness, simple structure, less maintenance, no wear particles, high rotational speed, and so forth. This paper overviews the key technologies of the bearingless induction motors, with emphasis on motor topologies, mathematical models, and control strategies. Particularly, in the control issues, the vector control, independent control, direct torque control, nonlinear decoupling control, sensorless control, and so forth are investigated. In addition, several possible development trends of the bearingless induction motors are also discussed.

  17. Further characterization of filarial antigens by SDS polyacrylamide gel electrophoresis

    OpenAIRE

    Dissanayake, S.; Galahitiyawa, S. C.; Ismail, M. M.

    1983-01-01

    SDS (sodium dodecyl sulfate)-polyacrylamide gel electrophoresis of an antigen isolated from sera of Wuchereria bancrofti-infected patients and Setaria digitata antigen SD2-4 is reported. Both antigens showed carbohydrate (glycoprotein) staining. The W. bancrofti antigen had an apparent relative molecular mass of 35 000 while the S. digitata antigen SD2-4 migrated at the marker dye position on SDS-polyacrylamide gel electrophoresis. SDS treatment of these antigens did not abolish the precipita...

  18. Biophysical Characterization of G-Quadruplex Recognition in the PITX1 mRNA by the Specificity Domain of the Helicase RHAU.

    Directory of Open Access Journals (Sweden)

    Emmanuel O Ariyo

    Full Text Available Nucleic acids rich in guanine are able to fold into unique structures known as G-quadruplexes. G-quadruplexes consist of four tracts of guanylates arranged in parallel or antiparallel strands that are aligned in stacked G-quartet planes. The structure is further stabilized by Hoogsteen hydrogen bonds and monovalent cations centered between the planes. RHAU (RNA helicase associated with AU-rich element is a member of the ATP-dependent DExH/D family of RNA helicases and can bind and resolve G-quadruplexes. RHAU contains a core helicase domain with an N-terminal extension that enables recognition and full binding affinity to RNA and DNA G-quadruplexes. PITX1, a member of the bicoid class of homeobox proteins, is a transcriptional activator active during development of vertebrates, chiefly in the anterior pituitary gland and several other organs. We have previously demonstrated that RHAU regulates PITX1 levels through interaction with G-quadruplexes at the 3'-end of the PITX1 mRNA. To understand the structural basis of G-quadruplex recognition by RHAU, we characterize a purified minimal PITX1 G-quadruplex using a variety of biophysical techniques including electrophoretic mobility shift assays, UV-VIS spectroscopy, circular dichroism, dynamic light scattering, small angle X-ray scattering and nuclear magnetic resonance spectroscopy. Our biophysical analysis provides evidence that the RNA G-quadruplex, but not its DNA counterpart, can adopt a parallel orientation, and that only the RNA can interact with N-terminal domain of RHAU via the tetrad face of the G-quadruplex. This work extends our insight into how the N-terminal region of RHAU recognizes parallel G-quadruplexes.

  19. Identification of two DNA helicases UvrD and DinG as suppressors for lethality caused by mutant cspA mRNAs.

    Science.gov (United States)

    Hwang, Jihwan; Lee, Kangseok; Phadtare, Sangita; Inouye, Masayori

    2012-01-01

    CspA is a major cold shock-inducible protein (70 aa), and its major role in the cold shock response was shown to be as an RNA chaperone destabilizing secondary structure of mRNAs at low temperature. Previously, we showed that the overexpression of mutant cspA containing premature non-sense codons at various positions led to stalled ribosomes on mutant cspA transcripts, ultimately leading to cell death. This lethality is primarily due to the highly translatable cspA 5'-UTR that recruits most of the ribosomes from other mRNAs, which are then stalled at the abnormal stop codon. This was called the 'LACE' effect. We show here that non-sense mutation even at the 67th position as well as substitutions of aromatic amino acid residues present on the RNA-binding surface of CspA protein to alanine caused the LACE effect by trapping a substantial amount of ribosomes on cspA mRNAs. In an attempt to identify a suppressor(s), which may help the cells to recover from the inhibitory LACE effect, genetic screening of an Escherichia coli genomic library was performed. We isolated suppressors that contained the genomic fragments encoding uvrD and dinG, respectively, whose gene products are ATP-dependent DNA helicases. The nucleic acid-binding and ATPase activities of these two helicases were found to be essential for their suppression activity. This genomic screening offers an approach to shed light on the mechanistic of 5'-UTR of cspA mRNA and novel roles of E. coli helicases that function in DNA repair. PMID:22832783

  20. Infranuclear ocular motor disorders.

    Science.gov (United States)

    Lueck, Christian J

    2011-01-01

    This chapter covers the very large number of possible disorders that can affect the three ocular motor nerves, the neuromuscular junction, or the extraocular muscles. Conditions affecting the nerves are discussed under two major headings: those in which the site of damage can be anatomically localized (e.g., fascicular lesions and lesions occurring in the subarachnoid space, the cavernous sinus, the superior orbital fissure, or the orbit) and those in which the site of the lesion is either nonspecific or variable (e.g., vascular lesions, tumors, "ophthalmoplegic migraine," and congenital disorders). Specific comments on the diagnosis and management of disorders of each of the three nerves follow. Ocular motor synkineses (including Duane's retraction syndrome and aberrant regeneration) and disorders resulting in paroxysms of excess activity (e.g., neuromyotonia) are then covered, followed by myasthenia gravis and other disorders that affect the neuromuscular junction. A final section discusses disorders of the extraocular muscles themselves, including thyroid disease, orbital myositis, mitochondrial disease, and the muscular dystrophies. PMID:21601071

  1. Motor-operated valve (MOV) actuator motor and gearbox testing

    International Nuclear Information System (INIS)

    Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency

  2. Meningococcal vaccine antigen diversity in global databases.

    Science.gov (United States)

    Brehony, Carina; Hill, Dorothea M; Lucidarme, Jay; Borrow, Ray; Maiden, Martin C

    2015-01-01

    The lack of an anti-capsular vaccine against serogroup B meningococcal disease has necessitated the exploration of alternative vaccine candidates, mostly proteins exhibiting varying degrees of antigenic variation. Analysis of variants of antigen-encoding genes is facilitated by publicly accessible online sequence repositories, such as the Neisseria PubMLST database and the associated Meningitis Research Foundation Meningococcus Genome Library (MRF-MGL). We investigated six proposed meningococcal vaccine formulations by deducing the prevalence of their components in the isolates represented in these repositories. Despite high diversity, a limited number of antigenic variants of each of the vaccine antigens were prevalent, with strong associations of particular variant combinations with given serogroups and genotypes. In the MRF-MGL and globally, the highest levels of identical sequences were observed with multicomponent/multivariant vaccines. Our analyses further demonstrated that certain combinations of antigen variants were prevalent over periods of decades in widely differing locations, indicating that vaccine formulations containing a judicious choice of antigen variants have potential for long-term protection across geographic regions. The data further indicated that formulations with multiple variants would be especially relevant at times of low disease incidence, as relative diversity was higher. Continued surveillance is required to monitor the changing prevalence of these vaccine antigens. PMID:26676305

  3. Effect of ASP2151, a herpesvirus helicase-primase inhibitor, in a guinea pig model of genital herpes.

    Science.gov (United States)

    Katsumata, Kiyomitsu; Chono, Koji; Sudo, Kenji; Shimizu, Yasuaki; Kontani, Toru; Suzuki, Hiroshi

    2011-08-25

    ASP2151 is a herpesvirus helicase-primase inhibitor with antiviral activity against varicella zoster virus and herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Here, we examined the potency and efficacy of ASP2151 against HSV in vitro and in vivo. We found that ASP2151 was more potent in inhibiting the replication of HSV-1 and HSV-2 in Vero cells in the plaque reduction assay and had greater anti-HSV activity in a guinea pig model of genital herpes than did acyclovir and valacyclovir (VACV), respectively. Oral ASP2151 given from the day of infection reduced peak and overall disease scores in a dose-dependent manner, resulting in complete prevention of symptoms at the dose of 30 mg/kg. The 50% effective dose (ED(50)) values for ASP2151 and VACV were 0.37 and 68 mg/kg, respectively, indicating that ASP2151 was 184-fold more potent than VACV. When ASP2151 was administered after the onset of symptoms, the disease course of genital herpes was suppressed more effectively than by VACV, with a significant reduction in disease score observed one day after starting ASP2151 at 30 mg/kg, whereas the therapeutic effect of VACV was only evident three days after treatment at the highest dose tested (300 mg/kg). This indicated that ASP2151 possesses a faster onset of action and wider therapeutic time window than VACV. Further, virus shedding from the genital mucosa was significantly reduced with ASP2151 at 10 and 30 mg/kg but not with VACV, even at 300 mg/kg. Taken together, our present findings demonstrated the superior potency and efficacy of ASP2151 against HSV.

  4. Effect of ASP2151, a Herpesvirus Helicase-Primase Inhibitor, in a Guinea Pig Model of Genital Herpes

    Directory of Open Access Journals (Sweden)

    Toru Kontani

    2011-08-01

    Full Text Available ASP2151 is a herpesvirus helicase-primase inhibitor with antiviral activity against varicella zoster virus and herpes simplex virus types 1 (HSV-1 and 2 (HSV-2. Here, we examined the potency and efficacy of ASP2151 against HSV in vitro and in vivo. We found that ASP2151 was more potent in inhibiting the replication of HSV-1 and HSV-2 in Vero cells in the plaque reduction assay and had greater anti-HSV activity in a guinea pig model of genital herpes than did acyclovir and valacyclovir (VACV, respectively. Oral ASP2151 given from the day of infection reduced peak and overall disease scores in a dose-dependent manner, resulting in complete prevention of symptoms at the dose of 30 mg/kg. The 50% effective dose (ED50 values for ASP2151 and VACV were 0.37 and 68 mg/kg, respectively, indicating that ASP2151 was 184-fold more potent than VACV. When ASP2151 was administered after the onset of symptoms, the disease course of genital herpes was suppressed more effectively than by VACV, with a significant reduction in disease score observed one day after starting ASP2151 at 30 mg/kg, whereas the therapeutic effect of VACV was only evident three days after treatment at the highest dose tested (300 mg/kg. This indicated that ASP2151 possesses a faster onset of action and wider therapeutic time window than VACV. Further, virus shedding from the genital mucosa was significantly reduced with ASP2151 at 10 and 30 mg/kg but not with VACV, even at 300 mg/kg. Taken together, our present findings demonstrated the superior potency and efficacy of ASP2151 against HSV.

  5. Pharmacokinetics and pharmacodynamics of ASP2151, a helicase-primase inhibitor, in a murine model of herpes simplex virus infection.

    Science.gov (United States)

    Katsumata, Kiyomitsu; Chono, Koji; Kato, Kota; Ohtsu, Yoshiaki; Takakura, Shoji; Kontani, Toru; Suzuki, Hiroshi

    2013-03-01

    ASP2151 (amenamevir) is a helicase-primase inhibitor against herpes simplex virus 1 (HSV-1), HSV-2, and varicella zoster virus. Here, to determine and analyze the correlation between the pharmacodynamic (PD) and pharmacokinetic (PK) parameters of ASP2151, we examined the PD profile of ASP2151 using in vitro plaque reduction assay and a murine model of HSV-1 infection. ASP2151 inhibited the in vitro replication of HSV-1 with a mean 50% effective concentration (EC(50)) of 14 ng/ml. In the cutaneously HSV-1-infected mouse model, ASP2151 dose dependently suppressed intradermal HSV-1 growth, with the effect reaching a plateau at a dose of 30 mg/kg of body weight/day. The dose fractionation study showed that intradermal HSV-1 titers were below the detection limit in mice treated with ASP2151 at 100 mg/kg/day divided into two daily doses and at 30 or 100 mg/kg/day divided into three daily doses. The intradermal HSV-1 titer correlated with the maximum concentration of drug in serum (C(max)), the area under the concentration-time curve over 24 h (AUC(24h)), and the time during which the concentration of ASP2151 in plasma was above 100 ng/ml (T(>100)). The continuous infusion of ASP2151 effectively decreased intradermal HSV-1 titers below the limit of detection in mice in which the ASP2151 concentration in plasma reached 79 to 145 ng/ml. Our findings suggest that the antiviral efficacy of ASP2151 is most closely associated with the PK parameter T(>100) in HSV-1-infected mice. Based on these results, we propose that a plasma ASP2151 concentration exceeding 100 ng/ml for 21 to 24 h per day provides the maximum efficacy in HSV-1-infected mice.

