WorldWideScience

Sample records for antifungal drugs posaconazole

  1. Effectiveness of Posaconazole in Recalcitrant Fungal Keratitis Resistant to Conventional Antifungal Drugs

    Directory of Open Access Journals (Sweden)

    A. Altun

    2014-01-01

    Full Text Available Purpose. To present the success of posaconazole in two cases with recalcitrant fugal keratitis that were resistant to conventional antifungal drugs. Method. We presented two cases that were treated with posaconazole after the failure of fluconazole or voriconazole, amphotericin B, and natamycin therapy. Case 1 was a 62-year-old man with a history of ocular trauma. He had been using topical fluorometholone and tobramycin. His best corrected visual acuity (BCVA was hand motion. He had 5.0 × 4.5 mm area of deep corneal ulcer with stromal infiltration. Case 2 was a 14-year-old contact lens user. He had been using topical moxifloxacin, tobramycin, and cyclopentolate. His BCVA was 20/200. He had a 4.0 × 3.0 mm area of pericentral corneal ulcer with deep corneal stromal infiltration and 2 mm hypopyon. Results. Both patients initially received systemic and topical fluconazole or voriconazole and amphotericin B and topical natamycin that were all ineffective. But the response of posaconazole was significant. After posaconazole, progressive improvement was seen in clinical appearance. BCVA improved to 20/100 in case 1 and 20/40 in case 2. Conclusion. Posaconazole might be an effective treatment option for recalcitrant fusarium keratitis and/or endophthalmitis resistant to conventional antifungal drugs.

  2. Effectiveness of posaconazole in recalcitrant fungal keratitis resistant to conventional antifungal drugs.

    Science.gov (United States)

    Altun, A; Kurna, S A; Sengor, T; Altun, G; Olcaysu, O O; Aki, S F; Simsek, M H

    2014-01-01

    Purpose. To present the success of posaconazole in two cases with recalcitrant fugal keratitis that were resistant to conventional antifungal drugs. Method. We presented two cases that were treated with posaconazole after the failure of fluconazole or voriconazole, amphotericin B, and natamycin therapy. Case 1 was a 62-year-old man with a history of ocular trauma. He had been using topical fluorometholone and tobramycin. His best corrected visual acuity (BCVA) was hand motion. He had 5.0 × 4.5 mm area of deep corneal ulcer with stromal infiltration. Case 2 was a 14-year-old contact lens user. He had been using topical moxifloxacin, tobramycin, and cyclopentolate. His BCVA was 20/200. He had a 4.0 × 3.0 mm area of pericentral corneal ulcer with deep corneal stromal infiltration and 2 mm hypopyon. Results. Both patients initially received systemic and topical fluconazole or voriconazole and amphotericin B and topical natamycin that were all ineffective. But the response of posaconazole was significant. After posaconazole, progressive improvement was seen in clinical appearance. BCVA improved to 20/100 in case 1 and 20/40 in case 2. Conclusion. Posaconazole might be an effective treatment option for recalcitrant fusarium keratitis and/or endophthalmitis resistant to conventional antifungal drugs.

  3. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole.

    Directory of Open Access Journals (Sweden)

    Chiung-Kuang Chen

    Full Text Available BACKGROUND: Chagas Disease is the leading cause of heart failure in Latin America. Current drug therapy is limited by issues of both efficacy and severe side effects. Trypansoma cruzi, the protozoan agent of Chagas Disease, is closely related to two other major global pathogens, Leishmania spp., responsible for leishmaniasis, and Trypansoma brucei, the causative agent of African Sleeping Sickness. Both T. cruzi and Leishmania parasites have an essential requirement for ergosterol, and are thus vulnerable to inhibitors of sterol 14alpha-demethylase (CYP51, which catalyzes the conversion of lanosterol to ergosterol. Clinically employed anti-fungal azoles inhibit ergosterol biosynthesis in fungi, and specific azoles are also effective against both Trypanosoma and Leishmania parasites. However, modification of azoles to enhance efficacy and circumvent potential drug resistance has been problematic for both parasitic and fungal infections due to the lack of structural insights into drug binding. METHODOLOGY/PRINCIPAL FINDINGS: We have determined the crystal structures for CYP51 from T. cruzi (resolutions of 2.35 A and 2.27 A, and from the related pathogen T. brucei (resolutions of 2.7 A and 2.6 A, co-crystallized with the antifungal drugs fluconazole and posaconazole. Remarkably, both drugs adopt multiple conformations when binding the target. The fluconazole 2,4-difluorophenyl ring flips 180 degrees depending on the H-bonding interactions with the BC-loop. The terminus of the long functional tail group of posaconazole is bound loosely in the mouth of the hydrophobic substrate binding tunnel, suggesting that the major contribution of the tail to drug efficacy is for pharmacokinetics rather than in interactions with the target. CONCLUSIONS/SIGNIFICANCE: The structures provide new insights into binding of azoles to CYP51 and mechanisms of potential drug resistance. Our studies define in structural detail the CYP51 therapeutic target in T. cruzi, and

  4. Rhabdomyolysis Following Initiation of Posaconazole Use for Antifungal Prophylaxis in a Patient With Relapsed Acute Myeloid Leukemia

    Science.gov (United States)

    Mody, Mayur D.; Ravindranathan, Deepak; Gill, Harpaul S.; Kota, Vamsi K.

    2017-01-01

    Posaconazole is a commonly used medication for antifungal prophylaxis in patients with high-risk acute leukemia, such as acute myeloid leukemia. Despite clinical data that show that posaconazole is superior to other antifungal prophylaxis medications, posaconazole is known to have many side effects and drug-drug interactions. We present a patient who developed rhabdomyolysis after being started on posaconazole for prophylaxis in the setting of relapsed acute myeloid leukemia. PMID:28203579

  5. Rhabdomyolysis Following Initiation of Posaconazole Use for Antifungal Prophylaxis in a Patient With Relapsed Acute Myeloid Leukemia: A Case Report.

    Science.gov (United States)

    Mody, Mayur D; Ravindranathan, Deepak; Gill, Harpaul S; Kota, Vamsi K

    2017-01-01

    Posaconazole is a commonly used medication for antifungal prophylaxis in patients with high-risk acute leukemia, such as acute myeloid leukemia. Despite clinical data that show that posaconazole is superior to other antifungal prophylaxis medications, posaconazole is known to have many side effects and drug-drug interactions. We present a patient who developed rhabdomyolysis after being started on posaconazole for prophylaxis in the setting of relapsed acute myeloid leukemia.

  6. Posaconazole plasma concentration in pediatric patients receiving antifungal prophylaxis after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Heinz, Werner J; Cabanillas Stanchi, Karin M; Klinker, Hartwig; Blume, Olivia; Feucht, Judith; Hartmann, Ulrike; Feuchtinger, Tobias; Lang, Peter; Handgretinger, Rupert; Döring, Michaela

    2016-02-01

    Posaconazole has been proven to be effective for antifungal prophylaxis in adults after hematopoietic stem cell transplantation (HSCT). Due to low gastrointestinal resorption of posaconazole suspension, bioavailability is impaired. Fatty food improves the uptake of posaconazole, but insufficient data on the pharmacokinetics of posaconazole in pediatric patients are available so far. The single-center analysis investigated 161 posaconazole serum concentrations in 27 pediatric patients after HSCT receiving 12 mg·kg BW(-1)·d(-1) posaconazole suspension depending on age, gender, and intestinal graft-versus-host (iGvHD) disease, and the influence of posaconazole on cyclosporine A plasma concentrations. To improve the uptake of posaconazole, one patient cohort received higher fat nutrition with the drug administration. A comparison of the regular nutrition and higher-fat nutrition groups revealed the following values: 31 (27.4%) versus 8 (16.7%) 2000 ng/ml. The mean posaconazole concentrations in patients with regular nutrition was 1123 ± 811 ng/ml and with higher-fat nutrition was 1191 ± 673 ng/ml. Posaconazole levels in patients with iGvHD were significantly lower (P = 0.0003) than in patients without GvHD. The majority of samples showed a sufficient posaconazole concentration above 700 ng/ml. Posaconazole levels were slightly higher in patients with higher-fat nutrition and significantly lower in patients with iGvHD. Cyclosporine A levels were not significantly higher during posaconazole administration.

  7. Posaconazole Exposure-Response Relationship: Evaluating the Utility of Therapeutic Drug Monitoring

    OpenAIRE

    Dolton, Michael J; Ray, John E.; Marriott, Deborah; McLachlan, Andrew J

    2012-01-01

    Posaconazole has become an important part of the antifungal armamentarium in the prophylaxis and salvage treatment of invasive fungal infections (IFIs). Structurally related to itraconazole, posaconazole displays low oral bioavailability due to poor solubility, with significant drug interactions and gastrointestinal disease also contributing to the generally low posaconazole plasma concentrations observed in patients. While therapeutic drug monitoring (TDM) of plasma concentrations is widely ...

  8. Posaconazole

    Directory of Open Access Journals (Sweden)

    Bhattacharya M

    2010-01-01

    Full Text Available Posaconazole is a novel second-generation Triazole oral antifungal agent. It is highly effective in the prophylaxis of invasive fungal infections in immunocompromised patients. It is used as a first-line agent as well as for salvage therapy in invasive fungal infections including aspergillosis, oropharyngeal and esophageal candidiasis. It has a good adverse effect profile. With the rising incidence of invasive fungal infections due to the HIV pandemic and medical advancements in transplantation and cancer therapy, these features make posaconazole a valuable addition in the family of antifungal agents.

  9. Posaconazole prophylaxis--impact on incidence of invasive fungal disease and antifungal treatment in haematological patients.

    Science.gov (United States)

    Peterson, Lisa; Ostermann, Julia; Rieger, Heidi; Ostermann, Helmut; Rieger, Christina Theresa

    2013-11-01

    Since two large-scale, randomised studies on posaconazole prophylaxis have demonstrated a clear benefit for patients at high risk for contracting invasive fungal disease (IFD), posaconazole prophylaxis has been adopted as standard of care for this patient collective. Several years on from implementation at our institution, we wanted to evaluate its impact on the incidence and use of empirical antifungal therapy in a real-life setting. We analysed retrospectively incidence and severity of IFD in high-risk patients with prophylaxis, using a historical cohort as comparator. A total of 200 patients had either received the extended spectrum triazole posaconazole in prophylactic dosage of 200 mg tid or empirical antifungal therapy. Disease events were analysed by application of the revised EORTC/MSG definitions for IFD. Before posaconazole prophylaxis, we recorded 57/100 cases of IFD which was reduced to 28/100 with prophylaxis. The empirical use of antifungal drugs was reduced to 41% from 91% in the non-prophylaxis cohort. Furthermore, we observed a shift in the categorisation of IFD according to EORTC/MSG criteria. Our data suggest that posaconazole was effective in reducing the rate and probability of invasive fungal disease in high-risk patients.

  10. Posaconazole exposure-response relationship: evaluating the utility of therapeutic drug monitoring.

    Science.gov (United States)

    Dolton, Michael J; Ray, John E; Marriott, Deborah; McLachlan, Andrew J

    2012-06-01

    Posaconazole has become an important part of the antifungal armamentarium in the prophylaxis and salvage treatment of invasive fungal infections (IFIs). Structurally related to itraconazole, posaconazole displays low oral bioavailability due to poor solubility, with significant drug interactions and gastrointestinal disease also contributing to the generally low posaconazole plasma concentrations observed in patients. While therapeutic drug monitoring (TDM) of plasma concentrations is widely accepted for other triazole antifungal agents such as voriconazole, the utility of TDM for posaconazole is controversial due to debate over the relationship between posaconazole exposure in plasma and clinical response to therapy. This review examines the available evidence for a relationship between plasma concentration and clinical efficacy for posaconazole, as well as evaluating the utility of TDM and providing provisional target concentrations for posaconazole therapy. Increasing evidence supports an exposure-response relationship for plasma posaconazole concentrations for prophylaxis and treatment of IFIs; a clear relationship has not been identified between posaconazole concentration and toxicity. Intracellular and intrapulmonary concentrations have been studied for posaconazole but have not been correlated to clinical outcomes. In view of the high mortality and cost associated with the treatment of IFIs, increasing evidence of an exposure-response relationship for posaconazole efficacy in the prevention and treatment of IFIs, and the common finding of low posaconazole concentrations in patients, TDM for posaconazole is likely to be of significant clinical utility. In patients with subtherapeutic posaconazole concentrations, increased dose frequency, administration with high-fat meals, and withdrawal of interacting medications from therapy are useful strategies to improve systemic absorption.

  11. Therapeutic Drug Monitoring of Posaconazole: an Update

    NARCIS (Netherlands)

    Dekkers, Bart; Bakker, Martijn; van der Elst, Kim; Sturkenboom, Marieke; Veringa, Anette; Span, LFR; Alffenaar, Jan-Willem

    2016-01-01

    Posaconazole is a second-generation triazole agent with a potent and broad antifungal activity. In addition to the oral suspension, a delayed-release tablet and intravenous formulation with improved pharmacokinetic properties have been introduced recently. Due to the large interindividual and intrai

  12. Antifungal prophylaxis with posaconazole vs. fluconazole or itraconazole in pediatric patients with neutropenia.

    Science.gov (United States)

    Döring, M; Eikemeier, M; Cabanillas Stanchi, K M; Hartmann, U; Ebinger, M; Schwarze, C-P; Schulz, A; Handgretinger, R; Müller, I

    2015-06-01

    Pediatric patients with hemato-oncological malignancies and neutropenia resulting from chemotherapy have a high risk of acquiring invasive fungal infections. Oral antifungal prophylaxis with azoles, such as fluconazole or itraconazole, is preferentially used in pediatric patients after chemotherapy. During this retrospective analysis, posaconazole was administered based on favorable results from studies in adult patients with neutropenia and after allogeneic hematopoietic stem cell transplantation. Retrospectively, safety, feasibility, and initial data on the efficacy of posaconazole were compared to fluconazole and itraconazole in pediatric and adolescent patients during neutropenia. Ninety-three pediatric patients with hemato-oncological malignancies with a median age of 12 years (range 9 months to 17.7 years) that had prolonged neutropenia (>5 days) after chemotherapy or due to their underlying disease, and who received fluconazole, itraconazole, or posaconazole as antifungal prophylaxis, were analyzed in this retrospective single-center survey. The incidence of invasive fungal infections in pediatric patients was low under each of the azoles. One case of proven aspergillosis occurred in each group. In addition, there were a few cases of possible invasive fungal infection under fluconazole (n = 1) and itraconazole (n = 2). However, no such cases were observed under posaconazole. The rates of potentially clinical drug-related adverse events were higher in the fluconazole (n = 4) and itraconazole (n = 5) groups compared to patients receiving posaconazole (n = 3). Posaconazole, fluconazole, and itraconazole are comparably effective in preventing invasive fungal infections in pediatric patients. Defining dose recommendations in these patients requires larger studies.

  13. Posaconazole/hydroxypropyl-β-cyclodextrin host-guest system: Improving dissolution while maintaining antifungal activity.

    Science.gov (United States)

    Tang, Peixiao; Ma, Xiaoli; Wu, Di; Li, Shanshan; Xu, Kailin; Tang, Bin; Li, Hui

    2016-05-20

    This study aimed to prepare and characterize the inclusion complex between posaconazole (POS) and hydroxypropyl-β-cyclodextrin (HP-β-CD). Phase solubility study was conducted to investigate the drug/CD interaction in solution, including the stoichiometry and apparent stability constant. The solid complex (HP-β-CD-POS) obtained was characterized through Fourier transform infrared spectroscopy, powder X-ray diffraction, (1)H and ROESY 2D nuclear magnetic resonance, differential scanning calorimetry, and scanning electron microscopy. These approaches confirmed the formation of the inclusion complex. The HP-β-CD-POS inclusion complex exhibited better water solubility and higher dissolution rate than the free POS did; the water solubility of POS was increased by 82 times and almost 90% of the loaded drug dissolved after 10 min in the dissolution media. In addition, preliminary in vitro antifungal susceptibility testing revealed that HP-β-CD-POS maintains a high level of antifungal activities. Therefore, the HP-β-CD complex may be useful in the delivery of posaconazole.

  14. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Ying-Lien Chen

    Full Text Available The object of this study was to test whether posaconazole, a broad-spectrum antifungal agent inhibiting ergosterol biosynthesis, exhibits synergy with the β-1,3 glucan synthase inhibitor caspofungin or the calcineurin inhibitor FK506 against the human fungal pathogen Candida albicans. Although current drug treatments for Candida infection are often efficacious, the available antifungal armamentarium may not be keeping pace with the increasing incidence of drug resistant strains. The development of drug combinations or novel antifungal drugs to address emerging drug resistance is therefore of general importance. Combination drug therapies are employed to treat patients with HIV, cancer, or tuberculosis, and has considerable promise in the treatment of fungal infections like cryptococcal meningitis and C. albicans infections. Our studies reported here demonstrate that posaconazole exhibits in vitro synergy with caspofungin or FK506 against drug susceptible or resistant C. albicans strains. Furthermore, these combinations also show in vivo synergy against C. albicans strain SC5314 and its derived echinocandin-resistant mutants, which harbor an S645Y mutation in the CaFks1 β-1,3 glucan synthase drug target, suggesting potential therapeutic applicability for these combinations in the future.

  15. Posaconazole: A Review of Drug Interactions with HIV Antiretroviral Agents

    Directory of Open Access Journals (Sweden)

    Mara Poulakos

    2014-03-01

    Full Text Available The purpose of this review is to examine the literature for reports of clinically significant interactions noted amongst HIV antiretroviral medications when coadministered with posaconazole. A literature search was conducted to identify studies addressing drug interactions between posaconazole and HIV antiretroviral medications. Two pharmacokinetic studies and three clinical trials involving the administration of posaconazole to HIV-infected patients were identified. The pharmacokinetic studies involved concomitant administration of either a protease inhibitor (PI or non-nucleoside reverse transcriptase inhibitor (NNRTI. Both studies showed alterations in systemic concentrations of either posaconazole or the HIV antiretroviral when administered together. Of the three clinical trials, all patients were on HIV antiretrovirals. However, their potential interaction with posaconazole was not explored. To date, there is no published literature regarding the interaction between maraviroc or elvitegravir and posaconazole. Dose adjustments for each are recommended when coadministered with strong CYP 3A4 inhibitors or inducers. Currently available literature points to the potential for clinically significant drug interactions when posaconazole is coadministered with HIV antiretrovirals, specifically NNRTIs and PIs. More studies are needed involving a wider range of HIV antiretrovirals to determine the significance of the interaction. Clinicians should be aware of this potentially significant interaction and avoid concomitant administration when possible. When available, consideration should be given to therapeutic drug monitoring of antiretroviral serum concentrations in select patients.

  16. Posaconazole after previous antifungal therapy with voriconazole for therapy of invasive aspergillus disease, a retrospective analysis.

    Science.gov (United States)

    Heinz, Werner J; Egerer, Gerlinde; Lellek, Heinrich; Boehme, Angelika; Greiner, Jochen

    2013-05-01

    Invasive aspergillosis is an important cause of morbidity and mortality in haematological patients. Current guidelines recommend voriconazole as first-line therapy. A change in class of antifungal agent is generally recommended for salvage therapy. The focus of this analysis was to assess if posaconazole is suitable for salvage therapy following voriconazole treatment. This was a retrospective investigation on patients with sequential antifungal therapy of posaconazole after voriconazole identified at four German hospitals. Response rates at 30 and 60 days following start of posaconazole application and toxicity of azoles by comparing liver enzymes and cholestasis parameters were evaluated. Data were analysed by descriptive statistics. Overall, the success rate was 72.2% [15 of 36 patients showed complete response (41.7%), 11 patients partial response (30.6%) at any time point], eight patients failed treatment and two were not evaluable. Mean laboratory values increased during voriconazole and decreased during posaconazole treatment: aspartate aminotransferase (increase: 31.9 U l(-1) vs. decrease: 19.6 U l(-1) ), alanine aminotransferase (32.4 U l(-1) vs. 19.8 U l(-1) ), gamma-glutamyl transferase (124.2 U l(-1) vs. 152.3 U l(-1) ) and alkaline phosphatase (71.5 U l(-1) vs. 40.3 U l(-1) ) respectively. No patient discontinued posaconazole therapy due to an adverse event. In this analysis posaconazole was a safe and effective antifungal salvage therapy in patients with prior administration of another triazole.

  17. Multicenter Comparison of the Vitek 2 Antifungal Susceptibility Test with the CLSI Broth Microdilution Reference Method for Testing Caspofungin, Micafungin, and Posaconazole against Candida spp.▿

    Science.gov (United States)

    Peterson, Jess F.; Pfaller, Michael A.; Diekema, Daniel J.; Rinaldi, Michael G.; Riebe, Katherine M.; Ledeboer, Nathan A.

    2011-01-01

    The performance of the automated Vitek 2 (bioMérieux, Inc., Marcy l'Etoile, France) antifungal susceptibility system was compared to that of broth microdilution (BMD) for the determination of MICs of various antifungal drugs. A total of 112 challenge strains and 755 clinical isolates of Candida spp. were tested against caspofungin and micafungin. An additional 452 clinical isolates of Candida albicans were tested against posaconazole. Reference BMD MIC endpoints were established after 24 h of incubation for caspofungin and micafungin and after 48 h of incubation for posaconazole. Essential agreements (EAs) between the Vitek 2 and BMD methods for caspofungin and micafungin were 99.5% and 98.6%, respectively. EA between the Vitek 2 and BMD methods was 95.6% for posaconazole. The overall categorical agreements (CAs) between the Vitek 2 system and BMD were 99.8% for caspofungin, 98.2% for micafungin, and 98.1% for posaconazole. The Vitek 2 system reliably determined caspofungin and micafungin MICs among Candida spp. and posaconazole MICs among C. albicans isolates and demonstrated excellent quantitative and qualitative agreement with the reference BMD method. PMID:21430096

  18. Analysis of posaconazole as oral antifungal prophylaxis in pediatric patients under 12 years of age following allogeneic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Döring Michaela

    2012-10-01

    Full Text Available Abstract Background Pediatric patients undergoing hematopoietic stem cell transplantation (HSCT are at high risk of acquiring fungal infections. Antifungal prophylaxis shortly after transplantation is therefore indicated, but data for pediatric patients under 12 years of age are scarce. To address this issue, we retrospectively assessed the safety, feasibility, and initial efficacy of prophylactic posaconazole in children. Methods 60 consecutive pediatric patients with a median age of 6.0 years who underwent allogeneic HSCT between August 2007 and July 2010 received antifungal prophylaxis with posaconazole in the outpatient setting. 28 pediatric patients received an oral suspension at 5 mg/kg body weight b.i.d., and 32 pediatric patients received the suspension at 4 mg/kg body weight t.i.d. The observation period lasted from start of treatment with posaconazole until its termination (maximum of 200 days post-transplant. Results Pediatric patients who received posaconazole at 4 mg/kg body weight t.i.d. had a median trough level of 383 μg/L. Patients who received posaconazole at 5 mg/kg body weight b.i.d. had a median trough level of 134 μg/L. Both regimens were well tolerated without severe side effects. In addition, no proven or probable invasive mycosis was observed. Conclusion Posaconazole was a well-tolerated, safe, and effective oral antifungal prophylaxis in pediatric patients who underwent high-dose chemotherapy and HSCT. Posaconazole at a dosage of 12 mg/kg body weight divided in three doses produced consistently higher morning trough levels than in patients who received posaconazole 5 mg/kg body weight b.i.d. Larger prospective trials are needed to obtain reliable guidelines for antifungal prophylaxis in children after HSCT.

  19. Multicenter study of posaconazole therapeutic drug monitoring: exposure-response relationship and factors affecting concentration.

    Science.gov (United States)

    Dolton, Michael J; Ray, John E; Chen, Sharon C-A; Ng, Kingsley; Pont, Lisa; McLachlan, Andrew J

    2012-11-01

    Posaconazole has an important role in the prophylaxis and salvage treatment of invasive fungal infections (IFIs), although poor and variable bioavailability remains an important clinical concern. Therapeutic drug monitoring of posaconazole concentrations has remained contentious, with the use of relatively small patient cohorts in previous studies hindering the assessment of exposure-response relationships. This multicenter retrospective study aimed to investigate relationships between posaconazole concentration and clinical outcomes and adverse events and to assess clinical factors and drug interactions that may affect posaconazole concentrations. Medical records were reviewed for patients who received posaconazole and had ≥1 concentration measured at six hospitals in Australia. Data from 86 patients with 541 posaconazole concentrations were included in the study. Among 72 patients taking posaconazole for prophylaxis against IFIs, 12 patients (17%) developed a breakthrough fungal infection; median posaconazole concentrations were significantly lower than in those who did not develop fungal infection (median [range], 289 [50 to 471] ng/ml versus 485 [0 to 2,035] ng/ml; P posaconazole concentration was a significant predictor of breakthrough fungal infection via binary logistic regression (P posaconazole exposure, including coadministration with proton pump inhibitors, metoclopramide, phenytoin or rifampin, and the H(2) antagonist ranitidine (P posaconazole exposure (P posaconazole concentrations are common and are associated with breakthrough fungal infection, supporting the utility of monitoring posaconazole concentrations to ensure optimal systemic exposure.

  20. In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis.

    Science.gov (United States)

    de Macedo-Silva, Sara Teixeira; Urbina, Julio A; de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2013-01-01

    Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent

  1. In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis.

    Directory of Open Access Journals (Sweden)

    Sara Teixeira de Macedo-Silva

    Full Text Available Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ and posaconazole (POSA, two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51. Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm, which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and

  2. In Vitro Activity of the Antifungal Azoles Itraconazole and Posaconazole against Leishmania amazonensis

    Science.gov (United States)

    de Macedo-Silva, Sara Teixeira; Urbina, Julio A.; de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2013-01-01

    Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent

  3. Antifungal susceptibility testing of Exophiala spp.: a head-to-head comparison of amphotericin B, itraconazole, posaconazole and voriconazole.

    Science.gov (United States)

    Fothergill, Annette W; Rinaldi, Michael G; Sutton, Deanna A

    2009-02-01

    Frequently, diseases caused by black yeasts are chronic in nature with a high morbidity. In addition, these infections are often fatal and relapse is common, even after prolonged treatment. Although the CLSI Document M38-A outlines methods for antifungal susceptibility testing of moulds, Exophiala spp. are not directly discussed. In an effort to determine the antifungal susceptibility patterns of Exophiala spp. we tested 160 clinical isolates against amphotericin B, itraconazole, posaconazole, and voriconazole in a head-to-head comparison. Posaconazole and itraconazole were the most active in vitro with MICs falling well below the achievable serum levels typically observed with standard dosing regimens.

  4. Electrochemical behavior of the antifungal agents itraconazole, posaconazole and ketoconazole at a glassy carbon electrode.

    Science.gov (United States)

    Knoth, H; Scriba, G K E; Buettner, B

    2015-06-01

    The electrochemical behavior of the azole antifungal agents itraconazole, posaconazole and ketoconazole has been investigated at a glassy carbon working electrode using cyclic voltammetry. All measurements were carried out in a supporting electrolyte solution consisting of a 1:1 (v/v) mixture of 0.1 mol L(-1) sodium phosphate buffers and acetonitrile at various substance concentrations and pH values. An amperometric cell with a three electrode system consisting of a working electrode, a palladium reference electrode and a platinum disk as the auxiliary electrode was used in all experiments. All azoles showed a similar electrochemical behavior involving two reactions. An irreversible oxidation occurred at potentials of about 0.5V. A reduction peak was detected at potentials between -0.28V and -0.14V with an associated oxidation peak, which was observed in consecutive repeated measurements at potentials between -0.03 and 0.28 V. The reduction and corresponding oxidation can be regarded as a quasi-reversible process. The proposed reaction mechanisms are an irreversible oxidation of the piperazine moiety at higher potentials as well as a reduction at lower potentials of the carbonyl group of the triazolone moiety in the case of itraconazole and posaconazole or a reduction of the methoxy group of ketoconazole.

  5. Multicenter Study of Posaconazole Therapeutic Drug Monitoring: Exposure-Response Relationship and Factors Affecting Concentration

    OpenAIRE

    Dolton, Michael J; Ray, John E.; Chen, Sharon C.-A.; Ng, Kingsley; Pont, Lisa; McLachlan, Andrew J

    2012-01-01

    Posaconazole has an important role in the prophylaxis and salvage treatment of invasive fungal infections (IFIs), although poor and variable bioavailability remains an important clinical concern. Therapeutic drug monitoring of posaconazole concentrations has remained contentious, with the use of relatively small patient cohorts in previous studies hindering the assessment of exposure-response relationships. This multicenter retrospective study aimed to investigate relationships between posaco...

  6. Quantification of the Triazole Antifungal Compounds Voriconazole and Posaconazole in Human Serum or Plasma Using Liquid Chromatography Electrospray Tandem Mass Spectrometry (HPLC-ESI-MS/MS).

    Science.gov (United States)

    Molinelli, Alejandro R; Rose, Charles H

    2016-01-01

    Voriconazole and posaconazole are triazole antifungal compounds used in the treatment of fungal infections. Therapeutic drug monitoring of both compounds is recommended in order to guide drug dosing to achieve optimal blood concentrations. In this chapter we describe an HPLC-ESI-MS/MS method for the quantification of both compounds in human plasma or serum following a simple specimen preparation procedure. Specimen preparation consists of protein precipitation using methanol and acetonitrile followed by a cleanup step that involves filtration through a cellulose acetate membrane. The specimen is then injected into an HPLC-ESI-MS/MS equipped with a C18 column and separated over an acetonitrile gradient. Quantification of the drugs in the specimen is achieved by comparing the response of the unknown specimen to that of the calibrators in the standard curve using multiple reaction monitoring.

  7. Subtherapeutic Posaconazole Exposure and Treatment Outcome in Patients With Invasive Fungal Disease

    NARCIS (Netherlands)

    van der Elst, Kim C. M.; Brouwers, Charlie H. S.; van den Heuvel, Edwin R.; van Wanrooy, Marjolijn J. P.; Uges, Donald R. A.; van der Werf, Tjip S.; Kosterink, Jos G. W.; Span, Lambert F. R.; Alffenaar, Jan-Willem C.

    2015-01-01

    BACKGROUND: Posaconazole exposure seems to be subtherapeutic in some patients with invasive fungal disease. Due to the pharmacokinetic variability of posaconazole, therapeutic drug monitoring may help to optimize the efficacy of this antifungal drug. METHODS: A retrospective study of patients treate

  8. Subtherapeutic Posaconazole Exposure and Treatment Outcome in Patients With Invasive Fungal Disease

    NARCIS (Netherlands)

    van der Elst, Kim C. M.; Brouwers, Charlie H. S.; van den Heuvel, Edwin R.; van Wanrooy, Marjolijn J. P.; Uges, Donald R. A.; van der Werf, Tjip S.; Kosterink, Jos G. W.; Span, Lambert F. R.; Alffenaar, Jan-Willem C.

    2015-01-01

    Background:Posaconazole exposure seems to be subtherapeutic in some patients with invasive fungal disease. Due to the pharmacokinetic variability of posaconazole, therapeutic drug monitoring may help to optimize the efficacy of this antifungal drug.Methods:A retrospective study of patients treated w

  9. Posaconazole plasma concentrations in pediatric patients receiving antifungal prophylaxis during neutropenia.

    Science.gov (United States)

    Döring, Michaela; Cabanillas Stanchi, Karin Melanie; Klinker, Hartwig; Eikemeier, Melinda; Feucht, Judith; Blaeschke, Franziska; Schwarze, Carl-Philipp; Ebinger, Martin; Feuchtinger, Tobias; Handgretinger, Rupert; Heinz, Werner J

    2016-10-04

    Invasive fungal infections are one of the major complications in pediatric patients during prolonged neutropenia after chemotherapy. Evaluation of the efficacy and safety of the triazole posaconazole in these patients is missing. This multicenter survey analyzed trough concentrations of 33 pediatric patients with a median age of 8 years during 108 neutropenic episodes who received prophylactic posaconazole oral suspension. A total of 172 posaconazole trough levels were determined to median 438 ng/ml (range 111-2011 ng/ml; mean 468 ± 244 ng/ml). Age and gender had no influence on posaconazole plasma levels. Posaconazole was not discontinued due to adverse events in any of the patients. Only hepatic parameters significantly increased beyond the upper normal limit to median values of ALT of 87 U/l (P posaconazole trough concentration of 306 ng/ml experienced an invasive fungal infection. In conclusion, posaconazole was effective, safe and feasible in 33 pediatric patients with neutropenia ≥5 days after chemotherapy. Median posaconazole plasma concentrations were approximately 1.6-fold lower than the recommended plasma level of 700 ng/ml. Larger patient cohorts are needed to evaluate these findings.

  10. Posaconazole: when and how? The clinician's view.

    Science.gov (United States)

    Katragkou, Aspasia; Tsikopoulou, Fotini; Roilides, Emmanuel; Zaoutis, Theoklis E

    2012-03-01

    Posaconazole is the newest triazole antifungal agent available as an oral suspension with an extended spectrum of activity against Candida species, Aspergillus species, Cryptococcus neoformans, Zygomycetes and endemic fungi. Among posaconazole advantages are the relatively low potential of cross-resistance with other azoles, few drug interactions compared with other azoles and its activity against Zygomycetes. Randomised, double-blind trials have shown that posaconazole is effective for prophylaxis against invasive fungal infections (IFI), especially aspergillosis, in high-risk patients. Results of Phase III clinical trials and case/series reports indicate that posaconazole is effective in treating oesophageal candidiasis, including azole-refractory disease, and other IFI refractory to standard antifungal therapies. To date, posaconazole has appeared to be well tolerated even in long-term courses; it has an excellent safety profile with gastrointestinal disturbances being the most common adverse events reported. The dose of posaconazole is 200 mg three times daily for prophylaxis, 800 mg daily in two or four divided doses for the treatment of IFI and 100 mg daily (200 mg loading dose) for the treatment of oropharyngeal candidiasis. On the basis of early clinical experience, it appears that posaconazole will be a valuable aid in the management of life-threatening fungal infections.

  11. Posaconazole pharmacokinetics in a 2-year-old boy with rhino-cerebral-orbital zygomycosis.

    Science.gov (United States)

    Egelund, Eric F; Egelund, Tosha A; Ng, John S; Wassil, Sarah K; Peloquin, Charles A

    2013-01-01

    Posaconazole is a triazole antifungal agent used as adjuvant or salvage therapy for the treatment of zygomycosis, an invasive fungal infection associated with high mortality. Oral posaconazole absorption is highly variable. We describe the pharmacokinetics of oral posaconazole in a 2-year-old boy with rhino-cerebral-orbital zygomycosis. Seven days after induction therapy for acute lymphoblastic leukemia, he was brought to the emergency department because of left eyelid swelling and was admitted to the hospital. Zygomycosis was diagnosed 12 days later. After we conducted a literature search and consulted with antifungal drug experts, a triple-antifungal regimen consisting of liposomal amphotericin B, caspofungin, and posaconazole was started. Given the severity of the disease, we aimed for posaconazole plasma trough concentrations greater than 1.25 µg/ml; the dosage necessary to achieve this goal was posaconazole 200 mg 4 times/day. After a difficult 105-day stay in the hospital and stabilization of the fungal infection, the patient was discharged. Caspofungin was discontinued at time of discharge, but the patient continued to receive amphotericin B lipid complex 7.5 mg/kg/day intravenously and posaconazole 200 mg orally 4 times/day. This is one of the few case reports describing posaconazole pharmacokinetics in a child younger than 8 years. In patients with extensive zygomycosis, a triple-antifungal regimen, combined with therapeutic drug monitoring of posaconazole, may be helpful.

  12. Posaconazole: Use in the Prophylaxis and Treatment of Fungal Infections.

    Science.gov (United States)

    Clark, Nina M; Grim, Shellee A; Lynch, Joseph P

    2015-10-01

    Posaconazole, a fluorinated triazole antifungal drug, is approved by the U.S. Food and Drug Administration (FDA) for (1) prophylaxis against Aspergillus and Candida infections in immunocompromised patients at high risk for these infections and (2) oropharyngeal candidiasis (OPC), including cases refractory to fluconazole and/or itraconazole. The European Medicines Agency (EMA) has approved posaconazole for (1) treatment of aspergillosis, fusariosis, chromoblastomycosis, and coccidioidomycosis in patients who are refractory to or intolerant of other azoles or amphotericin B; (2) first-line therapy for OPC for severe disease or in those unlikely to respond to topical therapy; and (3) prophylaxis of invasive fungal infections in high-risk hematologic patients and stem cell transplant recipients. In addition to approved indications, posaconazole has been used with success as salvage therapy for invasive mold infections and endemic mycoses in patients who are refractory to or intolerant of other antifungal agents, and as prophylaxis or salvage therapy in children, for whom indications are more limited owing to a paucity of data. Posaconazole has potent in vitro activity against a broad range of fungi and molds, including Aspergillus, Candida, Cryptococcus, filamentous fungi, and endemic mycoses including coccidioidomycosis, histoplasmosis, and blastomycosis. Importantly, posaconazole is much more active than other azoles against many Mucorales species and the combination of posaconazole with other antifungal agents may be synergistic. Hence, posaconazole is a potential candidate as a single or combination agent for difficult-to-treat fungal infections. Posaconazole has an excellent safety profile; to date, serious side effects are rare, even with prolonged use. However, newer posaconazole formulations achieve higher blood levels and it remains to be seen whether this may lead to an increase in the rate of adverse effects. Currently, posaconazole is used predominantly

  13. Pharmacokinetics and drug interactions of posaconazole%泊沙康唑的药动学及其药物相互作用

    Institute of Scientific and Technical Information of China (English)

    伍晓群; 李健和; 熊友健; 徐幸民

    2011-01-01

    泊沙康唑为-新型三唑类抗真菌药,临床用于治疗和预防侵袭性真菌感染,具有高效、低毒、广谱的特点,并具有良好的耐受性,但对CYP3A4酶具有抑制作用,故可与多种药物发生药动学相互作用.本文综述了泊沙康唑的药动学特点及其药物相互作用,供临床参考,以促进临床安全合理用药.%Posaconazole is a new triazole antifungal agent with high potency, low-toxicity and broadspectrum activity for the treatment of invasive fungal infections. Posaconazole inhibits CYP3A4 and interacts with many drugs. This article summarizes the pharmacokinetics of posaconazole and interactions with other drugs in order to promote rational drug use.

  14. Understanding variability in posaconazole exposure using an integrated population pharmacokinetic analysis.

    Science.gov (United States)

    Dolton, Michael J; Brüggemann, Roger J M; Burger, David M; McLachlan, Andrew J

    2014-11-01

    Posaconazole oral suspension is widely used for antifungal prophylaxis and treatment in immunocompromised patients, with highly variable pharmacokinetics reported in patients due to inconsistent oral absorption. This study aimed to characterize the pharmacokinetics of posaconazole in adults and investigate factors that influence posaconazole pharmacokinetics byusing a population pharmacokinetic approach. Nonlinear mixed-effects modeling was undertaken for two posaconazole studies in patients and healthy volunteers. The influences of demographic and clinical characteristics, such as mucositis, diarrhea, and drug-drug interactions, on posaconazole pharmacokinetics were investigated using a stepwise forward inclusion/backwards deletion procedure. A total of 905 posaconazole concentration measurements from 102 participants were analyzed. A one-compartment pharmacokinetic model with first-order oral absorption with lag time and first-order elimination best described posaconazole pharmacokinetics. Posaconazole relative bioavailability was 55% lower in patients who received posaconazole than in healthy volunteers. Coadministration of proton pump inhibitors (PPIs) or metoclopramide, as well as the occurrence of mucositis or diarrhea, reduced posaconazole relative bioavailability by 45%, 35%, 58%, and 45%, respectively, whereas concomitant ingestion of a nutritional supplement significantly increased bioavailability (129% relative increase). Coadministration of rifampin or phenytoin increased apparent posaconazole clearance by more than 600%, with a smaller increase observed with fosamprenavir (34%). Participant age, weight, or sex did not significantly affect posaconazole pharmacokinetics. Posaconazole absorption was reduced by a range of commonly coadministered medicines and clinical complications, such as mucositis and diarrhea. Avoidance of PPIs and metoclopramide and administration with food or a nutritional supplement are effective strategies to increase posaconazole

  15. Special Issue: Novel Antifungal Drug Discovery

    Directory of Open Access Journals (Sweden)

    Maurizio Del Poeta

    2016-12-01

    Full Text Available This Special Issue is designed to highlight the latest research and development on new antifungal compounds with mechanisms of action different from the ones of polyenes, azoles, and echinocandins. The papers presented here highlight new pathways and targets that could be exploited for the future development of new antifungal agents to be used alone or in combination with existing antifungals. A computational model for better predicting antifungal drug resistance is also presented.

  16. Hot Melt Extruded Amorphous Solid Dispersion of Posaconazole with Improved Bioavailability: Investigating Drug-Polymer Miscibility with Advanced Characterisation

    Directory of Open Access Journals (Sweden)

    Ritesh Fule

    2014-01-01

    Full Text Available Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD with immediate release and improved bioavailability was prepared using Soluplus (Sol as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0–72 and Cmax of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0–72 and Cmax higher than those with the commercial capsule (Noxafil. Molecular dynamic (MD simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.

  17. Hot melt extruded amorphous solid dispersion of posaconazole with improved bioavailability: investigating drug-polymer miscibility with advanced characterisation.

    Science.gov (United States)

    Fule, Ritesh; Amin, Purnima

    2014-01-01

    Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD) with immediate release and improved bioavailability was prepared using Soluplus (Sol) as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal) fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0-72) and C(max) of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0-72) and C(max) higher than those with the commercial capsule (Noxafil). Molecular dynamic (MD) simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.

  18. 泊沙康唑体内及体外活性研究进展%In-vitro and in-vivo antifungal activities of posaconazole:an update

    Institute of Scientific and Technical Information of China (English)

    孙禾; 苏欣; 施毅

    2011-01-01

    泊沙康唑是广谱三唑类抗真菌新药,对大多数酵母菌和丝状真菌体外高度敏感,如念珠菌属、新型隐球菌、曲霉属、镰刀霉属及接合菌属等.对部分双相型真菌和地方性真菌,泊沙康唑也具有体外活性.对免疫正常及免疫抑制动物的侵袭性感染,泊沙康唑都有广谱、高效的抗真菌活性.对光滑念珠菌、克柔念珠菌、土曲霉、镰刀霉及接合菌等,泊沙康唑的体内外活性优于其他唑类药物.在体内敏感度研究中,对不同免疫状态及不同部位的重度侵袭性感染,泊沙康唑预防和治疗用药都显示了良好的效果.%Posaconazole is a new triazole drug with broad-spectrum activity in vitro against most yeasts and molds such as candidae, cryptococcus neoformans, aspergillus, Fusarium and zygomycetes, and also against certain species of dimorphic fungi and endemic fungi. In immunocompetent or immunocompromised animal models of invasive fungal infections, Posaconazole has been demonstrated to provide highly-effective, broad-spectrum antifungal activities. In-vitro and in-vivo activities of posaconazole were superior to those of other azoles against Candida gla-brata,Candida krusei, Aspergillus terms, fusarium and zygomycetes. In vivo sensitivity studies have shown the promising efficacy of posaconazole against life-threatening fungal infections in animal models with different immune status and sites of infections.

  19. Rapid identification of antifungal compounds against Exserohilum rostratum using high throughput drug repurposing screens.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available A recent large outbreak of fungal infections by Exserohilum rostratum from contaminated compounding solutions has highlighted the need to rapidly screen available pharmaceuticals that could be useful in therapy. The present study utilized two newly-developed high throughput assays to screen approved drugs and pharmaceutically active compounds for identification of potential antifungal agents. Several known drugs were found that have potent effects against E. rostratum including the triazole antifungal posaconazole. Posaconazole is likely to be effective against infections involving septic joints and may provide an alternative for refractory central nervous system infections. The anti-E. rostratum activities of several other drugs including bithionol (an anti-parasitic drug, tacrolimus (an immunosuppressive agent and floxuridine (an antimetabolite were also identified from the drug repurposing screens. In addition, activities of other potential antifungal agents against E. rostratum were excluded, which may avoid unnecessary therapeutic trials and reveals the limited therapeutic alternatives for this outbreak. In summary, this study has demonstrated that drug repurposing screens can be quickly conducted within a useful time-frame. This would allow clinical implementation of identified alternative therapeutics and should be considered as part of the initial public health response to new outbreaks or rapidly-emerging microbial pathogens.

  20. Serum posaconazole levels during acute myeloid leukaemia induction therapy: correlations with breakthrough invasive fungal infections.

    Science.gov (United States)

    Cattaneo, Chiara; Panzali, Annafranca; Passi, Angela; Borlenghi, Erika; Lamorgese, Cinzia; Petullà, Marta; Re, Alessandro; Caimi, Luigi; Rossi, Giuseppe

    2015-06-01

    The usefulness of posaconazole therapeutic drug monitoring (TDM) is still a matter of debate. A correlation between posaconazole serum levels and breakthrough invasive fungal infections (IFI) has not been clearly demonstrated so far. We analysed posaconazole serum levels in patients with acute myeloid leukaemia (AML) during induction therapy and correlated them with the incidence of breakthrough IFI and the need of systemic antifungal therapy. Overall, 77 AML patients receiving posaconazole were evaluated for serum levels; breakthrough IFI were observed in five with at least one posaconazole TDM (6.5%). Median serum level was 534 ng ml(-1) (IQ range: 298.5-750.5 ng ml(-1) ) and did not change significantly over time. Four of the 40 patients with median posaconazole levels posaconazole levels on day 7 were 384.5 ng ml(-1) (IQ range: 207-659 ng ml(-1) ) and 560.5 ng ml(-1) (IQ range: 395-756 ng ml(-1) ) in patients requiring or not systemic antifungal treatment respectively (P = 0.067). These results seem to confirm that higher median serum levels of posaconazole correlate with higher prophylactic efficacy against proven/probable IFI and with lesser need of systemic antifungal therapy.

  1. Posaconazole for primary antifungal prophylaxis in patients with acute myeloid leukaemia or myelodysplastic syndrome during remission induction chemotherapy: a single-centre retrospective study in Korea and clinical considerations.

    Science.gov (United States)

    Cho, Sung-Yeon; Lee, Dong-Gun; Choi, Su-Mi; Choi, Jae-Ki; Lee, Hyo-Jin; Kim, Si-Hyun; Park, Sun Hee; Choi, Jung-Hyun; Yoo, Jin-Hong; Kim, Yoo-Jin; Kim, Hee-Je; Min, Woo-Sung

    2015-09-01

    Posaconazole was introduced as the primary antifungal prophylaxis (PAP) in acute myeloid leukaemia (AML) or myelodysplastic syndrome (MDS) patients during remission induction chemotherapy. Data on breakthrough invasive fungal infections (IFIs) from various centres are essential, as there are several considerations in treating IFIs in the posaconazole era. The aim of this study was to evaluate the effectiveness of posaconazole PAP and identify characteristics of IFIs at a single centre in Korea. We retrospectively reviewed consecutive patients with AML/MDS undergoing remission induction chemotherapy between December 2010 and November 2013. Of the 424 patients, 140 received posaconazole and 284 received fluconazole prophylaxis. The incidence of breakthrough proven/probable IFIs (15.5% vs. 2.9%, P posaconazole group compared to the fluconazole group. In the posaconazole PAP group, two cases of breakthrough mucormycosis were noted among 13 proven/probable/possible IFI cases (15.4%). Overall and IFI-related mortality was 12.1% and 1.9% respectively. Fungus-free survival was significantly higher in the posaconazole group (74.7% vs. 87.1%, P = 0.028). Breakthrough IFIs and EAFT decreased significantly after posaconazole PAP. The benefit in fungus-free survival was noted with posaconazole PAP. Clinicians should be vigilant to identify non-Aspergillus IFIs with active diagnostic effort.

  2. Posaconazole salvage treatment for invasive fungal infection.

    Science.gov (United States)

    Kim, Jong Hun; Williams, Kali

    2014-10-01

    Invasive fungal infection (IFI) is an important cause of morbidity and mortality. Posaconazole is a second generation triazole with a broad spectrum, and it may be suitable for salvage antifungal treatment although posaconazole is not usually considered to be as first-line antifungal therapy for IFI. The purpose of this study was to assess the utility of posaconazole salvage treatment for IFI. We conducted a retrospective review of patients with salvage antifungal treatment with posaconazole for IFI at our institution between December 2007 and July 2012. A total of ten patients received posaconazole salvage IFI. Etiology of IFI was consisting of mucormycosis (four patients), Paecilomyces variotii (one patient), and unspecified IFI etiology (five patients). Causes of posaconazole treatment were following; intolerance of previous antifungal therapy in five patients, refractory IFI on previous antifungal therapy in four patients, and both intolerance of previous antifungal therapy and refractory IFI on previous antifungal therapy in one patient. Duration of posaconazole salvage treatment ranged from 15 to 355 days with median 47 days. The overall successful posaconazole salvage treatment response rate was 80.0 % (8 of 10 patients). There were three patients who died during the study period. However, only one death was attributed to the progression of IFI. Two patients discontinued posaconazole due to adverse events. Posaconazole salvage treatment was effective antifungal therapy for IFI. Further studies are needed to define the optimal therapeutic strategy.

  3. EUCAST technical note on posaconazole

    NARCIS (Netherlands)

    Arendrup, M.C.; Cuenca-Estrella, M.; Donnelly, J.P.; Hope, W.; Lass-Florl, C.; Rodriguez-Tudela, J.L.

    2011-01-01

    The European Committee on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing (EUCAST-AFST) has determined breakpoints for posaconazole for Candida spp. This Technical Note is based on the EUCAST posaconazole rationale document (available on the EUCAST website: htt

  4. Development, clinical utility, and place in therapy of posaconazole for prevention and treatment of invasive fungal infections

    Directory of Open Access Journals (Sweden)

    Emily Zoller

    2010-11-01

    Full Text Available Emily Zoller, Connie Valente, Kyle Baker, Michael E KlepserFerris State University College of Pharmacy, Kalamazoo, Michigan, USAAbstract: Posaconazole is an extended-spectrum azole antifungal that exhibits activity against a broad range of fungal pathogens, including yeasts and moulds. Clinical data have demonstrated the clinical utility of posaconazole against many therapy-refractory pathogens, including Aspergillus spp, Fusarium spp, and Zygomycetes. These data have provided clinicians with hope in these difficult situations. Some of the limitations that have emerged with the use of posaconazole are the lack of an intravenous formulation and erratic drug absorption. This fact is further complicated by the existence of saturable posaconazole absorption. Despite these drawbacks, posaconazole appears poised to become a prominent therapeutic modality for the prophylaxis and management of various fungal infections among high-risk patients.Keywords: posaconazole, pharmacokinetics, fungal infections

  5. In vitro activities of eight antifungal drugs against 106 waterborne and cutaneous exophiala species.

    Science.gov (United States)

    Najafzadeh, M J; Saradeghi Keisari, M; Vicente, V A; Feng, P; Shamsian, S A A; Rezaei-Matehkolaei, A; de Hoog, G S; Curfs-Breuker, I; Meis, J F

    2013-12-01

    The in vitro activities of eight antifungal drugs against 106 clinical and environmental isolates of waterborne and cutaneous Exophiala species were tested. The MICs and minimum effective concentrations for 90% of the strains tested (n = 106) were, in increasing order, as follows: posaconazole, 0.063 μg/ml; itraconazole, 0.25 μg/ml; micafungin, 1 μg/ml; voriconazole, 2 μg/ml; isavuconazole, 4 μg/ml; caspofungin, 8 μg/ml; amphotericin B, 16 μg/ml; fluconazole, 64 μg/ml.

  6. Validation of 24-Hour Posaconazole and Voriconazole MIC Readings versus the CLSI 48-Hour Broth Microdilution Reference Method: Application of Epidemiological Cutoff Values to Results from a Global Candida Antifungal Surveillance Program▿

    Science.gov (United States)

    Pfaller, M. A.; Boyken, L. B.; Hollis, R. J.; Kroeger, J.; Messer, S. A.; Tendolkar, S.; Diekema, D. J.

    2011-01-01

    We performed 24- and 48-h MIC determinations of posaconazole and voriconazole against more than 16,000 clinical isolates of Candida species. By using the 24- and 48-h epidemiological cutoff values (ECVs), the categorical agreement between the 24-h and reference 48-h broth microdilution results ranged from 97.1% (C. parapsilosis and voriconazole) to 99.8% (C. krusei and voriconazole), with 0.0 to 2.9% very major discrepancies (VMD). The essential agreement (within 2 log2 dilutions) between the 24- and 48-h results was 99.6% for both posaconazole and voriconazole. The MIC results obtained for both posaconazole and voriconazole after only 24 h of incubation may be used to determine the susceptibilities of Candida spp. to these important antifungal agents. The applications of ECVs to this large collection of Candida isolates suggests the potential to develop 24-h species-specific clinical breakpoints for both posaconazole and voriconazole. PMID:21289155

  7. Antifungal drug resistance to azoles and polyenes.

    Science.gov (United States)

    Masiá Canuto, Mar; Gutiérrez Rodero, Félix

    2002-09-01

    There is an increased awareness of the morbidity and mortality associated with fungal infections caused by resistant fungi in various groups of patients. Epidemiological studies have identified risk factors associated with antifungal drug resistance. Selection pressure due to the continuous exposure to azoles seems to have an essential role in developing resistance to fluconazole in Candida species. Haematological malignancies, especially acute leukaemia with severe and prolonged neutropenia, seem to be the main risk factors for acquiring deep-seated mycosis caused by resistant filamentous fungi, such us Fusarium species, Scedosporium prolificans, and Aspergillus terreus. The still unacceptably high mortality rate associated with some resistant mycosis indicates that alternatives to existing therapeutic options are needed. Potential measures to overcome antifungal resistance ranges from the development of new drugs with better antifungal activity to improving current therapeutic strategies with the present antifungal agents. Among the new antifungal drugs, inhibitors of beta glucan synthesis and second-generation azole and triazole derivatives have characteristics that render them potentially suitable agents against some resistant fungi. Other strategies including the use of high doses of lipid formulations of amphotericin B, combination therapy, and adjunctive immune therapy with cytokines are under investigation. In addition, antifungal control programmes to prevent extensive and inappropriate use of antifungals may be needed.

  8. In vitro activities of new and conventional antifungal agents against clinical Scedosporium isolates.

    NARCIS (Netherlands)

    Meletiadis, J.; Meis, J.F.G.M.; Mouton, J.W.; Rodriguez-Tudela, J.L.; Donnelly, J.P.; Verweij, P.E.

    2002-01-01

    The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (ampho

  9. Clinical effectiveness of posaconazole versus fluconazole as antifungal prophylaxis in hematology–oncology patients: a retrospective cohort study

    Science.gov (United States)

    Kung, Hsiang-Chi; Johnson, Melissa D; Drew, Richard H; Saha-Chaudhuri, Paramita; Perfect, John R

    2014-01-01

    In preventing invasive fungal disease (IFD) in patients with acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS), clinical trials demonstrated efficacy of posaconazole over fluconazole and itraconazole. However, effectiveness of posaconazole has not been investigated in the United States in real-world setting outside the environment of controlled clinical trial. We performed a single-center, retrospective cohort study of 130 evaluable patients ≥18 years of age admitted to Duke University Hospital between 2004 and 2010 who received either posaconazole or fluconazole as prophylaxis during first induction or first reinduction chemotherapy for AML or MDS. The primary endpoint was possible, probable, or definite breakthrough IFD. Baseline characteristics were well balanced between groups, except that posaconazole recipients received reinduction chemotherapy and cytarabine more frequently. IFD occurred in 17/65 (27.0%) in the fluconazole group and in 6/65 (9.2%) in the posaconazole group (P = 0.012). Definite/probable IFDs occurred in 7 (10.8%) and 0 patients (0%), respectively (P = 0.0013). In multivariate analysis, fluconazole prophylaxis and duration of neutropenia were predictors of IFD. Mortality was similar between groups. This study demonstrates superior effectiveness of posaconazole over fluconazole as prophylaxis of IFD in AML and MDS patients. Such superiority did not translate to reductions in 100-day all-cause mortality. PMID:24644249

  10. Clinical effectiveness of posaconazole versus fluconazole as antifungal prophylaxis in hematology-oncology patients: a retrospective cohort study.

    Science.gov (United States)

    Kung, Hsiang-Chi; Johnson, Melissa D; Drew, Richard H; Saha-Chaudhuri, Paramita; Perfect, John R

    2014-06-01

    In preventing invasive fungal disease (IFD) in patients with acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS), clinical trials demonstrated efficacy of posaconazole over fluconazole and itraconazole. However, effectiveness of posaconazole has not been investigated in the United States in real-world setting outside the environment of controlled clinical trial. We performed a single-center, retrospective cohort study of 130 evaluable patients ≥18 years of age admitted to Duke University Hospital between 2004 and 2010 who received either posaconazole or fluconazole as prophylaxis during first induction or first reinduction chemotherapy for AML or MDS. The primary endpoint was possible, probable, or definite breakthrough IFD. Baseline characteristics were well balanced between groups, except that posaconazole recipients received reinduction chemotherapy and cytarabine more frequently. IFD occurred in 17/65 (27.0%) in the fluconazole group and in 6/65 (9.2%) in the posaconazole group (P = 0.012). Definite/probable IFDs occurred in 7 (10.8%) and 0 patients (0%), respectively (P = 0.0013). In multivariate analysis, fluconazole prophylaxis and duration of neutropenia were predictors of IFD. Mortality was similar between groups. This study demonstrates superior effectiveness of posaconazole over fluconazole as prophylaxis of IFD in AML and MDS patients. Such superiority did not translate to reductions in 100-day all-cause mortality.

  11. Pharmacokinetics of Posaconazole Within Epithelial Cells and Fungi: Insights Into Potential Mechanisms of Action During Treatment and Prophylaxis

    OpenAIRE

    Campoli, Paolo; Perlin, David S.; Kristof, Arnold S.; White, Theodore C.; Scott G Filler; Sheppard, Donald C.

    2013-01-01

    Background. The antifungal posaconazole concentrates within host cells and protects against Aspergillus fumigatus. The specific subcellular location of posaconazole and the mechanism by which cell-associated posaconazole inhibits fungal growth remain uncharacterized.

  12. Posaconazole: an emerging therapeutic option for invasive rhino-orbito-cerebral mucormycosis.

    Science.gov (United States)

    Manesh, Abi; John, Ajoy O; Mathew, Binu; Varghese, Lalee; Rupa, Vedantam; Zachariah, Anand; Varghese, George M

    2016-07-22

    Posaconazole has significant activity against the Mucormycetes. However, data are limited on the clinical efficacy of posaconazole for treating rhino-orbito-cerebral mucormycosis (ROCM). The aim of this study is to assess the efficacy and safety of posaconazole in patients with ROCM. We included 12 consecutive adult patients admitted with ROCM and treated with posaconazole between January 2010 and February 2015. The main outcome of the study was the overall success rate (i.e. either complete or partial response) at the end of treatment. We also assessed serum posaconazole concentrations in a subgroup of patients. Of the 12 patients who received posaconazole, eight patients (66.6%) had complete resolution with median follow-up of 6.5 months (range 2-24 months). Two patients (16.6%) had significant reduction of disease and two (16.6%) had marked residual disease on follow-up. Uncontrolled diabetes was the predisposing factor in all except one patient. One patient developed diarrhoea on posaconazole, which settled without discontinuation of the drug. Posaconazole appears to be a safe and effective antifungal agent in diabetic patients with ROCM, especially in those who have toxicity with polyene therapy.

  13. Statin-associated rhabdomyolysis triggered by drug-drug interaction with itraconazole

    DEFF Research Database (Denmark)

    Dybro, Anne Mette; Damkier, Per; Rasmussen, Torsten Bloch

    2016-01-01

    antifungal agents such as itraconazole and posaconazole. If antifungal treatment is indicated in a patient using a CYP3A4-metabolised statin, we recommend (1) topical administration of the antifungal agent if possible, (2) the use of a non-CYP3A4-inhibiting antifungal drug such as terbinafine or (3...

  14. 三唑类抗真菌新药泊沙康唑的药理基础%Pharmacokinetic and pharmacodynamic profile of a new triazole antifungal posaconazole

    Institute of Scientific and Technical Information of China (English)

    孙禾; 苏欣; 施毅

    2012-01-01

    Posaconazole oral suspension acts by inhibiting cytochrome P450-dependent-14-ot-demethylase in the biosynthetsis of ergosterol. Since the relative bioavailability is significantly different among regimens, this triazole requires administration with food or a nutritional supplement to assure adequate bioavailability. The extent of protein binding is high (> 98%). The time to reach the maximum plasma concentration is about 5-8 hours following oral administration of a single dose. Posaconazole has a large mean apparent volume of distribution ( VJF) influenced by the dosage regimen, suggesting extensive extravascular distribution and penetration into intracellular spaces. The metabolism of posaconazole is mediated predominantly through phase 2 biotransformations via uridine diphosphate glucuronosyltransferase enzyme pathways. As an inhibitor primarily of CYP3A4, plasma concentrations of drugs that are predominantly metabolized by CYP3A4 may be increased by posaconazole. Posaconazole has a median terminal elimination half-life of 20 - 66 hours and is predominantly eliminated in the feces as unchanged drug. The drug is well tolerated, even in long - term courses. Adverse reactions are generally mild.%泊沙康唑是第二代三唑类抗真菌药,该口服液通过抑制细胞色素P450依赖的14α-脱甲基酶(CYP51)发挥抗真菌活性.泊沙康唑口服生物利用度变异大,随高脂餐同服吸收率最高,分次给药可增加其生物利用度.在体内蛋白结合率达98%,单次给药后5~8h血药浓度达峰.泊沙康唑的表观分布容积与给药方案相关,组织分布广泛,穿透力强,口服给药后7~10d达稳态血药浓度,通过尿苷二磷酸葡萄糖醛酸转移酶途径代谢.泊沙康唑是细胞色素酶CYP3A4的抑制剂,经此通路代谢的药物可受泊沙康唑的影响,血药浓度升高.泊沙康唑主要经消化道清除,清除半衰期20 ~ 66 h,口服耐受性良好,不良反应轻微.

  15. A pharmacokinetic analysis of posaconazole oral suspension in the serum and alveolar compartment of lung transplant recipients.

    Science.gov (United States)

    Thakuria, L; Packwood, K; Firouzi, A; Rogers, P; Soresi, S; Habibi-Parker, K; Lyster, H; Zych, B; Garcia-Saez, D; Mohite, P; Patil, N; Sabashnikov, A; Capoccia, M; Chibvuri, M; Lamba, H; Tate, H; Carby, M; Simon, A; Leaver, N; Reed, A

    2016-01-01

    Invasive fungal infections cause significant morbidity and mortality after lung transplantation. Fungal prophylaxis following lung transplantation is not standardised, with transplant centres utilising a variety of regimens. Posaconazole is a broad-spectrum antifungal triazole that requires further investigation within the setting of lung transplantation. This prospective, single-centre, observational study explored the pharmacokinetics of posaconazole oral suspension (POS) in the early perioperative period following lung transplantation in 26 patients. Organ recipients were scheduled to receive 400mg POS twice daily for 6 weeks as primary antifungal prophylaxis. Therapeutic drug monitoring (TDM) of serum posaconazole levels was performed in accordance with local clinical protocols. Bronchoalveolar lavage fluid (BALF) was sampled during routine bronchoscopies. Posaconazole levels were measured both in serum and BALF using mass spectrometry. Posaconazole levels were highly variable within lung transplant recipients during the perioperative period and did not achieve 'steady-state'. Serum posaconazole concentrations positively correlated with levels within the BALF (r=0.5527; P=0.0105). Of the 26 patients, 10 failed to complete the study for multiple reasons and so the trial was terminated early. Unlike study findings in stable recipients, serum posaconazole levels rarely achieved steady-state in the perioperative period; however, they do reflect the concentrations within the airways of newly transplanted lungs. The role of POS as primary prophylaxis in the perioperative period is uncertain, but if used TDM may be helpful for determining attainment of therapeutic levels.

  16. Understanding Variability in Posaconazole Exposure Using an Integrated Population Pharmacokinetic Analysis

    OpenAIRE

    Dolton, Michael J; Brüggemann, Roger J. M.; Burger, David M.; McLachlan, Andrew J

    2014-01-01

    Posaconazole oral suspension is widely used for antifungal prophylaxis and treatment in immunocompromised patients, with highly variable pharmacokinetics reported in patients due to inconsistent oral absorption. This study aimed to characterize the pharmacokinetics of posaconazole in adults and investigate factors that influence posaconazole pharmacokinetics byusing a population pharmacokinetic approach. Nonlinear mixed-effects modeling was undertaken for two posaconazole studies in patients ...

  17. Tolerability and safety of antifungal drugs

    Directory of Open Access Journals (Sweden)

    Francesco Scaglione

    2013-08-01

    Full Text Available When treating critically ill patients, as those with fungal infections, attention should be focused on the appropriate use of drugs, especially in terms of dose, safety, and tolerability. The fungal infection itself and the concomitant physiological disorders concur to increase the risk of mortality in these patients, therefore the use of any antifungal agent should be carefully evaluated, considering both the direct action on the target fungus and the adverse effects eventually caused. Among antifungal drugs, echinocandins have the greatest tolerability. In fact, unlike amphotericin B, showing nephrotoxicity, and azoles, which are hepatotoxic, the use of echinocandins doesn’t result in major adverse events.http://dx.doi.org/10.7175/rhc.v4i2s.873

  18. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs

    Directory of Open Access Journals (Sweden)

    SAHADEO PATIL

    2015-05-01

    Full Text Available Abstract. Patil S, Maknikar P, Wankhade S, Ukesh C, Rai M. 2015. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs. Nusantara Bioscience 7: 55-59. We report evaluation of antifungal activity of cumin seed oil and its pharmacological interactions when used in combination with some of the widely used conventional antifungal drugs using CLSI broth microdilution, agar disc diffusion and checkerboard microtitre assay against Candida. The essential oil was obtained from cumin seeds using hydrodistillation technique and was later evaluated for the presence of major chemical constituents present in it using gas chromatography and mass spectrometry (GC-MS assay. The GC-MS assay revealed the abundance of γ-terpinene (35.42% followed by p-cymene (30.72%. The agar disc diffusion assay demonstrated highly potent antifungal effect against Candida species. Moreover, the combination of cumin essential oil (CEO with conventional antifungal drugs was found to reduce the individual MIC of antifungal drug suggesting the occurrence of synergistic interactions. Therefore, the therapy involving combinations of CEO and conventional antifungal drugs can be used for reducing the toxicity induced by antifungal drugs and at the same time enhancing their antifungal efficacy in controlling the infections caused due to Candida species.

  19. Antifungal Drug Resistance - Concerns for Veterinarians

    Directory of Open Access Journals (Sweden)

    Bharat B. Bhanderi

    2009-10-01

    Full Text Available In the 1990s, there were increased incidences of fungal infectious diseases in human population which might be due to increase in immunosuppressive diseases. But the major concern was increase in prevalence of resistance to antifungal drugs which were reported both in the fungal isolates of human beings and that of animal origin. In both animals and human beings, resistance to antimicrobial agents has important implications for morbidity, mortality and health care costs, because resistant strains are responsible for bulk of infection in animals and human beings, and large number of antimicrobial classes offers more diverse range of resistance mechanisms to study and resistance determinants move into standard well-characterized strains that facilitates the detailed study of molecular mechanisms of resistance in microorganisms. Studies on resistance to antifungal agents has been lagging behind that of antibacterial resistance for several reasons, the foremost reason might be fungal agents were not recognized as important animal and human pathogens, until relatively in recent past. But the initial studies of antifungal drug resistance in the early 1980s, have accumulated a wealth of knowledge concerning the clinical, biochemical, and genetic aspects of this phenomenon. Presently, exploration of the molecular aspects for antifungal drug resistance has been undertaken. Recently, the focus was on several points like developing a more detailed understanding of the mechanisms of antimicrobial resistance, improved methods to detect resistance when it occurs, methods to prevent the emergence and spread of resistance and new antimicrobial options for the treatment of infections caused by resistant organisms. [Vet. World 2009; 2(5.000: 204-207

  20. Pharmacokinetics and safety of posaconazole delayed-release tablets for invasive fungal infections

    Directory of Open Access Journals (Sweden)

    Wiederhold NP

    2015-12-01

    Full Text Available Nathan P Wiederhold Departments of Pathology and Medicine/Infectious Diseases, University of Texas Health Science Center at San Antonio, South Texas Reference Laboratories, San Antonio, TX, USA Abstract: Posaconazole is a broad-spectrum triazole antifungal agent with potent activity against various pathogenic fungi, including yeast and moulds. Clinical studies have demonstrated that this agent is efficacious as prophylaxis against invasive fungal infections in patients at high risk, and may also be useful as salvage therapy against invasive aspergillosis and mucormycosis. However, the bioavailability of posaconazole following administration by oral suspension, which was the only formulation clinically available for many years, is highly variable and negatively influenced by several factors. Because of this, many patients had subtherapeutic or undetectable posaconazole levels when the oral suspension was used. To overcome this limitation, a delayed-release tablet was developed and is now available for clinical use. Hot-melt extrusion technology is used to combine a pH-sensitive polymer with posaconazole to produce a formulation that releases the drug in the elevated pH of the intestine where absorption occurs rather than in the low-pH environment of the stomach. This results in enhanced bioavailability and increased posaconazole exposure. Studies in healthy volunteers have demonstrated significantly higher and more consistent exposures with the tablet formulation compared to the oral suspension. In addition, pharmacokinetic parameters following administration of the tablets were not significantly affected by medications that raise gastric pH or increase gastric motility, and the tablets could also be administered without regard to food. Similar results have also been found in patients at high risk for invasive fungal infections who have received posaconazole tablets. The tablet formulation also appears to be well tolerated to date, although data

  1. Efficacy and safety of posaconazole in antifungal prophylaxis:a Meta-analysis%泊沙康唑预防性抗真菌疗效与安全性的Meta 分析

    Institute of Scientific and Technical Information of China (English)

    黄金柱; 罗晓; 李咏; 李欣; 王子绮; 佟春香; 赵振满; 卢来春

    2015-01-01

    显示试验组与氟康唑、伊曲康唑、伏立康唑和两性霉素 B 脂质体对照组比较,差异均无统计学意义(均 P >0.05),考虑可能存在发表偏倚。结论泊沙康唑预防侵袭性真菌感染的疗效优于非泊沙康唑类药物,安全性与非泊沙康唑类药物相似。%Objective To evaluate the effectiveness and safety of posaconazole in antifungal prophylaxis. Methods CNKI,VIP,CBM,Wangfang Database,PubMed,Cochrane Library,Embase, OVID,and Web of Science from the inception to March 2014 were searched. The randomized controlled trials(RCT)which compared posaconazole with placebo or other antifungal drugs in antifungal prophylaxis and the endpoint was the incidences of invasive fungal infection( IFI),all-cause mortality,or adverse reactions were collected. The related information was selected and RevMan 5. 1 software of Cochrane Collaboration was used for statistical analysis. The results were expressed as odds ratios( OR)and its corresponding 95% confidence intervals(CI). Results A total of 6 RCTs were enrolled into the study. Of them,4 RCTs were comparison of posaconazole with one other antifungal drug,and 2 RCTs were comparison of posaconazole with two kinds of other antifungal drugs. There were 1 410 cases in the experimental group and 929 cases in the control group. The results of Meta-analysis showed that the incidence of IFI in the experimental group was lower than that in the control group(OR = 0. 37,95% CI:0. 27-0. 50,P ﹤ 0. 000 01). The results of comparison of posaconazole with other antifungal drugs showed that the incidence of invasive fungal infections in the experimental group were lower than those in the fluconazol group(OR = 0. 42,95% CI:0. 28-0. 64,P ﹤ 0. 000 1)and the itraconazole group(OR = 0. 33, 95% CI:0. 21-0. 53,P ﹤ 0. 000 01). There were no statistical significant differences in incidence of invasive fungal infections between the experimental group and the control groups of voriconazole and

  2. Triazole antifungals: a review.

    Science.gov (United States)

    Peyton, L R; Gallagher, S; Hashemzadeh, M

    2015-12-01

    Invasive fungal infections and systemic mycosis, whether from nosocomial infection or immunodeficiency, have been on an upward trend for numerous years. Despite advancements in antifungal medication, treatment in certain patients can still be difficult for reasons such as impaired organ function, limited administration routes or poor safety profiles of the available antifungal medications. The growing number of invasive fungal species becoming resistant to current antifungal medications is of appreciable concern. Triazole compounds containing one or more 1,2,4-triazole rings have been shown to contain some of the most potent antifungal properties. Itracon-azole and fluconazole were some of the first triazoles synthesized, but had limitations associated with their use. Second-generation triazoles such as voriconazole, posa-conazole, albaconazole, efinaconazole, ravuconazole and isavuconazole are all derivatives of either itraconazole or fluconazole, and designed to overcome the deficiencies of their parent drugs. The goal of this manuscript is to review antifungal agents derived from triazole.