  6. RNA Helicase DDX5 Regulates MicroRNA Expression and Contributes to Cytoskeletal Reorganization in Basal Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Huang, Jing; Hu, Zhi

    2011-11-15

    RNA helicase DDX5 (also p68) is involved in all aspects of RNA metabolism and serves as a transcriptional co-regulator, but its functional role in breast cancer remains elusive. Here, we report an integrative biology study of DDX5 in breast cancer, encompassing quantitative proteomics, global MicroRNA profiling, and detailed biochemical characterization of cell lines and human tissues. We showed that protein expression of DDX5 increased progressively from the luminal to basal breast cancer cell lines, and correlated positively with that of CD44 in the basal subtypes. Through immunohistochemistry analyses of tissue microarrays containing over 200 invasive human ductal carcinomas, we observed that DDX5 was upregulated in the majority of malignant tissues, and its expression correlated strongly with those of Ki67 and EGFR in the triple-negative tumors. We demonstrated that DDX5 regulated a subset of MicroRNAs including miR-21 and miR-182 in basal breast cancer cells. Knockdown of DDX5 resulted in reorganization of actin cytoskeleton and reduction of cellular proliferation. The effects were accompanied by upregulation of tumor suppressor PDCD4 (a known miR-21 target); as well as upregulation of cofilin and profilin, two key proteins involved in actin polymerization and cytoskeleton maintenance, as a consequence of miR-182 downregulation. Treatment with miR-182 inhibitors resulted in morphologic phenotypes resembling those induced by DDX5 knockdown. Using bioinformatics tools for pathway and network analyses, we confirmed that the network for regulation of actin cytoskeleton was predominantly enriched for the predicted downstream targets of miR-182. Our results reveal a new functional role of DDX5 in breast cancer via the DDX5→miR-182→actin cytoskeleton pathway, and suggest the potential clinical utility of DDX5 and its downstream MicroRNAs in the theranostics of breast cancer.

  7. Targeting helicase-dependent amplification products with an electrochemical genosensor for reliable and sensitive screening of genetically modified organisms.

    Science.gov (United States)

    Moura-Melo, Suely; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Dos Santos Junior, J Ribeiro; da Silva Fonseca, Rosana A; Lobo-Castañón, Maria Jesús

    2015-08-18

    Cultivation of genetically modified organisms (GMOs) and their use in food and feed is constantly expanding; thus, the question of informing consumers about their presence in food has proven of significant interest. The development of sensitive, rapid, robust, and reliable methods for the detection of GMOs is crucial for proper food labeling. In response, we have experimentally characterized the helicase-dependent isothermal amplification (HDA) and sequence-specific detection of a transgene from the Cauliflower Mosaic Virus 35S Promoter (CaMV35S), inserted into most transgenic plants. HDA is one of the simplest approaches for DNA amplification, emulating the bacterial replication machinery, and resembling PCR but under isothermal conditions. However, it usually suffers from a lack of selectivity, which is due to the accumulation of spurious amplification products. To improve the selectivity of HDA, which makes the detection of amplification products more reliable, we have developed an electrochemical platform targeting the central sequence of HDA copies of the transgene. A binary monolayer architecture is built onto a thin gold film where, upon the formation of perfect nucleic acid duplexes with the amplification products, these are enzyme-labeled and electrochemically transduced. The resulting combined system increases genosensor detectability up to 10(6)-fold, allowing Yes/No detection of GMOs with a limit of detection of ∼30 copies of the CaMV35S genomic DNA. A set of general utility rules in the design of genosensors for detection of HDA amplicons, which may assist in the development of point-of-care tests, is also included. The method provides a versatile tool for detecting nucleic acids with extremely low abundance not only for food safety control but also in the diagnostics and environmental control areas.

  8. The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Trego, Kelly S.; Chernikova, Sophia B.; Davalos, Albert R.; Perry, J. Jefferson P.; Finger, L. David; Ng, Cliff; Tsai, Miaw-Sheue; Yannone, Steven M.; Tainer, John A.; Campisi, Judith; Cooper, Priscilla K.

    2011-04-20

    XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar sub-nuclear redistribution in S-phase and co-localize in nuclear foci. The co-localization was observed in mid- to late-S-phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain protein markers of both stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains, but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S-phase that is at least in part carried out coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.

  9. Identification of RNA Helicase A as a New Host Factor in the Replication Cycle of Foot-and-Mouth Disease Virus▿ †

    OpenAIRE

    Lawrence, Paul; Rieder, Elizabeth

    2009-01-01

    Foot-and-mouth disease virus (FMDV), as with other RNA viruses, recruits various host cell factors to assist in the translation and replication of the virus genome. In this study, we investigated the role of RNA helicase A (RHA) in the life cycle of FMDV. Immunofluorescent microscopy (IFM) showed a change in the subcellular distribution of RHA from the nucleus to the cytoplasm in FMDV-infected cells as infection progressed. Unlike nuclear RHA, the RHA detected in the cytoplasm reacted with an...

  10. Drosophila nuclear factor DREF regulates the expression of the mitochondrial DNA helicase and mitochondrial transcription factor B2 but not the mitochondrial translation factor B1

    OpenAIRE

    Fernández-Moreno, Miguel A.; Hernández, Rosana; Adán, Cristina; Roberti, Marina; Bruni, Francesco; Polosa, Paola Loguercio; Cantatore, Palmiro; Matsushima, Yuichi; Kaguni, Laurie S.; Garesse, Rafael

    2013-01-01

    DREF [DRE (DNA replication-related element)-binding factor] controls the transcription of numerous genes in Drosophila, many involved in nuclear DNA (nDNA) replication and cell proliferation, three in mitochondrial DNA (mtDNA) replication and two in mtDNA transcription termination. In this work, we have analysed the involvement of DREF in the expression of the known remaining genes engaged in the minimal mtDNA replication (d-mtDNA helicase) and transcription (the activator d-mtTFB2) machineri...

  11. RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases

    OpenAIRE

    Baharoglu, Zeynep; Lestini, Roxane; Duigou, Stéphane; Michel, Bénédicte

    2010-01-01

    Abstract We observed that cells lacking Rep and UvrD, two replication accessory helicases, and the recombination protein RecF are cryo-sensitive on rich medium. We isolated five mutations that suppress this LB-cryo-sensitivity and show that they map in the genes encoding the RNA polymerase subunits RpoB and RpoC. These rpoB (D444G, H447R and N518D) and rpoC mutants (H113R and P451L) were characterized. rpoBH447R and rpoBD444G prevent activation of the Prrn core promoter in rich med...

  12. Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA

    OpenAIRE

    Minczuk, M.; Piwowarski, J.; Papworth, M.A.; Awiszus, K.; Schalinski, S.; Dziembowski, A.; Dmochowska, A.; Bartnik, E; Tokatlidis, K; Stepien, P P; Borowski, P

    2002-01-01

    We characterised the human hSuv3p protein belonging to the family of NTPases/helicases. In yeast mitochondria the hSUV3 orthologue is a component of the degradosome complex and participates in mtRNA turnover and processing, while in Caenorhabditis elegans the hSUV3 orthologue is necessary for viability of early embryos. Using immunofluorescence analysis, an in vitro mitochondrial uptake assay and sub‐fractionation of human mitochondria we show hSuv3p to be a soluble protein localised in the m...

  13. Antigen incorporation on Cryptosporidium parvum oocyst walls

    Directory of Open Access Journals (Sweden)

    Entrala Emilio

    2001-01-01

    Full Text Available Cryptosporidium parvum oocysts are the infective stages responsible for transmission and survival of the organism in the environment. In the present work we show that the oocyst wall, far from being a static structure, is able to incorporate antigens by a mechanism involving vesicle fusion with the wall, and the incorporation of the antigen to the outer oocyst wall. Using immunoelectron microscopy we show that the antigen recognized by a monoclonal antibody used for diagnosis of cryptosporidiosis (Merifluor®, Meridian Diagnostic Inc. could be found associated with vesicles in the space between the sporozoites and the oocysts wall, and incorporated to the outer oocyst wall by an unknown mechanism.

  14. Energy-saving motor; Energiesparmotor

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes the development and testing of an advanced electrical motor using a permanent-magnet rotor. The aims of the project - to study the technical feasibility and market potential of the Eco-Motor - are discussed and the three phases of the project described. These include the calculation and realisation of a 250-watt prototype operating at 230 V, the measurement of the motor's characteristics as well as those of a comparable asynchronous motor on the test bed at the University of Applied Science in Lucerne, Switzerland, and a market study to establish if the Eco-Motor and its controller can compete against normal asynchronous motors. Also, the results of an analysis of the energy-savings potential is made, should such Eco-Motors be used. Detailed results of the three phases of the project are presented and the prospects of producing such motors in Switzerland for home use as well as for export are examined.

  15. Motor Coordination and Executive Functions

    Science.gov (United States)

    Michel, Eva

    2012-01-01

    Since Piaget, the view that motor and cognitive development are interrelated has gained wide acceptance. However, empirical research on this issue is still rare. Few studies show a correlation of performance in cognitive and motor tasks in typically developing children. More specifically, Diamond A. (2000) hypothesizes an involvement of executive…

  16. Motor-operated gearbox efficiency

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  17. Letecký motor

    OpenAIRE

    Kalugin, Ivan

    2011-01-01

    Tato diplomová práce pojednává o konstrukčním návrhu hnacího ústrojí pro plochý letecký zážehový šestiválcový motor o výkonu 102 kW. Dále rozborem vyváženosti pro dané uspořádání motoru a pevnostní kontrolou rozvidlené ojnice. This thesis is focused to design piston rods for aircraft petrol six-cylinder engine with 102 kW output power and project their form. Other part deals with analysis of balancing of arranging and fort control one of piston rod. D

  18. Piezoelectric wave motor

    Science.gov (United States)

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  19. Magnetic bearing and motor

    Science.gov (United States)

    Studer, Philip A. (Inventor)

    1983-01-01

    A magnetic bearing assembly (10) has an intermediate rotatable section (33) having an outer cylindrical member (30) coaxially suspended by a torsion wire (72) around an axially polarized cylindrical magnet (32). Axial alignment between the pole faces (40-43) of the intermediate section (33) and end surfaces (50-53) of opposed end bells (20, 22) provides a path of least reluctance across intervening air gaps (60-63) for the magnetic flux emanating from magnet (32). Radial dislocation increases the reluctance and creates a radial restoring force. Substitution of radially polarized magnets 107 fixed to a magnetically permeable cylinder (32') and insertion of pairs of armature coil windings (109-112) between the cylinder pair (33') provides an integral magnetic bearing and torsion motor (100) able to provide arcuately limited rotational drive.

  20. Magnetický motor

    OpenAIRE

    Aubrecht, Ondřej

    2010-01-01

    V předkládané bakalářské práci jsou analyzovány a vzájemně porovnávány vybrané druhy magnetických motorů. U každého motoru je uveden krátký popis a kritické zhodnocení jeho vlastností. V další části jsou všechny magnetické motory porovnány a je vybrán typ motoru pro simulaci. Simulace jsou provedeny v programech COMSOL Multiphysics a Femm. V poslední části práce je simulace ověřena na reálném prototypu magnetického motoru a zhodnocení výsledků.

  1. Activities for a Perceptual Motor Program.

    Science.gov (United States)

    Brinning, Dorothy; And Others

    Perceptual motor activities for physically handicapped children are presented in the areas of fine and gross motor skills. Also detailed are activities to develop body image, visual motor skills, and tactile and auditory perception. (JD)

  2. Prostate-specific antigen (PSA) blood test

    Science.gov (United States)

    Prostate-specific antigen; Prostate cancer screening test; PSA ... PSA testing is an important tool for detecting prostate cancer, but it is not foolproof. Other conditions can cause a rise in PSA, including: A larger prostate ...

  3. Mapping Epitopes on a Protein Antigen by the Proteolysis of Antigen-Antibody Complexes

    Science.gov (United States)

    Jemmerson, Ronald; Paterson, Yvonne

    1986-05-01

    A monoclonal antibody bound to a protein antigen decreases the rate of proteolytic cleavage of the antigen, having the greatest effect on those regions involved in antibody contact. Thus, an epitope can be identified by the ability of the antibody to protect one region of the antigen more than others from proteolysis. By means of this approach, two distinct epitopes, both conformationally well-ordered, were characterized on horse cytochrome c.

  4. Actions to promote energy efficient electric motors. Motors study group

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.T. de [Coimbra Univ. (PT). Inst. of Systems and Robotics (ISR)

    1996-10-01

    Motor electricity consumption is influenced by many factors including: motor efficiency, motor speed controls, power supply quality, harmonics, systems oversizing, distribution network, mechanical transmission system, maintenance practices, load management and cycling, and the efficiency of the end-use device (e.g. fan, pump, etc.). Due to their importance, an overview of these factors is presented in this report. This study also describes the electricity use in the industrial and tertiary sectors and the electricity consumption associated with the different types of electric motors systems in the Member States of the European Union, as well as estimated future evolution until 2010. The studies for individual countries were carried out by the different partners of the motors study group at a previous stage. The study has found that there is a lack of accurate information about the motor electricity consumption, installed motor capacity and the motor market in almost all the European Union countries and only some general statistical sources are available. There is little field data, which is mainly available in Denmark, France, Italy and the Netherlands. Due to this lack of primary information, some common assumptions were made, based on the experience of the members of the study group. This lack of end-use characterisation data shows the need for improvement from the point of view of current knowledge. It is therefore recommended that further research is undertaken to arrive at more accurate figures. These could be the basis for a better understanding for motor use in practice and - as a consequence - for a more precise appraisal of potentials and barriers to energy efficiency. (orig.)

  5. Tales of Antigen Evasion from CAR Therapy.

    Science.gov (United States)

    Sadelain, Michel

    2016-06-01

    Both T cells bearing chimeric antigen receptors and tumor-specific antibodies can successfully target some malignancies, but antigen escape can lead to relapse. Two articles in this issue of Cancer Immunology Research explore what effective countermeasures may prevent it. Cancer Immunol Res; 4(6); 473-473. ©2016 AACRSee articles by Zah et al., p. 498, and Rufener et al., p. 509. PMID:27252092

  6. Characterization of an antigenically distinct porcine rotavirus.

    OpenAIRE

    Bridger, J C; Clarke, I. N.; McCrae, M A

    1982-01-01

    A porcine virus with rotavirus morphology, which was antigenically unrelated to previously described rotaviruses, is described. Particles with an outer capsid layer measured 75 nm and those lacking the outer layer were 63 nm in diameter. Particles which resembled cores were also identified. The virus was shown to be antigenically distinct from other rotaviruses as judged by immunofluorescence and immune electron microscopy, and it failed to protect piglets from challenge with porcine rotaviru...

  7. Efficacy of ASP2151, a helicase-primase inhibitor, against thymidine kinase-deficient herpes simplex virus type 2 infection in vitro and in vivo.

    Science.gov (United States)

    Himaki, Takehiro; Masui, Yumi; Chono, Koji; Daikoku, Tohru; Takemoto, Masaya; Haixia, Bo; Okuda, Tomoko; Suzuki, Hiroshi; Shiraki, Kimiyasu

    2012-02-01

    ASP2151 was developed as a novel inhibitor of herpes simplex virus (HSV) and varicella-zoster virus helicase-primase. The anti-HSV activity of ASP2151 toward a clinical HSV isolate with acyclovir (ACV)-resistant/thymidine kinase (TK)-deficiency was characterized in vitro and in vivo using a plaque reduction assay and the ear pinna infection in mice. The IC(50) ranged from 0.018 to 0.024 μg/ml, indicating the susceptibility of TK-deficient HSV-2 was similar to that of wild-type HSV-2 strains. Anti-HSV activity of ASP2151 in vivo was evaluated in mice infected with wild-type HSV-2 and TK-deficient HSV-2. ASP2151 significantly reduced the copy numbers of wild-type HSV-2 and TK-deficient HSV-2 at the inoculation ear pinna, while valacyclovir significantly reduced the copy number of wild type HSV-2 but not that of TK-deficient HSV-2 in the inoculated ear pinna. Thus, ASP 2151 showed therapeutic efficacy in mice infected with both wild-type and TK-deficient HSV-2. In conclusion, ASP2151 is a promising novel herpes helicase-primase inhibitor that indicates the feasibility of ASP2151 for clinical application for the treatment of HSV infections, including ACV-resistant/TK-deficient HSV infection.

  8. The rem mutations in the ATP-binding groove of the Rad3/XPD helicase lead to Xeroderma pigmentosum-Cockayne syndrome-like phenotypes.

    Directory of Open Access Journals (Sweden)

    Emilia Herrera-Moyano

    2014-12-01

    Full Text Available The eukaryotic TFIIH complex is involved in Nucleotide Excision Repair and transcription initiation. We analyzed three yeast mutations of the Rad3/XPD helicase of TFIIH known as rem (recombination and mutation phenotypes. We found that, in these mutants, incomplete NER reactions lead to replication fork breaking and the subsequent engagement of the homologous recombination machinery to restore them. Nevertheless, the penetrance varies among mutants, giving rise to a phenotype gradient. Interestingly, the mutations analyzed reside at the ATP-binding groove of Rad3 and in vivo experiments reveal a gain of DNA affinity upon damage of the mutant Rad3 proteins. Since mutations at the ATP-binding groove of XPD in humans are present in the Xeroderma pigmentosum-Cockayne Syndrome (XP-CS, we recreated rem mutations in human cells, and found that these are XP-CS-like. We propose that the balance between the loss of helicase activity and the gain of DNA affinity controls the capacity of TFIIH to open DNA during NER, and its persistence at both DNA lesions and promoters. This conditions NER efficiency and transcription resumption after damage, which in human cells would explain the XP-CS phenotype, opening new perspectives to understand the molecular basis of the role of XPD in human disease.

  9. The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during MicroRNA biogenesis

    KAUST Repository

    Liu, Chenggang

    2012-04-03

    Dicer-Like1 (DCL1), an RNaseIII endonuclease, and Hyponastic Leaves1 (HYL1), a double-stranded RNA-binding protein, are core components of the plant microRNA (miRNA) biogenesis machinery. hyl1 mutants accumulate low levels of miRNAs and display pleiotropic developmental phenotypes. We report the identification of five new hyl1 suppressor mutants, all of which are alleles of DCL1. These new alleles affect either the helicase or the RNaseIIIa domains of DCL1, highlighting the critical functions of these domains. Biochemical analysis of the DCL1 suppressor variants reveals that they process the primary transcript (pri-miRNA) more efficiently than wild-type DCL1, with both higher Kcat and lower Km values. The DCL1 variants largely rescue wild-type miRNA accumulation levels in vivo, but do not rescue the MIRNA processing precision defects of the hyl1 mutant. In vitro, the helicase domain confers ATP dependence on DCL1-catalyzed MIRNA processing, attenuates DCL1 cleavage activity, and is required for precise MIRNA processing of some substrates. © 2012 American Society of Plant Biologists.

  10. Identification of a putative DEAD-box RNA helicase and a zinc-finger protein in Candida albicans by functional complementation of the S. cerevisiae rok1 mutation.

    Science.gov (United States)

    Kim, W I; Lee, W B; Song, K; Kim, J

    2000-03-30

    We identified two novel genes, CHR1 and CSR1, of the fungal pathogen Candida albicans, by functional complementation of the Saccharomyces cerevisiae rok1 mutation. The Rok1 protein is a member of the DEAD protein family of ATP-dependent RNA helicases. ROK1 is required for cell cycle progression and also for rRNA processing. The CHR1 gene product of 578 amino acids is highly homologous to the Rok1 protein (54% identity) and is considered to be a putative DEAD-box RNA helicase. We predict that the CSR1 gene encodes a 73 kDa protein of 612 amino acids with five zinc-finger motifs at the C-terminal region. CHR1 or CSR1 on a high-copy number plasmid showed a slow-growth phenotype in a condition where the ROK1 expression is turned on from the GAL1 promoter. This result is consistent with the lethality caused by the ROK1 overexpression. We conclude that CHR1 encodes a functional homologue of Rok1 protein and CSR1 is a heterologous suppressor of the rok1 mutation. PMID:10705369

  11. Down-regulation in human cancers of DRHC, a novel helicase-like gene from 17q25.1 that inhibits cell growth.

    Science.gov (United States)

    Nagai, H; Yabe, A; Mine, N; Mikami, I; Fujiwara, H; Terada, Y; Hirano, A; Tsuneizumi, M; Yokota, T; Emi, M

    2003-04-10

    Frequent observations of allelic loss in chromosomal band 17q25.1 in a variety of human cancers have suggested that one or more tumor suppressor genes are normally present in this region. Moreover, a locus responsible for hereditary focal non-epidermolytic palmoplantar keratoderma (tylosis oesophageal cancer; TOC), a condition associated with esophageal cancer, has been mapped to the same band. During efforts to sequence, by shot-gun methods, a 1 Mb target region that we had defined as the DNA segment harboring the putative tumor suppressor gene(s) involved in these events, we identified a novel cDNA, DRHC (down-regulated in human cancers), that showed reduced expression in 28 of 95 (29%) cell lines derived from a variety of human cancers. The full-length cDNA, 6275 bp long, was expressed predominantly in thymus and brain. The predicted 1942-amino-acid product exhibited significant sequence homology to yeast enzymes belonging to the DEAD-helicase superfamily, and appeared to be a Uvr/Rep helicase with a DEXDc consensus domain. Transfection of a DRHC expression vector inhibited growth of cancer cells in liquid medium or soft agar. The results suggest that loss of expression of DRHC may play a role in human carcinogenesis.

  12. An updated evolutionary study of Flaviviridae NS3 helicase and NS5 RNA-dependent RNA polymerase reveals novel invariable motifs as potential pharmacological targets.

    Science.gov (United States)

    Papageorgiou, Louis; Loukatou, Styliani; Sofia, Kossida; Maroulis, Dimitrios; Vlachakis, Dimitrios

    2016-06-21

    The rate of Flaviviridae family virus infections worldwide has increased dramatically in the last few years. In addition, infections caused by arthropod vector viruses including Hepatitis C, West Nile, Dengue fever, Yellow fever and Japanese encephalitis are emerging throughout the world. Based on a recent taxon update, the Flaviviridae family comprises four main genera; Flavivirus, Hepacivirus, Pestivirus and a recent genus Pegivirus. Although the new scientific classification plays a key role in providing useful information about the relationships between viruses, many new documented viruses remain unclassified. Furthermore, based on the different results of several studies the classification is unclear. In an effort to provide more insights into the classification of viruses, a holistic evolutionary study of the two viral enzymes NS3 helicase and NS5 RNA-dependent RNA polymerase (RdRp) has been conducted in this study. These two viral enzymes are very crucial for the inhibition of viruses due to the fact that they are involved in the survival, proliferation and transmission of viruses. The main goal of this study is the presentation of two novel updated phylogenetic trees of the enzymes NS3 helicase and NS5 RdRp as a reliable phylogeny "map" to correlate the information of the closely related viruses and identify new possible targets for the Flaviviridae family virus inhibition. Despite the earliest trials for drugs against Flaviviridae related viruses, no antiviral drug vaccine has been available to date. Therefore there is an urgent need for research towards the development of efficient antiviral agents. PMID:26864387

  13. Submersible canned motor mixer pump

    Science.gov (United States)

    Guardiani, Richard F.; Pollick, Richard D.

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  14. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  15. Terminal decline in motor function.

    Science.gov (United States)

    Wilson, Robert S; Segawa, Eisuke; Buchman, Aron S; Boyle, Patricia A; Hizel, Loren P; Bennett, David A

    2012-12-01

    The study aim was to test the hypothesis that motor function undergoes accelerated decline proximate to death. As part of a longitudinal clinical-pathologic study, 124 older Roman Catholic nuns, priests, and monks completed at least 7 annual clinical evaluations, died, and underwent brain autopsy and uniform neuropathologic examination. Each evaluation included administration of 11 motor tests and 19 cognitive tests from which global measures of motor and cognitive function were derived. The global motor measure (baseline M = 0.82, SD = 0.21) declined a mean 0.024 unit per year (95% confidence interval [CI]: -0.032, -0.016) until a mean of 2.46 years (95% CI: -2.870, -2.108) before death when rate of decline increased nearly fivefold to -0.117 unit per year (95% CI: -0.140, -0.097). The global cognitive measure (baseline M = 0.07, SD = 0.45) declined a mean of 0.027-unit per year (95% CI: -0.041, -0.014) until a mean of 2.76 years (95% CI: -3.157, -2.372) before death when rate of decline increased more than 13-fold to -0.371 unit per year (95% CI: -0.443, -0.306). Onset of terminal motor decline was highly correlated with onset of terminal cognitive decline (r = .94, 95% CI: 0.81, 0.99), but rates of motor and cognitive change were not strongly correlated (preterminal r = .20, 95% CI: -0.05, 0.38; terminal r = .34, 95% CI: 0.03, 0.62). Higher level of plaques and tangles was associated with earlier onset of terminal decline in motor function, but no pathologic measures were associated with rate of preterminal or terminal motor decline. The results demonstrate that motor and cognitive functions both undergo a period of accelerated decline in the last few years of life. PMID:22612603

  16. Motor and non-motor behaviour in experimental Huntington's disease.

    Science.gov (United States)