  3. Review of the new delayed-release oral tablet and intravenous dosage forms of posaconazole.

    Science.gov (United States)

    Guarascio, Anthony J; Slain, Douglas

    2015-02-01

    The triazole antifungal posaconazole was first approved as an oral suspension formulation. Despite pharmacokinetic target attainment and clinical efficacy in premarketing trials, postmarketing analyses indicated unpredictable bioavailability resulting in subtherapeutic concentrations and reports of breakthrough fungal infections. The newly approved posaconazole delayed-release tablet and intravenous formulations display more consistent bioavailability in the presence of concomitant disease states, medications, and dietary considerations that classically alter drug concentrations of the oral suspension. Both the delayed-release tablet and intravenous formulation display a similar adverse-effect profile to the oral suspension. The posaconazole delayed-release oral tablet is not significantly affected by gastric acid suppression therapy, and the intravenous dosage form provides an option for patients who are intubated or unable to tolerate oral medications. Pharmacoeconomic considerations, particularly with intravenous posaconazole, will likely play a role in dosage form selection and frequency of use. Due to sustained, higher drug concentrations, the new posaconazole formulations hold promise for greater efficacy in antifungal prophylaxis and bring opportunity for further study in the treatment of invasive mycoses.

  4. Understanding variability in posaconazole exposure using an integrated population pharmacokinetic analysis

    NARCIS (Netherlands)

    Dolton, M.J.; Bruggemann, R.J.M.; Burger, D.M.; McLachlan, A.J.

    2014-01-01

    Posaconazole oral suspension is widely used for antifungal prophylaxis and treatment in immunocompromised patients, with highly variable pharmacokinetics reported in patients due to inconsistent oral absorption. This study aimed to characterize the pharmacokinetics of posaconazole in adults and inve

  5. Prevention of invasive fungal infections in immunocompromised patients: the role of delayed-release posaconazole

    Directory of Open Access Journals (Sweden)

    Soysal A

    2015-09-01

    Full Text Available Ahmet SoysalDivision of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, TurkeyAbstract: Posaconazole is a triazole antifungal agent that has broad-spectrum activity against many yeasts and filamentous fungi, including Candida species, Cryptococcus neoformans, Aspergillus species, and Zygomycetes. This drug has been approved for the prevention of invasive fungal infections in patients with neutropenia and for the treatment of invasive fungal infections in hematopoietic stem cell transplant recipients with graft-versus-host disease. Studies on the clinical efficacy, safety, tolerability, and cost-effectiveness of posaconazole therapy were performed using the oral suspension form of the drug. Pharmacokinetic studies have found that the oral suspension form of posaconazole has problemeatic bioavailability: its absorption is affected by concomitant medication and food. This article discusses the pharmacokinetic properties of the newly developed posaconazole delayed-release tablet formulation and reviews the efficacy, safety, and cost-effectiveness of both the oral suspension and the new tablet formulation. In conclusion, the posaconazole tablet formulation has better systemic bioavailability, thereby enabling once-daily administration and better absorption in the presence of concomitant medication and food. However, well-designed clinical studies are needed to evaluate the use of the tablet formulation in real-life settings.Keywords: posaconazole delayed-release tablet, prophylaxis, invasive fungal infections

  6. Characterization and In Vitro Evaluation of the Complexes of Posaconazole with β- and 2,6-di-O-methyl-β-cyclodextrin.

    Science.gov (United States)

    Tang, Peixiao; Wang, Lei; Ma, Xiaoli; Xu, Kailin; Xiong, Xinnuo; Liao, Xiaoxiang; Li, Hui

    2017-01-01

    Posaconazole is a triazole antifungal drug that with extremely poor aqueous solubility. Up to now, this drug can be administered via intravenous injection and oral suspension. However, its oral bioavailability is greatly limited by the dissolution rate of the drug. This study aimed to improve water solubility and dissolution of posaconazole through characterizing the inclusion complexes of posaconazole with β-cyclodextrin (β-CD) and 2,6-di-O-methyl-β-cyclodextrin (DM-β-CD). Phase solubility studies were performed to calculate the stability constants in solution. The results of FT-IR, PXRD, (1)H and ROESY 2D NMR, and DSC all verified the formation of the complexes in solid state. The complexes showed remarkably improved water solubility and dissolution rate than pure posaconazole. Especially, the aqueous solubility of the DM-β-CD complex is nine times higher than that of the β-CD complex. Preliminary in vitro antifungal susceptibility tests showed that the two inclusion complexes maintained high antifungal activities. These results indicated that the DM-β-CD complexes have great potential for application in the delivery of poorly water-soluble antifungal agents, such as posaconazole.

  7. Fatal Breakthrough Mucormycosis in an Acute Myelogenous Leukemia Patient while on Posaconazole Prophylaxis.

    Science.gov (United States)

    Kang, Seung Hun; Kim, Hyun Seon; Bae, Myoung Nam; Kim, Jihye; Yoo, Ji Yeon; Lee, Kwan Yong; Lee, Dong-Gun; Kim, Hee-Je

    2015-03-01

    Posaconazole is a new oral triazole with broad-spectrum antifungal activity. Posaconazole has also shown a significant advantage of preventing invasive fungal infection compared to fluconazole or itraconazole in patients with prolonged neutropenia. Indeed, posaconazole has been commonly used for antifungal prophylaxis in patients undergoing remission induction chemotherapy for acute myelogenous leukemia or myelodysplastic syndrome. We experienced a case of fatal mucormycosis despite posaconazole prophylaxis. To our knowledge, this is the first reported case of fatal breakthrough mucormycosis in a patient receiving posaconazole prophylaxis during remission induction chemotherapy in Korea. This case demonstrated that breakthrough fungal infection can occurs in patients receiving posaconazole prophylaxis because of its limited activity against some mucorales.

  8. Posaconazole: An Update of Its Clinical Use

    Directory of Open Access Journals (Sweden)

    Simon Leung

    2015-10-01

    Full Text Available Posaconazole (PCZ is a relatively new addition to the azole antifungals. It has fungicidal activities against Aspergillus fumigatus, Blastomyces dermatitidis, selected Candida species, Crytopcoccus neoformans, and Trichosporon. PCZ also has fungistatic activities against Candida, Coccidioides, selected Fusarium spp., Histoplasma, Scedosporium and Zygomycetes. In addition, combining the drug with caspofungin or amphotericin B results in a synergistic interaction against A. fumigatus, C. glabrata and C. neoformans. The absorption of PCZ suspension is enhanced when given with food, nutritional supplements, and carbonated beverages. Oral administration of PCZ in divided doses also increases its bioavailability. PCZ has a large volume of distribution and is highly protein bound (>95%. The main elimination route of PCZ is fecal. PCZ is an inhibitor of the CYP3A4 enzyme; therefore, monitoring for drug-drug interactions is warranted with other CYP3A4 substrates/inhibitors/inducers. The most common adverse effects include headache, fatigue, nausea, vomiting and elevated hepatic enzymes. PCZ, with its unique antifungal activities, expands the azole class of antifungal agents. Because of its limit in formulation, PCZ oral suspension is recommended in immunocompromised patients with functional gastrointestinaltracts who fail conventional antifungal therapies or who are suspected to have a breakthrough fungal infection. However, a delayed-release tablet formulation and intravenous (IV injection became available in 2014, expanding the use of PCZ in other patient populations, including individuals who are unable to take oral formulations.

  9. Posaconazole treatment in hematology patients: a pilot study of therapeutic drug monitoring

    NARCIS (Netherlands)

    Crombag, M.R.; Huisman, C.; Kemper, E.M.; Bruggemann, R.J.M.; Bijleveld, Y.A.

    2012-01-01

    BACKGROUND: Posaconazole is indicated for prophylaxis and salvage therapy of invasive fungal infections. Based on pharmacokinetic-pharmacodynamic data, minimum serum concentrations for each indication have been proposed, for example, for prophylaxis >0.5-0.7 mg/L and for primary therapy >1.0 m

  10. Limited Ability of Posaconazole To Cure both Acute and Chronic Trypanosoma cruzi Infections Revealed by Highly Sensitive In Vivo Imaging.

    Science.gov (United States)

    Francisco, Amanda Fortes; Lewis, Michael D; Jayawardhana, Shiromani; Taylor, Martin C; Chatelain, Eric; Kelly, John M

    2015-08-01

    The antifungal drug posaconazole has shown significant activity against Trypanosoma cruzi in vitro and in experimental murine models. Despite this, in a recent clinical trial it displayed limited curative potential. Drug testing is problematic in experimental Chagas disease because of difficulties in demonstrating sterile cure, particularly during the chronic stage of infection when parasite burden is extremely low and tissue distribution is ill defined. To better assess posaconazole efficacy against acute and chronic Chagas disease, we have exploited a highly sensitive bioluminescence imaging system which generates data with greater accuracy than other methods, including PCR-based approaches. Mice inoculated with bioluminescent T. cruzi were assessed by in vivo and ex vivo imaging, with cyclophosphamide-induced immunosuppression used to enhance the detection of relapse. Posaconazole was found to be significantly inferior to benznidazole as a treatment for both acute and chronic T. cruzi infections. Whereas 20 days treatment with benznidazole was 100% successful in achieving sterile cure, posaconazole failed in almost all cases. Treatment of chronic infections with posaconazole did however significantly reduce infection-induced splenomegaly, even in the absence of parasitological cure. The imaging-based screening system also revealed that adipose tissue is a major site of recrudescence in mice treated with posaconazole in the acute, but not the chronic stage of infection. This in vivo screening model for Chagas disease is predictive, reproducible and adaptable to diverse treatment schedules. It should provide greater assurance that drugs are not advanced prematurely into clinical trial.

  11. Can agricultural fungicides accelerate the discovery of human antifungal drugs?

    Science.gov (United States)

    Myung, Kyung; Klittich, Carla J R

    2015-01-01

    Twelve drugs from four chemical classes are currently available for treatment of systemic fungal infections in humans. By contrast, more than 100 structurally distinct compounds from over 30 chemical classes have been developed as agricultural fungicides, and these fungicides target many modes of action not represented among human antifungal drugs. In this article we introduce the diverse aspects of agricultural fungicides and compare them with human antifungal drugs. We propose that the information gained from the development of agricultural fungicides can be applied to the discovery of new mechanisms of action and new antifungal agents for the management of human fungal infections.

  12. Role of posaconazole in the treatment of oropharyngeal candidiasis

    Directory of Open Access Journals (Sweden)

    Voichita Ianas

    2010-06-01

    Full Text Available Voichita Ianas1, Kathryn R Matthias2, Stephen A Klotz11Section of Infectious Diseases and Department of Medicine, 2School of Pharmacy, University of Arizona, Tucson, Arizona, USAAbstract: Posaconazole is the newest azole antifungal approved by the US Food and Drug Administration, and possesses a broad spectrum of activity against numerous yeasts and filamentous fungi. It is available as an oral suspension and is generally well tolerated by patients, but gastrointestinal absorption is sometimes inadequate and remains a clinical concern in treating deep-seated infections. It is used routinely and effectively for the prophylaxis of invasive fungal infections in immunosuppressed hosts and is an effective treatment of oropharyngeal candidiasis, including azole-resistant disease.Keywords: posaconazole, azole, yeasts, filamentous fungi

  13. Prevention of invasive fungal infections in immunocompromised patients: the role of delayed-release posaconazole.

    Science.gov (United States)

    Soysal, Ahmet

    2015-01-01

    Posaconazole is a triazole antifungal agent that has broad-spectrum activity against many yeasts and filamentous fungi, including Candida species, Cryptococcus neoformans, Aspergillus species, and Zygomycetes. This drug has been approved for the prevention of invasive fungal infections in patients with neutropenia and for the treatment of invasive fungal infections in hematopoietic stem cell transplant recipients with graft-versus-host disease. Studies on the clinical efficacy, safety, tolerability, and cost-effectiveness of posaconazole therapy were performed using the oral suspension form of the drug. Pharmacokinetic studies have found that the oral suspension form of posaconazole has problemeatic bioavailability: its absorption is affected by concomitant medication and food. This article discusses the pharmacokinetic properties of the newly developed posaconazole delayed-release tablet formulation and reviews the efficacy, safety, and cost-effectiveness of both the oral suspension and the new tablet formulation. In conclusion, the posaconazole tablet formulation has better systemic bioavailability, thereby enabling once-daily administration and better absorption in the presence of concomitant medication and food. However, well-designed clinical studies are needed to evaluate the use of the tablet formulation in real-life settings.

  14. Targeting efflux pumps to overcome antifungal drug resistance.

    Science.gov (United States)

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps.

  15. Failure of Posaconazole Therapy in a Renal Transplant Patient with Invasive Aspergillosis Due to Aspergillus fumigatus with Attenuated Susceptibility to Posaconazole

    OpenAIRE

    Kuipers, Saskia; Brüggemann, Roger J. M.; Ruud G.L. de Sévaux; Heesakkers, John P. F. A.; Melchers, Willem J. G.; Mouton, Johan W.; Verweij, Paul E.

    2011-01-01

    We report the case of a kidney transplant recipient with invasive aspergillosis due to Aspergillus fumigatus resistant to voriconazole and intermediately susceptible to posaconazole who failed posaconazole therapy. Plasma posaconazole concentrations indicated an unfavorable ratio of the area under the concentration-time curve over the MIC. Posaconazole should be used with caution for invasive aspergillosis caused by strains with attenuated posaconazole susceptibility, as drug exposure may be ...

  16. Posaconazole treatment of refractory eumycetoma and chromoblastomycosis.

    Science.gov (United States)

    Negroni, Ricardo; Tobón, Angela; Bustamante, Beatriz; Shikanai-Yasuda, Maria Aparecida; Patino, Hernando; Restrepo, Angela

    2005-01-01

    Eumycetoma and chromoblastomycosis are chronic, disfiguring fungal infections of the subcutaneous tissue that rarely resolve spontaneously. Most patients do not achieve sustained long-term benefits from available treatments; therefore, new therapeutic options are needed. We evaluated the efficacy of posaconazole, a new extended-spectrum triazole antifungal agent, in 12 patients with eumycetoma or chromoblastomycosis refractory to existing antifungal therapies. Posaconazole 800 mg/d was given in divided doses for a maximum of 34 months. Complete or partial clinical response was considered a success; stable disease or failure was considered a nonsuccess. All 12 patients had proven infections refractory to standard therapy. Clinical success was reported for five of six patients with eumycetoma and five of six patients with chromoblastomycosis. Two patients were reported to have stable disease. As part of a treatment-use extension protocol, two patients with eumycetoma who initially had successful outcome were successfully retreated with posaconazole after a treatment hiatus of > 10 months. Posaconazole was well tolerated during long-term administration (up to 1015 d). Posaconazole therapy resulted in successful outcome in most patients with eumycetoma or chromoblastomycosis refractory to standard therapies, suggesting that posaconazole may be an important treatment option for these diseases.

  17. Efficacy of PTX3 and Posaconazole Combination in a Rat Model of Invasive Pulmonary Aspergillosis

    OpenAIRE

    Marra, Emanuele; Sousa, Vitor L.; Gaziano,Roberta; Pacello, M. Lucrezia; Arseni, Brunilde; Aurisicchio, Luigi; De Santis, Rita; Salvatori, Giovanni

    2014-01-01

    Posaconazole is currently used for the prophylaxis of invasive pulmonary aspergillosis (IPA). Limitations to posaconazole usage are drug-drug interactions and side effects. PTX3 is an innate immunity glycoprotein with opsonic activity, proven to be protective in IPA animal models. This study investigated the combination of posaconazole with PTX3. The results indicate synergy between PTX3 and posaconazole against aspergillosis, suggesting that a combination of reduced doses of posaconazole wit...

  18. Efficacy of Posaconazole in a Murine Model of Central Nervous System Aspergillosis

    OpenAIRE

    Imai, Jackie K.; Singh, Gaurav; Clemons, Karl V.; Stevens, David A.

    2004-01-01

    Human central nervous system (CNS) aspergillosis has >90% mortality. We compared posaconazole with other antifungals for efficacy against murine CNS aspergillosis. All tested regimens of posaconazole were equivalent to those of amphotericin B and superior in prolonging survival and reducing CFU to those of itraconazole and caspofungin and to vehicle controls. No antifungal regimen effected cure. No toxicity was noted. Overall, posaconazole shows potential for treating CNS aspergillosis.

  19. Pharmacologic and clinical evaluation of posaconazole.

    Science.gov (United States)

    Moore, Jason N; Healy, Jason R; Kraft, Walter K

    2015-05-01

    Posaconazole, a broad-spectrum triazole antifungal agent, is approved for the prevention of invasive aspergillosis and candidiasis in addition to the treatment of oropharyngeal candidiasis. There is evidence of efficacy in the treatment and prevention of rarer, more difficult-to-treat fungal infections. Posaconazole oral suspension solution has shown limitations with respect to fasting state absorption, elevated gastrointestinal pH and increased motility. The newly approved delayed-release oral tablet and intravenous solution formulations provide an attractive treatment option by reducing interpatient variability and providing flexibility in critically ill patients. On the basis of clinical experience and further clinical studies, posaconazole was found to be a valuable pharmaceutical agent for the treatment of life-threatening fungal infections. This review will examine the development history of posaconazole and highlight the most recent advances.

  20. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  1. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs.

    Science.gov (United States)

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M A; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E; Casadevall, Arturo; Gonçalves, Teresa

    2015-12-28

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis.

  2. Echinocandins: A ray of hope in antifungal drug therapy

    Directory of Open Access Journals (Sweden)

    Grover Neeta

    2010-01-01

    Full Text Available Invasive fungal infections are on the rise. Amphotericin B and azole antifungals have been the mainstay of antifungal therapy so far. The high incidence of infusion related toxicity and nephrotoxicity with amphotericin B and the emergence of fluconazole resistant strains of Candida glabrata egged on the search for alternatives. Echinocandins are a new class of antifungal drugs that act by inhibition of β (1, 3-D- glucan synthase, a key enzyme necessary for integrity of the fungal cell wall. Caspofungin was the first drug in this class to be approved. It is indicated for esophageal candidiasis, candidemia, invasive candidiasis, empirical therapy in febrile neutropenia and invasive aspergillosis. Response rates are comparable to those of amphotericin B and fluconazole. Micafungin is presently approved for esophageal candidiasis, for prophylaxis of candida infections in patients undergoing hematopoietic stem cell transplant (HSCT and in disseminated candidiasis and candidemia. The currently approved indications for anidulafungin are esophageal candidiasis, candidemia and invasive candidiasis. The incidence of infusion related adverse effects and nephrotoxicity is much lower than with amphotericin B. The main adverse effect is hepatotoxicity and derangement of serum transaminases. Liver function may need to be monitored. They are, however, safer in renal impairment. Even though a better pharmacoeconomical choice than amphotericin B, the higher cost of these drugs in comparison to azole antifungals is likely to limit their use to azole resistant cases of candidial infections and as salvage therapy in invasive aspergillosis rather than as first line drugs.

  3. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

    Directory of Open Access Journals (Sweden)

    M- Mahmodian

    1991-07-01

    Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

  4. Pharmacokinetics and safety of posaconazole delayed-release tablets for invasive fungal infections.

    Science.gov (United States)

    Wiederhold, Nathan P

    2016-01-01

    Posaconazole is a broad-spectrum triazole antifungal agent with potent activity against various pathogenic fungi, including yeast and moulds. Clinical studies have demonstrated that this agent is efficacious as prophylaxis against invasive fungal infections in patients at high risk, and may also be useful as salvage therapy against invasive aspergillosis and mucormycosis. However, the bioavailability of posaconazole following administration by oral suspension, which was the only formulation clinically available for many years, is highly variable and negatively influenced by several factors. Because of this, many patients had subtherapeutic or undetectable posaconazole levels when the oral suspension was used. To overcome this limitation, a delayed-release tablet was developed and is now available for clinical use. Hot-melt extrusion technology is used to combine a pH-sensitive polymer with posaconazole to produce a formulation that releases the drug in the elevated pH of the intestine where absorption occurs rather than in the low-pH environment of the stomach. This results in enhanced bioavailability and increased posaconazole exposure. Studies in healthy volunteers have demonstrated significantly higher and more consistent exposures with the tablet formulation compared to the oral suspension. In addition, pharmacokinetic parameters following administration of the tablets were not significantly affected by medications that raise gastric pH or increase gastric motility, and the tablets could also be administered without regard to food. Similar results have also been found in patients at high risk for invasive fungal infections who have received posaconazole tablets. The tablet formulation also appears to be well tolerated to date, although data regarding clinical efficacy are needed.

  5. Antifungal activity of antifungal drugs, as well as drug combinations against Exophiala dermatitidis.

    Science.gov (United States)

    Sun, Yi; Liu, Wei; Wan, Zhe; Wang, Xiaohong; Li, Ruoyu

    2011-02-01

    To evaluate the in vitro efficacy of common antifungal drugs, as well as the interactions of caspofungin with voriconazole, amphotericin B, or itraconazole against the pathogenic black yeast Exophiala dermatitidis from China, the minimal inhibitory concentrations (MICs) of terbinafine, voriconazole, itraconazole, amphotericin B, fluconazole, and caspofungin against 16 strains of E. dermatitidis were determined by using CLSI broth microdilution method (M38-A2). The minimal fungicidal concentrations (MFCs) were also determined. Additionally, the interactions of caspofungin with voriconazole, amphotericin B, itraconazole or fluconazole, that of terbinafine with itraconazole, or that of fluconazole with amphotericin B were assessed by using the checkerboard technique. The fractional inhibitory concentration index (FICI) was used to categorize drug interactions as following, synergy, FICI ≤ 0.5; indifference, FICI > 0.5 and ≤4.0; or antagonism, FICI > 4.0. The MIC ranges of terbinafine, voriconazole, itraconazole, amphotericin B, fluconazole, and caspofungin against E. dermatitidis were 0.06-0.125 mg/l, 0.25-1.0 mg/l, 1.0-2.0 mg/l, 1.0-2.0 mg/l, 16-64 mg/l, and 32-64 mg/l, respectively. The in vitro interactions of caspofungin with voriconazole, amphotericin B, and itraconazole showed synergic effect against 10/16(62.5%), 15/16(93.75%), and 16/16(100%) isolates, while that of caspofungin with fluconazole showed indifference. Besides, the interaction of terbinafine with itraconazole as well as that of fluconazole with amphotericin B showed indifference. Terbinafine, voriconazole, itraconazole, and amphotericin B have good activity against E. dermatitidis. The combinations of caspofungin with voriconazole, amphotericin B or itraconazole present synergic activity against E. dermatitidis. These results provide the basis for novel options in treating various E. dermatitidis infections.

  6. In Vitro Activities of New and Conventional Antifungal Agents against Clinical Scedosporium Isolates

    OpenAIRE

    Meletiadis, Joseph; Meis, Jacques F. G. M.; Mouton, Johan W.; Rodriquez-Tudela, Juan Luis; Donnelly, J. Peter; Verweij, Paul E.

    2002-01-01

    The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (amphotericin B, nystatin and liposomal nystatin), and allylamines (terbinafine), were studied by use of proposed standard M38-P of NCCLS. Low growth-inhibitory antifungal activities were found in vitro ...

  7. 21 CFR 524.1610 - Orbifloxacin, mometasone furoate monohydrate, and posaconazole suspension.

    Science.gov (United States)

    2010-04-01

    ... posaconazole suspension. 524.1610 Section 524.1610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1610 Orbifloxacin, mometasone furoate monohydrate, and posaconazole... furoate monohydrate equivalent to 1 mg mometasone furoate, and 1 mg posaconazole. (b) Sponsor. See...

  8. Human mycoses and advances in antifungal therapy.

    Science.gov (United States)

    Fromtling, R A

    2001-04-01

    The 11th Focus on Fungal Infections meeting was held in Washington, D.C., U.S.A., March 1416, 2001. At the conference, there were well-attended sessions that focused on the pathogenesis and therapy of fungal disease. This report focuses on new information on fungal incidence and pathogenesis as well as on the in vitro and clinical experience of established antifungal drugs (fluconazole, itraconazole, amphotericin B, liposomal formulations of amphotericin B, terbinafine) and the newer antifungal compounds approved for use (e.g., caspofungin) and in development (the new-generation azoles: voriconazole, posaconazole, ravuconazole, and the candins, micafungin and anidulafungin).

  9. Efficacy of PTX3 and posaconazole combination in a rat model of invasive pulmonary aspergillosis.

    Science.gov (United States)

    Marra, Emanuele; Sousa, Vitor L; Gaziano, Roberta; Pacello, M Lucrezia; Arseni, Brunilde; Aurisicchio, Luigi; De Santis, Rita; Salvatori, Giovanni

    2014-10-01

    Posaconazole is currently used for the prophylaxis of invasive pulmonary aspergillosis (IPA). Limitations to posaconazole usage are drug-drug interactions and side effects. PTX3 is an innate immunity glycoprotein with opsonic activity, proven to be protective in IPA animal models. This study investigated the combination of posaconazole with PTX3. The results indicate synergy between PTX3 and posaconazole against aspergillosis, suggesting that a combination of reduced doses of posaconazole with the immune response enhancer PTX3 might represent a treatment option with a higher therapeutic index than posaconazole.

  10. Development of a liquid chromatography tandem mass spectrometry method for the simultaneous measurement of voriconazole, posaconazole and itraconazole.

    Science.gov (United States)

    Wadsworth, John M; Milan, Anna M; Anson, James; Davison, Andrew S

    2017-01-01

    Background Azole-based antifungals are the first-line therapy for some of the most common mycoses and are now also being used prophylactically to protect immunocompromised patients. However, due to variability in both their metabolism and bioavailability, therapeutic drug monitoring is essential to avoid toxicity but still gain maximum efficacy. Methods Following protein precipitation of serum with acetonitrile, 20  µL of extract was injected onto a 2.1 × 50 mm Waters Atlantis dC18 3  µm column. Detection was via a Waters Quattro Premier XE tandem mass spectrometer operating in ESI-positive mode. Multiple reaction monitoring (MRM) detected two product ions for each compound and one for each isotopically labelled internal standard. Ion suppression, linearity, stability, matrix effects, recovery, imprecision, lower limits of measuring interval and detection were all assessed. Results Optimal chromatographic separation was achieved using gradient elution over 8 minutes. Voriconazole, posaconazole and itraconazole eluted at 1.71, 2.73 and 3.41 min, respectively. The lower limits of measuring interval for all three compounds was 0.1 mg/L. The assay was linear to 10 mg/L for voriconazole (R(2 )= 0.995) and 5 mg/L for posaconazole (R(2 )= 0.990) and itraconazole (R(2 )= 0.991). The assay was both highly accurate and precise with % bias of voriconazole, posaconazole and itraconazole, respectively, when compared with previous NEQAS samples. The intra-assay precision (CV%) was 1.6%, 2.5% and 1.9% for voriconazole, posaconazole and itraconazole, respectively, across the linear range. Conclusion A simple and robust method has been validated for azole antifungal therapeutic drug monitoring. This new assay will result in a greatly improved sample turnaround time and will therefore vastly increase the clinical utility of azole antifungal drug monitoring.

  11. In vitro susceptibility testing of Aspergillus spp. against voriconazole, itraconazole, posaconazole, amphotericin B and caspofungin

    Institute of Scientific and Technical Information of China (English)

    SHI Jun-yan; WANG He; GUO Li-na; XU Ying-chun; SHI Yi; L(U) Huo-xiang; LIU Yong; ZHAO Wang-sheng; CHEN Dong-mei; XI Li-yan; ZHOU Xin

    2010-01-01

    Background During recent years, the incidence of serious infections caused by opportunistic fungi has increased dramatically due to alterations of the immune status of patients with hematological diseases, malignant tumors,transplantations and so forth. Unfortunately, the wide use of triazole antifungal agents to treat these infections has lead to the emergence of Aspergillus spp. resistant to triazoles. The present study was to assess the in vitro activities of five antifungal agents (voriconazole, itraconazole, posaconazole, amphotericin B and caspofungin) against different kinds of Aspergillus spp. that are commonly encountered in the clinical setting.Methods The agar-based Etest MIC method was employed. One hundred and seven strains of Aspergillus spp. (5 species) were collected and prepared according to Etest Technique Manuel. Etest MICs were determined with RPMI agar containing 2% glucose and were read after incubation for 48 hours at 35℃. MIC50, MIC90 and MIC range were acquired by Whonet 5.4 software.Results The MIC90 of caspofungin against A. fumigatus, A. flavus and A. nidulans was 0.094 μg/ml whereas the MIC90 against A. niger was 0.19 μg/ml. For these four species, the MlC90 of caspofungin was the lowest among the five antifungal agents. For A. terrus, the MIC90 of posaconazole was the lowest. For A. fumigatus and A. flavus, the MlC90in order of increasing was caspofungin, posaconazole, voriconazole, itraconazole, and amphotericin B. The MIC of amphotericin B against A. terrus was higher than 32 μg/ml in all 7 strains tested.Conclusions The in vitro antifungal susceptibility test shows the new drug caspofungin, which is a kind of echinocandins, has good activity against the five species of Aspergillus spp. and all the triazoles tested have better in vitro activity than traditional amphotericin B.

  12. Nationwide study of candidemia, antifungal use, and antifungal drug resistance in Iceland, 2000 to 2011.

    Science.gov (United States)

    Asmundsdottir, Lena Ros; Erlendsdottir, Helga; Gottfredsson, Magnus

    2013-03-01

    Candidemia is often a life-threatening infection, with highly variable incidence among countries. We conducted a nationwide study of candidemia in Iceland from 2000 to 2011, in order to determine recent trends in incidence rates, fungal species distribution, antifungal susceptibility patterns, and concurrent antifungal consumption. A total of 208 infection episodes in 199 patients were identified. The average incidence during the 12 years was 5.7 cases/100,000 population/year, which was significantly higher than that from 1990 to 1999 (4.3/100,000/year; P = 0.02). A significant reduction in the use of blood cultures was noted in the last 3 years of the study, coinciding with the economic crisis in the country (P 60 years, and varied by gender. Age-specific incidence among males >80 years old was 28.6/100,000/year, and it was 8.3/100,000/year for females in this age group (P = 0.028). The 30-day survival rate among adult patients remained unchanged compared to that from 1990 to 1999 (70.4% versus 69.5%, P = 0.97). Candida albicans was the predominant species (56%), followed by C. glabrata (16%) and C. tropicalis (13%). The species distribution remained stable compared to that from previous decades. Fluconazole use increased 2.4-fold from 2000 to 2011, with no increase in resistance. In summary, the incidence of candidemia in Iceland has continued to increase but may have reached a steady state, and no increase in antifungal drug resistance has been noted. Decreased use of blood cultures toward the end of the study may have influenced detection rates.

  13. SUSCEPTIBILITY OF CANDIDA SPECIES TO ANTIFUNGAL DRUGS IN WESTERN INDIA

    Directory of Open Access Journals (Sweden)

    Geeta M Vaghela

    2015-06-01

    Full Text Available Introduction: The increase in candidaemia is associated with high mortality. A shift has been observed in the relative frequency of each Candida spp. isolated from blood. Options of the antifungal drugs available for treatment of systemic and invasive candidiasis are restricted to polyenes, allylamines, azoles and recently developed echinocandin class of molecules. A rise in the incidence of antifungal resistance to Candida spp. has also been reported over the past decade. Studies on prevalence of infections and antifungal susceptibility testing are useful in deciding clinical strategies. Aims: To do species level identification and detect resistance, if any, among Indian clinical isolates of C. albicans. Methodology: From total 135 patients from a tertiary care hospital of Gujarat, Candida species were isolated from different clinical specimens. The growth of Candida on Sabouraud's dextrose agar was confirmed by Gram staining in which gram positive budding fungal cells were observed. Then its growth was examined for colony morphology on Sabouraud's dextrose agar and chlamydospore production on Corn meal tween 80 agar. Germ tube tests and other biochemical tests like sugar fermentation, sugar assimilation and urease test were performed to identify the species of Candida. Antifungal susceptibility testing was performed by NCCLS M44-A Disc diffusion method. Results: Out of total 135 samples, C. Albicans were isolated from 52 (38.5%. Among Non Albican Candid (NAC, Candida glabrata was 36 (26.7% followed by Candida tropicalis 25(18.5%. C. albicans was found resistant to Fluconazole, Itraconazole and Amphotericine B in 3.8%, 3.8% and 1.9% cases respectively. For NAC, resistance of Fluconazole, Itraconazole and Amphotericine B was found in 4.8%, 3.6% and 2.4% cases respectively. [Natl J Med Res 2015; 5(2.000: 122-126

  14. Serum posaconazole levels among haematological cancer patients taking extended release tablets is affected by body weight and diarrhoea: single centre retrospective analysis.

    Science.gov (United States)

    Miceli, Marisa H; Perissinotti, Anthony J; Kauffman, Carol A; Couriel, Daniel R

    2015-07-01

    The posaconazole extended release tablet formulation was developed to improve bioavailability relative to the oral suspension. Therapeutic drug monitoring has been used to optimise posaconazole dosing to achieve a target trough level ≥0.7 μg ml(-1). We retrospectively evaluated 28 patients with haematological malignancies who received posaconazole tablets for antifungal prophylaxis. Posaconazole serum trough levels were obtained 5 days after initiation of therapy. Mean trough level was 1.19 ± 0.63 μg ml(-1), and 71% achieved a trough level ≥0.7 μg ml(-1). Diarrhoea was associated with lower mean trough levels (0.65 ± 0.08 μg ml(-1) vs. 1.31 ± 0.13 μg ml(-1)), P = 0.002. Mean trough levels were lower in patients ≥90 kg (0.74 ± 0.09 μg ml(-1)) vs. Posaconazole delayed release tablets attain appropriate trough levels in most patients, but patients with a higher weight and those experiencing diarrhoea are more likely to have lower levels.

  15. Antifungal activity of ibuprofen against aspergillus species and its interaction with common antifungal drugs

    Institute of Scientific and Technical Information of China (English)

    LI Li-juan; CHEN Wei; XU Hui; WAN Zhe; LI Ruo-yu; LIU Wei

    2010-01-01

    Background The incidence of invasive aspergillosis (IA) has increased in frequency in immunocompromised patients with a variety of diseases. The poor prognosis might be due to limited treatment option. This study aimed to evaluate antifungal activity of ibuprofen against clinical isolates of aspergillus species, as well as its interaction with azoles or with amphotericin B or with micafungin.Methods Antifungal activity of ibuprofen against 10 strains of Aspergillus fumigatus, Aspergillus flavus, and Aspergillus terreus were tested with both disk diffusion assay and standard broth microdilution method. To determine whether ibuprofen combined with itraconazole, voriconazole, amphotericin B, or micafungin had interactive effects on aspergillus spp., we used both disk diffusion assay and Chequerboard method.Results As for disk diffusion method, ibuprofen produced a zone of growth inhibition with diameters of (20.1±3.9) mm at 48 hours of incubation. As for broth microdilution method, the minimal inhibitory concentration (MIC) ranges of ibuprofen against aspergillus spp. were 1000-2000 μg/ml, and the minimal fungicidal concentration (MFC) ranges of that was 2000-8000 μg/ml. For 2 of 5 isolates, when ibuprofen combined with itraconazole or voriconazole, the zones of growth inhibition were larger than those of the individual drug. The results of Chequerboard method showed that fractional inhibitory concentration index (FICI) ranges were 1.125-2.500.Conclusions Ibuprofen is active against aspergillus spp.. And ibuprofen does not affect the in vitro activity of itraconazole, voriconazole, amphotericin B or micafungin against aspergillus spp..

  16. 三唑类广谱抗真菌新药--泊沙康唑%One of New Extended-Spectrum Trizaole Antifungals--Posaconazole

    Institute of Scientific and Technical Information of China (English)

    贾晋生; 王睿; 李青山; 张淑秋

    2006-01-01

    @@ 近年来,由于广谱抗菌药、皮质激素、抗癌药物和免疫抑制剂的广泛使用,以及艾滋病(AIDS)的流行,临床真菌感染尤其深部真菌感染的病例不断增加,并且随着耐药真菌的不断出现,使真菌病的发病率与死亡率逐年上升,这就迫切需要开发新的高效、广谱、低毒的抗真菌药,氮唑类抗真菌药就是目前临床主要使用和正进一步研制开发的一类主要抗真菌药.其中,泊沙康唑(posaconazole,Noxafil,POS)是欧盟已批准Schering-Plough(先灵葆雅)公司研制上市的三唑类口服广谱抗真菌新药,本文就POS的有关研究和应用作一介绍.

  17. Pharmacokinetics of posaconazole prophylaxis of patients with acute myeloid leukemia.

    Science.gov (United States)

    Mattiuzzi, Gloria; Yilmaz, Musa; Kantarjian, Hagop; Borthakur, Gautam; Konopleva, Marina; Jabbour, Elias; Brown, Yolanda; Pierce, Sherry; Cortes, Jorge

    2015-09-01

    Antifungal prophylaxis is routinely given to patients with hematologic malignancies at high risk for invasive fungal infections (IFI), yet breakthrough IFI may still occur. Posaconazole emerged as an excellent alternative for fungal prophylaxis in high-risk patients. There is limited data about pharmacokinetics and plasma concentrations of posaconazole when given as prophylaxis in patients with hematologic malignancies. We recruited 20 adult patients for prospective, open label trial of posaconazole given as a prophylaxis in patients with newly diagnosed acute myeloid leukemia (AML) undergoing induction chemotherapy or first salvage therapy. The median age of all patients was 65 years and received prophylaxis for a median of 38 days (range: 5-42 days).Ten patients (50%) completed 42 days on posaconazole prophylaxis. Median plasma posaconazole levels showed no statistical difference across gender, body surface area, patients developing IFI, and patients acquiring grade 3 or 4 elevation of liver enzymes. However, there was an overall trend for higher trough concentrations among patients with no IFI than those with IFI. Pharmacokinetics of posaconazole varies from patient to patient, and AML patients receiving induction chemotherapy who never develop IFI tend to have higher plasma concentrations after oral administration of posaconazole.

  18. 泊沙康唑的药动和药效学评价%A Review of Posaconazole Pharmacokinetic and Pharmacodynamic Studies

    Institute of Scientific and Technical Information of China (English)

    梅丹; 梅隆; 刘梅; 刘正印

    2014-01-01

    Objective: To review the PK, PD, pharmacology, drug-drug interaction, safety and clinical application studies of posaconazole. Methods: Relevant information was identified through a literature search of Medline (1996-2013) and FDA website. Results: The oral absorption of Posaconazole is related with the dosage and significantly influenced by food. Multi-dose administration with Posaconazole wil improve the relative bioavailability. Posaconazole is mainly metabolized by UDP enzyme. The inducers and inhibitors of this enzyme wil affect the plasma concentration. Conclusion:Posaconazole is an extended -spectrum azole antifungal agents. The introduction of Posaconazole into China wil significantly expand both prophylaxis and treatment options for invasive fungal infections.%目的:综述介绍泊沙康唑的药动和药效学评价。方法:检索10余年来的相关文献,介绍其药学相关信息。结果:泊沙康唑的口服制剂吸收在一定范围内与剂量相关,且明显受食物摄入的影响,相对生物利用度与给药方案相关,分次服用有助于提高其生物利用度(BA),主要通过葡萄糖醛酸转移酶(UDP)酶代谢,该酶的诱导或抑制剂会影响药物的浓度。结论:泊沙康唑是近年来新的三唑类抗真菌药,充分了解药品的药理、药动和药效学信息,有助于临床合理选药、用药。

  19. The application of phenotypic microarray analysis to anti-fungal drug development.

    Science.gov (United States)

    Greetham, Darren; Lappin, David F; Rajendran, Ranjith; O'Donnell, Lindsay; Sherry, Leighann; Ramage, Gordon; Nile, Christopher

    2017-03-01

    Candida albicans metabolic activity in the presence and absence of acetylcholine was measured using phenotypic microarray analysis. Acetylcholine inhibited C. albicans biofilm formation by slowing metabolism independent of biofilm forming capabilities. Phenotypic microarray analysis can therefore be used for screening compound libraries for novel anti-fungal drugs and measuring antifungal resistance.

  20. Successful Use of Posaconazole to Treat Invasive Cutaneous Fungal Infection in a Liver Transplant Patient on Sirolimus

    Directory of Open Access Journals (Sweden)

    Randah Dahlan

    2012-01-01

    Full Text Available Fungi are an important and common cause of cutaneous infections affecting solid organ transplant recipients. These infections can represent a primary site of infection with the potential for dissemination, or a manifestation of metastatic infection. The high morbidity and mortality associated with these infections necessitates urgent therapy with antifungal drugs; however, the interaction between these drugs and immunosuppressive therapies can be a major limitation because of drug toxicity. A case of soft tissue infection of the toe caused by Fusarium chlamydosporum and Candida guilliermondii in a liver transplant patient on sirolimus, who was successfully treated with the new antifungal agent posaconazole, is described. The pharmacokinetic interactions of sirolimus and the new triazoles, and their impact on treatment choices are briefly discussed.

  1. [In vitro synergisms among hydrazones, ajoeno and posaconazole against Cryptococcus spp].

    Science.gov (United States)

    Vivas, Julio; Alvarado, Primavera; Visbal, Gonzalo; Alvarez-Aular, Alvaro; Ruiz, Egle; Ledezma, Eliades

    2011-12-01

    The aim of this study was to assess the in vitro susceptibility to novel antifungal compounds, the steroidal hydrazones, and to compare their antifungal activity and synergistic effects with other compounds, such as ajoeno and posaconazole on Cryptocococus spp isolates. Three Cryptococcus strains were used for this study (42794, 4050 and 44192) and their antifungal sensitivity and synergistic effects with ajoeno and posaconazole were evaluated according to the CLSI protocol number M27-A2. Candida albicans (ATCC 90028) and Candida parapsilosis (ATCC 22019) were used as controls. A plateau effect with hydrazones (H1, H2, H3, H4) was observed after 10 microM (CMI). However, with H4 only a mild inhibition on the growth was obtained. Combining hydrazone and ajoeno, CMI values between 25 and 50 microM were obtained. The highest inhibitions values were obtained with posaconazole and a CMI value of 6 microM for the strains 42794 and 44192, and a CMI value of 20 microM for the strain 4050. Synergy was observed combining posaconazole with ajoeno, ajoeno with hydrazone 3 and posaconazole with hydrazone 3. Fractional inhibitory concentrations were 0.24, 0.16 and 0.09 respectively, which might indicate a synergistic effect. Important synergistic effects were obtained with posaconazole and ajoeno, ajoeno and hydrazone 3 and posaconazole with hydrazone 3, which would be very useful for clinical trials in the future.

  2. Aspergillus nidulans galactofuranose biosynthesis affects antifungal drug sensitivity.

    Science.gov (United States)

    Alam, Md Kausar; El-Ganiny, Amira M; Afroz, Sharmin; Sanders, David A R; Liu, Juxin; Kaminskyj, Susan G W

    2012-12-01

    The cell wall is essential for fungal survival in natural environments. Many fungal wall carbohydrates are absent from humans, so they are a promising source of antifungal drug targets. Galactofuranose (Galf) is a sugar that decorates certain carbohydrates and lipids. It comprises about 5% of the Aspergillus fumigatus cell wall, and may play a role in systemic aspergillosis. We are studying Aspergillus wall formation in the tractable model system, A. nidulans. Previously we showed single-gene deletions of three sequential A. nidulans Galf biosynthesis proteins each caused similar hyphal morphogenesis defects and 500-fold reduced colony growth and sporulation. Here, we generated ugeA, ugmA and ugtA strains controlled by the alcA(p) or niiA(p) regulatable promoters. For repression and expression, alcA(p)-regulated strains were grown on complete medium with glucose or threonine, whereas niiA(p)-regulated strains were grown on minimal medium with ammonium or nitrate. Expression was assessed by qPCR and colony phenotype. The alcA(p) and niiA(p) strains produced similar effects: colonies resembling wild type for gene expression, and resembling deletion strains for gene repression. Galf immunolocalization using the L10 monoclonal antibody showed that ugmA deletion and repression phenotypes correlated with loss of hyphal wall Galf. None of the gene manipulations affected itraconazole sensitivity, as expected. Deletion of any of ugmA, ugeA, ugtA, their repression by alcA(p) or niiA(p), OR, ugmA overexpression by alcA(p), increased sensitivity to Caspofungin. Strains with alcA(p)-mediated overexpression of ugeA and ugtA had lower caspofungin sensitivity. Galf appears to play an important role in A. nidulans growth and vigor.

  3. [Pharmacology of the antifungals used in the treatment of aspergillosis].

    Science.gov (United States)

    Azanza, José Ramón; Sádaba, Belén; Gómez-Guíu, Almudena

    2014-01-01

    The treatment of invasive aspergillosis requires the use of drugs that characteristically have complex pharmacokinetic properties, the knowledge of which is essential to achieve maximum efficacy with minimal risk to the patient. The lipid-based amphotericin B formulations vary significantly in their pharmacokinetic behaviour, with very high plasma concentrations of the liposomal form, probably related to the presence of cholesterol in their structure. Azoles have a variable absorption profile, particularly in the case of itraconazole and posaconazole, with the latter very dependent on multiple factors. This may also lead to variations in voriconazole, which requires considering the possibility of monitoring plasma concentrations. The aim of this article is to review some of the most relevant aspects of the pharmacology of the antifungals used in the prophylaxis and treatment of the Aspergillus infection. For this reason, it includes the most relevant features of some of the azoles normally prescribed in this infection (itraconazole, posaconazole and voriconazole) and the amphotericin B formulations.

  4. Candida antifungal drug resistance in sub-Saharan African populations: A systematic review

    Science.gov (United States)

    Africa, Charlene Wilma Joyce; Abrantes, Pedro Miguel dos Santos

    2017-01-01

    Background: Candida infections are responsible for increased morbidity and mortality rates in at-risk patients, especially in developing countries where there is limited access to antifungal drugs and a high burden of HIV co-infection.  Objectives: This study aimed to identify antifungal drug resistance patterns within the subcontinent of Africa.  Methods: A literature search was conducted on published studies that employed antifungal susceptibility testing on clinical Candida isolates from sub-Saharan African countries using Pubmed and Google Scholar.  Results: A total of 21 studies from 8 countries constituted this review. Only studies conducted in sub-Saharan Africa and employing antifungal drug susceptibility testing were included. Regional differences in Candida species prevalence and resistance patterns were identified.  Discussion: The outcomes of this review highlight the need for a revision of antifungal therapy guidelines in regions most affected by Candida drug resistance.  Better controls in antimicrobial drug distribution and the implementation of regional antimicrobial susceptibility surveillance programmes are required in order to reduce the high Candida drug resistance levels seen to be emerging in sub-Saharan Africa. PMID:28154753

  5. IPC synthase as a useful target for antifungal drugs.

    Science.gov (United States)

    Sugimoto, Yuichi; Sakoh, Hiroki; Yamada, Koji

    2004-12-01

    Inositol phosphorylceramide (IPC) synthase is a common and essential enzyme in fungi and plants, which catalyzes the transfer of phosphoinositol to the C-1 hydroxy of ceramide to produce IPC. This reaction is a key step in fungal sphingolipid biosynthesis, therefore the enzyme is a potential target for the development of nontoxic therapeutic antifungal agents. Natural products with a desired biological activity, aureobasidin A (AbA), khafrefungin, and galbonolide A, have been reported. AbA, a cyclic depsipeptide containing 8 amino acids and a hydroxyl acid, is a broad spectrum antifungal with strong activity against many pathogenic fungi such as Candida spp., Cryptococcus neoformans, and some Aspergillus spp. Khafrefungin, an aldonic acid ester with a C22 long alkyl chain, has antifungal activity against C. albicans, Cr. Neoformans, and Saccharomyces cerevisiae. Galbonolide A is a 14-membered macrolide with fungicidal activity against clinically important strains, and is especially potent against Cr. neoformans. These classes of natural products are potent and specific antifungal agents. We review current progress in the development of IPC synthase inhibitors with antifungal activities, and present structure-activity relationships (SAR), physicochemical and structural properties, and synthetic methodology for chemical modification.

  6. Cyanobacteria, Lyngbya aestuarii and Aphanothece bullosa as antifungal and antileishmanial drug resources

    Institute of Scientific and Technical Information of China (English)

    Maheep Kumar; Manoj Kumar Tripathi; Akanksha Srivastava; Jalaj Kumar Gour; Rakesh Kumar Singh; Ragini Tilak; Ravi Kumar Asthana

    2013-01-01

    To investigate two cyanobacteria isolated from different origins i.e. Lyngbya aestuarii(L. aestuarii) from brackish water and Aphanothece bullosa (A. bullosa) from fresh water paddy fields for antifungal and antileishmanila activity taking Candida albicans and Leishmaniadonovain as targets. Methods: Biomass of L. aestuarii and A. bullosa were harvested after 40 and 60 d respectively and lyophilized twice in methanol (100%) and redissolved in methanol (5%) for bioassay. Antifungal bioassay was done by agar well diffusion method while antileishmanial, by counting cell numbers and flageller motility observation of promastigotes and amastigotes fromL. donovani . Fluconazole and 5% methanol were used as control. Results: Both the cyanobacteria were found to be potent source of antifungal activity keeping fluconazole as positive control, however, methanolic crude extract (15 mg/mL) of A. bullosa was found more potent (larger inhibition zone) over that of methanolic crude extract of L. aestuarii. Similarly antileishmanial activity of crude extract (24.0 mg/mL) of A. bullosa was superior over that of methanolic crude extract of L. aestuarii (25.6 mg/mL). Conclusions: Antifungal and antileishmanial drugs are still limited in the market. Screening of microbes possessing antifungal and antileishmanial activity drug is of prime importance. Cyanobacteria are little explored in this context because most of the drugs in human therapy are derived from microorganisms, mainly bacterial, fungal and actinomycetes. Thus in the present study two cyanobacterial strains from different origins showed potent source of antifungal and antileishmanial biomolecules.

  7. Antifungal prophylaxis in stem cell transplantation centers in Turkey

    Directory of Open Access Journals (Sweden)

    Hamdi Akan

    2011-12-01

    Full Text Available Objective: This study aimed to determine the current state of antifungal prophylaxis in Turkish stem cell transplantation (SCT centers. Materials and Methods: The were 38 active stem cell transplantation centers in Turkey, 28 of which were registered with the European Group for Blood and Marrow Transplantation (EBMT. Survey questionnaires were sent to the 28 EBMT centers in an effort to collect data on antifungal prophylaxis in different settings. In all, 24 of the centers completed the survey; 1 of the 24 centers was excluded from the study, as it was under construction at the time and was not performing transplantation.Results: In all, 15 (65% of the 23 centers were adult SCT centers, 7 (31% were pediatric SCT centers, and 1 center treated both adult and pediatric patients. All centers (23/23 performed both allogeneic and autologous transplants, 20 centers performed non-myeloablative transplants, 8 performed cord blood transplants, and 7 performed unrelated transplants. Primary antifungal prophylaxis was used at all 23 centers during allogeneic transplants, whereas 18 of the 23 centers used it during every autologous transplant and 2 of the 23 centers used it during autologous transplants on a per case basis. The most common drug used for prophylaxis was fluconazole (F (21/23, followed by itraconazole (I (3/23, amphotericin-B (2/23, and posaconazole (1/23. Among the 23 centers, 3 reported that for allogenic transplants they changed the antifungal prophylactic in cases of graft versus host disease (GVHD, and 12 of the 23 centers reported that they changed the antifungal prophylactic in case of nearby construction. All 23 centers performed secondary prophylaxis. Conclusion: Antifungal prophylaxis for hematopoetic SCT patients was the standard protocol in the 23 centers included in the study, usually with such azoles as F. The introduction of posaconazole in Turkey and the potential approval of voriconazole for antifungal prophylaxis will

  8. Safety of posaconazole and sirolimus coadministration in allogeneic hematopoietic stem cell transplants.

    Science.gov (United States)

    Kubiak, David W; Koo, Sophia; Hammond, Sarah P; Armand, Philippe; Baden, Lindsey R; Antin, Joseph H; Marty, Francisco M

    2012-09-01

    Sirolimus is used in allogeneic hematopoietic stem cell transplants (HSCTs) for prevention and treatment of graft-versus-host disease (GVHD). Posaconazole is used in this population for invasive fungal disease (IFD) prophylaxis and treatment. As posaconazole strongly inhibits CYP3A4, concurrent administration of sirolimus, a CYP3A4 substrate, and posaconazole has been reported to increase sirolimus drug exposure substantially. Coadministration of posaconazole and sirolimus is contraindicated by the manufacturer of posaconazole. We identified 15 patients who underwent HSCTs at our institution receiving a steady-state dose of sirolimus who subsequently started posaconazole therapy from January 2006 to March 2009. We recorded baseline characteristics, drug administration details, and potential adverse effects related to either drug. All patients underwent HSCTs for treatment of hematologic malignancy. All patients were initially prescribed sirolimus for GVHD prophylaxis and continued therapy after developing GVHD. Twelve patients (80%) received posaconazole for IFD prophylaxis in the setting of GVHD and 3 (20%) for IFD treatment. Patients received sirolimus and posaconazole concurrently for a median of 78 days (interquartile range [IQR] 25-177; range, 6-503). The median daily dose of sirolimus (2 mg/day) before initiation of posaconazole was reduced 50% to a median daily dose of 1 mg/day at steady state. Six patients experienced sirolimus trough levels greater than 12 ng/mL during coadministration, but only 1 patient experienced an adverse event potentially associated with sirolimus exposure during the first month of coadministration. This patient's sirolimus dose was empirically reduced by only 30% on posaconazole initiation. Concurrent sirolimus and posaconazole use seems to be well tolerated with a 33% to 50% empiric sirolimus dose reduction and close monitoring of serum sirolimus trough levels at the time of posaconazole initiation.

  9. Adverse events of modern antifungal drugs during treatment of invasive fungal infections

    Directory of Open Access Journals (Sweden)

    N. V. Dmitrieva

    2013-01-01

    Full Text Available Characteristics of adverse events of modern antimycotics by organ systems and comparative frequency between different medicines and their groups are presented. The examples of incompatibility of antifungal drugs with other pharmacological groups are discussed. Records of adverse events and drug compatibility will allow the practitioner to prevent and timely cure possible complications, should they arise.

  10. Triazole antifungals used for prophylaxis and treatment of invasive fungal disease in adult haematology patients: Trough serum concentrations in relation to outcome.

    Science.gov (United States)

    Ceesay, M Mansour; Couchman, Lewis; Smith, Melvyn; Wade, Jim; Flanagan, Robert J; Pagliuca, Antonio

    2016-10-01

    Triazole antifungal drugs are widely used for the prophylaxis and treatment of invasive fungal disease (IFD). Efficacy may depend on attaining minimum effective plasma concentrations. The aim of this study was to ascertain the proportion of samples in which the recommended concentrations were achieved in patients given these drugs in relation to outcome. In-patients prescribed standard doses of fluconazole, itraconazole solution, posaconazole suspension, or oral voriconazole for at least one week were studied. Pre-dose serum triazole concentrations were measured using validated methods. There were 359 samples from 90 patients. The median (range) number of samples per patient was 3 (1-13), and the median (range) fluconazole, itraconazole, posaconazole (prophylaxis), posaconazole (treatment), and voriconazole serum concentrations were 5.64 (0.11-18), 0.57 (0-5.3), 0.31 (0.02-2.5), 0.65 (0.02-2.5), and 0.95 (0.10-5.4) mg/l, respectively. The number of samples in which the recommended pre-dose concentrations were achieved was 98 (54%), 9 (20%), 2 (18%), and 29 (49%) for itraconazole, posaconazole (>0.7 mg/l prophylaxis), posaconazole (treatment), and voriconazole, respectively. No significant differences were detected in the median triazole trough concentrations between patients with proven/probable IFD compared to those with no evidence of IFD. However, itraconazole was not detected in 10 samples (7 patients). The small number of patients who achieved the recommended trough posaconazole concentrations may explain the high rate of break-through IFD observed in patients prescribed this drug. Except for fluconazole, the number of patients prescribed standard doses of triazoles who achieved recommended trough triazole concentrations was low. The prospective use of serum triazole measurements assay may have improved outcomes with itraconazole, posaconazole, and with voriconazole.

  11. Candida Infections: An Update on Host Immune Defenses and Anti-Fungal Drugs

    Directory of Open Access Journals (Sweden)

    Ning Gao

    2016-04-01

    Full Text Available Infections by fungal pathogens such as Candida albicans and non-albicans Candida species are becoming increasing prevalent in the human population. Such pathogens cause life-threatening diseases with high mortality, particularly in immunocompromised patients. Host defenses against fungal infections are provided by an exquisite interplay between innate and adaptive immune responses. However, effective anti-fungal agents for Candida infections are limited, and fungal drug resistance is a significant treatment challenge. In this review, we summarize the current understanding of host–fungal interactions, discuss the modes action of anti-fungal drugs, explore host defense mechanisms, and define the new challenges for treating Candida infections.

  12. Posaconazole: SCH 56592.

    Science.gov (United States)

    2003-01-01

    Posaconazole [SCH 56592, SPRIAFIL, Noxafil] is an orally active triazole derivative that is in phase III trials with the Schering-Plough Research Institute (SPRI) in the US for the treatment of serious opportunistic fungal infections, including aspergillosis, candidiasis, coccidioidomycosis and fusariosis. This profile has been selected from R&D Insight, a pharmaceutical intelligence database produced by Adis International Ltd. Preclinical studies have also been conducted in Italy for the potential treatment of Cryptococcus neoformans infection (cryptococcosis).

  13. [In vitro activities of antifungal drugs against clinical isolates of Trichophyton tonsurans].

    Science.gov (United States)

    Koga, Hiroyasu; Nanjoh, Yasuko; Inoue, Kazuyoshi; Makimura, Koichi; Tsuboi, Ryoji

    2006-01-01

    To determine drug susceptibility of Trichophyton tonsurans endemic in Japan, in vitro MICs of antifungal drugs against a total of 10 clinical isolates of T. tonsurans collected from dermatophytosis patients were measured by the agar dilution method and the broth microdilution method. The agar dilution method was not appropriate as the growth of T. tonsurans on the agar medium was too slow to determine drug activity, while the broth microdilution method was thought to be an appropriate method for this study. The MIC90 values determined by the broth microdilution method for terbinafine, itraconazole, miconazole and ketoconazole were 0.013, 0.1, 0.8 and 0.4 microg/ml, respectively. Meanwhile, the MIC90 values of lanoconazole and luliconazole, known to be antifungal drugs potent against dermatomycosis, were 0.00078 and 0.00039 microg/ ml, respectively. The drug susceptibility of these T. tonsurans isolates to the aforementioned antifungal drugs was found to be on a similar level with that of T. mentagrophytes and T. rubrum, major causative agents of dermatomycosis. The results also demonstrated the strong antifungal activity of lanoconazole and luliconazole against T. tonsurans.

  14. Posaconazole: a review of the gastro-resistant tablet and intravenous solution in invasive fungal infections.

    Science.gov (United States)

    McKeage, Kate

    2015-03-01

    Posaconazole (Noxafil(®)) is a triazole antifungal agent with an extended spectrum of antifungal activity. It is approved for the prophylaxis of invasive fungal infections in patients with neutropenia or in haematopoietic stem cell transplant recipients undergoing high-dose immunosuppressive therapy for graft-versus-host disease, and for the treatment of fungal infections. The efficacy and good tolerability of posaconazole oral suspension administered three or four times daily is well established. However, in order to overcome pharmacokinetic limitations associated with the suspension, a new gastro-resistant tablet and intravenous (IV) solution were developed. This article reviews the pharmacokinetic properties of the new posaconazole formulations and briefly summarizes efficacy data relating to the suspension. The pharmacokinetic advantages of the posaconazole gastro-resistant tablet compared with the suspension formulation include less interpatient variability, better systemic availability enabling once-daily administration, and absorption that is unaffected by changes in gastric pH or motility; in addition the tablets may be taken with or without food. The posaconazole tablet achieves higher and more consistent mean plasma concentrations than the suspension and, therefore, it is the preferred option to optimize efficacy in the prophylaxis or treatment of invasive fungal disease. The posaconazole IV solution provides an option for these same indications in patients who are unable to receive oral formulations.

  15. Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A

    Directory of Open Access Journals (Sweden)

    Shinde Ravikumar B

    2012-10-01

    Full Text Available Abstract Background Biofilms formed by Candida albicans are resistant towards most of the available antifungal drugs. Therefore, infections associated with Candida biofilms are considered as a threat to immunocompromised patients. Combinatorial drug therapy may be a good strategy to combat C. albicans biofilms. Methods Combinations of five antifungal drugs- fluconazole (FLC, voriconazole (VOR, caspofungin (CSP, amphotericin B (AmB and nystatin (NYT with cyclosporine A (CSA were tested in vitro against planktonic and biofilm growth of C. albicans. Standard broth micro dilution method was used to study planktonic growth, while biofilms were studied in an in vitro biofilm model. A chequerboard format was used to determine fractional inhibitory concentration indices (FICI of combination effects. Biofilm growth was analyzed using XTT-metabolic assay. Results MICs of various antifungal drugs for planktonic growth of C. albicans were lowered in combination with CSA by 2 to 16 fold. Activity against biofilm development with FIC indices of 0.26, 0.28, 0.31 and 0.25 indicated synergistic interactions between FLC-CSA, VOR-CSA, CSP-CSA and AmB-CSA, respectively. Increase in efficacy of the drugs FLC, VOR and CSP against mature biofilms after addition of 62.5 μg/ml of CSA was evident with FIC indices 0.06, 0.14 and 0.37, respectively. Conclusions The combinations with CSA resulted in increased susceptibility of biofilms to antifungal drugs. Combination of antifungal drugs with CSA would be an effective prophylactic and therapeutic strategy against biofilm associated C. albicans infections.

  16. Grafting β-Cyclodextrins to Silicone, Formulation of Emulsions and Encapsulation of Antifungal Drug

    Science.gov (United States)

    Noomen, Ahlem; Penciu, Alexandra; Hbaieb, Souhaira; Parrot-Lopez, Hélène; Amdouni, Noureddine; Chevalier, Yves; Kalfat, Rafik

    Emulsions of silicone polymers having β-cyclodextrin units as lateral chains have been prepared and used for the encapsulation of the antifungal drug griseofulvin. Such technology enables the formulation of active substances that are not soluble in water as dosage forms for topical administration.

  17. Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus

    Science.gov (United States)

    Candidiasis and cryptococcosis are diseases of widening global incidence as a result of increasing immunosuppressive disorders, such as AIDS. An enduring problem for treatment of these mycoses is recurrent development of resistance to introduced antifungal drugs. We examined the potential for enhan...

  18. Cryptococcus laurentii biofilms: structure, development and antifungal drug resistance.

    Science.gov (United States)

    Ajesh, K; Sreejith, K

    2012-12-01

    A great number of fungal infections are related to biofilm formation on inert or biological surfaces, which are recalcitrant to most treatments and cause human mortality. Cryptococcus laurentii has been diagnosed as the aetiological pathogen able to cause human infections mainly in immunosuppressed patients and the spectrum of clinical manifestations ranges from skin lesions to fungaemia. The effect of temperature, pH and surface preconditioning on C. laurentii biofilm formation was determined by 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay. Scanning electron microscopic (SEM) analysis of C. laurentii biofilms demonstrated surface topographies of profuse growth and dense colonization with extensive polymeric substances around the cells. In this study, we determined the activity of amphotericin B, itraconazole and fluconazole against C. laurentii free-living cells and biofilms. The activity of antifungals tested was greater against free-living cells, but sessile cells fell into the resistant range for these antifungal agents. Extracellular polymeric substances (EPS), comprising the matrix of C. laurentii biofilms, were isolated by ultrasonication. Fourier transform infrared spectroscopy (FT-IR) was performed with ethanol-precipitated and dried samples. Also, the multielement analysis of the EPS was performed by inductively coupled plasma optical emission spectroscopy (ICP-OES).

  19. Blood and tissue distribution of posaconazole in a rat model of invasive pulmonary aspergillosis.

    Science.gov (United States)

    Cendejas-Bueno, E; Forastiero, A; Ruiz, I; Mellado, E; Gavaldà, J; Gomez-Lopez, A

    2017-02-01

    Posaconazole is the recommended prophylactic agent in patients at high risk of invasive fungal infection, since adequate drug levels seem to be reached in target sites despite the relatively low levels detected in blood. The objective of this study is to obtain pharmacokinetic (PK) information associated to blood and tissue distribution of posaconazole in an animal model of invasive pulmonary aspergillosis. The PK parameters in lung samples were systematically higher than in serum. After multiple-dose administration of posaconazole, a significant accumulation of the drug was evident in lung tissue. The PK behavior of posaconazole in this particular experimental model is similar to that observed in humans. Thus, we believe this model could be a valid tool to evaluate posaconazole exposure-response relationship.

  20. Phase 1b study of new posaconazole tablet for prevention of invasive fungal infections in high-risk patients with neutropenia.

    Science.gov (United States)

    Duarte, Rafael F; López-Jiménez, Javier; Cornely, Oliver A; Laverdiere, Michel; Helfgott, David; Haider, Shariq; Chandrasekar, Pranatharthi; Langston, Amelia; Perfect, John; Ma, Lei; van Iersel, Marlou L P S; Connelly, Nancy; Kartsonis, Nicholas; Waskin, Hetty

    2014-10-01

    Posaconazole tablets, a new oral formulation of posaconazole, can be effective when given as antifungal prophylaxis to neutropenic patients at high risk for invasive fungal infection (e.g., those with acute myelogenous leukemia or myelodysplastic syndrome). Such effectiveness might be specifically important to patients with poor oral intake because of nausea, vomiting, or chemotherapy-associated mucositis. This was a prospective, global study in high-risk patients to characterize the pharmacokinetics and safety profile of posaconazole tablets and to identify the dose of posaconazole tablets that would provide exposure within a predefined range of exposures (steady-state average concentration [area under the concentration-time curve/24 h] of ≥500 ng/ml and ≤2,500 ng/ml in >90% of patients). The study evaluated two sequential dosing cohorts: 200 mg posaconazole once daily (n = 20) and 300 mg posaconazole once daily (n = 34) (both cohorts had a twice-daily loading dose on day 1) taken without regard to food intake during the neutropenic period for ≤28 days. The exposure target was reached (day 8) in 15 of 19 (79%) pharmacokinetic-evaluable patients taking 200 mg posaconazole once daily and in 31 of 32 (97%) patients taking 300 mg posaconazole once daily; 300 mg posaconazole once daily achieved the desired exposure target. Posaconazole tablets were generally well tolerated in high-risk neutropenic patients. (This study has been registered at ClinicalTrials.gov under registration no. NCT01777763.).

  1. Posaconazole: A New Agent for the Prevention and Management of Severe, Refractory or Invasive Fungal Infections

    Directory of Open Access Journals (Sweden)

    Andrea V Page

    2008-01-01

    Full Text Available Posaconazole is the newest antifungal agent to be approved for use in Canada. With excellent in vitro activity against a broad spectrum of yeasts and filamentous fungi, as well as having a well-tolerated oral formulation, posaconazole offers many potential advantages. Of particular interest are its seemingly lower potential for cross-resistance with other azoles and its activity (unique among oral antifungal agents against the zygomycetes. As the incidence of both common and uncommon fungal infections increases commensurate with the growing population of immunocompromised individuals, posaconazole may ultimately become an important therapeutic option. The present article reviews the in vitro and in vivo data describing its activity, and focuses on both the proven and the potential clinical applications of this new triazole agent.

  2. Type I methionine aminopeptidase from Saccharomyces cerevisiae is a potential target for antifungal drug screening

    Institute of Scientific and Technical Information of China (English)

    Ling-ling CHEN; Jia LI; Jing-ya LI; Qun-li LUO; Wei-feng MAO; Qiang SHEN; Fa-jun NAN; Qi-zhuang YE

    2004-01-01

    AIM: To screen antifungal drug candidates using in vitro and in vivo assays based on type I methionine aminopeptidase from Saccharomyces cerevisiae (ScMetAP1). METHODS: A colorimetric assay suitable for high throughput screening (HTS) using recombinant ScMetAP1 protein expressed in Escherichia coli was established for antifungal lead discovery. A series of pyridine-2-carboxylic acid derivatives were characterized and a chemical library of 12 800 pure organic compounds was screened with the in vitro ScMetAP1 assay. Active compounds from the in vitro assay were further evaluated by a growth inhibition assay on yeast strain with deletion of ScMetAP1 gene mapl in comparison with the wild-type yeast strain and the yeast strain with deletion of type II enzyme (ScMetAP2)gene map2. RESULTS: Active ScMetAP1 inhibitors were identified from HTS. Some of the pyridine-2-carboxylic acid derivatives (compound 2 and 3) had selective inhibition of the growth of map2 deletion yeast and weak inhibition on wild-type yeast growth, while no inhibition on mapl deletion yeast. CONCLUSION: ScMetAP1 is a novel potential target for developing antifungal drugs. The in vitro and in vivo ScMetAP1 assays can serve as tools in discovering antifungal drug candidates.