    Zeef, Dagmar H; Vlamings, Rinske; Lim, Lee Wei; Tan, Sonny; Janssen, Marcus L F; Jahanshahi, Ali; Hoogland, Govert; Prickaerts, Jos; Steinbusch, Harry W M; Temel, Yasin

    2012-01-15

    In this study, we investigated motor and non-motor behaviour in the transgenic rat model of Huntington's disease (tgHD). In particular, we were interested in the development and changes of motor and non-motor features (anxiety, motivation and hedonia) of disease over time and their interactions. We found tgHD animals to be hyperkinetic in the open field test compared to their wild-type littermates at all ages tested, which was accompanied by reduced anxiety-like behaviour in the open field test and the elevated zero maze, but not in the home cage emergence test. No major changes were found in hedonia (sucrose intake test) and motivation for food (food intake test). Our data suggest that hyperkinetic features and reduced-anxiety in the tgHD rats are associated behaviours and are seen in the earlier stages of the disease. PMID:22001615

  17. Identification of novel pathway partners of p68 and p72 RNA helicases through Oncomine meta-analysis

    Directory of Open Access Journals (Sweden)

    Giguère Vincent

    2007-11-01

    Full Text Available Abstract Background The Oncomine™ database is an online collection of microarrays from various sources, usually cancer-related, and contains many "multi-arrays" (collections of analyzed microarrays, in a single study. As there are often many hundreds of tumour samples/microarrays within a single multi-array results from coexpressed genes can be analyzed, and are fully searchable. This gives a potentially significant list of coexpressed genes, which is important to define pathways in which the gene of interest is involved. However, to increase the likelihood of revealing truly significant coexpressed genes we have analyzed their frequency of occurrence over multiple studies (meta-analysis, greatly increasing the significance of results compared to those of a single study. Results We have used the DEAD-box proteins p68(Ddx5 and p72(Ddx17 as models for this coexpression frequency analysis as there are defined functions for these proteins in splicing and transcription (known functions which we could use as a basis for quality control. Furthermore, as these proteins are highly similar, interact together, and may be to some degree functionally redundant, we then analyzed the overlap between coexpressed genes of p68 and p72. This final analysis gave us a highly significant list of coexpressed genes, clustering mainly in splicing and transcription (recapitulating their published roles, but also revealing new pathways such as cytoskeleton remodelling and protein folding. We have further tested a predicted pathway partner, RNA helicase A(Dhx9 in a reciprocal meta-analysis that identified p68 and p72 as being coexpressed, and further show a direct interaction of Dhx9 with p68 and p72, attesting to the predictive nature of this technique. Conclusion In summary we have extended the capabilities of Oncomine™ by analyzing the frequency of coexpressed genes over multiple studies, and furthermore assessing the overlap with a known pathway partner (in this

  18. Motor Integrated Variable Speed Drives

    DEFF Research Database (Denmark)

    Singh, Yash Veer

    A new trend in the variable speed drives (VSDs) is to develop fully integrated systems, which lead to low-cost products with shorter design cycles. Motor Integrated design of VSDs will reduce cable length to connect drive with machine windings and installation time for end user. The electric drives...... so it can fit inside the motor housing. Weight and volume of a filter inductor has to come down drastically to make it a suitable power converter for motor integrated variable speed drives. Introduction of active power electronic switches can ensure very high performance and small size...

  19. IC Design of Motor Ignitor

    Institute of Scientific and Technical Information of China (English)

    TANG Zheng-wei; ZHOU Zhong-qiang

    2008-01-01

    On the basis of analysing traditional motor ignitor, a new motor ignitor design with precise ignition angle control, consistency and low cost is proposed. Techniques of low pertinence to process and power supply are introduced to promote its stability, reliability and unity. This circuit is implemented with a standard CMOS technology with perfect electric static discharge(ESD) design and can work under a broad range of power supply from 3V~5V with a quiescent current less than 2mA and can be widely used in motor with a displacement of 125ml and below.

  20. Frydenbø SABB Motor

    OpenAIRE

    Wong, Caitlin; Gjerdevik, Helene; Cengic, Nina; Fiskerstrand, Sofie Volle

    2011-01-01

    Four international marketing students conducted this thesis on behalf of Frydenbø SABB Motor AS. Frydenbø SABB Motor AS operates as a total supplier of marine diesel engines and equipment, and of their main activities evolves around the lifeboat engine market. The background for the thesis was Frydenbø SABB Motor AS’ desire to establish contact with a manufacturer located in China to produce a new engine to be launched on the Asian lifeboat market. With this new engine Fryde...

  1. Study on The Mechanism of Effects of Lomefloxacin on Biological Properties of Bloom Syndrome Helicase%洛美沙星对Bloom综合征解旋酶生物学特性影响的机理研究

    Institute of Scientific and Technical Information of China (English)

    骆衡; 陈祥; 丁玫; 杨齐心; 许厚强

    2011-01-01

    Bloom syndrome helicase (BLM), an important member of RecQ family of DNA helicases, participates in cell metabolism including DNA repair, recombination, transcription, telomere maintenance, and plays key roles in maintaining chromosome stability. The mutation of BLM helicase may lead to Bloom syndrome. Bloom syndrome is a rare autosomal recessive genetic disorder characterized by genomic instability and the early development of many types of cancer. Lomefloxacin (LMX) may treat many diseases by inhibiting many enzymes in cells and interfering DNA metabolism through binding DNA, but the specific mechanism of action remains unclear. This study was conducted to determine the effects of LMX on DNA-binding activity, helicase activity, and ATPase activity of BLM642 ~1290 helicase by fluorescence polarized technology and free phosphorus assay technology; and the parameters of binding between LMX and helicase were studied by fluorescence and ultraviolet absorption spectroscopy, included binding constants, number of binding sites, the type of acting force, and binding distance. The results indicated that the reaction between the helicase and LMX was occurred spontaneously, there was one binding site between two molecules, the helicase and LMX might compound BLM-LMX complexes caused by electrostatic force and hydrophobic interaction force; moreover, the intrinsic fluorescence of the helicase was static quenched by LMX as a result of non-radioactive energy transfer. In this process, the helicase and ATPase activities were inhibited and DNA-binding activity of the helicase was promoted by LMX. The mechanism of effects of LMX on biological properties of BLM helicase may be included as below: LMX could inhibit the ATPase activity by allosteric mechanism and stabilize the conformation of the enzyme in low helicase activity state, destroy the coupling of ATP hydrolysis to unwinding, and inhibit the unwinding dsDNA by blocking helicase translocation. The reason that LMX could

  2. Dyspraxia, Motor Function and Visual-Motor Integration in Autism

    OpenAIRE

    M. Miller; Chukoskie, L.; Zinni, M.; Townsend, J.; Trauner, D.

    2014-01-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and B...

  3. Understanding motor acts and motor intentions in Williams syndrome.

    Science.gov (United States)

    Sparaci, Laura; Stefanini, Silvia; Marotta, Luigi; Vicari, Stefano; Rizzolatti, Giacomo

    2012-06-01

    Williams syndrome (WS) is a rare genetic disorder associated with unusually hyper-social demeanor and ease with strangers. These personality traits are accompanied by difficulties in social interactions, possibly related, at least in part, to a difficulty in understanding others' mental states. Studies on mentalizing capacities in individuals with WS have often led to contrasting results, some studies revealing specific impairments, others highlighting spared mentalizing capacities. So far, however, no study investigated the performance of individuals with WS in non-inferential understanding of others' motor intentions. In the present study we investigated this capacity by using a computer-based behavioral task using pictures of hand-object interactions. We asked individuals with WS first to describe what the other was doing (i.e. a task implying no kind of intention reading), and secondly, if successful in answering the first question, to describe the motor intention underlying the observed motor acts (i.e. why an act was being done, a task requiring non-inferential motor intention understanding). Results showed that individuals with WS made more errors in understanding what the other was doing (i.e. understanding a motor act) compared to both mental-age matched controls and chronological-age matched peers with typical development, while showing mental-age appropriate performance in understanding why an individual was acting (i.e. understanding a motor intention). These findings suggest novel perspectives for understanding impairments in social behavior in WS.

  4. Turn Motors Off When Not in Use - Motor Tip Sheet #10

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-07-01

    Motors use no energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a NEMA Premium® efficiency motor. In fact, given that 97% of the life cycle cost of purchasing and operating a motor is energy-related, turning a motor off 10% of the time could reduce energy costs enough to purchase three new motors.

  5. Tresyl-Based Conjugation of Protein Antigen to Lipid Nanoparticles Increases Antigen Immunogencity

    Science.gov (United States)

    Jain, Anekant; Yan, Weili; Miller, Keith R.; O'Carra, Ronan; Woodward, Jerold G.; Mumper, Russell J.

    2010-01-01

    The present studies were aimed at investigating the engineering of NPs with protein-conjugated-surfactant at their surface. In order to increase the immunogenicity of a protein antigen, Brij 78 was functionalized by tresyl chloride and then further reacted with the primary amine of the model proteins ovalbumin (OVA) or horseradish peroxide (HRP). The reaction yielded Brij 78-OVA and Brij 78-HRP conjugates which were then used directly to form NP-OVA or NP-HRP using a one-step warm oil-in-water microemulsion precursor method with emulsifying wax as the oil phase, and Brij 78 and the Brij 78-OVA or Brij 78-HRP conjugate as surfactants. Similarly, Brij 700 was conjugated to HIV p24 antigen to yield Brij 700-p24 conjugate. The utility of these NPs for enhancing the immune responses to protein-based vaccines was evaluated in vivo using ovalbumin (OVA) as model protein and p24 as a relevant HIV antigen. In separate in vivo studies, female BALB/c mice were immunized by subcutaneous (s.c.) injection with NP-OVA and NP-p24 formulations along with several control formulations. These results suggested that with multiple antigens, covalent attachment of the antigen to the NP significantly enhanced antigen-specific immune responses. This facile covalent conjugation and incorporation method may be utilized to further incorporate other protein antigens, even multiple antigens, into an enhanced vaccine delivery system. PMID:20837122

  6. Tresyl-based conjugation of protein antigen to lipid nanoparticles increases antigen immunogenicity.

    Science.gov (United States)

    Jain, Anekant; Yan, Weili; Miller, Keith R; O'Carra, Ronan; Woodward, Jerold G; Mumper, Russell J

    2010-11-30

    The present studies were aimed at investigating the engineering of NPs with protein-conjugated-surfactant at their surface. In order to increase the immunogenicity of a protein antigen, Brij 78 was functionalized by tresyl chloride and then further reacted with the primary amine of the model proteins ovalbumin (OVA) or horseradish peroxide (HRP). The reaction yielded Brij 78-OVA and Brij 78-HRP conjugates which were then used directly to form NP-OVA or NP-HRP using a one-step warm oil-in-water microemulsion precursor method with emulsifying wax as the oil phase, and Brij 78 and the Brij 78-OVA or Brij 78-HRP conjugate as surfactants. Similarly, Brij 700 was conjugated to HIV p24 antigen to yield Brij 700-p24 conjugate. The utility of these NPs for enhancing the immune responses to protein-based vaccines was evaluated in vivo using ovalbumin (OVA) as model protein and p24 as a relevant HIV antigen. In separate in vivo studies, female BALB/c mice were immunized by subcutaneous (s.c.) injection with NP-OVA and NP-p24 formulations along with several control formulations. These results suggested that with multiple antigens, covalent attachment of the antigen to the NP significantly enhanced antigen-specific immune responses. This facile covalent conjugation and incorporation method may be utilized to further incorporate other protein antigens, even multiple antigens, into an enhanced vaccine delivery system. PMID:20837122

  7. Cryogenic Rotary Piezoelectric Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric motors operate on the principal of high frequency oscillation of high force precision ceramic elements. The high power oscillations are converted to...

  8. Cryogenic Rotary Piezoelectric Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric motors operate on the principal of converting the high-frequency oscillation of high-force, precision ceramic elements into useful continuous motion....

  9. Annular Hybrid Rocket Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Engineers at SpaceDev have conducted a preliminary design and analysis of a proprietary annular design concept for a hybrid motor. A U.S. Patent application has...

  10. Epilepsy and Fine Motor Function

    OpenAIRE

    J Gordon Millichap; Millichap, John J.

    2014-01-01

    Investigators at Kocaeli University, Pediatric Neurology OP Clinic, Turkey, studied the relationship between fine motor skills and seizure and treatment parameters in 44 children with rolandic epilepsy (RE) and compared to 44 healthy controls.

  11. Motor Impairments in Angelman Syndrome

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available Of 33 children and adolescents (median age 6 years investigated for learning disability, epilepsy, and motor dysfunction to detect suspected Angelman syndrome (AS, in a study at Goteborg University, Sweden, 23 fulfilled criteria for AS.

  12. High Temperature Bell Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme high and low temperature environments as a...

  13. Motor activity improves temporal expectancy.

    Directory of Open Access Journals (Sweden)

    Lilian Fautrelle

    Full Text Available Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1 pointing with a whole-body movement, (2 pointing only with the arm, (3 imagining pointing with a whole-body movement, (4 simply watching the stimulus presentation, (5 pointing with a whole-body movement in response to a target that appeared at irregular intervals (6 reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments.

  14. Motor activity improves temporal expectancy.

    Science.gov (United States)

    Fautrelle, Lilian; Mareschal, Denis; French, Robert; Addyman, Caspar; Thomas, Elizabeth

    2015-01-01

    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments. PMID:25806813

  15. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  16. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  17. Estimation of physical parameters in induction motors

    DEFF Research Database (Denmark)

    Børsting, H.; Knudsen, Morten; Rasmussen, Henrik;

    1994-01-01

    Parameter estimation in induction motors is a field of great interest, because accurate models are needed for robust dynamic control of induction motors......Parameter estimation in induction motors is a field of great interest, because accurate models are needed for robust dynamic control of induction motors...

  18. Electric motor for laser-mechanical drilling

    Energy Technology Data Exchange (ETDEWEB)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  19. LTD, RP, and Motor Learning.

    Science.gov (United States)

    Hirano, Tomoo; Yamazaki, Yoshito; Nakamura, Yoji

    2016-02-01

    Long-term depression (LTD) at excitatory synapses between parallel fibers and a Purkinje cell has been regarded as a critical cellular mechanism for motor learning. However, it was demonstrated that normal motor learning occurs under LTD suppression, suggesting that cerebellar plasticity mechanisms other than LTD also contribute to motor learning. One candidate for such plasticity is rebound potentiation (RP), which is long-term potentiation at inhibitory synapses between a stellate cell and a Purkinje cell. Both LTD and RP are induced by the increase in postsynaptic Ca(2+) concentration, and work to suppress the activity of a Purkinje cell. Thus, LTD and RP might work synergistically, and one might compensate defects of the other. RP induction is dependent on the interaction between GABAA receptor and GABAA receptor binding protein (GABARAP). Transgenic mice expressing a peptide which inhibits binding of GABARAP and GABAA receptor only in Purkinje cells show defects in both RP and adaptation of vestibulo-ocular reflex (VOR), a motor learning paradigm. However, another example of motor learning, adaptation of optokinetic response (OKR), is normal in the transgenic mice. Both VOR and OKR are reflex eye movements suppressing the slip of visual image on the retina during head movement. Previously, we reported that delphilin knockout mice show facilitated LTD induction and enhanced OKR adaptation, but we recently found that VOR adaptation was not enhanced in the knockout mice. These results together suggest that animals might use LTD and RP differently depending on motor learning tasks. PMID:26160222

  20. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  1. Movement Sonification: Audiovisual benefits on motor learning

    Directory of Open Access Journals (Sweden)

    Weber Andreas

    2011-12-01

    Full Text Available Processes of motor control and learning in sports as well as in motor rehabilitation are based on perceptual functions and emergent motor representations. Here a new method of movement sonification is described which is designed to tune in more comprehensively the auditory system into motor perception to enhance motor learning. Usually silent features of the cyclic movement pattern "indoor rowing" are sonified in real time to make them additionally available to the auditory system when executing the movement. Via real time sonification movement perception can be enhanced in terms of temporal precision and multi-channel integration. But beside the contribution of a single perceptual channel to motor perception and motor representation also mechanisms of multisensory integration can be addressed, if movement sonification is configured adequately: Multimodal motor representations consisting of at least visual, auditory and proprioceptive components - can be shaped subtly resulting in more precise motor control and enhanced motor learning.

  2. Antigenic typing Polish isolates of canine parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Mizak, B. [National Veterinary Research Institute, Pulawy (Poland); Plucienniczak, A. [Polish Academy ofd Sciences. Microbiology and Virology Center, Lodz (Poland)

    1995-12-31

    Polish strains of canine parvovirus isolated between 1982 and 1993 were examined to determine the extent to which the virus has evolved antigenically and genetically over eleven years. Two CPV isolates obtained in Warsaw in 1982 and Pulawy in 1993, were examined using monoclonal antibody typing, restriction analysis and sequencing VP-2 protein gene. Five other isolates from Warsaw and Pulawy were tested with the panel of monoclonal antibodies specific to CPV-2, CPV-2a and common for canine parvovirus, feline panleukopenia virus and milk enteritis virus. Results of the studies demonstrated that all isolates tested represented CPV-2a antigenic type. Rapid antigenic strain replacement recorded by Parrish and Senda in the U.S.A and Japan was not confirmed in Poland. (author). 30 refs, 2 tabs.

  3. Antigen sampling in the fish intestine.

    Science.gov (United States)

    Løkka, Guro; Koppang, Erling Olaf

    2016-11-01

    Antigen uptake in the gastrointestinal tract may induce tolerance, lead to an immune response and also to infection. In mammals, most pathogens gain access to the host though the gastrointestinal tract, and in fish as well, this route seems to be of significant importance. The epithelial surface faces a considerable challenge, functioning both as a barrier towards the external milieu but simultaneously being the site of absorption of nutrients and fluids. The mechanisms allowing antigen uptake over the epithelial barrier play a central role for maintaining the intestinal homeostasis and regulate appropriate immune responses. Such uptake has been widely studied in mammals, but also in fish, a number of experiments have been reported, seeking to reveal cells and mechanisms involved in antigen sampling. In this paper, we review these studies in addition to addressing our current knowledge of the intestinal barrier in fish and its anatomical construction. PMID:26872546

  4. Idiopathic focal segmental glomerulosclerosis and HLA antigens.

    Science.gov (United States)

    Gerbase-DeLima, M; Pereira-Santos, A; Sesso, R; Temin, J; Aragão, E S; Ajzen, H

    1998-03-01

    The objective of the present study was to investigate a possible association between HLA class II antigens and idiopathic focal segmental glomerulosclerosis (FSGS). HLA-A, -B, -DR and -DQ antigens were determined in 19 Brazilian patients (16 white subjects and three subjects of Japanese origin) with biopsy-proven FSGS. Comparison of the HLA antigen frequencies between white patients and white local controls showed a significant increase in HLA-DR4 frequency among FSGS patients (37.7 vs 17.2%, P < 0.05). In addition, the three patients of Japanese extraction, not included in the statistical analysis, also presented HLA-DR4. In conclusion, our data confirm the association of FSGS with HLA-DR4 previously reported by others, thus providing further evidence for a role of genes of the HLA complex in the susceptibility to this disease. PMID:9698788

  5. Idiopathic focal segmental glomerulosclerosis and HLA antigens

    Directory of Open Access Journals (Sweden)

    M. Gerbase-DeLima

    1998-03-01

    Full Text Available The objective of the present study was to investigate a possible association between HLA class II antigens and idiopathic focal segmental glomerulosclerosis (FSGS. HLA-A, -B, -DR and -DQ antigens were determined in 19 Brazilian patients (16 white subjects and three subjects of Japanese origin with biopsy-proven FSGS. Comparison of the HLA antigen frequencies between white patients and white local controls showed a significant increase in HLA-DR4 frequency among FSGS patients (37.7 vs 17.2%, P<0.05. In addition, the three patients of Japanese extraction, not included in the statistical analysis, also presented HLA-DR4. In conclusion, our data confirm the association of FSGS with HLA-DR4 previously reported by others, thus providing further evidence for a role of genes of the HLA complex in the susceptibility to this disease

  6. Properties of glycolipid-enriched membrane rafts in antigen presentation.

    Science.gov (United States)

    Rodgers, William; Smith, Kenneth

    2005-01-01

    Presentation of antigen to T cells represents one of the central events in the engagement of the immune system toward the defense of the host against pathogens. Accordingly, understanding the mechanisms by which antigen presentation occurs is critical toward our understanding the properties of host defense against foreign antigen, as well as insight into other features of the immune system, such as autoimmune disease. The entire antigen-presentation event is complex, and many features of it remain poorly understood. However, recent studies have provided evidence showing that glycolipid-enriched membrane rafts are important for efficient antigen presentation; the studies suggest that one such function of rafts is trafficking of antigen-MHC II complexes to the presentation site on the surface of the antigen-presenting cell. Here, we present a critical discussion of rafts and their proposed functions in antigen presentation. Emerging topics of rafts and antigen presentation that warrant further investigation are also highlighted.

  7. Cognition and behavior in motor neuron disease

    OpenAIRE

    Raaphorst, J.

    2015-01-01

    Motor neuron disease (MND) is a devastating neurodegenerative disorder characterized by progressive motor neuron loss, leading to weakness of the muscles of arms and legs, bulbar and respiratory muscles. Depending on the involvement of the lower and the upper motor neuron, amyotrophic lateral sclerosis (ALS; both lower and upper motor neuron affected) and progressive muscular atrophy (PMA; only lower motor neuron affected) are recognized. There is no cure, despite numerous pharmaceutical tria...

  8. Prognosis of motor development and joint hypermobility.

    OpenAIRE

    Tirosh, E; Jaffe, M; Marmur, R; Taub, Y; Rosenberg, Z.

    1991-01-01

    In a study of 59 infants aged 18 months there were 20 with joint hypermobility and delayed motor development, 19 with joint hypermobility and normal motor development, and 20 normal controls. They were reassessed for motor function 3.5 years later at the age of 5 years. Both gross and fine motor performance were significantly delayed in the group of children who exhibited joint hypermobility and motor delay in infancy. No significant delay was evident in those with joint hypermobility only. J...

  9. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Directory of Open Access Journals (Sweden)

    Ewoud Bernardus Compeer

    2012-03-01

    Full Text Available The cross-presentation of endocytosed antigen as peptide/class I MHC complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells (APC capable of antigen cross-presentation, description of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC, there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlight DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, recycling and maturation including the sorting of membrane proteins, dynamic remodeling of endosomal structures and cell-surface directed endosomal trafficking. We will conclude with description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  10. Antigen-Antibody Interaction Database (AgAbDb): a compendium of antigen-antibody interactions.

    Science.gov (United States)

    Kulkarni-Kale, Urmila; Raskar-Renuse, Snehal; Natekar-Kalantre, Girija; Saxena, Smita A

    2014-01-01

    Antigen-Antibody Interaction Database (AgAbDb) is an immunoinformatics resource developed at the Bioinformatics Centre, University of Pune, and is available online at http://bioinfo.net.in/AgAbDb.htm. Antigen-antibody interactions are a special class of protein-protein interactions that are characterized by high affinity and strict specificity of antibodies towards their antigens. Several co-crystal structures of antigen-antibody complexes have been solved and are available in the Protein Data Bank (PDB). AgAbDb is a derived knowledgebase developed with an objective to compile, curate, and analyze determinants of interactions between the respective antigen-antibody molecules. AgAbDb lists not only the residues of binding sites of antigens and antibodies, but also interacting residue pairs. It also helps in the identification of interacting residues and buried residues that constitute antibody-binding sites of protein and peptide antigens. The Antigen-Antibody Interaction Finder (AAIF), a program developed in-house, is used to compile the molecular interactions, viz. van der Waals interactions, salt bridges, and hydrogen bonds. A module for curating water-mediated interactions has also been developed. In addition, various residue-level features, viz. accessible surface area, data on epitope segment, and secondary structural state of binding site residues, are also compiled. Apart from the PDB numbering, Wu-Kabat numbering and explicit definitions of complementarity-determining regions are provided for residues of antibodies. The molecular interactions can be visualized using the program Jmol. AgAbDb can be used as a benchmark dataset to validate algorithms for prediction of B-cell epitopes. It can as well be used to improve accuracy of existing algorithms and to design new algorithms. AgAbDb can also be used to design mimotopes representing antigens as well as aid in designing processes leading to humanization of antibodies. PMID:25048123

  11. Interference in motor learning - is motor interference sensory?

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C;

    mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory......Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards, but not all motor activities cause interference. After all it is not necessary to remain completely still after practicing a task for learning to occur. Here we ask which...... was disrupted by subsequent learning of a precision tracking task with the same agonist muscle group, but not by learning involving antagonist muscles or by voluntary agonist contractions that did not require learning. If the competing task was learned with the same agonist muscle group 4 hours following...

  12. Improve Motor Operation at Off-Design Voltages - Motor Tip Sheet #9

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-07-01

    Motors are designed to operate within +/- 10% of their nameplate rated voltages. When motors operate at conditions of over- or under-voltage, motor efficiency and other performance parameters are degraded.

  13. Filament overwrapped motor case technology

    Science.gov (United States)

    Compton, Joel P.