  3. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target.

    Directory of Open Access Journals (Sweden)

    Katharine S Dobb

    Full Text Available Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.

  4. Identification of antifungal natural products via Saccharomyces cerevisiae bioassay: insights into macrotetrolide drug spectrum, potency and mode of action.

    Science.gov (United States)

    Tebbets, Brad; Yu, Zhiguo; Stewart, Douglas; Zhao, Li-Xing; Jiang, Yi; Xu, Li-Hua; Andes, David; Shen, Ben; Klein, Bruce

    2013-04-01

    Since current antifungal drugs have not kept pace with the escalating medical demands of fungal infections, new, effective medications are required. However, antifungal drug discovery is hindered by the evolutionary similarity of mammalian and fungal cells, which results in fungal drug targets having human homologs and drug non-selectivity. The group III hybrid histidine kinases (HHKs) are an attractive drug target since they are conserved in fungi and absent in mammals. We used a Saccharomyces cerevisiae reporter strain that conditionally expresses HHK to establish a high-throughput bioassay to screen microbial extracts natural products for antifungals. We identified macrotetrolides, a group of related ionophores thought to exhibit restricted antifungal activity. In addition to confirming the use of this bioassay for the discovery of antifungal natural products, we demonstrated broader, more potent fungistatic activity of the macrotetrolides against multiple Candida spp., Cryptococcus spp., and Candida albicans in biofilms. Macrotetrolides were also active in an animal model of C. albicans biofilm, but were found to have inconsistent activity against fluconazole-resistant C. albicans, with most isolates resistant to this natural product. The macrotetrolides do not directly target HHKs, but their selective activity against S. cerevisiae grown in galactose (regardless of Drk1 expression) revealed potential new insight into the role of ion transport in the mode of action of these promising antifungal compounds. Thus, this simple, high-throughput bioassay permitted us to screen microbial extracts, identify natural products as antifungal drugs, and expand our understanding of the activity of macrotetrolides.

  5. Calcium signaling mediates antifungal activity of triazole drugs in the Aspergilli.

    Science.gov (United States)

    Liu, Fei-fei; Pu, Li; Zheng, Qing-qing; Zhang, Yuan-wei; Gao, Rong-sui; Xu, Xu-shi; Zhang, Shi-zhu; Lu, Ling

    2015-08-01

    Azoles are widely applied and largely effective as antifungals; however, the increasing prevalence of clinically resistant isolates has yet to be matched by approaches to improve the efficacy of antimicrobial therapy. In this study, using the model fungus Aspergillus nidulans and one of the most common human pathogen Aspergillus fumigatus as research materials, we present the evidence that calcium signaling is involved in the azole-antifungals-induced stress-response reactions. In normal media, antifungal-itraconazole (ITZ) is able to induce the [Ca(2+)]c increased sharply but the addition of calcium chelator-EGTA or BAPTA almost blocks the calcium influx responses, resulted in the dramatically decreasing of [Ca(2+)]c transient. Real-time PCR analysis verified that six-tested Ca(2+)-inducible genes-two calcium channels (cchA/midA), a calmodulin-dependent phosphatase-calcineurin (cnaA), a transcription factor-crzA, and two calcium transporters (pmrA/pmcA)-could be transiently up-regulated by adding ITZ, indicating these components are involved in the azole stress-response reaction. Defect of cnaA or crzA caused more susceptibility to azole antifungals than did single mutants or double deletions of midA and cchA. Notably, EGTA may influence Rh123 accumulation as an azole-mimicking substrate through the process of the drug absorption. In vivo studies of a Galleria mellonella model identified that the calcium chelator works as an adjunct antifungal agent with azoles for invasive aspergillosis. Most importantly, combination of ITZ and EGTA or ITZ with calcium signaling inhibitor-FK506 greatly enhances the ITZ efficacy. Thus, our study provides potential clues that specific inhibitors of calcium signaling could be clinically useful adjuncts to conventional azole antifungals in the Aspergilli.

  6. Separation of antifungal chiral drugs by SFC and HPLC: a comparative study.

    Science.gov (United States)

    Bernal, J L; Toribio, L; del Nozal, M J; Nieto, E M; Montequi, M I

    2002-12-31

    The enantiomeric separation of several compounds, including an antifungal drug and several of its precursors, using HPLC and SFC is described in this work. The columns employed were based on polysaccharide derivatives and the results show that most of the separations obtained by SFC are better, in terms of high resolution and short analysis time, than those obtained by HPLC. Only one compound could not be resolved using SFC but, in this case, HPLC provided baseline resolution.

  7. In vitro susceptibility of environmental isolates of Exophiala dermatitidis to five antifungal drugs.

    Science.gov (United States)

    Duarte, Ana Paula Miranda; Pagnocca, Fernando Carlos; Baron, Noemi Carla; Melhem, Marcia de Souza Carvalho; Palmeira, Gislene Aparecida; de Angelis, Dejanira de Franceschi; Attili-Angelis, Derlene

    2013-06-01

    Several dematiaceous fungi frequently isolated from nature are involved in cases of superficial lesions to lethal cerebral infections. Antifungal susceptibility data on environmental and clinical isolates are still sparse despite the advances in testing methods. The objective of this study was to examine the activities of 5-flucytosine, amphotericin B, itraconazole, voriconazole and terbinafine against environmental isolates of Exophiala strains by minimum inhibition concentration (MIC) determination. The strains were obtained from hydrocarbon-contaminated soil, ant cuticle and fungal pellets from the infrabuccal pocket of attine gynes. Broth microdilution assay using M38-A2 reference methodology for the five antifungal drugs and DNA sequencing for fungal identification were applied. Terbinafine was the most active drug against the tested strains. It was observed that amphotericin B was less effective, notably against Exophiala spinifera, also studied. High MICs of 5-flucytosine against Exophiala dermatitidis occurred. This finding highlights the relevance of studies on the antifungal resistance of these potential opportunistic species. Our results also contribute to a future improvement of the standard methods to access the drug efficacy currently applied to black fungi.

  8. In Vitro Activities of Amphotericin B, Caspofungin, Itraconazole, Posaconazole, and Voriconazole against 45 Clinical Isolates of Zygomycetes: Comparison of CLSI M38-A, Sensititre YeastOne, and the Etest▿

    Science.gov (United States)

    Torres-Narbona, Marta; Guinea, Jesús; Martínez-Alarcón, José; Peláez, Teresa; Bouza, Emilio

    2007-01-01

    We evaluated the activities of amphotericin B, itraconazole, voriconazole, caspofungin, and posaconazole against zygomycetes by CLSI M38-A, Etest and Sensititre. The most active drug was posaconazole, followed by amphotericin B and itraconazole. The correlation of the Etest and Sensititre with CLSI M38-A was moderate for posaconazole but poor for the others. PMID:17194821

  9. Comparative pharmacodynamics of posaconazole in neutropenic murine models of invasive pulmonary aspergillosis and mucormycosis.

    Science.gov (United States)

    Lewis, Russell E; Albert, Nathaniel D; Kontoyiannis, Dimitrios P

    2014-11-01

    We used two established neutropenic murine models of pulmonary aspergillosis and mucormycosis to explore the association between the posaconazole area under the concentration-time curve (AUC)-to-MIC ratio (AUC/MIC) and treatment outcome. Posaconazole serum pharmacokinetics were verified in infected mice to ensure that the studied doses reflected human exposures with the oral suspension, delayed-release tablet, and intravenous formulations of posaconazole. Sinopulmonary infections were then induced in groups of neutropenic mice with Aspergillus fumigatus strain 293 (posaconazole MIC, 0.5 mg/liter) or Rhizopus oryzae strain 969 (posaconazole MIC, 2 mg/liter) and treated with escalating daily dosages of oral posaconazole, which was designed to achieve AUCs ranging from 1.10 to 392 mg · h/liter. After 5 days of treatment, lung fungal burden was analyzed by quantitative real-time PCR. The relationships of the total drug AUC/MIC and the treatment response were similar in both models, with 90% effective concentrations (EC90s) corresponding to an AUC/MIC threshold of 76 (95% confidence interval [CI], 46 to 102) for strain 293 versus 87 (95% CI, 66 to 101) for strain 969. Using a provisional AUC/MIC target of >100, these exposures correlated with minimum serum posaconazole concentrations (Cmins) of 1.25 mg/liter for strain 293 and 4.0 mg/liter for strain 969. The addition of deferasirox, but not liposomal amphotericin or caspofungin, improved the activity of a suboptimal posaconazole regimen (AUC/MIC, 33) in animals with pulmonary mucormycosis. However, no combination was as effective as the high-dose posaconazole monotherapy regimen (AUC/MIC, 184). Our analysis suggests that posaconazole pharmacodynamics are similar for A. fumigatus and R. oryzae when indexed to pathogen MICs.

  10. In vitro activities of new and conventional antifungal agents against clinical Scedosporium isolates.

    Science.gov (United States)

    Meletiadis, Joseph; Meis, Jacques F G M; Mouton, Johan W; Rodriquez-Tudela, Juan Luis; Donnelly, J Peter; Verweij, Paul E

    2002-01-01

    The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (amphotericin B, nystatin and liposomal nystatin), and allylamines (terbinafine), were studied by use of proposed standard M38-P of NCCLS. Low growth-inhibitory antifungal activities were found in vitro for most of the drugs tested against S. prolificans isolates, with the MICs at which 90% of isolates are inhibited (MIC(90)s) being >8 microg/ml; the MIC(90)s of voriconazole and UR-9825, however, were 4 microg/ml. S. apiospermum isolates were more susceptible in vitro, with the highest activity exhibited by voriconazole (MIC(90)s, 0.5 microg/ml), followed by miconazole (MIC(90)s, 1 microg/ml), UR-9825 and posaconazole (MIC(90)s, 2 microg/ml), and itraconazole (MIC(90)s, 4 microg/ml). The MICs of terbinafine, amphotericin B, and the two formulations of nystatin (for which no statistically significant differences in antifungal activities were found for the two species) for S. apiospermum isolates were high. Cross-resistance was observed among all the azoles except posaconazole and among all the polyenes except the lipid formulation. A distribution analysis was performed with the MICs of each drug and for each species. Bimodal and skewed MIC distributions were obtained, and cutoffs indicating the borders of different MIC subpopulations of the distributions were determined on the basis of the normal plot technique. These cutoffs were in many cases reproducible between 48 and 72 h.

  11. Supersaturation and Precipitation of Posaconazole Upon Entry in the Upper Small Intestine in Humans.

    Science.gov (United States)

    Hens, Bart; Brouwers, Joachim; Corsetti, Maura; Augustijns, Patrick

    2016-09-01

    The purpose of this study was to explore gastrointestinal dissolution, supersaturation and precipitation of the weakly basic drug posaconazole in humans, and to assess the impact of formulation pH and type on these processes. In a cross-over study, two posaconazole suspensions (40 mg dispersed in 240 mL water at pH 1.6 and pH 7.1, respectively) were intragastrically administered; subsequently, gastric and duodenal fluids were aspirated. In parallel, blood samples were collected. Additionally, posaconazole was intragastrically administered as a solution (20 mg in 240 mL water, pH 1.6). When posaconazole was administered as an acidified suspension, supersaturated duodenal concentrations of posaconazole were observed for approximately 45 min. However, extensive intestinal precipitation was observed. Administration of the neutral suspension resulted in subsaturated concentrations with a mean duodenal AUC0-120 min and Cmax being approximately twofold lower than for the acidified suspension. The mean plasma AUC0-8 h of posaconazole was also twofold higher following administration of the acidified suspension. Similar to the acidified suspension, significant intestinal precipitation (up to 92%) was observed following intragastric administration of the posaconazole solution. This study demonstrated for the first time the gastrointestinal behavior of a weakly basic drug administered in different conditions, and its impact on systemic exposure.

  12. Candida albicans biofilm chip (CaBChip) for high-throughput antifungal drug screening.

    Science.gov (United States)

    Srinivasan, Anand; Lopez-Ribot, Jose L; Ramasubramanian, Anand K

    2012-07-18

    Candida albicans remains the main etiological agent of candidiasis, which currently represents the fourth most common nosocomial bloodstream infection in US hospitals. These opportunistic infections pose a growing threat for an increasing number of compromised individuals, and carry unacceptably high mortality rates. This is in part due to the limited arsenal of antifungal drugs, but also to the emergence of resistance against the most commonly used antifungal agents. Further complicating treatment is the fact that a majority of manifestations of candidiasis are associated with the formation of biofilms, and cells within these biofilms show increased levels of resistance to most clinically-used antifungal agents. Here we describe the development of a high-density microarray that consists of C. albicans nano-biofilms, which we have named CaBChip. Briefly, a robotic microarrayer is used to print yeast cells of C. albicans onto a solid substrate. During printing, the yeast cells are enclosed in a three dimensional matrix using a volume as low as 50 nL and immobilized on a glass substrate with a suitable coating. After initial printing, the slides are incubated at 37 °C for 24 hours to allow for biofilm development. During this period the spots grow into fully developed "nano-biofilms" that display typical structural and phenotypic characteristics associated with mature C. albicans biofilms (i.e. morphological complexity, three dimensional architecture and drug resistance). Overall, the CaBChip is composed of ~750 equivalent and spatially distinct biofilms; with the additional advantage that multiple chips can be printed and processed simultaneously. Cell viability is estimated by measuring the fluorescent intensity of FUN1 metabolic stain using a microarray scanner. This fungal chip is ideally suited for use in true high-throughput screening for antifungal drug discovery. Compared to current standards (i.e. the 96-well microtiter plate model of biofilm formation

  13. Development and characterization of spray dried microparticles for pulmonary delivery of antifungal drug.

    Science.gov (United States)

    Mathpal, Divita; Garg, Tarun; Rath, Goutam; Goyal, Amit Kumar

    2015-01-01

    Invasive pulmonary aspergillosis is a life threatening fungal infection mainly caused by Aspergillus species. Available treatment strategy against pulmonary aspergillosis is having very limited applicability, due to its toxicity and low circulation half-life. Pulmonary drug delivery is one of the strategies that can minimize these pitfalls. In the present study, polymeric and lipidic nanoparticles of amphotericin B were prepared by spray drying technique using hydroxypropylmethylcellulose (HPMC) and stearylamine with oleic acid respectively. Formulations were characterized for particle size, zeta potential, entrapment efficiency, in-vitro release studies, uptake analysis and in-vivo bio distribution studies. Developed polymeric and nanostructured lipid carriers (NLCs) were found in submicron size (600-700nm) and spherical in shape. Studies suggested that NLCs have better entrapment efficiency (77.1±5.5 %) as compared to HPMC carrier (71.28±5.22 %). Both formulations provided sustained drug release (HPMC, 82.05% releases up to 32 hrs and NLC, 88.2 % up to 40 hrs) and reduced dose dumping that may be helpful to reduce the toxicity and improve patient compliance. In-vitro antifungal studies suggested that stearylamine formulations exhibited better antifungal activity over control and HPMC formulations. Pharmacokinetic and organ distribution studies also support our hypothesis i.e. localized drug delivery for prolong period, improving the therapeutic effectiveness of the encapsulated drug against pulmonary aspergillosis. Studies suggested that drug delivery by pulmonary route is beneficial for local action in lungs.

  14. Successful Treatment of Primary Cutaneous Mucormycosis Complicating Anti-TNF Therapy with a Combination of Surgical Debridement and Oral Posaconazole.

    Science.gov (United States)

    Camargo, Jose F; Yakoub, Danny; Cho-Vega, Jeong Hee

    2015-10-01

    Lipid formulations of amphotericin B remain the first-line antifungal therapy for invasive mucormycosis. Posaconazole is an alternative for salvage therapy, but its use as primary therapy is not recommended due to the paucity of clinical data. Here we describe the case of a 57-year-old diabetic woman receiving etanercept and prednisone for the treatment of psoriatic arthritis who developed primary cutaneous mucormycosis after a minor gardening injury. Infection was successfully treated with aggressive surgical debridement followed by a 6-week course of the new delayed-release tablet formulation of posaconazole and temporary withholding of anti-TNF treatment. Primary antifungal therapy with posaconazole can be considered in selected cases of cutaneous mucormycosis.

  15. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles.

    Science.gov (United States)

    Kumar, C Ganesh; Poornachandra, Y

    2015-01-01

    The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles.

  16. Antitrypanosomal Treatment with Benznidazole Is Superior to Posaconazole Regimens in Mouse Models of Chagas Disease.

    Science.gov (United States)

    Khare, Shilpi; Liu, Xianzhong; Stinson, Monique; Rivera, Ianne; Groessl, Todd; Tuntland, Tove; Yeh, Vince; Wen, Ben; Molteni, Valentina; Glynne, Richard; Supek, Frantisek

    2015-10-01

    Two CYP51 inhibitors, posaconazole and the ravuconazole prodrug E1224, were recently tested in clinical trials for efficacy in indeterminate Chagas disease. The results from these studies show that both drugs cleared parasites from the blood of infected patients at the end of the treatment but that parasitemia rebounded over the following months. In the current study, we sought to identify a dosing regimen of posaconazole that could permanently clear Trypanosoma cruzi from mice with experimental Chagas disease. Infected mice were treated with posaconazole or benznidazole, an established Chagas disease drug, and parasitological cure was defined as an absence of parasitemia recrudescence after immunosuppression. Twenty-day therapy with benznidazole (10 to 100 mg/kg of body weight/day) resulted in a dose-dependent increase in antiparasitic activity, and the 100-mg/kg regimen effected parasitological cure in all treated mice. In contrast, all mice remained infected after a 25-day treatment with posaconazole at all tested doses (10 to 100 mg/kg/day). Further extension of posaconazole therapy to 40 days resulted in only a marginal improvement of treatment outcome. We also observed similar differences in antiparasitic activity between benznidazole and posaconazole in acute T. cruzi heart infections. While benznidazole induced rapid, dose-dependent reductions in heart parasite burdens, the antiparasitic activity of posaconazole plateaued at low doses (3 to 10 mg/kg/day) despite increasing drug exposure in plasma. These observations are in good agreement with the outcomes of recent phase 2 trials with posaconazole and suggest that the efficacy models combined with the pharmacokinetic analysis employed here will be useful in predicting clinical outcomes of new drug candidates.

  17. [In vitro activities of posaconazole, fluconazole, itraconazole, ketoconazole and voriconazole against Candida glabrata].

    Science.gov (United States)

    Blanco, M T; Cañadas, J; García-Martos, P; Marín, P; García-Tapia, A; Rodríguez, J

    2009-09-01

    This study has been conducted to asses the in vitro activity of the novel triazole antifungal agent posaconazole against 123 clinically important isolates of yeasts. Susceptibility was tested using the Sensititre YeastOne microdilution commercial method. Minimum inhibitory concentrations (MICs) were determined at the recommended endpoints and time intervals. The activity of posaconazole against Candida glabrata was compared with those of fluconazole, itraconazole, ketoconazole and voriconazole. The most susceptible species to posaconazole were C. albicans, C. parapsilosis, C. tropicalis and C. dubliniensis. Candida glabrata was the least susceptible. The percentage of strains with MIC for posaconazole >or= 1 mg/L was 9%, all of them were C. glabrata. The species with MIC for itraconazole >or= 0.5 mg/L were 36% (41 C. glabrata, 1 C. krusei, 1 C. guilliermondii, 1 C. ciferrii). Candida glabrata strains resistant to fluconazole, ketoconazole and voriconazole were 8%, 4% and 4%, respectively. Posaconazole exhibited good activity to the majority of Candida species. However, it was similar to itraconazole and less active than ketoconazole and voriconazole against C. glabrata.

  18. In Vitro Activity of Seven Systemically Active Antifungal Agents against a Large Global Collection of Rare Candida Species as Determined by CLSI Broth Microdilution Methods ▿

    Science.gov (United States)

    Diekema, D. J.; Messer, S. A.; Boyken, L. B.; Hollis, R. J.; Kroeger, J.; Tendolkar, S.; Pfaller, M. A.

    2009-01-01

    Five Candida species (C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, and C. krusei) account for over 95% of invasive candidiasis cases. Some less common Candida species have emerged as causes of nosocomial candidiasis, but there is little information about their in vitro susceptibilities to antifungals. We determined the in vitro activities of fluconazole, voriconazole, posaconazole, amphotericin B, anidulafungin, caspofungin, and micafungin against invasive, unique patient isolates of Candida collected from 100 centers worldwide between January 2001 and December 2007. Antifungal susceptibility testing was performed by the CLSI M27-A3 method. CLSI breakpoints for susceptibility were used for fluconazole, voriconazole, anidulafungin, caspofungin, and micafungin, while a provisional susceptibility breakpoint of ≤1 μg/ml was used for amphotericin and posaconazole. Of 14,007 Candida isolates tested, 658 (4.7%) were among the less common species. Against all 658 isolates combined, the activity of each agent, expressed as the MIC50/MIC90 ratio (and the percentage of susceptible isolates) was as follows: fluconazole, 1/4 (94.8%); voriconazole, 0.03/0.12 (98.6%); posaconazole, 0.12/0.5 (95.9%); amphotericin, 0.5/2 (88.3%); anidulafungin, 0.5/2 (97.4%); caspofungin, 0.12/0.5 (98.0%); and micafungin, 0.25/1 (99.2%). Among the isolates not susceptible to one or more of the echinocandins, most (68%) were C. guilliermondii. All isolates of the less common species within the C. parapsilosis complex (C. orthopsilosis and C. metapsilosis) were susceptible to voriconazole, posaconazole, anidulafungin, caspofungin, and micafungin. Over 95% of clinical isolates of the rare Candida species were susceptible to the available antifungals. However, activity did vary by drug-species combination, with some species (e.g., C. rugosa and C. guilliermondii) demonstrating reduced susceptibilities to commonly used agents such as fluconazole and echinocandins. PMID:19710283

  19. Antifungal agents in neonates: issues and recommendations.

    Science.gov (United States)

    Almirante, Benito; Rodríguez, Dolors

    2007-01-01

    Fungal infections are responsible for considerable morbidity and mortality in the neonatal period, particularly among premature neonates. Four classes of antifungal agents are commonly used in the treatment of fungal infections in pediatric patients: polyene macrolides, fluorinated pyrimidines, triazoles, and echinocandins. Due to the paucity of pediatric data, many recommendations for the use of antifungal agents in this population are derived from the experience in adults. The purpose of this article was to review the published data on fungal infections and antifungal agents, with a focus on neonatal patients, and to provide an overview of the differences in antifungal pharmacology in neonates compared with adults. Pharmacokinetic data suggest dosing differences in children versus adult patients with some antifungals, but not all agents have been fully evaluated. The available pharmacokinetic data on the amphotericin B deoxycholate formulation in neonates exhibit considerable variability; nevertheless, the dosage regimen suggested in the neonatal population is similar to that used in adults. More pharmacokinetic information is available on the liposomal and lipid complex preparations of amphotericin B and fluconazole, and it supports their use in neonates; however, the optimal dosage and duration of therapy is difficult to establish. All amphotericin-B formulations, frequently used in combination with flucytosine, are useful for treating disseminated fungal infections and Candida meningitis in neonates. Fluconazole, with potent in vitro activity against Cryptococcus neoformans and almost all Candida spp., has been used in neonates with invasive candidiasis at dosages of 6 mg/kg/day, and for antifungal prophylaxis in high-risk neonates. There are limited data on itraconazole, voriconazole, and posaconazole use in neonates. Caspofungin, which is active against Candida spp. and Aspergillus spp., requires higher doses in children relative to adults, and dosing is

  20. Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases.

    Science.gov (United States)

    Bhalaria, M K; Naik, Sachin; Misra, A N

    2009-05-01

    Aim of this work was to prepare and characterize fluconazole (FLZ) encapsulated ethosomes, incorporate it in suitable dermatological base, and asses its comparative clinical efficacy in the treatment of Candidiasis patients against liposomal gel, marketed product and hydroethanolic solution of the drug. Drug encapsulated ethosomes and liposomes were prepared and optimized by "Hot" method technique and lipid film hydration technique. Vesicular carriers were characterized for % entrapment efficiency, particle size and shape, in vitro drug diffusion study, mean % reduction in dimension of Candidiasis lesion and stability study by using suitable analytical technique. Vesicle size and drug entrapment efficiency of the optimized ethosomes and liposomes were found to be 144 +/- 6.8 nm and 82.68% and 216 +/- 9.2 nm and 68.22% respectively. Microscopic examinations suggest ethosomes to be multilamellar spherical vesicles with a smooth surface. The differential scanning calorimetry results suggest high fluidity of the ethosomes than liposomes. In vitro drug diffusion studies demonstrated that % drug diffused from ethosomes was nearly twice than liposomes and three times higher than the hydroethanolic solution across rat skin. From the clinical evaluation, the developed novel delivery system demonstrated enhanced antifungal activity compared to liposomal formulation, marketed formulation and hydroethanolic solution of the drug.

  1. Environmental isolation, biochemical identification, and antifungal drug susceptibility of Cryptococcus species

    Directory of Open Access Journals (Sweden)

    Valter Luis Iost Teodoro

    2013-12-01

    Full Text Available Introduction The incidence of opportunistic fungal infections has increased in recent years and is considered an important public health problem. Among systemic and opportunistic mycoses, cryptococcosis is distinguished by its clinical importance due to the increased risk of infection in individuals infected by human immunodeficiency virus. Methods To determine the occurrence of pathogenic Cryptococcus in pigeon excrement in the City of Araraquara, samples were collected from nine environments, including state and municipal schools, abandoned buildings, parks, and a hospital. The isolates were identified using classical tests, and susceptibility testing for the antifungal drugs (fluconazole, itraconazole, voriconazole, and amphotericin B independently was also performed. After collection, the excrement samples were plated on Niger agar and incubated at room temperature. Results A total of 87 bird dropping samples were collected, and 66.6% were positive for the genus Cryptococcus. The following species were identified: Cryptococcus neoformans (17.2%, Cryptococcus gattii (5.2%, Cryptococcus ater (3.5%, Cryptococcus laurentti (1.7%, and Cryptococcus luteolus (1.7%. A total of 70.7% of the isolates were not identified to the species level and are referred to as Cryptococcus spp. throughout the manuscript. Conclusions Although none of the isolates demonstrated resistance to antifungal drugs, the identification of infested areas, the proper control of birds, and the disinfection of these environments are essential for the epidemiological control of cryptococcosis.

  2. Effectiveness of increasing the frequency of posaconazole syrup administration to achieve optimal plasma concentrations in patients with haematological malignancy.

    Science.gov (United States)

    Park, Wan Beom; Cho, Joo-Youn; Park, Sang-In; Kim, Eun Jung; Yoon, Seonghae; Yoon, Seo Hyun; Lee, Jeong-Ok; Koh, Youngil; Song, Kyoung-Ho; Choe, Pyoeng Gyun; Yu, Kyung-Sang; Kim, Eu Suk; Bang, Su Mi; Kim, Nam Joong; Kim, Inho; Oh, Myoung-Don; Kim, Hong Bin; Song, Sang Hoon

    2016-07-01

    Few data are available on whether adjusting the dose of posaconazole syrup is effective in patients receiving anti-cancer chemotherapy. The aim of this prospective study was to analyse the impact of increasing the frequency of posaconazole administration on optimal plasma concentrations in adult patients with haematological malignancy. A total of 133 adult patients receiving chemotherapy for acute myeloid leukaemia or myelodysplastic syndrome who received posaconazole syrup 200 mg three times daily for fungal prophylaxis were enrolled in this study. Drug trough levels were measured by liquid chromatography-tandem mass spectrometry. In 20.2% of patients (23/114) the steady-state concentration of posaconazole was suboptimal (posaconazole administration was increased to 200 mg four times daily. On Day 15, the median posaconazole concentration was significantly increased from 368 ng/mL [interquartile range (IQR), 247-403 ng/mL] to 548 ng/mL (IQR, 424-887 ng/mL) (P = 0.0003). The median increase in posaconazole concentration was 251 ng/mL (IQR, 93-517 ng/mL). Among the patients with initially suboptimal levels, 79% achieved the optimal level unless the steady-state level was posaconazole syrup is effective for achieving optimal levels in patients with haematological malignancy undergoing chemotherapy.

  3. Antifungal susceptibilities of non-Aspergillus filamentous fungi causing invasive infection in Australia: support for current antifungal guideline recommendations.

    Science.gov (United States)

    Halliday, Catriona L; Chen, Sharon C-A; Kidd, Sarah E; van Hal, Sebastian; Chapman, Belinda; Heath, Christopher H; Lee, Andie; Kennedy, Karina J; Daveson, Kathryn; Sorrell, Tania C; Morrissey, C Orla; Marriott, Deborah J; Slavin, Monica A

    2016-10-01

    Antifungal susceptibilities of non-Aspergillus filamentous fungal pathogens cannot always be inferred from their identification. Here we determined, using the Sensititre(®) YeastOne(®) YO10 panel, the in vitro activities of nine antifungal agents against 52 clinical isolates of emergent non-Aspergillus moulds representing 17 fungal groups in Australia. Isolates comprised Mucorales (n = 14), Scedosporium/Lomentospora spp. (n = 18) and a range of hyaline hyphomycetes (n = 9) and other dematiaceous fungi (n = 11). Excluding Verruconis gallopava, echinocandins demonstrated poor activity (MICs generally >8 mg/L) against these moulds. Lomentospora prolificans (n = 4) and Fusarium spp. (n = 6) demonstrated raised MICs to all antifungal drugs tested, with the lowest being to voriconazole and amphotericin B (AmB), respectively (geometric mean MICs of 3.4 mg/L and 2.2 mg/L, respectively). All Scedosporium apiospermum complex isolates (n = 14) were inhibited by voriconazole concentrations of ≤0.25 mg/L, followed by posaconazole and itraconazole at ≤1 mg/L. Posaconazole and AmB were the most active agents against the Mucorales, with MIC90 values of 1 mg/L and 2 mg/L, respectively, for Rhizopus spp. For dematiaceous fungi, all isolates were inhibited by itraconazole and posaconazole concentrations of ≤0.5 mg/L (MIC90, 0.12 mg/L and 0.25 mg/L, respectively), but voriconazole and AmB also had in vitro activity (MIC90, 0.5 mg/L and 1 mg/L, respectively). Differences in antifungal susceptibility within species and between species within genera support the need for testing individual patient isolates to guide therapy. The Sensititre(®) YeastOne(®) offers a practical alternative to the reference methodology for susceptibility testing of moulds.

  4. Posaconazole treatment of refractory eumycetoma and chromoblastomycosis Tratamento com posaconazol de casos de cromoblastomicose e micetoma maduromicótico resistentes a outros antifúngicos

    Directory of Open Access Journals (Sweden)

    Ricardo Negroni

    2005-12-01

    Full Text Available Eumycetoma and chromoblastomycosis are chronic, disfiguring fungal infections of the subcutaneous tissue that rarely resolve spontaneously. Most patients do not achieve sustained long-term benefits from available treatments; therefore, new therapeutic options are needed. We evaluated the efficacy of posaconazole, a new extended-spectrum triazole antifungal agent, in 12 patients with eumycetoma or chromoblastomycosis refractory to existing antifungal therapies. Posaconazole 800 mg/d was given in divided doses for a maximum of 34 months. Complete or partial clinical response was considered a success; stable disease or failure was considered a nonsuccess. All 12 patients had proven infections refractory to standard therapy. Clinical success was reported for five of six patients with eumycetoma and five of six patients with chromoblastomycosis. Two patients were reported to have stable disease. As part of a treatment-use extension protocol, two patients with eumycetoma who initially had successful outcome were successfully retreated with posaconazole after a treatment hiatus of > 10 months. Posaconazole was well tolerated during long-term administration (up to 1015 d. Posaconazole therapy resulted in successful outcome in most patients with eumycetoma or chromoblastomycosis refractory to standard therapies, suggesting that posaconazole may be an important treatment option for these diseases.Eumicetoma e cromoblastomicose são infecções fúngicas crônicas do tecido subcutâneo que evoluem com aspecto desfigurado, raramente involuindo espontaneamente. A maioria dos pacientes não apresenta melhora sustentada por longo tempo com os tratamentos disponíveis, sendo de grande importância as novas opções terapêuticas. A eficácia do posaconazol, um novo agente antifúngico de amplo espectro do grupo dos triazóis, foi estudada em 12 pacientes com eumicetoma ou cromoblastomicose refratária às terapêuticas antifúngicas disponíveis. Os pacientes

  5. Network Meta-analysis and Pharmacoeconomic Evaluation of Fluconazole, Itraconazole, Posaconazole, and Voriconazole in Invasive Fungal Infection Prophylaxis.

    Science.gov (United States)

    Zhao, Ying Jiao; Khoo, Ai Leng; Tan, Gloria; Teng, Monica; Tee, Caroline; Tan, Ban Hock; Ong, Benjamin; Lim, Boon Peng; Chai, Louis Yi Ann

    2015-11-02

    Invasive fungal infections (IFIs) are associated with high mortality rates and large economic burdens. Triazole prophylaxis is used for at-risk patients with hematological malignancies or stem cell transplants. We evaluated both the efficacy and the cost-effectiveness of triazole prophylaxis. A network meta-analysis (NMA) of randomized controlled trials (RCTs) evaluating fluconazole, itraconazole capsule and solution, posaconazole, and voriconazole was conducted. The outcomes of interest included the incidences of IFIs and deaths. This was coupled with a cost-effectiveness analysis from patient perspective over a lifetime horizon. Probabilities of transitions between health states were derived from the NMA. Resource use and costs were obtained from the Singapore health care institution. Data on 5,505 participants in 21 RCTs were included. Other than itraconazole capsule, all triazole antifungals were effective in reducing IFIs. Posaconazole was better than fluconazole (odds ratio [OR], 0.35 [95% confidence interval [CI], 0.16 to 0.73]) and itraconazole capsule (OR, 0.25 [95% CI, 0.06 to 0.97]), but not voriconazole (OR, 1.31 [95% CI, 0.43 to 4.01]), in preventing IFIs. Posaconazole significantly reduced all-cause deaths, compared to placebo, fluconazole, and itraconazole solution (OR, 0.49 to 0.54 [95% CI, 0.28 to 0.88]). The incremental cost-effectiveness ratio for itraconazole solution was lower than that for posaconazole (Singapore dollars [SGD] 12,546 versus SGD 26,817 per IFI avoided and SGD 5,844 versus SGD 12,423 per LY saved) for transplant patients. For leukemia patients, itraconazole solution was the dominant strategy. Voriconazole was dominated by posaconazole. All triazole antifungals except itraconazole capsule were effective in preventing IFIs. Posaconazole was more efficacious in reducing IFIs and all-cause deaths than were fluconazole and itraconazole. Both itraconazole solution and posaconazole were cost-effective in the Singapore health care

  6. Superior Serum Concentrations with Posaconazole Delayed-Release Tablets Compared to Suspension Formulation in Hematological Malignancies

    OpenAIRE

    2015-01-01

    Posaconazole (PCZ), approved for prophylaxis against invasive fungal disease in high-risk patients, is commercially available orally as a suspension formulation (PCZ-susp) and as a delayed-release tablet (PCZ-tab). We evaluated the serum steady-state concentrations (Css) of PCZ stratified by the administered formulation for antifungal prophylaxis in patients with myeloid malignancies (n = 150). The primary outcome was the attainment rate of the target Css of ≥700 ng/ml. Secondary outcomes inc...

  7. Treatment of Mucormycosis with Liposomal Amphotericin B, Posaconazole and Deferasirox: A Case Report

    Directory of Open Access Journals (Sweden)

    Uğur Önal

    2016-03-01

    Full Text Available In this paper, we present a 69 years old diabetic patient with mucormycosis who was succesfully treated with liposomal amphotericin B (LAMB, posaconazole and deferasirox despite having no adequate surgery. There was no relapse on 6 month post-treatment follow-up. We conclude that combination of antifungal antibiotics with deferasirox may be successful in the salvage therapy of mucormycosis especially in diabetic patients. J Microbiol Infect Dis 2016;6(1: 32-35

  8. Flow cytometry susceptibility testing for conventional antifungal drugs and Comparison with the NCCLS Broth Macrodilution Test

    Directory of Open Access Journals (Sweden)

    M.J. Najafzadeh

    2009-08-01

    Full Text Available Introduction: During the last decade, the incidence of fungal infection has been increased in many countries. Because of the advent of resistant to antifungal agents, determination of an efficient strategic plan for treatment of fungal disease is an important issue in clinical mycology. Many methods have been introduced and developed for determination of invitro susceptibility tests. During the recent years, flow cytometry has developed to solving the problem and many papers have documented the usefulness of this technique. Materials and methods: As the first step, the invitro susceptibility of standard PTCC (Persian Type of Culture Collection strain and some clinical isolates of Candida consisting of Candida albicans, C. dubliniensis, C. glabrata, C. kefyer and C. parapsilosis were evaluated by macrodilution broth method according to NCCLS (National Committee for Clinical Laboratory Standards guidelines and flow cytometry susceptibility test. Results:  The data indicated that macro dilution broth methods and flow cytometry have the same results in determination of MIC (Minimum Inhibitory Concentration for amphotericin B, clotrimazole, fluconazole, ketoconazole and miconazole in C. albicans PTCC 5027 as well as clinical Candida isolates, such as C.albicans, C.dubliniensis, C.glabrata C.kefyr, and C.parapsilosis. Discussion: Comparing the results obtained by macrodilution broth and flow cytometry methods revealed that flow cytometry was faster. It is suggested that flow cytometry susceptibility test can be used as a powerful tool for determination of MIC and administration of the best antifungal drug in treatment of patients with Candida infections.

  9. Mycotoxins and Antifungal Drug Interactions: Implications in the Treatment of Illnesses Due to Indoor Chronic Toxigenic Mold Exposures

    Directory of Open Access Journals (Sweden)

    Ebere C. Anyanwu

    2004-01-01

    Full Text Available Chronic exposure to toxigenic molds in water-damaged buildings is an indoor environmental health problem to which escalating health and property insurance costs are raising a statewide concern in recent times. This paper reviews the structural and functional properties of mycotoxins produced by toxigenic molds and their interactive health implications with antifungal drugs. Fundamental bases of pathophysiological, neurodevelopmental, and cellular mechanisms of mycotoxic effects are evaluated. It is most likely that the interactions of mycotoxins with antifungal drugs may, at least in part, contribute to the observable persistent illnesses, antifungal drug resistance, and allergic reactions in patients exposed to chronic toxigenic molds. Safe dose level of mycotoxin in humans is not clear. Hence, the safety regulations in place at the moment remain inconclusive, precautionary, and arbitrary. Since some of the antifungal drugs are derived from molds, and since they have structural and functional groups similar to those of mycotoxins, the knowledge of their interactions are important in enhancing preventive measures.

  10. Adiaspiromicose pulmonar tratada sem antifúngicos Pulmonary adiaspiromycosis treated without antifungal drugs

    Directory of Open Access Journals (Sweden)

    Rodolfo Moraes Silva

    2010-02-01

    Full Text Available Relata-se caso de lavrador de 40 anos acometido por adiaspiromicose pulmonar, com diagnóstico etiológico estabelecido mediante biópsia por toracoscopia. Optou-se por tratamento com corticosteróide, sem antifúngicos, tendo o paciente respondido bem, com melhora clínico-radiológica após três semanas do início dos sintomas.The case of a 40-year-old agricultural worker affected by pulmonary adiaspiromycosis is reported. An etiological diagnosis had been established by means of a biopsy via thoracoscopy. Treatment with corticosteroids without antifungal drugs was chosen, and the patient responded well to this, with improvements in clinical and radiological conditions three weeks after the beginning of the symptoms.

  11. In Vitro Antifungal Activity of Sertraline and Synergistic Effects in Combination with Antifungal Drugs against Planktonic Forms and Biofilms of Clinical Trichosporon asahii Isolates

    Science.gov (United States)

    Cong, Lin; Liao, Yong; Yang, Suteng

    2016-01-01

    Trichosporon asahii (T. asahii) is the major pathogen of invasive trichosporonosis which occurred mostly in immunocompromised patients. The biofilms formation ability of T. asahii may account for resistance to antifungal drugs and results a high mortality rate. Sertraline, a commonly prescribed antidepressant, has been demonstrated to show in vitro and in vivo antifungal activities against many kinds of pathogenic fungi, especially Cryptococcus species. In the present study, the in vitro activities of sertraline alone or combined with fluconazole, voriconazole, itraconazole, caspofungin and amphotericin B against planktonic forms and biofilms of 21 clinical T. asahii isolates were evaluated using broth microdilution checkerboard method and XTT reduction assay, respectively. The fractional inhibitory concentration index (FICI) was used to interpret drug interactions. Sertraline alone exhibited antifungal activities against both T. asahii planktonic cells (MICs, 4–8 μg/ml) and T. asahii biofilms (SMICs, 16–32 μg/ml). Furthermore, SRT exhibited synergistic effects against T. asahii planktonic cells in combination with amphotericin B, caspofungin or fluconazole (FICI≤0.5) and exhibited synergistic effects against T. asahii biofilms in combination with amphotericin B (FICI≤0.5). SRT exhibited mostly indifferent interactions against T. asahii biofilms in combination with three azoles in this study. Sertraline-amphotericin B combination showed the highest percentage of synergistic effects against both T. asahii planktonic cells (90.5%) and T. asahii biofilms (81.0%). No antagonistic interaction was observed. Our study suggests the therapeutic potential of sertraline against invasive T. asahii infection, especially catheter-related T. asahii infection. Further in vivo studies are needed to validate our findings. PMID:27930704

  12. Determination of posaconazole level in rabbit cornea by high performance liquid chromatography%高效液相色谱法测定兔角膜中泊沙康唑的含量

    Institute of Scientific and Technical Information of China (English)

    吴伟; 何梅凤; 钟建文; 郭泽莉

    2014-01-01

    OBJECTIVE To establish a high performance liquid chromatography method for the determination of content of posaconazole in rabbit cornea and explore the permeability of the posaconazole eye drops so as to provide theoretical basis for clinical use of this eye drops .METHODS The rabbit corneas were obtained and quantified at 30 minutes after topically applying posaconazole eye drops to the rabbit eyes .The drug levels were assayed by high performance liquid chromatography .The separation was performed on Diamonsil C18 column ,the mobile phase was acetonitrile‐water (60∶40) with the flow rate of 1 .0 ml/min ,the detection wavelength was at 262 nm and column temperature was 25℃ .RESULTS The chromatograms of HPLC showed that the posaconazole peak could be separated from other materials ,no interferential peak was seen .The calibration curve of posaconazole was linear within the concentration range of 0 .204 5‐4 .089 9 μg/ml ,r=0 .9999 .The recovery rate was more than 90 .0%and the relative standard deviations(RSD)of intra‐day and inter‐day assays were less than 3 .0% .The posaconazole concentration in cornea was (5 .9 ± 0 .4)μg/g .CONCLUSION The method is accurate and reliable ,which can be used for the determination of the content of posaconazole in rabbit cornea .The posaconazole content in cornea is higher than the minimal inhibitory concentration of most fungi .The posaconazole eye drops can be used as a topi‐cal antifungal agent to treat keratitis .%目的:建立兔角膜中泊沙康唑含量测定的高效液相色谱分析方法,探讨眼局部应用泊沙康唑滴眼液后在角膜中的吸收情况,为该滴眼液的临床应用提供理论依据。方法兔结膜囊内滴入泊沙康唑滴眼液,30 min 后取角膜,采用高效液相色谱法测定角膜中泊沙康唑的含量,色谱条件:采用 Diamonsil C18为色谱柱;流动相为乙腈∶水(60∶40),流速1.0 ml/min ,检测波长262 nm ,柱温25℃。结

  13. High Intracellular Concentrations of Posaconazole Do Not Impact on Functional Capacities of Human Polymorphonuclear Neutrophils and Monocyte-Derived Macrophages In Vitro.

    Science.gov (United States)

    Farowski, Fedja; Cornely, Oliver A; Hartmann, Pia

    2016-06-01

    Posaconazole is a commonly used antifungal for the prophylaxis and treatment of invasive fungal infections. We previously demonstrated that the intracellular concentration of posaconazole in peripheral blood mononuclear cells (PBMCs) and polymorphonuclear neutrophils (PMNs) was greatly increased compared to the plasma concentration. As these professional phagocytes are crucial to combat fungal infections, we set out to investigate if and how, beneficial or deleterious, this high loading of intracellular posaconazole impacts the functional capacities of these cells. Here, we show that high intracellular concentrations of posaconazole do not significantly impact PMN and monocyte-derived macrophage function in vitro In particular, killing capacity and cytoskeletal features of PMN, such as migration, are not affected, indicating that these cells serve as vehicles for posaconazole to the site of infection. Moreover, since posaconazole as such slowed the germination of Aspergillus fumigatus conidia, infected neutrophils released less reactive oxygen species (ROS). Based on these findings, we propose that the delivery of posaconazole by neutrophils to the site of Aspergillus species infection warrants control of the pathogen and preservation of tissue integrity at the same time.

  14. The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens

    Science.gov (United States)

    Fernandes, Kenya E.; Carter, Dee A.

    2017-01-01

    Lactoferrin is a multifunctional iron-binding glycoprotein belonging to the transferrin family. It is found abundantly in milk and is present as a major protein in human exocrine secretions where it plays a role in the innate immune response. Various antifungal functions of lactoferrin have been reported including a wide spectrum of activity across yeasts and molds and synergy with other antifungal drugs in combination therapy, and various modes of action have been proposed. Bioactive peptides derived from lactoferrin can also exhibit strong antifungal activity, with some surpassing the potency of the whole protein. This paper reviews current knowledge of the spectrum of activity, proposed mechanisms of action, and capacity for synergy of lactoferrin and its peptides, including the three most studied derivatives: lactoferricin, lactoferrampin, and Lf(1–11), as well as some lactoferrin-derived variants and modified peptides. PMID:28149293

  15. Benznidazole and posaconazole in experimental Chagas disease: positive interaction in concomitant and sequential treatments.

    Directory of Open Access Journals (Sweden)

    Lívia de Figueiredo Diniz

    Full Text Available BACKGROUND: Current chemotherapy for Chagas disease is unsatisfactory due to its limited efficacy, particularly in the chronic phase, with frequent side effects that can lead to treatment discontinuation. Combined therapy is envisioned as an ideal approach since it may improve treatment efficacy whilst decreasing toxicity and the likelihood of resistance development. We evaluated the efficacy of posaconazole in combination with benznidazole on Trypanosoma cruzi infection in vivo. METHODS AND FINDINGS: Benznidazole and posaconazole were administered individually or in combination in an experimental acute murine infection model. Using a rapid treatment protocol for 7 days, the combined treatments were more efficacious in reducing parasitemia levels than the drugs given alone, with the effects most evident in combinations of sub-optimal doses of the drugs. Subsequently, the curative action of these drug combinations was investigated, using the same infection model and 25, 50, 75 or 100 mg/kg/day (mpk of benznidazole in combination with 5, 10 or 20 mpk of posaconazole, given alone or concomitantly for 20 days. The effects of the combination treatments on parasitological cures were higher than the sum of such effects when the drugs were administered separately at the same doses, indicating synergistic activity. Finally, sequential therapy experiments were carried out with benznidazole or posaconazole over a short interval (10 days, followed by the second drug administered for the same period of time. It was found that the sequence of benznidazole (100 mpk followed by posaconazole (20 mpk provided cure rates comparable to those obtained with the full (20 days treatments with either drug alone, and no cure was observed for the short treatments with drugs given alone. CONCLUSIONS: Our data demonstrate the importance of investigating the potential beneficial effects of combination treatments with marketed compounds, and showed that combinations of

  16. Lemon grass (Cymbopogon citratus essential oil as a potent anti-inflammatory and antifungal drugs

    Directory of Open Access Journals (Sweden)

    Mohamed Nadjib Boukhatem

    2014-09-01

    Full Text Available Background: Volatile oils obtained from lemon grass [Cymbopogon citratus (DC. Stapf, Poaceae family] are used in traditional medicine as remedies for the treatment of various diseases. Aims: In the present study, lemon grass essential oil (LGEO was evaluated for its in vivo topical and oral anti-inflammatory effects, and for its in vitro antifungal activity using both liquid and vapor phases. Methods: The chemical profile of LGEO as determined by gas chromatography–mass spectrometry analysis revealed two major components: geranial (42.2%, and neral (31.5%. The antifungal activity of LGEO was evaluated against several pathogenic yeasts and filamentous fungi using disc diffusion and vapor diffusion methods. Results: LGEO exhibited promising antifungal effect against Candida albicans, C. tropicalis, and Aspergillus niger, with different inhibition zone diameters (IZDs (35–90 mm. IZD increased with increasing oil volume. Significantly, higher anti-Candida activity was observed in the vapor phase. For the evaluation of the anti-inflammatory effect, LGEO (10 mg/kg, administered orally significantly reduced carrageenan-induced paw edema with a similar effect to that observed for oral diclofenac (50 mg/kg, which was used as the positive control. Oral administration of LGEO showed dose-dependent anti-inflammatory activity. In addition, topical application of LGEO in vivo resulted in a potent anti-inflammatory effect, as demonstrated by using the mouse model of croton oil-induced ear edema. To our knowledge, this is the first such report to be published. The topical application of LGEO at doses of 5 and 10 µL/ear significantly reduced acute ear edema induced by croton oil in 62.5 and 75% of the mice, respectively. In addition, histological analysis clearly confirmed that LGEO inhibits the skin inflammatory response in animal models. Conclusion: Results of the present study indicate that LGEO has a noteworthy potential for the development of drugs for

  17. Triazole derivatives with improved in vitro antifungal activity over azole drugs

    Directory of Open Access Journals (Sweden)

    Yu S

    2014-04-01

    Full Text Available Shichong Yu,1,* Xiaoyun Chai,1,* Yanwei Wang,1 Yongbing Cao,2 Jun Zhang,3 Qiuye Wu,1 Dazhi Zhang,1 Yuanying Jiang,2 Tianhua Yan,4 Qingyan Sun11Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; 2Drug Research Center, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; 3Overseas Education Faculty of the Second Military Medical University, Shanghai, People's Republic of China; 4Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China*These authors contributed equally to this workAbstract: A series of triazole antifungal agents with piperidine side chains was designed and synthesized. The results of antifungal tests against eight human pathogenic fungi in vitro showed that all the compounds exhibited moderate-to-excellent activities. Molecular docking between 8d and the active site of Candida albicans CYP51 was provided based on the computational docking results. The triazole interacts with the iron of the heme group. The difluorophenyl group is located in the S3 subsite and its fluorine atom (2-F can form H-bonds with Gly307. The side chain is oriented into the S4 subsite and formed hydrophobic and van der Waals interactions with the amino residues. Moreover, the phenyl group in the side chain interacts with the phenol group of Phe380 through the formation of π–π face-to-edge interactions.Keywords: synthesis, CYP51, molecular docking, azole agents

  18. Antagonistic changes in sensitivity to antifungal drugs by mutations of an important ABC transporter gene in a fungal pathogen.

    Directory of Open Access Journals (Sweden)

    Wenjun Guan

    Full Text Available Fungal pathogens can be lethal, especially among immunocompromised populations, such as patients with AIDS and recipients of tissue transplantation or chemotherapy. Prolonged usage of antifungal reagents can lead to drug resistance and treatment failure. Understanding mechanisms that underlie drug resistance by pathogenic microorganisms is thus vital for dealing with this emerging issue. In this study, we show that dramatic sequence changes in PDR5, an ABC (ATP-binding cassette efflux transporter protein gene in an opportunistic fungal pathogen, caused the organism to become hypersensitive to azole, a widely used antifungal drug. Surprisingly, the same mutations conferred growth advantages to the organism on polyenes, which are also commonly used antimycotics. Our results indicate that Pdr5p might be important for ergosterol homeostasis. The observed remarkable sequence divergence in the PDR5 gene in yeast strain YJM789 may represent an interesting case of adaptive loss of gene function with significant clinical implications.

  19. Posaconazole-Vincristine Coadministration Triggers Seizure in a Young Female Adult: A Case Report

    Directory of Open Access Journals (Sweden)

    Dalia A. Hamdy

    2012-01-01

    Full Text Available Coadministration of azoles and vincristine has been shown to increase vincristine neurotoxic effects due to the inhibition of cytochrome P450 (CYP isoform 3A4, for which vincristine is a substrate. Despite the absence of any casual relationship between seizure and coadministration of azoles, few case reports of vincristine-induced seizure have been documented after coadministration of fluconazole or posaconazole in children. In this paper we are reporting the first young female adult who experienced generalized seizure after coadministration of posaconazole and vincristine. The 19-year-old female was diagnosed with acute lymphoblastic leukemia. She started induction phase of Berlin Frankfurt Muenster protocol along with posaconazole 200 mg three times daily as prophylactic antifungal therapy. Five days after the third vincristine dose, she developed generalized seizure accompanied by high blood pressure and SIADH. Her neurological exam/CT scan did not show any abnormality. In conclusion, this study reports a novel finding in the sense that all previous case reports pertaining to posaconazole-vincristine-induced seizure in literature involved children. Physicians should be made aware of this rare possible outcome to closely monitor their patients and take appropriate measures to prevent such possible adverse effect.

  20. Antifungal drug susceptibility and phylogenetic diversity among Cryptococcus isolates from dogs and cats in North America.

    Science.gov (United States)

    Singer, Lisa M; Meyer, Wieland; Firacative, Carolina; Thompson, George R; Samitz, Eileen; Sykes, Jane E

    2014-06-01

    Molecular types of the Cryptococcus neoformans/Cryptococcus gattii species complex that infect dogs and cats differ regionally and with host species. Antifungal drug susceptibility can vary with molecular type, but the susceptibility of Cryptococcus isolates from dogs and cats is largely unknown. Cryptococcus isolates from 15 dogs and 27 cats were typed using URA5 restriction fragment length polymorphism analysis (RFLP), PCR fingerprinting, and multilocus sequence typing (MLST). Susceptibility was determined using a microdilution assay (Sensititre YeastOne; Trek Diagnostic Systems). MICs were compared among groups. The 42 isolates studied comprised molecular types VGI (7%), VGIIa (7%), VGIIb (5%), VGIIc (5%), VGIII (38%), VGIV (2%), VNI (33%), and VNII (2%), as determined by URA5 RFLP. The VGIV isolate was more closely related to VGIII according to MLST. All VGIII isolates were from cats. All sequence types identified from veterinary isolates clustered with isolates from humans. VGIII isolates showed considerable genetic diversity compared with other Cryptococcus molecular types and could be divided into two major subgroups. Compared with C. neoformans MICs, C. gattii MICs were lower for flucytosine, and VGIII MICs were lower for flucytosine and itraconazole. For all drugs except itraconazole, C. gattii isolates exhibited a wider range of MICs than C. neoformans. MICs varied with Cryptococcus species and molecular type in dogs and cats, and MICs of VGIII isolates were most variable and may reflect phylogenetic diversity in this group. Because sequence types of dogs and cats reflect those infecting humans, these observations may also have implications for treatment of human cryptococcosis.

  1. Stability-indicating HPLC method for posaconazole bulk assay.

    Science.gov (United States)

    Garcia, Cássia V; Costa, Gislaine R; Mendez, Andreas S L

    2012-01-01

    A stability-indicating liquid chromatographic (LC) method was developed for the determination of posaconazole in bulk. Chromatographic separation was achieved using an isocratic elution in a reversed-phase system, with a mobile phase composed of methanol-water (75:25, v/v), at 1.0 mL min(-1) flow. Samples were exposed to degradation under thermal, oxidative and acid/basic conditions, and no interference in the analysis was observed. System suitability was evaluated and results were satisfactory (N = 4,900.00 tailing factor 1.04; RSD between injections = 0.65). The retention time of posaconazole was about 8.5 min and the method was validated within the concentration range 5-60 μg mL(-1) (r = 0.9996). Adequate results were obtained for repeatability (RSD % = 0.86-1.22), inter-day precision (RSD % = 1.21) and accuracy (98.13% mean recovery). Robustness was also determined to be satisfactory after evaluation. The proposed method was successfully applied to posaconazole bulk quantification, showing the method is useful for determination of the drug in routine analysis.

  2. Cerebral Rhizomucor Infection Treated by Posaconazole Delayed-Release Tablets in an Allogeneic Stem Cell Transplant Recipient

    Directory of Open Access Journals (Sweden)

    Diego O. Andrey

    2017-02-01

    Full Text Available Mucormycosis (zygomycosis is an emerging fungal disease in allogeneic hematopoietic stem cell transplant (allo-HSCT recipients. A 30-year-old woman diagnosed with acute myelomonocytic leukemia and needing allo-HSCT presented pulmonary and cerebral infection due to Rhizomucor pusillus. This fungal infection was treated with surgical treatment and posaconazole delayed-release tablets. This strategy allowed reaching high drug levels that could not be obtained with the posaconazole solution.

  3. An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nicole Robbins

    2015-11-01

    Full Text Available There is an urgent need to identify new treatments for fungal infections. By combining sub-lethal concentrations of the known antifungals fluconazole, caspofungin, amphotericin B, terbinafine, benomyl, and cyprodinil with ∼3,600 compounds in diverse fungal species, we generated a deep reservoir of chemical-chemical interactions termed the Antifungal Combinations Matrix (ACM. Follow-up susceptibility testing against a fluconazole-resistant isolate of C. albicans unveiled ACM combinations capable of potentiating fluconazole in this clinical strain. We used chemical genetics to elucidate the mode of action of the antimycobacterial drug clofazimine, a compound with unreported antifungal activity that synergized with several antifungals. Clofazimine induces a cell membrane stress for which the Pkc1 signaling pathway is required for tolerance. Additional tests against additional fungal pathogens, including Aspergillus fumigatus, highlighted that clofazimine exhibits efficacy as a combination agent against multiple fungi. Thus, the ACM is a rich reservoir of chemical combinations with therapeutic potential against diverse fungal pathogens.

  4. Antifungal drugs as corrosion inhibitors for aluminium in 0.1 M HCl

    Energy Technology Data Exchange (ETDEWEB)

    Obot, I.B. [Department of Chemistry, Faculty of Science, University of Uyo, Uyo (Nigeria)], E-mail: proffoime@yahoo.com; Obi-Egbedi, N.O. [Department of Chemistry, University of Ibadan, Ibadan (Nigeria); Umoren, S.A. [Department of Chemistry, Faculty of Science, University of Uyo, Uyo (Nigeria)

    2009-08-15

    The inhibitive capabilities of Clotrimazole (CTM) and Fluconazole (FLC), two antifungal drugs, on the electrochemical corrosion of aluminium in 0.1 M HCl solution has been studied using weight loss measurements at 30 and 50 deg. C. The results indicate that both compound act as inhibitors in the acidic corrodent. At constant acid concentration, the inhibition efficiency (%I) increased with increase in the concentration of the inhibitors. Increase in temperature increased the corrosion rate in the absence and presence of the inhibitors but decreased the inhibition efficiency. CTM and FLC adsorbed on the surface of aluminium according to the Langmuir adsorption isotherm model at all the concentrations and temperatures studied. Phenomenon of physical adsorption is proposed from the activation parameter obtained. Thermodynamic parameters reveal that the adsorption process is spontaneous. The reactivity of these compounds was analyzed through theoretical calculations based on AM1 semi-empirical method to explain the different efficiencies of these compounds as corrosion inhibitors. CTM was found to be a better inhibitor than FLC.

  5. Impurities contained in antifungal drug ketoconazole are potent activators of human aryl hydrocarbon receptor.

    Science.gov (United States)

    Grycová, Aneta; Dořičáková, Aneta; Dvořák, Zdeněk

    2015-12-03

    Antifungal drug ketoconazole is a mixture of (+)/(-) cis-enantiomers, which also contains several impurities. Ketoconazole was identified as an activator of aryl hydrocarbon receptor AhR by three independent research teams. In the current paper we demonstrate that impurities contained in ketoconazole preparations are strong activators of human AhR and inducers of CYP1A1. Impurity IMP-C had similar potency (EC50), but 10-15 times higher efficacy (magnitude of induction) towards AhR, comparing to (+)-ketoconazole, as revealed by gene reporter assay in AZ-AHR stably transfected cells. Impurities IMP-B and IMP-C, and in lesser extent IMP-E, induced a formation of AhR-DNA complex, as demonstrated by electromobility shift assay EMSA. Impurities IMP-C and IMP-E dose-dependently induced CYP1A1 mRNA after 24 h, and their effects were comparable to those by (+)-ketoconazole. The level of CYP1A1 protein in HepG2 cells was strongly increased by IMP-C after 48h. In conclusion, our data further elucidated molecular effects of ketoconazole towards AhR signaling pathway, with possible implications in ketoconazole role in skin chemoprevention and/or damage, involving AhR.

  6. Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.

    Science.gov (United States)

    Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.

    2013-01-01

    Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

  7. 武汉地区三年来抗真菌药物应用分析%Utilization Analysis of Antifungal Drugs in 3 Consecutive Years in Wuhan

    Institute of Scientific and Technical Information of China (English)

    汪震; 刘东; 杜光

    2011-01-01

    目的:了解抗真菌类药物的临床使用情况及应用趋势.方法:对长江流域药品监测网提供的武汉地区抗真菌类药物的有关数据进行汇总,分析其药品销售金额、用药频度及排序情况.结果:抗真菌类药物的销售金额逐年增长,但以进口药品注射剂的增长为主;其中氟康唑注射液的销售金额最高,而环肽类抗真菌药物的销售金额增长最快.结论:需加强国产抗真菌类药品的研发工作,以提供更有效经济的临床选择;同时,应加强抗真菌药物的利用评价工作,进一步促进药品合理使用.%Objective: To investigate the application trend of antifungal drugs in clinics. Method; The data of antifungal drugs in Wuhan provided by Hospital Purchase of Drug Information System were collected. Then the consumption sum, frequency and order of drug use were analyzed. Result; The expenditure of antifungal drugs increased year by year and the imported injections increased more quickly than the others. The expenditure of fluconazole injections was the highest among' all the antifungal drugs. The consumption sum of echinocandins increased most quickly in antifungal drugs. Conclusion: The research on the domestic antifungal drugs should be strengthened to provide more effective and economical products. And the utilization analysis of antifungal drugs should be emphasized to promote the rational use of the medicines.

  8. Antifungal susceptibility of clinical and environmental isolates of Cryptococcus neoformans to four antifungal drugs determined by two techniques.

    Science.gov (United States)

    Moraes, E M P; Prímola, N S; Hamdan, Júnia Soares

    2003-06-01

    A total of 64 Cryptococcus neoformans strains, including clinical and environmental Brazilian isolates var. neoformans and var. gattii, were tested for susceptibility to amphotericin B, 5-flucytosine, fluconazole and itraconazole. The tests were performed according to the recommendations of National Committee of Clinical Laboratory Standards and the method of macrodilution in liquid medium of Shadomy et al. [Manual de Microbiologia Clínica, 4th ed. Buenos Aires: Editorial Medica Panamericana, 1987: 1229-38]. For most drugs there was a significant difference between the readings taken at 24 and 48 h with both methods. When the minimum inhibitory concentrations obtained by the two techniques were compared, significant differences were observed for amphotericin B and fluconazole. Overall, differences in drug susceptibility with respect to the origin of the isolates or the variety of the fungus were not observed. As an exception, the gattii variety exhibited a high resistance rate to amphotericin B when the technique of Shadomy et al. was applied, a fact possibly related to the greater difficulty for treatment of the disease caused by this fungal variety.

  9. Posaconazole prophylaxis in experimental azole-resistant invasive pulmonary aspergillosis

    NARCIS (Netherlands)

    Seyedmousavi, S.; Mouton, J.W.; Melchers, W.J.G.; Verweij, P.E.

    2015-01-01

    We investigated the efficacy of posaconazole prophylaxis in preventing invasive aspergillosis due to azole-resistant Aspergillus fumigatus isolates. Using a neutropenic murine model of pulmonary infection, posaconazole prophylaxis was evaluated using three isogenic clinical isolates, with posaconazo

  10. Voriconazole is a safe and effective anti-fungal prophylactic agent during induction therapy of acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Akash Shah

    2016-01-01

    Full Text Available Background: Antifungal prophylaxis (AFP reduces the incidence of invasive fungal infections (IFIs during induction therapy of acute myeloid leukemia (AML. Posaconazole is considered the standard of care. Voriconazole, a generic cheaper alternative is a newer generation azole with broad anti-fungal activity. There is limited data on the use of voriconazole as a prophylactic drug. Materials and Methods: A single-center, prospective study was performed during which patients with AML undergoing induction chemotherapy received voriconazole as AFP (April 2012 to February 2014. Outcomes were compared with historical patients who received fluconazole as AFP (January 2011-March 2012, n = 66. Results: Seventy-five patients with AML (median age: 17 years [range: 1-75]; male:female 1.6:1 received voriconazole as AFP. The incidence of proven/probable/possible (ppp IFI was 6.6% (5/75. Voriconazole and fluconazole cohorts were well-matched with respect to baseline characteristics. Voriconazole (when compared to fluconazole reduced the incidence of pppIFI (5/75, 6.6% vs. 19/66, 29%; P < 0.001, need to start therapeutic (empiric + pppIFI antifungals (26/75, 34% vs. 51/66, 48%; P < 0.001 and delayed the start of therapeutic antifungals in those who needed it (day 16 vs. day 10; P < 0.001. Mortality due to IFI was also reduced with the use of voriconazole (1/75, 1.3% vs. 6/66, 9%; P = 0.0507, but this was not significant. Three patients discontinued voriconazole due to side-effects. Conclusion: Voriconazole is an effective and safe oral agent for IFI prophylaxis during induction therapy of AML. Availability of generic equivalents makes this a more economical alternative to posaconazole.

  11. Crystal structures of the fungal pathogen Aspergillus fumigatus protein farnesyltransferase complexed with substrates and inhibitors reveal features for antifungal drug design

    OpenAIRE

    Mabanglo, Mark F.; Hast, Michael A.; Lubock, Nathan B; Hellinga, Homme W.; Beese, Lorena S.

    2014-01-01

    Species of the fungal genus Aspergillus are significant human and agricultural pathogens that are often refractory to existing antifungal treatments. Protein farnesyltransferase (FTase), a critical enzyme in eukaryotes, is an attractive potential target for antifungal drug discovery. We report high-resolution structures of A. fumigatus FTase (AfFTase) in complex with substrates and inhibitors. Comparison of structures with farnesyldiphosphate (FPP) bound in the absence or presence of peptide ...

  12. Drug-Drug Interaction Associated with Mold-Active Triazoles among Hospitalized Patients.

    Science.gov (United States)

    Andes, David; Azie, Nkechi; Yang, Hongbo; Harrington, Rachel; Kelley, Caroline; Tan, Ruo-Ding; Wu, Eric Q; Franks, Billy; Kristy, Rita; Lee, Edward; Khandelwal, Nikhil; Spalding, James

    2016-06-01

    The majority of hospitalized patients receiving mold-active triazoles are at risk of drug-drug interactions (DDIs). Efforts are needed to increase awareness of DDIs that pose a serious risk of adverse events. Triazoles remain the most commonly utilized antifungals. Recent developments have included the mold-active triazoles (MATs) itraconazole, voriconazole, and posaconazole, which are first-line agents for the treatment of filamentous fungal infections but have the potential for DDIs. This objective of this study was to evaluate the prevalence of triazole DDIs. Hospitalized U.S. adults with MAT use were identified in the Cerner HealthFacts database, which contained data from over 150 hospitals (2005 to 2013). The severities of DDIs with MATs were categorized, using drug labels and the drug information from the Drugdex system (Thompson Micromedex), into four groups (contraindicated, major, moderate, and minor severity). DDIs of minor severity were not counted. A DDI event was considered to have occurred if the following two conditions were met: (i) the patient used at least one drug with a classification of at least a moderate interaction with the MAT during the hospitalization and (ii) there was a period of overlap between the administration of the MAT and that of the interacting drug of at least 1 day. A total of 6,962 hospitalizations with MAT use were identified. Among them, 88% of hospitalizations with voriconazole use, 86% of hospitalizations with itraconazole use, and 93% of hospitalizations with posaconazole use included the use of a concomitant interacting drug. A total of 68% of hospitalizations with posaconazole use, 34% of hospitalizations with itraconazole use, and 20% of hospitalizations with voriconazole use included the use of at least one drug with a DDI of contraindicated severity. A total of 83% of hospitalizations with posaconazole use, 61% of hospitalizations with itraconazole use, and 82% of hospitalizations with voriconazole use included the

  13. Posaconazole Therapy of Disseminated Phaeohyphomycosis in a Murine Model

    OpenAIRE

    Graybill, John R.; Najvar, Laura K.; Johnson, Elizabeth; Bocanegra, Rosie; Loebenberg, David

    2004-01-01

    Immunocompetent (nu/+) and athymic (nu/nu) BALB/c mice were infected intravenously with Wangiella dermatitidis and treated with posaconazole. Posaconazole reduced the counts in tissues and prolonged survival. Of particular interest, posaconazole reduced the counts of this neurotropic pathogen in the brain.

  14. Disseminated Fusariosis Occurring in Two Patients Despite Posaconazole Prophylaxis▿

    OpenAIRE

    Bose, Prithviraj; Parekh, Hiral D.; Holter, Jennifer L.; Greenfield, Ronald A.

    2011-01-01

    Posaconazole is widely used for prophylaxis against invasive fungal infections in patients undergoing myeloablative therapy. Disseminated fusariosis is a serious invasive mold infection in such patients. Preclinical and clinical studies indicate activity of posaconazole against Fusarium. We describe two cases of disseminated fusariosis that occurred despite posaconazole prophylaxis.

  15. Treatment cost development of patients undergoing remission induction chemotherapy: a pharmacoeconomic analysis before and after introduction of posaconazole prophylaxis.

    Science.gov (United States)

    Heimann, Sebastian M; Cornely, Oliver A; Vehreschild, Maria J G T; Glossmann, Jan; Kochanek, Matthias; Kreuzer, Karl-Anton; Hallek, Michael; Vehreschild, Jörg J

    2014-02-01

    Prior clinical trials have demonstrated efficacy and effectiveness of posaconazole in the prophylaxis of invasive fungal diseases in high-risk patients. Controversy exists about the cost-effectiveness of this approach. We performed an analysis comparing the direct costs of posaconazole prophylaxis against polyene mouthwash (thrush) prophylaxis in patients with acute myelogenous leukaemia (AML). Data of AML patients receiving remission-induction chemotherapy were extracted from the CoCoNut (Cologne Cohort of Neutropenic Patients) database to compare hospital costs of patients before (2003-2005) and after (2006-2008) introduction of posaconazole prophylaxis. Treatment on general ward, intensive care unit (ICU), mechanical ventilation, diagnostic procedures, and all anti-infectives were calculated. Patient groups were well matched according to age, gender and duration of neutropenia. The mean costs per patient in the posaconazole group (n = 76) and the polyene mouthwash group (n = 81) were €21 040 (95% confidence interval (CI): €18 204-€23 876) and €23 169 (95% CI: €19 402-€26 937) per patient. Antifungal treatment costs were €4580 (95% CI: €3678-€5482) and €4019 (95% CI: €2825-€5214). Duration on the ICU was 2582 (95% CI: 984.1-4181.7) and 5517 (95% CI: 2206-8827.3) min. In our hospital, primary antifungal prophylaxis by posaconazole was cost-effective. There was a trend towards cost savings, which was primarily caused by a shorter overall length of stay and the less frequent ICU treatment.

  16. Failure of posaconazole therapy in a renal transplant patient with invasive aspergillosis due to Aspergillus fumigatus with attenuated susceptibility to posaconazole

    NARCIS (Netherlands)

    Kuipers, S.; Bruggemann, R.J.M.; Sevaux, R.G. de; Heesakkers, J.P.F.A.; Melchers, W.J.G.; Mouton, J.W.; Verweij, P.E.

    2011-01-01

    We report the case of a kidney transplant recipient with invasive aspergillosis due to Aspergillus fumigatus resistant to voriconazole and intermediately susceptible to posaconazole who failed posaconazole therapy. Plasma posaconazole concentrations indicated an unfavorable ratio of the area under t

  17. Posaconazole tablet pharmacokinetics: lack of effect of concomitant medications altering gastric pH and gastric motility in healthy subjects.

    Science.gov (United States)

    Kraft, Walter K; Chang, Peter S; van Iersel, Marlou L P S; Waskin, Hetty; Krishna, Gopal; Kersemaekers, Wendy M

    2014-07-01

    Posaconazole oral suspension is an extended-spectrum triazole that should be taken with food to maximize absorption. A new posaconazole tablet formulation has demonstrated improved bioavailability over the oral suspension in healthy adults in a fasting state. This study evaluated the effects of concomitant medications altering gastric pH (antacid, ranitidine, and esomeprazole) and gastric motility (metoclopramide) on the pharmacokinetics of posaconazole tablets. This was a prospective open-label 5-way crossover study in 20 healthy volunteers. In each treatment period, a single 400-mg dose (4 100-mg tablets) of posaconazole was administered alone or with 20 ml antacid (2 g of aluminum hydroxide and 2 g of magnesium hydroxide), ranitidine (150 mg), esomeprazole (40 mg), or metoclopramide (15 mg). There was a ≥ 10-day washout between treatment periods. Posaconazole exposure, time to maximum concentration of drug in serum (Tmax), and apparent terminal half-life (t1/2) were similar when posaconazole was administered alone or with medications affecting gastric pH and gastric motility. Geometric mean ratios (90% confidence intervals [CIs]) of the area under the concentration-time curve from time zero to infinity (AUC0-inf) (posaconazole with medications affecting gastric pH and gastric motility versus posaconazole alone) were 1.03 (0.88-1.20) with antacid, 0.97 (0.84-1.12) with ranitidine, 1.01 (0.87-1.17) with esomeprazole, and 0.93 (0.79-1.09) with metoclopramide. Geometric mean ratios (90% CIs) of the maximum concentration of drug in serum (Cmax) were 1.06 (0.90-1.26) with antacid, 1.04 (0.88-1.23) with ranitidine, 1.05 (0.89-1.24) with esomeprazole, and 0.86 (0.73-1.02) with metoclopramide. In summary, in healthy volunteers, the pharmacokinetics of a single 400-mg dose of posaconazole tablets was not altered to a clinically meaningful extent when posaconazole was administered alone or with medications affecting gastric pH or gastric motility.

  18. The dual role of Candida glabrata Drug:H+ Antiporter CgAqr1 (ORF CAGL0J09944g in antifungal drug and acetic acid resistance

    Directory of Open Access Journals (Sweden)

    Catarina eCosta

    2013-06-01

    Full Text Available Opportunistic Candida species often have to cope with inhibitory concentrations of acetic acid, in the acidic environment of the vaginal mucosa. Given that the ability of these yeast species to tolerate stress induced by weak acids and antifungal drugs appears to be a key factor in their persistence and virulence, it is crucial to understand the underlying mechanisms.In this study, the Drug:H+ Antiporter CgAqr1 (ORF CAGL0J09944g, from Candida glabrata, was identified as a determinant of resistance to acetic acid, and also to the antifungal agents flucytosine and, less significantly, clotrimazole. These antifungals were found to act synergistically with acetic acid against this pathogen. The action of CgAqr1 in this phenomenon was analyzed. Using a GFP fusion, CgAqr1 was found to localize to the plasma membrane and to membrane vesicles when expressed in C. glabrata or, heterologously, in Saccharomyces cerevisiae. Given its ability to complement the susceptibility phenotype of its S. cerevisiae homolog, ScAqr1, CgAqr1 was proposed to play a similar role in mediating the extrusion of chemical compounds. Significantly, the expression of this gene was found to reduce the intracellular accumulation of 3H-flucytosine and, to a moderate extent, of 3H-clotrimazole, consistent with a direct role in antifungal drug efflux. Interestingly, no effect of CgAQR1 deletion could be found on the intracellular accumulation of 14C-acetic acid, suggesting that its role in acetic acid resistance may be indirect, presumably through the transport of a still unidentified physiological substrate. Although neither of the tested chemicals induces changes in CgAQR1 expression, pre-exposure to flucytosine or clotrimazole was found to make C. glabrata cells more sensitive to acetic acid stress. Results from this study show that CgAqr1 is an antifungal drug resistance determinant and raise the hypothesis that it may play a role in C. glabrata persistent colonization and

  19. The dual role of candida glabrata drug:H+ antiporter CgAqr1 (ORF CAGL0J09944g) in antifungal drug and acetic acid resistance.

    Science.gov (United States)

    Costa, Catarina; Henriques, André; Pires, Carla; Nunes, Joana; Ohno, Michiyo; Chibana, Hiroji; Sá-Correia, Isabel; Teixeira, Miguel C

    2013-01-01

    Opportunistic Candida species often have to cope with inhibitory concentrations of acetic acid, in the acidic environment of the vaginal mucosa. Given that the ability of these yeast species to tolerate stress induced by weak acids and antifungal drugs appears to be a key factor in their persistence and virulence, it is crucial to understand the underlying mechanisms. In this study, the drug:H(+) antiporter CgAqr1 (ORF CAGL0J09944g), from Candida glabrata, was identified as a determinant of resistance to acetic acid, and also to the antifungal agents flucytosine and, less significantly, clotrimazole. These antifungals were found to act synergistically with acetic acid against this pathogen. The action of CgAqr1 in this phenomenon was analyzed. Using a green fluorescent protein fusion, CgAqr1 was found to localize to the plasma membrane and to membrane vesicles when expressed in C. glabrata or, heterologously, in Saccharomyces cerevisiae. Given its ability to complement the susceptibility phenotype of its S. cerevisiae homolog, ScAqr1, CgAqr1 was proposed to play a similar role in mediating the extrusion of chemical compounds. Significantly, the expression of this gene was found to reduce the intracellular accumulation of (3)H-flucytosine and, to a moderate extent, of (3)H-clotrimazole, consistent with a direct role in antifungal drug efflux. Interestingly, no effect of CgAQR1 deletion could be found on the intracellular accumulation of (14)C-acetic acid, suggesting that its role in acetic acid resistance may be indirect, presumably through the transport of a still unidentified physiological substrate. Although neither of the tested chemicals induces changes in CgAQR1 expression, pre-exposure to flucytosine or clotrimazole was found to make C. glabrata cells more sensitive to acetic acid stress. Results from this study show that CgAqr1 is an antifungal drug resistance determinant and raise the hypothesis that it may play a role in C. glabrata persistent colonization

  20. Exploring azole antifungal drug resistance in Aspergillus fumigatus with special reference to resistance mechanisms

    NARCIS (Netherlands)

    Chowdhary, A.; Sharma, C.; Hagen, F.; Meis, J.F.G.M.

    2014-01-01

    Aspergillus fumigatus, a ubiquitously distributed opportunistic pathogen, is the global leading cause of aspergillosis. Azole antifungals play an important role in the management of aspergillosis. However, over a decade, azole resistance in A. fumigatus isolates has been increasingly reported with v

  1. Antifungal susceptibility of invasive yeast isolates in Italy: the GISIA3 study in critically ill patients

    Directory of Open Access Journals (Sweden)

    Mussap Michele

    2011-05-01

    Full Text Available Abstract Background Yeasts are a common cause of invasive fungal infections in critically ill patients. Antifungal susceptibility testing results of clinically significant fungal strains are of interest to physicians, enabling them to adopt appropriate strategies for empiric and prophylactic therapies. We investigated the antifungal susceptibility of yeasts isolated over a 2-year period from hospitalised patients with invasive yeast infections. Methods 638 yeasts were isolated from the blood, central venous catheters and sterile fluids of 578 patients on general and surgical intensive care units and surgical wards. Etest strips and Sensititre panels were used to test the susceptibility of the isolates to amphotericin B, anidulafungin, caspofungin, fluconazole, itraconazole, posaconazole and voriconazole in 13 laboratories centres (LC and two co-ordinating centres (CC. The Clinical and Laboratory Standards Institute (CLSI reference broth microdilution method was used at the CCs for comparison. Results Etest and Sensititre (LC/CC MIC90 values were, respectively: amphotericin B 0.5/0.38, 1/1 mg/L; anidulafungin 2/1.5 and 1/1 mg/L; caspofungin 1/0.75 and 0.5/0.5 mg/L; fluconazole 12/8 and 16/16 mg/L; itraconazole 1/1.5, 0.5/0.5 mg/L; posaconazole 0.5 mg/L and voriconazole 0.25 mg/L for all. The overall MIC90 values were influenced by the reduced susceptibility of Candida parapsilosis isolates to echinocandins and a reduced or lack of susceptibility of Candida glabrata and Candida krusei to azoles, in particular fluconazole and itraconazole. Comparison of the LC and CC results showed good Essential Agreement (90.3% for Etest and 92.9% for Sensititre, and even higher Categorical Agreement (93.9% for Etest and 96% for Sensititre; differences were observed according to the species, method, and antifungal drug. No cross-resistance between echinocandins and triazoles was detected. Conclusions Our data confirm the different antifungal susceptibility

  2. Impact of fluconazole versus posaconazole prophylaxis on the incidence of fungal infections in patients receiving induction chemotherapy for acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Camille Devanlay

    2015-06-01

    Full Text Available Background: Invasive fungal infections (IFIs remain one of the worrying complications in patients with acute myeloid leukemia (AML due to their incidence and high level of attributable mortality. In light of these risks, antifungal prophylaxis has always been debated. We conducted a single-center retrospective study of two prophylactic antifungal agents (fluconazole/posaconazole in 91 consecutive patients receiving induction chemotherapy for AML between 2005 and 2009, in order to evaluate the impact on the incidence of IFI and on the mycological flora of the patients. Methods: In total, 39 patients received prophylactic fluconazole versus 52 who received posaconazole. The baseline characteristics of the two groups were comparable. Results: Overall, 17 patients developed an IFI, with no difference in frequency between the two groups. Utilization of empirical or pre-emptive therapy was similar irrespective of the type of prophylaxis used. Mycological examination of stools revealed an increase in non-albicans Candida colonization in the fluconazole group during hospitalization and the appearance of Saccharomyces cerevisiae colonization in patients receiving posaconazole. Conclusion: The present study does not distinguish between fluconazole and posaconazole as a primary effective prevention against fungal infections. More prospective studies and meta-analyses are warranted.

  3. Evaluation of the efficacy of antifungal drugs against Paracoccidioides brasiliensis and Paracoccidioides lutzii in a Galleria mellonella model.

    Science.gov (United States)

    de Lacorte Singulani, Junya; Scorzoni, Liliana; de Paula E Silva, Ana Carolina Alves; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares

    2016-09-01

    Paracoccidioides brasiliensis and P. lutzii belong to a group of thermodimorphic fungi and cause paracoccidioidomycosis (PCM), which is a human systemic mycosis endemic in South and Central America. Patients with this mycosis are commonly treated with amphotericin B (AmB) and azoles. The study of fungal virulence and the efficacy and toxicity of antifungal drugs has been successfully performed in a Galleria mellonella infection model. In this work, G. mellonella larvae were infected with two Paracoccidioides spp. and the efficacy and toxicity of AmB and itraconazole were evaluated in this model for the first time. AmB and itraconazole treatments were effective in increasing larval survival and reducing the fungal burden. The fungicidal and fungistatic effects of AmB and itraconazole, respectively, were observed in the model. Furthermore, these effects were independent of changes in haemocyte number. G. mellonella can serve as a rapid model for the screening of new antifungal compounds against Paracoccidioides and can contribute to a reduction in experimental animal numbers in the study of PCM.

  4. Antifungal pharmacokinetics and pharmacodynamics.

    Science.gov (United States)

    Lepak, Alexander J; Andes, David R

    2014-11-10

    Successful treatment of infectious diseases requires choice of the most suitable antimicrobial agent, comprising consideration of drug pharmacokinetics (PK), including penetration into infection site, pathogen susceptibility, optimal route of drug administration, drug dose, frequency of administration, duration of therapy, and drug toxicity. Antimicrobial pharmacokinetic/pharmacodynamic (PK/PD) studies consider these variables and have been useful in drug development, optimizing dosing regimens, determining susceptibility breakpoints, and limiting toxicity of antifungal therapy. Here the concepts of antifungal PK/PD studies are reviewed, with emphasis on methodology and application. The initial sections of this review focus on principles and methodology. Then the pharmacodynamics of each major antifungal drug class (polyenes, flucytosine, azoles, and echinocandins) is discussed. Finally, the review discusses novel areas of pharmacodynamic investigation in the study and application of combination therapy.

  5. Posaconazole prophylaxis in experimental azole-resistant invasive pulmonary aspergillosis.

    Science.gov (United States)

    Seyedmousavi, Seyedmojtaba; Mouton, Johan W; Melchers, Willem J G; Verweij, Paul E

    2015-03-01

    We investigated the efficacy of posaconazole prophylaxis in preventing invasive aspergillosis due to azole-resistant Aspergillus fumigatus isolates. Using a neutropenic murine model of pulmonary infection, posaconazole prophylaxis was evaluated using three isogenic clinical isolates, with posaconazole MICs of 0.063 mg/liter (wild type), 0.5 mg/liter (F219I mutation), and 16 mg/liter. A fourth isolate harboring TR34/L98H (MIC of 0.5 mg/liter) was also tested. Posaconazole prophylaxis was effective in A. fumigatus with posaconazole MICs of ≤0.5 mg/liter, where 100% survival was reached. However, breakthrough infection was observed in mice infected with the isolate for which the posaconazole MIC was >16 mg/liter.

  6. Synergy testing of FDA-approved drugs identifies potent drug combinations against Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Joseph D Planer

    2014-07-01

    Full Text Available An estimated 8 million persons, mainly in Latin America, are infected with Trypanosoma cruzi, the etiologic agent of Chagas disease. Existing antiparasitic drugs for Chagas disease have significant toxicities and suboptimal effectiveness, hence new therapeutic strategies need to be devised to address this neglected tropical disease. Due to the high research and development costs of bringing new chemical entities to the clinic, we and others have investigated the strategy of repurposing existing drugs for Chagas disease. Screens of FDA-approved drugs (described in this paper have revealed a variety of chemical classes that have growth inhibitory activity against mammalian stage Trypanosoma cruzi parasites. Aside from azole antifungal drugs that have low or sub-nanomolar activity, most of the active compounds revealed in these screens have effective concentrations causing 50% inhibition (EC50's in the low micromolar or high nanomolar range. For example, we have identified an antihistamine (clemastine, EC50 of 0.4 µM, a selective serotonin reuptake inhibitor (fluoxetine, EC50 of 4.4 µM, and an antifolate drug (pyrimethamine, EC50 of 3.8 µM and others. When tested alone in the murine model of Trypanosoma cruzi infection, most compounds had insufficient efficacy to lower parasitemia thus we investigated using combinations of compounds for additive or synergistic activity. Twenty-four active compounds were screened in vitro in all possible combinations. Follow up isobologram studies showed at least 8 drug pairs to have synergistic activity on T. cruzi growth. The combination of the calcium channel blocker, amlodipine, plus the antifungal drug, posaconazole, was found to be more effective at lowering parasitemia in mice than either drug alone, as was the combination of clemastine and posaconazole. Using combinations of FDA-approved drugs is a promising strategy for developing new treatments for Chagas disease.

  7. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs.

    Directory of Open Access Journals (Sweden)

    Yong-Qiang Zhang

    Full Text Available Ergosterol is an important constituent of fungal membranes. Azoles inhibit ergosterol biosynthesis, although the cellular basis for their antifungal activity is not understood. We used multiple approaches to demonstrate a critical requirement for ergosterol in vacuolar H(+-ATPase function, which is known to be essential for fungal virulence. Ergosterol biosynthesis mutants of S. cerevisiae failed to acidify the vacuole and exhibited multiple vma(- phenotypes. Extraction of ergosterol from vacuolar membranes also inactivated V-ATPase without disrupting membrane association of its subdomains. In both S. cerevisiae and the fungal pathogen C. albicans, fluconazole impaired vacuolar acidification, whereas concomitant ergosterol feeding restored V-ATPase function and cell growth. Furthermore, fluconazole exacerbated cytosolic Ca(2+ and H(+ surges triggered by the antimicrobial agent amiodarone, and impaired Ca(2+ sequestration in purified vacuolar vesicles. These findings provide a mechanistic basis for the synergy between azoles and amiodarone observed in vitro. Moreover, we show the clinical potential of this synergy in treatment of systemic fungal infections using a murine model of Candidiasis. In summary, we demonstrate a new regulatory component in fungal V-ATPase function, a novel role for ergosterol in vacuolar ion homeostasis, a plausible cellular mechanism for azole toxicity in fungi, and preliminary in vivo evidence for synergism between two antifungal agents. New insights into the cellular basis of azole toxicity in fungi may broaden therapeutic regimens for patient populations afflicted with systemic fungal infections.

  8. In vitro susceptibility of antifungal drugs against Sporothrix brasiliensis recovered from cats with sporotrichosis in Brazil.

    Science.gov (United States)

    Brilhante, Raimunda Sâmia Nogueira; Rodrigues, Anderson Messias; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha; Pereira, Sandro Antonio; Gremião, Isabella Dib Ferreira; Schubach, Tânia Maria Pacheco; de Camargo, Zoilo Pires

    2016-03-01

    Sporotrichosis is an important subcutaneous mycosis of humans and animals. Classically, the disease is acquired upon traumatic inoculation of Sporothrix propagules from contaminated soil and plant debris. In addition, the direct horizontal transmission of Sporothrix among animals and the resulting zoonotic infection in humans highlight an alternative and efficient rout of transmission through biting and scratching. Sporothrix brasiliensis is the most virulent species of the Sporothrix schenckii complex and is responsible for the long-lasting outbreak of feline sporotrichosis in Brazil. However, antifungal susceptibility data of animal-borne isolates is scarce. Therefore, this study evaluated the in vitro activity of amphotericin B, caspofungin, itraconazole, voriconazole, fluconazole, and ketoconazole against animal-borne isolates of S. brasiliensis. The susceptibility tests were performed through broth microdilution (M38-A2). The results show the relevant activity of itraconazole, amphotericin B, and ketoconazole against S. brasiliensis, with the following MIC ranges: 0.125-2, 0.125-4 and 0.0312-2 μg/ml, respectively. Caspofungin was moderately effective, displaying higher variation in MIC values (0.25-64 μg/ml). Voriconazole (2-64 μg/ml) and fluconazole (62.5-500 μg/ml) showed low activity against S. brasiliensis strains. This study contributed to the characterization of the in vitro antifungal susceptibility of strains of S. brasiliensis recovered from cats with sporotrichosis, which have recently been considered the main source of human infections.

  9. Comparison of the In Vitro Activities of Newer Triazoles and Established Antifungal Agents against Trichophyton rubrum

    NARCIS (Netherlands)

    Deng, S.; Zhang, C.; Seyedmousavi, S.; Zhu, S.; Tan, X.; Wen, Y.; Huang, X.; Lei, W.; Zhou, Z.; Fang, W.; Shen, S.; Deng, D.; Pan, W.; Liao, W.

    2015-01-01

    One hundred eleven clinical Trichophyton rubrum isolates were tested against 7 antifungal agents. The geometric mean MICs of all isolates were, in increasing order: terbinafine, 0.03 mg/liter; voriconazole, 0.05 mg/liter; posaconazole, 0.11 mg/liter; isavuconazole, 0.13 mg/liter; itraconazole, 0.26

  10. Ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet for determination of three antifungal drugs in water and biological samples.

    Science.gov (United States)

    Ezoddin, Maryam; Shojaie, Mehran; Abdi, Khosrou; Karimi, Mohammad Ali

    2017-03-01

    A novel ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet (UAAD-LLM-SFO) followed by HPLC-UV detection was developed for the analysis of three antifungal drugs in water and biological samples. In this method, 1-dodecanol was used as the extraction solvent. The emulsion was rapidly formed by pulling in and pushing out the mixture of sample solution and extraction solvent for 5 times repeatedly using a 10-mL glass syringe while sonication was performed. Therefore, an organic dispersive solvent required in common microextraction methods was not used in the proposed method. After dispersing, an aliquot of acetonitrile was introduced as a demulsifier solvent into the sample solution to separate two phases. Therefore, some additional steps, such as the centrifugation, ultrasonication, or agitation of the sample solution, are not needed. Parameters influencing the extraction recovery were investigated. The proposed method showed a good linearity for the three antifungal drugs studied with the correlation coefficients (R (2) > 0.9995). The limits of detection (LODs) and the limits of the quantification (LOQs) were between 0.01-0.03 μg L(-1) and 0.03-0.08 μg L(-1), respectively. The preconcentration factors (PFs) were in the range of 107-116, respectively. The precisions, as the relative standard deviations (RSDs) (n = 5), for inter-day and intra-day analysis were in the range of 2.1-4.5% and 6.5-8.5%, respectively. This method was successfully applied to determine the three antifungal drugs in tap water and biological samples. The recoveries of antifungal drugs in these samples were 92.4-98.5%. Graphical abstract Ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet for the analysis of three antifungal drugs prior HPLC-UV.

  11. Posaconazole Prophylaxis in Experimental Azole-Resistant Invasive Pulmonary Aspergillosis

    OpenAIRE

    Seyedmousavi, Seyedmojtaba; Mouton, Johan W.; Melchers, Willem J. G.; Verweij, Paul E.

    2014-01-01

    We investigated the efficacy of posaconazole prophylaxis in preventing invasive aspergillosis due to azole-resistant Aspergillus fumigatus isolates. Using a neutropenic murine model of pulmonary infection, posaconazole prophylaxis was evaluated using three isogenic clinical isolates, with posaconazole MICs of 0.063 mg/liter (wild type), 0.5 mg/liter (F219I mutation), and 16 mg/liter. A fourth isolate harboring TR34/L98H (MIC of 0.5 mg/liter) was also tested. Posaconazole prophylaxis was effec...

  12. Candida albicans autophagy, no longer a bystander: Its role in tolerance to ER stress-related antifungal drugs.

    Science.gov (United States)

    Yu, Qilin; Jia, Chang; Dong, Yijie; Zhang, Bing; Xiao, Chenpeng; Chen, Yulu; Wang, Yuzhou; Li, Xiaoling; Wang, Lei; Zhang, Biao; Li, Mingchun

    2015-08-01

    Autophagy is a degradation process involved in pathogenicity of many pathogenic fungi. However, its roles in Candida albicans, the leading fungal pathogen in human beings, remain to be detailed. Most recently, we found that endoplasmic reticulum (ER) stress-inducing conditions led to transcriptional up-regulation of C. albicans autophagy-related (ATG) genes, implying a possible link between autophagy and ER stress response in this pathogen. Using a series of C. albicans ATG mutants and autophagy reporting systems, we found that both treatment of ER stress-related drugs and loss of the ER calcium pump Spf1 promoted autophagic flux of Atg8 and Lap41 (a homologue of Saccharomyces cerevisiae Ape1), indicating that these conditions induce autophagy. Moreover, deletion of ATG genes in the spf1Δ/Δ mutant rendered cells hypersensitive to these drugs and caused activation of UPR, revealing a role of autophagy in alleviating ER stress. In addition, only treatment of tunicamycin and loss of Spf1 in combination increased autophagic flux of the ER component Sec63, suggesting that most of the ER stress-related conditions cause non-selective autophagy rather than selective ER phagy. This study uncovers the important role of C. albicans autophagy in ER stress response and tolerance to antifungal drugs.

  13. Time to overcome fluconazole resistant Candida isolates: Solid lipid nanoparticles as a novel antifungal drug delivery system.

    Science.gov (United States)

    Moazeni, Maryam; Kelidari, Hamid Reza; Saeedi, Majid; Morteza-Semnani, Ketayoun; Nabili, Mojtaba; Gohar, Atefeh Abdollahi; Akbari, Jafar; Lotfali, Ensieh; Nokhodchi, Ali

    2016-06-01

    Antifungal therapy results in complications in management due to changes in the patterns of epidemiology and drug susceptibility of invasive fungal infections. In this study, we prepared fluconazole-loaded solid lipid nanoparticles (FLZ-SLNs) and investigated the efficacy of the optimal formulation on fluconazole (FLZ)-resistant strains of several Candida species. FLZ-SLN was produced using probe ultrasonication techniques. The morphology of the obtained SLNs was characterized by field emission scanning electron microscopy. The minimum inhibitory concentrations for the new formulations against fluconazole-resistant strains of Candida were investigated using CLSI document M27-A3. The FLZ-SLNs presented a spherical shape with a mean diameter, zeta potential and entrapment efficiency of 84.8nm, -25mV and 89.6%, respectively. The drug release from FLZ-SLNs exhibited burst release behaviour at the initial stage (the first 30min) followed by a sustained release over 24h FLZ-resistant yeast strains behaved as susceptible strains after treatment with FLZ-SLNs (≤8μg/ml). The MIC50 drug concentrations were 2μg/ml, 1μg/ml and 2μg/ml for FLZ-resistant strains of Candida albicans, Candida parapsilosis and Candida glabrata, respectively. In this study, we evaluated novel delivery systems for combating Candida strains that exhibit low susceptibility against the conventional formulation of FLZ as a first-line treatment.

  14. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers: II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations

    Science.gov (United States)

    Das, Surajit; Kiong Ng, Wai; Tan, Reginald B. H.

    2014-03-01

    This study focused on: (i) feasibility of the previously developed sucrose ester stabilized SLNs and NLCs to encapsulate different imidazole antifungal drugs and (ii) preparation and evaluation of topical gel formulations of those SLNs and NLCs. Three imidazole antifungal drugs; clotrimazole, ketoconazole and climbazole were selected for this study. The results suggested that size, size distribution and drug encapsulation efficiency depend on the drug molecule and type of nanoparticles (SLN/NLC). The drug release experiment always showed faster drug release from NLCs than SLNs when the same drug molecule was loaded in both nanoparticles. However, drug release rate from both SLNs and NLCs followed the order of climbazole > ketoconazole > clotrimazole. NLCs demonstrated better physicochemical stability than SLNs in the case of all drugs. The drug release rate from ketoconazole- and clotrimazole-loaded SLNs became faster after three months than a fresh formulation. There was no significant change in drug release rate from climbazole-loaded SLNs and all drug-loaded NLCs. Gel formulations of SLNs and NLCs were prepared using polycarbophil polymer. Continuous flow measurements demonstrated non-Newtonian flow with shear-thinning behavior and thixotropy. Oscillation measurements depicted viscoelasticity of the gel formulations. Similar to nanoparticle dispersion, drug release rate from SLN- and NLC-gel was in the order of climbazole > ketoconazole > clotrimazole. However, significantly slower drug release was noticed from all gel formulations than their nanoparticle counterparts. Unlike nanoparticle dispersions, no significant difference in drug release from gel formulations containing SLNs and NLCs was observed for each drug. This study concludes that gel formulation of imidazole drug-loaded SLNs and NLCs can be used for sustained/prolonged topical delivery of the drugs.

  15. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers. II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations.

    Science.gov (United States)

    Das, Surajit; Ng, Wai Kiong; Tan, Reginald B H

    2014-03-14

    This study focused on: (i) feasibility of the previously developed sucrose ester stabilized SLNs and NLCs to encapsulate different imidazole antifungal drugs and (ii) preparation and evaluation of topical gel formulations of those SLNs and NLCs. Three imidazole antifungal drugs; clotrimazole, ketoconazole and climbazole were selected for this study. The results suggested that size, size distribution and drug encapsulation efficiency depend on the drug molecule and type of nanoparticles (SLN/NLC). The drug release experiment always showed faster drug release from NLCs than SLNs when the same drug molecule was loaded in both nanoparticles. However, drug release rate from both SLNs and NLCs followed the order of climbazole > ketoconazole > clotrimazole. NLCs demonstrated better physicochemical stability than SLNs in the case of all drugs. The drug release rate from ketoconazole- and clotrimazole-loaded SLNs became faster after three months than a fresh formulation. There was no significant change in drug release rate from climbazole-loaded SLNs and all drug-loaded NLCs. Gel formulations of SLNs and NLCs were prepared using polycarbophil polymer. Continuous flow measurements demonstrated non-Newtonian flow with shear-thinning behavior and thixotropy. Oscillation measurements depicted viscoelasticity of the gel formulations. Similar to nanoparticle dispersion, drug release rate from SLN- and NLC-gel was in the order of climbazole > ketoconazole > clotrimazole. However, significantly slower drug release was noticed from all gel formulations than their nanoparticle counterparts. Unlike nanoparticle dispersions, no significant difference in drug release from gel formulations containing SLNs and NLCs was observed for each drug. This study concludes that gel formulation of imidazole drug-loaded SLNs and NLCs can be used for sustained/prolonged topical delivery of the drugs.

  16. Poor compliance with antifungal drug use guidelines by transplant physicians: a framework for educational guidelines and an international consensus on patient safety.

    Science.gov (United States)

    Muñoz, Patricia; Rojas, Loreto; Cervera, Carlos; Garrido, Gregorio; Fariñas, Maria Carmen; Valerio, Maricela; Giannella, Maddalena; Bouza, Emilio

    2012-01-01

    The rate of compliance with antifungal drug use guidelines by transplant physicians is mostly unknown. We performed a nationwide electronic survey to assess antifungal use by different types of transplant physicians. Sixty-one percent (53/87) of the transplant programs responded (accounting for 85% of heart transplant procedures, 65% of kidney transplantations, and 71.5% of liver transplantations). Antifungal prophylaxis was used in 41.5% programs (liver 93.3%, heart 30.8%, and kidney 16%). Prophylaxis was universal in 32% of the programs and targeted only to selected patients in 68%, mainly indicated after re-transplantation (73.3%), re-intervention (66.7%) and hemodialysis (60%). Main drugs for universal prophylaxis were fluconazole and itraconazole (42.9% each), while fluconazole (60%), L-amphotericin B (AMB), and caspofungin (13.4% each) were preferred for targeted prophylaxis. Overall, 84.9% of the programs used galactomannan for the diagnosis of invasive aspergillosis (only 34% in BAL) and 66.6% used voriconazole as first-line monotherapy. Combination first-line therapy for invasive aspergillosis was used by 31.3%, mainly with voriconazole with caspofungin (40%) or anidulafungin (26.7%) or L-AMB-caspofungin (26.7%). Adherence of transplant physicians to current recommendations on antifungal treatment and prophylaxis is poor. An international consensus that responds to differences in patients and centers and emphasizes patient safety is clearly needed.

  17. Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modelling studies in drug design.

    Science.gov (United States)

    Wojciechowski, Marek; Milewski, Sławomir; Mazerski, Jan; Borowski, Edward

    2005-01-01

    Fungal infections are a growing problem in contemporary medicine, yet only a few antifungal agents are used in clinical practice. In our laboratory we proposed the enzyme L-glutamine: D-fructose-6-phosphate amidotransferase (EC 2.6.1.16) as a new target for antifungals. The structure of this enzyme consists of two domains, N-terminal and C-terminal ones, catalysing glutamine hydrolysis and sugar-phosphate isomerisation, respectively. In our laboratory a series of potent selective inhibitors of GlcN-6-P synthase have been designed and synthesised. One group of these compounds, including the most studied N3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid (FMDP), behave like glutamine analogs acting as active-site-directed inactivators, blocking the N-terminal, glutamine-binding domain of the enzyme. The second group of GlcN-6-P synthase inhibitors mimic the transition state of the reaction taking place in the C-terminal sugar isomerising domain. Surprisingly, in spite of the fact that glutamine is the source of nitrogen for a number of enzymes it turned out that the glutamine analogue FMDP and its derivatives are selective against GlcN-6-P synthase and they do not block other enzymes, even belonging to the same family of glutamine amidotransferases. Our molecular modelling studies of this phenomenon revealed that even within the family of related enzymes substantial differences may exist in the geometry of the active site. In the case of the glutamine amidotransferase family the glutamine binding site of GlcN-6-P synthase fits a different region of the glutamine conformational space than other amidotransferases. Detailed analysis of the interaction pattern for the best known, so far, inhibitor of the sugar isomerising domain, namely 2-amino-2-deoxy-D-glucitol-6-phosphate (ADGP), allowed us to suggest changes in the structure of the inhibitor that should improve the interaction pattern. The novel ligand was designed and synthesised. Biological experiments confirmed

  18. 抗真菌药肝毒性的文献计量学分析%Bibliometric analysis on hepatotoxicity due to antifungal drugs

    Institute of Scientific and Technical Information of China (English)

    白艳; 李悦; 刘斌; 王昆; 梅和坤; 张颖; 王瑾; 王睿

    2014-01-01

    目的了解抗真菌药肝毒性的研究情况及其临床特征,为安全使用抗真菌药提供参考。方法以“antifungal drugs”和“hepatotoxicity”“、抗真菌药”和“肝毒性”为检索词,检索PubMed、Embase、Web of Science、中国知网中国期刊全文数据库和中国生物医学文献数据库收录的抗真菌药肝毒性文献,用Excel表对最终纳入的文献建立评价数据库,录入文献的发表年代、发文量排序前5位的国家及研究机构、文献类型、载文量前5位的期刊、被引频次前10位的文献等。分析有关文献的研究内容和热点,总结抗真菌药肝毒性的临床表现、发生机制及预防措施。结果共纳入文献221篇,其中英文文献193篇,中文文献28篇;论著116篇,综述49篇,病例报告56篇。首次发表抗真菌药肝毒性文献的时间是1976年,载文量最高的期刊是Mycoses,单篇文章的最高被引频次为531次。抗真菌药致肝损伤的临床表现为乏力、右上腹疼痛、腹泻、黄疸、胆汁淤积和发热等,严重者可致肝衰竭。实验室检查可见血清转氨酶、胆红素、碱性磷酸酶升高。唑类抗真菌药致肝损伤发生率较高,两性霉素B致肝损伤发生率较低。肝功能不全者应慎用抗真菌药。长期应用抗真菌药者应注意定期监测肝功能,出现肝损伤后立即停药并采取对症与保肝治疗,部分患者的肝功能可恢复至用药前水平。抗真菌药肝毒性的机制尚不完全清楚,可能与细胞质膜结构完整性受损或抑制细胞色素P4502D6酶代谢有关。结论国内对抗真菌药肝毒性的研究逊于国外;部分抗真菌药所致肝毒性呈可逆性。%Objective To investigate the research progress of hepatotoxicity due to antifungal drugs, in order to provide a reference for clinical safety use of antifungal drugs. Methods "Antifungal drugs" and"hepatotoxicity" were selected as the keywords

  19. Comparative study on the effects of two antifungal drugs against Candida albicans by microcalorimetry and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qing-Lian [Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Zhang, Juan [Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Department of Stomatology, Hubei Provincial Maternal and Child Health Hospital, Wuhan 430070 (China); Xu, Zi-Qiang; Li, Ran [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Jiang, Feng-Lei, E-mail: fljiang@whu.edu.cn [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Xiao, Qi, E-mail: qi.xiao@whu.edu.cn [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Liu, Yi [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer Microcalorimetry is a fast, simple method to study the antibiotic property of drugs. Black-Right-Pointing-Pointer We noticed that the antibiotic effect of ITZ was slightly better than that of KTZ. Black-Right-Pointing-Pointer We perform the TEM to study the morphology changes of C. albicans cells. - Abstract: In this work, a multi-channel thermal activity monitor (TAM 2277) was applied to study the growth metabolism of Candida albicans (C. albicans) in vitro in the absence and presence of different concentrations of ketoconazole (KTZ) and itraconazole (ITZ). The results showed that the half inhibiting concentrations (IC{sub 50}) of C. albicans by KTZ and ITZ are 73.5 and 66.3 {mu}mol L{sup -1}, respectively. So the antibiotic effect of ITZ was slightly better than that of KTZ. The morphology of C. albicans cells both in the absence and presence of antifungal agents was examined by transmission electron microscopy (TEM). Our research also suggests that microcalorimetry is a fast, simple, non-invasive, non-destructive and more sensitive method, and can be easily performed to study the antibiotic property of different species of drugs on microorganism compared to other biological and clinical methods.

  20. 含有额外拷贝黄曲霉cyp51同源基因的烟曲霉对抗真菌药物的敏感性测定%Antifungal susceptibility of the A.fumigatus transformants containing extra copies of A.flavus cyp51 gene homologues to the common antifungal drugs

    Institute of Scientific and Technical Information of China (English)

    刘伟霞; 孙毅; 万喆; 李若瑜; 刘伟

    2011-01-01

    Objective To investigate the effect of Aspergillus flavus cyp51 genes on antifungal susceptibility by cloning and constucting the extra copies of Aspergillus flavus cyp51 genes. Methods A.flavus cyp5l gene homologues were identified by tblastn searches inA. flavus genome database. PCR fragments composed of the 5'flanking sequence (approximately 1 000 bp) ofcyp51 ,cyp51 ORF, and its 3'flanking sequence (approximately 1 000 bp), were subcloned into shuttle plasmid pRG3-AMAl-NotI to produce recombinant plasmids. These plasmids and empty plasmid pRG3-AMA1-Notl were transformed into A.fumigatus strain AF293.1 (pyrG-) respectively to produce transformants. The Clinical Laboratory Standard Institute broth microdilution method M38-A2 and E-test method were used to assay the minimal inhibitory concentrations (MICs) of itraconazole ( ITC), voriconazole ( VRC), amphotericin B (AMB), and posaconazole (POS), or minimal effect concentration (MEC) of caspofungin (CAS), against these transformants. Results A. flavus genome contains three cyp51 gene homologues, cyp51A ,cyp51B and cyp51 C, of which the ORF size are 1 400-2 000 bp. When these genes were subcloned into shuttle plasmid pRG3-AMA1-NotI, we get plasmids pRG3-AMA1-CYP51 A, pRG3-AMA1-CYP51B and pRG3-AMA1-CYP51C. These plasmids and empty plasmid were transformed into A.fumigatus strain AF293.1 (pyrG-) to produce transformants rCYP51A, rCYP51B, rCYP51C and rpRG. The antifungal susceptibility of these A.fumigatus transformants to the antifungal drugs by broth microdilution assaying and E-test method showed that, rCYP51A and rCYP51B were cross-resistant to VRC and ITC, susceptible to both AM B and CAS; rCYP51C and rpRG were intermediate to ITC and VRC, susceptible to both A MB and CAS. Conclusion In A. fumigatus , extra copies of A.flavus ' cyp51A gene or cyp51B gene have effect on antifungal susceptibility to azoles, have no effect on AMB and CAS. Extra copy ofcyp51C has no obvious effect on all the tested drugs.%目的

  1. Evaluation of chitosan based vaginal bioadhesive gel formulations for antifungal drugs

    Directory of Open Access Journals (Sweden)

    Şenyiğit Zeynep Ay

    2014-06-01

    Full Text Available The aim of the present study was to evaluate chitosan as a vaginal mucoadhesive gel base for econazole nitrate and miconazole nitrate. To this aim, different types of chitosan with different molecular masses and viscosity properties [low molecular mass chitosan (viscosity: 20,000 mPa s, medium molecular mass chitosan (viscosity: 200,000 mPa s, high molecular mass chitosan (viscosity: 800,000 mPa s] have been used. First, rheological studies were conducted on chitosan gels. Mechanical, syringeability and mucoadhesive properties of chitosan gels were determined. Release profiles of econazole nitrate and miconazole nitrate from chitosan gels were obtained and evaluated kinetically. In addition, anticandidal activities of formulations were determined. Finally, vaginal retention of chitosan gels in rats was evaluated by in vivo distribution studies. Based on the results, it can be concluded that gels prepared with medium molecular mass chitosan might be effectively used for different antifungal agents in the treatment of vaginal candidiosis, since it has high mucoadhesiveness, suitable mechanical and release properties with good vaginal retention

  2. Yeasts acquire resistance secondary to antifungal drug treatment by adaptive mutagenesis.

    Directory of Open Access Journals (Sweden)

    David Quinto-Alemany

    Full Text Available Acquisition of resistance secondary to treatment both by microorganisms and by tumor cells is a major public health concern. Several species of bacteria acquire resistance to various antibiotics through stress-induced responses that have an adaptive mutagenesis effect. So far, adaptive mutagenesis in yeast has only been described when the stress is nutrient deprivation. Here, we hypothesized that adaptive mutagenesis in yeast (Saccharomyces cerevisiae and Candida albicans as model organisms would also take place in response to antifungal agents (5-fluorocytosine or flucytosine, 5-FC, and caspofungin, CSP, giving rise to resistance secondary to treatment with these agents. We have developed a clinically relevant model where both yeasts acquire resistance when exposed to these agents. Stressful lifestyle associated mutation (SLAM experiments show that the adaptive mutation frequencies are 20 (S. cerevisiae -5-FC, 600 (C. albicans -5-FC or 1000 (S. cerevisiae--CSP fold higher than the spontaneous mutation frequency, the experimental data for C. albicans -5-FC being in agreement with the clinical data of acquisition of resistance secondary to treatment. The spectrum of mutations in the S. cerevisiae -5-FC model differs between spontaneous and acquired, indicating that the molecular mechanisms that generate them are different. Remarkably, in the acquired mutations, an ectopic intrachromosomal recombination with an 87% homologous gene takes place with a high frequency. In conclusion, we present here a clinically relevant adaptive mutation model that fulfils the conditions reported previously.

  3. Determination of antifungal susceptibility patterns among the environmental isolates of Aspergillus fumigatus in Iran

    Science.gov (United States)

    Mohammadi, Faezeh; Dehghan, Parvin; Nekoeian, Shahram; Hashemi, Seyed Jamal

    2016-01-01

    Background: In recent years, triazole-resistant environmental isolates of Aspergillus fumigatus have emerged in Europe and Asia. Azole resistance has been reported in patients who are treated with long-term azole therapy or exposure of the fungus spores to the azole fungicides used in agriculture. To date, a wide range of mutations in A. fumigatus have been described conferring azole-resistance, which commonly involves modifications in the cyp51A gene. We investigated antifungal susceptibility pattern of environmental isolates of A. fumigatus. Materials and Methods: In this study, 170 environmental samples collected from indoors surfaces of three hospitals in Iran. It was used β-tubulin gene to confirm the all of A. fumigatus isolates, which was identified by conventional methods. Furthermore, the antifungal susceptibility of itraconazole, voriconazole, and posaconazole was investigated using broth microdilution test, according to European Committee on Antimicrobial Susceptibility testing reference method. Results: From a total of 158 environmental molds fungi obtained from the hospitals, 58 isolates were identified as A. fumigatus by amplification of expected size of β-tubulin gene (~500 bp). In this study, in vitro antifungal susceptibility testing has shown that there were not high minimum inhibitory concentration values of triazole antifungals in all of the 58 environmental isolates of A. fumigatus. Conclusion: Our findings demonstrated that there was not azole-resistant among environmental isolates of A. fumigatus. Medical triazoles compounds have structural similarity with triazole fungicide compounds in agriculture, therefore, resistance development through exposure to triazole fungicide compounds in the environment is important but it sounds there is not a serious health problem in drug resistance in environmental isolates in Iran. PMID:27656605

  4. [Evaluation of a new method for antifungal drugs susceptibility testing to yeasts].

    Science.gov (United States)

    Ishigaki, S; Kawakami, S; Ono, Y; Miyazawa, Y

    2000-03-01

    We compared the Etest with a broth microdilution method (FP panel), performed according to the National Committee for modified Clinical Laboratory Standards (NCCLS) document M27-P guidelines, for determining the MICs of 81 clinical isolates of yeasts (7 Candida albicans, 8 Candida glabrata, 10 Candida parapsilosis, 6 Pichia anomala, 10 Candida tropicalis, 4 Candida guilliermondii, 4 Candida krusei, 6 Trichosporon cutaneum, 5 Candida ciferrii, 3 Candida famata, 4 Candida norvegensis, 2 Rhodotorula rubra, 3 Candida lusitaniae, 2 Candida curvata, 1 Candida inconspicua, 1 Candida intermedia, 1 Candida colliculosa, 1 Cryptococcus spp, 1 Tricosporon capitatum, 1 Pichia ohmeri, 1 Saccharomyces cerevisiae). The Etest results for 6 ATCC standard strains correlated well with reference MICs except those of flucytosine (5-FC) for C. krusei, which tended to be 1 to 2 log2 dilution higher than the MIC range determined by NCCLS guidelines. However, the best agreement between the results for clinical isolates was seen with 5-FC (100% agreement [Within +/- 2 log2 dilutions] between the results of the two methods). There was a 91.4% agreement between the results of the two methods with amphotericin B (Etest MICs tended to be 1 to 2 log2 dilution lower than those of the FP panel). The Etest results with litraconazole for clinical isolates except C. tropicalis were similar to MICs of the FP panel (Etest for C. tropicalis showed 1 to 2 log2 dilution lower than FP panel). Also, the Etest results with fluconazole for clinical isolates except C. tropicalis were similar of 1 log2 dilution higher than MICs of the FP panel (Etest for C. tropicalis showed more than 2 log2 dilution lower than FP panel). These results showed a good level of overall agreement between the Etest method and the broth microdilution test (FP panel). Since the Etest is a less laborintensive and much simpler method, it appears to be a useful procedure for testing the susceptibility of yeasts to antifungal agents.

  5. First description of Candida nivariensis in Brazil: antifungal susceptibility profile and potential virulence attributes

    Science.gov (United States)

    Figueiredo-Carvalho, Maria Helena Galdino; Ramos, Livia de Souza; Barbedo, Leonardo Silva; Chaves, Alessandra Leal da Silva; Muramoto, Ilda Akemi; dos Santos, André Luis Souza; Almeida-Paes, Rodrigo; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    This study evaluated the antifungal susceptibility profile and the production of potential virulence attributes in a clinical strain of Candida nivariensis for the first time in Brazil, as identified by sequencing the internal transcribed spacer (ITS)1-5.8S-ITS2 region and D1/D2 domains of the 28S of the rDNA. For comparative purposes, tests were also performed with reference strains. All strains presented low planktonic minimal inhibitory concentrations (PMICs) to amphotericin B (AMB), caspofungin (CAS), and voriconazole. However, our strain showed elevated planktonic MICs to posaconazole (POS) and itraconazole, in addition to fluconazole resistance. Adherence to inert surfaces was conducted onto glass and polystyrene. The biofilm formation and antifungal susceptibility on biofilm-growing cells were evaluated by crystal violet staining and a XTT reduction assay. All fungal strains were able to bind both tested surfaces and form biofilm, with a binding preference to polystyrene (p < 0.001). AMB promoted significant reductions (≈50%) in biofilm production by our C. nivariensis strain using both methodologies. This reduction was also observed for CAS and POS, but only in the XTT assay. All strains were excellent protease producers and moderate phytase producers, but lipases were not detected. This study reinforces the pathogenic potential of C. nivariensis and its possible resistance profile to the azolic drugs generally used for candidiasis management. PMID:26814644

  6. First description of Candida nivariensis in Brazil: antifungal susceptibility profile and potential virulence attributes

    Directory of Open Access Journals (Sweden)

    Maria Helena Galdino Figueiredo-Carvalho

    2016-01-01

    Full Text Available This study evaluated the antifungal susceptibility profile and the production of potential virulence attributes in a clinical strain of Candida nivariensis for the first time in Brazil, as identified by sequencing the internal transcribed spacer (ITS1-5.8S-ITS2 region and D1/D2 domains of the 28S of the rDNA. For comparative purposes, tests were also performed with reference strains. All strains presented low planktonic minimal inhibitory concentrations (PMICs to amphotericin B (AMB, caspofungin (CAS, and voriconazole. However, our strain showed elevated planktonic MICs to posaconazole (POS and itraconazole, in addition to fluconazole resistance. Adherence to inert surfaces was conducted onto glass and polystyrene. The biofilm formation and antifungal susceptibility on biofilm-growing cells were evaluated by crystal violet staining and a XTT reduction assay. All fungal strains were able to bind both tested surfaces and form biofilm, with a binding preference to polystyrene (p < 0.001. AMB promoted significant reductions (≈50% in biofilm production by our C. nivariensis strain using both methodologies. This reduction was also observed for CAS and POS, but only in the XTT assay. All strains were excellent protease producers and moderate phytase producers, but lipases were not detected. This study reinforces the pathogenic potential of C. nivariensis and its possible resistance profile to the azolic drugs generally used for candidiasis management.

  7. Antifungal drug discovery and development--fourth international summit. 10-11 March 1999, Princeton, New Jersey, USA.

    Science.gov (United States)

    Ryder, N

    1999-05-01

    Genetic and genomic approaches to discovery, selection and evaluation of antifungal targets were extensively discussed by several speakers at this meeting. Experimental targets with early lead compounds available from screening programs include translation (Ribogene Inc), transcription (SCRIPTGEN Pharmaceuticals Inc), and protein geranylgeranylation (Mitotix Inc). Classes of compounds which are more advanced in preclinical evaluation include the sordarins, inhibitors of fungal elongation factor 2 under development by Glaxo Wellcome plc and Merck and Co Inc, and a series of fungicidal peptides originally derived from a domain of the human neutrophil bactericidal permeability-increasing protein (BPI, Xoma Ltd). Preclinical and early clinical data were presented for two compounds: caspofungin (MK-0991, Merck and Co Inc), an echinocandin with a broad-spectrum of activity for parenteral application, and Sch-56592 (Schering-Plough Corp), an orally active triazole. The oral antimycotic, terbinafine (Novartis AG), primarily used in dermatological infections, shows potent synergy with azoles and has potential applications against several serious and drug-resistant fungal pathogens. Amphotericin B, which has long been the gold standard for therapy of life-threatening infections, is now available in several liposomal formulations, including AmBisome (Fujisawa Pharmaceutical Co Ltd) and Abelcet (The Liposome Company Inc) which show a reduced incidence of adverse events.

  8. Antibacterial and antifungal activity of Terminalia arjuna Wight & Arn. bark against multi-drug resistant clinical isolates

    Institute of Scientific and Technical Information of China (English)

    Sukalyani Debnath; Diganta Dey; Sudipta Hazra; Subhalakshmi Ghosh; Ratnamala Ray; Banasri Hazra

    2013-01-01

    Objective: To evaluate antimicrobial activity of Terminalia arjuna (T. arjuna) bark against clinical strains of multi-drug resistant bacteria, and Candida spp. isolated from patients, as well as the corresponding reference strains.Methods:were evaluated by agar-well diffusion method, followed by determination of minimum inhibitory concentration (MIC) by broth micro-dilution method. The clinical isolates were studied for antibacterial susceptibility by Kirby and Bauer disk diffusion technique. The antimicrobial activity of water, methanol and chloroform extracts of T. arjuna bark Results: The water and methanolic extracts of T. arjuna bark produced significant zones of inhibition against twenty-two tested bacteria including eight uropathogens. MIC values against the bacteria were found in the range of 0.16 to 2.56 mg/mL. The chloroform extract did not exhibit antibacterial activity. The polar extracts of T. arjuna also demonstrated strong antifungal effect against eight species of Candida, with MIC between 0.16 and 0.64 mg/mL. The antimicrobial efficacy of the polar extracts was found to be commensurate with high polyphenol content in contrast to the non-polar (chloroform fraction). Conclusions: This study has revealed the therapeutic prospect of T. arjuna bark for the treatment of microbial diseases. The polar fraction of the bark could be used for development of novel antimicrobial agents, particularly against urinary tract infections, and candidiasis/candidaemia.

  9. posaconazole%泊沙康唑

    Institute of Scientific and Technical Information of China (English)

    刘晓平

    2007-01-01

    @@ 泊沙康唑(posaconazole)是2006年9月15日由美国FDA批准的一种广谱三唑类抗真菌药,用于难治性疾病或其他药物耐药所引起的真菌感染(如曲霉菌病、结核菌病和镰刀菌病等),该药由美国Schering-Plough公司研制上市,商品名为Noxafil[1].

  10. Fluoride excess in coccidioidomycosis patients receiving long-term antifungal therapy: an assessment of currently available triazoles.

    Science.gov (United States)

    Thompson, George R; Bays, Derek; Cohen, Stuart H; Pappagianis, Demosthenes

    2012-01-01

    The use of voriconazole, a trifluorinated antifungal, has been associated with the development of fluoride excess and periostitis/exostoses. We evaluated a cohort of patients on long-term triazole therapy and found that other fluorinated triazoles (fluconazole and posaconazole) conferred no risk for the development of hyperfluorosis and its complications in our cohort.

  11. Antifungal adjuvants: Preserving and extending the antifungal arsenal.

    Science.gov (United States)

    Butts, Arielle; Palmer, Glen E; Rogers, P David

    2017-02-17

    As the rates of systemic fungal infections continue to rise and antifungal drug resistance becomes more prevalent, there is an urgent need for new therapeutic options. This issue is exacerbated by the limited number of systemic antifungal drug classes. However, the discovery, development, and approval of novel antifungals is an extensive process that often takes decades. For this reason, there is growing interest and research into the possibility of combining existing therapies with various adjuvants that either enhance activity or overcome existing mechanisms of resistance. Reports of antifungal adjuvants range from plant extracts to repurposed compounds, to synthetic peptides. This approach would potentially prolong the utility of currently approved antifungals and mitigate the ongoing development of resistance.

  12. DNA topoisomerases from pathogenic fungi: targets for the discovery of antifungal drugs.

    OpenAIRE

    Shen, L L; Baranowski, J; Fostel, J.; Montgomery, D A; Lartey, P A

    1992-01-01

    DNA topoisomerases, a class of enzymes that change the topological structure of DNA, have been shown to be the target of many therapeutic agents, including antibacterial agents (quinolones) and anticancer agents. These drugs inhibit the enzyme in a unique way so that the enzyme is converted into a cellular poison. Candida albicans and Aspergillus niger are two major opportunistic fungal pathogens. Our results show that these fungi have high levels of both type I and type II topoisomerases (wi...

  13. Study the interactions between human serum albumin and two antifungal drugs: fluconazole and its analogue DTP.

    Science.gov (United States)

    Zhang, Shao-Lin; Yao, Huankai; Wang, Chenyin; Tam, Kin Y

    2014-11-01

    Binding affinities of fluconazole and its analogue 2-(2,4-dichlorophenyl)-1,3-di(1H-1,2,4-triazol-yl)-2-propanol (DTP) to human serum albumin (HSA) were investigated under approximately human physiological conditions. The obtained result indicated that HSA could generate fluorescent quenching by fluconazole and DTP because of the formation of non-fluorescent ground-state complexes. Binding parameters calculated from the Stern-Volmer and the Scatchard equations showed that fluconazole and DTP bind to HSA with binding affinities of the order 10(4)L/mol. The thermodynamic parameters revealed that the binding was characterized by negative enthalpy and positive entropy changes, suggesting that the binding reaction was exothermic. Hydrogen bonds and hydrophobic interaction were found to be the predominant intermolecular forces stabilizing the drug-protein. The effect of metal ions on the binding constants of fluconazole-HSA complex suggested that the presence of Mg(2+) and Zn(2+) ions could decrease the free drug level and extend the half-life in the systematic circulation. Docking experiments revealed that fluconazole and DTP binds in HSA mainly by hydrophobic interaction with the possibility of hydrogen bonds formation between the drugs and the residues Arg 222, Lys 199 and Lys 195 in HSA.

  14. Intrapulmonary posaconazole penetration at the infection site in an immunosuppressed murine model of invasive pulmonary aspergillosis receiving oral prophylactic regimens

    NARCIS (Netherlands)

    Seyedmousavi Tasieh, S.; Bruggemann, R.J.M.; Melchers, W.J.G.; Verweij, P.E.; Mouton, J.W.

    2014-01-01

    Adequate penetration to the infection/colonization site is crucial to attain optimal efficacy of posaconazole against Aspergillus fumigatus diseases. We evaluated posaconazole exposure in pulmonary epithelial lining fluid (ELF) in a murine model of invasive pulmonary aspergillosis. The posaconazole

  15. Structure-activity relationships among antifungal nylon-3 polymers: identification of materials active against drug-resistant strains of Candida albicans.

    Science.gov (United States)

    Liu, Runhui; Chen, Xinyu; Falk, Shaun P; Mowery, Brendan P; Karlsson, Amy J; Weisblum, Bernard; Palecek, Sean P; Masters, Kristyn S; Gellman, Samuel H

    2014-03-19

    Fungal infections are a major challenge to human health that is heightened by pathogen resistance to current therapeutic agents. Previously, we were inspired by host-defense peptides to develop nylon-3 polymers (poly-β-peptides) that are toxic toward the fungal pathogen Candida albicans but exert little effect on mammalian cells. Based on subsequent analysis of structure-activity relationships among antifungal nylon-3 polymers, we have now identified readily prepared cationic homopolymers active against strains of C. albicans that are resistant to the antifungal drugs fluconazole and amphotericin B. These nylon-3 polymers are nonhemolytic. In addition, we have identified cationic-hydrophobic copolymers that are highly active against a second fungal pathogen, Cryptococcus neoformans, and moderately active against a third pathogen, Aspergillus fumigatus.

  16. AN OVERVIEW ON ANTIFUNGAL THERAPY

    OpenAIRE

    Karki, Nirmal K.; Ahmed, Azhar; Charde, Rita; Charde, Manoj; Gandhare, Bhushan

    2011-01-01

    The number of fungi causing systemic disease is growing and the number of systemic diseases caused by fungi is increasing. The currently available antifungal agents for the treatment of systemic mycoses include polyene antibiotics (Amphotericin B), fluoropyrimidine (Flu cytosine), and Nystatin andazole group of drugs (Ketoconazole, Fluconazole, and Itraconazole). Novel drug delivery systems for antifungal therapy, based on the type of formulation are classified as Liposomes Nanocochleates, Na...

  17. Stability-indicating HPLC method development and structural elucidation of novel degradation products in posaconazole injection by LC-TOF/MS, LC-MS/MS and NMR.

    Science.gov (United States)

    Yang, Yidi; Zhu, Xi; Zhang, Fei; Li, Wei; Wu, Ying; Ding, Li

    2016-06-05

    Stress testing was carried out under acidic, alkaline, oxidative, thermal and photolytic conditions to evaluate the intrinsic stability of posaconazole injection. A total of four degradation products were detected and the drug was found to be susceptible to oxidative and thermal degradations. Three unknown degradants formed under oxidative stress condition were isolated by preparative HPLC and unambiguously elucidated by LC-TOF/MS, LC-MS/MS, (1)H NMR, (13)C NMR and 2D NMR techniques. Based on the spectrometric and spectroscopic information, these novel degradation products were unequivocally assigned as the N-oxides of posaconazole. Probable mechanisms for the formation of the degradants were proposed. A new and selective HPLC method was developed and validated to separate, detect and quantify all the degradants in posaconazole injection.

  18. Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans.

    Science.gov (United States)

    Tamiya, Hiroyuki; Ochiai, Eri; Kikuchi, Kazuyo; Yahiro, Maki; Toyotome, Takahito; Watanabe, Akira; Yaguchi, Takashi; Kamei, Katsuhiko

    2015-05-01

    The incidence of Aspergillus infection has been increasing in the past few years. Also, new Aspergillus fumigatus-related species, namely Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans, were shown to infect humans. These fungi exhibit marked morphological similarities to A. fumigatus, albeit with different clinical courses and antifungal drug susceptibilities. The present study used liquid chromatography/time-of-flight mass spectrometry to identify the secondary metabolites secreted as virulence factors by these Aspergillus species and compared their antifungal susceptibility. The metabolite profiles varied widely among A. fumigatus, A. lentulus, A. udagawae, and A. viridinutans, producing 27, 13, 8, and 11 substances, respectively. Among the mycotoxins, fumifungin, fumiquinazoline A/B and D, fumitremorgin B, gliotoxin, sphingofungins, pseurotins, and verruculogen were only found in A. fumigatus, whereas auranthine was only found in A. lentulus. The amount of gliotoxin, one of the most abundant mycotoxins in A. fumigatus, was negligible in these related species. In addition, they had decreased susceptibility to antifungal agents such as itraconazole and voriconazole, even though metabolites that were shared in the isolates showing higher minimum inhibitory concentrations than epidemiological cutoff values were not detected. These strikingly different secondary metabolite profiles may lead to the development of more discriminative identification protocols for such closely related Aspergillus species as well as improved treatment outcomes.

  19. The clinical spectrum of Exophiala jeanselmei, with a case report and in vitro antifungal susceptibility of the species.

    Science.gov (United States)

    Badali, H; Najafzadeh, M J; van Esbroeck, M; van den Enden, E; Tarazooie, B; Meis, J F G M; de Hoog, G S

    2010-03-01

    Exophiala jeanselmei is clinically redefined as a rare agent of subcutaneous lesions of traumatic origin, eventually causing eumycetoma. Mycetoma is a localized, chronic, suppurative subcutaneous infection of tissue and contiguous bone after a traumatic inoculation of the causative organism. In advanced stages of the infection, one finds tumefaction, abscess formation and draining sinuses. The species has been described as being common in the environment, but molecular methods have only confirmed its occurrence in clinical samples. Current diagnostics of E. jeanselmei is based on sequence data of the Internal Transcribed Spacer (ITS) region of ribosomal DNA (rDNA), which sufficiently reflects the taxonomy of this group. The first purpose of this study was the re-identification of all clinical (n=11) and environmental strains (n=6) maintained under the name E. jeanselmei, and to establish clinical preference of the species in its restricted sense. Given the high incidence of eumycetoma in endemic areas, the second goal of this investigation was the evaluation of in vitro susceptibility of E.jeanselmei to eight conventional and new generations of antifungal drugs to improve antifungal therapy in patients. As an example, we describe a case of black grain mycetoma in a 43-year-old Thai male with several draining sinuses involving the left foot. The disease required extensive surgical excision coupled with intense antifungal chemotherapy to achieve cure. In vitro studies demonstrated that posaconazole and itraconazole had the highest antifungal activity against E. jeanselmei and E. oligosperma for which high MICs were found for caspofungin. However, their clinical effectiveness in the treatment of Exophiala infections remains to be determined.

  20. Antifungal susceptibility testing of clinical isolates of fluconazole-resistant Candida spp. and itraconazole-resistant Aspergillus funmigates to posaconazole%耐氟康唑念珠菌和耐伊曲康唑烟曲霉对泊沙康唑的敏感性测定

    Institute of Scientific and Technical Information of China (English)

    王雪洁; 万哲; 李若瑜; 刘伟

    2014-01-01

    目的:测定耐氟康唑念珠菌和耐伊曲康唑烟曲霉临床分离株对泊沙康唑的敏感性。方法参照美国临床实验室标准化研究所制定的 M27-A3和 M38-A2方案,测定从临床获得的11株耐氟康唑的念珠菌和3株耐伊曲康唑烟曲霉对泊沙康唑的 MIC 值。结果对于氟康唑耐药的念珠菌,泊沙康唑的 MIC 范围是0.125~1μg/ mL。对于伊曲康唑耐药烟曲霉,泊沙康唑的 MIC 范围是0.06~0.5μg/ mL。结论11株耐氟康唑的念珠菌和3株耐伊曲康唑烟曲霉均对泊沙康唑有效。%Objective To determine the in vitro susceptibility of fluconazole( FLU)-resistant Candida spp. and itraconazole (ITC)-resistant Aspergillus spp. to posaconazole(POS). Methods The MICs of FLU,ITC,voriconazole(VRC)and POS were determined according to CLSI M27-A3 and M38-A2 methods in eleven isolates of Candida spp. and three isolates of Aspergillus spp. Results MICs of FLU,ITC,VRC and POS against FLU-resistant Candida spp. were 64 μg/ mL,0. 5 ~ 16 μg/ mL,0. 25 ~ 2 μg/mL and 0. 125 ~ 1 μg/ mL. And MICs of ITC,VRC and POS against ITC-resistant Aspergillus spp. were ﹥ 16 μg/ mL,1 ~ 2 μg/ mL and 0. 25 ~ 0. 5 μg/ mL. Conclusion POS is effective to FLU-resistant Candida spp. and ITC-resistant Aspergillus spp. in vitro .

  1. In Vitro Interactions between Non-Steroidal Anti-Inflammatory Drugs and Antifungal Agents against Planktonic and Biofilm Forms of Trichosporon asahii.

    Directory of Open Access Journals (Sweden)

    Suteng Yang

    Full Text Available Increasing drug resistance has brought enormous challenges to the management of Trichosporon spp. infections. The in vitro antifungal activities of non-steroidal anti-inflammatory drugs (NSAIDs against Candida spp. and Cryptococcus spp. were recently discovered. In the present study, the in vitro interactions between three NSAIDs (aspirin, ibuprofen and diclofenac sodium and commonly used antifungal agents (fluconazole, itraconazole, voriconazole, caspofungin and amphotericin B against planktonic and biofilm cells of T. asahii were evaluated using the checkerboard microdilution method. The spectrophotometric method and the XTT reduction assay were used to generate data on biofilm cells. The fractional inhibitory concentration index (FICI and the ΔE model were compared to interpret drug interactions. Using the FICI, the highest percentages of synergistic effects against planktonic cells (86.67% and biofilm cells (73.33% were found for amphotericin B/ibuprofen, and caspofungin/ibuprofen showed appreciable percentages (73.33% for planktonic form and 60.00% for biofilm as well. We did not observe antagonism. The ΔE model gave consistent results with FICI (86.67%. Our findings suggest that amphotericin B/ibuprofen and caspofungin/ibuprofen combinations have potential effects against T. asahii. Further in vivo and animal studies to investigate associated mechanisms need to be conducted.

  2. Mitochondrial respiratory pathways inhibition in Rhizopus oryzae potentiates activity of posaconazole and itraconazole via apoptosis.

    Directory of Open Access Journals (Sweden)

    Fazal Shirazi

    Full Text Available The incidence of mucormycosis has increased drastically in immunocompromised patients. Also the array of targets whose inhibition results in Mucorales death is limited. Recently, researchers identified mitochondria as important regulators of detoxification and virulence mechanisms in fungi. In this context, targeting the mitochondrial respiratory chain may provide a new platform for antifungal development. We hypothesized that targeting respiratory pathways potentiates triazoles activity via apoptosis. We found that simultaneous administration of antimycin A (AA and benzohydroxamate (BHAM, inhibitors of classical and alternative mitochondrial pathways respectively, resulted in potent activity of posaconazole (PCZ and itraconazole (ICZ against Rhizopus oryzae. We observed cellular changes characteristic of apoptosis in R. oryzae cells treated with PCZ or ICZ in combination with AA and BHAM. The fungicidal activity of this combination against R. oryzae was correlated with intracellular reactive oxygen species accumulation (ROS, phosphatidylserine externalization, mitochondrial membrane depolarization, and increased caspase like activity. DNA fragmentation and condensation assays also revealed apoptosis of R. oryzae cells. These apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine. Taken together, these findings suggest that the use of PCZ or ICZ in combination with AA and BHAM makes R. oryzae exquisitely sensitive to treatment with triazoles via apoptosis. This strategy may serve as a new model for the development of improved or novel antifungal agents.

  3. Utilization of posaconazole oral suspension or delayed-released tablet salvage treatment for invasive fungal infection.

    Science.gov (United States)

    Kim, Jong Hun; Benefield, Russell J; Ditolla, Kali

    2016-11-01

    Posaconazole may be useful for salvage treatment (ST) for invasive fungal infections (IFIs). The aim of this study was to evaluate the efficacy of posaconazole ST with either posaconazole oral suspension (SUS) or delayed-released tablet (TAB) in patients with IFI. A retrospective review of patients who received posaconazole ST for IFI at the University of Utah Health Sciences Center between December 2007 and March 2014 was conducted. A total of 14 episodes of posaconazole ST for proven (9 episodes) and probable (5 episodes) IFI were identified in 14 patients. The median age was 54 years and the majority of patients (64.3%) had underlying haematological diseases. Posaconazole SUS and TAB were used in 11 episodes and 3 episodes respectively. The duration of posaconazole ST ranged from 28 to 370 days with a median of 65 days. Posaconazole ST with TAB achieved favourable serum posaconazole trough concentrations (median 1.4 μg mL(-1) ) compared to posaconazole SUS (median 1.0 μg mL(-1) ). The overall clinical success rate with posaconazole ST was 71.4% (10 of 14 episodes). One patient died of progression of IFI. Adverse events were noted in two patients. Posaconazole SUS or TAB may be used effectively for IFI ST.

  4. Effect of posaconazole on the pharmacokinetics of fosamprenavir and vice versa in healthy volunteers.

    NARCIS (Netherlands)

    Bruggemann, R.J.M.; Luin, M. van; Colbers, E.P.H.; Dungen, M.W. van den; Pharo, C.; Schouwenberg, B.J.J.W.; Burger, D.M.

    2010-01-01

    OBJECTIVES: To manage the interaction between fosamprenavir/ritonavir and posaconazole, we hypothesized that ritonavir can be replaced by posaconazole as an alternative booster of fosamprenavir with no significant influence on posaconazole pharmacokinetics. METHODS: This was an open-label, randomize

  5. Crystal structures of the fungal pathogen Aspergillus fumigatus protein farnesyltransferase complexed with substrates and inhibitors reveal features for antifungal drug design.