    1993-11-01

    Atlantic Research Corporation (ARC) joined with the French Societe Europeenne de Propulsion (SEP) to develop and deliver to the U.S. Navy a small quantity of composite filament wound rocket motors to demonstrate a manufacturing technique that was being applied at the two companies. It was perceived that the manufacturing technique could produce motors that would be light in weight, inexpensive to produce, and that had a good chance of meeting insensitive munitions (IM) requirements that were being formulated by the Navy in the early 1980s. Under subcontract to ARC, SEP designed, tested, and delivered 2.75-inch rocket motors to the U.S. Navy for IM tests that were conducted in 1989 at China Lake, California. The program was one of the first to be founded by Nunn Amendment money. The Government-to-Government program was sponsored by the Naval Air Systems Command and was monitored by the Naval Surface Warfare Center, Indian Head (NSWC-IH), Maryland. The motor propellant that was employed was a new, extruded composite formulation that was under development at the Naval Surface Warfare Center. The following paper describes the highlights of the program and gives the results of structural and ballistic static tests and insensitive munitions tests that were conducted on demonstration motors.

  14. DEAD-box helicase DDX27 regulates 3′ end formation of ribosomal 47S RNA and stably associates with the PeBoW-complex

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Markus; Rohrmoser, Michaela [Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377 (Germany); Forné, Ignasi [Adolf Butenandt Institute, Ludwig Maximilians University of Munich, Center for Integrated Protein Science Munich (CIPSM), Schillerstr. 44, Munich 80336 (Germany); Voss, Kirsten; Burger, Kaspar; Mühl, Bastian; Gruber-Eber, Anita [Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377 (Germany); Kremmer, Elisabeth [Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistr. 25, Munich 81377 (Germany); Imhof, Axel [Adolf Butenandt Institute, Ludwig Maximilians University of Munich, Center for Integrated Protein Science Munich (CIPSM), Schillerstr. 44, Munich 80336 (Germany); Eick, Dirk, E-mail: eick@helmholtz-muenchen.de [Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377 (Germany)

    2015-05-15

    PeBoW, a trimeric complex consisting of pescadillo (Pes1), block of proliferation (Bop1), and the WD repeat protein 12 (WDR12), is essential for processing and maturation of mammalian 5.8S and 28S ribosomal RNAs. Applying a mass spectrometric analysis, we identified the DEAD-box helicase DDX27 as stably associated factor of the PeBoW-complex. DDX27 interacts with the PeBoW-complex via an evolutionary conserved F×F motif in the N-terminal domain and is recruited to the nucleolus via its basic C-terminal domain. This recruitment is RNA-dependent and occurs independently of the PeBoW-complex. Interestingly, knockdown of DDX27, but not of Pes1, induces the accumulation of an extended form of the primary 47S rRNA. We conclude that DDX27 can interact specifically with the Pes1 and Bop1 but fulfils critical function(s) for proper 3′ end formation of 47S rRNA independently of the PeBoW-complex. - Highlights: • DEAD-box helicase DDX27 is a new constituent of the PeBoW-complex. • The N-terminal F×F motif of DDX27 interacts with the PeBoW components Pes1 and Bop1. • Nucleolar anchoring of DDX27 via its basic C-terminal domain is RNA dependent. • Knockdown of DDX27 induces a specific defect in 3′ end formation of 47S rRNA.

  15. Structure of the SPRY domain of the human RNA helicase DDX1, a putative interaction platform within a DEAD-box protein

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Julian N.; Meinhart, Anton, E-mail: anton.meinhart@mpimf-heidelberg.mpg.de [Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)

    2015-08-25

    The structure of the SPRY domain of the human RNA helicase DDX1 was determined at 2.0 Å resolution. The SPRY domain provides a putative protein–protein interaction platform within DDX1 that differs from other SPRY domains in its structure and conserved regions. The human RNA helicase DDX1 in the DEAD-box family plays an important role in RNA processing and has been associated with HIV-1 replication and tumour progression. Whereas previously described DEAD-box proteins have a structurally conserved core, DDX1 shows a unique structural feature: a large SPRY-domain insertion in its RecA-like consensus fold. SPRY domains are known to function as protein–protein interaction platforms. Here, the crystal structure of the SPRY domain of human DDX1 (hDSPRY) is reported at 2.0 Å resolution. The structure reveals two layers of concave, antiparallel β-sheets that stack onto each other and a third β-sheet beneath the β-sandwich. A comparison with SPRY-domain structures from other eukaryotic proteins showed that the general β-sandwich fold is conserved; however, differences were detected in the loop regions, which were identified in other SPRY domains to be essential for interaction with cognate partners. In contrast, in hDSPRY these loop regions are not strictly conserved across species. Interestingly, though, a conserved patch of positive surface charge is found that may replace the connecting loops as a protein–protein interaction surface. The data presented here comprise the first structural information on DDX1 and provide insights into the unique domain architecture of this DEAD-box protein. By providing the structure of a putative interaction domain of DDX1, this work will serve as a basis for further studies of the interaction network within the hetero-oligomeric complexes of DDX1 and of its recruitment to the HIV-1 Rev protein as a viral replication factor.

  16. Coordinate replication of alfalfa mosaic virus RNAs 1 and 2 involves cis- and trans-acting functions of the encoded helicase-like and polymerase-like domains.

    Science.gov (United States)

    Vlot, A Corina; Laros, Sebastiaan M; Bol, John F

    2003-10-01

    RNAs 1 and 2 of the tripartite genome of alfalfa mosaic virus encode the replicase proteins P1 and P2, respectively, whereas RNA 3 encodes the movement protein and coat protein. Transient expression of wild-type (wt) and mutant viral RNAs and proteins by agroinfiltration of plant leaves was used to study cis- and trans-acting functions of the helicase-like domain in P1 and the polymerase-like domain in P2. Three mutations in conserved motifs of the helicase-like domain of P1 affected one or more steps leading to synthesis of minus-strand RNAs 1, 2, and 3. In leaves containing transiently expressed P1 and P2, replication of wt but not mutant RNA 1 was observed. Apparently, the transiently expressed P1 could not complement the defect in replication of the RNA 1 mutant. Moreover, the transiently expressed wt replicase supported replication of RNA 2, but this replication was blocked in trans by coexpression of mutant RNA 1. However, expression of mutant RNA 1 did not interfere with the replication of RNA 3 by the wt replicase. Similarly, a mutation in the GDD motif encoded by RNA 2 could not be complemented in trans and affected the replication of RNA 1 by a wt replicase, while replication of RNA 3 remained unaffected. In competition assays, the transient wt replicase preferentially replicated RNA 3 over RNAs 1 and 2. The results indicate that one or more functions of P1 and P2 act in cis and point to the existence of a mechanism that coordinates the replication of RNAs 1 and 2. PMID:14512529

  17. RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases.

    Science.gov (United States)

    Baharoglu, Zeynep; Lestini, Roxane; Duigou, Stéphane; Michel, Bénédicte

    2010-07-01

    We observed that cells lacking Rep and UvrD, two replication accessory helicases, and the recombination protein RecF are cryo-sensitive on rich medium. We isolated five mutations that suppress this Luria-Bertani (LB)-cryo-sensitivity and show that they map in the genes encoding the RNA polymerase subunits RpoB and RpoC. These rpoB (D444G, H447R and N518D) and rpoC mutants (H113R and P451L) were characterized. rpoB(H447R) and rpoB(D444G) prevent activation of the Prrn core promoter in rich medium, but only rpoB(H447R) also suppresses the auxotrophy of a relA spoT mutant (stringent-like phenotype). rpoC(H113R) suppresses the thermo-sensitivity of a greA greB mutant, suggesting that it destabilizes stalled elongation complexes. All mutations but rpoC(P451L) prevent R-loop formation. We propose that these rpo mutations allow replication in the absence of Rep and UvrD by destabilizing RNA Pol upon replication-transcription collisions. In a RecF(+) context, they improve growth of rep uvrD cells only if DinG is present, supporting the hypothesis that Rep, UvrD and DinG facilitate progression of the replication fork across transcribed sequences. They rescue rep uvrD dinG recF cells, indicating that in a recF mutant replication forks arrested by unstable transcription complexes can restart without any of the three known replication accessory helicases Rep, UvrD and DinG. PMID:20497334

  18. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Directory of Open Access Journals (Sweden)

    Narendra Tuteja

    Full Text Available BACKGROUND: The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum and its novel function in salinity stress tolerance in plant. RESULTS: The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. CONCLUSIONS: To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  19. Design Optimization of Induction Motor by Genetic Algorithm and Comparison with Existing Motor

    OpenAIRE

    Çunkaş, Mehmet; AKKAYA, Ramazan

    2006-01-01

    This paper presents an optimal design method to optimize three-phase induction motor in manufacturing process. The optimally designed motor is compared with an existing motor having the same ratings. The Genetic Algorithm is used for optimization and three objective functions namely torque, efficiency, and cost are considered. The motor design procedure consists of a system of non-linear equations, which imposes induction motor characteristics, motor performance, magnetic stresses and thermal...

  20. High efficiency motors in ventilators and pumps

    International Nuclear Information System (INIS)

    This study involves an experience carried out about substituting standard motors by high efficiency motors intending to demonstrate the economic and operative benefits of the latter ones. High efficiency motors are usually justified in applications where a motor, which is new or requires replacement is running for long periods at high load. The supplementary cost is such cases can normally be recovered within two years by the extra efficiency these motors offer over standard motors. High efficiency motors are usually manufactured from a higher quality material. More care is also taken with the design and geometry of the motor construction. The high efficiency motors used in this project have been improved in four areas which results in their higher running efficiencies. As for copper in particular, copper losses are reduced by providing generous conductor sizes in the stator and rotor. (Author)

  1. Visuomotor learning by passive motor experience

    Directory of Open Access Journals (Sweden)

    Takashi eSakamoto

    2015-05-01

    Full Text Available Humans can adapt to unfamiliar dynamic and/or kinematic transformations through the active motor experience. Recent studies of neurorehabilitation using robots or brain-computer interface (BCI technology suggest that passive motor experience would play a measurable role in motor recovery, however our knowledge of passive motor learning is limited. To clarify the effects of passive motor experience on human motor learning, we performed arm reaching experiments guided by a robotic manipulandum. The results showed that the passive motor experience had an anterograde transfer effect on the subsequent motor execution, whereas no retrograde interference was confirmed in the ABA paradigm experiment. This suggests that the passive experience of the error between visual and proprioceptive sensations leads to the limited but actual compensation of behavior, although it is fragile and cannot be consolidated as a persistent motor memory.

  2. [Presence of Australia antigen in blood donors].

    Science.gov (United States)

    Gota, F

    1980-01-01

    The differential diagnosis of type A and B viral hepatitis is discussed and guidelines for the prevention of post-transfusional hospital hepatitis are proposed. Methods for the immunological demonstration of HBs antigen are illustrated, together with the respective positivity percentages in blood donors.

  3. HLA antigens and asthma in Greeks.

    Science.gov (United States)

    Apostolakis, J; Toumbis, M; Konstantopoulos, K; Kamaroulias, D; Anagnostakis, J; Georgoulias, V; Fessas, P; Zervas, J

    1996-04-01

    HLA-A and -B antigens were determined in a group of 76 Greek asthmatic patients: 35 children (1.5-15 years) and 41 adults (18-73 years). The results were compared to those of 400 healthy unrelated controls from the same population. The standard NIH lymphocytotoxicity test was applied. When all 76 patients were compared to the controls, a statistically significant lower frequency of HLA-B5 and -B35 antigens was noted. When adults were analysed alone, an increased frequency of HLA-B8 was found. On the other hand, in the asthmatic children sub-group, the HLA-A10 antigen was significantly higher and the HLA-B5 was significantly lower than in the controls. These data imply that different HLA antigens may be involved in the pathogenesis of several clinical forms of asthma and that, in order to study the role of immunogenetic factor(s) in the pathogenesis of this disease, more adequate grouping criteria are needed.

  4. Antigen dynamics of follicular dendritic cells

    NARCIS (Netherlands)

    Heesters, B.A.

    2015-01-01

    Stromal-derived follicular dendritic cells (FDCs) are a major depot for antigen that are essential for formation of germinal centers, the site where memory and effector B cells differentiate and high-affinity antibody production takes place. Historically, FDCs have been characterized as ‘accessory’

  5. Circulating filarial antigen detection in brugian filariasis.

    Science.gov (United States)

    Tripathi, Praveen Kumar; Mahajan, Ramesh Chander; Malla, Nancy; Mewara, Abhishek; Bhattacharya, Shailja Misra; Shenoy, Ranganatha Krishna; Sehgal, Rakesh

    2016-03-01

    Human lymphatic filariasis (LF) is a major cause of disability globally. The success of global elimination programmes for LF depends upon effectiveness of tools for diagnosis and treatment. In this study on stage-specific antigen detection in brugian filariasis, L3, adult worm (AW) and microfilarial antigenaemia were detected in around 90-95% of microfilariae carriers (MF group), 50-70% of adenolymphangitis (ADL) patients, 10-25% of chronic pathology (CP) patients and 10-15% of endemic normal (EN) controls. The sensitivity of the circulating filarial antigen (CFA) detection in serum samples from MF group was up to 95%. In sera from ADL patients, unexpectedly, less antigen reactivity was observed. In CP group all the CFA positive individuals were from CP grade I and II only and none from grade III or IV, suggesting that with chronicity the AWs lose fecundity and start to disintegrate and die. Amongst EN subject, 10-15% had CFA indicating that few of them harbour filarial AWs, thus they might not be truly immune as has been conventionally believed. The specificity for antigen detection was 100% when tested with sera from various other protozoan and non-filarial helminthic infections.

  6. Wegener's granulomatosis and autoantibodies to neutrophil antigens

    OpenAIRE

    McCluskey, D R; Maxwell, A. P.; Watt, L

    1988-01-01

    We report five cases of Wegener's granulomatosis all of whom had clinical and histological evidence of disease activity at presentation and in whom autoantibodies to neutrophil antigens were detected. This test may prove useful for the diagnosis of this serious condition and help to monitor disease activity during treatment.

  7. Antigenic characterisation of lyssaviruses in South Africa

    Directory of Open Access Journals (Sweden)

    Ernest Ngoepe

    2014-02-01

    Full Text Available There are at least six Lyssavirus species that have been isolated in Africa, which include classical rabies virus, Lagos bat virus, Mokola virus, Duvenhage virus, Shimoni bat virus and Ikoma lyssavirus. In this retrospective study, an analysis of the antigenic reactivity patterns of lyssaviruses in South Africa against a panel of 15 anti-nucleoprotein monoclonal antibodies was undertaken. A total of 624 brain specimens, collected between 2005 and 2009, confirmed as containing lyssavirus antigen by direct fluorescent antibody test, were subjected to antigenic differentiation. The lyssaviruses were differentiated into two species, namely rabies virus (99.5% and Mokola virus (0.5%. Furthermore, rabies virus was further delineated into two common rabies biotypes in South Africa: canid and mongoose. Initially, it was found that the canid rabies biotype had two reactivity patterns; differential staining was observed with just one monoclonal antibody. This difference was likely to have been an artefact related to sample quality, as passage in cell culture restored staining. Mongoose rabies viruses were more heterogeneous, with seven antigenic reactivity patterns detected. Although Mokola viruses were identified in this study, prevalence and reservoir host species are yet to be established. These data demonstrate the usefulness of monoclonal antibody typing panels in lyssavirus surveillance with reference to emergence of new species or spread of rabies biotypes to new geographic zones.

  8. Lea blood group antigen on human platelets

    International Nuclear Information System (INIS)

    One- and two-stage radioligand assays were used to determine if human platelets possess the Lea antigen. Goat IgG anti-Lea antibody was purified by multiple adsorptions with Le(a-b-) human red blood cells, followed by affinity chromatography with synthetic Lea substance and labeling with 125I. Human IgG anti-Lea antibody was used either in a two stage radioassay with 125I-labeled mouse monoclonal IgG anti-human IgG as the second antibody or, alternatively, purified by Staph protein A chromatography, labeled with 125I, and used in a one-stage radioassay. Platelets from donors of appropriate red blood cell phenotypes were incubated with the antisera, centrifuged through phthalate esters, and assayed in a gamma scintillation counter. Dose response and saturation curve analysis demonstrate the presence of Lewis a antigen on platelets from Lea+ donors. Furthermore, platelets from an Le(a-b-) donor incubated in Le (a+b-) plasma adsorb Lea antigen in a similar manner to red blood cells. The clinical significance of these antigens in platelet transfusion remains undefined

  9. Cerebellum and Ocular Motor Control

    Directory of Open Access Journals (Sweden)

    Amir eKheradmand

    2011-09-01

    Full Text Available An intact cerebellum is a prerequisite for optimal ocular motor performance. The cerebellum fine-tunes each of the subtypes of eye movements so they work together to bring and maintain images of objects of interest on the fovea. Here we review the major aspects of the contribution of the cerebellum to ocular motor control. The approach will be based on structural-functional correlation, combining the effects of lesions and the results from physiologic studies, with the emphasis on the cerebellar regions known to be most closely related to ocular motor function: 1 the flocculus/paraflocculus for high-frequency (brief vestibular responses, sustained pursuit eye movements and gaze-holding, 2 the nodulus/ventral uvula for low-frequency (sustained vestibular responses, and 3 the dorsal oculomotor vermis and its target in the posterior portion of the fastigial nucleus (the fastigial oculomotor region for saccades and pursuit initiation.

  10. Miniaturization of planar horn motors

    Science.gov (United States)

    Sherrit, Stewart; Ostlund, Patrick N.; Chang, Zensheu; Bao, Xiaoqi; Bar-Cohen, Yoseph; Widholm, Scott E.; Badescu, Mircea

    2012-04-01

    There is a great need for compact, efficient motors for driving various mechanisms including robots or mobility platforms. A study is currently underway to develop a new type of piezoelectric actuators with significantly more strength, low mass, small footprint, and efficiency. The actuators/motors utilize piezoelectric actuated horns which have a very high power density and high electromechanical conversion efficiency. The horns are fabricated using our recently developed novel pre-stress flexures that make them thermally stable and increases their coupling efficiency. The monolithic design and integrated flexures that pre-stresses the piezoelectric stack eliminates the use of a stress bolt. This design allows embedding solid-state motors and actuators in any structure so that the only macroscopically moving parts are the rotor or the linear translator. The developed actuator uses a stack/horn actuation and has a Barth motor configuration, which potentially generates very large torque and speeds that do not require gearing. Finite element modeling and design tools were investigated to determine the requirements and operation parameters and the results were used to design and fabricate a motor. This new design offers a highly promising actuation mechanism that can potentially be miniaturized and integrated into systems and structures. It can be configured in many shapes to operate as multi-degrees of freedom and multi-dimensional motors/actuators including unidirectional, bidirectional, 2D and 3D. In this manuscript, we are reporting the experimental measurements from a bench top design and the results from the efforts to miniaturize the design using 2×2×2 mm piezoelectric stacks integrated into thin plates that are of the order of 3 × 3 × 0.2 cm.

  11. Miniaturization of Planar Horn Motors

    Science.gov (United States)

    Sherrit, Stewart; Ostlund, Patrick N.; Chang, Zensheu; Bao, Xiaoqi; Bar-Cohen, Yoseph; Widholm, Scott E.; Badescu, Mircea

    2012-01-01

    There is a great need for compact, efficient motors for driving various mechanisms including robots or mobility platforms. A study is currently underway to develop a new type of piezoelectric actuators with significantly more strength, low mass, small footprint, and efficiency. The actuators/motors utilize piezoelectric actuated horns which have a very high power density and high electromechanical conversion efficiency. The horns are fabricated using our recently developed novel pre-stress flexures that make them thermally stable and increases their coupling efficiency. The monolithic design and integrated flexures that pre-stresses the piezoelectric stack eliminates the use of stress bolt. This design allows embedding solid-state motors and actuators in any structure so that the only macroscopically moving parts are the rotor or the linear translator. The developed actuator uses a stack/horn actuation and has a Barth motor configuration, which potentially generates very large torque and speeds that do not require gearing. Finite element modeling and design tools were investigated to determine the requirements and operation parameters and the results were used to design and fabricate a motor. This new design offers a highly promising actuation mechanism that can potentially be miniaturized and integrated into systems and structures. It can be configured in many shapes to operate as multi-degrees of freedom and multi-dimensional motors/actuators including unidirectional, bidirectional, 2D and 3D. In this manuscript, we are reporting the experimental measurements from a bench top design and the results from the efforts to miniaturize the design using 2x2x2 mm piezoelectric stacks integrated into thin plates that are of the order of3 x 3x 0.2 cm.

  12. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  13. Dengue viruses cluster antigenically but not as discrete serotypes

    NARCIS (Netherlands)

    L. Katzelnick (Leah); J.M. Fonville (Judith); G.D. Gromowski (Gregory D.); J.B. Arriaga (Jose Bustos); A. Green (Angela); S.L. James (Sarah ); L. Lau (Louis); M. Montoya (Magelda); C. Wang (Chunling); L.A. Van Blargan (Laura A.); C.A. Russell (Colin); H.M. Thu (Hlaing Myat); T.C. Pierson (Theodore C.); P. Buchy (Philippe); J.G. Aaskov (John G.); J.L. Muñoz-Jordán (Jorge L.); N. Vasilakis (Nikos); R.V. Gibbons (Robert V.); R.B. Tesh (Robert B.); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); A. Durbin (Anna); C.P. Simmons (Cameron P.); E.C. Holmes (Edward C.); E. Harris (Eva); S.S. Whitehead (Stephen S.); D.R. Smith (Derek Richard)

    2015-01-01

    textabstractThe four genetically divergent dengue virus (DENV) types are traditionally classified as serotypes. Antigenic and genetic differences among the DENV types influence disease outcome, vaccine-induced protection, epidemic magnitude, and viral evolution.We scharacterized antigenic diversity

  14. Homopolar motor with dual rotors

    Science.gov (United States)

    Hsu, John S.

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  15. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-08-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  16. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  17. Comparison of E and NS1 antigens capture ELISA to detect dengue viral antigens from mosquitoes

    Directory of Open Access Journals (Sweden)

    Day-Yu Chao

    2015-01-01

    Interpretation & conclusion: With the future potential of antigen capture ELISA to be used in the resource deprived regions, the study showed that E-ELISA has similar sensitivity and antigen stability as NS1 Ag kit to complement the current established virological surveillance in human. The improvement of the sensitivity in detecting DENV-3/4 will be needed to incorporate this method into routine mosquito surveillance system.

  18. [Identification of serological antigens in excretory-secretory antigens of Trichinella spiralis muscle larvae].

    Science.gov (United States)

    Huang, Xuegui; He, Lifang; Yuan, Shishan; Liu, Hui; Wang, Xin

    2016-05-01

    Objective To isolate and identify serological antigens in the excretory-secretory antigens of Trichinella spiralis muscle larvae by the combination of co-immunoprecipitation and mass spectrometric technology. Methods The serum IgG of New Zealand rabbits infected with Trichinella spiralis was isolated by ammonium sulfate precipitation. Muscle larvaes were isolated from the infected muscle, and then purified and cultured to collect excretory-secretory antigens. Serological antigens in excretory-secretory antigens were isolated by co-immunoprecipitation and SDS-PAGE, and analyzed by Western blotting. Moreover, the protein bands in New Zealand rabbit sera infected with Trichinella spiralis were identified by mass spectrometric technology. Results Indirect ELISA showed that the titer of serum antibody of New Zealand rabbits infected with Trichinella spiralis was 1:6400. The rabbit serum IgG was effectively isolated by ammonium sulfate precipitation. A total of four clear protein bands of the excretory-secretory antigens of Trichinella spiralis were obtained by electrophoresis. Among them, three clear protein bands with relative molecular mass (Mr) being 40 kDa, 50 kDa and 83 kDa were recognized by the rabbit sera infected with Trichinella spiralis but not recognized by the normal rabbit sera. The obtained four protein molecules were confirmed as serine protease, specific serine protease of muscle larvae, 43 kDa secreted glycoprotein and 53 kDa excretory-secretory antigen. Conclusion Four proteins were obtained from the excretory-secretory antigens of Trichinella spiralis muscle larvae by combination of co-immunoprecipitation and mass spectrometric technique analysis, which provided new sources and insights for the diagnosis and vaccine candidates of Trichinellosis. PMID:27126943

  19. Motor motives. Gas motors and gas turbines in cogeneration stations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.

    1987-04-01

    Gas turbines' attractivity is increasing. But despite the impressive efficiency of 50% the gas motor is not yet beaten. A steam process installed downstream of a piston engine boosts its mechanic efficiency, in the lower performance range these engines are peerless anyway.