    Science.gov (United States)

    Mabanglo, Mark F; Hast, Michael A; Lubock, Nathan B; Hellinga, Homme W; Beese, Lorena S

    2014-03-01

    Species of the fungal genus Aspergillus are significant human and agricultural pathogens that are often refractory to existing antifungal treatments. Protein farnesyltransferase (FTase), a critical enzyme in eukaryotes, is an attractive potential target for antifungal drug discovery. We report high-resolution structures of A. fumigatus FTase (AfFTase) in complex with substrates and inhibitors. Comparison of structures with farnesyldiphosphate (FPP) bound in the absence or presence of peptide substrate, corresponding to successive steps in ordered substrate binding, revealed that the second substrate-binding step is accompanied by motions of a loop in the catalytic site. Re-examination of other FTase structures showed that this motion is conserved. The substrate- and product-binding clefts in the AfFTase active site are wider than in human FTase (hFTase). Widening is a consequence of small shifts in the α-helices that comprise the majority of the FTase structure, which in turn arise from sequence variation in the hydrophobic core of the protein. These structural effects are key features that distinguish fungal FTases from hFTase. Their variation results in differences in steady-state enzyme kinetics and inhibitor interactions and presents opportunities for developing selective anti-fungal drugs by exploiting size differences in the active sites. We illustrate the latter by comparing the interaction of ED5 and Tipifarnib with hFTase and AfFTase. In AfFTase, the wider groove enables ED5 to bind in the presence of FPP, whereas in hFTase it binds only in the absence of substrate. Tipifarnib binds similarly to both enzymes but makes less extensive contacts in AfFTase with consequently weaker binding.

  6. 抗真菌药物的TDM文献计量分析%Bibliometric analysis of research papers in the subject of TDM of antifungal drugs

    Institute of Scientific and Technical Information of China (English)

    曹江; 白艳; 王冬; 江学维; 王瑾; 王睿; 王昆

    2015-01-01

    目的:全面了解抗真菌药物治疗药物监测的研究进展,为临床合理应用抗真菌药物提供参考,确保患者用药安全。方法:英文检索PubMed、Embase、Web of Science数据库;中文检索SinoMed关于抗真菌药物的治疗药物监测的文献,检索时间为1985年–2014年。利用EndNote X5及人工双重进行分类整理,用Excel表对最终纳入的文献建立评价数据库。分析文献发表的年代、作者、期刊、影响因子、研究机构、被引频次和研究方法,归纳文献涉及抗真菌药物与处理措施。结果:共检索出英文文献359篇,中文29篇。英文数据库检出文献:PubMed 76篇,Embase 224篇,SCI 59篇;中文数据库检出文献:SinoMed 29篇。经EndNote X5和双人手工去除重复文献,按入排标准,最终得到226篇文献。其中,英文文献220篇,中文文献6篇。2004–2014年文献量增加较快,近年来随着抗真菌药物的广泛应用,抗真菌药物的治疗药物监测也逐渐引起重视。纳入研究的文献类型有论著、综述、回顾性分析、病例分析、会议等。结论:由于抗真菌药物在临床应用过程中存在个体差异大和联合用药时易出现不良反应等情况,国内外已对抗真菌药监测加大了关注度。%Objective:To comprehensively understand the research progress of therapeutic drug monitoring (TDM) of antifungal drugs, provide references for clinical rational use of antifungal drugs, and ensure the medication safety of the patients. Methods:PubMed, Embase and Web of Science databases were used for searching English literature; SinoMed was searched for Chinese literature. TDM literature on antifungal drugs were searched from 1985 up to 2014. Endnote X5 and artiifcial double sorting were used, evaluation database based on enrolled literature was established with the Excel. The time of publication, authors, journals, inlfuence factors of published literature

  7. Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States.

    Science.gov (United States)

    Ostrosky-Zeichner, Luis; Rex, John H; Pappas, Peter G; Hamill, Richard J; Larsen, Robert A; Horowitz, Harold W; Powderly, William G; Hyslop, Newton; Kauffman, Carol A; Cleary, John; Mangino, Julie E; Lee, Jeannette

    2003-10-01

    Candida bloodstream isolates (n = 2,000) from two multicenter clinical trials carried out by the National Institute of Allergy and Infectious Diseases Mycoses Study Group between 1995 and 1999 were tested against amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITR), voriconazole (VOR), posaconazole (POS), caspofungin (CFG), micafungin (MFG), and anidulafungin (AFG) using the NCCLS M27-A2 microdilution method. All drugs were tested in the NCCLS-specified RPMI 1640 medium except for AMB, which was tested in antibiotic medium 3. A sample of isolates was also tested in RPMI 1640 supplemented to 2% glucose and by using the diluent polyethylene glycol (PEG) in lieu of dimethyl sulfoxide for those drugs insoluble in water. Glucose supplementation tended to elevate the MIC, whereas using PEG tended to decrease the MIC. Trailing growth occurred frequently with azoles. Isolates were generally susceptible to AMB, 5FC, and FLU. Rates of resistance to ITR approached 20%. Although no established interpretative breakpoints are available for the candins (CFG, MFG, and AFG) and the new azoles (VOR and POS), they all exhibited excellent antifungal activity, even for those strains resistant to the other aforementioned agents.

  8. In vitro interactions of antifungal agents and tacrolimus against Aspergillus biofilms.

    Science.gov (United States)

    Gao, Lujuan; Sun, Yi

    2015-11-01

    Aspergillus biofilms were prepared from Aspergillus fumigatus, Aspergillus flavus, and Aspergillus terreus via a 96-well plate-based method, and the combined antifungal activity of tacrolimus with azoles or amphotericin B against Aspergillus biofilms was investigated via a broth microdilution checkerboard technique system. Our results suggest that combinations of tacrolimus with voriconazole or amphotericin B have synergistic inhibitory activity against Aspergillus biofilms. However, combinations of tacrolimus with itraconazole or posaconazole exhibit no synergistic or antagonistic effects.

  9. Comparison of the EUCAST and CLSI Broth Microdilution Methods for Testing Isavuconazole, Posaconazole, and Amphotericin B against Molecularly Identified Mucorales Species.

    Science.gov (United States)

    Chowdhary, Anuradha; Singh, Pradeep Kumar; Kathuria, Shallu; Hagen, Ferry; Meis, Jacques F

    2015-12-01

    We compared EUCAST and CLSI antifungal susceptibility testing (AFST) methods for triazoles and amphotericin B against 124 clinical Mucorales isolates. The EUCAST method yielded MIC values 1- to 3-fold dilutions higher than those of the CLSI method for amphotericin B. The essential agreements between the two methods for triazoles were high, i.e., 99.1% (voriconazole), 98.3% (isavuconazole), and 87% (posaconazole), whereas it was significantly lower for amphotericin B (66.1%). Strategies for harmonization of the two methods for Mucorales AFST are warranted.

  10. [Recommendations of antifungal treatment in patients with low grade immunosuppression].

    Science.gov (United States)

    Barberán, J; Mensa, J; Fariñas, C; Llinares, P; Serrano, R; Menéndez, R; Agustí, C; Gobernado, M; Azanza, J R; García Rodríguez, J A

    2008-06-01

    Because of the relevance that the systemic mycoses has acquired in non-highly immunocompromised patients, the treatment difficulties they have due to the increase of the non-albicans Candida species and the need to have a better and more rational use of the new antifungal agents (voriconazole, posaconazole, caspofungin, anidulafungin and micafungin), an experts' panel on infectious diseases in representation of the Spanish Society of Chemotherapy, Spanish Society of Internal Medicine, and Spanish Society of Pneumology and Thoracic Surgery has met in order to make a few recommendations based on the scientific evidence in an effort to improve their efficiency.

  11. Evaluation of the effects of photodynamic therapy alone and combined with standard antifungal therapy on planktonic cells and biofilms of Fusarium spp. and Exophiala spp.

    Directory of Open Access Journals (Sweden)

    Lujuan eGao

    2016-04-01

    Full Text Available Infections of Fusarium spp. and Exophiala spp. are often chronic, recalcitrant, resulting in significant morbidity, causing discomfort, disfigurement, social isolation. Systemic disseminations happen in compromised patients, which are often refractory to available antifungal therapies and thereby lead to death. The antimicrobial photodynamic therapy has been demonstrated to effectively inactivate multiple pathogenic fungi and is considered as a promising alternative treatment for mycoses. In the present study, we applied methylene blue (8,16 and 32 μg/ml as a photosensitizing agent and light emitting diode (635nm ± 10nm, 12 and 24 J/cm2, and evaluated the effects of photodynamic inactivation on five stains of Fusarium spp. and five strains of Exophiala spp, as well as photodynamic effects on in vitro susceptibility to itraconazole, voriconazole, posaconazole and amphotericin B, both planktonic and biofilm forms. Photodynamic therapy was efficient in reducing the growth of all stains tested, exhibiting colony forming unit-reductions of up to 6.4 log10 and 5.6 log10 against planktonic cultures and biofilms, respectively. However, biofilms were less sensitive since the irradiation time was twice longer than that of planktonic cultures. Notably, the photodynamic effects against Fusarium stains with high MIC values of ≥16, 4-8, 4-8 and 2-4 μg/ml for itraconazole, voriconazole, posaconazole and amphotericin B, respectively, were comparable or even superior to Exophiala spp., despite Exophiala spp. showed relatively better antifungal susceptibility profile. MIC ranges against planktonic cells of both species were up to 64 times lower after PDT treatment. Biofilms of both species showed high SMIC50 and SMIC80 of ≥16 μg/ml for all azoles tested and variable susceptibilities to AMB, with SMIC ranging between 1 and 16 μg/ml. Biofilms subjected to PDT exhibited a distinct reduction in SMIC50 and SMIC80 compared to untreated groups for both species

  12. Evaluation of the Effects of Photodynamic Therapy Alone and Combined with Standard Antifungal Therapy on Planktonic Cells and Biofilms of Fusarium spp. and Exophiala spp.

    Science.gov (United States)

    Gao, Lujuan; Jiang, Shaojie; Sun, Yi; Deng, Meiqi; Wu, Qingzhi; Li, Ming; Zeng, Tongxiang

    2016-01-01

    Infections of Fusarium spp. and Exophiala spp. are often chronic, recalcitrant, resulting in significant morbidity, causing discomfort, disfigurement, social isolation. Systemic disseminations happen in compromised patients, which are often refractory to available antifungal therapies and thereby lead to death. The antimicrobial photodynamic therapy (aPDT) has been demonstrated to effectively inactivate multiple pathogenic fungi and is considered as a promising alternative treatment for mycoses. In the present study, we applied methylene blue (8, 16, and 32 μg/ml) as a photosensitizing agent and light emitting diode (635 ± 10 nm, 12 and 24 J/cm(2)), and evaluated the effects of photodynamic inactivation on five strains of Fusarium spp. and five strains of Exophiala spp., as well as photodynamic effects on in vitro susceptibility to itraconazole, voriconazole, posaconazole and amphotericin B, both planktonic and biofilm forms. Photodynamic therapy was efficient in reducing the growth of all strains tested, exhibiting colony forming unit-reductions of up to 6.4 log10 and 5.6 log10 against planktonic cultures and biofilms, respectively. However, biofilms were less sensitive since the irradiation time was twice longer than that of planktonic cultures. Notably, the photodynamic effects against Fusarium strains with high minimal inhibitory concentration (MIC) values of ≥16, 4-8, 4-8, and 2-4 μg/ml for itraconazole, voriconazole, posaconazole and amphotericin B, respectively, were comparable or even superior to Exophiala spp., despite Exophiala spp. showed relatively better antifungal susceptibility profile. MIC ranges against planktonic cells of both species were up to 64 times lower after aPDT treatment. Biofilms of both species showed high sessile MIC50 (SMIC50) and SMIC80 of ≥16 μg/ml for all azoles tested and variable susceptibilities to amphotericin B, with SMIC ranging between 1 and 16 μg/ml. Biofilms subjected to aPDT exhibited a distinct reduction in

  13. Novel approaches to antifungal prophylaxis.

    Science.gov (United States)

    Ostrosky-Zeichner, Luis

    2004-06-01

    Antifungal prophylaxis represents a significant advance in the management of patients at risk from fungal infections in a variety of settings. Identification of patients at the highest risk and the utilisation of safe and effective drugs maximises the benefits of prophylaxis. Situations in which antifungal prophylaxis has been shown to be useful are bone marrow transplantation, liver and lung transplantation, surgical and neonatal intensive care units, secondary prophylaxis of fungal infections associated with HIV and neutropenia associated haematological malignancies and their treatment. New antifungal agents, such as the echinocandins and the new azoles, are available and have a potential role in antifungal prophylaxis. Future studies should evaluate which strategy is more useful; prophylaxis or pre-emptive therapy.

  14. Treating chromoblastomycosis with systemic antifungals.

    Science.gov (United States)

    Bonifaz, Alexandro; Paredes-Solís, Vanessa; Saúl, Amado

    2004-02-01

    Chromoblastomycosis is a subcutaneous mycosis for which there is no treatment of choice but rather, several treatment options, with low cure rates and many relapses. The choice of treatment should consider several conditions, such as the causal agent (the most common one being Fonsecaea pedrosoi ), extension of the lesions, clinical topography and health status of the patient. Most oral and systemic antifungals have been used; the best results have been obtained with itraconazole and terbinafine at high doses, for a mean of 6 - 12 months. In extensive and refractory cases, chemotherapy with oral antifungals may be associated with thermotherapy (local heat and/or cryosurgery). Limited or early cases may be managed with surgical methods, always associated with oral antifungal agents. It is important to determine the in vitro sensitivity of the major causal agents to the various drugs, by estimating the minimum inhibitory concentration, as well as drug tolerability and drug interactions.

  15. Controlled nail delivery of a novel lipophilic antifungal agent using various modern drug carrier systems as well as in vitro and ex vivo model systems.

    Science.gov (United States)

    Naumann, Sandy; Meyer, Jean-Philippe; Kiesow, Andreas; Mrestani, Yahya; Wohlrab, Johannes; Neubert, Reinhard H H

    2014-04-28

    The penetration behavior into human nails and animal hoof membranes of a novel antifungal agent (EV-086K) for the treatment of onychomycosis was investigated in this study. The new drug provides a high lipophilicity which is adverse for penetration into nails. Therefore, four different formulations were developed, with particular focus on a colloidal carrier system (CCS) due to its penetration enhancing properties. On the one hand, ex vivo penetration experiments on human nails were performed. Afterwards the human nail plates were cut by cryomicrotome in order to quantify the drug concentration in the dorsal, intermediate and ventral nail layer using high-performance liquid chromatography (HPLC) with UV detection. On the other hand, equine and bovine hoof membranes were used to determine the in vitro penetration of the drug into the acceptor compartment of an online diffusion cell coupled with Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy. In combination, both results should exhibit a correlation between the EV-086K penetration behavior in human nail plates and animal hoof membranes. The investigations showed that the developed CCS could increase drug delivery through the human nail most compared to other formulations (nail lacquer, solution and hydrogel). Using animal hooves in the online diffusion cell, we were able to calculate pharmacokinetic data of the penetration process, especially diffusion and permeability coefficients. Finally, a qualitative correlation between the penetration results of human nails and equine hooves was established.

  16. Thermoresponsive fluconazole gels for topical delivery: rheological and mechanical properties, in vitro drug release and anti-fungal efficacy.

    Science.gov (United States)

    Gandra, Sarath C R; Nguyen, Sanko; Nazzal, Sami; Alayoubi, Alaadin; Jung, Rose; Nesamony, Jerry

    2015-01-01

    The aim of this study was to develop thermosensitive gels using poloxamers for topical delivery of fluconazole (FLZ). Eight different formulations containing 1% FLZ in poloxamer and a particular co-solvent (propylene glycol (PG) or Transcutol-P) of various concentrations were prepared. The gels were characterized for transition temperatures, rheological and mechanical properties. FLZ permeability and antifungal effect of the gels were also evaluated. Except for one formulation, all gels exhibited thermosensitive property, i.e. transformed from Newtonian (liquid-like) behavior at 20 °C to non-Newtonian (gel-like) behavior at 37 °C. Transcutol-P increased the transition temperature of the formulations, while the opposite effect was observed for PG. At 37 °C, formulations with high poloxamer concentrations (17%) resulted in high viscosity, compressibility and hardness. Formulations containing 17% poloxamer and 20% Transcutol-P and 10% PG, respectively, exhibited high adhesiveness. No significant differences in the in vitro antifungal activity of FLZ were observed among the formulations suggesting that the gel vehicles did not influence the biological effect of FLZ. FLZ permeability decreased with increasing poloxamer concentration. Formulations containing 17% poloxamer and 20% Transcutol-P and 10% PG seemed to be promising in situ gelling systems for the topical delivery of FLZ.

  17. In vitro susceptibility of Madurella mycetomatis to posaconazole and terbinafine

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); A.H. Fahal (Ahmed); W.W.J. van de Sande (Wendy)

    2011-01-01

    textabstractPresently, therapy of eumycetoma in Sudan is still based on surgery combined with prolonged ketoconazole therapy. This usually results in a poor clinical outcome. To determine if posaconazole and terbinafine could offer better therapeutic alternatives, the in vitro susceptibilities of 34

  18. AN OVERVIEW OF AZOLE ANTIFUNGALS

    Directory of Open Access Journals (Sweden)

    Pratibha Shivaji Gavarkar*, Rahul Shivaji Adnaik, and Shrinivas Krishna Mohite

    2013-11-01

    Full Text Available Fungal infections in critically ill or immunosuppressed patients were increasing in incidence in the human population over the last 1-2 decades. There were few advances in antifungal therapy and, until recently, there were few choices from which to select a treatment for systemic mycoses. However, in the past decade, there have been several developments in this area. Antifungal agents are sufficiently diverse in activity, toxicity, and drug interaction potential. Azoles are synthetic and semi-synthetic compounds. They have a broad spectrum of activity. Triazole antifungals are active to treat an array of fungal pathogens, whereas imidazoles are used almost exclusively in the treatment of superficial mycoses and vaginal candidiasis. Despite the advances, serious fungal infections remain difficult to treat, and resistance to the available drugs is emerging. Use of the currently available azoles in combination with other antifungal agents with different mechanisms of action is likely to provide enhanced efficacy. The present review aims to explore the pharmacology, pharmacokinetics, spectrum of activity, safety, toxicity and potential for drug–drug interactions of the azole antifungal agents.

  19. New targets and delivery systems for antifungal therapy.

    Science.gov (United States)

    Walsh, T J; Viviani, M A; Arathoon, E; Chiou, C; Ghannoum, M; Groll, A H; Odds, F C

    2000-01-01

    Development of new approaches for treatment of invasive fungal infections encompasses new delivery systems for approved and investigational compounds, as well as exploiting the cell membrane, cell wall and virulence factors as putative antifungal targets. Novel delivery systems consisting of cyclodextrins, cochleates, nanoparticles/nanospheres and long circulating ('stealth') liposomes, substantially modulate the pharmacokinetics of existing compounds, and may also be useful to enhance the delivery of antifungal agents to sites of infection. Further insights into the structure-activity relationship of the antifungal triazoles that target the biosynthesis of ergosterol in the fungal cell membrane have led to the development of highly potent broad spectrum agents, including posaconazole, ravuconazole and voriconazole. Similarly, a novel generation of cell-wall active semisynthetic echinocandin 1,3 beta-glucan inhibitors (caspofungin, FK463, and VER-002) has entered clinical development. These agents have potent and broad-spectrum activity against Candida spp, and potentially useful activity against Aspergillus spp. and Pneumocystis carinii. The ongoing convergence of the fields of molecular pathogenesis, antifungal pharmacology and vaccine development will afford the opportunity to develop novel targets to complement the existing antifungal armamentarium.

  20. Antifungal Drug Susceptibility of Candida Species Isolated from HIV-Positive Patients Recruited at a Public Hospital in São Luís, Maranhão, Brazil

    Science.gov (United States)

    Terças, Ana L. G.; Marques, Sirlei G.; Moffa, Eduardo B.; Alves, Márcia B.; de Azevedo, Conceição M. P. S.; Siqueira, Walter L.; Monteiro, Cristina A.

    2017-01-01

    Oropharyngeal candidiasis is the most common fungal infection in hospitalized patients with acquired immune deficiency syndrome (AIDS). Its progression results in invasive infections, which are a significant cause of morbidity and mortality. This study aimed to quickly and accurately identify Candida spp. from oral mucosa of AIDS patients recruited at Presidente Vargas Hospital, in São Luís city, Brazil and to evaluate the sensitivity profile of these fungi to antifungals by using an automated system. Isolates were collected from oropharyngeal mucosa of 52 hospitalized AIDS patients, under anti-viral and antifungal therapies. Patients were included in research if they were HIV-positive, above 18 years of age and after obtaining their written consent. CHROMagar®Candida and the automated ViteK-2®system were used to isolate and identify Candida spp., respectively. Antifungal susceptibility testing was performed using the ViteK-2®system, complemented with the Etest®, using the drugs amphotericin B, fluconazole, flucytosine, and voriconazole. Oropharyngeal candidiasis had a high prevalence in these hospitalized AIDS patients (83%), and the most prevalent species was Candida albicans (56%). Antifungal susceptibility test showed that 64.7% of the Candida spp. were susceptible, 11.8% were dose-dependent sensitive, and 23.5% were resistant. All the Candida krusei and Candida famata isolates and two of Candida glabrata were resistant to fluconazole. Most of AIDS patients presented oropharyngeal candidiasis and C. albicans was the most frequently isolated species. The results showed high variability in resistance among isolated species and indicates the need to identify the Candida spp. involved in the infection and the need to test antifungal susceptibility as a guide in drug therapy in patients hospitalized with AIDS. This is the first relate about AIDS patients monitoring in a public hospital in São Luís concerning the precise identification and establishing of

  1. ANTIFUNGAL PROPHYLAXIS IN IMMUNOCOMPROMISED PATIENTS

    Directory of Open Access Journals (Sweden)

    Lourdes Vazquez

    2016-09-01

    Full Text Available Invasive fungal infections (IFIs represent significant complications in patients with hematological malignancies. Chemoprevention of IFIs may be important in this setting, but most antifungal drugs have demonstrated poor efficacy, particularly in the prevention of invasive aspergillosis. Antifungal prophylaxis in hematological patients is currently regarded as the gold standard in situations with a high risk of infection, such as acute leukemia, myelodysplastic syndromes, and autologous or allogeneic hematopoietic stem cell transplantation. Over the years, various scientific societies have established a series of recommendations for antifungal prophylaxis based on prospective studies performed with different drugs. However, the prescription of each agent must be personalized, adapting its administration to the characteristics of individual patients and taking into account possible interactions with concomitant medication.

  2. Cost-effectiveness of posaconazole versus fluconazole or itraconazole in the prevention of invasive fungal infections among high-risk neutropenic patients in Spain

    Directory of Open Access Journals (Sweden)

    Grau Santiago

    2012-04-01

    Full Text Available Abstract Background We evaluated the cost-effectiveness of posaconazole compared with standard azole therapy (SAT; fluconazole or itraconazole for the prevention of invasive fungal infections (IFI and the reduction of overall mortality in high-risk neutropenic patients with acute myelogenous leukaemia (AML or myelodysplastic syndromes (MDS. The perspective was that of the Spanish National Health Service (NHS. Methods A decision-analytic model, based on a randomised phase III trial, was used to predict IFI avoided, life-years saved (LYS, total costs, and incremental cost-effectiveness ratio (ICER; incremental cost per LYS over patients' lifetime horizon. Data for the analyses included life expectancy, procedures, and costs associated with IFI and the drugs (in euros at November 2009 values which were obtained from the published literature and opinions of an expert committee. A probabilistic sensitivity analysis (PAS was performed. Results Posaconazole was associated with fewer IFI (0.05 versus 0.11, increased LYS (2.52 versus 2.43, and significantly lower costs excluding costs of the underlying condition (€6,121 versus €7,928 per patient relative to SAT. There is an 85% probability that posaconazole is a cost-saving strategy compared to SAT and a 97% probability that the ICER for posaconazole relative to SAT is below the cost per LYS threshold of €30,000 currently accepted in Spain. Conclusions Posaconazole is a cost-saving prophylactic strategy (lower costs and greater efficacy compared with fluconazole or itraconazole in high-risk neutropenic patients.

  3. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis

    OpenAIRE

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-01-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 ...

  4. Hyperthermia sensitizes Rhizopus oryzae to posaconazole and itraconazole action through apoptosis.

    Science.gov (United States)

    Shirazi, Fazal; Pontikos, Michael A; Walsh, Thomas J; Albert, Nathaniel; Lewis, Russell E; Kontoyiannis, Dimitrios P

    2013-09-01

    The high mortality rate of mucormycosis with currently available monotherapy has created interest in studying novel strategies for antifungal agents. With the exception of amphotericin B (AMB), the triazoles (posaconazole [PCZ] and itraconazole [ICZ]) are fungistatic in vitro against Rhizopus oryzae . We hypothesized that growth at a high temperature (42°C) results in fungicidal activity of PCZ and ICZ that is mediated through apoptosis. R. oryzae had high MIC values for PCZ and ICZ (16 to 64 μg/ml) at 25°C; in contrast, the MICs for PCZ and ICZ were significantly lower at 37°C (8 to 16 μg/ml) and 42°C (0.25 to 1 μg/ml). Furthermore, PCZ and ICZ dose-dependent inhibition of germination was more pronounced at 42°C than at 37°C. In addition, intracellular reactive oxygen species (ROS) increased significantly when fungi were exposed to antifungals at 42°C. Characteristic cellular changes of apoptosis in R. oryzae were induced by the accumulation of intracellular reactive oxygen species. Cells treated with PCZ or ICZ in combination with hyperthermia (42°C) exhibited characteristic markers of early apoptosis: phosphatidylserine externalization visualized by annexin V staining, membrane depolarization visualized by bis-[1,3-dibutylbarbituric acid] trimethine oxonol (DiBAC) staining, and increased metacaspase activity. Moreover, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay and DAPI (4',6-diamidino-2-phenylindole) staining demonstrated DNA fragmentation and condensation, respectively. The addition of N-acetylcysteine increased fungal survival, prevented apoptosis, reduced ROS accumulation, and decreased metacaspase activation. We concluded that hyperthermia, either alone or in the presence of PCZ or ICZ, induces apoptosis in R. oryzae. Local thermal delivery could be a therapeutically useful adjunct strategy for these refractory infections.

  5. Early State Research on Antifungal Natural Products

    Directory of Open Access Journals (Sweden)

    Melyssa Negri

    2014-03-01

    Full Text Available Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates.

  6. Increased inhibition of cytochrome P450 3A4 with the tablet formulation of posaconazole.

    Science.gov (United States)

    Petitcollin, A; Crochette, R; Tron, C; Verdier, M-C; Boglione-Kerrien, C; Vigneau, C; Bellissant, E; Lemaitre, F

    2016-10-01

    Being a substrate of the cytochrome P450 3A4 (CYP3A4) isoenzyme, sirolimus metabolism is decreased when posaconazole is administered concomitantly. However, because of the poor bioavailability of the oral suspension of posaconazole with which low plasma concentrations are obtained, CYP3A4 inhibition is weak and a 50-75% dose reduction of sirolimus is sufficient to avoid sirolimus overdosage. The new tablet formulation allows reaching posaconazole concentrations 3-4 fold higher than those obtained with the oral suspension. Based on a case of sirolimus overdosage following posaconazole tablets administration, we modelled the inhibition of sirolimus clearance by posaconazole, and then simulated several dosage regimens of sirolimus taken together with posaconazole tablets. We were able to describe well the interaction, and found a value of IC50 of posaconazole towards sirolimus clearance of 0.68 μg/mL. The simulations showed that even a 80% decrease of the daily dose of sirolimus is unsuitable in many cases with trough concentrations of posaconazole of 2 μg/mL. A decrease of 40% of the dose with spacing administrations of 3 days may be considered. The clinicians and pharmacologists must be warned that the use of posaconazole tablets may result in an inhibition of CYP3A4 of greater magnitude than with the oral suspension.

  7. 2010~2012年我院深部抗真菌药使用情况分析%Analysis of deep antifungal drugs in Shidong hospital from 2010 to 2012

    Institute of Scientific and Technical Information of China (English)

    毛亚佩; 李婷; 卫英

    2014-01-01

    Objective To evaluate the utilization of deep antifungal drugs in our hospital,so as to provide evidence for the effective management of medication. Methods The defined daily dose (DDD) was used as the unit.The usage figure and consumption sum of deep antifungal drugs,DDC,DUI and AUD were analyzed in our hospital from 2010 to 2012. Results The kinds, usage figure and consumption sum of deep antifungal drugs were increasing over the 3 years.The consumption sum of Fluconazole was accounted for more than 70% of all deep antifungal drugs in three years.And the antibiotics use densities (AUD) of deep antifungal drugs presented clearly growing trend. Conclusion In order to promote the rational use of deep antifungal drugs,the causes should be further analyzed.%目的:对我院深部抗真菌药物的使用情况进行统计与评价,为临床合理用药和有效管理提供参考。方法使用限定日剂量(DDD)作为分析单位,计算累积DDDs,并以此为基础对2010~2012年我院(二级甲等)住院患者的深部抗真菌药物用药数量与金额、日均费用(DDC)、药物利用指数(DUI)、药物使用强度(AUD)进行统计计算。结果我院深部抗真菌药品种、使用数量和销售金额均呈逐年上升趋势。氟康唑是治疗深部真菌感染的主要药品。深部抗真菌药的用药强度逐年增长趋势明显。结论为促进抗菌药物合理应用,需进一步分析原因,加强监控。

  8. Lenghty reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) polymeric micelles and gels for sustained release of antifungal drugs.

    Science.gov (United States)

    Figueroa-Ochoa, Edgar B; Villar-Alvarez, Eva M; Cambón, Adriana; Mistry, Dharmista; Llovo, José; Attwood, David; Barbosa, Silvia; Soltero, J F Armando; Taboada, Pablo

    2016-08-20

    In this work, we present a detailed study of the potential application of polymeric micelles and gels of four different reverse triblock poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) copolymers (BOnEOmBOn, where n denotes the respective block lengths), specifically BO8EO90BO8, BO14EO378BO14, BO20EO411BO20 and BO21EO385BO21, as effective drug transport nanocarriers. In particular, we tested the use of this kind of polymeric nanostructures as reservoirs for the sustained delivery of the antifungals griseofulvin and fluconazole for oral and topical administration. Polymeric micelles and gels formed by these copolymers were shown to solubilize important amounts of these two drugs and to have a good stability in physiologically relevant conditions for oral or topical administration. These polymeric micellar nanocarriers were able to release drugs in a sustained manner, being the release rate slower as the copolymer chain hydrophobicity increased. Different sustained drug release profiles were observed depending on the medium conditions. Gel nanocarriers were shown to display longer sustained release rates than micellar formulations, with the existence of a pulsatile-like release mode under certain solution conditions as a result of their inner network structure. Certain bioadhesive properties were observed for the polymeric physical gels, being moderately tuned by the length and hydrophobicity of the polymeric chains. Furthermore, polymeric gels and micelles showed activity against the yeast Candida albicans and the mould demartophytes (Trichophyton rubrum and Microsporum canis) and, thus, may be useful for the treatment of different cutaneous fungal infections.

  9. Design or screening of drugs for the treatment of Chagas disease: what shows the most promise?

    Science.gov (United States)

    Lepesheva, Galina I.

    2013-01-01

    Introduction Endemic in Latin America, Chagas disease is now becoming a serious global health problem, and yet has no financial viability for the pharmaceutical industry and remains incurable. In 2012, two antimycotic drugs inhibitors of fungal sterol 14α-demethylase (CYP51) – posaconazole and ravuconazole – entered clinical trials. Availability of the X-ray structure of the orthologous enzyme from the causative agent of the disease, protozoan parasite Trypanosoma cruzi, determined in complexes with posaconazole as well as with several experimental protozoa-specific CYP51 inhibitors opens an excellent opportunity to improve the situation. Areas covered This article summarizes the information available in PubMed and Google on the outcomes of treatment of the chronic Chagas disease. It also outlines the major features of the T. cruzi CYP51 structure and the possible structure-based strategies for rational design of novel T. cruzi specific drugs. Expert opinion There is no doubt that screenings for alternative drug-like molecules as well as mining the T. cruzi genome for novel drug targets are of great value and might eventually lead to groundbreaking discoveries. However, all newly identified molecules must proceed through the long, expensive and low-yielding drug optimization process, and all novel potential drug targets must be validated in terms of their essentiality and druggability. CYP51 is already a well-validated and highly successful target for clinical and agricultural antifungals. With minimal investments into the final stages of their development/trials, T. cruzi-specific CYP51 inhibitors can provide an immediate treatment for Chagas disease, either on their own or in combination with the currently available drugs. PMID:24079515

  10. Response surface methodology in drug design: A case study on docking analysis of a potent antifungal fluconazole.

    Science.gov (United States)

    Bohlooli, Fatemeh; Sepehri, Saghi; Razzaghi-Asl, Nima

    2017-04-01

    Molecular docking is a valuable in silico technique for discovery/design of bioactive compounds. A current challenge within docking simulations is the incorporation of receptor flexibility. A useful strategy toward solving such problem would be the docking of a typical ligand into the multiple conformations of the target. In this study, a multifactor response surface model was constructed to estimate the AutoDock based binding free energy of fluconazole within multiple conformations of 14α-demethylase (CYP51) (cross docking) as a validated antifungal target. On the basis of developed models, individual and interactive effects of important experimental parameters on cross docking of fluconazole were elucidated. For this purpose, a set of high-resolution holo crystallographic structures from CYP51 of human pathogen Trypanosoma cruzi were retrieved to statistically model the binding mode and affinity of fluconazole. The changes of AutoDock binding free energy for the complexes of CYP51-fluconazole were elucidated with the simultaneous variations of six independent variables including grid size, grid spacing, number of genetic algorithm (GA) runs, maximum number of energy evaluations, torsion degrees for ligand and quaternion degrees for ligand. It was revealed that grid spacing (distance between adjacent grid points) and maximum number of energy evaluations were two significant model terms. It was also revealed that grid size, torsion degrees for ligand and quaternion degrees for ligand had insignificant effects on estimated binding energy while the effect of GA runs was non-significant. The interactive effect of "torsion degrees for ligand" with number of GA runs was found to be the significant factor. Other important interactive effects were the interaction of "number of GA runs" with "grid spacing" and "number of energy evaluations" with "grid size". Furthermore; results of modeling studies within several CYP51 conformations exhibited that "number of GA runs" and

  11. Synthesis of Antifungal Drug Amorolfine Hydrochloride%抗真菌药盐酸阿莫罗芬的合成研究

    Institute of Scientific and Technical Information of China (English)

    王兴旺; 张珩; 杨艺虹; 张秀兰; 曾威

    2012-01-01

    Antifungal drug amorolfine hydrochloride was synthesized starting from formaldehyde and propanal via the processes of Mannich reaction, Friedel -Crafts reaction, saponification, condensation, reduction and salification. The affecting factors including the ratio of the raw materials, the reaction time, the reaction temperature and the catalyst were investigated. The product was prepared in an overall yield of 30.97%, and the structure was confirmed with IR, GC-MS and 'H NMR.%以甲醛和丙醛为原料,经Mannich反应、Friedel-Crafts烷基化、Saponification反应、缩合、还原、成盐反应合成抗真菌药盐酸阿莫罗芬.对影响收率的原料配比、反应时间、反应温度和催化剂等因素进行了工艺优化.通过IR、GC-MS、1H NMR确证了盐酸阿莫罗芬结构.其工艺简单、原料易得、条件温和、操作简便,总收率达30.97%(以丙醛计),具有工业化应用前景.

  12. Antifungal susceptibility of oral Candida species among drug abusers%吸毒人群口腔假丝酵母药物敏感性分析

    Institute of Scientific and Technical Information of China (English)

    袁有华; 白丽; 武有聪; 钱金栿; 刘奇; 郭利军

    2011-01-01

    目的 了解吸毒人群口腔假丝酵母对常用抗真菌药物的敏感性,为临床治疗假丝酵母病提供参考资料.方法 采用美国临床标准化实验委员会推荐的微量稀释法测定75株假丝酵母对4种常用抗真菌药物两性霉素B(Amb)、5-氟胞嘧啶(5-FC)、氟康唑(FCZ)和酮康唑(KETO)的药物敏感性.结果 75株吸毒人群口腔假丝酵母对Amb、5-FC、FCZ和KETO的耐药率分别为0、4%、8%和13.3%;对FCZ和KETO的交叉耐药率为8%;非白色假丝酵母对FCZ的耐药率为23.5%,对KETO的耐药率为43.2%,高于白色假丝酵母的3.45%和5.2%,差异有统计学意义(P<0.05),2种假丝酵母对5-FC和Amb的耐药率差异无统计学意义.结论 吸毒人群口腔假丝酵母对Amb和5-FC的敏感性高于对FCZ和KETO;口腔假丝酵母对FCZ、KETO和5-FC有天然耐药株和对唑类药物的天然交叉耐药株,且非白色假丝酵母对FCZ和KETO的耐药率及交叉耐药率高于白色假丝酵母.%Objective To examine the antifungal susceptibility of oral Candida species among drug abusers and to provide reference for treatment of candidasis in clinic. Methods Totally 75 oral Candida species were tested for susceptibility of amphotericine B( Amb) ,5-flurocytosine(5-FC) ,fluconazole( FCZ) ,and ketonazole( KETO) with microdilution antifungal susceptibility test recommended by National Committee for Clinical Laboratory Standards ( NCCLS). Results The resistant rate of 75 oral Candida species from drug abusers for Amb,5-FC,FCZ,and KETO was 0,4% ,8% ,and 13.3% , respectively. The crosswise resistant rate of the strains for FCZ and KETO was 8%. The resistant rates of nan-Candida albicans to FCZ(23.5% ) and KETO(43. 2% ) were higher than those of Candida albicans with a significant difference. But the resistant rates to 5-FC and Amb were not significantly different for the two Candidas groups. Conclusion The susceptibility of oral Candida species from drug abusers for Amb and 5-FC is higher

  13. In Vitro Activity of the Antifungal Azoles Itraconazole and Posaconazole against Leishmania amazonensis

    OpenAIRE

    Sara Teixeira de Macedo-Silva; Urbina, Julio A; Wanderley de Souza; Juliany Cola Fernandes Rodrigues

    2013-01-01

    Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is a...

  14. Quality Control Guidelines for Amphotericin B, Itraconazole, Posaconazole, and Voriconazole Disk Diffusion Susceptibility Tests with Nonsupplemented Mueller-Hinton Agar (CLSI M51-A Document) for Nondermatophyte Filamentous Fungi▿

    Science.gov (United States)

    Espinel-Ingroff, A.; Canton, E.; Fothergill, A.; Ghannoum, M.; Johnson, E.; Jones, R. N.; Ostrosky-Zeichner, L.; Schell, W.; Gibbs, D. L.; Wang, A.; Turnidge, J.

    2011-01-01

    Although Clinical and Laboratory Standards Institute (CLSI) disk diffusion assay standard conditions are available for susceptibility testing of filamentous fungi (molds) to antifungal agents, quality control (QC) disk diffusion zone diameter ranges have not been established. This multicenter study documented the reproducibility of tests for one isolate each of five molds (Paecilomyces variotii ATCC MYA-3630, Aspergillus fumigatus ATCC MYA-3626, A. flavus ATCC MYA-3631, A. terreus ATCC MYA-3633, and Fusarium verticillioides [moniliforme] ATCC MYA-3629) and Candida krusei ATCC 6258 by the CLSI disk diffusion method (M51-A document). The zone diameter ranges for selected QC isolates were as follows: P. variotii ATCC MYA-3630, amphotericin B (15 to 24 mm), itraconazole (20 to 31 mm), and posaconazole (33 to 43 mm); A. fumigatus ATCC MYA-3626, amphotericin B (18 to 25 mm), itraconazole (11 to 21 mm), posaconazole (28 to 35 mm), and voriconazole (25 to 33 mm); and C. krusei, amphotericin B (18 to 27 mm), itraconazole (18 to 26 mm), posaconazole (28 to 38 mm), and voriconazole (29 to 39 mm). Due to low testing reproducibility, zone diameter ranges were not proposed for the other three molds. PMID:21543581

  15. Disseminated Mucormycosis With Cerebral Involvement Owing to Rhizopus Microsporus in a Kidney Recipient Treated With Combined Liposomal Amphotericin B and Posaconazole Therapy.

    Science.gov (United States)

    Ville, Simon; Talarmin, Jean Philippe; Gaultier-Lintia, Alina; Bouquié, Régis; Sagan, Christine; Le Pape, Patrice; Giral, Magali; Morio, Florent

    2016-02-01

    Three months after a kidney transplant, a man experienced an internuclear ophthalmoplegia. Magnetic resonance imaging found a punctuate hyperintensity of the brainstem. Afterwards, the patient presented with peripheral facial paralysis. A complete morphologic assessment showed an increase of the brainstem lesion, together with an excavated pulmonary nodule. Combination therapy with high-dose liposomal amphotericin B and voriconazole was begun for the putative aspergillosis. Owing to its atypical clinical presentation and negative detection of Aspergillus galactomannan antigen on sera, a biopsy specimen of the lung lesion was obtained. Histopathological and mycological investigations allowed the diagnosis of mucormycosis owing to Rhizopus microsporus. Accordingly, voriconazole was replaced with posaconazole. After 5 months, regression of the cerebral lesion was noted. Disseminated mucormycosis in solid-organ recipients is uncommon and mycological diagnosis is challenging. Mortality is high and is increased by diagnostic delay. Treating mucormycosis requires surgical debridement and appropriate antifungal therapy (usually intravenous liposomal amphotericin B). This report suggests that a combination of liposomal amphotericin B and posaconazole can be a therapeutic option in patients with a poor prognosis.

  16. Primary or secondary antifungal prophylaxis in patients with hematological maligancies: efficacy and damage

    Directory of Open Access Journals (Sweden)

    Gedik H

    2014-04-01

    Full Text Available Habip Gedik,1 Funda Şimşek,1 Taner Yildirmak,1 Arzu Kantürk,1 Deniz Arica,2 Demet Aydin,2 Naciye Demirel,2 Osman Yokuş21Department of Infectious Diseases and Clinical Microbiology, 2Department of Hematology, Ministry of Health Okmeydani Training and Research Hospital, İstanbul, TurkeyBackground: Patients with hematological malignancies often develop febrile neutropenia (FN as a complication of cancer chemotherapy. Primary or secondary antifungal prophylaxis is recommended for patients with hematological malignancies to reduce the risk of invasive fungal infection (IFI. This study retrospectively evaluated the efficacy and potential harm of administration of primary and secondary antifungal prophylaxis to patients with hematological malignancies at one hospital.Methods: All patients with hematological malignancies older than 14 years of age who had experienced at least one FN attack during chemotherapy while being treated at one hospital between November 2010 and November 2012 were retrospectively evaluated.Results: A total of 282 FN episodes in 126 consecutive patients were examined during a 2-year study period. The mean patient age was 51.73±14.4 years (range: 17–82 years, and 66 patients were male. Primary prophylaxis with posaconazole was administered to 13 patients and systemic antifungal treatment under induction or consolidation chemotherapy to seven patients. Of 26 patients who received secondary antifungal prophylaxis with either oral voriconazole (n=17 or posaconazole (n=6 during 46 FN episodes, systemic antifungal therapy was administered in 16 of 38 episodes and three of eight episodes, respectively. Secondary antifungal prophylaxis with caspofungin was found effective in treating six FN episodes in three patients who had experienced at least two persistent candidemia attacks. The mortality rates associated with IFI were 9% in the first year, 2% in the second year, and 6% overall. The mortality rates associated with candidemia

  17. Fluconazole and Echinocandin Resistance of Candida glabrata Correlates Better with Antifungal Drug Exposure Rather than with MSH2 Mutator Genotype in a French Cohort of Patients Harboring Low Rates of Resistance

    Science.gov (United States)

    Dellière, Sarah; Healey, Kelley; Gits-Muselli, Maud; Carrara, Bastien; Barbaro, Alessandro; Guigue, Nicolas; Lecefel, Christophe; Touratier, Sophie; Desnos-Ollivier, Marie; Perlin, David S.; Bretagne, Stéphane; Alanio, Alexandre

    2016-01-01

    Candida glabrata is a major pathogenic yeast in humans that is known to rapidly acquire resistance to triazole and echinocandin antifungal drugs. A mutator genotype (MSH2 polymorphism) inducing a mismatch repair defect has been recently proposed to be responsible for resistance acquisition in C. glabrata clinical isolates. Our objectives were to evaluate the prevalence of antifungal resistance in a large cohort of patients in Saint-Louis hospital, Paris, France, some of whom were pre-exposed to antifungal drugs, as well as to determine whether MSH2 polymorphisms are associated with an increased rate of fluconazole or echinocandin resistance. We collected 268 isolates from 147 patients along with clinical data and previous antifungal exposure. Fluconazole and micafungin minimal inhibition concentrations (MICs) were tested, short tandem repeat genotyping was performed, and the MSH2 gene was sequenced. According to the European Committee on Antimicrobial Susceptibility breakpoints, 15.7% of isolates were resistant to fluconazole (MIC > 32 mg/L) and 0.7% were resistant to micafungin (MIC > 0.03 mg/L). A non-synonymous mutation within MSH2 occurred in 44% of the isolates, and 17% were fluconazole resistant. In comparison, fluconazole resistant isolates with no MSH2 mutation represented 15% (P = 0.65). MSH2 polymorphisms were associated with the short tandem repeat genotype. The rate of echinocandin resistance is low and correlates with prior exposure to echinocandin. The mutator genotype was not associated with enrichment in fluconazole resistance but instead corresponded to rare and specific genotypes. PMID:28066361

  18. Stability-Indicating HPLC Method for Posaconazole Bulk Assay

    OpenAIRE

    GARCIA, Cássia; COSTA, Gislaine; MENDEZ, Andreas

    2012-01-01

    A stability-indicating liquid chromatographic (LC) method was developed for the determination of posaconazole in bulk. Chromatographic separation was achieved using an isocratic elution in a reversed-phase system, with a mobile phase composed of methanol-water (75:25, v/v), at 1.0 mL min−1 flow. Samples were exposed to degradation under thermal, oxidative and acid/basic conditions, and no interference in the analysis was observed. System suitability was evaluated and results were satisfactory...

  19. Superior Serum Concentrations with Posaconazole Delayed-Release Tablets Compared to Suspension Formulation in Hematological Malignancies.

    Science.gov (United States)

    Cumpston, Aaron; Caddell, Ryan; Shillingburg, Alexandra; Lu, Xiaoxiao; Wen, Sijin; Hamadani, Mehdi; Craig, Michael; Kanate, Abraham S

    2015-08-01

    Posaconazole (PCZ), approved for prophylaxis against invasive fungal disease in high-risk patients, is commercially available orally as a suspension formulation (PCZ-susp) and as a delayed-release tablet (PCZ-tab). We evaluated the serum steady-state concentrations (Css) of PCZ stratified by the administered formulation for antifungal prophylaxis in patients with myeloid malignancies (n = 150). The primary outcome was the attainment rate of the target Css of ≥700 ng/ml. Secondary outcomes included toxicity assessment (hepatotoxicity and corrected QT [QTc] interval prolongation) and breakthrough fungal infections. Patients who received the PCZ-susp (n = 118) or PCZ-tab (n = 32) and had PCZ Css assessment after at least 7 days of therapy were eligible. The median Css in the PCZ-susp group was 390 ng/ml (range, 51 to 1,870 ng/ml; mean, 436 ng/ml) compared to 1,740 ng/ml (range, 662 to 3,350 ng/ml; mean, 1,781 ng/ml) in the PCZ-tab group (P < 0.0001). The percentages of patients achieving the target goal of ≥700 ng/ml were 17% versus 97%, respectively (P < 0.0001). Hepatotoxicity (grade 2 or higher) occurred in 1 patient in each group. QTc interval measurements were available for 32 patients in the PCZ-susp group and for 12 patients in the PCZ-tab group, and prolonged intervals of grade 2 or higher were noted in 9% (n = 3) and 17% (n = 2), respectively (P = 0.6). Breakthrough fungal infections in the PCZ-susp and PCZ-tab groups were 7% (n = 8) and 3% (n = 1), respectively (P = 0.68). We conclude that the use of PCZ-tab was associated with higher Css and with the probability of achieving therapeutic goals without worsening of adverse effects.

  20. Susceptibilidad "in vitro" de cepas de Cryptococcus a 5 drogas antifungicas "In vitro" susceptibility of Cryptococcus strains to 5 antifungal drugs

    Directory of Open Access Journals (Sweden)

    A. J. Bava

    1989-10-01

    Full Text Available Se estudió la susceptibilidad "in vitro" de 24 cepas de 3 especies del género Cryptococcus a 5 drogas antifúngicas (anfotericina B, 5 fluorocitosina, ketoconazol, itraconazol y miconazol. Las mismas se agruparon según su especie, variedad y origen de aislamiento. Para determinar la concentración inhibitoria mínima (C.I.M. de cada droga se empleó el método de dilución en agar con el medio básico nitrogenado para levaduras, adicionado de glucosa. Se obtuvo además la media geométrica de estos valores para cada grupo y se comparó cada uno de ellos. Los resultados obtenidos fueron homogéneos con la sola excepción de las cepas de Cryptococcus sp (no neoformans, en las cuales se detectaron elevados valores de C.I.M. para la 5 fluorocitosina.A comparative study of the "in vitro" susceptibility of 24 Cryptococcus strains to 5 antifungal drugs (amphotericin B, 5 fluorocytosine, miconazole, itraconazole and ketoconazole, was carried out. These strains were grouped according to species, varieties and isolation's origins. The minimum inhibitory concentration (M.I.C. was determinated by the agar dilution technique in yeast nitrogen base agar with dextrose. The mean geometrical of the M.I.C. values of each group was compared with the others. The results obtained were homogeneous with the only exception of the "non neoformans" strains, in which, higher M.I.C. to 5 fluorocytosine values were detected.

  1. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  2. Survey on drug resistance of Candida to common antifungal drugs%念珠菌对临床常用抗真菌药物的耐药性分析

    Institute of Scientific and Technical Information of China (English)

    张丽君; 王博

    2012-01-01

    Objective To study the drug resistance of Candida to commonly used antifungal drugs and to survey the distribution of Candida infection in this area. Methods By using Candida color culture medium for cultivation and identification of Candida, and K - B method was used for drug sensitivity testing. Results The specimens from respiratory tract of 267 cases of Candida infection accounted for 70. 8% , urine specimens accounted for 16.9% , pus specimens for 6. 4% , pleural effusion and ascites for 3. 4% , cerebrospinal fluid for 0.7% and blood samples for 1.9%. Among species distribution, Candida albicans accounted for 61. 4% , Candida tropicalis accounted for 10. 9% , Candida krusei accounted for 6.4%, Candida glabrata accounted for 8. 6% , and other species of Candida accounted for 12.7% . The rate of resistance was 1. 1 % to ampho-tericinB, 13.1% to 5 - fluorocytosine, 46. 4% to itraconazole, 48. 3% to fluconazole and 34. 8% to ketoconazole. Conclusion The incidence of infection with Candida is in rising tendency, distribution of species and manifestations in drug resistance are different, hence clinical medication should be based on drug sensitivity test for rational application of antifungal drugs.%目的 研究本地区念珠菌感染构成及对临床常用抗真菌药物的耐药情况.方法 使用念珠菌显色培养基对念珠菌进行培养鉴定,并用现行纸片扩散法(K-B法)进行药敏实验.结果 267例念珠菌感染中呼吸道标本占70.8%、尿液占16.9%,脓液6.4%,胸腹水3.4%,脑脊液0.7%,血液1.9%;菌种分布分别为白色念珠菌占61.4%,热带念珠菌占10.9%,克柔念珠菌占6.4%,光滑念珠菌占8.6%,其他念珠菌占12.7%;耐药情况分别为两性霉素B耐药性1.1%,5-氟胞嘧啶13.1%,依曲康唑46.4%,氟康唑48.3%,酮康唑34.8%.结论 念珠菌的感染呈上升态势,菌种分布及耐药性表现均不同,临床上应根据药敏实验合理使用抗真菌药物.

  3. Isavuconazole, micafungin, and 8 comparator antifungal agents' susceptibility profiles for common and uncommon opportunistic fungi collected in 2013: temporal analysis of antifungal drug resistance using CLSI species-specific clinical breakpoints and proposed epidemiological cutoff values.

    Science.gov (United States)

    Pfaller, M A; Rhomberg, P R; Messer, S A; Jones, R N; Castanheira, M

    2015-08-01

    The in vitro activities of isavuconazole, micafungin, and 8 comparator antifungal agents were determined for 1613 clinical isolates of fungi (1320 isolates of Candida spp., 155 of Aspergillus spp., 103 of non-Candida yeasts, and 35 non-Aspergillus molds) collected during a global survey conducted in 2013. The vast majority of the isolates of the 21 different species of Candida, with the exception of Candida glabrata (MIC90, 2 μg/mL), Candida krusei (MIC90, 1 μg/mL), and Candida guilliermondii (MIC90, 8 μg/mL), were inhibited by ≤0.25 μg/mL of isavuconazole. C. glabrata and C. krusei were largely inhibited by ≤1 μg/mL of isavuconazole. Resistance to fluconazole was seen in 0.5% of Candida albicans isolates, 11.1% of C. glabrata isolates, 2.5% of Candida parapsilosis isolates, 4.5% of Candida tropicalis isolates, and 20.0% of C. guilliermondii isolates. Resistance to the echinocandins was restricted to C. glabrata (1.3-2.1%) and C. tropicalis (0.9-1.8%). All agents except for the echinocandins were active against 69 Cryptococcus neoformans isolates, and the triazoles, including isavuconazole, were active against the other yeasts. Both the mold active triazoles as well as the echinocandins were active against 155 Aspergillus spp. isolates belonging to 10 species/species complex. In general, there was low resistance levels to the available systemically active antifungal agents in a large, contemporary (2013), global collection of molecularly characterized yeasts and molds. Resistance to azoles and echinocandins was most prominent among isolates of C. glabrata, C. tropicalis, and C. guilliermondii.

  4. In Vitro and In Vivo Efficacy of Amphotericin B Combined with Posaconazole against Experimental Disseminated Sporotrichosis

    Science.gov (United States)

    Mario, Débora Nunes; Guarro, Josep; Santurio, Janio Morais; Alves, Sydney Hartz

    2015-01-01

    We evaluated the combination of posaconazole with amphotericin B in vitro and in a murine model of systemic infections caused by Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. In vitro data demonstrated a synergistic effect, and although posaconazole alone was effective against sporotrichosis, efficacy in terms of survival and burden reduction was increased with the combination. This combination might be an option against disseminated sporotrichosis, especially when itraconazole or amphotericin B at optimal doses are contraindicated. PMID:26014930

  5. Antifungal Susceptibility of Candida Biofilms: Unique Efficacy of Amphotericin B Lipid Formulations and Echinocandins

    OpenAIRE

    Kuhn, D M; T. George; CHANDRA, J; P. K. Mukherjee; Ghannoum, M A

    2002-01-01

    Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have ac...

  6. In vitro evaluation of the effects of anti-fungals, benzodiazepines and non-steroidal anti-inflammatory drugs on the glucuronidation of 19-norandrosterone: implications on doping control analysis.

    Science.gov (United States)

    Palermo, Amelia; Alessi, Beatrice; Botrè, Francesco; de la Torre, Xavier; Fiacco, Ilaria; Mazzarino, Monica

    2016-09-01

    We have studied whether the phase II metabolism of 19-norandrosterone, the most representative metabolite of 19-nortestosterone (nandrolone), can be altered in the presence of other drugs that are not presently included on the Prohibited List of the World Anti-Doping Agency. In detail, we have evaluated the effect of non-prohibited drugs belonging to the classes of anti-fungals, benzodiazepines, and non-steroidal anti-inflammatory drugs on the glucuronidation of 19-norandrosterone. In vitro assays based on the use of either pooled human liver microsomes or specific recombinant isoforms of uridine diphosphoglucuronosyl-transferase were designed and performed to monitor the formation of 19-norandrosterone glucuronide from 19-norandrosterone. Determination of 19-norandrosterone (free and conjugated fraction) was performed by gas chromatography - mass spectrometry after sample pretreatment consisting of an enzymatic hydrolysis (performed only for the conjugated fraction), liquid/liquid extraction with tert-butylmethyl ether, and derivatization to form the trimethylsilyl derivative. In parallel, a method based on reversed-phase liquid chromatography coupled to tandem mass spectrometry in positive electrospray ionization with acquisition in selected reaction monitoring mode was also developed to identify the non-prohibited drugs considered in this study. Incubation experiments have preliminarily shown that the glucuronidation of 19-norandrosterone is principally carried out by UGT2B7 (39%) and UGT2B17 (31%). Inhibition studies have shown that the yield of the glucuronidation reaction is reduced in the presence of the anti-fungals itraconazole, ketoconazole, and miconazole, of the benzodiazepine triazolam and of the non-steroidal anti-inflammatory drugs diclofenac and ibuprofen, while no alteration was recorded in the presence of all other compounds considered in this study. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Microdilution in vitro antifungal susceptibility of Exophiala dermatitidis, a systemic opportunist.

    Science.gov (United States)

    Badali, H; de Hoog, G S; Sudhadham, M; Meis, J F

    2011-11-01

    The in vitro activities of eight antifungal agents were determined against clinical (n = 63 genotype A, n = 3 genotype B) and environmental (n = 2 genotype A, n = 13 genotype B) strains of Exophiala dermatitidis. The resulting MIC(90)s for all strains (N = 81) were, in increasing order, as follows: posaconazole, 0.125 μg/ml; itraconazole, 0.25 μg/ml; voriconazole, 0.5 μg/ml; amphotericin B, 0.5 μg/ml; isavuconazole, 1 μ/ml; caspofungin, 8 μg/ml; anidulafungin, 8 μg/ml and fluconazole, 16 μg/ml. There were no significant differences in the patterns of susceptibility between genotypes A and B, environmental and clinical strains, isolates recovered from cutaneous and deep locations and strains from different geographical areas (P > 0.05). The difference in the MIC(90)s between each of these groups was not more than one dilution. The present study demonstrated that, based on in vitro activity, posaconazole and itraconazole have the highest activity against this fungus. In addition, voriconazole and the experimental broad-spectrum antifungal triazole, isavuconazole, both of which are available as intravenous preparations, have adequate activity against E. dermatitidis. However, in vivo efficacy remains to be determined.

  8. High Performance Liquid Chromatographic Assay for the Simultaneous Determination of Posaconazole and Vincristine in Rat Plasma

    Directory of Open Access Journals (Sweden)

    Hadeel A. Khalil

    2015-01-01

    Full Text Available Purpose. Developing a validated HPLC-DAD method for simultaneous determination of posaconazole (PSZ and vincristine (VCR in rat plasma. Methods. PSZ, VCR, and itraconazole (ITZ were extracted from 200 μL plasma using diethyl ether in the presence of 0.1 M sodium hydroxide solution. The organic layer was evaporated in vacuo and dried residue was reconstituted and injected through HC-C18 (4.6 × 250 mm, 5 μm column. In the mobile phase, acetonitrile and 0.015 M potassium dihydrogen orthophosphate (30 : 70 to 80 : 20, linear gradient over 7 minutes pumped at 1.5 mL/min. VCR and PSZ were measured at 220 and 262 nm, respectively. Two Sprague Dawley rats were orally dosed PSZ followed by iv dosing of VCR and serial blood sampling was performed. Results. VCR, PSZ, and ITZ were successfully separated within 11 min. Calibration curves were linear over the range of 50–5000 ng/mL for both drugs. The CV% and % error of the mean were ≤18% and limit of quantitation was 50 ng/mL for both drugs. Rat plasma concentrations of PSZ and VCR were simultaneously measured up to 72 h and their calculated pharmacokinetics parameters were comparable to the literature. Conclusion. The assay was validated as per ICH guidelines and is appropriate for pharmacokinetics drug-drug interaction studies.

  9. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis.

    Science.gov (United States)

    Pfaller, Michael A; Castanheira, Mariana

    2016-01-01

    Candidemia and other forms of candidiasis are associated with considerable excess mortality and costs. Despite the addition of several new antifungal agents with improved spectrum and potency, the frequency of Candida infection and associated mortality have not decreased in the past two decades. The lack of rapid and sensitive diagnostic tests has led to considerable overuse of antifungal agents resulting in increased costs, selection pressure for resistance, unnecessary drug toxicity, and adverse drug interactions. Both the lack of timely diagnostic tests and emergence of antifungal resistance pose considerable problems for antifungal stewardship. Whereas antifungal stewardship with a focus on nosocomial candidiasis should be able to improve the administration of antifungal therapy in terms of drug selection, proper dose and duration, source control and de-escalation therapy, an important parameter, timeliness of antifungal therapy, remains a victim of slow and insensitive diagnostic tests. Fortunately, new proteomic and molecular diagnostic tools are improving the time to species identification and detection. In this review we will describe the potential impact that rapid diagnostic testing and antifungal stewardship can have on the management of nosocomial candidiasis.

  10. Pharmacokinetics and safety study of posaconazole intravenous solution administered peripherally to healthy subjects.

    Science.gov (United States)

    Kersemaekers, Wendy M; van Iersel, Thijs; Nassander, Ulla; O'Mara, Edward; Waskin, Hetty; Caceres, Maria; van Iersel, Marlou L P S

    2015-02-01

    This study evaluated the safety, tolerability, and pharmacokinetics of a posaconazole i.v. (intravenous) solution. This was a single-center, 2-part, randomized, rising single- and multiple-dose study in healthy adults. In part 1, subjects received 0 (vehicle), 50, 100, 200, 250, or 300 mg posaconazole in a single dose i.v. by 30-min peripheral infusion (6 cohorts of 12 subjects each [9 active and 3 placebo], making a total of 72 subjects). Blood samples were collected until 168 h postdose. In part 2, subjects were to receive 2 peripheral infusions at a 12-h interval on day 1 followed by once-daily infusion for 9 days. However, part 2 was terminated early because of high rates of infusion site reactions with multiple dosing at the same infusion site. The pharmacokinetics results for part 1 (n=45 subjects) showed that the mean posaconazole exposure (area under the concentration-time curve from time zero to infinity [AUC0-∞]) ranged from 4,890 to 46,400 ng · h/ml (range of coefficient of variation values, 26 to 50). The dose-proportionality slope estimate (90% confidence interval) for AUC0-∞ was 1.30 (1.19 to 1.41), indicating a greater-than-dose-proportional increase. The data for safety in part 1 show that 29/72 subjects had ≥1 adverse event. Infusion site reactions were reported in 2/9 vehicle subjects, 0/18 placebo subjects, and 7/45 i.v. posaconazole subjects. The data for safety in part 2 show that infusion site reactions were reported in 1/4 (25%) placebo subjects, 3/9 (33%) vehicle control subjects, and 4/5 (80%) i.v. posaconazole (100 mg) subjects (3 posaconazole recipients subsequently developed thrombophlebitis and were discontinued from treatment). In conclusion, the posaconazole i.v. solution showed a greater-than-dose-proportional increase in exposure, primarily at doses below 200 mg. When administered peripherally at the same infusion site, multiple dosing of i.v. posaconazole led to unacceptably high rates of infusion site reactions. Intravenous

  11. Economic Evaluation of Posaconazole Versus Standard Azole Therapy as Prophylaxis against Invasive Fungal Infections in Patients with Prolonged Neutropenia in Canada

    Directory of Open Access Journals (Sweden)

    Amir A Tahami Monfared

    2012-01-01

    Full Text Available INTRODUCTION: Posaconazole prophylaxis in high-risk neutropenic patients prevents invasive fungal infection (IFI. An economic model was used to assess the cost effectiveness of posaconazole from a Canadian health care system perspective.

  12. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans

    OpenAIRE

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of d...

  13. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy.

    Science.gov (United States)

    Mast, Natalia; Lin, Joseph B; Pikuleva, Irina A

    2015-09-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification.

  14. Detection of Posaconazole by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Dispersive Liquid-Liquid Microextraction

    Science.gov (United States)

    Lin, Sheng-Yu; Chen, Pin-Shiuan; Chang, Sarah Y.

    2015-03-01

    A simple, rapid, and sensitive method for the detection of posaconazole using dispersive liquid-liquid microextraction (DLLME) coupled to surface-assisted laser desorption/ionization mass spectrometric detection (SALDI/MS) was developed. After the DLLME, posaconazole was detected using SALDI/MS with colloidal gold and α-cyano-4-hydroxycinnamic acid (CHCA) as the co-matrix. Under optimal extraction and detection conditions, the calibration curve, which ranged from 1.0 to 100.0 nM for posaconazole, was observed to be linear. The limit of detection (LOD) at a signal-to-noise ratio of 3 was 0.3 nM for posaconazole. This novel method was successfully applied to the determination of posaconazole in human urine samples.

  15. Comparison of the Broth Microdilution (BMD) Method of the European Committee on Antimicrobial Susceptibility Testing with the 24-Hour CLSI BMD Method for Testing Susceptibility of Candida Species to Fluconazole, Posaconazole, and Voriconazole by Use of Epidemiological Cutoff Values▿

    Science.gov (United States)

    Pfaller, M. A.; Espinel-Ingroff, A.; Boyken, L.; Hollis, R. J.; Kroeger, J.; Messer, S. A.; Tendolkar, S.; Diekema, D. J.

    2011-01-01

    The antifungal broth microdilution (BMD) method of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) was compared with CLSI BMD method M27-A3 for fluconazole, posaconazole, and voriconazole susceptibility testing of 1,056 isolates of Candida. The isolates were obtained in 2009 from more than 60 centers worldwide and included 560 isolates of C. albicans, 175 of C. glabrata, 162 of C. parapsilosis, 124 of C. tropicalis, and 35 of C. krusei. The overall essential agreement (EA) between EUCAST and CLSI results ranged from 96.9% (voriconazole) to 98.6% (fluconazole). The categorical agreement (CA) between methods and species of Candida was assessed using previously determined epidemiological cutoff values (ECVs). The ECVs (expressed as μg/ml) for fluconazole, posaconazole, and voriconazole, respectively, were as follows: 0.12, 0.06, and 0.03 for C. albicans; 32, 2, and 0.5 for C. glabrata; 2, 0.25, and 0.12 for C. parapsilosis; 2, 0.12, and 0.06 for C. tropicalis; 64, 0.5, and 0.5 for C. krusei. Excellent CA was observed for all comparisons between the EUCAST and CLSI results for fluconazole, posaconazole, and voriconazole, respectively, for each species: 98.9%, 93.6%, and 98.6% for C. albicans; 96.0%, 98.9%, and 93.7% for C. glabrata; 90.8%, 98.1%, and 98.1% for C. parapsilosis; 99.2%, 99.2%, and 96.8% for C. tropicalis; 97.1%, 97.1%, and 97.1% for C. krusei. We demonstrate high levels of EA and CA between the CLSI and EUCAST BMD methods for testing of triazoles against Candida when the MICs were determined after 24 h and ECVs were used to differentiate wild-type (WT) from non-WT strains. These results provide additional data in favor of the harmonization of these two methods. PMID:21227994

  16. International and Multicenter Comparison of EUCAST and CLSI M27-A2 Broth Microdilution Methods for Testing Susceptibilities of Candida spp. to Fluconazole, Itraconazole, Posaconazole, and Voriconazole

    Science.gov (United States)

    Espinel-Ingroff, A.; Barchiesi, F.; Cuenca-Estrella, M.; Pfaller, M. A.; Rinaldi, M.; Rodriguez-Tudela, J. L.; Verweij, P. E.

    2005-01-01

    The aim of this study was to compare MICs of fluconazole, itraconazole, posaconazole, and voriconazole obtained by the European Committee on Antibiotic Susceptibility Testing (EUCAST) and CLSI (formerly NCCLS) methods in each of six centers for 15 Candida albicans (5 fluconazole-resistant and 4 susceptible-dose-dependent [S-DD] isolates), 10 C. dubliniensis, 7 C. glabrata (2 fluconazole-resistant isolates), 5 C. guilliermondii (2 fluconazole-resistant isolates), 10 C. krusei, 9 C. lusitaniae, 10 C. parapsilosis, and 5 C. tropicalis (1 fluconazole-resistant isolate) isolates. CLSI MICs were obtained visually at 24 and 48 h and spectrophotometric EUCAST MICs at 24 h. The agreement (within a 3-dilution range) between the methods was species, drug, and incubation time dependent and due to lower EUCAST than CLSI MICs: overall, 94 to 95% with fluconazole and voriconazole and 90 to 91% with posaconazole and itraconazole when EUCAST MICs were compared against 24-h CLSI results. The agreement was lower (85 to 94%) against 48-h CLSI endpoints. The overall interlaboratory reproducibility by each method was ≥92%. When the comparison was based on CLSI breakpoint categorization, the agreement was 68 to 76% for three of the four species that included fluconazole-resistant and S-DD isolates; 9% very major discrepancies (≤8 μg/ml versus ≥64 μg/ml) were observed among fluconazole-resistant isolates and 50% with voriconazole (≤1 μg/ml versus ≥4 μg/ml). Similar results were observed with itraconazole for seven of the eight species evaluated (28 to 77% categorical agreement). Posaconazole EUCAST MICs were also substantially lower than CLSI MIC modes (0.008 to 1 μg/ml versus 1 to ≥8 μg/ml) for some of these isolates. Therefore, the CLSI breakpoints should not be used to interpret EUCAST MIC data. PMID:16081926

  17. Rhodanineacetic Acid Derivatives as Potential Drugs: Preparation, Hydrophobic Properties and Antifungal Activity of (5-Arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-ylacetic Acids

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2009-10-01

    Full Text Available Some [(5Z-(5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acids were prepared as potential antifungal compounds. The general synthetic approach to all synthesized compounds is presented. Lipophilicity of all the discussed rhodanine-3-acetic acid derivatives was analyzed using a reversed phase high performance liquid chromatography (RP-HPLC method. The procedure was performed under isocratic conditions with methanol as an organic modifier in the mobile phase using an end-capped non-polar C18 stationary RP column. The RP-HPLC retention parameter log k (the logarithm of the capacity factor k is compared with log P values calculated in silico. All compounds were evaluated for antifungal effects against selected fungal species. Most compounds exhibited no interesting activity, and only {(5Z-[4-oxo-5-(pyridin-2- ylmethylidene-2-thioxo-1,3-thiazolidin-3-yl]}acetic acid strongly inhibited the growth of Candida tropicalis 156, Candida krusei E 28, Candida glabrata 20/I and Trichosporon asahii 1188.

  18. Antifungal compounds from cyanobacteria.

    Science.gov (United States)

    Shishido, Tânia K; Humisto, Anu; Jokela, Jouni; Liu, Liwei; Wahlsten, Matti; Tamrakar, Anisha; Fewer, David P; Permi, Perttu; Andreote, Ana P D; Fiore, Marli F; Sivonen, Kaarina

    2015-04-13

    Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  19. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles

    Directory of Open Access Journals (Sweden)

    Ravikumar Bapurao Shinde

    2013-08-01

    Full Text Available Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p < 0.05 in presence of 250 µg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole.

  20. The role of the multidisciplinary team in antifungal stewardship.

    Science.gov (United States)

    Agrawal, Samir; Barnes, Rosemary; Brüggemann, Roger J; Rautemaa-Richardson, Riina; Warris, Adilia

    2016-11-01

    There are a variety of challenges faced in the management of invasive fungal diseases (IFD), including high case-fatality rates, high cost of antifungal drugs and development of antifungal resistance. The diagnostic challenges and poor outcomes associated with IFD have resulted in excessive empirical use of antifungals in various hospital settings, exposing many patients without IFD to potential drug toxicities as well as causing spiralling antifungal drug costs. Further complexity arises as different patient groups show marked variation in their risk for IFD, fungal epidemiology, sensitivity and specificity of diagnostic tests and the pharmacokinetics and pharmacodynamics of antifungal drugs. To address these issues and to ensure optimal management of IFD, specialist knowledge and experience from a range of backgrounds is required, which extends beyond the remit of most antibiotic stewardship programmes. The first step in the development of any antifungal stewardship (AFS) programme is to build a multidisciplinary team encompassing the necessary expertise in the management of IFD to develop and implement the AFS programme. The specific roles of the key individuals within the AFS team and the importance of collaboration are discussed in this article.

  1. Molecular characterisation and antifungal susceptibility of clinical Trichosporon isolates in India.

    Science.gov (United States)

    Rastogi, Vijaylatha; Honnavar, Prasanna; Rudramurthy, Shivaprakash M; Pamidi, Umabala; Ghosh, Anup; Chakrabarti, Arunaloke

    2016-08-01

    In Asian countries, Trichosporon infection is a well-known disease in Japan. In India, the infection is increasingly recognised. The study was conducted to characterise the clinical Trichosporon isolates from India by phenotypic and molecular techniques. A total of 31 Trichosporon clinical isolates, recovered from patients of 14 hospitals across India were sequenced (ITS and IGS1 regions of rDNA). In vitro drug susceptibility testing of the isolates was performed against amphotericin-B, fluconazole, itraconazole, voriconazole and posaconazole. IGS1, rather than ITS sequences, correctly identified the isolates: Trichosporon asahii, 20; Trichosporon ovoides, 3; Trichosporon inkin, 2; Trichosporon asteroides, 1; Trichosporon mucoides, 1; Trichosporon loubieri, 1; Trichosporon debeurmannianum, 1; and Trichosporon dermatis, 1. Trichosporon asahii genotype III was the most common type, followed by genotype I and VII. Both these targets did not help to identify one Trichosporon to the species level. Trichosporon debeurmannianum, T. dermatis and T. asteroides were isolated for the first time from a human disease in India. The minimum inhibitory concentrations for voriconazole and posaconazole were within effective range. The study highlights the presence of wide range of Trichosporon species causing infection in India. Voriconazole or posaconazole may be the better drugs to treat such patients.

  2. Effect of a high-fat meal on the pharmacokinetics of 300-milligram posaconazole in a solid oral tablet formulation.

    Science.gov (United States)

    Kersemaekers, Wendy M; Dogterom, Peter; Xu, Jialin; Marcantonio, Eugene E; de Greef, Rik; Waskin, Hetty; van Iersel, Marlou L P S

    2015-01-01

    Posaconazole in oral suspension must be taken multiple times a day with food (preferably a high-fat meal) to ensure adequate exposure among patients. We evaluated the effect of food on the bioavailability of a new delayed-release tablet formulation of posaconazole at the proposed clinical dose of 300 mg once daily in a randomized, open-label, single-dose, two-period crossover study with 18 healthy volunteers. When a single 300-mg dose of posaconazole in tablet form (3 tablets × 100 mg) was administered with a high-fat meal, the posaconazole area under the concentration-time curve from 0 to 72 h (AUC0-72) and maximum concentration in plasma (Cmax) increased 51% and 16%, respectively, compared to those after administration in the fasted state. The median time to Cmax (Tmax) shifted from 5 h in the fasted state to 6 h under fed conditions. No serious adverse events were reported, and no subject discontinued the study due to an adverse event. Six of the 18 subjects reported at least one clinical adverse event; all of these events were mild and short lasting. The results of this study demonstrate that a high-fat meal only modestly increases the mean posaconazole exposure (AUC), ∼1.5-fold, after administration of posaconazole tablets, in contrast to the 4-fold increase in AUC observed previously for a posaconazole oral suspension given with a high-fat meal.

  3. Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing of 10 systemically active antifungal agents when tested against Candida spp.

    Science.gov (United States)

    Pfaller, Michael A; Castanheira, Mariana; Messer, Shawn A; Rhomberg, Paul R; Jones, Ronald N

    2014-06-01

    The antifungal broth microdilution (BMD) method of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) was compared with Clinical and Laboratory Standards Institute (CLSI) BMD method M27-A3 for amphotericin B, flucytosine, anidulafungin, caspofungin, micafungin, fluconazole, isavuconazole, itraconazole, posaconazole, and voriconazole susceptibility testing of 357 isolates of Candida. The isolates were selected from global surveillance collections to represent both wild-type (WT) and non-WT MIC results for the azoles (12% of fluconazole and voriconazole results were non-WT) and the echinocandins (6% of anidulafungin and micafungin results were non-WT). The study collection included 114 isolates of Candida albicans, 73 of C. glabrata, 76 of C. parapsilosis, 60 of C. tropicalis, and 34 of C. krusei. The overall essential agreement (EA) between EUCAST and CLSI results ranged from 78.9% (posaconazole) to 99.6% (flucytosine). The categorical agreement (CA) between methods and species of Candida was assessed using previously determined CLSI epidemiological cutoff values. The overall CA between methods was 95.0% with 2.5% very major (VM) and major (M) discrepancies. The CA was >93% for all antifungal agents with the exception of caspofungin (84.6%), where 10% of the results were categorized as non-WT by the EUCAST method and WT by the CLSI method. Problem areas with low EA or CA include testing of amphotericin B, anidulafungin, and isavuconazole against C. glabrata, itraconazole, and posaconazole against most species, and caspofungin against C. parapsilosis, C. tropicalis, and C. krusei. We confirm high level EA and CA (>90%) between the 2 methods for testing fluconazole, voriconazole, and micafungin against all 5 species. The results indicate that the EUCAST and CLSI methods produce comparable results for testing the systemically active antifungal agents against the 5 most common species of Candida; however, there are several areas where additional

  4. 7-Chloroquinolin-4-yl Arylhydrazone Derivatives: Synthesis and Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Auri R. Duval

    2011-01-01

    Full Text Available Fifteen 7-chloro-4-arylhydrazonequinolines have been evaluated for their in vitro antifungal activity against eight oral fungi: Candida albicans, C. parapsilosis, C. lipolytica, C. tropicalis, C. famata, C. glabrata, Rhodutorula mucilaginosa, and R. glutinis. Several compounds exhibited minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC activities comparable with the first-line drug fluconazole. These results could be considered as an important starting point for the rational design of new antifungal agents.

  5. A case of Candida famata sepsis in a very low birth weight infant successfully treated with fluconazole following antifungal susceptibility testing

    Directory of Open Access Journals (Sweden)

    Shilpee Raturi

    2015-01-01

    This case report highlights the growing number of cases arising due to nonalbicans Candida infections in the neonatal intensive care units and the usefulness of antifungal susceptibility testing in deciding optimal antifungal therapy and preventing the emergence of drug resistance.

  6. Veronaea botryosa: molecular identification with amplified fragment length polymorphism (AFLP) and in vitro antifungal susceptibility.

    Science.gov (United States)

    Badali, Hamid; Yazdanparast, Seyed Amir; Bonifaz, Alexandro; Mousavi, Bita; de Hoog, G Sybren; Klaassen, Corné H W; Meis, Jacques F

    2013-06-01

    Inter- and intraspecific genomic variability of 18 isolates of Veronaea botryosa originating from clinical and environmental sources was studied using amplified fragment length polymorphism (AFLP). The species was originally described from the environment, but several severe cases of disseminated infection in apparently healthy individuals have been reported worldwide. All tested strains of V. botryosa, identified on the basis of sequencing and phenotypic and physiological criteria prior to our study, were confirmed by AFLP analysis, yielding a clear separation of V. botryosa as a rather homogeneous group from related species. In vitro antifungal susceptibility testing resulted in MIC90s across all strains in increasing order posaconazole (0.25 μg/ml), itraconazole (1 μg/ml), voriconazole (4 μg/ml), terbinafine (4 μg/ml), caspofungin (8 μg/ml), anidulafungin (8 μg/ml), isavuconazole (16 μg/ml), amphotericin B (16 μg/ml), and fluconazole (32 μg/ml). Overall, the isolates showed a uniform pattern of low MICs of itraconazole and posaconazole, but high MICs for remaining agents. The echinocandins (caspofungin and anidulafungin) had no activity against V. botryosa. There was no statistically significant difference between susceptibilities of environmental (n = 11) and clinical (n = 7) isolates of V. botryosa (P > 0.05).

  7. Antifungal activity of diethyldithiocarbamate.

    Science.gov (United States)

    Allerberger, F; Reisinger, E C; Söldner, B; Dierich, M P

    1989-10-01

    Sodium diethyldithiocarbamate (DTC) was evaluated for its ability to combat four different species of fungi in vitro. Using a microtiter-broth-dilution method we were able to demonstrate an antifungal activity against Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus and Mucor mucedo in doses achievable by intravenous administration in man.

  8. Isavuconazole: A New Broad-Spectrum Triazole Antifungal Agent.

    Science.gov (United States)

    Miceli, Marisa H; Kauffman, Carol A

    2015-11-15

    Isavuconazole is a new extended-spectrum triazole with activity against yeasts, molds, and dimorphic fungi. It is approved for the treatment of invasive aspergillosis and mucormycosis. Advantages of this triazole include the availability of a water-soluble intravenous formulation, excellent bioavailability of the oral formulation, and predictable pharmacokinetics in adults. A randomized, double-blind comparison clinical trial for treatment of invasive aspergillosis found that the efficacy of isavuconazole was noninferior to that of voriconazole. An open-label trial that studied primary as well as salvage therapy of invasive mucormycosis showed efficacy with isavuconazole that was similar to that reported for amphotericin B and posaconazole. In patients in these studies, as well as in normal volunteers, isavuconazole was well tolerated, appeared to have few serious adverse effects, and had fewer drug-drug interactions than those noted with voriconazole. As clinical experience increases, the role of this new triazole in the treatment of invasive fungal infections will be better defined.

  9. Econazole imprinted textiles with antifungal activity.

    Science.gov (United States)

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 μg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections.

  10. Advances in Research on Pharmacokinetic Characteristics and Therapeutic Drug Monitoring for the Antifungal Extended-Spectrum Posaconazole%抗真菌新药泊沙康唑的药动学特征及治疗药物监测研究进展

    Institute of Scientific and Technical Information of China (English)

    马骁; 赵莉; 王晓星; 杜雯雯; 刘晓

    2016-01-01

    由于药动学特征的差异以及药物相互作用影响,三唑类广谱抗真菌药泊沙康唑的体内血药浓度波动明显.笔者以近年来的文献研究为基础,对泊沙康唑的药理作用、药动学特点、药物相互作用和剂型差异等方面进行归纳,对治疗药物监测(TDM)的发展情况进行分析,进而尝试为泊沙康唑的个体化合理用药提供帮助.

  11. Quality Control and Reference Guidelines for CLSI Broth Microdilution Susceptibility Method (M38-A Document) for Amphotericin B, Itraconazole, Posaconazole, and Voriconazole

    Science.gov (United States)

    Espinel-Ingroff, A.; Fothergill, A.; Ghannoum, M.; Manavathu, E.; Ostrosky-Zeichner, L.; Pfaller, M.; Rinaldi, M.; Schell, W.; Walsh, T.

    2005-01-01

    Although standard conditions are available for testing the susceptibilities of filamentous fungi to antifungal agents by the Clinical and Laboratory Standards Institute (CLSI; formerly National Committee for Clinical Laboratory Standards) broth microdilution assay, quality control (QC) MIC limits have not been established for any mold-agent combination. This multicenter (eight-center) study documented the reproducibility of tests for one isolate of Paecilomyces variotii ATCC MYA-3630 and 11 other mold isolates (three isolates of Aspergillus fumigatus; two isolates of A. terreus; one isolate each of A. flavus, A. nidulans, Fusarium moniliforme, and F. solani; and two isolates of Scedosporium apiospermum) by the CLSI reference broth microdilution method (M38-A document). Control limits (amphotericin B, 1 to 4 μg/ml; itraconazole, 0.06 to 0.5 μg/ml; posaconazole, 0.03 to 0.25 μg/ml; voriconazole, 0.015 to 0.12 μg/ml) for the selected QC P. variotii ATCC MYA-3630 were established by the analysis of replicate MIC results. Reference isolates and corresponding MIC ranges were also established for 6 of the 12 molds evaluated. MIC limits were not proposed for the other five molds tested due to low testing reproducibility for these isolates. PMID:16207990

  12. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis

    OpenAIRE

    Yoshiki Matsuda; Keita Sugiura; Takashi Hashimoto; Akane Ueda; Yoshihiro Konno; Yoshiyuki Tatsumi

    2016-01-01

    Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeat...

  13. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis.

    Directory of Open Access Journals (Sweden)

    Yoshiki Matsuda

    Full Text Available Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeated full-thickness human nails more deeply than luliconazole. Amorolfine and terbinafine did not show any detectable permeation. The free-drug concentration of efinaconazole in a 5% human nail keratin suspension was 24.9%, which was significantly higher than those of the other drugs (1.1-3.9%. Additionally, efinaconazole was released from human nail keratin at a greater proportion than the other drugs. The MICs of the five drugs for Trichophyton rubrum were determined at various concentrations of keratin (0-20% in RPMI 1640 medium. The MICs of ciclopirox were not affected by keratin, whereas those of efinaconazole were slightly increased and those of luliconazole and terbinafine were markedly increased in the presence of 20% keratin. Efficacy coefficients were calculated using the nail permeation flux and MIC in media without or with keratin. Efinaconazole showed the highest efficacy coefficient, which was determined using MIC in media with keratin. The order of efficacy coefficients determined using MIC in keratin-containing media rather than keratin-free media was consistent with that of complete cure rates in previously reported clinical trials. The present study revealed that efficacy coefficients determined using MIC in keratin-containing media are useful for predicting the clinical efficacies of topical drugs. In order to be more effective, topical drugs have to possess higher efficacy coefficients.

  14. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis.

    Science.gov (United States)

    Matsuda, Yoshiki; Sugiura, Keita; Hashimoto, Takashi; Ueda, Akane; Konno, Yoshihiro; Tatsumi, Yoshiyuki

    2016-01-01

    Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeated full-thickness human nails more deeply than luliconazole. Amorolfine and terbinafine did not show any detectable permeation. The free-drug concentration of efinaconazole in a 5% human nail keratin suspension was 24.9%, which was significantly higher than those of the other drugs (1.1-3.9%). Additionally, efinaconazole was released from human nail keratin at a greater proportion than the other drugs. The MICs of the five drugs for Trichophyton rubrum were determined at various concentrations of keratin (0-20%) in RPMI 1640 medium. The MICs of ciclopirox were not affected by keratin, whereas those of efinaconazole were slightly increased and those of luliconazole and terbinafine were markedly increased in the presence of 20% keratin. Efficacy coefficients were calculated using the nail permeation flux and MIC in media without or with keratin. Efinaconazole showed the highest efficacy coefficient, which was determined using MIC in media with keratin. The order of efficacy coefficients determined using MIC in keratin-containing media rather than keratin-free media was consistent with that of complete cure rates in previously reported clinical trials. The present study revealed that efficacy coefficients determined using MIC in keratin-containing media are useful for predicting the clinical efficacies of topical drugs. In order to be more effective, topical drugs have to possess higher efficacy coefficients.

  15. Suscetibilidade a antifúngicos de cepas de Candida albicans isoladas de pacientes com estomatite protética Susceptibility to antifungal drugs of Candida albicans strains isolated from patients with denture stomatitis

    Directory of Open Access Journals (Sweden)

    Jéssica Moreira BATISTA

    1999-12-01

    Full Text Available Pacientes portadores de próteses totais, apresentam, com freqüência a chamada estomatite protética, com a qual associa-se Candida albicans determinando a chamada candidíase eritematosa. Assim, procuramos avaliar a suscetibilidade dessa levedura a agentes antifúngicos. A suscetibilidade de dezenove cepas de Candida albicans isoladas de pacientes apresentando estomatite protética foi estudada frente a: um derivado poliênico representado, pela anfotericina B (AnB, e dois derivados azóicos, cetoconazol e miconazol. A atividade antifúngica foi estudada a partir da determinação da concentração inibitória mínima (CIM e da concentração fungicida mínima (CFM, pela técnica de diluição em ágar. Os resultados obtidos, mostraram baixos valores de CIMs e CFMs (mg/ml para a AnB frente a todas as leveduras. Para o miconazol e o cetoconazol, foram observadas CIMs invariavelmente £ 4,00 mg/ml; para as CFMs, foram obtidos valores ³ 16,00 mg/ml frente a maioria das cepas. Conclui-se que a AnB apresentou maior ação fungicida in vitro enquanto os azóis demonstraram ação fungistática mas não fungicida. Acreditamos que a pesquisa de novas drogas, principalmente de uso tópico ainda é necessária, a fim de se tratar, com sucesso, a candidíase eritematosa, comumente observada nas chamadas estomatites protéticas.Users of total prosthesis present in general a high frequency of the so called denture stomatitis, associated to erythematous candidiasis. So, we evaluated the susceptibility of oral yeast to three antifungal agents. Strains of Candida albicans isolated from patients with denture stomatitis were evaluated in relation to the susceptibility of the antifungal drugs as amphotericin B (polyenic derivatives, and azole agents as ketoconazole and miconazole. The antifungal activity was evaluated, and the minimal inhibitory concentration (MIC and minimal fungicide concentration (MFC were determined utilizing the agar dilution method. The

  16. In vitro susceptibility of 188 clinical and environmental isolates of Aspergillus flavus for the new triazole isavuconazole and seven other antifungal drugs

    NARCIS (Netherlands)

    Shivaprakash, M.R.; Geertsen, E.; Chakrabarti, A.; Mouton, J.W.; Meis, J.F.G.M.

    2011-01-01

    Recently isavuconazole, an experimental triazole agent, was found to be active against Aspergillus species. As Aspergillus flavus is the second-most common Aspergillus species isolated from human infection and the fungus has not been widely tested against the drug, we studied a large collection of c

  17. Long-term posaconazole treatment and follow-up of rhino-orbital-cerebral mucormycosis in a diabetic girl.

    Science.gov (United States)

    Tarani, Luigi; Costantino, Francesco; Notheis, Gundula; Wintergerst, Uwe; Venditti, Mario; Di Biasi, Claudio; Friederici, Donata; Pasquino, Anna Maria

    2009-06-01

    To demonstrate that the 2-yr clinical follow-up of our patient strongly suggests that long-term therapy with posaconazole (POS) is safe and beneficial in treatment and prevention of relapses of, otherwise fatal, central nervous system mucormycosis. Mucormycosis is a very rare opportunistic mycotic infection of diabetic children. We present the 30-month follow-up of a 12-yr-old girl affected by diabetic ketoacidotic coma, complicated by rhinocerebral mucormycosis and successfully treated with POS at the initial daily dose of 5 mg/kg t.i.d. with fatty food for 3 wk, followed by a daily dose of 10 mg/kg in four doses for 2 months and then 20 mg/kg/d in four doses for 16 months and in two doses for further 5 months. The previous amphotericin B, granulocyte colony-stimulating factor, hyperbaric oxygen and nasal and left maxillary sinus surgical debridement therapy was ineffective in stopping the progression of the infection to the brain. The patient improved within 10 d with reduced ocular swelling and pain, and 6 months after therapy stop, she is in good health and cultures are sterile. This article demonstrates that POS may be a useful drug in mucormycosis in children. We also strongly draw the attention to the main preventive procedure against invasive fungal infection that is the correct management of antidiabetic therapy that prevents the predisposing temporary neutrophils activity deficit, contributing to a better survival rate of diabetic children.

  18. Synthesis and antifungal activity of derivatives of 2- and 3-benzofurancarboxylic acids.

    Science.gov (United States)

    Hejchman, Elzbieta; Ostrowska, Kinga; Maciejewska, Dorota; Kossakowski, Jerzy; Courchesne, William E

    2012-11-01

    We found that amiodarone has potent antifungal activity against a broad range of fungi, potentially defining a new class of antimycotics. Investigations into its molecular mechanisms showed amiodarone mobilized intracellular Ca2+, which is thought to be an important antifungal characteristic of its fungicidal activity. Amiodarone is a synthetic drug based on the benzofuran ring system, which is contained in numerous compounds that are both synthetic and isolated from natural sources with antifungal activity. To define the structural components responsible for antifungal activity, we synthesized a series of benzofuran derivatives and tested them for the inhibition of growth of two pathogenic fungi, Cryptococcus neoformans and Aspergillus fumigatus, to find new compounds with antifungal activity. We found several derivatives that inhibited fungal growth, two of which had significant antifungal activity. We were surprised to find that calcium fluxes in cells treated with these derivatives did not correlate directly with their antifungal effects; however, the derivatives did augment the amiodarone-elicited calcium flux into the cytoplasm. We conclude that antifungal activity of these new compounds includes changes in cytoplasmic calcium concentration. Analyses of these benzofuran derivatives suggest that certain structural features are important for antifungal activity. Antifungal activity drastically increased on converting methyl 7-acetyl-6-hydroxy-3-methyl-2-benzofurancarboxylate (2b) into its dibromo derivative, methyl 7-acetyl-5-bromo-6-hydroxy-3-bromomethyl-2-benzofurancarboxylate (4).

  19. In Vitro Screening of 10 Edible Thai Plants for Potential Antifungal Properties

    Directory of Open Access Journals (Sweden)

    Supattra Suwanmanee

    2014-01-01

    Full Text Available Growing rates of fungal infections and increasing resistance against standard antifungal drugs can cause serious health problems. There is, therefore, increasing interest in the potential use of medicinal plants as novel antifungal agents. This study investigates the antifungal properties of crude plant extracts from ten medicinal plant species. Crude samples were extracted using the hot water extraction process. The minimum inhibitory concentrations (MIC and diameter zone of inhibition were determined in each extract against ten fungal strains, and fluconazole was used as a positive control. The cytotoxicity of crude extracts on in vitro human skin fibroblast (HSF cell models was determined by MTT assay. Of the ten crude extracts, Psidium guajava L. exhibited the highest antifungal activity, diameter zone of inhibition, and percentage HSF cell viability. Although all extracts exhibited antifungal activity, Psidium guajava L. had the greatest potential for developing antifungal treatments.

  20. 新的口服广谱抗真菌药Posaconazole

    Institute of Scientific and Technical Information of China (English)

    马秉亮

    2004-01-01

    @@ 一系列临床评估实验表明,先灵-保雅(Schering-Plough)公司新的口服广谱抗真菌药物Posaconazole(商品名为Noxafil)能有效治疗一些标准的抗真菌药难以治愈的严重的真菌感染性疾病.对球孢子菌感染也有效.

  1. Retrospective Comparison of Posaconazole Levels in Patients Taking the Delayed-Release Tablet versus the Oral Suspension.

    Science.gov (United States)

    Durani, Urshila; Tosh, Pritish K; Barreto, Jason N; Estes, Lynn L; Jannetto, Paul J; Tande, Aaron J

    2015-08-01

    While posaconazole prophylaxis decreases the risk of invasive fungal infection compared to fluconazole, low bioavailability of the oral-suspension formulation limits its efficacy. A new delayed-release tablet formulation demonstrated an improved pharmacokinetic profile in healthy volunteers. However, serum levels for the two formulations have not been compared in clinical practice. This study compared achievement of therapeutic posaconazole levels in patients taking the delayed-release tablet to those taking the oral suspension. This retrospective cohort study included 93 patients initiated on posaconazole between 2012 and 2014 and had at least one serum posaconazole level measured. The primary measure was the proportion of patients achieving an initial therapeutic level (>700 ng/ml). An initial therapeutic posaconazole level was seen in 29 of 32 (91%) patients receiving tablets and 37 of 61 (61%) patients receiving suspension (P = 0.003). Among patients with a steady-state level measured 5 to 14 days after initiation, a therapeutic level was observed in 18 of 20 (90%) patients receiving tablets and 25 of 43 (58%) patients receiving suspension (P = 0.01). In these patients, the median posaconazole level of the tablet cohort (1655 ng/ml) was twice that of the suspension cohort (798 ng/ml) (P = 0.004). In this cohort study, the improved bioavailability of delayed-release posaconazole tablets translates into a significantly higher proportion of patients achieving therapeutic serum levels than in the cohort receiving the oral suspension. The results of this study strongly support the use of delayed-release tablets over suspension in patients at risk for invasive fungal infection.

  2. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis

    Science.gov (United States)

    Scorzoni, Liliana; de Paula e Silva, Ana C. A.; Marcos, Caroline M.; Assato, Patrícia A.; de Melo, Wanessa C. M. A.; de Oliveira, Haroldo C.; Costa-Orlandi, Caroline B.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2017-01-01

    The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the

  3. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis.

    Science.gov (United States)

    Scorzoni, Liliana; de Paula E Silva, Ana C A; Marcos, Caroline M; Assato, Patrícia A; de Melo, Wanessa C M A; de Oliveira, Haroldo C; Costa-Orlandi, Caroline B; Mendes-Giannini, Maria J S; Fusco-Almeida, Ana M

    2017-01-01

    The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the

  4. The biology and chemistry of antifungal agents: a review.

    Science.gov (United States)

    Kathiravan, Muthu K; Salake, Amol B; Chothe, Aparna S; Dudhe, Prashik B; Watode, Rahul P; Mukta, Maheshwar S; Gadhwe, Sandeep

    2012-10-01

    In recent years their has been an increased use of antifungal agents and has resulted in the development of resistance to drugs. Currently, use of standard antifungal therapies can be limited because of toxicity, low efficacy rates. Different types of mechanisms contribute to the development of resistance to antifungals. This has given raise to search for a new heterocycle with distinct action or multitargeted combination therapy. This review addresses the areas such as the underlying mechanisms, eight different targets such as ergosterol synthesis, chitin synthesis, ergosterol disruptors, glucan synthesis, squalene epoxidase, nucleic acid synthesis, protein synthesis, microtubules synthesis. The clinically employed drugs along with the current research work going on worldwide on different heterocycles are discussed. In recent advances various heterocycles including imidazole, benzimidazole etc., twenty three scaffolds and their lead identification are discussed.

  5. Antifungal therapy in European hospitals

    DEFF Research Database (Denmark)

    Zarb, P; Amadeo, B; Muller, A;

    2012-01-01

    respiratory (19.2%) and gastrointestinal (18.8%). The most used antifungal was fluconazole (60.5%) followed by caspofungin (10.5%). Antifungal-antibacterial combinations were frequently used (77.5%). The predominance of fluconazole use in participating hospitals could result in an increase in prevalence...

  6. Impact of brief exposure to antifungal agents on the post-antifungal effect and hemolysin activity of oral Candida albicans

    Directory of Open Access Journals (Sweden)

    Arjuna Nishantha ELLEPOLA

    2015-08-01

    Full Text Available AbstractPost-antifungal effect (PAFE of Candida and its production of hemolysin are determinants of candidal pathogenicity. Candida albicans is the foremost aetiological agent of oral candidosis, which can be treated with polyene, azole, and echinocandin antifungals. However, once administered, the intraoral concentrations of these drugs tend to be subtherapeutic and transient due to the diluent effect of saliva and cleansing effect of the oral musculature. Hence, intra-orally, Candidamay undergo a brief exposure to antifungal drugs.Objective Therefore, the PAFE and hemolysin production of oral C. albicans isolates following brief exposure to sublethal concentrations of the foregoing antifungals were evaluated.Material and Methods A total of 50 C. albicans oral isolates obtained from smokers, diabetics, asthmatics using steroid inhalers, partial denture wearers and healthy individuals were exposed to sublethal concentrations of nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole for 60 min. Thereafter, the drugs were removed and the PAFE and hemolysin production were determined by previously described turbidometric and plate assays, respectively.Results Nystatin, amphotericin B, caspofungin and ketoconazole induced mean PAFE (hours of 2.2, 2.18, 2.2 and 0.62, respectively. Fluconazole failed to produce a PAFE. Hemolysin production of these isolates was suppressed with a percentage reduction of 12.27, 13.47, 13.33, 8.53 and 4.93 following exposure to nystatin, amphotericin B, caspofungin, ketoconazole and fluconazole, respectively.Conclusions Brief exposure to sublethal concentrations of antifungal drugs appears to exert an antifungal effect by interfering with the growth as well as hemolysin production of C. albicans.

  7. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

    Directory of Open Access Journals (Sweden)

    Deepa Gupta

    2015-01-01

    Full Text Available Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent.

  8. Comparative pharmacokinetics of antifungal drugs in domestic turkeys, red-tailed hawks, broad-winged hawks, and great-horned owls.

    Science.gov (United States)

    Redig, P T; Duke, G E

    1985-01-01

    The present research was to test in vitro activity of thiabendazole, 5-fluorocytosine, and amphotericin B against 11 isolates of Aspergillus fumigatus from avian species. Additionally, the plasma concentrations of these drugs were determined in four avian species given a range of dosages by oral, intravenous, and intratracheal routes. Thiabendazole inhibited most isolates in vitro at concentrations between 25 and 50 micrograms/ml; however, there were no detectable inhibitory concentrations in the plasma of any species at any of the doses. The arithmetic mean minimum inhibitory in vitro concentration for 5-fluorocytosine against the 11 Aspergillus isolates was 2.73 micrograms/ml. Inhibitory concentrations of 5-fluorocytosine were found 2 and 6 hours post-administration in all species when given oral doses of 30 or 60 mg/kg as a single dose or when given three divided doses a day totaling 120 mg/kg. No inhibitory concentrations were found 24 hours post-administration. Inhibitory concentrations of amphotericin B were found only 2 and 6 hours post-administration in birds receiving three doses of 1.5 mg/kg at 2-hour intervals. The arithmetic mean minimum inhibitory in vitro concentration for amphotericin B against 11 isolates of A. fumigatus was 0.81 micrograms/ml.

  9. [New developments in antifungal therapy: fluconazole, itraconazole, voriconazole, caspofungin

    NARCIS (Netherlands)

    Wout, J.W. van 't; Kuijper, E.J.; Verweij, P.E.; Kullberg, B.J.

    2004-01-01

    The azole antifungal voriconazole and the echinocandin caspofungin have recently become available for the treatment of invasive mycoses. Fluconazole remains the drug of choice for candidemia, except for infections with one of the resistent species such as Candida krusei and some strains of Candida g

  10. Progress in antibacterial and antifungal chemotherapy.

    Science.gov (United States)

    Fromtling, R A

    2000-08-01

    The European Society of Clinical Microbiology and Infectious Diseases sponsored the 10th European Congress on Clinical Microbiology and Infectious Diseases in Stockholm, Sweden, May 28-31, 2000. At the ECMID, well-attended sessions were held which focused on the pathogenesis and therapy of viral, bacterial and fungal diseases. This report focuses on new information on resistance to antibacterial agents, including data from recent surveillance studies, and the in vitro and investigational clinical activity of new antibacterial (moxifloxacin, telithromycin) and antifungal (fluconazole, itraconazole, voriconazole, amphotericin B, liposomal formulations of amphotericin B, terbinafine and the candins) drugs.

  11. Phase 1B study of the pharmacokinetics and safety of posaconazole intravenous solution in patients at risk for invasive fungal disease.

    Science.gov (United States)

    Maertens, Johan; Cornely, Oliver A; Ullmann, Andrew J; Heinz, Werner J; Krishna, Gopal; Patino, Hernando; Caceres, Maria; Kartsonis, Nicholas; Waskin, Hetty; Robertson, Michael N

    2014-07-01

    This was a phase 1B, dose-ranging, multicenter, pharmacokinetics, and safety study of cyclodextrin-based posaconazole intravenous (i.v.) solution administered through a central line to subjects at high risk for invasive fungal disease (part 1 of a 2-part study [phase 1B/3]). Initially, the safety and tolerability of single-dose posaconazole i.v. 200 mg (n = 10) were compared with those of a placebo (n = 11). Subsequently, 2 doses were evaluated, posaconazole i.v. 200 mg once daily (q.d.) (n = 21) and 300 mg q.d. (n = 24). The subjects received twice-daily (b.i.d.) posaconazole i.v. on day 1, followed by 13 days of posaconazole i.v. q.d., then 14 days of posaconazole oral suspension 400 mg b.i.d. The steady-state (day 14) exposure target (average concentration [areas under concentration-time curve {AUCs}/24 h, average concentrations at steady state {Cavgs}], of ≥ 500 to ≤ 2,500 ng/ml in ≥ 90% of the subjects) was achieved by 94% of the subjects for 200 mg posaconazole q.d. and by 95% of subjects for 300 mg posaconazole q.d. The desired exposure target (mean steady-state Cavg, ∼ 1,200 ng/ml) was 1,180 ng/ml in the 200-mg dosing cohort and was exceeded in the 300-mg dosing cohort (1,430 ng/ml). Posaconazole i.v. was well tolerated. Posaconazole i.v. 300 mg q.d. was selected for the phase 3 study segment. (This study has been registered at ClinicalTrials.gov under registration no. NCT01075984.).

  12. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    Directory of Open Access Journals (Sweden)

    Marie Desnos-Ollivier

    Full Text Available New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes. Interestingly, geometric mean minimum inhibitory concentrations (MICs of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001. Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens.

  13. Antifungal Therapy for Systemic Mycosis and the Nanobiotechnology Era: Improving Efficacy, Biodistribution and Toxicity

    Science.gov (United States)

    Souza, Ana C. O.; Amaral, Andre C.

    2017-01-01

    Fungal diseases have been emerging as an important public health problem worldwide with the increase in host predisposition factors due to immunological dysregulations, immunosuppressive and/or anticancer therapy. Antifungal therapy for systemic mycosis is limited, most of times expensive and causes important toxic effects. Nanotechnology has become an interesting strategy to improve efficacy of traditional antifungal drugs, which allows lower toxicity, better biodistribution, and drug targeting, with promising results in vitro and in vivo. In this review, we provide a discussion about conventional antifungal and nanoantifungal therapies for systemic mycosis. PMID:28326065

  14. Correlation between Plant Secondary Metabolites and Their Antifungal Mechanisms–A Review

    DEFF Research Database (Denmark)

    Freiesleben, Sara; Jäger, Anna

    2014-01-01

    The search for new antifungal drugs often involves secondary metabolites from plants because of their pharmacological activity against foreign pathogens. Among the modern drugs in use today about 40% are of natural origin. To distinguish the secondary metabolites they can be divided into groups b...... biosynthetic groups of secondary metabolites; the phenolic compounds and the nitrogen containing compounds. Despite this there are correlations between some of the subgroups and their antifungal mechanism of actions....

  15. Cunninghamella bertholletiae exhibits increased resistance to human neutrophils with or without antifungal agents as compared to Rhizopus spp.

    Science.gov (United States)

    Simitsopoulou, Maria; Georgiadou, Elpiniki; Walsh, Thomas J; Roilides, Emmanuel

    2010-08-01

    Among Zygomycetes, Cunninghamella bertholletiae occurs less frequently as the etiologic agent of human disease but causes more aggressive, refractory, and fatal infections despite antifungal therapy. Little is known about the differential innate host response against Cunninghamella and other Zygomycetes in the presence of antifungal agents. We therefore studied the activity of human neutrophils (PMNs) alone or in combination with caspofungin, posaconazole (PSC), and voriconazole (VRC) against hyphae of Rhizopus oryzae, Rhizopus microsporus and C. bertholletiae. Hyphal damage was measured by XTT metabolic assay and release of IL-6, IL-8 and TNF-alpha from PMNs by ELISA. Cunninghamella bertholletiae was more resistant to PMN-induced hyphal damage than either Rhizopus spp. at effector:target (E:T) ratios of 1:1, 5:1 and 10:1 (P Rhizopus spp. (P < 0.01). No IL-6 was released from PMNs exposed to the three Zygomycetes. In comparison to R. oryzae and R. microsporus, C. bertholletiae is more resistant to PMN-induced hyphal damage with or without antifungal therapy and is more capable of suppressing release of IL-8.

  16. In vitro resistance of clinical Fusarium species to amphotericin B and voriconazole using the EUCAST antifungal susceptibility method.

    Science.gov (United States)

    Taj-Aldeen, Saad J; Salah, Husam; Al-Hatmi, Abdullah M S; Hamed, Manal; Theelen, Bart; van Diepeningen, Anne D; Boekhout, Teun; Lass-Flörl, Cornelia

    2016-08-01

    Susceptibility testing using the EUCAST-AFST method against 39 clinical Fusarium strains consecutively collected from local and invasive infections during the last 10years assessed the in vitro activities of amphotericin B (AmB) and triazole antifungal agents. In addition, the susceptibility pattern of 12 reference strains from the CBS-KNAW Fungal Biodiversity Centre (CBS) was evaluated. In particular Fusarium petroliphilum and F. solani sensu lato were involved in disseminated infections and known for treatment failure. AmB displayed the lowest MICs followed by voriconazole VRC, posaconazole (POC). Itraconazole (ITC) showed high MIC values, displaying in vitro resistance. Clinical isolates were significantly (P Fusarium and that susceptibility testing is important and may improve the prognosis of these infections.

  17. Recent advances in topical formulation carriers of antifungal agents.

    Science.gov (United States)

    Bseiso, Eman Ahmed; Nasr, Maha; Sammour, Omaima; Abd El Gawad, Nabaweya A

    2015-01-01

    Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal infections. Examples of these newer carriers include micelles, lipidic systems such as solid lipid nanoparticles and nanostructured lipid carriers, microemulsions and vesicular systems such as liposomes, niosomes, transfersomes, ethosomes, and penetration enhancer vesicles.

  18. Recent advances in topical formulation carriers of antifungal agents

    Directory of Open Access Journals (Sweden)

    Eman Ahmed Bseiso

    2015-01-01

    Full Text Available Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal infections. Examples of these newer carriers include micelles, lipidic systems such as solid lipid nanoparticles and nanostructured lipid carriers, microemulsions and vesicular systems such as liposomes, niosomes, transfersomes, ethosomes, and penetration enhancer vesicles.

  19. Peptide-based Antifungal Therapies against Emerging Infections

    OpenAIRE

    Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S-T; Mixson, A. J.

    2010-01-01

    Acquired drug resistance to mycotic infections is rapidly emerging as a major medical problem. Opportunistic fungal infections create therapeutic challenges, particularly in high risk immunocompromised patients with AIDS, cancer, and those undergoing transplantation. Higher mortality and/or morbidity rates due to invasive mycosis have been increasing over the last 20 years, and in light of growing resistance to commonly used antibiotics, novel antifungal drugs and approaches are required. Cur...

  20. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis.

    Science.gov (United States)

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-02-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation.

  1. Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids

    Science.gov (United States)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.

    2011-05-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.

  2. Application of antifungal drugs in the treatment of cutaneous and mucocutaneous leishmaniasis%抗真菌药物在皮肤黏膜利什曼病治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    曲卉; 李若瑜; 余进; 王爱平

    2015-01-01

    Leishmaniasis is zoonotic disease caused byLeishmania with different clinical manifestations. It can be characterized into three clinical types: visceral leishmaniasis, mucocutaneous leishmaniasis and cutaneous leishmaniasis. Traditionally, antimony is the ifrst-line treatment for leishmaniasis, but its application is compromised due to the high adverse effects and the emergence of drug resistantLeishmania isolates. Clinical researches have shown that amphotericin B can be used in patients infected by antimony resistant isolates, and treatment of azole and propylene amine can also be effective and safe. Through the analysis of the components inLeishmania membrane, this article further illustrates the mechanism, usage and efifcacy of antifungal agents in the treatment of leishmaniasis.%利什曼病(leishmaniasis)是由利什曼原虫(Leishmania spp)引起的一组具有不同临床表现的疾病,可分为内脏利什曼病、黏膜皮肤利什曼病和皮肤利什曼病3个临床类型。利什曼病的治疗首选五价锑制剂,但因其不良反应发生率高、部分利什曼原虫对锑剂耐药,应用受到了一定的限制。临床研究显示抗真菌药物两性霉素B可以用于对锑剂耐药的患者,唑类和丙烯胺类抗真菌药物对部分利什曼病治疗有效、安全。该文从利什曼原虫胞膜成分的分析入手,重点介绍抗真菌药物在利什曼病治疗中的作用机制、用法及疗效。

  3. Multilocus phylogeny and antifungal susceptibility of Aspergillus section Circumdati from clinical samples and description of A. pseudosclerotiorum sp. nov.

    Science.gov (United States)

    A multilocus phylogenetic study was carried out to assess the species distribution in a set of 34 clinical isolates of Aspergillus section Circumdati from the USA and their in vitro antifungal susceptibility were determined against eight antifungal drugs. The genetic markers used were ITS, BenA, CaM...

  4. Multilaboratory study of epidemiological cutoff values for detection of resistance in eight Candida species to fluconazole, posaconazole, and voriconazole

    NARCIS (Netherlands)

    Espinel-Ingroff, A.; Pfaller, M.A.; Bustamante, B.; Canton, E.; Fothergill, A.; Fuller, J.; Gonzalez, G.M.; Lass-Florl, C.; Lockhart, S.R.; Martin-Mazuelos, E.; Meis, J.F.G.M.; Melhem, M.S.; Ostrosky-Zeichner, L.; Pelaez, T.; Szeszs, M.W.; St-Germain, G.; Bonfietti, L.X.; Guarro, J.; Turnidge, J.

    2014-01-01

    Although epidemiological cutoff values (ECVs) have been established for Candida spp. and the triazoles, they are based on MIC data from a single laboratory. We have established ECVs for eight Candida species and fluconazole, posaconazole, and voriconazole based on wild-type (WT) MIC distributions fo

  5. Economic evaluation of posaconazole versus fluconazole prophylaxis in patients with graft-versus-host disease (GVHD) in the Netherlands

    NARCIS (Netherlands)

    J.P. Jansen (Jeroen); A.K. O'Sullivan (Amy); P.J. Lugtenburg (Pieternella); L.F.R. Span (Lambert); J.J.W.M. Janssen (Jeroen); W.B. Stam (Wiro)

    2010-01-01

    textabstractThe objective of this study was to evaluate the cost-effectiveness of posaconazole versus fluconazole for the prevention of invasive fungal infections (IFI) in graft-versus-host disease (GVHD) patients in the Netherlands. A decision analytic model was developed based on a double-blind ra

  6. Economic evaluation of posaconazole versus fluconazole prophylaxis in patients with graft-versus-host disease (GVHD) in the Netherlands

    NARCIS (Netherlands)

    Jansen, Jeroen P.; O'Sullivan, Amy K.; Lugtenburg, Elly; Span, Lambert F. R.; Janssen, Jeroen J. W. M.; Stam, Wiro B.

    2010-01-01

    The objective of this study was to evaluate the cost-effectiveness of posaconazole versus fluconazole for the prevention of invasive fungal infections (IFI) in graft-versus-host disease (GVHD) patients in the Netherlands. A decision analytic model was developed based on a double-blind randomized tri

  7. Evaluation of Disk Diffusion Method for Determining Posaconazole Susceptibility of Filamentous Fungi: Comparison with CLSI Broth Microdilution Method

    Science.gov (United States)

    López-Oviedo, E.; Aller, A. I.; Martín, C.; Castro, C.; Ramirez, M.; Pemán, J. M.; Cantón, E.; Almeida, C.; Martín-Mazuelos, E.

    2006-01-01

    The disk diffusion method was evaluated for determining posaconazole susceptibility against 78 strains of molds using two culture media in comparison with the CLSI (Clinical Laboratory Standards Institute) broth microdilution method (M38-A). A significant correlation between disk diffusion and microdilution methods was observed with both culture media. PMID:16495281

  8. Advances in therapeutic drug monitoring for triazole antifungal agents%三氮唑类抗真菌药的治疗药物监测研究进展

    Institute of Scientific and Technical Information of China (English)

    詹莹; 疏楠; 郭楠; 邵华; 厉伟兰

    2014-01-01

    近年来,真菌感染,尤其是深部真菌感染严重地威胁到患者的健康和生命,因此抗真菌药物的研究开发及临床应用日益受到重视.三氮唑类抗真菌药是临床使用最广泛的抗真菌药物,其临床疗效得到了广泛的肯定.代表药物有氟康唑(Fluconazole)、伊曲康唑(Itraconazole)、伏立康唑(Voriconazole)、泊沙康唑(Posaconazole)等.由于在吸收、代谢和排泄等方面的差异和药物相互作用的影响,导致许多抗真菌药物血药浓度的个体差异较大.临床实践表明抗真菌药物的血药浓度与其疗效和毒副作用有相关性,对其进行治疗药物监测可优化治疗效果同时降低毒副作用.本文就近年来国内外三氮唑类抗真菌药物治疗药物监测的研究进展进行综述.

  9. In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species.

    Science.gov (United States)

    Zeng, Hong; Chen, Xinping; Liang, Jingnan

    2015-01-01

    Fennel seed essential oil (FSEO) is a plant-derived natural therapeutic against dermatophytes. In this study, the antifungal effects of FSEO were investigated from varied aspects, such as MIC and minimum fungicidal concentration, mycelia growth, spore germination and biomass. The results indicated that FSEO had potent antifungal activities on Trichophyton rubrum ATCC 40051, Trichophyton tonsurans 10-0400, Microsporum gypseum 44693-1 and Trichophyton mentagrophytes 10-0060, which is better than the commonly used antifungal agents fluconazole and amphotericin B. Flow cytometry and transmission electron microscopy experiments suggested that the antifungal mechanism of FSEO was to damage the plasma membrane and intracellular organelles. Further study revealed that it could also inhibit the mitochondrial enzyme activities, such as succinate dehydrogenase, malate dehydrogenase and ATPase. With better antifungal activity than the commonly used antifungal agents and less possibility of inducing drug resistance, FSEO could be used as a potential antidermatophytic agent.

  10. Antifungal and antiviral products of marine organisms.

    Science.gov (United States)

    Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong; Ye, Xiu Juan; Xia, Jiang; Ng, Tzi Bun

    2014-04-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of

  11. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance.

    Science.gov (United States)

    Ghannoum, M A; Rice, L B

    1999-10-01

    The increased use of antibacterial and antifungal agents in recent years has resulted in the development of resistance to these drugs. The significant clinical implication of resistance has led to heightened interest in the study of antimicrobial resistance from different angles. Areas addressed include mechanisms underlying this resistance, improved methods to detect resistance when it occurs, alternate options for the treatment of infections caused by resistant organisms, and strategies to prevent and control the emergence and spread of resistance. In this review, the mode of action of antifungals and their mechanisms of resistance are discussed. Additionally, an attempt is made to discuss the correlation between fungal and bacterial resistance. Antifungals can be grouped into three classes based on their site of action: azoles, which inhibit the synthesis of ergosterol (the main fungal sterol); polyenes, which interact with fungal membrane sterols physicochemically; and 5-fluorocytosine, which inhibits macromolecular synthesis. Many different types of mechanisms contribute to the development of resistance to antifungals. These mechanisms include alteration in drug target, alteration in sterol biosynthesis, reduction in the intercellular concentration of target enzyme, and overexpression of the antifungal drug target. Although the comparison between the mechanisms of resistance to antifungals and antibacterials is necessarily limited by several factors defined in the review, a correlation between the two exists. For example, modification of enzymes which serve as targets for antimicrobial action and the involvement of membrane pumps in the extrusion of drugs are well characterized in both the eukaryotic and prokaryotic cells.

  12. Influence of Common Antifungal Drugs on Growth of Common Vaginal Lactobacilli%常用抗假丝酵母菌药物对阴道常见乳杆菌生长影响的研究

    Institute of Scientific and Technical Information of China (English)

    张励; 刘建华

    2012-01-01

    .0%, 60.0% and 25.0%, respectively, there was a significant difference among them (P<0.05). And the detection rate of H2O2-generating Lactobacilli in itraconazole group was significantly higher than that in miconazole group and nystatin group (p<0.05). Conclusion: Itraconazole was effective for the treatment of WC, and had relatively less influence on the growth of H2O2-generating Lactobacilli, and it can contribute to maintain vaginal normal microflora, and could be an ideal antifungal drug for WC treatment.

  13. Antifungal activity of the lemongrass oil and citral against Candida spp.

    Directory of Open Access Journals (Sweden)

    Cristiane de Bona da Silva

    2008-02-01

    Full Text Available Superficial mycoses of the skin are among the most common dermatological infections, and causative organisms include dermatophytic, yeasts, and non-dermatophytic filamentous fungi. The treatment is limited, for many reasons, and new drugs are necessary. Numerous essential oils have been tested for both in vitro and in vivo antifungal activity and some pose much potential as antifungal agents. By using disk diffusion assay, we evaluated the antifungal activity of lemongrass oil and citral against yeasts of Candida species (Candida albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropicalis. This study showed that lemongrass oil and citral have a potent in vitro activity against Candida spp.

  14. Penetratin and derivatives acting as antifungal agents

    NARCIS (Netherlands)

    Masman, Marcelo F.; Rodriguez, Ana M.; Raimondi, Marcela; Zacchino, Susana A.; Luiten, Paul G. M.; Somlai, Csaba; Kortvelyesi, Tamas; Penke, Botond; Enriz, Ricardo D.

    2009-01-01

    The synthesis, in vitro evaluation, and conformational study of RQIKTWFQNRRMKWKK-NH(2) (penetratin) and related derivatives acting as antifungal agents are reported. Penetratin and some of its derivatives displayed antifungal activity against the human opportunistic pathogenic standardized ATCC stra

  15. Molecular identification and antifungal susceptibility profiles of Candida parapsilosis complex species isolated from culture collection of clinical samples

    Directory of Open Access Journals (Sweden)

    Fábio Silvestre Ataides

    2015-08-01

    Full Text Available AbstractINTRODUCTION:Candida parapsilosis is a common yeast species found in cases of onychomycosis and candidemia associated with infected intravascular devices. In this study, we differentiated Candida parapsilosis sensu stricto, Candida orthopsilosis , and Candida metapsilosis from a culture collection containing blood and subungual scraping samples. Furthermore, we assessed the in vitro antifungal susceptibility of these species to fluconazole, itraconazole, voriconazole, posaconazole, amphotericin B, and caspofungin.METHODS:Differentiation of C. parapsilosis complex species was performed by amplification of the secondary alcohol dehydrogenase (SADH gene and digestion by the restriction enzyme Ban I. All isolates were evaluated for the determination of minimal inhibitory concentrations using Etest, a method for antifungal susceptibility testing.RESULTS:Among the 87 isolates, 78 (89.7% were identified as C. parapsilosis sensu stricto , five (5.7% were identified as C. orthopsilosis , and four (4.6% were identified as C. metapsilosis . Analysis of antifungal susceptibility showed that C. parapsilosis sensu strictoisolates were less susceptible to amphotericin B and itraconazole. One C. parapsilosis sensu stricto isolate was resistant to amphotericin B and itraconazole. Moreover, 10.2% of C. parapsilosis sensu stricto isolates were resistant to caspofungin. Two C. parapsilosis sensu strictoisolates and one C. metapsilosis isolate were susceptible to fluconazole in a dose-dependent manner.CONCLUSIONS:We reported the first molecular identification of C. parapsilosiscomplex species in State of Goiás, Brazil. Additionally, we showed that although the three species exhibited differences in antifungal susceptibility profiles, the primary susceptibility of this species was to caspofungin.

  16. Multiple-azole-resistant Aspergillus fumigatus osteomyelitis in a patient with chronic granulomatous disease successfully treated with long-term oral posaconazole and surgery.

    NARCIS (Netherlands)

    Hodiamont, C.J.; Dolman, K.M.; Berge, I.J. Ten; Melchers, W.J.G.; Verweij, P.E.; Pajkrt, D.

    2009-01-01

    We describe a patient with chronic granulomatous disease and proven Aspergillus fumigatus osteomyelitis of the midfoot, while receiving itraconazole-prophylaxis. The isolate proved resistant to itraconazole as well as voriconazole, and showed reduced susceptibility to posaconazole. Although molecula

  17. Comparison of visual 24-hour and spectrophotometric 48-hour MICs to CLSI reference microdilution MICs of fluconazole, itraconazole, posaconazole, and voriconazole for Candida spp.: a collaborative study.

    NARCIS (Netherlands)

    Espinel-Ingroff, A.; Barchiesi, F.; Cuenca-Estrella, M.; Fothergill, A.; Pfaller, M.A.; Rinaldi, M.; Rodriguez-Tudela, J.L.; Verweij, P.E.

    2005-01-01

    A multicenter (six-center) study evaluated the performance (interlaboratory reproducibility, compatibility with reference methods, and categorical agreement) of 24-h visual and 48-h spectrophotometric MICs. MICs of fluconazole, itraconazole, voriconazole, and posaconazole were compared to reference

  18. DYSREGULATION OF ION HOMEOSTASIS BY ANTIFUNGAL AGENTS

    Directory of Open Access Journals (Sweden)

    Yongqiang eZhang

    2012-04-01

    Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  19. Synthesis, characterisation and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum

    OpenAIRE

    Pereira, Leonel; Dias, Nicolina; Carvalho,Juliana de; Fernandes, Sara; Santos, Cledir; Lima, Nelson

    2014-01-01

    Aims To characterise and explore the potential in extracellular biosynthesis of silver nanoparticles (AgNPs) by Penicillium chrysogenum and Aspergillus oryzae and to investigate the antifungal effect of chemically vs. biologically synthesised AgNPs comparing with conventional antifungal drugs against Trichophyton rubrum. Methods and Results Chemically synthesised AgNPs (Chem-AgNPs) coated with polyvinylpyrrolidone (PVP) were synthesised by chemical reduction method with glucose in PV...

  20. In vitro antifungal activity of 2-(2'-hydroxy-5'-aminophenyl)benzoxazole in Candida spp. strains.

    Science.gov (United States)

    Daboit, Tatiane Caroline; Stopiglia, Cheila Denise Ottonelli; Carissimi, Mariana; Corbellini, Valeriano Antonio; Stefani, Valter; Scroferneker, Maria Lúcia

    2009-11-01

    The development of azole antifungals has allowed for the treatment of several fungal infections. However, the use of these compounds is restricted because of their hepatotoxicity or because they need to be administered together with other drugs in order to prevent resistance to monotherapy. Benzoxazole derivatives are among the most thriving molecular prototypes for the development of antifungal agents. 2-(2'-hydroxyphenyl) benzoxazoles are versatile molecules that emit fluorescence and have antibacterial, antiviral and antifungal properties. 2-(2'-hydroxy-5'-aminophenyl) benzoxazole (HAMBO) was tested against Candida yeast. The inhibition provided by HAMBO was lower than that of fluconazole, showing low antifungal activity against Candida spp., but equivalent to that of benzoxazoles tested in similar studies. HAMBO showed fungistatic activity against all analysed strains. This class of novel benzoxazole compounds may be used as template to produce better antifungal drugs.

  1. Economic considerations of antifungal prophylaxis in patients undergoing surgical procedures

    Directory of Open Access Journals (Sweden)

    Maria Adriana Cataldo

    2011-01-01

    Full Text Available Maria Adriana Cataldo, Nicola PetrosilloSecond Infectious Diseases Division, National Institute for Infectious Diseases, “Lazzaro Spallanzani”, Rome, ItalyAbstract: Fungi are a frequent cause of nosocomial infections, with an incidence that has increased significantly in recent years, especially among critically ill patients who require intensive care unit (ICU admission. Among ICU patients, postsurgical patients have a higher risk of Candida infections in the bloodstream. In consideration of the high incidence of fungal infections in these patients, their strong impact on mortality rate, and of the difficulties in Candida diagnosis, some experts suggest the use of antifungal prophylaxis in critically ill surgical patients. A clinical benefit from this strategy has been demonstrated, but the economic impact of the use of antifungal prophylaxis in surgical patients has not been systematically evaluated, and its cost–benefit ratio has not been defined. Whereas the costs associated with treating fungal infections are very high, the cost of antifungal drugs varies from affordable (ie, the older azoles to expensive (ie, echinocandins, polyenes, and the newer azoles. Adverse drug-related effects and the possibly increased incidence of fluconazole resistance and of isolates other than Candida albicans must also be taken into account. From the published studies of antifungal prophylaxis in surgical patients, a likely economic benefit of this strategy could be inferred, but its usefulness and cost–benefits should be evaluated in light of local data, because the available evidence does not permit general recommendations.Keywords: antifungal prophylaxis, cost-effectiveness, economics, surgery, fungal infection 

  2. Development of buccal adhesive tablet with prolonged antifungal activity: Optimization and ex vivo deposition studies

    Directory of Open Access Journals (Sweden)

    Madgulkar A

    2009-01-01

    Full Text Available The purpose of the present work was to prepare buccal adhesive tablets of miconazole nitrate. The simplex centroid experimental design was used to arrive at optimum ratio of carbopol 934P, hydroxypropylmethylcellulose K4M and polyvinylpyrollidone, which will provide desired drug release and mucoadhesion. Swelling index, mucoadhesive strength and in vitro drug release of the prepared tablet was determined. The drug release and bioadhesion was dependent on type and relative amounts of the polymers. The optimized combination was subjected to in vitro antifungal activity, transmucosal permeation, drug deposition in mucosa, residence time and bioadhesion studies. IR spectroscopy was used to investigate any interaction between drug and excipients. Dissolution of miconazole from tablets was sustained for 6 h. based on the results obtained, it can be concluded that the prepared slow release buccoadhesive tablets of miconazole would markedly prolong the duration of antifungal activity. Comparison of in vitro antifungal activity of tablet with marketed gel showed that drug concentrations above the minimum inhibitory concentration were achieved immediately from both formulations but release from tablet was sustained up to 6 h, while the gel showed initially fast drug release, which did not sustain later. Drug permeation across buccal mucosa was minimum from the tablet as well as marketed gel; the deposition of drug in mucosa was higher in case of tablet. In vitro residence time and bioadhesive strength of tablet was higher than gel. Thus the buccoadhesive tablet of miconazole nitrate may offer better control of antifungal activity as compared to the gel formulation.

  3. Biochemical approaches to selective antifungal activity. Focus on azole antifungals.

    Science.gov (United States)

    Vanden Bossche, H; Marichal, P; Gorrens, J; Coene, M C; Willemsens, G; Bellens, D; Roels, I; Moereels, H; Janssen, P A

    1989-01-01

    Azole antifungals (e.g. the imidazoles: miconazole, clotrimazole, bifonazole, imazalil, ketoconazole, and the triazoles: diniconazole, triadimenol, propiconazole, fluconazole and itraconazole) inhibit in fungal cells the 14 alpha-demethylation of lanosterol or 24-methylenedihydrolanosterol. The consequent inhibition of ergosterol synthesis originates from binding of the unsubstituted nitrogen (N-3 or N-4) of their imidazole or triazole moiety to the heme iron and from binding of their N-1 substituent to the apoprotein of a cytochrome P-450 (P-450(14)DM) of the endoplasmic reticulum. Great differences in both potency and selectivity are found between the different azole antifungals. For example, after 16h of growth of Candida albicans in medium supplemented with [14C]-acetate and increasing concentrations of itraconazole, 100% inhibition of ergosterol synthesis is achieved at 3 x 10(-8) M. Complete inhibition of this synthesis by fluconazole is obtained at 10(-5) M only. The agrochemical imidazole derivative, imazalil, shows high selectivity, it has almost 80 and 98 times more affinity for the Candida P-450(s) than for those of the piglet testes microsomes and bovine adrenal mitochondria, respectively. However, the topically active imidazole antifungal, bifonazole, has the highest affinity for P-450(s) of the testicular microsomes. The triazole antifungal itraconazole inhibits at 10(-5) M the P-450-dependent aromatase by 17.9, whereas 50% inhibition of this enzyme is obtained at about 7.5 x 10(-6)M of the bistriazole derivative fluconazole. The overall results show that both the affinity for the fungal P-450(14)DM and the selectivity are determined by the nitrogen heterocycle and the hydrophobic N-1 substituent of the azole antifungals. The latter has certainly a greater impact. The presence of a triazole and a long hypdrophobic nonligating portion form the basis for itraconazole's potency and selectivity.

  4. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance.

    Science.gov (United States)

    Pfaller, Michael A; Messer, Shawn A; Woosley, Leah N; Jones, Ronald N; Castanheira, Mariana

    2013-08-01

    The SENTRY Antimicrobial Surveillance Program monitors global susceptibility and resistance rates of newer and established antifungal agents. We report the echinocandin and triazole antifungal susceptibility patterns for 3,418 contemporary clinical isolates of yeasts and molds. The isolates were obtained from 98 laboratories in 34 countries during 2010 and 2011. Yeasts not presumptively identified by CHROMagar, the trehalose test, or growth at 42°C and all molds were sequence identified using internal transcribed spacer (ITS) and 28S (yeasts) or ITS, translation elongation factor (TEF), and 28S (molds) genes. Susceptibility testing was performed against 7 antifungals (anidulafungin, caspofungin, micafungin, fluconazole, itraconazole, posaconazole, and voriconazole) using CLSI methods. Rates of resistance to all agents were determined using the new CLSI clinical breakpoints and epidemiological cutoff value criteria, as appropriate. Sequencing of fks hot spots was performed for echinocandin non-wild-type (WT) strains. Isolates included 3,107 from 21 Candida spp., 146 from 9 Aspergillus spp., 84 from Cryptococcus neoformans, 40 from 23 other mold species, and 41 from 9 other yeast species. Among Candida spp., resistance to the echinocandins was low (0.0 to 1.7%). Candida albicans and Candida glabrata that were resistant to anidulafungin, caspofungin, or micafungin were shown to have fks mutations. Resistance to fluconazole was low among the isolates of C. albicans (0.4%), Candida tropicalis (1.3%), and Candida parapsilosis (2.1%); however, 8.8% of C. glabrata isolates were resistant to fluconazole. Among echinocandin-resistant C. glabrata isolates from 2011, 38% were fluconazole resistant. Voriconazole was active against all Candida spp. except C. glabrata (10.5% non-WT), whereas posaconazole showed decreased activity against C. albicans (4.4%) and Candida krusei (15.2% non-WT). All agents except for the echinocandins were active against C. neoformans, and the

  5. Probiotics as Antifungals in Mucosal Candidiasis.

    Science.gov (United States)

    Matsubara, Victor H; Bandara, H M H N; Mayer, Marcia P A; Samaranayake, Lakshman P

    2016-05-01

    Candidais an opportunistic pathogen that causes mucosal and deep systemic candidiasis. The emergence of drug resistance and the side effects of currently available antifungals have restricted their use as long-term prophylactic agents for candidal infections. Given this scenario, probiotics have been suggested as a useful alternative for the management of candidiasis. We analyzed the available data on the efficacy of probiotics in candidal colonization of host surfaces. A number of well-controlled studies indicate that probiotics, particularly lactobacilli, suppressCandidagrowth and biofilm development in vitro.A few clinical trials have also shown the beneficial effects of probiotics in reducing oral, vaginal, and enteric colonization byCandida; alleviation of clinical signs and symptoms; and, in some cases, reducing the incidence of invasive fungal infection in critically ill patients. Probiotics may serve in the future as a worthy ally in the battle against chronic mucosal candidal infections.

  6. Antifungal constituents of Melicope borbonica

    DEFF Research Database (Denmark)

    Simonsen, Henrik Toft; Adsersen, Anne; Bremner, Paul

    2004-01-01

    , as the major constituents. All three compounds exhibited moderate antifungal activity against Candida albicans and Penicillium expansum, in accordance with the traditional use of the plant. Moreover, 2,4,6-trimethoxyacetophenone (methylxanthoxylin), three other coumarins [7-(3-methyl-2-butenyloxy)-6...

  7. Prevalence, distribution, and antifungal susceptibility profiles of Candida parapsilosis, C. orthopsilosis, and C. metapsilosis in a tertiary care hospital.

    Science.gov (United States)

    Silva, Ana P; Miranda, Isabel M; Lisboa, Carmen; Pina-Vaz, Cidália; Rodrigues, Acácio G

    2009-08-01

    Candida parapsilosis, an emergent agent of nosocomial infections, was previously made up of a complex of three genetically distinct groups (groups I, II, and III). Recently, the C. parapsilosis groups have been renamed as distinct species: C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis. In Portugal, no data pertaining to the distribution and antifungal susceptibility of these Candida species are yet available. In the present report, we describe the incidence and distribution of C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis among 175 clinical and environmental isolates previously identified by conventional methods as C. parapsilosis. We also evaluated the in vitro susceptibilities of the isolates to fluconazole, voriconazole, posaconazole, amphotericin B, and two echinocandins, caspofungin and anidulafungin. Of the 175 isolates tested, 160 (91.4%) were identified as C. parapsilosis sensu stricto, 4 (2.3%) were identified as C. orthopsilosis, and 5 (2.9%) were identified as C. metapsilosis. Six isolates corresponded to species other than the C. parapsilosis group. Interestingly, all isolates from blood cultures corresponded to C. parapsilosis sensu stricto. Evaluation of the antifungal susceptibility profile showed that only nine (5.6%) C. parapsilosis sensu stricto strains were susceptible-dose dependent or resistant to fluconazole, and a single strain displayed a multiazole-resistant phenotype; two (1.3%) C. parapsilosis sensu stricto strains were amphotericin B resistant. All C. orthopsilosis and C. metapsilosis isolates were susceptible to azoles and amphotericin B. A high number of strains were nonsusceptible to the echinocandins (caspofungin and anidulafungin).

  8. The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex.

    Science.gov (United States)

    Cordeiro, Rossana de Aguiar; Macedo, Ramila de Brito; Teixeira, Carlos Eduardo Cordeiro; Marques, Francisca Jakelyne de Farias; Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, José Luciano Bezerra; Brilhante, Raimunda Sâmia Nogueira; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2014-07-01

    Candida parapsilosis complex comprises three closely related species, C. parapsilosis sensu stricto, Candida metapsilosis and Candida orthopsilosis. In the last decade, antifungal resistance to azoles and caspofungin among C. parapsilosis sensu lato strains has been considered a matter of concern worldwide. In the present study, we evaluated the synergistic potential of antifungals and the calcineurin inhibitor cyclosporin A (Cys) against planktonic and biofilms of C. parapsilosis complex from clinical sources. Susceptibility assays with amphotericin, fluconazole, voriconazole, caspofungin and Cys were performed by microdilution in accordance with Clinical and Laboratory Standards Institute guidelines. Synergy testing against planktonic cells of C. parapsilosis sensu lato strains was assessed by the chequerboard method. Combinations formed by antifungals with Cys were evaluated against mature biofilms in microtitre plates. No differences in the antifungal susceptibility pattern among species were observed, but C. parapsilosis sensu stricto strains were more susceptible to Cys than C. orthopsilosis and C. metapsilosis. Synergism between antifungals and Cys was observed in C. parapsilosis sensu lato strains. Combinations formed by antifungals and Cys were able to prevent biofilm formation and showed an inhibitory effect against mature biofilms of C. parapsilosis sensu stricto, C. metapsilosis and C. orthopsilosis. These results strengthen the potential of calcineurin inhibition as a promising approach to enhance the efficiency of antifungal drugs.

  9. Antifungal activity of multifunctional Fe{sub 3}O{sub 4}-Ag nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Chudasama, Bhupendra, E-mail: bnchudasama@thapar.ed [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Vala, Anjana K.; Andhariya, Nidhi [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India); Upadhyay, R.V. [P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388421 (India); Mehta, R.V. [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India)

    2011-05-15

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe{sub 3}O{sub 4}-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe{sub 3}O{sub 4}) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 {mu}g/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: Synthesis of Fe{sub 3}O{sub 4}-Ag core-shell nanocolloids. Antifungal activity of Fe{sub 3}O{sub 4}-Ag nanocolloids against Aspergillus glaucus isolates. The MIC value for A. glaucus is 2000 {mu}g/mL. Antifungal activity is better or comparable with most prominent antibiotics.

  10. 我院2009-2011年老年真菌感染菌种分布及其对抗真菌药敏感性分析%Analysis of Species Distribution and Drug Susceptibility to Antifungal Agents in the Aged with Fungal Infection of Our Hospital during 2009-2011

    Institute of Scientific and Technical Information of China (English)

    张慧儿; 裘莉佩

    2013-01-01

    目的:探讨临床老年患者标本中所分离的假丝酵母菌属的菌种分布及其对临床常用抗真菌药的敏感性,为老年人使用抗真菌药提供参考.方法:对我院2009-2011年从老年体内分离的213例假丝酵母菌进行回顾性分析,分析其菌种分布情况以及对5种抗真菌药的敏感性.结果:在213株假丝酵母菌中,白假丝酵母菌占42.3%(90/213),非白假丝酵母菌占57.7% (123/213);5-氟胞嘧啶、两性霉素B、氟康唑、伊曲康唑和伏立康唑的总敏感率分别为87.8%、100%、93.2%、85.9%和95.9%;90株白假丝酵母菌对上述5种抗真菌药的敏感率分别为93.3%、100%、95.4%、92.2%和96.3%,123株非白假丝酵母菌分别为83.7%、100%、91.6%、81.3%和95.6%.结论:在老年感染假丝酵母菌中最常见的菌种仍是白假丝酵母菌,但其比例较已报道的非老年感染者比例有所下降;白假丝酵母菌对常用抗真菌药仍有较高的敏感性,非白假丝酵母菌的耐药性则高于白假丝酵母菌.%OBJECTIVE: To discuss the species distribution and drug susceptibility to antifungal agent of isolated Candida, and to provide reference for the use of antifungal agent in the aged. METHODS: A total of 213 isolates were collected from our hospital during 2009 — 2011 were analyzed statistically, and the species distribution of Candida and drug resistance to 5 commonly used antifungal agents were analyzed. RESULTS: Among 213 Candida, Candida albicans accounted for 42.3% (90/213) and non-Candida albicans accounted for 57.7% (123/213). The overall percentage of strains susceptible to 5-flucytosine, amphotericin B, flucytosine, itraconazole and voriconazole were 87.8% , 100% , 93.2% , 85.9% and 95.9% , respectively. About 93.3% , 100%, 95.4% , 92.2% and 96.3% of 90 strains of Candida albicans were susceptible to these 5 antifungal agents. The susceptibility rates of 123 non-Candida albicans isolates were 83.7%, 100

  11. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability.