  20. Motor learning as a criterion for evaluating coordination motor abilities

    Directory of Open Access Journals (Sweden)

    Boraczynski Tomasz

    2011-10-01

    Full Text Available The aim of the study was to evaluate the ability of motor learning based on objective, metric criteria, in terms of pedagogical process aimed at improving the accuracy of hits a golf ball to the target. A group of 77 students of physical education participated in the study. Within 8 months there were performed 11 measurement sessions. In each session, subjects performed 10 hits a golf ball to the target from a distance of 9 m. Accuracy of hits was recorded. Effect of motor learning has been demonstrated in the progress of 10 consecutive hits a golf ball to the target in each session (operational control; in the dynamics of performance improvement between sessions (current control; as well as in the total result of eight-month experiment (stage control. There were developed norms for quantitative and qualitative assessment of accuracy of hits a golf ball to the target. Developed quantitative and qualitative criteria for assessing the speed of motor learning in various conditions of the educational process creates the possibility of organization the operational, current and stage control of the level of human coordination motor abilities, as required by leading process.

  1. Central role of the Holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2009-12-01

    Full Text Available Antigenic variation plays a vital role in the pathogenesis of many infectious bacteria and protozoa including Borrelia burgdorferi, the causative agent of Lyme disease. VlsE, a 35 kDa surface-exposed lipoprotein, undergoes antigenic variation during B. burgdorferi infection of mammalian hosts, and is believed to be a critical mechanism by which the spirochetes evade immune clearance. Random, segmental recombination between the expressed vlsE gene and adjacent vls silent cassettes generates a large number of different VlsE variants within the infected host. Although the occurrence and importance of vlsE sequence variation is well established, little is known about the biological mechanism of vlsE recombination. To identify factors important in antigenic variation and vlsE recombination, we screened transposon mutants of genes known to be involved in DNA recombination and repair for their effects on infectivity and vlsE recombination. Several mutants, including those in BB0023 (ruvA, BB0022 (ruvB, BB0797 (mutS, and BB0098 (mutS-II, showed reduced infectivity in immunocompetent C3H/HeN mice. Mutants in ruvA and ruvB exhibited greatly reduced rates of vlsE recombination in C3H/HeN mice, as determined by restriction fragment polymorphism (RFLP screening and DNA sequence analysis. In severe combined immunodeficiency (C3H/scid mice, the ruvA mutant retained full infectivity; however, all recovered clones retained the 'parental' vlsE sequence, consistent with low rates of vlsE recombination. These results suggest that the reduced infectivity of ruvA and ruvB mutants is the result of ineffective vlsE recombination and underscores the important role that vlsE recombination plays in immune evasion. Based on functional studies in other organisms, the RuvAB complex of B. burgdorferi may promote branch migration of Holliday junctions during vlsE recombination. Our findings are consistent with those in the accompanying article by Dresser et al., and together

  2. A prospective study of serum tumour markers carcinoembryonic antigen, carbohydrate antigens 50 and 242, tissue polypeptide antigen and tissue polypeptide specific antigen in the diagnosis of pancreatic cancer with special reference to multivariate diagnostic score.

    OpenAIRE

    Pasanen, P. A.; Eskelinen, M.; Partanen, K.; Pikkarainen, P; Penttilä, I.; Alhava, E

    1994-01-01

    The aim of this study was to assess by a stepwise multivariate discriminant analysis the value of four current serum tumour markers - carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 50 and CA 242 and tissue polypeptide antigen (TPA) - and a new serum tumour marker, tissue polypeptide specific antigen (TPS), in the diagnosis of pancreatic cancer. The serum values were measured in a prospective series of patients with jaundice, with unjaundiced cholestasis and with a suspicion of chro...

  3. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells.

    Science.gov (United States)

    Vela Ramirez, J E; Roychoudhury, R; Habte, H H; Cho, M W; Pohl, N L B; Narasimhan, B

    2014-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells (APCs), and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells (DCs) and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by DCs. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and APCs and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  4. Antigenic community between Schistosoma mansoni and Biomphalaria glabrata: on the search of candidate antigens for vaccines

    Directory of Open Access Journals (Sweden)

    N Chacón

    2002-10-01

    Full Text Available We have previously confirmed the presence of common antigens between Schistosoma mansoni and its vector, Biomphalaria glabrata. Cross-reactive antigens may be important as possible candidates for vaccine and diagnosis of schistosomiasis. Sera from outbred mice immunized with a soluble Biomphalaria glabrata antigen (SBgA of non-infected B. glabrata snails recognized molecules of SBgA itself and S. mansoni AWA by Western blot. Recognition of several molecules of the SBgA were inhibited by pre-incubation with AWA (16, 30, 36, 60 and 155 kDa. The only specific molecule of AWA, inhibited by SBgA, was a 120 kDa protein. In order to determine which epitopes of SBgA were glycoproteins, the antigen was treated with sodium metaperiodate and compared with non-treated antigen. Molecules of 140, 60 and 24 kDa in the SBgA appear to be glycoproteins. Possible protective effects of the SBgA were evaluated immunizing outbred mice in two different experiments using Freund's Adjuvant. In the first one (12 mice/group, we obtained a significant level of protection (46% in the total worm load, with a high variability in worm recovery. In the second experiment (22 mice/group, no significant protection was observed, neither in worm load nor in egg production per female. Our results suggest that SBgA constitutes a rich source of candidate antigens for diagnosis and prophylactic studies.

  5. 21 CFR 866.3402 - Plasmodium species antigen detection assays.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plasmodium species antigen detection assays. 866... Plasmodium species antigen detection assays. (a) Identification. A Plasmodium species antigen detection assay... malaria caused by the four malaria species capable of infecting humans: Plasmodium falciparum,...

  6. Antigen-specific active immunotherapy for ovarian cancer

    NARCIS (Netherlands)

    Leffers, N.; Daemen, T.; Helfrich, W.; Boezen, H. M.; Cohlen, B. J.; Melief, Cornelis; Nijman, H. W.

    2010-01-01

    BACKGROUND: Despite advances in chemotherapy, prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce a tumour-antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES: To assess feasibility of antigen-specific ac

  7. Immunity to intracellular Salmonella depends on surface-associated antigens.

    Directory of Open Access Journals (Sweden)

    Somedutta Barat

    Full Text Available Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens.

  8. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this...

  9. Mapping epitopes and antigenicity by site-directed masking

    Science.gov (United States)

    Paus, Didrik; Winter, Greg

    2006-06-01

    Here we describe a method for mapping the binding of antibodies to the surface of a folded antigen. We first created a panel of mutant antigens (-lactamase) in which single surface-exposed residues were mutated to cysteine. We then chemically tethered the cysteine residues to a solid phase, thereby masking a surface patch centered on each cysteine residue and blocking the binding of antibodies to this region of the surface. By these means we mapped the epitopes of several mAbs directed to -lactamase. Furthermore, by depleting samples of polyclonal antisera to the masked antigens and measuring the binding of each depleted sample of antisera to unmasked antigen, we mapped the antigenicity of 23 different epitopes. After immunization of mice and rabbits with -lactamase in Freund's adjuvant, we found that the antisera reacted with both native and denatured antigen and that the antibody response was mainly directed to an exposed and flexible loop region of the native antigen. By contrast, after immunization in PBS, we found that the antisera reacted only weakly with denatured antigen and that the antibody response was more evenly distributed over the antigenic surface. We suggest that denatured antigen (created during emulsification in Freund's adjuvant) elicits antibodies that bind mainly to the flexible regions of the native protein and that this explains the correlation between antigenicity and backbone flexibility. Denaturation of antigen during vaccination or natural infections would therefore be expected to focus the antibody response to the flexible loops. backbone flexibility | Freund's adjuvant | conformational epitope | antisera

  10. Series BK contactless DC motors

    Energy Technology Data Exchange (ETDEWEB)

    Buss, V.A.; Vevyurko, I.A.; Ivanov, G.V.; Kuzmin, V.N.; Mikhaylov, E.M.; Stoma, A.S.

    1985-05-01

    Implementation of principles described in a previous work has allowed development and introduction to series production of a motor series including 36 standard types and sizes. The series is designed to operate at a nominal voltage of 27 V and includes two main versions: the BK-1 for fans and BK-2 for pumps. The BK-2 motor differs from the BK-1 in that it has a thin sealed sleeve of high impedance nonmagnetic metal separating the rotor and stator cavities, allowing the rotor of the BK-2 to operate in the fluids or other media being pumped. Characteristics of the motors are presented. The BK-1316 has an operating life of about 50,000 hours at nominal speed of 6000 rpm. The experience of series production of the BK motors has shown the need for further improvement of the design and technology in order to decrease the number of metal cutting, winding and assembly operations required. The use of plastic structures is suggested to this end.

  11. Ironless-armature brushless motor

    Science.gov (United States)

    Fisher, R. L.

    1977-01-01

    Device uses 12-pole samarium cobalt permanent-magnet rotor and three Hall-effect sensors for commutation. In prototype motor, torque constant (3-phase delta) is 65 oz-in/amp; electrical time constant (L/R) is 0.2 x 0.001 sec, and armature resistance is 20 ohms.

  12. Treatment of functional motor disorders

    NARCIS (Netherlands)

    Gelauff, Jeannette M.; Dreissen, Yasmine E. M.; Tijssen, Marina A. J.; Stone, Jon

    2014-01-01

    OPINION STATEMENT: For the treatment of functional motor disorder, we recommend a three-stage approach. Firstly, patients must be assessed and given an unambiguous diagnosis, with an explanation that helps them understand that they have a genuine disorder, with the potential for reversibility. A key

  13. NASA's Advanced solid rocket motor

    Science.gov (United States)

    Mitchell, Royce E.

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  14. NASA's Advanced solid rocket motor

    Science.gov (United States)

    Mitchell, Royce E.

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  15. Motor planning in congenital hemiplegia

    NARCIS (Netherlands)

    Steenbergen, B.; Verrel, J.; Gordon, A.M.

    2007-01-01

    Cerebral Palsy (CP) is a broad definition of a neurological condition in which disorders in movement execution and postural control limit the performance of activities of daily living. In this paper, we first review studies on motor planning in hemiplegic CP. Second, preliminary data of a recent stu

  16. Technology and Motor Ability Development

    Science.gov (United States)

    Wang, Lin; Lang, Yong; Luo, Zhongmin

    2014-01-01

    As a new member joining the technology family, active video games have been developed to promote physical exercise. This working-in-progress paper shares an ongoing project on examining the basic motor abilities that are enhanced through participating in commercially available active video games. [For the full proceedings see ED557181.

  17. Flux Tracking Control of Induction Motors

    Institute of Scientific and Technical Information of China (English)

    LanLin; XiaowuMu; ChunxiaBu

    2004-01-01

    This paper deals with flux tracking control of induction motors. Firstly,we analyze convergency of non-homogeneous linear time-varying systems and a sufficient condition is given. Finally, the flux regulator of induction motors is discussed.

  18. Some typical solid propellant rocket motors

    NARCIS (Netherlands)

    Zandbergen, B.T.C.

    2013-01-01

    Typical Solid Propellant Rocket Motors (shortly referred to as Solid Rocket Motors; SRM's) are described with the purpose to form a database, which allows for comparative analysis and applications in practical SRM engineering.

  19. The distal hereditary motor neuropathies.

    Science.gov (United States)

    Rossor, Alexander M; Kalmar, Bernadett; Greensmith, Linda; Reilly, Mary M

    2012-01-01

    The distal hereditary motor neuropathies (dHMN) comprise a heterogeneous group of diseases that share the common feature of a length-dependent predominantly motor neuropathy. Many forms of dHMN have minor sensory abnormalities and/or a significant upper-motor-neuron component, and there is often an overlap with the axonal forms of Charcot-Marie-Tooth disease (CMT2) and with juvenile forms of amyotrophic lateral sclerosis and hereditary spastic paraplegia. Eleven causative genes and four loci have been identified with autosomal dominant, recessive and X-linked patterns of inheritance. Despite advances in the identification of novel gene mutations, 80% of patients with dHMN have a mutation in an as-yet undiscovered gene. The causative genes have implicated proteins with diverse functions such as protein misfolding (HSPB1, HSPB8, BSCL2), RNA metabolism (IGHMBP2, SETX, GARS), axonal transport (HSPB1, DYNC1H1, DCTN1) and cation-channel dysfunction (ATP7A and TRPV4) in motor-nerve disease. This review will summarise the clinical features of the different subtypes of dHMN to help focus genetic testing for the practising clinician. It will also review the neuroscience that underpins our current understanding of how these mutations lead to a motor-specific neuropathy and highlight potential therapeutic strategies. An understanding of the functional consequences of gene mutations will become increasingly important with the advent of next-generation sequencing and the need to determine the pathogenicity of large amounts of individual genetic data.

  20. Validating the Rett Syndrome Gross Motor Scale

    OpenAIRE

    Jenny Downs; Michelle Stahlhut; Kingsley Wong; Birgit Syhler; Anne-Marie Bisgaard; Peter Jacoby; Helen Leonard

    2016-01-01

    Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with...