    Science.gov (United States)

    Mahata, Denial; Mandal, Santi M; Bharti, Rashmi; Gupta, Vinay Krishna; Mandal, Mahitosh; Nag, Ahindra; Nando, Golok B

    2014-08-01

    Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16μg/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs.

  12. Two small molecule lead compounds as new antifungal agents effective against Candida albicans and Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Yones Pilehvar-Soltanahmadi

    2014-06-01

    Full Text Available  Background: Antifungal drug resistance and few numbers of available drugs limit therapeutic options against fungal infections. The present study was designed to discover new antifungal drugs. Materials and Methods: This study was carried out in two separate steps, that is, in silico lead identification and in vitro assaying of antifungal potential. A structural data file of a ternary complex of fusicuccin (legend, C terminus of H+-ATPase and 14-3-3 regulatory protein (1o9F.pdb file was used as a model. Computational screening of a virtual 3D database of drug-like molecules was performed and selected small molecules, resembling the functional part of the ligand performing ligand docking, were tested using ArgusLab (4.0.1. Two lead compounds, 3-Cyclohexan propionic acid (CXP and 4-phenyl butyric acid (PBA were selected according to their ligation scores. Standard Strains of Candida albicans and Saccharomyces cerevisiae were used to measure the antifungal potential of the two identified lead compounds against the fungi using micro-well plate dilution assay. Results: Ligation scores for CXP and PBA were -9.33744 and -10.7259 kcal/mol, respectively, and MIC and MFC of CXP and PBA against the two yeasts were promising. Conclusion: The evidence from the present study suggests that CXP and PBA possess potentially antifungals properties. 

  13. Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway

    Science.gov (United States)

    Thangamani, Shankar; Maland, Matthew; Mohammad, Haroon; Pascuzzi, Pete E.; Avramova, Larisa; Koehler, Carla M.; Hazbun, Tony R.; Seleem, Mohamed N.

    2017-01-01

    Current antifungal therapies have limited effectiveness in treating invasive fungal infections. Furthermore, the development of new antifungal is currently unable to keep pace with the urgent demand for safe and effective new drugs. Auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, inhibits growth of a diverse array of clinical isolates of fungi and represents a new antifungal agent with a previously unexploited mechanism of action. In addition to auranofin's potent antifungal activity against planktonic fungi, this drug significantly reduces the metabolic activity of Candida cells encased in a biofilm. Unbiased chemogenomic profiling, using heterozygous S. cerevisiae deletion strains, combined with growth assays revealed three probable targets for auranofin's antifungal activity—mia40, acn9, and coa4. Mia40 is of particular interest given its essential role in oxidation of cysteine rich proteins imported into the mitochondria. Biochemical analysis confirmed auranofin targets the Mia40-Erv1 pathway as the drug inhibited Mia40 from interacting with its substrate, Cmc1, in a dose-dependent manner similar to the control, MB-7. Furthermore, yeast mitochondria overexpressing Erv1 were shown to exhibit resistance to auranofin as an increase in Cmc1 import was observed compared to wild-type yeast. Further in vivo antifungal activity of auranofin was examined in a Caenorhabditis elegans animal model of Cryptococcus neoformans infection. Auranofin significantly reduced the fungal load in infected C. elegans. Collectively, the present study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antifungal agent and may offer a safe, effective, and quick supplement to current approaches for treating fungal infections. PMID:28149831

  14. Conventional and alternative antifungal therapies to oral candidiasis.

    Science.gov (United States)

    Anibal, Paula Cristina; de Cássia Orlandi Sardi, Janaina; Peixoto, Iza Teixeira Alves; de Carvalho Moraes, Julianna Joanna; Höfling, José Francisco

    2010-10-01

    Candida-associated denture stomatitis is the most common form of oral candidal infection, with Candida albicans being the principal etiological agent. Candida adheres directly or via an intermediary layer of plaque-forming bacteria to denture acrylic. Despite antifungal therapy to treat denture stomatitis, infection is reestablished soon after the treatment ceases. In addition, many predisposing factors have been identified as important in the development of oral candidiasis, including malnourishment, common endocrine disorders, such as diabetis mellitus, antibacterial drug therapy, corticosteroids, radiotherapy and other immunocompromised conditions, such as acquired immunodeficiency syndrome (AIDS). These often results in increased tolerance to the most commonly used antifungals. So this review suggests new therapies to oral candidiasis.

  15. Conventional and alternative antifungal therapies to oral candidiasis

    Directory of Open Access Journals (Sweden)

    Paula Cristina Anibal

    2010-12-01

    Full Text Available Candida-associated denture stomatitis is the most common form of oral candidal infection, with Candida albicans being the principal etiological agent. Candida adheres directly or via an intermediary layer of plaque-forming bacteria to denture acrylic. Despite antifungal therapy to treat denture stomatitis, infection is reestablished soon after the treatment ceases. In addition, many predisposing factors have been identified as important in the development of oral candidiasis, including malnourishment, common endocrine disorders, such as diabetis mellitus, antibacterial drug therapy, corticosteroids, radiotherapy and other immunocompromised conditions, such as acquired immunodeficiency syndrome (AIDS. These often results in increased tolerance to the most commonly used antifungals. So this review suggests new therapies to oral candidiasis.

  16. THE IMPACT OF ANTIFUNGALS ON TOLL-LIKE RECEPTORS

    Directory of Open Access Journals (Sweden)

    Mircea Radu Mihu

    2014-03-01

    Full Text Available Fungi are increasingly recognized as major pathogens in immunocompromised individuals. The most common invasive fungal infections are caused by Candida spp., Aspergillus spp. and Cryptococcus spp. Amphotericin B has remained the cornerstone of therapy against many fulminant fungal infections but its use is limited by its multitude of side effects. Echinocandins are a newer class of antifungal drugs with activity against Candida spp. and Aspergillus spp. and constitutes an alternative to amphotericin B due to superior patient tolerability and fewer side effects. Due to their excellent bioavailability and oral availability, azoles continue to be heavily used for simple, such as fluconazole for candidal vaginitis, and complex diseases, such as voriconazole for aspergilloisis. The objective of this paper is to present current knowledge regarding the multiple interactions between the broad spectrum antifungals and the innate immune response, primarily focusing on the toll-like receptors.

  17. In Vitro Activity of a Novel Broad-Spectrum Antifungal, E1210, Tested against Aspergillus spp. Determined by CLSI and EUCAST Broth Microdilution Methods ▿

    Science.gov (United States)

    Pfaller, Michael A.; Duncanson, Frederick; Messer, Shawn A.; Moet, Gary J.; Jones, Ronald N.; Castanheira, Mariana

    2011-01-01

    E1210 is a first-in-class broad-spectrum antifungal that suppresses hyphal growth by inhibiting fungal glycophosphatidylinositol (GPI) biosynthesis. In the present study, we extend these findings by examining the activity of E1210 and comparator antifungal agents against Aspergillus spp. by using the methods of the Clinical and Laboratory Standards Institute (CLSI) and the European Committee for Antimicrobial Susceptibility Testing (EUCAST) to test wild-type (WT) as well as amphotericin B (AMB)-resistant (-R) and azole-R strains (as determined by CLSI methods). Seventy-eight clinical isolates of Aspergillus were tested including 20 isolates of Aspergillus flavus species complex (SC), 22 of A. fumigatus SC, 13 of A. niger SC, and 23 of A. terreus SC. The collection included 15 AMB-R (MIC, ≥2 μg/ml) isolates of A. terreus SC and 10 itraconazole-R (MIC, ≥4 μg/ml) isolates of A. fumigatus SC (7 isolates), A. niger SC (2 isolates), and A. terreus SC (1 isolate). Comparator antifungal agents included anidulafungin, caspofungin, amphotericin B, itraconazole, posaconzole, and voriconazole. Both CLSI and EUCAST methods were highly concordant for E1210 and all comparators. The essential agreement (EA; ±2 log2 dilution steps) was 100% for all comparisons with the exception of posaconazole versus A. terreus SC (EA = 91.3%). The minimum effective concentration (MEC)/MIC90 values (μg/ml) for E1210, anidulafungin, caspofungin, itraconazole, posaconazole, and voriconazole, respectively, were as follows for each species: for A. flavus SC, 0.03, ≤0.008, 0.12, 1, 1, and 1; for A. fumigatus SC, 0.06, 0.015, 0.12, >8, 1, and 4; for A. niger SC, 0.015, 0.03, 0.12, 4, 1, and 2; and for A. terreus SC, 0.06, 0.015, 0.12, 1, 0.5, and 1. E1210 was very active against AMB-R strains of A. terreus SC (MEC range, 0.015 to 0.06 μg/ml) and itraconazole-R strains of A. fumigatus SC (MEC range, 0.03 to 0.12 μg/ml), A. niger SC (MEC, 0.008 μg/ml), and A. terreus SC (MEC, 0.015

  18. Drug: D01400 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D01400 Drug Methyl parahydroxybenzoate (JP16); Methylparaben (NF); Methyl parahydro...xybenzoate (TN); Methylparaben (TN) C8H8O3 152.0473 152.1473 D01400.gif Pharmaceutic aid [antifungal agent

  19. Clinical Drug-Drug Pharmacokinetic Interaction Potential of Sucralfate with Other Drugs

    DEFF Research Database (Denmark)

    Sulochana, Suresh P; Syed, Muzeeb; Chandrasekar, Devaraj V

    2016-01-01

    of drugs. This review covers several category of drugs such as non-steroidal anti-inflammatory drugs, fluoroquinolones, histamine H2-receptor blockers, macrolides, anti-fungals, anti-diabetics, salicylic acid derivatives, steroidal anti-inflammatory drugs and provides pharmacokinetic data summary along...

  20. Potential Use of Alginate-Based Carriers As Antifungal Delivery System

    Science.gov (United States)

    Spadari, Cristina de Castro; Lopes, Luciana B.; Ishida, Kelly

    2017-01-01

    Fungal infections have become a major public health problem, growing in number and severity in recent decades due to an increase of immunocompromised patients. The use of therapeutic agents available to treat these fungal infections is limited by their toxicity, low bioavailability, antifungal resistance, and high cost of treatment. Thus, it becomes extremely important to search for new therapeutic options. The use of polymeric systems as drug carriers has emerged as a promising alternative to conventional formulations for antifungals. Alginate is a natural polymer that has been explored in the last decade for development of drug delivery systems due to its non-toxicity, biodegradability, biocompatibility, low cost, mucoadhesive, and non-immunogenic properties. Several antifungal agents have been incorporated in alginate-based delivery systems, including micro and nanoparticles, with great success, displaying promising in vitro and in vivo results for antifungal activities, reduction in the toxicity and the total drug dose used in the treatment, and improved bioavailability. This review aims at discussing the potential use and benefits of alginate-based nanocarriers and other delivery systems containing antifungal agents in the therapy of fungal infections. PMID:28194145

  1. Assessment of Bioequivalence of Weak Base Formulations Under Various Dosing Conditions Using Physiologically Based Pharmacokinetic Simulations in Virtual Populations. Case Examples: Ketoconazole and Posaconazole.

    Science.gov (United States)

    Cristofoletti, Rodrigo; Patel, Nikunjkumar; Dressman, Jennifer B

    2017-02-01

    Postabsorptive factors which can affect systemic drug exposure are assumed to be dependent on the active pharmaceutical ingredient (API), and thus independent of formulation. In contrast, preabsorptive factors, for example, hypochlorhydria, might affect systemic exposure in both an API and a formulation-dependent way. The aim of this study was to evaluate whether the oral absorption of 2 poorly soluble, weakly basic APIs, ketoconazole (KETO) and posaconazole (POSA), would be equally sensitive to changes in dissolution rate under the following dosing conditions-coadministration with water, with food, with carbonated drinks, and in drug-induced hypochlorhydria. The systems-components of validated absorption and PBPK models for KETO and POSA were modified to simulate the above-mentioned clinical scenarios. Virtual bioequivalence studies were then carried out to investigate whether formulation effects on the plasma profile vary with the dosing conditions. The slow precipitation of KETO upon reaching the upper part of the small intestine renders its absorption more sensitive to the completeness of gastric dissolution and thus to the gastric environment than POSA, which is subject to extensive precipitation in response to a pH shift. The virtual bioequivalence studies showed that hypothetical test and reference formulations containing KETO would be bioequivalent only if the microenvironment in the stomach enables complete gastric dissolution. We conclude that physiologically based pharmacokinetic modeling and simulation has excellent potential to address issues close to bedside such as optimizing dosing conditions. By studying virtual populations adapted to various clinical situations, clinical strategies to reduce therapeutic failures can be identified.

  2. Comparison of fluconazole and posaconazole for fungal prophylaxis in high- risk patients with hematological malignity

    Directory of Open Access Journals (Sweden)

    Selçuk Kaya

    2014-03-01

    Full Text Available Objective: To compare the frequency of fungal infection and mortality rates in patients with hematological malignity and receiving either flucanazole (FLU or posaconazole (POS prophylaxis. Methods: This retrospective, observational study investigated fungal prophylaxis in patients with a high risk of invasive fungal infections (IFIs and diagnosed with hematological malignity at our hospital hematology clinic between 01.01.2011 and 01.01.2013. FLU (n=70 was the prophylactic regimen between 2011 and 2012 which was replaced by POS (n=35 in the following period. The incidence and mortality rates of IFIs developing in the two periods were compared. Results: The incidence of IFI in patients administered FLU prophylaxis was 22/70 (31%, compared to 13/35 (37% in the patients receiving POS. Incidence of invasive pulmonary aspergillosis (IPA in the FLU group was 21/70 (31%, compared to 9/35 (26% in the POS group. The mortality rate in the group receiving FLU prophylaxis was 17 (24%, compared to 4 (11% in the POS group. The difference was attributed to causes other than fungal infection. Results of subgroup analysis performed for AML were similar to the general findings in terms of both incidences of fungal infection and of mortality levels. In multivariate analysis, mean duration of neutropenia was correlated with prophylaxis failure. Conclusion:We conclude that both agents can be successfully used in fungal infection prophylaxis for patients at high risk for IFI. J Microbiol Infect Dis 2014;4(1: 1-6

  3. Candida Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Claudia Spampinato

    2013-01-01

    Full Text Available The genus Candida includes about 200 different species, but only a few species are human opportunistic pathogens and cause infections when the host becomes debilitated or immunocompromised. Candida infections can be superficial or invasive. Superficial infections often affect the skin or mucous membranes and can be treated successfully with topical antifungal drugs. However, invasive fungal infections are often life-threatening, probably due to inefficient diagnostic methods and inappropriate initial antifungal therapies. Here, we briefly review our current knowledge of pathogenic species of the genus Candida and yeast infection causes and then focus on current antifungal drugs and resistance mechanisms. An overview of new therapeutic alternatives for the treatment of Candida infections is also provided.

  4. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine.

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeida-Paes

    Full Text Available Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC and minimal fungicidal concentrations (MFC of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.

  5. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine.

    Science.gov (United States)

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.

  6. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine

    Science.gov (United States)

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies. PMID:27031728

  7. New and emerging antifungal agents: impact on respiratory infections.

    Science.gov (United States)

    Feldmesser, Marta

    2003-01-01

    Fungal pathogens are increasingly important causes of respiratory disease, yet the number of antifungal agents available for clinical use is limited. Use of amphotericin B deoxycholate is hampered by severe toxicity. Triazole agents currently available have significant drug interactions; fluconazole has a limited spectrum of activity and itraconazole was, until recently, available only in oral formulations with limited bioavailability. The development of resistance to all three agents is increasingly being recognized and some filamentous fungi are resistant to the action of all of these agents. In the past few years, new antifungal agents and new formulations of existing agents have become available.The use of liposomal amphotericin B preparations is associated with reduced, but still substantial, rates of nephrotoxicity and infusion-related reactions. An intravenous formulation of itraconazole has been introduced, and several new triazole agents have been developed, with the view of identifying agents that have enhanced potency, broader spectra of action and improved pharmacodynamic properties. One of these, voriconazole, has completed large-scale clinical trials. In addition, caspofungin, the first of a new class of agents, the echinocandins, which inhibit cell wall glucan synthesis, was approved for use in the US in 2001 as salvage therapy for invasive aspergillosis. It is hoped that the availability of these agents will have a significant impact on the morbidity and mortality of fungal respiratory infections. However, at the present time, our ability to assess their impact is limited by the problematic nature of conducting trials for antifungal therapy.

  8. Antifungal susceptibility testing method for resource constrained laboratories

    Directory of Open Access Journals (Sweden)

    Khan S

    2006-01-01

    Full Text Available Purpose: In resource-constrained laboratories of developing countries determination of antifungal susceptibility testing by NCCLS/CLSI method is not always feasible. We describe herein a simple yet comparable method for antifungal susceptibility testing. Methods: Reference MICs of 72 fungal isolates including two quality control strains were determined by NCCLS/CLSI methods against fluconazole, itraconazole, voriconazole, amphotericin B and cancidas. Dermatophytes were also tested against terbinafine. Subsequently, on selection of optimum conditions, MIC was determined for all the fungal isolates by semisolid antifungal agar susceptibility method in Brain heart infusion broth supplemented with 0.5% agar (BHIA without oil overlay and results were compared with those obtained by reference NCCLS/CLSI methods. Results: Comparable results were obtained by NCCLS/CLSI and semisolid agar susceptibility (SAAS methods against quality control strains. MICs for 72 isolates did not differ by more than one dilution for all drugs by SAAS. Conclusions: SAAS using BHIA without oil overlay provides a simple and reproducible method for obtaining MICs against yeast, filamentous fungi and dermatophytes in resource-constrained laboratories.

  9. Antifungal peptides: a potential new class of antifungals for treating vulvovaginal candidiasis caused by fluconazole-resistant Candida albicans.

    Science.gov (United States)

    Ng, Siew Mei Samantha; Yap, Yi Yong Alvin; Cheong, Jin Wei Darryl; Ng, Fui Mee; Lau, Qiu Ying; Barkham, Timothy; Teo, Jeanette Woon Pei; Hill, Jeffrey; Chia, Cheng San Brian

    2017-03-01

    Vulvovaginal candidiasis/candidosis is a common fungal infection afflicting approximately 75% of women globally caused primarily by the yeast Candida albicans. Fluconazole is widely regarded as the antifungal drug of choice since its introduction in 1990 due to its high oral bioavailability, convenient dosing regimen and favourable safety profile. However, its widespread use has led to the emergence of fluconazole-resistant C. albicans, posing a universal clinical concern. Coupled to the dearth of new antifungal drugs entering the market, it is imperative to introduce new drug classes to counter this threat. Antimicrobial peptides (AMPs) are potential candidates due to their membrane-disrupting mechanism of action. By specifically targeting fungal membranes and being rapidly fungicidal, they can reduce the chances of resistance development and treatment duration. Towards this goal, we conducted a head-to-head comparison of 61 short linear AMPs from the literature to identify the peptide with the most potent activity against fluconazole-resistant C. albicans. The 11-residue peptide, P11-6, was identified and assayed against a panel of clinical C. albicans isolates followed by fungicidal/static determination and a time-kill assay to gauge its potential for further drug development. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  10. Epidemiology and antifungal susceptibilities of yeasts causing vulvovaginitis in a teaching hospital.

    Science.gov (United States)

    Gamarra, Soledad; Morano, Susana; Dudiuk, Catiana; Mancilla, Estefanía; Nardin, María Elena; de Los Angeles Méndez, Emilce; Garcia-Effron, Guillermo

    2014-10-01

    Vulvovaginal candidiasis is one of the most common mycosis. However, the information about antifungal susceptibilities of the yeasts causing this infection is scant. We studied 121 yeasts isolated from 118 patients with vulvovaginal candidiasis. The isolates were identified by phenotypic and molecular methods, including four phenotypic methods described to differentiate Candida albicans from C. dubliniensis. Antifungal susceptibility testing was performed according to CLSI documents M27A3 and M27S4 using the drugs available as treatment option in the hospital. Diabetes, any antibacterial and amoxicillin treatment were statistically linked with vulvovaginal candidiasis, while oral contraceptives were not considered a risk factor. Previous azole-based over-the-counter antifungal treatment was statistically associated with non-C.albicans yeasts infections. The most common isolated yeast species was C. albicans (85.2 %) followed by C. glabrata (5 %), Saccharomyces cerevisiae (3.3 %), and C. dubliniensis (2.5 %). Fluconazole- and itraconazole-reduced susceptibility was observed in ten and in only one C. albicans strains, respectively. All the C. glabrata isolates showed low fluconazole MICs. Clotrimazole showed excellent potency against all but seven isolates (three C. glabrata, two S. cerevisiae, one C. albicans and one Picchia anomala). Any of the strains showed nystatin reduced susceptibility. On the other hand, terbinafine was the less potent drug. Antifungal resistance is still a rare phenomenon supporting the use of azole antifungals as empirical treatment of vulvovaginal candidiasis.

  11. Comparing antifungal effects of Zatariamultiflora and Punicagranatum extract with Nystatin on Candida Albicans

    Directory of Open Access Journals (Sweden)

    F. Nouri

    2016-12-01

    Full Text Available Background: Despite all the progress that has been made in the manufacture of synthetic drugs, herbal drugs are increasingly taken into account. This is due to the growing belief that they have fewer side effects compared to synthetic ones. Objective: To compare the antifungal effects of extracts of Zatariamultiflora and Punicagranatum with Nystatin on Candida Albicans. Methods: This inviro trial accomplished in the school of dentistry of Tehran University in 2012. From the mouths of 25 patients with denture stomatitis were sampled using sterile swabs. Candida Albicans strains were isolated from samples and standard Candida Albicans PTCC 5027 were cultured too. Then extract of Zatariamultiflora and Punicagranatum to be obtained and antifungal of extract studied with disk diffusion method. Antifungal power of each of the extracts on the inhibition zone diameter was created in the medium. Data were analyzed by ANOVA and Friedman statistical tests. Findings: Results showed extracts of Zataria and pomegranate flowers have antifungal significant effects (P<0.001. Diameter of inhabitation zone was 17.66±./75 mm in Nystatin group and in the Zataria and pomegranate flowers extracts groups was lower (P<0.001. None of the negative control disc did inhibition zone in the medium. Conclusion: With due attention of Zataria and pomegranate flowers extracts exhibited antifungal effects on Candida Albincans.

  12. Synthesis and antifungal activities of glycosylated derivatives of the cyclic peptide fungicide caspofungin.

    Science.gov (United States)

    Guo, Junxiang; Hu, Honggang; Zhao, Qingjie; Wang, Ting; Zou, Yan; Yu, Shichong; Wu, Qiuye; Guo, Zhongwu

    2012-08-01

    Diseases caused by systemic fungal infections have become a significant clinical problem in recent decades. A series of glycosyl derivatives of the approved cyclic peptide antifungal drug caspofungin conjugated with β-D-glucopyranose, β-D-galactopyranose, β-D-xylopyranose, β-L-rhamnopyranose, β-maltose and β-lactose units were designed, synthesized, and evaluated as new potential antifungal drugs. The compounds were obtained by coupling the corresponding glycosyl amines to the free primary amino groups of caspofungin through a bifunctional glutaryl linker. In contrast to caspofungin, these glycosylated derivatives are soluble in water, but are not hygroscopic and moreover, are more stable than caspofungin under high humidity and temperature. CD studies showed that glycosylation has very little impact on the conformation of the cyclic peptide of caspofungin. In vitro antifungal tests against seven human pathogenic fungi revealed that the caspofungin-monosaccharide conjugates, but not the disaccharide conjugates, have increased antifungal activities against the majority of tested fungus species relative to caspofungin. The β-D-glucopyranosyl derivative 2 a showed the strongest and broadest antifungal activity, providing a lead for further studies.

  13. Active packaging with antifungal activities.

    Science.gov (United States)

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-01

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time.

  14. The Susceptibility Patterns of Candida Species Isolated From Urine Samples to Posaconazole and Caspofungin

    OpenAIRE

    Zarei Mahmoudabadi, Ali; REZAEI-MATEHKOLAEI, Ali; Ghanavati, Fataemeh

    2015-01-01

    Background: Candiduria is a rising condition among hospitalized patients and Candida albicans is the most common recovered agent. However, non-albicans Candida species (NACs) such as C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis are also important. Although most Candida species especially C. albicans are sensitive to routinely used antifungals, an increasing trend in resistance has been observed among NACs. Objectives: The aim of the present study was to detect the susceptibility...

  15. Design, synthesis of novel antifungal triazole derivatives with high activities against Aspergillus fumigatus

    Institute of Scientific and Technical Information of China (English)

    Qiu Qin He; Chao Mei Liu; Ke Li; Yong Bing Cao

    2007-01-01

    Based on the active site of Aspergillusfumigatus lanosterol 14α-demethylase (AF-CYP51), novel triazole compounds were designed. Their chemical synthesis and the antifungal activities were reported. The results showed that all the target compounds exhibited excellent activities with broad spectrum; in which compounds 4, 12 and 15 showed comparable activities against A.fumigatus to the control drug itraconazole.

  16. Synergistic combinations of antifungals and antivirulence agents to fight against Candida albicans

    DEFF Research Database (Denmark)

    Cui, Jinhui; Ren, Biao; Tong, Yaojun

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi...

  17. Eupatorium Capillifolium Essential Oil: Chemical Composition, Antifungal Activity, and Insecticidal Activity

    Science.gov (United States)

    2010-01-01

    Matrix, one-dimensional protocols on silica gel TLC plates along with Colletotrichum spp. as the test organisms were used to identify the antifungal...activity of the antirheumatic herbal drug, gravel root (Eupatorium purpureum): Further biological activities and constituents. Phytotherapy Research

  18. The Anti-helminthic Compound Mebendazole Has Multiple Antifungal Effects against Cryptococcus neoformans

    Science.gov (United States)

    Joffe, Luna S.; Schneider, Rafael; Lopes, William; Azevedo, Renata; Staats, Charley C.; Kmetzsch, Lívia; Schrank, Augusto; Del Poeta, Maurizio; Vainstein, Marilene H.; Rodrigues, Marcio L.

    2017-01-01

    Cryptococcus neoformans is the most lethal pathogen of the central nervous system. The gold standard treatment of cryptococcosis, a combination of amphotericin B with 5-fluorocytosine, involves broad toxicity, high costs, low efficacy, and limited worldwide availability. Although the need for new antifungals is clear, drug research and development (R&D) is costly and time-consuming. Thus, drug repurposing is an alternative to R&D and to the currently available tools for treating fungal diseases. Here we screened a collection of compounds approved for use in humans seeking for those with anti-cryptococcal activity. We found that benzimidazoles consist of a broad class of chemicals inhibiting C. neoformans growth. Mebendazole and fenbendazole were the most efficient antifungals showing in vitro fungicidal activity. Since previous studies showed that mebendazole reaches the brain in biologically active concentrations, this compound was selected for further studies. Mebendazole showed antifungal activity against phagocytized C. neoformans, affected cryptococcal biofilms profoundly and caused marked morphological alterations in C. neoformans, including reduction of capsular dimensions. Amphotericin B and mebendazole had additive anti-cryptococcal effects. Mebendazole was also active against the C. neoformans sibling species, C. gattii. To further characterize the effects of the drug a random C. gattii mutant library was screened and indicated that the antifungal activity of mebendazole requires previously unknown cryptococcal targets. Our results indicate that mebendazole is as a promising prototype for the future development of anti-cryptococcal drugs.

  19. Design, synthesis and molecular docking studies of novel triazole antifungal compounds

    Institute of Scientific and Technical Information of China (English)

    Qiu Qin He; Ke Li; Yong Bing Cao; Huan Wen Dong; Li Hua Zhao; Chao Mei Liu; Chun Quan Sheng

    2007-01-01

    Based on the active site of Candida albicans lanosterol 14α-demethylase (CACYP51), novel triazole compounds structurally different from the current triazole drugs were designed and synthesized.In vitro antifungal activities showed that compounds 10,11,16 and 20 exhibited strong activities.In addition, compounds 10,11 and 16 also displayed certain activities against fluconazole-resistant fungi.

  20. Apophysomyces elegans: epidemiology, amplified fragment length polymorphism typing, and in vitro antifungal susceptibility pattern.

    NARCIS (Netherlands)

    Chakrabarti, A.; Shivaprakash, M.R.; Curfs-Breuker, I.; Baghela, A.; Klaassen, C.H.; Meis, J.F.G.M.

    2010-01-01

    Apophysomyces elegans is an emerging pathogen in India. We planned the present study to analyze the clinical pattern of the disease, to perform molecular strain typing, and to determine the in vitro activities of eight antifungal drugs against A. elegans. A total of 16 clinical and two environmental

  1. Treatment of dermatophytosis by a new antifungal agent 'apigenin'.

    Science.gov (United States)

    Singh, Geeta; Kumar, Padma; Joshi, Suresh Chandra

    2014-08-01

    Dermatophytes are the most common causative agents of cutaneous mycosis and remain a major public health problem in spite of the availability of an increasing number of antifungal drugs. It was, therefore considered necessary to pursue the screening of different extracts (compounds) of selected traditional medicinal plants reportedly having antidermatophyte potential. The aim of this study was to isolate and identify specific compound from the most active extract (free flavonoid) of stem of Terminalia chebula of the selected plants to treat dermatophytosis induced on experimental mice. Mice which were experimentally induced with Trichophyton mentagrophytes were grouped in six of five animals each. To treat the lesions on infected mice, two concentrations of isolated apigenin ointment, i.e. 2.5 mg g(-1) (Api I) and 5 mg g(-1) (Api II), and terbinafine (standard) of concentration 5 mg g(-1) were used. Complete recovery from the infection was recorded on 12th day of treatment for reference drug Terbinafine and Api II (5 mg g(-1) ) concentration of ointment, whereas Api I (2.5 mg g(-1) ) ointment showed complete cure on 16th day of treatment. Fungal burden was also calculated by culturing skin scraping from infected mice's of different groups. Apigenin has shown potency as the infected animals recover completely by Api II comparable to the standard drug in 12th day. So Apigenin can be explored as an antifungal agent in the clinical treatment of dermatophytosis in future.

  2. Macrocyclic trichothecenes as antifungal and anticancer compounds.

    Science.gov (United States)

    de Carvalho, Maira Peres; Weich, Herbert; Abraham, Wolf-Rainer

    2016-01-01

    Trichothecenes are sesquiterpenoid metabolites produced by fungi and species of the plant genus Baccharis, family Asteraceae. They comprise a tricyclic core with an epoxide at C-12 and C-13 and can be grouped into non-macrocyclic and macrocyclic compounds. While many of these compounds are of concern in agriculture, the macrocyclic metabolites have been evaluated as antiviral, anti-cancer, antimalarial and antifungal compounds. Some known cytotoxic responses on eukaryotic cells include inhibition of protein, DNA and RNA syntheses, interference with mitochondrial function, effects on cell division and membranes. These targets however have been elucidated essentially employing non-macrocyclic trichothecenes and only one or two closely related macrocyclic compounds. For several macrocyclic trichothecenes high selectivity against fungal species and against cancer cell lines have been reported suggesting that the macrocycle and its stereochemistry are of crucial importance regarding biological activity and selectivity. This review is focused on compounds belonging to the macrocyclic type, where a cyclic diester or triester ring binds to the trichothecane moiety at C-4 and C- 15 leading to natural products belonging to the groups of satratoxins, verrucarins, roridins, myrotoxins and baccharinoids. Their biological activities, cytotoxic mechanisms and structure-activity relationships (SAR) are discussed. From the reported data it becomes evident that even small changes in the molecules can lead to pronounced effects on biological activity or selectivity against cancer cells lines. Understanding the underlying mechanisms may help to design highly specific drugs for cancer therapy.

  3. In vitro analysis of antifungal impregnated polymethylmethacrylate bone cement.

    Science.gov (United States)

    Silverberg, David; Kodali, Pradeep; Dipersio, Joseph; Acus, Raymond; Askew, Michael

    2002-10-01

    Fungal infection is a rare but devastating complication of total joint arthroplasty. Many patients require removal of the components and resection arthroplasty for cure; however, revision arthroplasty with medicated polymethylmethacrylate bone cement may be used to salvage the joint. Some studies have documented the efficacy of mixing antibiotics with polymethylmethacrylate, but the efficacy of antifungal drugs when mixed with polymethylmethacrylate is unknown. An in vitro agar diffusion method was used in the current study to investigate this potential, and several clinically important conclusions resulted: (1) after incorporation into bone cement, fluconazole and amphotericin B remained active whereas 5-flucytosine did not, (2) inhibitory activity improved with greater drug concentrations, and (3) more drug eluted from Palacos R than Simplex P cement.

  4. An antifungal protein from ginger rhizomes.

    Science.gov (United States)

    Wang, Hexiang; Ng, Tzi Bun

    2005-10-14

    There are very few reports on antifungal proteins from rhizomes and there is none from the family of Zingiberaceae. An antifungal protein with a novel N-terminal sequence was isolated from ginger rhizomes utilizing a protocol that involved ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, and fast protein liquid chromatography on Superdex 75. The protein was unadsorbed on DEAE-cellulose and adsorbed on Affi-gel blue gel. It exhibited an apparent molecular mass of 32kDa and exerted antifungal activity toward various fungi including Botrytis cinerea, Fusarium oxysporum, Mycosphaerella arachidicola, and Physalospora piricola.

  5. Antifungal properties of halofumarate esters.

    Science.gov (United States)

    Gershon, H; Shanks, L

    1978-04-01

    Alkyl esters (C1--C4) of the four halofumaric acids were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes at pH 5.6 and 7.0 in the absence and presence of 10% beef serum in Sabouraud dextrose agar. The most toxic compound to each organism was: C. albicans, ethyl iodofumarate (0.054 mmole/liter); A. niger, methyl bromofumarate (0.090 mmole/liter); M. mucedo, methyl fluorofumarate (0.037 mmole/liter); and T. mentagrophytes, ethyl iodofumarate (0.020 mmole/liter). The order of overall activity of the six most toxic compounds was: ethyl iodofumarate greater than ethyl chlorofumarate greater than methyl iodofumarate = methyl bromofumarate greater than methyl chlorofumarate greater than bromofumarate.

  6. Encapsulation of Antifungals in Micelles Protects Candida albicans during Gall-Bladder Infection

    Science.gov (United States)

    Hsieh, Shih-Hung; Brunke, Sascha; Brock, Matthias

    2017-01-01

    Candida albicans is a dimorphic fungus that colonizes human mucosal surfaces with the potential to cause life-threatening invasive candidiasis. Studies on systemic candidiasis in a murine infection model using in vivo real-time bioluminescence imaging revealed persistence of C. albicans in the gall bladder under antifungal therapy. Preliminary analyses showed that bile conferred resistance against a wide variety of antifungals enabling survival in this cryptic host niche. Here, bile and its components were studied for their ability to reduce antifungal efficacy in order to elucidate the underlying mechanism of protection. While unconjugated bile salts were toxic to C. albicans, taurine, or glycine conjugated bile salts were well tolerated and protective against caspofungin and amphotericin B when exceeding their critical micellar concentration. Microarray experiments indicated that upregulation of genes generally known to mediate antifungal protection is not involved in the protection process. In contrast, rhodamine 6G and crystal violet in- and efflux experiments indicated encapsulation of antifungals in micelles, thereby reducing their bioavailability. Furthermore, farnesol sensing was abolished in the presence of conjugated bile salts trapping C. albicans cells in the hyphal morphology. This suggests that bioavailability of amphiphilic and hydrophobic compounds is reduced in the presence of bile. In contrast, small and hydrophilic molecules, such as cycloheximide, flucytosine, or sodium azide kept their antifungal properties. We therefore conclude that treatment of gall bladder and bile duct infections is hampered by the ability of bile salts to encapsulate antifungals in micelles. As a consequence, treatment of gall bladder or bile duct infections should favor the use of small hydrophilic drugs that are not solubilised in micelles. PMID:28203228

  7. The successful use of amphotericin B followed by oral posaconazole in a rare case of invasive fungal sinusitis caused by co-infection with mucormycosis and aspergillus

    Directory of Open Access Journals (Sweden)

    Sharana Mahomed

    2015-01-01

    Full Text Available We report on an unusual case of oro-rhinocerebral disease caused by mucormycosis and aspergillus co-infection in a 54-year-old insulin dependent diabetic patient. Although she was successfully treated with parenteral amphotericin B followed by oral posaconazole, she was left with irreversible blindness of the right eye and multiple cranial nerve palsies.

  8. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole.

    NARCIS (Netherlands)

    Espinel-Ingroff, A.; Aller, A.I.; Canton, E.; Castanon-Olivares, L.R.; Chowdhary, A.; Cordoba, S.; Cuenca-Estrella, M.; Fothergill, A.; Fuller, J.; Govender, N.; Hagen, F.; Illnait-Zaragozi, M.T.; Johnson, E.; Kidd, S.; Lass-Florl, C.; Lockhart, S.R.; Martins, M.A.; Meis, J.F.G.M.; Melhem, M.S.; Ostrosky-Zeichner, L.; Pelaez, T.; Pfaller, M.A.; Schell, W.A.; St-Germain, G.; Trilles, L.; Turnidge, J.

    2012-01-01

    Epidemiological cutoff values (ECVs) for the Cryptococcus neoformans-Cryptococcus gattii species complex versus fluconazole, itraconazole, posaconazole, and voriconazole are not available. We established ECVs for these species and agents based on wild-type (WT) MIC distributions. A total of 2,985 to

  9. International and multicenter comparison of EUCAST and CLSI M27-A2 broth microdilution methods for testing susceptibilities of Candida spp. to fluconazole, itraconazole, posaconazole, and voriconazole.

    NARCIS (Netherlands)

    Espinel-Ingroff, A.; Barchiesi, F.; Cuenca-Estrella, M.; Pfaller, M.A.; Rinaldi, M.; Rodriguez-Tudela, J.L.; Verweij, P.E.

    2005-01-01

    The aim of this study was to compare MICs of fluconazole, itraconazole, posaconazole, and voriconazole obtained by the European Committee on Antibiotic Susceptibility Testing (EUCAST) and CLSI (formerly NCCLS) methods in each of six centers for 15 Candida albicans (5 fluconazole-resistant and 4 susc

  10. Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings.

    Science.gov (United States)

    Boehm, Ryan D; Daniels, Justin; Stafslien, Shane; Nasir, Adnan; Lefebvre, Joe; Narayan, Roger J

    2015-03-02

    In this study, the authors examined use of piezoelectric inkjet printing to apply an antifungal agent, voriconazole, to the surfaces of biodegradable polyglycolic acid microneedles. Polyglycolic acid microneedles with sharp tips (average tip radius = 25 ± 3 μm) were prepared using a combination of injection molding and drawing lithography. The elastic modulus (9.9 ± 0.3 GPa) and hardness (588.2 ± 33.8 MPa) values of the polyglycolic acid material were determined using nanoindentation and were found to be suitable for use in transdermal drug delivery devices. Voriconazole was deposited onto the polyglycolic acid microneedles by means of piezoelectric inkjet printing. It should be noted that voriconazole has poor solubility in water; however, it is readily soluble in many organic solvents. Optical imaging, scanning electron microscopy, energy dispersive x-ray spectrometry, and Fourier transform infrared spectroscopy were utilized to examine the microneedle geometries and inkjet-deposited surface coatings. Furthermore, an in vitro agar plating study was performed on the unmodified, vehicle-modified, and voriconazole-modified microneedles. Unlike the unmodified and vehicle-modified microneedles, the voriconazole-modified microneedles showed antifungal activity against Candida albicans. The unmodified, vehicle-modified, and voriconazole-modified microneedles did not show activity against Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus. The results indicate that piezoelectric inkjet printing may be useful for loading transdermal drug delivery devices such as polyglycolic acid microneedles with antifungal pharmacologic agents and other pharmacologic agents with poor solubility in aqueous solutions.

  11. Activity of a Long-Acting Echinocandin (CD101) and Seven Comparator Antifungal Agents Tested against a Global Collection of Contemporary Invasive Fungal Isolates in the SENTRY 2014 Antifungal Surveillance Program

    Science.gov (United States)

    Pfaller, Michael A.; Messer, Shawn A.; Rhomberg, Paul R.

    2017-01-01

    ABSTRACT The activity of CD101 and comparator antifungal agents against 606 invasive fungal isolates collected worldwide during 2014 was evaluated using the Clinical and Laboratory Standards Institute (CLSI) method. All Candida albicans (n = 251), Candida tropicalis (n = 51), Candida krusei (n = 16), and Candida dubliniensis (n = 11) isolates were inhibited by ≤0.12 μg/ml of CD101 and were susceptible or showed wild-type susceptibility to the other echinocandins tested. Five C. glabrata isolates (n = 100) displayed CD101 MIC values of 1 to 4 μg/ml, had elevated MICs of caspofungin (2 to >8 μg/ml), anidulafungin (2 to 4 μg/ml), and micafungin (2 to 4 μg/ml), and carried mutations on fks1 and fks2. Candida parapsilosis (n = 92) and Candida orthopsilosis (n = 10) displayed higher CD101 MIC values (ranges, 0.5 to 4 μg/ml and 0.12 to 2 μg/ml, respectively), and similar results were observed for the other echinocandins tested. Fluconazole resistance was noted among 11.0% of Candida glabrata isolates, 4.3% of C. parapsilosis isolates, and 2.0% of C. albicans and C. tropicalis isolates. The activity of CD101 against Aspergillus fumigatus (n = 56) was similar to that of micafungin and 2-fold greater than that of caspofungin but less than that of anidulafungin. These isolates had wild-type susceptibility to itraconazole, voriconazole, and posaconazole. The echinocandins had limited activity against Cryptococcus neoformans (n = 19). CD101 was as active as the other echinocandins against common fungal organisms recovered from patients with invasive fungal infections. The long half-life profile is very desirable for the prevention and treatment of serious fungal infections, especially in patients who can then be discharged from the hospital to complete antifungal therapy on an outpatient basis. PMID:28052853

  12. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins.

    Science.gov (United States)

    Kuhn, D M; George, T; Chandra, J; Mukherjee, P K; Ghannoum, M A

    2002-06-01

    Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have activities against Candida biofilms. We also explored effects of preincubation of C. albicans cells with subinhibitory concentrations (sub-MICs) of drugs to see if they could modify subsequent biofilm formation. Finally, we used confocal scanning laser microscopy (CSLM) to image planktonic- and biofilm-exposed blastospores to examine drug effects on cell structure. Candida biofilms were formed on silicone elastomer and quantified by tetrazolium and dry weight (DW) assays. Susceptibility testing of fluconazole, nystatin, chlorhexidine, terbenafine, amphotericin B (AMB), and the triazoles voriconazole (VRC) and ravuconazole revealed resistance in all Candida isolates examined when grown as biofilms, compared to planktonic forms. In contrast, lipid formulations of AMB (liposomal AMB and AMB lipid complex [ABLC]) and echinocandins (caspofungin [Casp] and micafungin) showed activity against Candida biofilms. Preincubation of C. albicans cells with sub-MIC levels of antifungals decreased the ability of cells to subsequently form biofilm (measured by DW; P formulations.

  13. Evaluation of Benzophenone-N-ethyl Morpholine Ethers as Antibacterial and Antifungal Activities

    Directory of Open Access Journals (Sweden)

    A. Bushra Begum

    2014-01-01

    Full Text Available Microorganisms are closely associated with the health and welfare of human beings. Whereas some microorganisms are beneficial, others are detrimental. Bacterial infections often produce inflammation and pains and in some instances, infections result in high mortality. Any subtle change in the drug molecule, which may not be detected by chemical methods, can be revealed by a change in the antimicrobial activity and hence microbiological assays are very useful. A series of substituted hydroxy benzophenones and benzophenone-N-ethyl morpholine ethers were screened for their antibacterial and antifungal activities. Antibacterial activity against S. aureus, E. aerogenes, M. luteus, K. pneumonia, and S. typhimurium, S. paratyphi-B and P. vulgaris bacterial strains and antifungal activity against C. albicans, B. cinerea, M. pachydermatis, C. krusei fungal strains were carried out. The bioassays indicated that most of the synthesized compounds showed potential antibacterial and antifungal agents.

  14. Evaluation of topical antifungal products in an in vitro onychomycosis model.

    Science.gov (United States)

    Sleven, Reindert; Lanckacker, Ellen; Delputte, Peter; Maes, Louis; Cos, Paul

    2016-05-01

    Many topical commercial products are currently available for the treatment of onychomycosis. However, limited data are available concerning their antifungal activity. Using an in vitro onychomycosis model, the daily application of seven nail formulations was compared to the antifungal reference drug amorolfine (Loceryl(®) ) and evaluated for inhibitory activity against Trichophyton mentagrophytes using an agar diffusion test. Of all commercial nail formulations, only Excilor(®) and Nailner(®) demonstrated inhibitory activity, which was much lower compared to the daily application of Loceryl(®) . However, Excilor(®) showed similar efficacy compared to the conventional weekly application of Loceryl(®) . These results suggest a role for organic acids in the antifungal effect of Excilor(®) (acetic acid, ethyl lactate) and Nailner(®) (lactic acid, citric acid, ethyl lactate) as all tested formulations without organic acids were inactive.

  15. Enhanced Antifungal Activity by Ab-Modified Amphotericin B-Loaded Nanoparticles Using a pH-Responsive Block Copolymer

    Science.gov (United States)

    Tang, Xiaolong; Dai, Jingjing; Xie, Jun; Zhu, Yongqiang; Zhu, Ming; Wang, Zhi; Xie, Chunmei; Yao, Aixia; Liu, Tingting; Wang, Xiaoyu; Chen, Li; Jiang, Qinglin; Wang, Shulei; Liang, Yong; Xu, Congjing

    2015-06-01

    Fungal infections are an important cause of morbidity and mortality in immunocompromised patients. Amphotericin B (AMB), with broad-spectrum antifungal activity, has long been recognized as a powerful fungicidal drug, but its clinical toxicities mainly nephrotoxicity and poor solubility limit its wide application in clinical practice. The fungal metabolism along with the host immune response usually generates acidity at sites of infection, resulting in loss of AMB activity in a pH-dependent manner. Herein, we developed pH-responsive AMB-loaded and surface charge-switching poly( d, l-lactic- co-glycolic acid)- b-poly( l-histidine)- b-poly(ethylene glycol) (PLGA-PLH-PEG) nanoparticles for resolving the localized acidity problem and enhance the antifungal efficacy of AMB. Moreover, we modified AMB-encapsulated PLGA-PLH-PEG nanoparticles with anti- Candida albicans antibody (CDA) (CDA-AMB-NPs) to increase the targetability. Then, CDA-AMB-NPs were characterized in terms of physical characteristics, in vitro drug release, stability, drug encapsulation efficiency, and toxicity. Finally, the targetability and antifungal activity of CDA-AMB-NPs were investigated in vitro /in vivo. The result demonstrated that CDA-AMB-NPs significantly improve the targetability and bioavailability of AMB and thus improve its antifungal activity and reduce its toxicity. These NPs may become a good drug carrier for antifungal treatment.

  16. Synthesis, Structure-Activity Relationships (SAR and in Silico Studies of Coumarin Derivatives with Antifungal Activity

    Directory of Open Access Journals (Sweden)

    José M. Barbosa-Filho

    2013-01-01

    Full Text Available The increased incidence of opportunistic fungal infections, associated with greater resistance to the antifungal drugs currently in use has highlighted the need for new solutions. In this study twenty four coumarin derivatives were screened in vitro for antifungal activity against strains of Aspergillus. Some of the compounds exhibited significant antifungal activity with MICs values ranging between 16 and 32 µg/mL. The structure-activity relationships (SAR study demonstrated that O-substitutions are essential for antifungal activity. It also showed that the presence of a short aliphatic chain and/or electron withdrawing groups (NO2 and/or acetate favor activity. These findings were confirmed using density functional theory (DFT, when calculating the LUMO density. In Principal Component Analysis (PCA, two significant principal components (PCs explained more than 60% of the total variance. The best Partial Least Squares Regression (PLS model showed an r2 of 0.86 and q2cv of 0.64 corroborating the SAR observations as well as demonstrating a greater probe N1 interaction for active compounds. Descriptors generated by TIP correlogram demonstrated the importance of the molecular shape for antifungal activity.

  17. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats.

    Science.gov (United States)

    Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram

    2014-01-01

    Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections.

  18. General aspects of drug interactions with systemic antifungals in a retrospective study sample Aspectos gerais de interações medicamentosas com antifúngicos sistêmicos em um estudo amostral retrospectivo

    Directory of Open Access Journals (Sweden)

    Juliano Vilaverde Schmitt

    2013-06-01

    Full Text Available A retrospective study evaluating hepatic laboratory alterations and potential drug interactions in patients treated for onychomycosis. We evaluated 202 patients, 82% female. In 273 liver enzyme tests, there were changes in only 6%. Potential drug interactions were identified in 28% of patients for imidazole and 14% for terbinafine. The risk of potential interactions increased with the patient's age and use of multiple drugs.Estudo retrospectivo avaliando alterações laboratoriais hepáticas e potenciais interações medicamentosas em pacientes tratados para onicomicose. Foram avaliados 202 pacientes, sendo 82% do sexo feminino. Em 273 exames de enzimas hepáticas, houve alterações em apenas 6%. Potenciais interações medicamentosas foram identificadas em 28% dos pacientes para imidazólicos e 14% para terbinafina. O risco de interações potenciais aumentou com a idade do paciente e o uso de múltiplas medicações.

  19. Epidemiology and Antifungal Susceptibility of Bloodstream Fungal Isolates in Pediatric Patients: a Spanish Multicenter Prospective Survey ▿

    Science.gov (United States)

    Pemán, Javier; Cantón, Emilia; Linares-Sicilia, María José; Roselló, Eva María; Borrell, Nuria; Ruiz-Pérez-de-Pipaon, María Teresa; Guinea, Jesús; García, Julio; Porras, Aurelio; García-Tapia, Ana María; Pérez-del-Molino, Luisa; Suárez, Anabel; Alcoba, Julia; García-García, Inmaculada

    2011-01-01

    Data on fungemia epidemiology and antifungal susceptibility of isolates from children are scarce, leading frequently to pediatric empirical treatment based on available adult data. The present study was designed to update the epidemiological, mycological, and in vitro susceptibility data on fungal isolates from children with fungemia in Spain. All fungemia episodes were identified prospectively by blood culture over 13 months at 30 hospitals. Tests of susceptibility to amphotericin B, flucytosine, fluconazole, itraconazole, posaconazole, voriconazole, anidulafungin, caspofungin, and micafungin were performed at participant institutions by a microdilution colorimetric method. New species-specific clinical breakpoints for fluconazole, voriconazole, and echinocandins were also applied. A total of 203 episodes of fungemia in 200 children were identified. A higher proportion of fungal isolates was from general wards than intensive care units (ICU). Candida parapsilosis (46.8%), Candida albicans (36.5%), Candida tropicalis (5.9%), Candida glabrata (3.9%), and Candida guilliermondii (2.5%) were the leading species. C. parapsilosis was the predominant species except in neonates. C. albicans was the most frequent in neonatal ICU settings (51.9%). Intravascular catheter (79.3%), surgery (35%), prematurity (30%), and neutropenia (11%) were the most frequent predisposing factors. Most Candida isolates (95.1%) were susceptible to all antifungals. When the new species-specific clinical breakpoints were applied, all C. parapsilosis isolates were susceptible to echinocandins except one, which was micafungin resistant. This is the largest published series of fungemia episodes in the pediatric setting. C. parapsilosis is the most prevalent species in Spain, followed by C. albicans and C. tropicalis. Resistance to azole and echinocandin agents is extremely rare among Candida species. The fluconazole resistance rate in Spain has decreased in the last 10 years. PMID:22012014

  20. Spectrophotometric reading of EUCAST antifungal susceptibility testing of Aspergillus fumigatus

    DEFF Research Database (Denmark)

    Meletiadis, J; Leth Mortensen, K; Verweij, P E

    2017-01-01

    . METHODS: Eighty-eight clinical isolates of A. fumigatus were tested against four medical azoles (posaconazole, voriconazole, itraconazole, isavuconazole) and one agricultural azole (tebuconazole) with EUCAST E.Def 9.3. The visually determined MICs (complete inhibition of growth) were compared...

  1. Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia.

    Science.gov (United States)

    Cantón, Emilia; Pemán, Javier; Quindós, Guillermo; Eraso, Elena; Miranda-Zapico, Ilargi; Álvarez, María; Merino, Paloma; Campos-Herrero, Isolina; Marco, Francesc; de la Pedrosa, Elia Gomez G; Yagüe, Genoveva; Guna, Remedios; Rubio, Carmen; Miranda, Consuelo; Pazos, Carmen; Velasco, David

    2011-12-01

    A 13-month prospective multicenter study including 44 hospitals was carried out to evaluate the epidemiology of Candida parapsilosis complex candidemia in Spain. Susceptibility to amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole, posaconazole, anidulafungin, caspofungin, and micafungin was tested by the microdilution colorimetric method. A total of 364 C. parapsilosis complex isolates were identified by molecular methods: C. parapsilosis (90.7%), Candida orthopsilosis (8.2%), and Candida metapsilosis (1.1%). Most candidemias (C. parapsilosis, 76.4%; C. orthopsilosis, 70.0%; C. metapsilosis, 100%) were observed in adults. No C. orthopsilosis or C. metapsilosis candidemias occurred in neonates. C. parapsilosis was most frequent in adult intensive care unit (28.8%), surgery (20.9%), and internal medicine (19.7%) departments; and C. orthopsilosis was most frequent in hematology (28.6%), pediatrics (12.0%), and neonatology (11.5%) departments. The geographic distribution of C. orthopsilosis and C. metapsilosis was not uniform. According to CLSI clinical breakpoints, all C. orthopsilosis and C. metapsilosis isolates were susceptible to the nine agents tested. Resistance (MICs > 1 mg/liter) was observed only in C. parapsilosis: amphotericin B, posaconazole, itraconazole, and caspofungin (0.3% each), anidulafungin (1.9%), and micafungin (2.5%). Applying the new species-specific fluconazole and echinocandin breakpoints, the rates of resistance to fluconazole for C. parapsilosis and C. orthopsilosis increased to 4.8% and 0.3%, respectively; conversely, for C. parapsilosis they shifted from 1.9 to 0.6% (anidulafungin) and from 2.5 to 0.6% (micafungin). Our study confirms the different prevalence of C. parapsilosis complex candidemia among age groups: neither C. orthopsilosis nor C. metapsilosis was isolated from neonates; interestingly, C. metapsilosis was isolated only from adults and the elderly. The disparity in antifungal susceptibility among species

  2. Antifungal properties of Brazilian cerrado plants

    Directory of Open Access Journals (Sweden)

    Souza Lúcia Kioko Hasimoto e

    2002-01-01

    Full Text Available Ethanolic extracts from leaves of Hyptis ovalifolia, H. suaveolens, H. saxatilis, Hyptidendrum canum, Eugenia uniflora, E. dysenterica, Caryocar brasiliensis and Lafoensia pacari were investigated for their antifungal activity against dermatophytes. The most effective plants were H. ovalifolia and E. uniflora, while Trichophyton rubrum was the most sensitive among the four dermatophytes species evaluated. This study has demonstrated antifungal properties of Brazilian Cerrado plant extracts in "in vitro" assays.

  3. Antifungal susceptibility and virulence factors of clinically isolated dermatophytes in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Afshari

    2016-03-01

    Full Text Available Background and Objectives: Dermatophytes possess a wide array of virulence factors and various antifungal susceptibility patterns which influence their pathogenesis in humans and animals. The aim of this study was to evaluate antifungal suscep- tibility and keratinase and proteinase activity of 49 dermatophyte strains from the genera Microsporum, Trichophyton and Epidermophyton which were isolated from human cases of dermatophytosis.Materials and Methods: Forty-nine dermatophyte strains isolated from clinical samples were cultured on general and spe- cific culture media. Keratinase and proteinase activity was screened on solid mineral media and confirmed in liquid cultures. Drug susceptibility toward azoles (fluconazole, ketoconazole and itraconazole, griseofulvin and terbinafine was evaluated using disk diffusion method on Mueller-Hinton agar and minimum inhibitory concentrations (MICs were determined using microbroth dilution assay according to the Clinical and Laboratory Standards Institute (CLSI guidelines.Results: Our results indicated that clinically isolated dermatophytes from 7 major species produced keratinase and protein- ase at different extents. The mean keratinase and proteinase activity was reported as 6.69 ± 0.31 (U/ml and 2.10 ± 0.22 (U/ ml respectively. Disk diffusion and microbroth dilution (MIC results of antifungal susceptibility testing showed that ke- toconazole was the most effective drug against Epidermophyton floccosum and Trichophyton mentagrophytes, itraconazole against T. rubrum and E. floccosum, and griseofulvin and terbinafine against Trichophyton verrucosum. Our results showed that all dermatophyte isolates were resistant to fluconazole. Overall, ketoconazole and itraconazole were the most effective drugs for all dermatophyte species tested.Conclusion: Our results showed that antifungal susceptibility testing is an urgent need to select drugs of choice for treatment of different types of dermatophytosis and

  4. Antifungal activity of five species of Polygala

    Directory of Open Access Journals (Sweden)

    Susana Johann

    2011-09-01

    Full Text Available Crude extracts and fractions of five species of Polygala - P. campestris, P. cyparissias, P. paniculata, P. pulchella and P. sabulosa - were investigated for their in vitro antifungal activity against opportunistic Candida species, Cryptococcus gattii and Sporothrix schenckii with bioautographic and microdilution assays. In the bioautographic assays, the major extracts were active against the fungi tested. In the minimal concentration inhibitory (MIC assay, the hexane extract of P. paniculata and EtOAc fraction of P. sabulosa showed the best antifungal activity, with MIC values of 60 and 30 µg/mL, respectively, against C. tropicalis, C. gattii and S. schenckii. The compounds isolated from P. sabulosa prenyloxycoumarin and 1,2,3,4,5,6-hexanehexol displayed antifungal activity against S. schenckii (with MICs of 125 µg/mL and 250 µg/mL, respectively and C. gattii (both with MICs of 250 µg/mL. Rutin and aurapten isolated from P. paniculata showed antifungal activity against C. gattii with MIC values of 60 and 250 µg/mL, respectively. In the antifungal screening, few of the isolated compounds showed good antifungal inhibition. The compound α-spinasterol showed broad activity against the species tested, while rutin had the best activity with the lowest MIC values for the microorganisms tested. These two compounds may be chemically modified by the introduction of a substitute group that would alter several physico-chemical properties of the molecule, such as hydrophobicity, electronic density and steric strain.

  5. In vitro and in vivo antifungal profile of a novel and long acting inhaled azole, PC945, on Aspergillus fumigatus infection.

    Science.gov (United States)

    Colley, Thomas; Alanio, Alexandre; Kelly, Steven L; Sehra, Gurpreet; Kizawa, Yasuo; Warrilow, Andrew G S; Parker, Josie E; Kelly, Diane E; Kimura, Genki; Anderson-Dring, Lauren; Nakaoki, Takahiro; Sunose, Mihiro; Onions, Stuart; Crepin, Damien; Lagasse, Franz; Crittall, Matthew; Shannon, Jonathan; Cooke, Michael; Bretagne, Stéphane; King-Underwood, John; Murray, John; Ito, Kazuhiro; Strong, Pete; Rapeport, Garth

    2017-02-21

    The profile of PC945, a novel triazole antifungal, designed for administration via inhalation, has been assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tight-binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B) activity (IC50, 0.23 μM and 0.22 μM, respectively), with characteristic type II azole binding spectra. Against 96 clinically isolated A. fumigatus strains, the MIC values of PC945 ranged from 0.032∼>8 μg/ml, whilst those of voriconazole ranged from 0.064∼4 μg/ml. Spectrophotometric analysis of the effects of PC945 against itraconazole-susceptible and -resistant A. fumigatus growth, yielded IC50 (OD) values between 0.0012∼0.034 μg/ml, whereas voriconazole (0.019∼>1 μg/ml) was less effective than PC945. PC945 was effective against a broad spectrum of pathogenic fungi (MIC ranged from 0.0078∼2 μg/ml) including Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans andRhizopus oryzae (1∼2 isolates each). In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945, and then washed, PC945 was found to be quickly absorbed into both target and non-target cells and to produce persistent antifungal effects. In temporarily neutropenic immunocompromised mice infected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treated intranasally with PC945 at 0.56 μg/mouse, while posaconazole showed similar effects (44%) at 14 μg/mouse. This profile affirms that topical treatment with PC945 should provide potent antifungal activity in the lung.

  6. Econazole nitrate-loaded MCM-41 for an antifungal topical powder formulation.

    Science.gov (United States)

    Ambrogi, Valeria; Perioli, Luana; Pagano, Cinzia; Marmottini, Fabio; Moretti, Massimo; Mizzi, Fabiola; Rossi, Carlo

    2010-11-01

    The aim of this article was to prepare a topical powder for the treatment of fungal infections, such as Candida intertrigo and tinea pedis. Thus, an econazole nitrate (ECO) formulation with improved drug dissolution and proper moisture adsorption was designed. ECO was melt with the mesoporous silicate MCM-41 (drug/MCM-41 1/3) and the resulting inclusion compound was characterized by X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). The drug loading was confirmed by the decrease of specific surface area and pore volume between MCM-41 and the inclusion compound. Formulations containing the inclusion compound were prepared and submitted to in vitro dissolution test and in vitro antifungal activity. A remarkable dissolution rate improvement as well as a higher antifungal activity was observed for the inclusion compound if compared to a commercial product. Moisture sorption properties for MCM-41 and formulations were evaluated as well.

  7. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Directory of Open Access Journals (Sweden)

    Mahoney Noreen

    2011-05-01

    Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

  8. Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria.

    Science.gov (United States)

    Shishido, Tania K; Jokela, Jouni; Kolehmainen, Clara-Theresia; Fewer, David P; Wahlsten, Matti; Wang, Hao; Rouhiainen, Leo; Rizzi, Ermanno; De Bellis, Gianluca; Permi, Perttu; Sivonen, Kaarina

    2015-11-03

    Cyclodextrins are cyclic oligosaccharides widely used in the pharmaceutical industry to improve drug delivery and to increase the solubility of hydrophobic compounds. Anabaenolysins are lipopeptides produced by cyanobacteria with potent lytic activity in cholesterol-containing membranes. Here, we identified the 23- to 24-kb gene clusters responsible for the production of the lipopeptide anabaenolysin. The hybrid nonribosomal peptide synthetase and polyketide synthase biosynthetic gene cluster is encoded in the genomes of three anabaenolysin-producing strains of Anabaena. We detected previously unidentified strains producing known anabaenolysins A and B and discovered the production of new variants of anabaenolysins C and D. Bioassays demonstrated that anabaenolysins have weak antifungal activity against Candida albicans. Surprisingly, addition of the hydrophilic fraction of the whole-cell extracts increased the antifungal activity of the hydrophobic anabaenolysins. The fraction contained compounds identified by NMR as α-, β-, and γ-cyclodextrins, which undergo acetylation. Cyclodextrins have been used for decades to improve the solubility and bioavailability of many drugs including antifungal compounds. This study shows a natural example of cyclodextrins improving the solubility and efficacy of an antifungal compound in an ancient lineage of photosynthetic bacteria.

  9. Drug: D08333 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08333 Drug Pentamidine (INN); Lomidine (TN) C19H24N4O2 340.1899 340.4195 D08333.gif Antiprotozoa...l, leishmanicidal; Antiprotozoal, trypanocidal, Antifungal Same as: C07420 USP drug classifica...tion [BR:br08302] Antiparasitics Antiprotozoals Pentamidine D08333 Pentamidine (INN) CAS: 100-33-4 PubChem:

  10. In Vitro Antifungal Susceptibility of Oral Candida Species from Iranian HIV Infected Patients

    Directory of Open Access Journals (Sweden)

    A A Khaksar

    2012-05-01

    Full Text Available Background: Oropharyngeal candidiasis and antifungal drug resistance are major problems in HIV positive patients. The increased reports of antifungal resistance and expanding therapeutic options prompted the determination of antifungal susceptibility profile of Candida species isolates in Iranian patients living with HIV/AIDS (PLWHA in the present study. Methods: One hundred fifty oral samples from Iranian HIV positive patients were obtained and cultured on CHROMagar and Sabourauds dextrose agar. All isolates were identified according to assimilation profile, germ tube, colony color and other conventional methods. Disk diffusion testing and Broth Microdilution of six antifungal agents were performed according to the methods described in CLSI. Results: Candida albicans (50.2% was the most frequent isolated yeast, followed by C. glabrata (22%. Non-Candida albicans species were isolated from 71 (61% positive cultures. 25.7% of Candida albicans isolates were resistant to fluconazole (MIC≥64 µg/ml as were 21.9% and 16.4% to ketoconazole and clotrimazole (MIC>0.125 µg/ml, respectively. Resistance to polyene antifungals including amphotericin B and nystatin, and caspofungin were scarce. 57.7% of candida glabrata isolates were resistant to fluconazole, 31% to ketoconazole and 35% to clotrimazole. Conclusion: Screening for antifungal resistant candida isolates by disk diffusion or broth dilution methods in clinical laboratories is an ideal surveillance measure in the management of oral thrush in patients with HIV/AIDS. Although nystatin is widely used in clinical practice for HIV positive patients, there was no evidence of enhanced resistance to it. Regarding no resistance to caspofungin, its administration is suggested.

  11. The in vitro antifungal activity of sudanese medicinal plants against Madurella mycetomatis, the eumycetoma major causative agent.

    Directory of Open Access Journals (Sweden)

    Hassabelrasoul Elfadil

    2015-03-01

    Full Text Available Eumycetoma is a debilitating chronic inflammatory fungal infection that exists worldwide but it is endemic in many tropical and subtropical regions. The major causative organism is the fungus Madurella mycetomatis. The current treatment of eumycetoma is suboptimal and characterized by low cure rate and high recurrence rates. Hence, an alternative therapy is needed to address this. Here we determined the antifungal activity of seven Sudanese medicinal plant species against Madurella mycetomatis. Of these, only three species; Boswellia papyrifera, Acacia nubica and Nigella sativa, showed some antifungal activity against M. mycetomatis and were further studied. Crude methanol, hexane and defatted methanol extracts of these species were tested for their antifungal activity. B. papyrifera had the highest antifungal activity (MIC50 of 1 ug/ml and it was further fractionated. The crude methanol and the soluble ethyl acetate fractions of B. papyrifera showed some antifungal activity. The Gas-Liquid-Chromatography hybrid Mass-Spectrophotometer analysis of these two fractions showed the existence of beta-amyrin, beta-amyrone, beta-Sitosterol and stigmatriene. Stigmatriene had the best antifungal activity, compared to other three phytoconstituents, with an MIC-50 of 32 μg/ml. Although the antifungal activity of the identified phytoconstituents was only limited, the antifungal activity of the complete extracts is more promising, indicating synergism. Furthermore these plant extracts are also known to have anti-inflammatory activity and can stimulate wound-healing; characteristics which might also be of great value in the development of novel therapeutic drugs for this chronic inflammatory disease. Therefore further exploration of these plant species in the treatment of mycetoma is encouraging.

  12. Antifungal activity of amphotericin B conjugated to carbon nanotubes.

    Science.gov (United States)

    Benincasa, Monica; Pacor, Sabrina; Wu, Wei; Prato, Maurizio; Bianco, Alberto; Gennaro, Renato

    2011-01-25

    Amphotericin B (AMB) has long been considered the most effective drug in the treatment of serious invasive fungal infections. There are, however, major limitations to its use, due to several adverse effects, including acute infusional reactions and, most relevant, a dose-dependent nephrotoxicity. At least some of these effects are attributed to the aggregation of AMB as a result of its poor water solubility. To overcome this problem, reformulated versions of the drug have been developed, including a micellar dispersion of AMB with sodium deoxycholate (AMBD), its encapsulation into liposomes, or its incorporation into lipidic complexes. The development of nanobiotechnologies provides novel potential drug delivery systems that make use of nanomaterials such as functionalized carbon nanotubes (f-CNTs), which are emerging as an innovative and efficient tool for the transport and cellular translocation of therapeutic molecules. In this study, we prepared two conjugates between f-CNTs and AMB. The antifungal activity of these conjugates was tested against a collection of reference and clinical fungal strains, in comparison to that of AMB alone or AMBD. Measured minimum inhibition concentration (MIC) values for f-CNT-AMB conjugates were either comparable to or better than those displayed by AMB and AMBD. Furthermore, AMBD-resistant Candida strains were found to be susceptible to f-CNT-AMB 1. Additional studies, aimed at understanding the mechanism of action of the conjugates, suggest a nonlytic mechanism, since the compounds show a major permeabilizing effect on the tested fungal strains only after extended incubation. Interestingly, the f-CNT-AMB 1 does not show any significant toxic effect on Jurkat cells at antifungal concentrations.

  13. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    Energy Technology Data Exchange (ETDEWEB)

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won (Toronto); (IBC-Belarus)

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.

  14. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids

    Science.gov (United States)

    Mor, Visesato; Rella, Antonella; Farnoud, Amir M.; Singh, Ashutosh; Munshi, Mansa; Bryan, Arielle; Naseem, Shamoon; Konopka, James B.; Ojima, Iwao; Bullesbach, Erika; Ashbaugh, Alan; Linke, Michael J.; Cushion, Melanie; Collins, Margaret; Ananthula, Hari Krishna; Sallans, Larry; Desai, Pankaj B.; Wiederhold, Nathan P.; Fothergill, Annette W.; Kirkpatrick, William R.; Patterson, Thomas; Wong, Lai Hong; Sinha, Sunita; Giaever, Guri; Nislow, Corey; Flaherty, Patrick; Pan, Xuewen; Cesar, Gabriele Vargas; de Melo Tavares, Patricia; Frases, Susana; Miranda, Kildare; Rodrigues, Marcio L.; Luberto, Chiara; Nimrichter, Leonardo

    2015-01-01

    ABSTRACT Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N′-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N′-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. PMID:26106079

  15. Epidemiology and antifungal resistance in invasive candidiasis

    Directory of Open Access Journals (Sweden)

    Rodloff AC

    2011-04-01

    Full Text Available Abstract The epidemiology of Candida infections has changed over the last two decades: The number of patients suffering from such infections has increased dramatically and the Candida species involved have become more numerous as Candida albicans is replaced as an infecting agent by various non-C. albicans species (NAC. At the same time, additional antifungal agents have become available. The different Candida species may vary in their susceptibility for these various antifungals. This draws more attention to in vitro susceptibility testing. Unfortunately, several different test methods exist that may deliver different results. Moreover, clinical breakpoints (CBP that classify test results into susceptible, intermediate and resistant are controver- sial between CLSI and EUCAST. Therefore, clinicians should be aware that interpretations may vary with the test system being followed by the microbiological laboratory. Thus, knowledge of actual MIC values and pharmacokinetic properties of individual antifungal agents is important in delivering appropriate therapy to patients

  16. Scedosporium apiospermum infections and the role of combination antifungal therapy and GM-CSF: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Chloe Goldman

    2016-03-01

    Full Text Available Scedosporium apiospermum, a ubiquitous environmental mold, is increasingly reported as causing invasive fungal disease in immunocompromised hosts. It poses a therapeutic challenge due to its intrinsic resistance to traditional antifungals and ability to recur despite demonstrating susceptibility. We present an immunocompromised patient with a cutaneous S. apiospermum infection that disseminated despite treatment with voriconazole, the drug of choice. Adding echinocandins and GM-CSF provided partial recovery, indicating a potential synergistic role of dual-antifungal and immunotherapeutic agents.

  17. Synthesis, Antifungal Activities and Qualitative Structure Activity Relationship of Carabrone Hydrazone Derivatives as Potential Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-03-01

    Full Text Available Aimed at developing novel fungicides for relieving the ever-increasing pressure of agricultural production caused by phytopathogenic fungi, 28 new hydrazone derivatives of carabrone, a natural bioactive sesquisterpene, in three types were designed, synthesized and their antifungal activities against Botrytis cinerea and Colletotrichum lagenarium were evaluated. The result revealed that all the derivatives synthesized exhibited considerable antifungal activities in vitro and in vivo, which led to the improved activities for carabrone and its analogues and further confirmed their potential as antifungal agents.

  18. Design,Synthesis and Antifungal Activity of Novel Triazole Derivatives

    Institute of Scientific and Technical Information of China (English)

    Chun Quan SHENG; Wan Nian ZHANG; Hai Tao JI; Yun Long SONG; Min ZHANG; You Jun ZHOU; Jia Guo LU; Jü ZHU

    2004-01-01

    Twenty-one 1-(1H-1,2,4-triazolyl)-2-(2,4-diflurophenyl)-3-(4-substituted-1- piperazinyl)-2-propanol derivatives were designed and synthesized,on the basis of the active site of lanosterol 14(-demethylase.In vitro antifungal activities showed that some of the target compounds had higher antifungal activity and broader antifungal spectrum than fluconazole.

  19. Conazoles

    Directory of Open Access Journals (Sweden)

    Jan Heeres

    2010-06-01

    Full Text Available This review provides a historical overview of the analog based drug discovery of miconazole and its congeners, and is focused on marketed azole antifungals bearing the generic suffix “conazole”. The antifungal activity of miconazole, one of the first broad-spectrum antimycotic agents has been mainly restricted to topical applications. The attractive in vitro antifungal spectrum was a starting point to design more potent and especially orally active antifungal agents such as ketoconazole, itraconazole, posaconazole, fluconazole and voriconazole. The chemistry, in vitro and in vivo antifungal activity, pharmacology, and clinical applications of these marketed conazoles has been described.

  20. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)

    Energy Technology Data Exchange (ETDEWEB)

    Palicz, Zoltán; Jenes, Ágnes; Gáll, Tamás [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Miszti-Blasius, Kornél [Department of Clinical Biochemistry and Molecular Pathology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Kollár, Sándor; Kovács, Ilona [Department of Pathology, Kenézy Hospital LTD, Debrecen (Hungary); Emri, Miklós; Márián, Teréz [Department of Nuclear Medicine, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Leiter, Éva; Pócsi, István [Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, Centre of Arts, Humanities and Sciences, University of Debrecen, Debrecen (Hungary); Csősz, Éva; Kalló, Gergő [Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Hegedűs, Csaba; Virág, László [Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Csernoch, László [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Szentesi, Péter, E-mail: szentesi.peter@med.unideb.hu [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2013-05-15

    The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg{sup −1} daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due to the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation.

  1. Routine versus selective antifungal administration for control of fungal infections in patients with cancer

    DEFF Research Database (Denmark)

    Gøtzsche, Peter C; Johansen, Helle Krogh

    2014-01-01

    , itraconazole or voriconazole compared with placebo or no treatment in cancer patients with neutropenia. DATA COLLECTION AND ANALYSIS: The two review authors independently assessed trial eligibility and risk of bias, and abstracted data. MAIN RESULTS: Thirty-two trials involving 4287 patients were included......BACKGROUND: Systemic fungal infection is considered to be an important cause of morbidity and mortality in cancer patients, particularly those with neutropenia. Antifungal drugs are often given prophylactically, or empirically to patients with persistent fever. OBJECTIVES: To assess whether...... commonly used antifungal drugs decrease mortality in cancer patients with neutropenia. SEARCH METHODS: We searched PubMed from 1966 to 7 July 2014 and the reference lists of identified articles. SELECTION CRITERIA: Randomised clinical trials of amphotericin B, fluconazole, ketoconazole, miconazole...

  2. The novel antifungal agent PLD-118 is neither metabolized by liver microsomes nor inhibits cytochrome P450 in vitro

    NARCIS (Netherlands)

    Parnham, M.J.; Bogaards, J.J.P.; Schrander, F.; Schut, M.W.; Orešković, K.; Mildner, B.

    2005-01-01

    PLD-118 is a novel, oral antifungal drug, under development for the treatment of Candida infections. Possible metabolism of PLD-118 by rat, dog and human S9 liver homogenates and inhibition of human cytochrome P450 (CYP) enzymes were investigated. PLD-118 (10 and 100 μm) incubated for 0-60 min with

  3. In vitro antifungal susceptibility and molecular identity of 99 clinical isolates of the opportunistic fungal genus Curvularia

    NARCIS (Netherlands)

    Cunha, da K.C.; Sutton, D.A.; Fothergill, A.W.; Gené, J.; Cano, J.; Madrid, H.; Hoog, de G.S.; Crous, P.W.; Guarro, J.

    2013-01-01

    The in vitro antifungal susceptibility of a set of 99 clinical isolates of Curvularia was tested against 9 drugs using a reference microdilution method. The isolates had been identified previously to species level by comparing their ITS rDNA and glyceraldehyde-3-phosphate dehydrogenase gene sequence

  4. Antifungal Activity of Amphotericin B Cochleates against Candida albicans Infection in a Mouse Model

    OpenAIRE

    Zarif, Leila; Graybill, John R.; Perlin, David; Najvar, Laura; Bocanegra, Rosie; Mannino, Raphael J.

    2000-01-01

    Cochleates are lipid-based supramolecular assemblies composed of natural products, negatively charged phospholipid, and a divalent cation. Cochleates can encapsulate amphotericin B (AmB), an important antifungal drug. AmB cochleates (CAMB) have a unique shape and the ability to target AmB to fungi. The minimal inhibitory concentration and the minimum lethal concentration against Candida albicans are similar to that for desoxycholate AmB (DAMB; Fungizone). In vitro, CAMB induced no hemolysis o...

  5. Isolation of a novel antifungal peptide from the bark of Eucommia ulmoides Oliv

    Institute of Scientific and Technical Information of China (English)

    Liu Shihui; Zhao Degang; Han Yuzhen

    2008-01-01

    A novel Eucommia antifungal peptide, named EAFP3, was isolated from the bark of Eucommia ulmoides by NaCl extract, gel filtration and reverse phase high performance liquid chromatography. The molecular mass of EAFP3 is 4157.3 Da, and its partial amino acid sequence is -.LYQQLIAGITLNK.-. EAFP3 exerts an inhibitory activity against Candida albicans in vitro and the drug concentration required for 50% growth inhibition (IC50) is 31.25μg/mL.

  6. Antifungal Agents: Mode of Action, Mechanisms of Resistance, and Correlation of These Mechanisms with Bacterial Resistance

    OpenAIRE

    Ghannoum, Mahmoud A.; Rice, Louis B

    1999-01-01

    The increased use of antibacterial and antifungal agents in recent years has resulted in the development of resistance to these drugs. The significant clinical implication of resistance has led to heightened interest in the study of antimicrobial resistance from different angles. Areas addressed include mechanisms underlying this resistance, improved methods to detect resistance when it occurs, alternate options for the treatment of infections caused by resistant organisms, and strategies to ...

  7. Polar characterization of antifungal peptides from APD2 Database.

    Science.gov (United States)

    Polanco, Carlos; Samaniego-Mendoza, José Lino; Buhse, Thomas; Castañón-González, Jorge Alberto; Leopold-Sordo, Marili

    2014-11-01

    The increase in the number of pathogens due to fungi that are tolerant to therapies does not grow at the same speed than the advance on new antifungal drugs. In this sense, it is imperative to find anti-fungi peptides that are not detrimental to mammalian cells and have an effective toxicity to fungi. In this work, we use a method called polarity index, to identify anti-fungi peptides with an efficiency of 70 %. This method already published, initially identified selective antibacterial peptides from APD2 Database, and was characterized by developing a comprehensive analysis of the polar dynamics of a peptide from its linear sequence. Discriminating tests showed that in addition to being efficient in this identification, it was also good at rejecting other classifications of peptides found in that same database.

  8. Clinical evaluation of clotrimazole. A broad-spectrum antifungal agent.

    Science.gov (United States)

    Spiekermann, P H; Young, M D

    1976-03-01

    The efficacy and safety of the broad-spectrum, topically applied antifungal agent clotrimazole were evaluated in two double-blind, multicentric trials. Ten investigators reported on a total of 1,361 cases in which a 1% solution or a 1% cream formulation was compared with its respective vehicle. Clotrimazole was therapeutically effective, as confirmed by mycological cure (negative microscopy and culture) and clinical improvement, in tinea pedis, tinea cruris, tinea corporis, pityriasis versicolor, and cutaneous candidasis. Furthermore, species identification established the efficacy of clotrimazole against Trichophyton rubrum, T mentagrophytes, Epidermophyton floccosum, Microsporum canis, Malassezia furfur (Pityrosporum orbiculare), and Candida albicans. Safety was demonstrated by the low incidence of possibly drug-related adverse experiences, namely, 19 (2.7%) of 699 patients who were treated with clotrimazole, of whom four (0.6%) discontinued treatment.

  9. Tolerance of yeast biofilm cells towards systemic antifungals

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth

    was the only tested drug with activity against both growth arrested biofilm and planktonic cells but was found to only kill ~95 % of the cells. By using a collection of barcode tagged deletion mutants, we were identified that defects in protein synthesis, intracellular transport, cell cycle and lipid...... metabolism resulted in increased amphotericin B tolerance in both biofilm and planktonic cells. We furthermore observed that the tolerance level could be enhanced by nutrient starvation and inhibition of the TOR pathway. In conclusion, antifungal tolerance is the combined effect of the physiological state......Fungal infections have become a major problem in the hospital sector in the past decades due to the increased number of immune compromised patients susceptible to mycosis. Most human infections are believed to be associated with biofilm forming cells that are up to 1000-fold more tolerant...

  10. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum.

    Science.gov (United States)

    de Oliveira Pereira, Fillipe; Mendes, Juliana Moura; de Oliveira Lima, Edeltrudes

    2013-07-01

    Trichophyton rubrum is a worldwide agent responsible for chronic cases of dermatophytosis which have high rates of resistance to antifungal drugs. Attention has been drawn to the antimicrobial activity of aromatic compounds because of their promising biological properties. Therefore, we investigated the antifungal activity of eugenol against 14 strains of T. rubrum which involved determining its minimum inhibitory concentration (MIC) and effects on mycelial growth (dry weight), conidial germination and morphogenesis. The effects of eugenol on the cell wall (sorbitol protect effect) and the cell membrane (release of intracellular material, complex with ergosterol, ergosterol synthesis) were investigated. Eugenol inhibited the growth of 50% of T. rubrum strains employed in this study at an MIC = 256 μg/ml, as well as mycelial growth and conidia germination. It also caused abnormalities in the morphology of the dermatophyte in that we found wide, short, twisted hyphae and decreased conidiogenesis. The results of these studies on the mechanisms of action suggested that eugenol exerts antifungal effects on the cell wall and cell membrane of T. rubrum. Eugenol act on cell membrane by a mechanism that seems to involve the inhibition of ergosterol biosynthesis. The lower ergosterol content interferes with the integrity and functionality of the cell membrane. Finally, our studies support the potential use of the eugenol as an antifungal agent against T. rubrum.

  11. OTYPIC CHARACTERIZATION AND ANTIFUNGAL SUSCEPTIBILITY PATTERN OF CANDIDA SP ISOLATED FROM A TERTIARY CARE CENTER

    Directory of Open Access Journals (Sweden)

    Rudramurthy

    2014-02-01

    Full Text Available ACT: Candida , a yeast like ubiquitous fungus , is an endogenous species which produces commonest fungal infection; Candidiasis. Resistance to antifungal agents is an alarming sign for the emerging common nosocomial candidiasis. MATERIALS AND METHODS: Various types of specimens we re collected from the c linically suspected cases of candidiasis. Isolation and characterization of candida sp . was done by standard procedures. Antifungal susceptibility was done by disc diffusion method. RESULT: The candida was isolated from various clinical specimens , vaginal swab (24.66% , skin scraping (13.33% oral swabs (12.66% , ear swabs ( 11.33% , nail scraping (10% , and pus from diabetes foot ulcer and post - operative wound infection ( 8% , sputum ( 6% , urine (4.66% , stool ( 4% , blood ( 2.66% , and eye swabs ( 2.66%. Amon g different species of candida isolated C.albicans was the predominant species (79.33% followed by C tropicalis (19.33% and C.Guilliermondii (1.33%. Antifungal resistance of different species of candida was higher to fluconazole . The least resistance wa s seen with amphotericin - B (1.33%. CONCLUSION: The increased isolation of candida species and development of resistance to commonly used antifungal drugs requires careful interpretation and the in vitro susceptibility testing. This facilitates better pat ient care.

  12. Antimicrobial and antifungal activities of Cordia dichotoma (Forster F.) bark extracts.

    Science.gov (United States)

    Nariya, Pankaj B; Bhalodia, Nayan R; Shukla, V J; Acharya, R N

    2011-10-01

    Cordia dichotoma Forst.f. bark, identified as botanical source of Shlesmataka in Ayurvedic pharmacopoeias. Present study was carried out with an objective to investigate the antibacterial and antifungal potentials of Cordia dichotoma bark. Antibacterial activity of methanol and butanol extracts of the bark was carried out against two gram negative bacteria (Escherichia coli, and Pseudomonas aeruginosa) and two Gram positive bacteria (St. pyogenes and Staphylococcus aureus). The antifungal activity of the extracts was carried out against three common pathogenic fungi (Aspergillus niger, A.clavatus, and Candida albicans). Zone of inhibition of extracts was compared with that of different standards like Amplicilline, Ciprofloxacin, Norfloxacin and Chloramphenicol for antibacterial activity and Nystain and Greseofulvin for antifungal activity. The extracts showed remarkable inhibition of zone of bacterial growth and fungal growth and the results obtained were comparable with that of standards drugs against the organisms tested. The activity of extracts increased linearly with increase in concentration of extract (mg/ml). The results showed the antibacterial and antifungal activity against the organisms tested.

  13. In Vitro Susceptibility of Aflatoxigenic and Non-aflatoxigenic Aspergillus flavus Strains to Conventional Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Mahmoud Mahmoudi

    2012-12-01

    Full Text Available Presently appearance of resistance to antifungal agents among Aspergillus species is dramatically increasing. The objective of this study was to look at the in vitro activities of antifungal drugs against Iranian clinical (from nail, bronchoalveolar lavage, paranasal sinus isolated A. flavus strains. The susceptibility of 45 aflatoxigenic and non-aflatoxigenic Aspergillus flavus strains were evaluated to six antifungal agents (caspofungin, itraconazole, amphotericin B, ketoconazole, fluconazole, nystatin using CLSI M38-A2 broth microdilution method. The results indicated that 57.1%, 28.6% of aflatoxigenic and 25.8%, 6.5% of non-aflatoxigenic isolates were susceptible to caspofungin, amphotericin B respectively. All isolates but one aflatoxigenic strain were sensitive to ketoconazole. All 45 strains showed to be resistant to nystatin. Also 64.28%, 92.9% of aflatoxigenic and 64.51%, 100% of non-aflatoxigenic isolates were resistant to fluconazole and itraconazole in ranking order. There was no statistically significant difference between the susceptibilities of aflatoxigenic and non-aflatoxigenic strains of A. flavus to tested antifungal agents

  14. The research process of the synergistic antifungal effect of plant compositions%植物成分协同抗真菌作用的研究进展

    Institute of Scientific and Technical Information of China (English)

    申玲; 姜远英; 曹永兵

    2013-01-01

    The incidence of systemic fungal infections have increased dramatically in recent years, but now clinically available antifungal drugs are limited, and the research and development of new drugs are difficult. So combination therapy is expected to become the ideal choice for antifungal therapy. Plant compositions can play a synergistic antifungal effect with the antifungal agents in the form of a monomer or mixture. Such research is more extensive and thorough in vitro , but further study on the antifungal effects in vivo , mechanisms and clinical trials is still needed. This review focuses on the antifungal synergism of plant compositions combined with antifungal agents, so as to provide a reference for the study of the novel antifungal drugs.%近年来深部真菌感染的发病率显著上升,而目前临床可用的抗真菌药有限,新药研发难度大,因此联合用药有望成为抗真菌治疗的理想选择.植物成分以单体或混合物的形式与抗真菌药物协同发挥抗真菌的作用,已在体外实验中有比较广泛和深入的研究,但体内抗真菌实验、机制研究和临床试验有待进一步探究.该文就植物成分协同抗真菌作用及其机制的研究进展进行了综述,旨在为新型抗真菌药物的研究提供参考.

  15. Lipid-based antifungal agents: current status.

    Science.gov (United States)

    Arikan, S; Rex, J H

    2001-03-01

    Immunocompromised patients are well known to be predisposed to developing invasive fungal infections. These infections are usually difficult to diagnose and more importantly, the resulting mortality rate is high. The limited number of antifungal agents available and their high rate of toxicity are the major factors complicating the issue. However, the development of lipid-based formulations of existing antifungal agents has opened a new era in antifungal therapy. The best examples are the lipid-based amphotericin B preparations, amphotericin B lipid complex (ABLC; Abelcet), amphotericin B colloidal dispersion (ABCD; Amphotec or Amphocil), and liposomal amphotericin B (AmBisome). These formulations have shown that antifungal activity is maintained while toxicity is reduced. This progress is followed by the incorporation of nystatin into liposomes. Liposomal nystatin formulation is under development and studies of it have provided encouraging data. Finally, lipid-based formulations of hamycin, miconazole, and ketoconazole have been developed but remain experimental. Advances in technology of liposomes and other lipid formulations have provided promising new tools for management of fungal infections.

  16. Comparative Evaluation of the Vitek 2 Yeast Susceptibility Test and CLSI Broth Microdilution Reference Method for Testing Antifungal Susceptibility of Invasive Fungal Isolates in Italy: the GISIA3 Study▿

    Science.gov (United States)

    Borghi, Elisa; Iatta, Roberta; Sciota, Rita; Biassoni, Caterina; Cuna, Teresa; Montagna, Maria Teresa; Morace, Giulia

    2010-01-01

    The newly available AST-YS01 Vitek 2 cards were evaluated, and the results were compared with those obtained by the CLSI M27-A2 microdilution reference method. Clinical fungal isolates, including 614 isolates of Candida spp., 10 Cryptococcus neoformans isolates, 1 Geotrichum capitatum isolate, and 2 quality control strains, were tested for their susceptibilities to amphotericin B, fluconazole, and voriconazole using both methods. The majority of fungal isolates were susceptible to all antifungal agents tested: the MIC90 values determined by the Vitek 2 and CLSI methods were 0.5 and 1 μg/ml, respectively, for amphotericin B; 8 and 16 μg/ml, respectively, for fluconazole; and <0.12 and 0.25 μg/ml, respectively, for voriconazole. Overall there was excellent categorical agreement (CA) between the methods (99.5% for amphotericin B, 92% for fluconazole, 98.2% for voriconazole), but discrepancies were observed within species. The CAs for fluconazole were low for Candida glabrata and Candida krusei when the results of the CLSI method at 48 h were considered. Moreover, the fully automated commercial system did not detect the susceptibility of Cryptococcus neoformans to voriconazole. The Vitek 2 system can be considered a valid support for antifungal susceptibility testing of fungi, but testing of susceptibility to agents not included in the system (e.g., echinocandins and posaconazole) should be performed with other methods. PMID:20631105

  17. DFT vibrational assignments, in vitro antifungal activity, genotoxic and acute toxicity determinations of the [Zn(phen)2(cnge)(H2O)](NO3)2·H2O complex

    Science.gov (United States)

    Martínez Medina, Juan J.; Torres, Carola A.; Alegre, Walter S.; Franca, Carlos A.; López Tévez, Libertad L.; Ferrer, Evelina G.; Okulik, Nora B.; Williams, Patricia A. M.

    2015-11-01

    Calculations based on density functional methods were carried out for the [Zn(phen)2(cnge)(H2O)](NO3)2·H2O complex taking into account the presence of two different conformers for the cyanoguanidine ligand. The calculated geometrical parameters and the vibrational IR and Raman spectra were in agreement with the experimental data. On the other hand, the activities of the complex, the ligands and the metal against fungal strains have been measured. The complexation increased the antifungal activity of the metal and the ligand cyanoguanidine, and slightly decreased the antifungal activity of the ligand 1,10-phenanthroline against Candida albicans, C. albicans ATCC 10231 and Candida krusei (not against the others strains of Candida). The ligand 1,10-phenanthroline and the zinc complex showed in some cases higher activity than the common antifungal drug fluconazole. The complexation also increased the post-antifungal effect in the tested strains, except for Candida parapsilosis, even with a better efficiency than those of some conventional antifungal agents. Antifungal studies were coupled with safety evaluations using the Artemia salina and the Ames tests. The zinc complex behaved as a non-mutagenic and non-toxic compound at the tested concentrations. Moreover, the zinc complex could be safer than the ligand when used as an antifungal agent. Therefore, the interaction of zinc(II) with N-containing ligands may provide a promising strategy for the development of novel and more secure drugs with antifungal activity.

  18. Meta-Analysis and Cost Comparison of Empirical versus Pre-Emptive Antifungal Strategies in Hematologic Malignancy Patients with High-Risk Febrile Neutropenia.

    Directory of Open Access Journals (Sweden)

    Monica Fung

    Full Text Available Invasive fungal disease (IFD causes significant morbidity and mortality in hematologic malignancy patients with high-risk febrile neutropenia (FN. These patients therefore often receive empirical antifungal therapy. Diagnostic test-guided pre-emptive antifungal therapy has been evaluated as an alternative treatment strategy in these patients.We conducted an electronic search for literature comparing empirical versus pre-emptive antifungal strategies in FN among adult hematologic malignancy patients. We systematically reviewed 9 studies, including randomized-controlled trials, cohort studies, and feasibility studies. Random and fixed-effect models were used to generate pooled relative risk estimates of IFD detection, IFD-related mortality, overall mortality, and rates and duration of antifungal therapy. Heterogeneity was measured via Cochran's Q test, I2 statistic, and between study τ2. Incorporating these parameters and direct costs of drugs and diagnostic testing, we constructed a comparative costing model for the two strategies. We conducted probabilistic sensitivity analysis on pooled estimates and one-way sensitivity analyses on other key parameters with uncertain estimates.Nine published studies met inclusion criteria. Compared to empirical antifungal therapy, pre-emptive strategies were associated with significantly lower antifungal exposure (RR 0.48, 95% CI 0.27-0.85 and duration without an increase in IFD-related mortality (RR 0.82, 95% CI 0.36-1.87 or overall mortality (RR 0.95, 95% CI 0.46-1.99. The pre-emptive strategy cost $324 less (95% credible interval -$291.88 to $418.65 pre-emptive compared to empirical than the empirical approach per FN episode. However, the cost difference was influenced by relatively small changes in costs of antifungal therapy and diagnostic testing.Compared to empirical antifungal therapy, pre-emptive antifungal therapy in patients with high-risk FN may decrease antifungal use without increasing mortality

  19. Appropriate use of antifungal agents

    Directory of Open Access Journals (Sweden)

    Elio Castagnola

    2013-07-01

    Full Text Available As knowledge increases faster and faster, authorizations for drug use often don’t report the most recent evidence. In addition, trials on pediatric populations are rare: as a consequence, a lot of drugs in pediatrics are prescribed out of their indications. This is called off-label use, if the drug isn’t approved for the treatment of a specific disease, or unauthorized use, if, for example, a dose isn’t written in the summary of product characteristics. These uses aren’t illegal, but physicians should take some steps in order to protect their liability: for example, the hospital should write documents based on shared scientific evidence, where the reasons supporting a choice are explained. Informed consent should be obtained, after an exhaustive explanation, from the parents. There is also the exceptional use, i.e. the use in desperate cases, where no other treatments are possible, but, for example, a study in an animal model has resulted in good outcomes. Even in this case, similar measures should be taken by the physician.http://dx.doi.org/10.7175/rhc.v4i1S.861

  20. Multilaboratory Study of Epidemiological Cutoff Values for Detection of Resistance in Eight Candida Species to Fluconazole, Posaconazole, and Voriconazole

    Science.gov (United States)

    Pfaller, M. A.; Bustamante, B.; Canton, E.; Fothergill, A.; Fuller, J.; Gonzalez, G. M.; Lass-Flörl, C.; Lockhart, S. R.; Martin-Mazuelos, E.; Meis, J. F.; Melhem, M. S. C.; Ostrosky-Zeichner, L.; Pelaez, T.; Szeszs, M. W.; St-Germain, G.; Bonfietti, L. X.; Guarro, J.; Turnidge, J.

    2014-01-01

    Although epidemiological cutoff values (ECVs) have been established for Candida spp. and the triazoles, they are based on MIC data from a single laboratory. We have established ECVs for eight Candida species and fluconazole, posaconazole, and voriconazole based on wild-type (WT) MIC distributions for isolates of C. albicans (n = 11,241 isolates), C. glabrata (7,538), C. parapsilosis (6,023), C. tropicalis (3,748), C. krusei (1,073), C. lusitaniae (574), C. guilliermondii (373), and C. dubliniensis (162). The 24-h CLSI broth microdilution MICs were collated from multiple laboratories (in Canada, Brazil, Europe, Mexico, Peru, and the United States). The ECVs for distributions originating from ≥6 laboratories, which included ≥95% of the modeled WT population, for fluconazole, posaconazole, and voriconazole were, respectively, 0.5, 0.06 and 0.03 μg/ml for C. albicans, 0.5, 0.25, and 0.03 μg/ml for C. dubliniensis, 8, 1, and 0.25 μg/ml for C. glabrata, 8, 0.5, and 0.12 μg/ml for C. guilliermondii, 32, 0.5, and 0.25 μg/ml for C. krusei, 1, 0.06, and 0.06 μg/ml for C. lusitaniae, 1, 0.25, and 0.03 μg/ml for C. parapsilosis, and 1, 0.12, and 0.06 μg/ml for C. tropicalis. The low number of MICs (<100) for other less prevalent species (C. famata, C. kefyr, C. orthopsilosis, C. rugosa) precluded ECV definition, but their MIC distributions are documented. Evaluation of our ECVs for some species/agent combinations using published individual MICs for 136 isolates (harboring mutations in or upregulation of ERG11, MDR1, CDR1, or CDR2) and 64 WT isolates indicated that our ECVs may be useful in distinguishing WT from non-WT isolates. PMID:24419346

  1. Design, synthesis and antifungal activity of novel triazole derivatives containing substituted 1,2,3-triazole-piperdine side chains.

    Science.gov (United States)

    Jiang, Zhigan; Gu, Julin; Wang, Chen; Wang, Shengzheng; Liu, Na; Jiang, Yan; Dong, Guoqiang; Wang, Yan; Liu, Yang; Yao, Jianzhong; Miao, Zhenyuan; Zhang, Wannian; Sheng, Chunquan

    2014-07-23

    Due to increasing incidence of invasive fungal infections and severe drug resistance to triazole antifungal agents, a series of novel antifungal triazoles with substituted triazole-piperidine side chains were designed and synthesized. Most of the target compounds showed good inhibitory activity against a variety of clinically important fungal pathogens. In particular, compounds 8t and 8v were highly active against Candida albicans and Cryptococcus neoformans with MIC values in the range of 0.125 μg/mL to 0.0125 μg/mL. They represent promising leads for the development of new generation of triazole antifungal agents. Molecular docking studies revealed that the target compounds interacted with CACYP51 mainly through hydrophobic and Van der Waals interactions.

  2. Antitumor and antifungal activities of organic extracts of seacucumber Holothuria atra from the southeast coast of India

    Science.gov (United States)

    Dhinakaran, Devaraj Isaac; Lipton, Aaron Premnath

    2015-02-01

    In phylum Echinodermata, the family Holothuridae is distinguished by its capacity of bioactive compounds. Sea cucumber Holothuria atra is commonly known as the lollyfish. The antifungal activity was detected using agar well diffusion method against the various fungal strains such as Trichoderma viride, Aspergillus niger, Aspergillus flavis, Candida albicans and Penicillium chrysogenum. Relatively high antifungal activity was seen against Candida albicans at 100 μL-1 concentration of extracts. Zone of inhibition was measured at 18 mm of diameter. The anti-tumor activities were detected against the Vero and Hep2 cell lines using MTT assay. The cells were treated with H. atra extract at concentrations 0.078-10mg mL-1. The extract showed high proliferative activity against the Hep2 cells. The body wall extracts of sea cucumber ( H. atra) showed effective antifungal and antitumor activities. All these findings suggest that the extracts could be used for the development of drugs.

  3. Antifungal susceptibility testing of Candida in the Clinical Laboratory: how to do it, when to do it, and how to interpret it

    Directory of Open Access Journals (Sweden)

    Esther Manso

    2014-06-01

    Full Text Available Significant changes in the management of fungaemia have occurred in the last decade with increased use of fluconazole prophylaxis, of empirical treatment and of echinocandins as first-line agents for documented disease. The emergence of drug resistance in fungal pathogens has a profound impact on human health given limited number of antifungal drugs. Antifungal resistance in Candida may be either intrinsic or acquired and may be encountered in the antifungal drug exposed but also the antifungal drug naïve patient The variation in resistance rates between centers emphasizes that it is essential to have knowledge of the local Candida species distribution and antifungal resistance rates to guide initial therapy for Candida BSI. Moreover, all Candida isolates from blood and normally sterile sites should be identified to the species level. The Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing have developed breakpoints and epidemiological cutoff values that are now established for Candida spp. Clinical microbiology laboratories will be employed commercial susceptibility assays, rather than reference broth microdilution methods and comparative studies are particularly important. Vitek 2®, Etest® and Sensititre YeastOne® provided a high degree of essential agreement and comparable sensitivity and specificity to BMD-RPMI for identifying resistance to azole and echinocandins in Candida spp.

  4. Spectrum and the In Vitro Antifungal Susceptibility Pattern of Yeast Isolates in Ethiopian HIV Patients with Oropharyngeal Candidiasis

    Directory of Open Access Journals (Sweden)

    Birhan Moges

    2016-01-01

    Full Text Available Background. In Ethiopia, little is known regarding the distribution and the in vitro antifungal susceptibility profile of yeasts. Objective. This study was undertaken to determine the spectrum and the in vitro antifungal susceptibility pattern of yeasts isolated from HIV infected patients with OPC. Method. Oral pharyngeal swabs taken from oral lesions of study subjects were inoculated onto Sabouraud Dextrose Agar. Yeasts were identified by employing conventional test procedures and the susceptibility of yeasts to antifungal agents was evaluated by disk diffusion assay method. Result. One hundred and fifty-five yeast isolates were recovered of which 91 isolates were from patients that were not under HAART and 64 were from patients that were under HAART. C. albicans was the most frequently isolated species followed by C. glabrata, C. tropicalis, C. krusei, C. kefyr, Cryptococcus laurentii, and Rhodotorula species. Irrespective of yeasts isolated and identified, 5.8%, 5.8%, 12.3%, 8.4%, 0.6%, and 1.3% of the isolates were resistant to amphotericin B, clotrimazole, fluconazole, ketoconazole, miconazole, and nystatin, respectively. Conclusion. Yeast colonization rate of 69.2% and 31% resistance to six antifungal agents was documented. These highlight the need for nationwide study on the epidemiology of OPC and resistance to antifungal drugs.

  5. Antifungal susceptibility testing of Aspergillus species complex in the Clinical Laboratory: how to do it, when to do it, and how to interpret it

    Directory of Open Access Journals (Sweden)

    Esther Manso

    2014-12-01

    Full Text Available The emergence of drug resistance in fungal pathogens has a profound impact on human health given limited number of antifungal drugs. Antifungal resistance in Aspergillus spp. infection can be encountered in the antifungal drug-exposed patient due to selection of intrinsically resistant species or isolates with acquired resistance belonging to species that are normally susceptible. Resistance to triazoles is not common in Aspergillus spp., however, triazole resistance in A. fumigatus appears to be increasing in several European countries in recent years and can be clinically relevant. The Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing have developed breakpoints and epidemiological cutoff values that are now established for Aspergillus spp. Clinical microbiology laboratories will be employed commercial susceptibility assays, rather than reference broth microdilution methods and comparative studies are particularly important.

  6. Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris.

    Science.gov (United States)

    Giordani, R; Regli, P; Kaloustian, J; Mikaïl, C; Abou, L; Portugal, H

    2004-12-01

    The antifungal effect of the essential oil from Satureja montana L., Lavandula angustifolia Mill., Lavandula hybrida Reverchon, Syzygium aromaticum (L.) Merril and Perry, Origanum vulgare L., Rosmarinus officinalis L. and six chemotypes of Thymus vulgaris L. on Candida albicans growth were studied. The most efficiency was obtained with the essential oil from Thymus vulgaris thymol chemotype (MIC 80% = 0.016 microL/mL and Kaff = 296 microL/mL). The presence in the culture medium of essential oil from Thymus vulgaris thymol chemotype (0.01, 0.1, 0.2, 0.3 microg/mL) and amphotericin B involved a decrease of the MIC 80% of amphotericin B. In contrast, the combination of amphotericin B and low concentrations (0.00031-0.0025 microg/mL) of essential oil was antagonistic. The strongest decrease (48%) of the MIC 80% was obtained with medium containing 0.2 microL/mL of essential oil. These results signify that the essential oil of Thymus vulgaris thymol chemotype potentiates the antifungal action of amphotericin B suggesting a possible utilization of this essential oil in addition to antifungal drugs for the treatment of mycoses.

  7. Phyto chemical Screening, Antibacterial, Antifungal and Anthelmintic Activity of Morinda citrifolia stem

    Directory of Open Access Journals (Sweden)

    Dr. D. Gopala Krishna

    2013-05-01

    Full Text Available In the present study, the Petroleum Ether and Alcoholic extract of Morinda citrifolia L. (Noni stem were subjected to preliminary screening for Antimicrobial and Aanthelmintic activity. The alcoholic extract exhibited significant Anti bacterial, Antifungal activity, comparable to the standard drug Tetracycline. The Petroleum Ether and Alcoholic extract were evaluated for Anthelmintic activity on adult Indian Earthworms, ‘Pheretima posithuma’. The Alcoholic extract produced more significant Anthelmintic activity than Petroleum ether extract and the activities are comparable with the reference drug Piperazine citrate

  8. [In vitro susceptibility of isolates of Paracoccidioides spp complex to systemic antifungals using the microdilution method].

    Science.gov (United States)

    Cermehol, Julman R; Alvarado, Primavera; Mendoza, Mireya; Herndndez, Isabel; Cuestal, De

    2015-09-01

    Broth microdilution, the reference method recommended by the Clinical Laboratory Standards Institute (CLSI), is not available for use with dimorphic fungi, such as those of the Paracoccidioides genus. In this work, in vitro susceptibility of the Paracoccidioides complex (n=19) to systemic antifungals: amphotericin B, 5-flucytosine, ketoconazole, itraconazole, fluconazole, voriconazole and caspofungin, was evaluated using the microdilution method (Document M27-A3, M27-S3), with some modifications such as: culture time in Sabouraud dextrose agar (7-10 days), RPMI 1640 medium supplemented with 2% glucose and the incubation time (7, 8 and 18 days). The sensitivity in vitro was variable; the majority of Paracoccidioides isolates was susceptible to ketoconazol (73.7%), followed by voriconazole (68.4%), itraconazole (63.1%), amphotericin B (52.6%), fluconazole (47.4%), 5-flucytosine (42.1%) and caspofungin (5%). The overall resistance was mainly to caspofungin (94.7%), followed by 5-flucytosine (52.6%) and amphotericin B (47.4%). Fifty-three percent of the isolates were susceptible-dose dependent to fluconazole followed by itraconazole (15.7%) and 5-fluorocytosine (5.3%). Amphotericin B, itraconazole and voriconazole were the most potent antifungal drugs against Paracoccidioides spp (CMI: 0.03-1 microg/mL). Based on these results, we tentatively propose a microdilution assay protocol for susceptibility testing of Paracoccidioides spp to antifungal drugs. This method may be clinically useful to predict resistance, even though further studies are needed.

  9. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  10. An antifungal peptide from the coconut.

    Science.gov (United States)

    Wang, H X; Ng, T B

    2005-12-01

    A chromatographic procedure consisting of ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on CM-cellulose, and gel filtration by fast performance liquid chromatography on Supedex 75 was utilized to isolate a 10 kDa antifungal peptide from coconut flesh. The peptide was unadsorbed on DEAE-cellulose, but adsorbed on Affi-gel blue gel and CM-cellulose. It displayed antifungal activity against Fusarium oxysporum, Mycosphaerella arachidicola and Physalospora piricola. The IC50 values of its inhibitory activities on mycelial growth in M. arachidicola and HIV-1 reverse transcriptase activity were respectively 1.2 and 52.5 microM.

  11. Lamisil, a potent alternative antifungal drug for otomycosis

    Directory of Open Access Journals (Sweden)

    Ali Zarei Mahmoudabadi

    2015-01-01

    Results: Out of 23 isolates of Aspergillus, Candida 4(17.4% and 1(4.4% were resistant to nystatin and miconazole, respectively. In addition, all tested organisms were sensitive to clotrimazole and terbinafine. Statistical analysis has shown that there are no significant differences on the effects of clotrimazole, miconazole and, terbinafine on saprophytic (environmental and pathogenic isolates of A. niger, A. flavus, and A. terreus (P value= 0.85. In addition, all tested organisms were found to be highly susceptible to terbinafine (P< 0.04. Conclusion: This is a new approach for the possible use of Lamisil for the treatment of otomycosis.

  12. Antifungal Efficacy of Myrtus communis Linn

    OpenAIRE

    Sadeghi Nejad; Erfani Nejad; Yusef Naanaie; Zarrin

    2014-01-01

    Background The ethanolic extract of Myrtus communis Linn. leaves was assayed in vitro as a growth inhibitor against opportunistic fungi such as Candida and Aspergillus species. Myrtus communis Linn. (Family, Myrtaceae) is an aromatic evergreen shrub or small tree. It is native to the Mediterranean region. Objectives This study aimed to assess antifungal activity (in vitro) of the ethanolic extracts of Myrtus communis leaves as a g...

  13. Antifungal susceptibilities and identification of species of the Sporothrix schenckii complex isolated in Brazil.

    Science.gov (United States)

    Ottonelli Stopiglia, Cheila Denise; Magagnin, Cibele Massotti; Castrillón, Mauricio Ramírez; Mendes, Sandra Denise Camargo; Heidrich, Daiane; Valente, Patricia; Scroferneker, Maria Lúcia

    2014-01-01

    Sporotrichosis is a subacute or chronic mycosis caused worldwide by the dimorphic species complex, Sporothrix schenckii. We studied 85 isolates recovered in Brazil to verify their identification and evaluate their in vitro antifungal susceptibility patterns. Based on phenotypic tests (microscopic features, ability to grow at 30°C and 37°C, colony diameters, as well as assimilation of sucrose and raffinose) and molecular assays (amplification of a fragment of the calmodulin gene), the strains were identified as S. schenckii, S. brasiliensis and S. globosa, with a predominance of S. schenckii isolates. There was 37.7% disagreement between the phenotypic and genotypic identification methodologies. In general, terbinafine was the most active drug, followed by ketoconazole and itraconazole, and the less active fluconazole and voriconazole. Five isolates (one S. globosa and four S. schenckii) were found to be itraconazole-resistant strains but, in general, there were no differences in the in vitro antifungal susceptibility profiles among the Sporothrix species.

  14. Species distribution & antifungal susceptibility pattern of oropharyngeal Candida isolates from human immunodeficiency virus infected individuals

    Directory of Open Access Journals (Sweden)

    Partha Pratim Das

    2016-01-01

    Results: From the 59 culture positive HIV seropositive cases, 61 Candida isolates were recovered; Candidaalbicans (n=47, 77.0%, C. dubliniensis (n=9, 14.7%, C. parapsilosis (n=2, 3.2%, C. glabrata (n=2, 3.2%, and C. famata (n=1, 1.6%. Candida colonization in HIV-seropositive individuals was significantly higher than that of HIV-seronegative (control group. Antifungal susceptibility testing revealed (n=6, 9.3% C. albicans isolates resistant to voriconazole and fluconazole by disk-diffusion method whereas no resistance was seen by Fungitest method. Interpretation & conclusions: C. albicans was the commonest Candida species infecting or colonizing HIV seropositive individuals. Oropharyngeal Candida isolates had high level susceptibility to all the major antifungals commonly in use. Increased level of immunosuppression in HIV-seropositives and drug resistance of non-albicans Candida species makes identification and susceptibility testing of Candida species necessary in different geographical areas of the country.

  15. Antifungal Efficacy of Myrtus communis Linn

    Directory of Open Access Journals (Sweden)

    Sadeghi Nejad

    2014-08-01

    Full Text Available Background The ethanolic extract of Myrtus communis Linn. leaves was assayed in vitro as a growth inhibitor against opportunistic fungi such as Candida and Aspergillus species. Myrtus communis Linn. (Family, Myrtaceae is an aromatic evergreen shrub or small tree. It is native to the Mediterranean region. Objectives This study aimed to assess antifungal activity (in vitro of the ethanolic extracts of Myrtus communis leaves as a growth inhibitor against 24 clinical isolates of Candida, including C. albicans, C. glabrata, and C. tropicalis also three species of Aspergillus, including A. niger, A. flavus, and A. terreus. Materials and Methods The ethanolic extract of myrtle leaves was prepared by maceration method and minimal inhibitory concentration (MIC of Myrtus communis leaves extract was determined by agar-well diffusion technique. Amphotericin B and clotrimazole were used as the positive control in this assay. Results The minimal inhibitory concentration (MICs values of Myrtus communis leaves extract ranged 0.625-5.0 µg/µL and 5-40 µg/µL against tested Candida spp. and Aspergillus spp., respectively. Conclusions Results revealed that the ethanolic extract of Myrtus communis leaves have antifungal potency against both pathogenic tested fungi, and it can be used as a natural antifungal agent.

  16. Antifungal ellagitannin isolated from Euphorbia antisyphilitica Zucc

    Institute of Scientific and Technical Information of China (English)

    Juan; Ascacio-Valdés; Edgardo; Burboa; Antonio; F; Aguilera-Carbo; Mario; Aparicio; Ramón; Pérez-Schmidt; Raúl; Rodríguez; Cristóbal; N; Aguilar

    2013-01-01

    Objective:To study antifungal activity of a new ellagitannin isolated from the plant residues of Euphorbia antisyphilitica(E.antisyphilitica)Zucc in the wax extraction process.Methods:An extract was prepared from dehydrated and pulverized residues and fractionated by liquid chromatography on Amberilte XAD-16,until obtained an ellagitannin-rich ethanolic fraction which was treated by rotaevaporation to recover the ellagitannin as fine powder.An aqueous solution was prepared and treated through ionic exchange liquid chromatography(Q XL)and gel permeation chromatography(G 25).The ellagitannin-rich fraction was thermogravimetrically evaluated(TGA and DTA)to test the thermo-stability of ellagic acid(monomeric unit).Then ellagitannin powder was analyzed by infrared spectrospcopy to determinate the functional groups and.also mass spectroscopy was used to determine the molecular ion.Results:The principal functional groups of ellagitannin were determined,the molecular weight was 860.7 g/mol;and an effective antifungal activity against phytopathogenic fungi was demonstrated.Conclusions:It can be concluded that the new ellagitannin(860.7 g/mol)isolated from E.antisyphilitica Zucc is an effective antifungal agent against Alternaria alternata,Fusarium oxyzporum,Colletotrichum gloeosporoides and Rhizoctnia solani.

  17. Antifungal ellagitannin isolated from Euphorbia antisyphilitica Zucc

    Institute of Scientific and Technical Information of China (English)

    Juan Ascacio-Valds; Edgardo Burboa; Antonio F Aguilera-Carbo; Mario Aparicio; Ramn Prez-Schmidt; Ral Rodrguez; Cristbal N Aguilar

    2013-01-01

    Objective: To study antifungal activity of a new ellagitannin isolated from the plant residues of Euphorbia antisyphilitica (E. antisyphilitica) Zucc in the wax extraction process. Methods:An extract was prepared from dehydrated and pulverized residues and fractionated by liquid chromatography on Amberilte XAD-16, until obtained an ellagitannin-rich ethanolic fraction which was treated by rotaevaporation to recover the ellagitannin as fine powder. An aqueous solution was prepared and treated through ionic exchange liquid chromatography (Q XL) and gel permeation chromatography (G 25). The ellagitannin-rich fraction was thermogravimetrically evaluated (TGA and DTA) to test the thermo-stability of ellagic acid (monomeric unit). Then ellagitannin powder was analyzed by infrared spectrospcopy to determinate the functional groups and, also mass spectroscopy was used to determine the molecular ion. Results: The principal functional groups of ellagitannin were determined, the molecular weight was 860.7 g/mol; and an effective antifungal activity against phytopathogenic fungi was demonstrated. Conclusions: It can be concluded that the new ellagitannin (860.7 g/mol) isolated from E. antisyphilitica Zucc is an effective antifungal agent against Alternaria alternata, Fusarium oxyzporum, Colletotrichum gloeosporoides and Rhizoctnia solani.

  18. Antifungal activity of Terminalia superba (combretaceae

    Directory of Open Access Journals (Sweden)

    SIAKA Sohro

    2015-04-01

    Full Text Available The aim of the present study was to optimize the anticandidosic activities of Terminalia superba (TEKAM4 and the identification of major compounds present in the most active chromatographic fraction. The hydroethanolic extract TEKAM4-X0 was prepared by homogenization employing a blender. Two derivatives extracts of TEKAM4-X0 (X1-1 and X1-2 were obtained by a liquid/liquid partition of TEKAM4-X0 in a mixture of hexane and water (v/v. Three chromatographic fractions (F1, F2 and F3 from X1-2 were separated by means of Sephadex-LH20 gel filtration chromatography. All the extracts were incorporated to Sabouraud according to the agar slanted double dilution method. Ketoconazole was used as standards for antifungal assay. The entire fractions were tested on the previously prepared medium culture containing 1000 cells of C. albicans. Antifungal activity was determined by evaluating antifungal parameters values (MFC and IC50. Lastly, the structures of 2 isolated compounds were elucidated by combination of Flash chromatography and spectroscopic methods, including MS, and multiple stage RMN experiments.

  19. Molecular epidemiology and in-vitro antifungal susceptibility of Aspergillus terreus species complex isolates in Delhi, India: evidence of genetic diversity by amplified fragment length polymorphism and microsatellite typing.

    Directory of Open Access Journals (Sweden)

    Shallu Kathuria

    Full Text Available Aspergillus terreus is emerging as an etiologic agent of invasive aspergillosis in immunocompromised individuals in several medical centers in the world. Infections due to A. terreus are of concern due to its resistance to amphotericin B, in vivo and in vitro, resulting in poor response to antifungal therapy and high mortality. Herein we examined a large collection of molecularly characterized, geographically diverse A. terreus isolates (n = 140 from clinical and environmental sources in India for the occurrence of cryptic A. terreus species. The population structure of the Indian A. terreus isolates and their association with those outside India was determined using microsatellite based typing (STR technique and Amplified Fragment Length Polymorphism analysis (AFLP. Additionally, in vitro antifungal susceptibility of A. terreus isolates was determined against 7 antifungals. Sequence analyses of the calmodulin locus identified the recently described cryptic species A. hortai, comprising 1.4% of Aspergillus section Terrei isolates cultured from cases of aspergilloma and probable invasive aspergillosis not reported previously. All the nine markers used for STR typing of A. terreus species complex proved to be highly polymorphic. The presence of high genetic diversity revealing 75 distinct genotypes among 101 Indian A. terreus isolates was similar to the marked heterogeneity noticed in the 47 global A. terreus population exhibiting 38 unique genotypes mainly among isolates from North America and Europe. Also, AFLP analysis showed distinct banding patterns for genotypically diverse A. terreus isolates. Furthermore, no correlation between a particular genotype and amphotericin B susceptibility was observed. Overall, 8% of the A. terreus isolates exhibited low MICs of amphotericin B. All the echinocandins and azoles (voriconazole, posaconazole and isavuconazole demonstrated high potency against all the isolates. The study emphasizes the need of

  20. ANTIFUNGAL ACTIVITY OF SOME COLEUS SPECIES GROWING IN NILGIRIS

    OpenAIRE

    Nilani, P.; Duraisamy, B.; Dhanabal, P.S.; khan, Saleemullah; Suresh, B.; Shankar, V.; Kavitha, K.Y.; Syamala, G.

    2006-01-01

    The in vitro antifungal activity of solvent extracts of Coleus forskohlii, Coleus blumei and Coleus barbatus were compared by testing against some pathogenic fungi like Aspergillus niger, Aspergillus fumigatus, Aspergillus ruantii, Proteus vulgaris and Candida albicans. The petroleum ether extract of Coleus forskohlii and Coleus barbatus exhibited significant antifungal activity against all the selected organisms. The extracts of Coleus blumei did not show any significant antifungal activity ...

  1. Antifungal activity of some coleus species growing in nilgiris.

    Science.gov (United States)

    Nilani, P; Duraisamy, B; Dhanabal, P S; Khan, Saleemullah; Suresh, B; Shankar, V; Kavitha, K Y; Syamala, G

    2006-07-01

    The in vitro antifungal activity of solvent extracts of Coleus forskohlii, Coleus blumei and Coleus barbatus were compared by testing against some pathogenic fungi like Aspergillus niger, Aspergillusfumigatus, Aspergillus ruantii, Proteus vulgaris and Candida albicans. The petroleum ether extract of Coleus forskohlii and Coleus barbatus exhibited significant antifungal activity against all the selected organisms. The extracts of Coleus blumei did not show any significant antifungal activity against the selected organisms.

  2. Design, synthesis and antifungal activity of novel triazole derivatives

    Institute of Scientific and Technical Information of China (English)

    Qing lie Zhao; Yan Song; Hong Gang Hu; Shi Chong Yu; Qiu Ye Wu

    2007-01-01

    Twenty-three 1 -(1H-1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-(N-cycloproyl-N-substituted-amino)-2-propanols were designed and synthesized on the basis of the active site of lanosterol 14α-demethylase.In vitro antifungal activities showed that some of the title compounds had higher antifungal activity and broader antifungal spectrum than fluconazole.

  3. Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    Full Text Available BACKGROUND: Development of resistant variants to existing antifungal drugs continues to be the serious problem in Candida albicans-induced fungal pathogenesis, which has a considerable impact on animal and human health. Identification and characterization of newer drugs against C. albicans is, therefore, essential. MMGP1 is a direct cell-penetrating peptide recently identified from marine metagenome, which was found to possess potent antifungal activity against C. albicans. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the mechanism of antifungal action of MMGP1 against C. albicans. Agarose gel shift assay found the peptide to be having a remarkable DNA-binding ability. The modification of the absorption spectra and fluorescence quenching of the tryptophyl residue correspond to the stacking between indole ring and nucleotide bases. The formation of peptide-DNA complexes was confirmed by fluorescence quenching of SYTO 9 probe. The interaction of peptide with plasmid DNA afforded protection of DNA from enzymatic degradation by DNase I. In vitro transcription of mouse β-actin gene in the presence of peptide led to a decrease in the level of mRNA synthesis. The C. albicans treated with MMGP1 showed strong inhibition of biosynthetic incorporation of uridine analog 5-ethynyluridine (EU into nascent RNA, suggesting the peptide's role in the inhibition of macromolecular synthesis. Furthermore, the peptide also induces endogenous accumulation of reactive oxygen species (ROS in C. albicans. MMGP1 supplemented with glutathione showed an increased viability of C. albicans cells. The hyper-produced ROS by MMGP1 leads to increased levels of protein carbonyls and thiobarbituric acid reactive substances and it also causes dissipation of mitochondrial membrane potential and DNA fragmentation in C. albicans cells. CONCLUSION: And Significance: Therefore, the antifungal activity of MMGP1 could be attributed to its binding with DNA, causing

  4. Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes.

    Science.gov (United States)

    Marui, Junichiro; Yoshimi, Akira; Hagiwara, Daisuke; Fujii-Watanabe, Yoshimi; Oda, Ken; Koike, Hideaki; Tamano, Koichi; Ishii, Tomoko; Sano, Motoaki; Machida, Masayuki; Abe, Keietsu

    2010-08-01

    Demand for novel antifungal drugs for medical and agricultural uses has been increasing because of the diversity of pathogenic fungi and the emergence of drug-resistant strains. Genomic resources for various living species, including pathogenic fungi, can be utilized to develop novel and effective antifungal compounds. We used Aspergillus oryzae as a model to construct a reporter system for exploring novel antifungal compounds and their target genes. The comprehensive gene expression analysis showed that the actin-encoding actB gene was transcriptionally highly induced by benomyl treatment. We therefore used the actB gene to construct a novel reporter system for monitoring responses to cytoskeletal stress in A. oryzae by introducing the actB promoter::EGFP fusion gene. Distinct fluorescence was observed in the reporter strain with minimum background noise in response to not only benomyl but also compounds inhibiting lipid metabolism that is closely related to cell membrane integrity. The fluorescent responses indicated that the reporter strain can be used to screen for lead compounds affecting fungal microtubule and cell membrane integrity, both of which are attractive antifungal targets. Furthermore, the reporter strain was shown to be technically applicable for identifying novel target genes of antifungal drugs triggering perturbation of fungal microtubules or membrane integrity.

  5. Antifungal Poly(lactic acid Films Containing Thymol and Carvone

    Directory of Open Access Journals (Sweden)

    Boonruang Kanchana

    2016-01-01

    Full Text Available The goal of this study was to develop antifungal poly(lactic acid films for food packaging applications. The antifungal compounds, thymol and R-(--carvone were incorporated into poly(lactic acid (PLA-based polymer at 10, 15 and 20% by weight. Film converting process consists of three steps including melt blending, sheet extrusion and biaxial stretching. The incorporation of antifungal compounds into the polymer matrix resulted in decreased Tg and Tm, increased gas permeabilility, reduced tensile strength and increased elongation at break of the antifungal PLA films.

  6. Drug-induced hair loss.

    Science.gov (United States)

    2016-05-01

    Hair loss can have major psychological consequences. It can be due to a wide variety of causes, including hormonal disorders, dietary factors, infections, inflammation, trauma, emotional factors, and cancer. Drugs can also induce hair loss, by interacting with the hair growth cycle. Drug-induced hair loss may be immediate or delayed, sudden or gradual, and diffuse or localised. It is usually reversible after drug discontinuation. The drugs most often implicated in hair loss are anticancer agents, interferon, azole antifungals, lithium, immunosuppressants, and many other drugs belonging to a variety of pharmacological classes.

  7. A dried blood spots technique based LC-MS/MS method for the analysis of posaconazole in human whole blood samples.

    Science.gov (United States)

    Reddy, Todime M; Tama, Cristina I; Hayes, Roger N

    2011-11-15

    A rugged and robust liquid chromatographic tandem mass spectrometric (LC-MS/MS) method utilizing dried blood spots (DBS) was developed and validated for the analysis of posaconazole in human whole blood. Posaconazole fortified blood samples were spotted (15 μL) onto Ahlstrom Alh-226 DBS cards and dried for at least 2h. Punched spots were then extracted by using a mixture of acetonitrile and water containing stable labeled internal standard (IS). Posaconazole and its IS were separated from endogenous matrix components on a Kinetex™ C18 column under gradient conditions with a mobile phase A consisting of 0.1% formic acid and a mobile phase B consisting of 0.1% formic acid in acetonitrile/methanol (70/30, v/v). The analyte and IS were detected using a Sciex API 4000 triple quadrupole LC-MS/MS system equipped with a TurboIonSpray™ source operated in the positive ion mode. The assay was linear over the concentration range of 5-5000 ng/mL. The inter-run accuracy and precision of the assay were -1.8% to 0.8% and 4.0% to 10.4%, respectively. Additional assessments unique to DBS were investigated including sample spot homogeneity, spot volume, and hematocrit. Blood spot homogeneity was maintained and accurate and precise quantitation results were obtained when using a blood spot volume of between 15 and 35 μL. Human blood samples with hematocrit values ranging between 25% and 41% gave acceptable quantitation results. The validation results indicate that the method is accurate, precise, sensitive, selective and reproducible.

  8. Candidaemia and antifungal therapy in a French University Hospital: rough trends over a decade and possible links

    Directory of Open Access Journals (Sweden)

    Standaert Annie

    2006-05-01

    Full Text Available Abstract Background Evidence for an increased prevalence of candidaemia and for high associated mortality in the 1990s led to a number of different recommendations concerning the management of at risk patients as well as an increase in the availability and prescription of new antifungal agents. The aim of this study was to parallel in our hospital candidemia incidence with the nature of prescribed antifungal drugs between 1993 and 2003. Methods During this 10-year period we reviewed all cases of candidemia, and collected all the data about annual consumption of prescribed antifungal drugs Results Our centralised clinical mycology laboratory isolates and identifies all yeasts grown from blood cultures obtained from a 3300 bed teaching hospital. Between 1993 and 2003, 430 blood yeast isolates were identified. Examination of the trends in isolation revealed a clear decrease in number of yeast isolates recovered between 1995–2000, whereas the number of positive blood cultures in 2003 rose to 1993 levels. The relative prevalence of Candida albicans and C. glabrata was similar in 1993 and 2003 in contrast to the period 1995–2000 where an increased prevalence of C. glabrata was observed. When these quantitative and qualitative data were compared to the amount and type of antifungal agents prescribed during the same period (annual mean defined daily dose: 2662741; annual mean cost: 615629 € a single correlation was found between the decrease in number of yeast isolates, the increased prevalence of C. glabrata and the high level of prescription of fluconazole at prophylactic doses between 1995–2000. Conclusion Between 1993 and 2000, the number of cases of candidemia halved, with an increase of C. glabrata prevalence. These findings were probably linked to the use of Fluconazole prophylaxis. Although it is not possible to make any recommendations from this data the information is nevertheless interesting and may have considerable implications with

  9. Drug: D02923 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D02923 Drug Amorolfine (USAN/INN); Loceryl (TN) C21H35NO 317.2719 317.5087 D02923.g...E Other antifungals for topical use D01AE16 Amorolfine D02923 Amorolfine (USAN/INN) Antiinfectives [BR:br083...07] Antifungals Ergosterol biosynthesis inhibitor squalene epoxidase inhibitor [KO:K00511] Morpholines Amorolf...ine [ATC:D01AE16] D02923 Amorolfine (USAN/INN) CAS: 78613-35-1 PubChem: 1739708

  10. Drug: D00202 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D METABOLISM A07 ANTIDIARRHEALS, INTESTINAL ANTIINFLAMMATORY/ANTIINFECTIVE AGENTS A07A INTESTINAL ANTIINFECTIVES A07AA Antibiotics... DERMATOLOGICAL USE D01A ANTIFUNGALS FOR TOPICAL USE D01AA Antibiotics D01AA01 Ny...VES AND ANTISEPTICS G01A ANTIINFECTIVES AND ANTISEPTICS, EXCL. COMBINATIONS WITH CORTICOSTEROIDS G01AA Antibiotics... Antifungal agents Therapeutic category of drugs in Japan [BR:br08301] 6 Agents against pathologic organisms and parasites 61 Antibio...tics 617 Acting mainly on mold 6171 Nystatins D00202 Nystatin (JP16/USP/INN) Anatom

  11. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA nanoparticles in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Tang X

    2014-11-01

    Full Text Available Xiaolong Tang,1,2,* He Zhu,3,* Ledong Sun,4,* Wei Hou,2 Shuyu Cai,1 Rongbo Zhang,1 Feng Liu5 1Stem Cell Engineering Research Center, School of Medicine, Anhui University of Science and Technology, Huainan, People’s Republic of China; 2State Key Laboratory of Virology, Life Sciences College, Wuhan University, Wuhan, Hubei, People’s Republic of China; 3Institute of Skin Damage and Repair, General Hospital of Beijing Military Command, Beijing, People’s Republic of China; 4Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China; 5Department of Anesthesiology, Children’s Hospital, Chongqing Medical University; Key Laboratory of Child Development and Disorders of the Ministry of Education, Chongqing, People’s Republic of China *These authors contributed equally to this work Background: Amphotericin B (AMB is a polyene antibiotic with broad spectrum antifungal activity, but its clinical toxicities and poor solubility limit the wide application of AMB in clinical practice. Recently, new drug-loaded nanoparticles (NPs – diblock copolymer D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide (PLGA-TPGS – have received special attention for their reduced toxicity, and increased effectiveness of drug has also been reported. This study aimed to develop AMB-loaded PLGA-TPGS nanoparticles (AMB-NPs and evaluate their antifungal effects in vitro and in vivo.Methods: AMB-NPs were prepared with a modified nanoprecipitation method and then characterized in terms of physical characteristics, in vitro drug release, stability, drug-encapsulation efficiency, and toxicity. Finally, the antifungal activity of AMB-NPs was investigated in vitro and in vivo.Results: AMB-NPs were stable and spherical, with an average size of around 110 nm; the entrapment efficacy was closed to 85%, and their release exhibited a typically biphasic pattern. The actual

  12. A new method to predict the epidemiology of fungal keratitis by monitoring the sales distribution of antifungal eye drops in Brazil.

    Directory of Open Access Journals (Sweden)

    Marlon Moraes Ibrahim

    Full Text Available PURPOSE: Fungi are a major cause of keratitis, although few medications are licensed for their treatment. The aim of this study is to observe the variation in commercialisation of antifungal eye drops, and to predict the seasonal distribution of fungal keratitis in Brazil. METHODS: Data from a retrospective study of antifungal eye drops sales from the only pharmaceutical ophthalmologic laboratory, authorized to dispense them in Brazil (Opthalmos were gathered. These data were correlated with geographic and seasonal distribution of fungal keratitis in Brazil between July 2002 and June 2008. RESULTS: A total of 26,087 antifungal eye drop units were sold, with a mean of 2.3 per patient. There was significant variation in antifungal sales during the year (p<0.01. A linear regression model displayed a significant association between reduced relative humidity and antifungal drug sales (R2 = 0.17,p<0.01. CONCLUSIONS: Antifungal eye drops sales suggest that there is a seasonal distribution of fungal keratitis. A possible interpretation is that the third quarter of the year (a period when the climate is drier, when agricultural activity is more intense in Brazil, suggests a correlation with a higher incidence of fungal keratitis. A similar model could be applied to other diseases, that are managed with unique, or few, and monitorable medications to predict epidemiological aspects.

  13. Antifungal activity of extracts from Atacama Desert fungi againstParacoccidioides brasiliensis and identification ofAspergillus felis as a promising source of natural bioactive compounds

    Directory of Open Access Journals (Sweden)

    Graziele Mendes

    2016-03-01

    Full Text Available Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5 of the extracts showed minimum inhibitory concentration (MIC values≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero. This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity.

  14. In vitro antifungal activity against Candida species of Sri Lankan orthodox black tea (Camellia sinensis L. belonging to different agro-climatic elevations

    Directory of Open Access Journals (Sweden)

    Wanigasekara Daya Ratnasooriya

    2017-02-01

    Full Text Available Objective: To investigate the antifungal potential of different grades of Sri Lankan orthodox black tea [orange pekoe, broken orange pekoe fannings (BOPF and Dust No. 1] belonging to the three agro-climatic elevations (low, mid and high. Methods: Antifungal activity was assessed in vitro using methanolic extracts (300 µg/disc and agar disc diffusion bioassay technique against three Candida species, Candida albicans (C. albicans, Candida glabrata (C. glabrata, and Candida tropicalis. ketoconazole and itraconazole mixture was used as positive control (10 µg/disc and methanol was used as the negative control. The minimum inhibitory concentrations were also determined using standard protocols. Results: None of the extracts were effective against Candida tropicalis. Furthermore, orange pekoe grade tea belonging to all agro-climatic elevations did not induce any antifungal activity against C. albicans and C. glabrata as well. Conversely, Dust No. 1 belonging to all three agro-climatic elevations and low-grown BOPF showed moderate antifungal activity against C. albicans and C. glabrata. Interestingly, the severity of the antifungal effect varied with agroclimatic elevations. The minimum inhibitory concentrations ranged from 64.00–128.00 µg/mL against C. glabrata and 128.00-256.00 µg/mL against C. albicans. Conclusions: Sri Lankan Dust No. 1 and BOPF have marked antifungal activity in vitro and offer promise to be used as a supplementary beverage in prophylaxis and during drug treatment in candidiasis.

  15. Clinicomycological Profile and Antifungal Sensitivity Pattern of Commonly Used Azoles in Dermatophytosis

    Directory of Open Access Journals (Sweden)

    Mahesh Mathur

    2015-06-01

    Conclusions: This study highlighted the increasing resistance of the antifungals, which is responsible for the treatment failure in dermatophye infections. Keywords: antifungal resistance; dermatophyte; epidemiology.

  16. Antifungal effect of electrospun nanofibers containing cetylpyridinium chloride against Candida albicans

    Directory of Open Access Journals (Sweden)

    Valdirene Alves dos SANTOS

    2014-01-01

    Full Text Available It is known that cetylpyridinium chloride (CPC has in vitro and in vivo antifungal action against Candida albicans, with advantages over other common antiseptics. A CPC delivery-controlled system, transported in polymer nanofibers (PVP/PMMA, was developed to increase the bioavailability of the drug in contact with the oral mucosa. The objectives of this study were to determine if CPC in nanofiber has antifungal action against C. albicans, and in what concentration it must be incorporated, so that the fraction released can yield an inhibitory concentration. The nanofiber was prepared by electrospinning, and sterilized with gamma irradiation. Nanofiber disks with 0.05%, 1.25%, 2.5% and 5% CPC, with 5% miconazole (MCZ and with no drug, as well as filter paper disks with 5% CPC, with 5% MCZ and with no drug were used in this study. A Candida albicans suspension (ATCC 90028 was inoculated in Mueller-Hinton Agar plates. The disks were placed on the plates and the inhibition zone diameters were measured 48h later. The nanopolymeric disks contracted in contact with the agar. All the concentrations of CPC incorporated in the nanofiber presented inhibitory action against C. albicans. Concentrations of 2.5% and 5% CPC presented a significant advantage over the nanofiber with no drug, proving the antifungal action of CPC. Under these experimental conditions, 5% CPC has greater inhibitory action against C. albicans than 5% MCZ, both in nanofiber and in filter paper. A modification made in the polymer to decrease the contraction rate may allow a larger inhibition zone to be maintained, thereby increasing the clinical usefulness of the polymer.

  17. Optimization of Antifungal Extracts from Ficus hirta Fruits Using Response Surface Methodology and Antifungal Activity Tests

    Directory of Open Access Journals (Sweden)

    Chuying Chen

    2015-10-01

    Full Text Available The fruits of Ficus hirta (FH display strong antifungal activity against Penicillium italicum and Penicillium digitatum. In order to optimize the extraction conditions of antifungal extracts from FH fruit, various extraction parameters, such as ethanol concentration, extraction time, solvent to solid ratio and temperature, were chosen to identify their effects on the diameters of inhibition zones (DIZs against these two Penicillium molds. Response surface methodology (RSM was applied to obtain the optimal combination of these parameters. Results showed that the optimal extraction parameters for maximum antifungal activity were: 90% (v/v ethanol concentration, 65 min extraction time, 31 mL/g solvent to solid ratio and 51 °C temperature. Under the abovementioned extraction conditions, the experimental DIZs values obtained experimentally were 57.17 ± 0.75 and 39.33 ± 0.82 mm, which were very close to the values of 57.26 and 39.29 mm predicted by the model. Further, nine kinds of phytopathogens were tested in vitro to explore the antifungal activity of the FH extracts. It was found for the first time that the FH extracts showed significant inhibition on the growth of P. italicum, A. citri, P. vexans, P. cytosporella and P. digitatum.

  18. Antifungal activity of Rubus chingii extract combined with fluconazole against fluconazole-resistant Candida albicans.

    Science.gov (United States)

    Han, Bing; Chen, Jia; Yu, Yi-qun; Cao, Yong-bing; Jiang, Yuan-ying

    2016-02-01

    This study aimed to investigate the antifungal activity of Rubus chingii extract in combination with fluconazole (FLC) against FLC-resistant Candida albicans 100 in vitro. A R. chingii extract and FLC-resistant C. albicans fungus suspension were prepared. The minimum inhibitory concentration and fractional inhibitory concentration index of R. chingii extract combined with FLC against C. albicans were determined, after which growth curves for C. albicans treated with R. chingii extract, FLC alone and a combination of these preparations were constructed. Additionally, the mechanisms of drug combination against C. albicans were explored by flow cytometry, gas chromatographic mass spectrometry and drug efflux pump function detection. R. chingii extract combined with FLC showed significant synergy. Flow cytometry suggested that C. albicans cells mainly arrest in G1 and S phases when they have been treated with the drug combination. The drug combination resulted in a marked decrease in the ergosterol content of the cell membrane. Additionally, efflux of Rhodamine 6G decreased with increasing concentrations of R. chingii extract. R. chingii extract combined with FLC has antifungal activity against FLC-resistant C. albicans.

  19. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan R

    2014-05-01

    Full Text Available Rajamani Lakshminarayanan,1,2 Radhakrishnan Sridhar,3,4 Xian Jun Loh,5 Muruganantham Nandhakumar,1 Veluchamy Amutha Barathi,1,6 Madhaiyan Kalaipriya,3,4 Jia Lin Kwan,1 Shou Ping Liu,1,2 Roger Wilmer Beuerman,1,2 Seeram Ramakrishna3,4,7 1Singapore Eye Research Institute, 2Signature Research Program in Neuroscience and Behavioral Diso